
Simulation Design of a Robotic
Mobile Manipulator for Material

Acceleration Platforms

Master thesis

Matej Loris Debijadi

S
T

U

D
E

N
T R E P O R T

Manufacturing Technology
Aalborg University

http://www.aau.dk

Title:
Simulation Design of a Robotic Mobile
Manipulator for Material Acceleration
Platforms

Project Period:
Spring Semester 2023

Author:
Matej Loris Debijadi

Supervisor(s):
Simon Bøgh

Copies: 1

Page Numbers: 69

Date of Completion:
June 1, 2023

Abstract:

This thesis investigates the potential
of autonomous robotic systems in Ma-
terial Acceleration Platforms (MAPs)
and presents the implementation of
an omnidirectional mobile manipula-
tor in a laboratory setting. The the-
sis focuses on the practical application
of the Isaac Sim simulation tool and
ROS framework for controlling and
simulating robotic systems. A simu-
lated system is developed, comprising
a Summit XL mobile platform and a
Franka Emika Panda robot arm. Mo-
tion planning is facilitated by ROS-
based frameworks, incorporating the
Navigation Stack 2 for autonomous
navigation and the Moveit2 platform
for motion planning and trajectory ex-
ecution. Through comprehensive test-
ing, valuable insights are gained into
the workflow of the system, offer-
ing opportunities for future improve-
ments. This work serves as a basis
for further research in mobile manipu-
lators and MAPs, contributing to The
Pioneer Center for Accelerating P2X
Materials Discovery (CAPeX)’s overall
goal of revolutionizing the discovery
of new materials.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

Preface iv

1 Introduction 1
1.1 Material Acceleration Platforms (MAPs) 1
1.2 Autonomous Mobile Manipulators . 3
1.3 Motivation . 3
1.4 Challenges . 4
1.5 Initial Problem Formulation . 5

2 Problem Analysis 6
2.1 Mobile Manipulator System . 6
2.2 Related works . 18
2.3 Summary of Analysis . 24

3 Problem Formulation 25
3.1 Final Problem Formulation . 25
3.2 Task Definition . 25
3.3 Project Objectives . 26

4 Solution Architecture 28
4.1 Robot Specifications . 28
4.2 Robot Operating System (ROS) . 30
4.3 Navigation Stack . 33
4.4 Motion Planning for Robot Arm . 35
4.5 Simulation Tool . 35

5 Implementation 37
5.1 Robot Description . 37
5.2 Holonomic Controller . 39
5.3 Occupancy Map . 42
5.4 Localization and Navigation . 43
5.5 Arm Control . 46

ii

Contents iii

5.6 System Overview . 48

6 Testing 51
6.1 Navigation System . 51
6.2 Robot Arm System . 55

7 Discussion 60
7.1 System Design . 60
7.2 Evaluation of Project Objectives . 61
7.3 Future Works . 62

8 Conclusion 64

Bibliography 65

A GitHub Repository 68

B Video Documentation 69

Preface

This Master’s Thesis is written by Matej Loris Debijadi as his final project of MSc
programme in Mechanical Engineering, with a specialization in Manufacturing
Technologies, at Aalborg University. The thesis was completed during the aca-
demic year 2022/23.

I’m very thankful to Simon Bøgh for his guidance, which had a significant
impact on the development of this project. Also, I would like to thank my family
for their support throughout my educational journey.

iv

Chapter 1

Introduction

Material acceleration platforms (MAPs) are an emerging paradigm for accelerating
materials discovery in an effort to develop technological solutions that can help
mitigate or address climate change issues. These platforms enable autonomous ex-
perimentation by combining artificial intelligence (AI), robotic systems, and high-
performance computing (HPC). [22] In this thesis, the current state of MAPs and
their potential applications for autonomous mobile manipulators are examined.
Discussing the opportunities and challenges associated with integrating MAPs
with autonomous mobile manipulators.

1.1 Material Acceleration Platforms (MAPs)

MAPs are systems that use AI to design, execute, and analyze experiments for the
purpose of materials discovery [7]. They can automate the entire workflow of ma-
terials research, from generating hypotheses and selecting candidates to synthesiz-
ing and characterizing materials, evaluating and optimizing their properties [14].
In addition to learning from data and feedback, MAPs can adjust their strategies
accordingly [7]. MAPs aim to reduce the time and cost of materials development
and enable new discoveries beyond human intuition [14].

As seen from the figure 1.1 MAPs are a multidisciplinary approach that aims to
accelerate material discovery and optimize it by integrating human expertise, AI
models, high-performance computing, databases, robotic platforms, and orches-
trator software.

1

1.1. Material Acceleration Platforms (MAPs) 2

Figure 1.1: Main areas required to enable MAPs, that are comprised of human intuition, artificial in-
telligence models employing machine learning for inverse design and chemical exploration, collected
databases for high-quality data, robotic platforms for automated experiments, and orchestrator soft-
ware to facilitate communication between modules. [7].

Robotic platforms will be the primary technological focus of this thesis.
MAPs include robotic platforms as a vital component. These systems use au-

tomation and high-throughput techniques to conduct a large number of experi-
ments in a short amount of time, allowing the screening of a vast chemical space
in search of new materials [7].

In MAPs, robotic platforms can be utilized for a variety of tasks, including
experiment preparation, automated synthesis, and characterization of materials
with high precision and efficiency. These systems can be programmed to operate
autonomously, conducting experiments around the clock without human interven-
tion. By automating these tasks, researchers can rapidly screen a vast number of
materials and conduct experiments that would be impractical or time-consuming
to conduct manually. In addition to reducing human errors and biases, they can
also improve experiment safety and scalability.

1.2. Autonomous Mobile Manipulators 3

Robotic platforms can also enable the development of closed-loop systems, in
which experimental results are fed back into the design process to continuously
refine the search for new materials. This strategy can lead to the creation of materi-
als with highly optimized properties, such as strength, conductivity, and durability
[22].

1.2 Autonomous Mobile Manipulators

This thesis focuses on the potential implementation of autonomous mobile manip-
ulators for MAPs. In this section, a brief introduction to AMMs and potential MAP
use cases will be provided.

Autonomous mobile manipulators are robots that can navigate their environ-
ment and manipulate objects without human intervention. They use cameras, sen-
sors, artificial intelligence, and machine vision to autonomously navigate through
uncontrolled environments and perform a variety of tasks. In MAPs, autonomous
mobile manipulators can perform tasks such as sample preparation, conducting
experiments, and collaborating with human researchers. These tasks are necessary
for exploring the vast space of potential materials and discovering novel materi-
als with desirable properties. By employing autonomous mobile manipulators in
MAPs, the advancement of materials research can be achieved in terms of produc-
tivity, precision, flexibility, scalability, safety, and innovation.

1.3 Motivation

One of the primary goals of MAPs is to reduce the time and cost of materials dis-
covery for clean energy applications such as solar cells, batteries, catalysts, and
thermoelectrics [22]. According to a report by Mission Innovation, it takes an aver-
age of 10–20 years to commercialize a new material for clean energy after its initial
discovery [17]. This is too slow and costly to meet the pressing global challenges of
energy security and environmental sustainability. Using data-driven methods that
can explore large and complex design spaces more efficiently and intelligently than
conventional approaches, MAPs aim to reduce this duration by orders of magni-
tude [14, 7]. A further purpose of MAPs is to increase the safety and reliability
of materials research by automating dangerous or tedious tasks that are prone to
human error or fatigue [14]. MAPs can, for instance, handle toxic or flammable
chemicals, perform high-throughput synthesis and characterization, monitor ex-
perimental conditions and outcomes in real-time, and ensure data reproducibility
and traceability [14, 7]. By assigning these tasks to machines, human researchers
can concentrate on more creative and strategic aspects of materials discovery.

1.4. Challenges 4

As part of The Pioneer Center for Accelerating P2X Materials Discovery (CAPeX)1,
researchers and students from Aalborg University aim to contribute to the CAPeX’s
overall goal of revolutionizing the new material discovery over the next 12 years.
Therefore, the aim of this thesis is to contribute to such a case by proposing an
autonomous mobile manipulator system design in a simulated laboratory setting.

1.4 Challenges

MAPs have great potential for accelerating the discovery and development of new
materials. However, they must overcome a variety of challenges in order to do so.

The availability and quality of data is a major challenge. To develop accurate
models and predictions, MAPs rely heavily on data, but the quality and availability
of data can be a serious obstacle. Inaccurate models and prediction can result from
insufficient, inconsistent, or biased data. [24]

Another difficulty in MAPs is integrating computational and experimental meth-
ods. While MAPs aim to effectively predict material properties, they must be com-
bined with experimental methods in order to validate predictions and optimize
materials. Close collaboration between computational and experimental teams is
required, which can be difficult in some organizations. [13]

In addition to these challenges, integrating autonomous mobile manipulators
into MAPs presents a number of new ones. One such challenge is navigation and
obstacle avoidance. Such systems must be able to navigate complex environments
safely while avoiding obstacles, which requires the use of advanced algorithms,
sensors and path planing strategies.

Objects can be challenging to manipulate, particularly if they are fragile, have
complex geometries, or are transparent. Therefore, autonomous mobile manipula-
tors must be designed to perform diverse manipulation tasks while ensuring the
safety of the materials. If the object to be manipulated is in liquid form and must be
transported in a chemical flask, the mobile manipulator must be extremely stable
to prevent chemical spillage.

In order to optimize their performance, mobile manipulators may be required
to collaborate with other robots or humans, and must be able to effectively coordi-
nate their actions.

Implementation of autonomous mobile manipulators present a set of challenges
that must be addressed through the application of advanced technologies, algo-
rithms, and design strategies. By overcoming these challenges, the mobile manip-
ulators can provide a flexible and effective solution to material handling in the
laboratory setting.

1https://www.dtu.dk/capex

https://www.dtu.dk/capex

1.5. Initial Problem Formulation 5

1.5 Initial Problem Formulation

Given the aforementioned information, the initial problem statement that will
guide the project’s problem analysis is as follows:

What are the applications of autonomous mobile manipulators in Material Acceleration
Platforms (MAPs), and how should such a system be designed?

Chapter 2

Problem Analysis

This chapter addresses the initial problem formulation and provides insights into
the autonomous mobile manipulator system. To achieve this, the chapter conducts
a detailed analysis of the system’s components, dividing it into two subsystems.

Additionally, this chapter explores related works and examines the potential
applications of mobile manipulators, specifically in material acceleration platforms.
By providing this comprehensive review, it is hoped that the final problem state-
ment can be formulated, and the task to be solved by the use of mobile manipula-
tors can be defined.

2.1 Mobile Manipulator System

Robotic manipulators are fixed-base robotic systems with a limited workspace de-
termined by the reach of their arm. To carry out tasks successfully, careful planning
is necessary to ensure the robotic arm can access all the required parts. This often
involves the use of conveyor belts or similar transportation systems to feed parts
to the manipulator. However, advancements in mobile robots have changed this
dynamic.

Figure 2.1: Aalborg University’s Little Helpers mobile manipulators, generations one through eight
(LH1 on the left and LH8 on the right) [20].

Mobile robots are controllable systems that use sensors and other technologies

6

2.1. Mobile Manipulator System 7

to perceive their environment and safely navigate through it. These robots typically
incorporate physical elements such as wheels, tracks, or legs along with control
algorithms. By mounting one or more robotic arms on a mobile base, a new system
is created that combines the advantages of both types of robots, known as a mobile
manipulator. With its ability to move around the environment, it can navigate
to where the parts are located, rather than relying on a conveyor belt or other
transportation system. This makes it a valuable tool in many industries, from
manufacturing to logistics and beyond. [2]

In order to gain a more comprehensive understanding of the mobile manipu-
lator system’s structure, it is useful to categorize its components into two distinct
subsystems: hardware and software, as illustrated in figure 2.2. Each of these
components will be analyzed in further detail in the following sections.

Figure 2.2: Structure and components of Mobile Manipulator System [25]

2.1.1 Hardware

The hardware of mobile manipulator system consists of three essential compo-
nents: the mobile platform, the manipulator, and the sensors. The mobile platform
enables the system to move, while the manipulator interacts with objects from
its environment to complete specific tasks using its end-effector. The sensors are
used to perceive the environment, objects, and the system itself, thus enabling safe
navigation and efficient manipulation of objects. [25]

2.1. Mobile Manipulator System 8

Mobile platform

Locomotion is a crucial aspect of mobile robotics that allows robots to move through
their environment. Based on the locomotion type, the mobile robots can be catego-
rized into three categories: legged, wheeled and tracked mobile robots.

Examples of different mobile platforms based on their locomotion type is shown
in figure 2.3. The ANYmal C1 legged robot, developed by AnyBotics designed for
industrial inspection. The MaXXII-S2 , created by Robodyne, is a tracked mobile
robot built for diverse use cases, particularly in agriculture. Lastly, the Persever-
ance Mars rover 3, designed by NASA, is specialized for rock sampling.

Figure 2.3: Different mobile robots with distinct locomotion types and intended applications. The
ANYmal C legged robot, is shown on the right. The MaXXII-S tracked mobile robot displayed on
the top left. The Perseverance Mars rover is shown on the bottom left.

Each type has certain design considerations that affect the robot’s performance
and capabilities. Some key design considerations for locomotion in mobile robots
include stability, energy efficiency, maneuverability, and terrain adaptability. These
factors can influence the choice between legged and wheeled locomotion and the
specific design of the robot’s legs or wheels. [19]

Legged robots offer better stability and terrain adaptability but require more
energy due to the energy consumption involved in lifting and moving their legs.
Additionally, legged robots may have lower maneuverability than wheeled mobile
robots. On the other hand, wheeled robots are highly energy-efficient and have

1https://www.anybotics.com/the-next-step-in-robotic-industrial-inspection/
2https://robodyne-services.com/maxxii-ugv-tracked-robot-vehicle
3https://mars.nasa.gov/mars2020/

https://www.anybotics.com/the-next-step-in-robotic-industrial-inspection/
https://robodyne-services.com/maxxii-ugv-tracked-robot-vehicle
https://mars.nasa.gov/mars2020/

2.1. Mobile Manipulator System 9

simpler control mechanisms than legged robots. However, they may struggle with
rough or uneven terrain. Tracked mobile robots use caterpillar tracks and have
larger ground contact patches, making them highly maneuverable on loose sur-
faces. However, they require a skidding turn to change direction, which results in
power inefficiency on surfaces other than loose ones. [15, 19]

This thesis focuses on the use of mobile manipulators in MAPs, with a primary
emphasis on their deployment in chemistry laboratories. Wheeled robots are often
preferred over legged and tracked robots in these environments for several reasons.
Firstly, the laboratory floors are flat and smooth, making them ideal for wheeled
locomotion. Secondly, wheeled robots can be designed to carry heavy loads such
as equipment or chemicals more easily than legged robots. Lastly, wheeled robots
have simpler control mechanisms, making them easier to integrate into a laboratory
automation system.

Wheeled mobile platforms Wheel design is an important factor for mobile robots
that affects their stability, energy efficiency, maneuverability, and terrain adaptabil-
ity. There are different types of wheels that can be used for mobile robots, each
with its own advantages and disadvantages. Some of the common wheel designs
are are shown in the figure 2.4.

Figure 2.4: Common wheel types. Standard wheel (top left), Caster wheel (top right), Swedish or
Mecanum wheel (bottom left), Omni wheel (bottom right)

Standard wheels are widely used due to their simplicity, which is limited to

2.1. Mobile Manipulator System 10

forward and reverse rotation. They allow the robot to rotate when different wheel
rotation speeds and/or directions are applied. Steering wheels, on the other hand,
have a different mechanical structure that allows them to rotate about their vertical
axis. A mechanism uses a steering motor to control the direction of a wheel’s
movement, and a driving motor to provide forward and reverse motion. Therefore,
the same physical wheel could be used as a standard wheel or converted into a
steering wheel by attaching a steering mechanism. [18]

Caster wheels enable a robot to achieve near omnidirectional movement. The
wheel can passively rotate 360 degrees with respect to the vertical axis as well as
forward and backward, allowing the wheel to move without restriction. They do
not require a steering mechanism, but their stability and traction are poor. They
are suited for indoor environments but struggle on surfaces that are uneven or
slippery. [19, 18]

Mecanum wheels are another name for Swedish wheels. They consist of a
central hub with rollers mounted at a 45-degree angle around its circumference
relative to the wheel’s axis. By applying different velocity to each wheel, a robot
can move in any direction. Mecanum wheels have three degrees of freedom: wheel
rotation, roller rotation, and rotational slip about the vertical axis passing through
the contact point of locomotion. They have a high degree of maneuverability and
omnidirectional capability, but are inefficient and complex. They perform poorly
on soft or rough terrains, but perform well on flat or hard surfaces. [19, 18]

Similar to Mecanum wheels, Omni wheels feature non-actuated rollers mounted
on an active main wheel. And in contrast to mecanum wheels, the rollers of Omni
wheels are placed at a 90-degree angle to the axis of rotation of the main wheel.
[18]

The property of Holonomicity of a robot depends directly on the type of
wheels used. A holonomic system has the same number of controlled DoFs as
its total number of DoFs. On the other hand, a robotic system is non-holonomic
if the number of its controlled DoFs is less than its total number of DoFs. The
standard setup with differential drive is an example of a non-holonomic system,
while a setup with Omni wheels or Mecanum wheels is an example of a holonomic
system.[18]

The choice of wheel design depends on the application and environment of the
mobile robot. For example, an omnidirectional robot may use Swedish wheels or
Omni wheels to achieve high mobility and agility in confined spaces or dynamic
scenarios. However, these wheels may not be optimal for outdoor applications
where standard wheels may provide better traction and efficiency. The geometry of
the wheel also affects its performance, such as its diameter, width, shape, material,
etc.. Therefore, it is important to consider these factors when designing a mobile
robot’s locomotion system. [19]

2.1. Mobile Manipulator System 11

Manipulator

Robot manipulators can be categorized into two types the traditional industrial
robots and collaborative robots (cobots).

Industrial robots are large, heavy machines that operate in fixed positions on
production lines. They’re designed for high-speed, repetitive tasks that require
precision and strength. They can lift and move heavy objects and are ideal for
tasks like welding, painting, and assembly.

Cobots, on the other hand, are designed to work alongside humans in shared
workspaces. They’re smaller, lighter, and equipped with sensors and safety fea-
tures to prevent collisions or injuries. They’re more flexible than industrial robots
and can be easily moved between workstations or reprogrammed for different
tasks. Cobots are often used for small-batch production or assembly tasks that
require human dexterity and decision-making skills. They’re also easy to program,
making them accessible to small businesses or manufacturers without technical
expertise.

Franka Research 3 4 cobot is shown in figure 2.5. Force-sensitive cobot designed
for cutting-edge AI and robotics research. The robot has 7 degrees of freedom, a
payload of 3 kg, and a maximum reach of 855 mm.

A robot manipulator’s end-effector is what enables it to interact with its en-
vironment. End-effectors come in different types such as grippers, suction cups,
magnets, hooks, and tools. Mobile manipulators are often designed to be modular,
allowing for quick and easy end-effector changes based on the task at hand. This
versatility makes mobile manipulators suitable for a wide range of applications.[4]

4https://www.franka.de/research/

https://www.franka.de/research/

2.1. Mobile Manipulator System 12

Figure 2.5: Franka Research 3 cobot equiped with its default gripper. force-sensitive cobot designed
for cutting-edge AI and robotics research. The robot has 7 degrees of freedom, a payload of 3 kg,
and a maximum reach of 855 mm.

Sensors

Autonomous mobile manipulators are highly dependent on sensors to perceive
and understand their environment. There are two main categories of sensors that
are used in robotics, namely proprioceptive and exteroceptive sensors.

Proprioceptive sensors are a type of sensor that measures values that are inter-
nal to the robot. These sensors are commonly used in robots and play a critical
role in ensuring their precise control and operation. For example, wheel/motor
sensors measure the rotation of a robot’s wheels or motors, allowing it to estimate
the distance traveled and changes in orientation. Robotic arms also rely on pro-
prioceptive sensors such as joint angle sensors and torque sensors, which measure
the angles between the links of a robotic arm and the torque applied by a motor at
a joint, respectively.

On the other hand, exteroceptive sensors acquire information from the robot’s
environment. These sensors measure external environmental factors such as dis-
tance and light intensity. Active ranging sensors emit a signal and measure the
time it takes for the signal to bounce back after hitting an object. These sensors
can be used to determine the distance to objects in the environment. Vision-based

2.1. Mobile Manipulator System 13

sensors use cameras to capture images of the environment and can be used for
object recognition, navigation, and obstacle avoidance. [5, 19]

In a laboratory setting with a mobile manipulator, various proprioceptive and
exteroceptive sensors should be utilized to enable manipulation and autonomous
navigation. Encoders, Inertial Measurement Units (IMUs) and torque sensors are
essential for this purpose. Additionally, a vision system or laser scanning is nec-
essary to navigate the environment and avoid obstacles. In certain cases, it may
be beneficial for the robot to operate in darkness, as in the work Mobile Robotic
Chemist from Toronto University [3], where laser scanning and touch feedback
were used instead of a vision system for those reasons. For increased safety and
hazard detection, the robot can be equipped with various sensors, such as temper-
ature, humidity, gas and chemical sensors.

2.1.2 Software

To effectively operate an autonomous mobile manipulator, the software structure
must be carefully designed and divided into multiple steps. Firstly, the environ-
ment must be perceived using information gathered from sensors. Secondly, the
path and motion planning step utilizes the perceived information to plan the move-
ment of both the mobile base and manipulator. Finally, the control system directs
and manages the behavior of the devices in the system. [25]

Path and Motion Planing

Motion planning algorithms are a critical component of autonomous robotic sys-
tem, as they enable robots to navigate through their workspace in a safe and effi-
cient manner. These algorithms are used to find the path between a starting point
and an endpoint, which allows the robot to move from one location to another.

Path planning is a preliminary step in motion planning, and it involves finding
the shortest distance or time between two points at a topological level. However,
motion planning goes a step further by taking into account the dynamics of the
environment and the robot itself. This includes factors such as the robot’s kine-
matics, velocities, and poses, as well as the presence of any dynamic objects in the
environment.

By considering these variables, motion planning generates interactive trajecto-
ries that allow the robot to safely and effectively interact with its surroundings.
The goal of motion planning is to achieve long-term optimal strategies by utilizing
short-term optimal or suboptimal strategies to respond to changing environmental
conditions. [26]

In general, path planning algorithms can be categorized into Graph-search,
sampling-based and interpolating curve algorithms.

2.1. Mobile Manipulator System 14

Graph-search Algorithms involve searching for a path through a graph that
represents the robot’s configuration space, taking into account its geometry and
any obstacles or other constraints in the environment. This configuration space is
often represented as a discrete graph, where each node in the graph represents a
valid configuration of the robot, and each edge represents a valid motion that the
robot can make from one configuration to another. The search algorithms used for
motion planning operate on this graph by constructing a search tree that explores
the possible paths from the initial configuration to the goal configuration, with the
goal of finding a shortest path on the graph. Examples of graph-search algorithms
include Dijkstra’s algorithm and A* algorithm. [26]

Figure 2.6: Search performance comparison of Dijkstra (left) and A* (right) algorithms in a 2D
environment. The obstacle is shown as a gray shape. Red and green circles represent nodes in the
closed set, that is nodes that have been evaluated, whereas blue circles represent the set of nodes that
have yet to be evaluated. [6]

Sampling-based Algorithms use random configurations to explore the con-
figuration space instead of discretizing it. Local planners connect these random
configurations, and then check if there is a feasible path between them that avoids
obstacles. This process results in either a probabilistic roadmap (PRM) or a rapidly-
exploring random tree (RRT) that covers the configuration space.

Both PRM and RRT are probabilistic in nature, meaning they do not guarantee
finding the optimal path or even a feasible solution. However, they are very effec-
tive in high-dimensional or complex environments, where exact solutions are often
computationally intractable.[26]

2.1. Mobile Manipulator System 15

Figure 2.7: Performance comparison of PRM (left) and RRT (right) algorithms in a 2D environment.
The obstacle is shown as a red square. Yellow square represents the starting point and green squere
the goal point. [9]

Interpolating Curve Algorithms do not use graphs or samples, but rather gen-
erate smooth curves that interpolate between waypoints. The waypoints are either
given by the user or computed by other methods. The curves are designed to sat-
isfy certain criteria such as curvature, clearance and optimality. The problem then
reduces to finding an interpolating curve that passes through all waypoints with-
out colliding with obstacles. Examples of interpolating curve algorithms include
B-splines, Bezier curves and Dubins curves.[26]

Motion Planning for Mobile Manipulators
Mobile manipulators pose unique challenges for planning algorithms due to their
kinematic redundancy and dynamic complexity. Kinematic redundancy occurs
when a system has more degrees of freedom than necessary to perform a given
task. With mobile manipulators, this is because of the combination of a mobile
base and robot manipulator, which have more degrees of freedom when combined
than they do individually.

This redundancy leads to the challenge of determining the most efficient and
effective way to achieve a goal. There are multiple ways to achieve the same ob-
jective, and the planning algorithm must choose the optimal path. Furthermore,
dynamic complexity arises from the different dynamic behavior of the mobile base
and the manipulator. This makes it challenging to model and control the system’s
motion accurately.

Due to this specific challenges of mobile manipulators the planing algorithms
are usually implemented in one of two ways and therefore can be categorized
into Separate planing and Combined (Whole-body) planing which is based on
consideration of planning algorithms of the differences between the robot base

2.1. Mobile Manipulator System 16

and manipulator arm.
Separate Planing Approach divides the complex task that has to be achieved by

mobile manipulator into the sequence of sub-tasks and the planing is carried out
for each sub-task separately and therefore separates the planning for the mobile
base and manipulator arm.

When dividing a task into sub-tasks, the placement of the mobile base can play
a crucial role. Poor placement can make the overall task goal unreachable and
result in suboptimal solution paths. Since the goal state of one sub-task heavily
affects the planning of the next task, it could prevent the generation of a feasible
solution, thus resulting in the need for re-planning of the previous task. This can
lead to locally optimal but globally suboptimal paths or unsuccessful planning
queries.

Whole-body Motion Planning is an alternative approach that considers the
robotic system as a single entity with numerous degrees of freedom. However,
this approach can be computationally expensive compared to planning each body
separately. Specifically, calculating the free space representation and finding a path
through it can be highly demanding. The free space denotes the area where the
robot can move without colliding with obstacles, and if the obstacles are dynamic,
the free space representation needs frequent updating, further increasing compu-
tational cost. To avoid computing the free space representation, an alternative is to
use graph-search algorithms to create a graph through the free space and identify
feasible paths, which is a less expensive approach.

Approaching motion planning as an optimization problem of finding the tra-
jectory is another viable method. However, this approach can be challenging and
costly to implement in real-world applications due to the requirement of large
memory for storing paths and complex cost functions. Despite these challenges,
optimization-based methods can provide precise and accurate paths.

Another popular approach is to use sampling-based algorithms because of their
effectiveness in high-dimensional and complex environments. However, generated
paths may not be smooth, which can result in less accurate trajectories. Despite
this, sampling-based methods are still beneficial due to their ability to handle ob-
stacles of inconsistent shape and size, and their probabilistic completeness prop-
erty, meaning that given enough time, they can find a feasible path with high
probability. [16]

Motion Planing Frameworks
Developing robotic applications can be complex and time-consuming, particularly
when it comes to creating algorithms for motion planning. However, there are
existing tools and frameworks that can simplify the process. Robotic Operating
System 2 (ROS2) [10] is a widely used open-source framework for robotics devel-
opment. It offers a variety of libraries and tools that make it easier to build robotic

2.1. Mobile Manipulator System 17

applications.
Two such libraries are Navigation Stack2 (Nav2) [11] and MoveIt 25. Naviga-

tion Stack provides algorithms for autonomous navigation of mobile robots, while
MoveIt provides tools for motion planning for robotic arms. Both libraries are built
on top of ROS and are well-established in the robotics community.

By using these libraries, researchers and developers can implement state-of-
the-art motion planning algorithms without having to write complex code from
scratch

Control System

A control system is a system that manages, commands, directs, or regulates the
behavior of other devices or systems using control loops. Control systems can be
classified into two types: open-loop and closed-loop. Open-loop control systems
do not use feedback and act only on the basis of input signals. Closed-loop control
systems use feedback to compare the output with the desired output and adjust
their actions accordingly to minimize an error.

Mobile manipulators are controlled in one of three ways: manual, semi au-
tonomous, or fully autonomous control. Manual control, which has been the
standard approach, involves direct control of the systen through means such as
joysticks. However, this method requires extensive training to achieve competence.

Semi-autonomous control, on the other hand, combines the advantages of both
manual and autonomous control. This approach allows for the machine to oper-
ate with a degree of autonomy while still being under human supervision. For
instance, a mobile manipulator may be programmed to move to a certain location
autonomously, but the operator can intervene and modify the trajectory if needed.

Autonomous mobile manipulators are capable of operating without human in-
tervention or supervision, perceiving their environment, planning actions, execut-
ing tasks, and adapting to changes or uncertainties. This capability can lead to
more efficient and intelligent operations.

There are different approaches for achieving autonomous control of mobile
manipulator systems, including behavior-based control, model-based control, and
learning-based control. Behavior-based control relies on a set of predefined behav-
iors that are triggered by sensory inputs or internal states, which can be priori-
tized, blended, or coordinated to achieve complex tasks. Model-based control uses
a mathematical model of the robot and its environment to predict the outcomes of
actions and select the optimal ones based on criteria such as cost, reward, or safety.
Learning-based control utilizes data-driven techniques like reinforcement learning
to learn from experience and improve performance over time. [25]

5https://moveit.ros.org

https://moveit.ros.org

2.2. Related works 18

Perception

Mobile manipulators rely on information from multiple sensors to perceive their
environment. However, the inherent imperfections in each sensor can result in
uncertainty in the information they provide. Thus, effective strategies are neces-
sary to manage the sensory information despite these uncertainties. Two common
strategies are used: utilizing the raw measurements from each sensor to inform the
robot’s actions, or extracting features from one or more sensor readings to interpret
the scene.

Feature Extraction is a process of identifying and extracting important or rele-
vant information from sensor data. This can involve extracting features based on
range data, or visual appearance-based feature extraction. The objective of feature
extraction is to reduce the amount of data that needs to be processed while re-
taining important information that can be used for tasks such as localization and
mapping.

Features are identifiable structures or patterns in the environment that can be
extracted from measurements and mathematically represented. Low-level features
refer to geometric primitives such as lines, circles, or polygons, which provide
an abstraction of raw data and increase the distinctiveness of each feature while
reducing the data volume. High-level features, on the other hand, refer to objects
such as edges, doors, or tables, which provide maximum abstraction from raw data
and reduce the data volume while providing highly distinctive resulting features.

Feature Extraction Based on Range Data involves the identification and extrac-
tion of crucial information from sensor data that measures the distance between the
mobile manipulator and its surroundings. This strategy employs sensors such as
laser or ultrasonic. The extracted features can help represent the environment in
a more condensed and informative manner, which can assist with tasks such as
localization and mapping. For instance, a laser range finder can be utilized to ex-
tract features such as lines or corners in the environment, which can be used to
represent walls or other objects.

Visual Appearance-based Feature Extraction involves the identification and
extraction of significant information from visual sensor data. This process includes
the use of techniques such as color or texture analysis to extract features that repre-
sent the visual appearance of objects in the environment. The extracted features can
aid the mobile manipulator in recognizing and identifying objects or landmarks in
its surroundings. [19]

2.2 Related works

The purpose of this section is to provide an analysis of the implementation of
autonomous mobile manipulators in various industries and their potential appli-

2.2. Related works 19

cations in MAPs. The aim is to present an overview of the hardware and software
components used in the implementation of such systems, with a focus on their
versatility and potential. Another objective is to guide the final problem formula-
tion of this project by examining the use cases of autonomous mobile manipulators
and their potential in solving various tasks, such as material handling, assembly,
and inspection. This analysis will provide valuable insights into the potential ap-
plications of autonomous mobile manipulators in different industries, including
manufacturing, healthcare, and logistics, and their ability to operate in diverse
environments, both indoors and outdoors.

2.2.1 Little Helper 8

Aalborg University researchers have developed a series of autonomous mobile ma-
nipulators called Little Helpers (LH) [20] to improve the flexibility, speed, and
efficiency of production and logistics handling. Unlike most static industrial ma-
nipulators that are limited by their workspace, LH models were developed with
specific aims, including logistics and multiple part feeding, assembly and machine
tending, and a dual-arm robot co-worker. The latest model, LH8, was designed
with an omnidirectional mobile base, allowing lateral movement, in contrast to all
previous versions, which had differential drive mobile platforms. Adding an ad-
ditional degree of freedom (DOF) to the system enables LH8 to navigate shorter
paths than differential drive mobile platforms, as shown in figure 2.8. To perceive
its environment, LH8 uses two LIDAR sensors.

Figure 2.8: The figure illustrates the path of an omnidirectional LH8 robot, denoted by the green
line, in contrast to the path of a differential drive robot, represented by the red line.[20]

The navigation package was programmed in ROS, which implemented global
and local planners. The global planner utilizes a graph-search-based A* algorithm

2.2. Related works 20

for long-term planning, from the initial pose to the goal pose. The local planner
serves as an online local trajectory planner for omni-drive, which optimizes the
initial trajectory generated by the global planner while handling static and dy-
namic obstacle avoidance. To localize the robot in the map, this work implements
adaptive Monte Carlo localization (AMCL). The tests were conducted in both the
Gazebo simulation tool and real-life scenarios, wherein the robot was able to avoid
obstacles and navigate from the initial position to the goal position with a sig-
nificant margin of error of 0.33m, attributed to the use of cheap LIDAR sensors.
However, no tests were performed for the pick and place task as the robot arm was
not mounted on the mobile base.

2.2.2 A Mobile Robotic Chemist

This thesis focuses on the utilization of autonomous mobile manipulators in Mate-
rial Acceleration Platforms (MAPs), which are designed to accelerate the discovery
of new materials through high-throughput experimentation. A noteworthy exam-
ple of such a system is the implementation of a KUKA mobile robot mounted on
a KUKA Mobile Platform base by researchers from the University of Liverpool [3].
This robot was deployed in a laboratory environment and could perform complex
manipulations comparable to those performed by human researchers. The robot
could autonomously move around the laboratory, select and weigh reagents, mix
them together, apply heat, and measure the gas evolved. Moreover, it utilized ar-
tificial intelligence (AI) to analyze the data and plan the next experiments using a
Bayesian search algorithm.

The primary objective of this research was to search for improved photocata-
lysts for hydrogen production from water. The robot carried out 688 experiments
within a ten-variable experimental space over eight days, achieving this objective.
To navigate its environment, the robot employed a cloud of possible positions and
updated its position by matching the output of its laser scanners with the map for
each position in the cloud. The robot’s position was determined by x, y, and θ

(its orientation angle). Furthermore, a touch-sensitive 6-point calibration method
was utilized to enhance precision, allowing the robot to operate instruments and
carry out delicate manipulations such as vial placements with a level of precision
comparable to a human operator.

The researchers implemented a Bayesian search algorithm to guide the robot in
its search for improved photocatalysts for hydrogen production from water. The
objective function was finding the optimal set of concentrations in a multicompo-
nent mixture for photocatalytic hydrogen generation. This enabled the robot to
efficiently explore a large experimental space and identify promising solutions.

This study demonstrated the potential and benefits of autonomous mobile ma-
nipulators in MAPs and laboratory environments, as well as the challenges and

2.2. Related works 21

opportunities for future work on mobile robotic chemists, such as improving their
safety, reliability, robustness, scalability, and collaboration. Overall, this research
showcases the tremendous potential for autonomous mobile manipulators to rev-
olutionize high-throughput experimentation and expedite the discovery of new
materials.

Figure 2.9: KUKA Mobile Robot mounted on a KUKA Mobile Platform base loading samples into
the photolysis station (left). Laboratory environment used for performing experiments.(right) [3]

2.2.3 Autonomous Mobile Manipulator for Construction-based Tasks

Autonomous mobile manipulators are increasingly being utilized in various do-
mains, and the work of Basiri et al.[1] provides an interesting use case for their ap-
plication in outdoor structure building with heterogeneous brick patterns. Specifi-
cally, the researchers implemented an autonomous mobile manipulator consisting
of a refurbished ATRV-Jr mobile base and a UR5e robotic arm, shown in figure 2.10.
To enable localization and navigation, the system is equipped with several sensors,
including a GPS antenna and receiver, two IMUs, a laser scanner, and an Intel
RealSense camera with RGB and depth sensors positioned near the end-effector.

In order to achieve autonomous behavior, the work employed a state-machine
where predefined states were autonomously switched based on sensor inputs and
mission status. To enhance the localization performance, an Extended Kalman
Filter was employed that combined odometry information, GPS and IMU mea-
surements to output a pose estimation for the robot to safely move around the
environment. The robot further utilizes a laser scanner to precisely position itself
near the pile of bricks or the wall, enabling it to reach, grasp, and manipulate
bricks.

To plan its motion, the work utilized Dijkstra’s Algorithm based Global planner
and Dynamic Window Approach (DWA) Local Planner based on ROS navigation
stack. This approach benefits from costmaps to represent obstacles and build an
occupancy grid representation of the environment, enabling the robot to plan its

2.2. Related works 22

path efficiently and avoid obstacles.
Overall, this work demonstrates the potential of autonomous mobile manipu-

lators for outdoor structure building tasks, highlighting the importance of localiza-
tion and motion planning techniques for their successful operation. Future work
can build upon this foundation by addressing challenges such as improving the
robustness, scalability, and reliability of such systems.

Figure 2.10: The mobile manipulator assembled from refurbished ATRV-Jr mobile base and a six-
degree-of-freedom UR5e robotic arm.[1]

2.2.4 Whole-Body Mobile Manipulation

The conventional approach to mobile manipulators involves separately planning
the motions of the mobile base and robot arm. However, Mittal et al.[12] propose
a novel approach to whole-body motion planning for manipulating articulated ob-
jects in novel scenes. Their paper introduces a two-level planning hierarchy: object-
centric and agent-centric. The former provides proposals for interacting with the
object without considering scene information or the agent embodiment, while the
latter ensures safe execution of the proposed plans by the robot, accounting for its
dynamics and environment.

To benchmark the feasibility of successful articulated object manipulation in
unknown environments, the authors explore three different planners for mobile
manipulators that use map information for environment collision avoidance. These
include: i) sampling-based planning for the base with inverse kinematics (IK) for
the arm, ii) whole-body control using IK, and iii) whole-body control via model
predictive control (MPC). They observe that the MPC-based solution performs sig-
nificantly better than IK-based solutions in terms of success rate and execution
time.

The authors conducted experiments on three different kitchen layouts, shown

2.2. Related works 23

in figure 2.11, using assets from the PartNet-Mobility dataset. Each layout contains
everyday objects found in modern kitchens, such as tables, refrigerators, and mi-
crowaves. The task was for a kitchen assistant robot to operate human-scale objects
such as cabinets and ovens in unmapped environments with dynamic obstacles.

Figure 2.11: The image represents three distinct kitchen settings used in the testing process.[12]

The simulation tool used for experiments was NVIDIA Isaac Sim, which utilizes
PhysX for stable, fast, and realistic physics simulations, as well as multi-GPU ray
tracing for photorealism. The platform used in the simulation was Mabi-Mobile,
which consists of a differential drive base with four supporting castors and a 6-
DoF manipulator. Hardware tests were also performed on an ANYmal-D platform
equipped with a 6-DoF torque controllable robotic arm. The implemented robots
are shown in figure 2.12.

Figure 2.12: The iamge depicts implemented mobile manipulators in the work, specifically the Mobi-
Mobile wheeled robot (left) and the ANYmal-D platform with a robotic arm (right). The collision
mesh for both robots is approximated using spheres.[12]

The results of the experiments showed that the proposed method outperformed

2.3. Summary of Analysis 24

other state-of-the-art methods in terms of success rate and execution time. More-
over, the authors demonstrated that their method can handle complex kitchen set-
tings and ensure safe execution for both wheel-based and legged mobile manipu-
lators.

2.3 Summary of Analysis

Autonomous mobile manipulators have emerged as a promising technology for
a wide range of applications, including material handling, assembly, and inspec-
tion. Researchers have implemented such systems in various industries and have
demonstrated their potential in both indoor and outdoor tasks. Autonomous mo-
bile manipulators have also been implemented in MAPs to accelerate the discov-
ery of new materials through high-throughput experimentation. These systems
employ artificial intelligence (AI) to analyze data and plan experiments efficiently.
Moreover, autonomous mobile manipulators have demonstrated success in out-
door environments, particularly in construction-based tasks. Benefits of whole-
body motion planning over traditional separate body motion planning approach
has also been examined. Overall, findings from related works showcase the great
potential of autonomous mobile manipulators to advance high-throughput exper-
imentation and expedite the discovery of new materials.

Chapter 3

Problem Formulation

This chapter presents the final problem formulation that will guide the design of
this thesis’s solution, which is based on the previous chapter’s analysis. Further-
more, the project’s task and goals will be defined in order to guide the development
and evaluation of the proposed solution and to more precisely specify the project’s
scope.

3.1 Final Problem Formulation

The problem analysis investigated the design of an autonomous mobile manip-
ulator system from both the hardware and software aspects. As a result of this
examination, it was discovered that these robots have great potential in a variety
of industries due to their ability to provide high levels of flexibility and efficiency.
However, when it comes to motion planning and system control, the dynamic com-
plexity of these robots presents a significant challenge.

Additionally, the problem analysis investigated some of the existing works in
this field in order to gain a more comprehensive understanding of the current
research state as well as the practical implementation details and potential appli-
cations of these robots.

As a result of this finding the final problem formulation is defined as:
Establish a foundation for simulating an omnidirectional mobile manipulator within a

laboratory setting to support future research on CAPeX.

3.2 Task Definition

Drawing inspiration from Liverpool University’s Mobile Robotic Chemist project
[3], the task of the mobile manipulator is to navigate to the handspace gas chro-
matography station. This specific station is where the gas phase is analyzed for

25

3.3. Project Objectives 26

hydrogen after photolysis, which marks the final phase of the experiment. The
mobile manipulator’s task at this station is to retrieve the completed rack of vials
and transport them to the designated storage area.

The simulated environment setup used in this work is shown in figure 3.1, the
assets used in the creating of this environemnt are downloaded from GrabCad1 an
online platform for sharing and downloading 3D CAD models.

Figure 3.1: The simulated laboratory environment used in this work.

3.3 Project Objectives

Objective 1: Integrate the Summit XL mobile platform with the Franka Emika
Panda robot arm to create a mobile manipulator robotic system
This objective involves assembling a 3D model of the mobile manipulator by inte-
grating existing models of the mobile base and robot arm.

Objective 2: Create a photo-realistic simulation of the robotic system using
the Nvidia Isaac Sim simulation tool and incorporating ROS2 functionality for
integration with Isaac Sim
This objective involves creating a comprehensive simulation environment that in-
cludes robotic system, sensors, a control system, and motion planning capabilities.

1https://grabcad.com/

https://grabcad.com/

3.3. Project Objectives 27

The simulation will be based on the ROS2 framework and will demonstrate the
execution of a set task.

Objective 3: Create a simulated laboratory environment in which the afore-
mentioned task will be executed
This objective involves creating a an environment which resembles the laboratory
setting with at least two stations one for the picking location of the rack with flasks
and one station for the deposit of the completed racks.

Objective 4: Perform testing of the proposed mobile manipulator system
This objective involves the testing of the implemented systems functionality both
on low-level and high-level. Testing of low-level functionalities include testing
the performance of navigation system and robot arm manipulation. High-level
functionalities testing should check the capabilities of the system to execute the set
task.

Objective 5: Provide a GitHub repository as a documentation for the imple-
mented source code and simulation setup
This objective is set in order to contribute to the CAPeX and support future exten-
sions of this work.

Chapter 4

Solution Architecture

This chapter will define the design of the proposed solution for the mobile manip-
ulator system by defining the hardware components and software developer tools
used for navigation, perception, motion planning, and control. In addition, the
simulation tool that will be employed will be determined.

4.1 Robot Specifications

This project proposes a mobile manipulator system comprising the Robotnik’s
Summit XL1 mobile platform and the Franka Emika Panda2 robot arm mounted
on top.

4.1.1 Mobile Platform

The Summit XL is a versatile mobile robot designed to operate in both indoor
and outdoor environments. With modular wheels it comes with two options as
shown in figure 4.1. Rubber wheels with skid steering kinematics-configuration
and mecanum wheels for an omnidirectional traction system. For this project,
the proposed system will utilize the mecanum wheel configuration, leveraging the
benefits of omnidirectional movement. This configuration is particularly advan-
tageous in laboratory settings, offering superior maneuverability within indoor
environments characterized by flat surfaces, which are well-suited for mecanum
wheels.

Additionally, the Summit XL is equipped with 500 W brushless servomotors
in each wheel, which are equipped with encoders to accurately detect the rotation
speed of the motors. The robot’s dimensions are 720 x 614 x 416 mm, with a weight

1https://robotnik.eu/products/mobile-robots/summit-xl-en-2/
2https://www.franka.de

28

https://robotnik.eu/products/mobile-robots/summit-xl-en-2/
https://www.franka.de

4.1. Robot Specifications 29

of 65 kg. It has a payload capacity of 50 kg and can reach a maximum speed of 3
m/s.

Figure 4.1: Summit XL mobile platform with two different wheel configurations. Rubber wheel
configuration (left), and Mecanum wheel configuration (right)

Sensors

To enable autonomous navigation in indoor environments, the mobile platform is
equipped with essential sensors. These include a 2D rotational Lidar sensor, an
Inertial Measurement Unit (IMU) with integrated gyroscope and accelerometers.
These sensors work together to accurately estimate the position and orientation of
the mobile robot in space.

Moreover, the mobile platform will be equipped with a front-facing RGB cam-
era, which improves obstacle avoidance capabilities. This camera provides visual
information to aid in detecting and navigating around obstacles effectively.

Wheel Configuration

As described in Section 2.1.1, mecanum wheels possess a special design consisting
of freely moving rollers mounted around the central hub at a 45-degree angle
relative to the wheel’s axis. This configuration enables a secondary translation of
the mobile base, enabling omnidirectional motion. By applying different velocities
to each wheel, distinct movements are generated. A depiction of the velocity and
wheel configuration corresponding to specific motions can be seen in figure 4.2.

4.2. Robot Operating System (ROS) 30

Figure 4.2: Illustration of mobile base motions dependent on wheels’ velocities. [20]

4.1.2 Manipulator

The Franka Emika Panda is a seven-degrees-of-freedom (DoF) robotic arm that
provides a wide range of motion and dexterity. Having a reach of 855 mm and
weighing 18.5 kg. Integrated force/torque sensors are incorporated into each joint.
These sensors allow the arm to interact and collaborate with its environment, in-
cluding human operators, in a safe manner.

The Franka Emika Panda will be mounted on a mobile base to create a mobile
manipulator system as part of this project. In addition to the arm itself, additional
essential components must be incorporated. The controller, which ensures the
communication and control over the Panda’s movements. Since the Franka Emika
Panda requires a power supply, the incorporation of a power inverter (230V) is
required. The power inverter enables the arm to be connected to the power supply,
allowing the system to be mobile without interruption.

4.2 Robot Operating System (ROS)

ROS is an open-source framework designed to facilitate the development of robot
software. It is a collection of software libraries and tools.

ROS provides a flexible and modular architecture that allows developers to
create software components, called nodes. These nodes possess the ability to com-
municate with one another through a messaging system. By leveraging this mecha-
nism, nodes can exchange various types of data, including sensor readings, control
commands, and other relevant information.

4.2. Robot Operating System (ROS) 31

ROS packages serve as the fundamental building blocks of the framework, of-
fering a systematic and organized approach to the development and management
of robot software. These packages consist of several key components, such as the
manifest (package.xml), source code, and launch files.

4.2.1 ROS Topics

ROS topics are the vital messaging system in which the message is moved between
the nodes. Nodes can publish messages to topics, and other nodes can subscribe
to receive those messages, as seen in figure 4.3. Those messages that are being sent
represent the information being communicated through ROS topics and services.
They encapsulate specific data types and fields, allowing nodes to understand and
interpret the data received or sent.

Figure 4.3: The illustration demonstrates the messaging system of ROS topics, showcasing the capa-
bility to have multiple publishers and subscribers for a single topic. [10]

4.2.2 ROS Services

Services in ROS represent a call-and-response messaging system, as depicted in
figure 4.4. Unlike topics, services offer data only upon client request, rather than
providing a continuous data stream.

4.2. Robot Operating System (ROS) 32

Figure 4.4: The illustration shows the ROS services messaging system, pointing out the ability for
multiple clients while only one service server is permitted. [10]

4.2.3 ROS Actions

The last messaging system in ROS is known as Actions, specifically designed to
handle long-running tasks efficiently. Actions share similarities with services but
offer additional functionality. Unlike services that provide a single response, Ac-
tions provide continuous feedback throughout their execution and can be canceled
if needed.

Actions follow the action-client model, shown in figure 4.5, and consist of three
main components: the goal, feedback, and result. A node initiates an action by
sending a goal to an action server node, which accepts and processes the goal.
Throughout the execution of the action, the action server provides a continuous
stream of feedback data. Finally, upon completion or cancellation, the action server
sends a result message to the client node.

4.3. Navigation Stack 33

Figure 4.5: Illustration of ROS action messaging system.[10]

4.3 Navigation Stack

Navigation 2 (Nav2) is a set of tools developed for ROS. It serves as a comprehen-
sive framework that enables autonomous robot navigation by integrating various
functionalities such as perception, localization, mapping, path planning, and con-
trol. Behavior trees are used for the creation of customized and intelligent naviga-
tion behaviors by orchestrating multiple independent modular servers.

Figure 4.6: Architecture of the Navigation stack.[11]

4.3. Navigation Stack 34

From the figure 4.6, it is seen that the navigation stack uses four different
servers: Controller server, Planner server, Behavior server and Smoother server
that improves the planned path.

The Behavior server serves as a means to manage the recovery behavior that is
activated when a mobile robot experiences a malfunction or encounters an issue,
in addition to facilitating the implementation of various customized behaviors.

The Planner server receives the goal and calculates a feasible path towards it. To
accomplish path planning, a variety of plugins can be utilized, each implementing
different path planning algorithms. Some examples include the NavFnPlanner,
SmacPlannerHybrid, and ThetaStarPlanner.

The Controller server receives high-level navigation commands, such as goals
or trajectories, and transforms them into the necessary low-level control commands
to achieve the desired robot behavior. These commands are then published as Twist
messages on the /cmdvel topic. The Twist message contains velocities along the x
and y axes, as well as the angular velocity for turning around the z-axis.

Similar to the Planner server, the Controller server provides different plugins
that implement various algorithms. Some examples of these plugins include the
DWB Controller, TEB Controller, and Regulated Pure Pursuit.

Transformations
The transform tree defines relationships between different coordinate systems, ac-
counting for translation, rotation, and relative motion. To publish the transform
tree of a robot the TF2 ROS package is commonly used.

In case of Navigation, three essential coordinate frames are used: baselink,
odom, and map. The baselink represents a coordinate frame set to a fixed posi-
tion on the robot, typically on its chassis and its center of rotation. The odom
coordinate frame is fixed relative to the robot’s initial position, and it is primarily
used to represent locally consistent distances. Lastly, the map coordinate frame is
a world-fixed frame, providing globally consistent distance representations.

For navigation to function, certain transforms must be published:

• map => odom

• odom => base_link

• base_link => sensor base frames

The map => odom transform is managed by an Adaptive Monte-Carlo Local-
izer (AMCL), providing live updates to ensure dynamic values within the robot’s
transform tree.

The odom => base_link transform is typically generated by an odometry sys-
tem that utilizes sensors like wheel encoders. This transform is typically computed
through sensor fusion techniques, using data from multiple odometry sensors.

4.4. Motion Planning for Robot Arm 35

Furthermore, the base_link => sensor base frames transform is a static part
of the transformation tree. Nav2 employs this transformation to establish accurate
connections between sensor data or other frames of interest and the rest of the
robot’s components.

4.4 Motion Planning for Robot Arm

Motion planning plays a vital role in robotic systems, enabling them to navigate
their workspace safely and efficiently. In the case of a mobile manipulator system,
motion planning for the robot arm involves finding a collision-free path from the
current configuration to a desired configuration, considering the arm’s kinematic
constraints and avoiding obstacles in the environment.

For this project, the Moveit2 planning framework will be employed, leveraging
its functionalities within the ROS ecosystem. Moveit2 offers comprehensive tools
for robot arm motion planning and trajectory execution. It employs various motion
planning algorithms, including the aforementioned PRM and RRT algorithms.

In addition, Moveit2 allows for the creation of a collision-free motion by defin-
ing collision objects in the scene and incorporating them into the planning process.

Moreover, Moveit2 integrates with the rviz2 visualization tool, enabling real-
time monitoring of the planning process. This functionality facilitates the visual-
ization of the robot’s state, trajectories, and planning scene. Furthermore, the entire
process, including scene creation, motion generation, and trajectory execution, can
be performed within the rviz2 graphical interface.

4.5 Simulation Tool

The use of a simulation environment to develop a mobile manipulator system has
a number of advantages. It reduces expenses and saves time by removing the
need for physical components and accelerating testing and development. Simula-
tions offer a risk-free environment for early identification and correction of design
flaws, thereby mitigating potential dangers. Rapid iteration on design parameters
and algorithms, performance optimization, and scenario-based evaluation of the
system’s behavior.

For this project, the NVIDIA Omniverse Isaac Sim [8] is chosen as a simulation
tool. It is a simulation toolkit based on the Omniverse platform equipped with the
necessary tools and workflows for creating and developing robotic experiments.
Isaac Sim leverages the powerful PhysX physics engine for accurately simulating
real-world physics interactions and dynamics.

In addition, Isaac Sim offers support for ROS/ROS2 based navigation and ma-
nipulation application development. Furthermore, it enables the simulation of a

4.5. Simulation Tool 36

variety of sensors, including Lidar, IMU, and RGB-D, whose parameters are sim-
ple to modify and whose data can be published as ROS topics. This capability is
essential for the requirements of this project, as it ensures accurate sensor simula-
tion and allows the mobile manipulator system’s integration.

Chapter 5

Implementation

This chapter focuses on highlighting the implementation details of the proposed
solution. It provides a explanation of how the navigation system is implemented in
the Isaac Sim for an omnidirectional mobile robot platform. Additionally, it covers
the integration of a robot arm into the system, making it into a mobile manipulator.
Furthermore, the chapter explains the implementation of the Moveit2 platform for
motion planning and trajectory execution for the robot arm. Finally, an overview of
the system as a whole is provided, with a specific emphasis on the communication
between different sub-components of the system.

5.1 Robot Description

The description of the mobile platform is obtained from the Robotics GitHub repos-
itory1, which contains all the necessary packages for navigation on the platform in
both the real world and the Gazebo simulation. To ensure the mecanum wheels
function realistically in a physics-based simulation environment such as Isaac Sim,
the robot’s description must be modified accordingly.

In addition, the existing model within Isaac Sim will be employed for the
Franka Emika Panda robot arm, along with the readily available arm controllers.

5.1.1 Rollers definition

To enable omnidirectional movement, it is crucial to define the rollers and equip
each of them with a revolute joint that allows free rotation around its axis, shown
in figure 5.1.

In the Universal Robot Description (URDF) file imported into Isaac Sim, the
xacro (XML Macro) functionalities are used to achieve the desired task. The im-

1https://github.com/RobotnikAutomation/

37

https://github.com/RobotnikAutomation/summit_xl_common

5.1. Robot Description 38

plementation of these macros is adopted from the GitHub repository2 . The code
employs recursion by calling the macro itself until the specified number of itera-
tions, which corresponds to the number of rollers on the wheel, is reached. This
recursive behavior is achieved by a conditional if statement that ensures the loop
executes only when the loop parameter is non-zero.

The joints’ origin positions and orientations are determined based on the fol-
lowing equations:

For side = 1 (right wheels):

• Origin position (x, y, z): (0, 0.0895cos(th), 0.0895sin(th))

• Origin orientation (in roll-pitch-yaw):

(arctan(− tan(th)
√

2.0,
arcsin(− cos(th))√

2.0
, arctan(sin(th)))

For side = -1 (left wheels):

• Origin position (x, y, z): (0, 0.0895 cos(th), 0.0895 sin(th))

• Origin orientation (in roll-pitch-yaw):

(arctan(− tan(th)
√

2.0,
arcsin(− cos(th))√

2.0
, arctan(− sin(th)))

Where,

th =
360

num(loop − 1)
The num parameter represents the number of rollers on a wheel, and loop − 1
represents the current roller in a loop.

Figure 5.1: Position and orientation of the rollers revolute joint.

2https://github.com/DaiGuard/

https://github.com/DaiGuard/fuji_mecanum

5.2. Holonomic Controller 39

Furthermore, to enhance omnidirectional movement performance in the sim-
ulation, the rollers are represented in the collision mesh as a set of five spheres,
as depicted in figure 5.2. This method reduces the number of contact points be-
tween the rollers and the ground, leading to improved computational efficiency for
collision simulation and overall simulation performance.

Figure 5.2: Collision mesh of a single roller (left). Collision mesh of all the rollers on a wheel (right).

5.2 Holonomic Controller

The mobile platform’s configured model now includes drivable wheel joints and
freely rotating rollers, allowing the robot to be easily moved by directly inputting
the desired velocity to the actuated joints. However, when it comes to autonomous
navigation and utilizing Nav2, which outputs the desired velocity of the robot in
the form of a Twist ROS message, a controller must be implemented to convert
these messages into the velocity of each wheel.

Isaac Sim offers the solution by leveraging its visual scripting framework called
OmniGraph. This framework enables the implementation of action graphs, which
facilitate event-driven behaviors and can be used in conjunction with ROS commu-
nication.

5.2. Holonomic Controller 40

Figure 5.3: The action graph is used to subscribe to the cmd_vel topic, configure the holonomic
controller, and apply the calculated wheel velocity command to the articulated mobile robot.

Figure 5.3 illustrates the configuration of the action graph used for subscribing
to the cmd_vel topic, where nav2 publishes desired velocities for robot navigation.
The ROS2 subscriber node is responsible for subscribing to the cmd_vel topic and
forwarding the values to the holonomic controller.

To facilitate the creation of the robot’s mathematical model, the USD Setup
Holonomic Robot Node is utilized. This node requires the names of the actu-
ated wheel joints, which have been previously modified with additional attributes:
mecanuumwheelangle and mecanuumwheelradius. These attributes store infor-
mation about the mecanum wheel angles and wheel radii. The node sends this
information to the holonomic controller node, along with the computed positions
of the wheels relative to the vehicle’s center of mass and the wheel orientations
represented as quaternions in relation to the vehicle’s center of mass frame.

Equipped with all the necessary information to construct the mathematical
model of the robot and the desired vehicle velocity from Nav2, the holonomic
controller node calculates the velocities for each individual wheel of the robot.
These velocities are then passed to the Articulation Controller Node, along with
the drive joint names and indices, which apply the target velocities to the corre-
sponding joints in the simulation.

5.2. Holonomic Controller 41

5.2.1 Inverse Kinematics

To accurately represent the behavior of an omnidirectional mobile platform, it is
essential to develop a mathematical model that includes its inverse kinematics.
Taheri et al. [23] formulated the inverse kinematics of such platform as follows:

w1

w2

w3

w4

 =
1
r


1 −1 −(lx + ly)

1 1 (lx + ly)

1 1 −(lx + ly)

1 −1 (lx + ly)


vx

vy

wz

 (5.1)

where,

• w1, w2, w3, and w4 represent the angular velocities of the four Mecanum
wheels.

• r is the wheel radius

• lx and ly are half the distances between the front wheels and between the
front and rear wheels, respectively

• vx, vy, and wz are the linear velocities of the robot in the x and y directions
and its angular velocity about the z-axis, respectively.

To solve the Inverse Kinematics of the four mecanum wheeled robot, that is,
to calculate the velocity of each wheel given the desired velocity of the robot, the
holonomic controller node formulates the problem as a quadratic optimization
problem and uses the Operator Splitting Quadratic Program (OSQP) solver [21] to
solve it.

The optimization problem is formulated as:

minimize
1
2

xTPx,

subject to l ≤ Ax ≤ u

where,

• x is the optimization variable that corresponds to the wheel speeds. It rep-
resents the vector of wheel speed values that are being optimized to achieve
the desired vehicle motion.

• P is the matrix that represents the quadratic cost matrix in the optimization
problem. It is constructed as a diagonal matrix using the wheel radius values
normalized by their Euclidean norm.

5.3. Occupancy Map 42

• A is the matrix that represents the linear and angular velocity constraints of
the mecanum wheel system in the optimization problem. Which is based on
position, direction, radius and velocity of the wheel.

• l and u are vectors that represent the lower and upper bound vectors. These
bounds are used to define the constraints on the wheel speeds, ensuring they
satisfy the specified limitations on linear velocities and angular velocities of
the joints.

5.3 Occupancy Map

To generate the map of the environment, the Occupancy Map Generator extension
is used. This extension enables the creation of a binary map that indicates whether
a specific scene area is occupied or unoccupied. The map is generated at a specific
height corresponding to the Lidar’s elevation above the ground.

The Occupancy Map Generator produces two essential outputs: the occupancy
map’s parameters, which are saved in .yaml format, and the map’s corresponding
.png image. The map image, as depicted in figure5.4, displays the occupied and
unoccupied regions. These generated outputs are then loaded into and used by
Nav2 for navigation purposes.

The .yaml file containing the occupancy map’s parameters provides informa-
tion about the map’s resolution, origin and size. The .png image, on the other
hand, visually represents the environment’s occupancy information.

5.4. Localization and Navigation 43

Figure 5.4: An occupancy map of the laboratory environment. The black-colored areas indicate
occupied regions, which correspond to obstacles within the environment. The grey-colored areas
represent unknown regions, while the white-colored areas indicate free space.

5.4 Localization and Navigation

Localization and navigation are fundamental aspects of any mobile robotic system,
including mobile manipulators. Localization refers to the robot’s ability to deter-
mine its position and orientation within its environment, while navigation refers to
the robot’s ability to plan and execute movements between locations while avoid-
ing obstacles. These capabilities are essential for a mobile manipulator’s effective
and secure operation within its environment.

5.4.1 Transformations and Odometry

To enable navigation functionality, it is necessary to publish the appropriate robot
transformations on the tf topic. Additionally, the odometry must be computed
and published on the odom topic. Odometry is the estimation of a robot’s position
and orientation based on its movement and proprioceptive sensor data, as opposed
to the localization system that uses the external references to localize the robot in
the known environment.

5.4. Localization and Navigation 44

Isaac Compute Odometry takes the chassis’s information as input and gener-
ates its linear and angular velocities, as well as the position and orientation with
respect to the World coordinate system. These values are then forwarded and
published by the Publish Odometry node onto the odom topic.

To publish the transform between the odom frame and the base_link frame,
the Publish Raw Transform Tree node is utilized. Moreover, the Publish Transform
Tree node is employed to publish the static transformation between the base_link
frame and the chassis prim frame. This transform tree encompasses the entire
robot’s transform hierarchy, with the base_link frame as the parent.

Furthermore, an additional Publish Transform Tree node is used to publish the
static transformation between the base_link frame and the Lidar frame. All of
these transformations are published on the tf topic, which is subscribed to by the
navigation stack.

Lastly, the Publish Laser Scan node is responsible for publishing the 2D Laser-
Scan data obtained from the Read Lidar Beams node. This node reads all the
properties of the Lidar sensor, including the simulated data generated by it, and
then forwards this information to the Publish Laser Scan node, which publishes
the LaserScan data on scan topic.

Figure 5.5: The rqt graph provides a visual representation of the active ROS nodes and topics within
the system. It offers a graphical depiction of the current state of ROS communication, specifically in
this case where Nav2 is not running. As a result, it only displays the active nodes and topics within
the simulated environment.

5.4.2 Localization - AMCL

AMCL (Adaptive Monte Carlo Localization) is an efficient probabilistic localization
system used to enable accurate robot localization within the environment. Lever-

5.4. Localization and Navigation 45

aging Lidar data published on the scan topic, AMCL estimates the robot’s current
position. Its sequential data processing approach enhances efficiency and makes it
well-suited for localization tasks, eliminating the need for data storage. [20]

The impact and effectiveness of AMCL can be observed in figure 5.6, where the
visualization showcases the localization process. Initially, a higher uncertainty is
represented by a larger number of green particles, indicating a broader range of
potential robot positions. However, as time progresses, the localization uncertainty
diminishes, reflected by a reduction in the number of green particles. This visu-
alization effectively demonstrates how AMCL progressively improves localization
accuracy over time.

Figure 5.6: Visualization of AMCL’s effect is demonstrated by showcasing the particle swarm at the
beginning of navigation on the left side, and after some time on the right side. The particle swarm
is represented by green dots, symbolizing the uncertainty associated with the localization process.
At the initial stage of navigation, the uncertainty in the robot’s localization is high, as indicated by
the dense distribution of green particles. However, as time progresses, the uncertainty decreases
significantly, as depicted by the reduced number of green particles. This reduction in the number of
particles reflects the improved accuracy and confidence in the robot’s estimated position.

5.4.3 Planner Server

The Planner Server is used to compute a feasible path from the initial pose to the
goal pose. This project employs the NavFnPlanner, a robust plugin that is based on
Dijkstra’s algorithm, a graph-search based path planning technique. By utilizing
a pre-constructed connectivity graph, it conducts a graph search to identify the
shortest path, as described in the section. 2.1.2.

5.4.4 Controller Server

The Controller’s main task is to determine the command velocity for a mobile
robot, enabling it to navigate towards a specified goal while avoiding obstacles. It
achieves this by utilizing information from both the planner server and the local

5.5. Arm Control 46

costmap. This project utilizes the DWB Controller3. The DWB Controller generates
feasible velocities and selects the ones with the highest scores, considering various
metrics known as critics.

While the DWB Controller is suitable for both differential and omnidirectional
robots, certain modifications need to be made in the parameters file to adapt it for
use with an omnidirectional mobile platform. Specifically:

• To enable strafing movements in the y-axis, the max_vel_y parameter must
be set to a positive value. By default, in the differential base configuration,
this value is set to 0.

• Additionally, to enable acceleration in the y-direction, the acc_lim_y param-
eter should also be set to a positive value, accompanying the velocity in the
y-direction.

5.5 Arm Control

To assemble the mobile manipulator, the Panda robot arm is mounted on top of
the SummitXL mobile platform. The arm model is already included as one of the
assets within the Isaac Sim.

To control the robot arm and generate its motion, the Moveit2 platform is uti-
lized. The connection between the simulated robot arm and the Moveit2 plat-
form, responsible for executing the calculated trajectories, is established using the
ros2_control framework. PickNik Robotics has developed a ROS2 package called
topic_based_ros2_control4 that enables control of the robot system using ROS2
topics. For that propose, an additional Action Graph is created.

3https://github.com/locusrobotics/robot_navigation/tree/master/dwb_local_planner
4https://github.com/PickNikRobotics/topic_based_ros2_control

https://github.com/locusrobotics/robot_navigation/tree/master/dwb_local_planner
https://github.com/PickNikRobotics/topic_based_ros2_control

5.5. Arm Control 47

Figure 5.7: Franka Action Graph

The Action Graph includes a node that publishes the joint states of the sim-
ulated arm on the isaac_joint_states topic. Additionally, a subscriber is used
to receive commands from Moveit via the isaac_joint_commands topic. These re-
ceived joint values are then forwarded to the articulation controller, which actuates
the joints in the simulation. The configuration of this Action Graph can be observed
in figure 5.7.

To run the MoveIt2 instance, the Docker container based on the ROS2 Humble
image with Ubuntu 20.04 is employed. Within this container, the
topic_based_ros2_control ROS2 package is cloned, which is mentioned earlier.
Additionally, as of the time this thesis was written, there are no official Python
bindings available for Moveit2. However, a solution has been found by forking
and modifying the pymoveit25 GitHub repository.

Pymoveit2 serves as a basic Python interface for MoveIt 2, designed to work
with its ROS 2 actions and services. By leveraging these functionalities, the mod-
ified version of pymoveit2 ensures compatibility with the Isaac Sim version of the
Panda robot and the available ROS 2 actions to control the robot arm and the
gripper. This enables the control of the Panda robot using Python scripts, where
desired joint positions, goal poses in Cartesian or joint space, as well as gripper
commands, can be sent.

This approach replaces the need to rely solely on the graphical user interface
(GUI) version of Moveit using the Rviz2 tool, thereby enabling the potential for
development of autonomous solutions in the proposed mobile manipulator system.

5https://github.com/AndrejOrsula/pymoveit2

https://github.com/AndrejOrsula/pymoveit2

5.6. System Overview 48

Figure 5.8: A mobile platform with a panda arm mounted in Isaac Sim on the left, controlled by the
Moveit platform via the Rviz2 graphical interface on the right

5.6 System Overview

In the previous sections of this chapter, the implementation details of each compo-
nent of the mobile manipulator system were discussed. This section will present
an overview of the system as a whole, as shown in figure 5.9. The focus will be on
the communication between three major components of the system: the Isaac Sim
simulation environment, the Navigation stack, and Moveit2.

To enable the autonomous behavior of the system, both the navigation goals
and arm control goals are sent using separate Python scripts, providing a more
modular and flexible control approach compared to defining the goals through the
rviz interface.

The defined task in this thesis can be divided into smaller sub-tasks, with the
navigation of the mobile platform and manipulation of the robot arm as sub-tasks.
This approach, known as separate planning as described in section 2.1.2, allows for
independent low-level logic execution by different components.

The navigation goals are defined and sent via a Python script, specifying the
initial pose of the mobile platform and subsequent goals. These goals are sent one
by one to the Navigation stack, specifically the Planner server. The Planner server
employs the Dijkstra’s algorithm to compute the shortest path to goal.

At system launch, the navigation stack loads the previously generated occu-
pancy map of the environment. The map server provides this map to the global
costmap, local costmap, and AMCL. The global costmap represents the environ-
ment where the system operates, assigning cost values to each tile based on char-
acteristics derived from the occupancy map. On the other hand, the local costmap
incorporates sensor data to provide information about the robot’s immediate sur-
roundings. This allows for real-time obstacle detection and optimization of the

5.6. System Overview 49

global plan.
AMCL uses the odometry data sent from the simulation and the environment

map to localize the robot during the navigation process, ensuring accurate position
estimation.

The controller server computes command velocities, which are published on the
cmd_vel topic. These velocities are then used by the holonomic controller in the
simulated environment to solve the inverse kinematics of the robot. The resulting
joint velocities are actuated using the articulation controller.

In the event of navigation issues or obstacles, the recovery server is called upon.
It applies predefined recovery behaviors to help the robot navigate out of such
situations.

Upon successful achievement of the initial goal, the Arm control script is ex-
ecuted. This script contains predefined joint positions to place the arm in the
grasping position. Subsequently, the close gripper command is issued, followed by
specifying the desired joint positions to pick up the object.

The motion planning for the robot arm is done by the MoveIt2 platform. When
the script involves robot arm movement, it defines the move group name for the
robot arm joints and the goal joint positions. MoveIt2’s move group interface cal-
culate trajectories using RRT Connect algorithm. The resulting joint commands
for arm movements are published on the isaac_joint_command topic. These com-
mands are then used in the Isaac sim to actuate the arm joints using the articulation
controller, enabling the execution of planned arm trajectories.

The motion planing of the robot arm is carried out using the Moveit2 platform.
If the script calls for the robot arm movement, it has defined the move group name
for the robot arm joints and the goal joint positions. in this case the Panda arm
controller action is called which is based on the Simple controller manager taht
calles the move group interfaces which calculates the trajectories based on the RRT
connect algorithm, and publishes the joint commands on the isaac_joint_command
topic. Which are then used in the issac sim to actuate the joints using the articula-
tion controller.

In the case of gripper movement, the Panda hand controller action is called.
It utilizes the panda hand move group, specifically designed for controlling the
gripper. The move group interface in MoveIt2 calculates trajectories for the gripper
movement. The resulting commands for gripper movements are also published on
the isaac_joint_command topic. These commands are then used in the Isaac sim to
actuate the gripper using the articulation controller, enabling the robot to perform
the desired gripper movements in coordination with the arm motion.

5.6. System Overview 50

Figure 5.9: Implementation of the proposed system based on the ROS framework. The diagram
showcases the three main components of the system: the Navigation stack, Isaac Sim, and Moveit2.
The figure highlights the flow of information between these systems and the execution of actions set
by the Python scripts. ROS topics are represented by ellipses.

Chapter 6

Testing

In this chapter, the proposed mobile manipulator system will undergo testing. The
testing process will include separate evaluations of the navigation system and the
robot arm manipulation system.

All tests will be conducted on a machine with Ubuntu 20.04 with the ROS2
Foxy version installed. The simulation tool used will be Isaac Sim version 2022.2.1.
Additionally, Moveit2 will be executed in a Docker container on Ubuntu 20.04 with
the ROS2 Humble version installed.

The videos of all experiments can be found in the appendix B, along with
additional videos documenting the system’s development. The code developed for
this project is available in the GitHub repository in the appendix A.

6.1 Navigation System

The initial experiments will focus on evaluating the performance of the navigation
system in two specific scenarios. The first scenario involves navigation in open,
obstacle-free space, while the second scenario assesses the system’s obstacle avoid-
ance functionality. In the obstacle avoidance scenario, a novel obstacle will be
introduced into the environment that is not included in the provided occupancy
map.

6.1.1 Navigating Through Frespace

The objective of this experiment is to evaluate the performance of the navigation
system in a obstacle-free scenario and evaluate the capabilities of the used DWB
controllers on the omnidirectional mobile platform.

The task for this experiment is straightforward: to navigate from the initial
position to the goal position in a section of the environment without any obstacles.

51

6.1. Navigation System 52

The results from the first experiment, confirmed the anticipated behavior of
the DWB controller. The mobile manipulator effectively reached its destination by
employing omnidirectional motion whenever it resulted in the shortest path.

6.1.2 Obstacle Avoidance

This experiments aims to assess the performance of the navigation system in detect-
ing and effectively avoiding novel obstacles. It consists of two distinct experiments.
The first experiment involves an obstacle that partially obstructs the path, requir-
ing the navigation system to navigate around it. The second experiment presents
a scenario where the obstacle completely blocks the planned path, requiring the
mobile platform to find an alternative route to reach the desired goal position.

Experiment 1: Partial Constraint Scenario

For this experiment, an additional wall is introduced into the environment, which
is not included in the generated occupancy map. Figure 6.1 illustrates the setup
of the first experiment, where the wall is positioned near the initial location of the
robot. The objective is to navigate to the goal position located just behind the wall.

Figure 6.1: Setup of the scene for the first experiment. The position of the wall is shown as well as
the initial position of the robot.

The summary of this experiment is shown in figure 6.2. The figure demon-
strates that the navigation system performed as expected. The obstacle was suc-
cessfully detected, and a new path was continuously generated to guide the robot

6.1. Navigation System 53

around the obstacle. Consequently, the robot effectively navigated to the goal po-
sition while avoiding the novel obstacle in the environment.

Figure 6.2: Outcome of the first experiment displayed in rviz2. On the left, the initial position of the
robot is depicted, along with the initially generated path towards the goal position. On the right, the
moment when the local planner detects an obstacle in the environment and generates new path that
avoids the newly encountered obstacle.

Experiment 2: Complete Constraint Scenario

In this experiment, a novel wall is strategically positioned to remain undetectable
from the robot’s initial location. This wall is placed between two sets of fume tanks,
effectively blocking the robot’s passage through that specific aisle. The setup of this
experiment is visually presented in Figure 6.3.

Figure 6.3: Setup of the scene for the second experiment. The wall is placed between two sets of
fume tanks, blocking the passage through that aisle.

6.1. Navigation System 54

The goal position is deliberately chosen so that the shortest planned path by the
planner server intersects with this wall. Once the wall is detected through the LI-
DAR sensor, a new path should be generated to guide the robot along an alternate
route, bypassing the obstruction, and ultimately reaching the goal position via an
unobstructed pathway.

The outcome of this experiment is depicted in Figure 6.4. Initially, the robot
successfully navigated from its starting position towards the wall within the en-
vironment. The wall was detected by the LIDAR sensor, and the local costmap
was appropriately updated. At this point, a new path was generated as expected,
guiding the robot to take a different route to reach the desired destination.

However, as the robot moved away from the wall, it gradually moved out of the
reach of the local costmap. Consequently, the new path generation process treated
the wall as if it was disappearing from the environment. This led to a loop in the
robot’s behavior, where it would initially take a correct route, but then return to its
previous position once the obstacle seemingly vanished from the local costmap.

Due to this issue, the navigation system failed to successfully guide the robot
to the goal position in this scenario.

Figure 6.4: Outcome of the second experiment shown in rviz2. In the top-left, the initial position
of the robot and the initial path are shown. In the top-right, the moment when the local costmap is
updated, detecting an obstacle, and generating a new feasible path that avoids the obstacle. In the
bottom section, the moment when the local costmap clears a portion of the obstacle. However, this
leads to the generation of a new path that becomes infeasible, causing the robot to get stuck in a
loop.

6.2. Robot Arm System 55

6.1.3 Evaluation of the Navigation System

To summarize the results of the navigation system testing, it can be stated that the
system generally functions well. However, in specific scenarios as described ear-
lier, it exhibits failures. One notable observation during testing was the controller’s
tendency to approach very close to the corners of obstacles in an attempt to achieve
the shortest possible path. This behavior often led to the robot getting stuck, as
it perceived a collision with the obstacle. This issue can be mitigated by explor-
ing different values for the critical parameters of the DWB controller, particularly
PathAlign.scale and PathDist.scale, which determine the prioritization of the
robot’s orientation with respect to the global path and the prioritization of staying
close to the global path, respectively.

Moreover, increasing the inflation radius of both the global and local costmaps
can further minimize the chances of collision when navigating corners of objects.
However, it is important to consider potential undesired consequences, as a larger
inflation radius may prevent the robot from getting close enough to the table where
the grasping object is located, in order for the robot arm to grasp it.

Lastly, the issue observed in experiment 2, where the obstacle is removed from
the local costmap as the robot moves away from it, could potentially be addressed
by setting the clearing parameter of the obstacle layer to false. This would prevent
the obstacle from being removed from the costmap, even if it is not detected by the
laser scans. However, it is worth noting that this solution may work effectively for
static obstacle scenarios but may not be suitable for dynamic obstacle settings. It
is one potential solution among various available options to address this issue by
adjusting different parameters of the navigation stack. Therefore, further investiga-
tion and future works of this project may explore additional approaches to resolve
this issue.

6.2 Robot Arm System

This section includes tests to evaluate the functionalities of the motion planning
implementation using Moveit2 and executing trajectories in the simulation. The
experiments conducted will assess different aspects of the system, such as test-
ing predefined joint position movement using Python scripts, evaluating motion
execution in front of the table, and verifying object grasping functionality.

6.2.1 Moving to Predefined Joint Positions

This experiment aims to assess the communication between Moveit2 and the simu-
lated robot, as well as evaluate the performance of motion planning using Moveit2.
The objective is straightforward: using a Python script based on the pymoveit2 li-
brary, three predefined goal joint positions will be set. The script will then initiate

6.2. Robot Arm System 56

a ROS action to request motion planning computation via Moveit2, followed by the
execution of the computed trajectories.

Figure 6.5: Outcome of the experiment shown in Isaac Sim. The top-left image shows the starting
psoe of the robot. The subsequent images show the completion of each joint configuration

The experiment’s outcome, depicted in Figure 6.5, demonstrates the successful
generation and execution of trajectories in the simulation. Based on this observa-
tion, it can be concluded that the motion planning system effectively generated the
desired trajectories and executed them accurately within the simulated environ-
ment.

6.2.2 Motion Planning and Execution with Collision Objects

This experiment aims to assess the system’s motion planning capability in front of
the table where the grasping object is located. The goal of this test is to evaluate the
system’s awareness of collision objects in the environment and its ability to plan
and execute collision-free motions.

6.2. Robot Arm System 57

Figure 6.6: Outcome of the experiment shown in Isaac Sim. The left image presents the initial pose
of the robot, while the right image displays the collision of the robot arm with the table.

In this test scenario, the mobile manipulator will be positioned next to the table.
A specific joint configuration will be executed, intentionally designed to result in a
collision with the table.

The results of this experiment, shown in figure 6.6, confirm the expected limi-
tations of the motion planning interface. It was observed that the interface lacked
awareness of colliding objects within the environment, as demonstrated in this test.
Moreover, it can be concluded that similar outcomes would occur if the robot arm
were to collide with the mobile platform, highlighting the absence of perception
within the robot arm system.

6.2.3 Grasping

This experiment aims to assess the grasping capabilities of the system, specifically
evaluating its ability to grasp and lift the flask rack, which corresponds to the
overall task of this project.

The experimental setup mirrors the previous one, with the robot positioned
next to a table where the flask rack is placed. Using predefined joint values, the
system plans and executes the approach motion towards the grasping object. Sub-
sequently, the close gripper action is called, followed by the execution of the lifting
motion.

6.2. Robot Arm System 58

Figure 6.7: Outcome of the experiment shown in Isaac Sim. In the top-left, the starting pose of
the robot. The top-right shows the approach of the robot arm towards the grasping object. In the
bottom-left, an unsuccessful grasp attempt. Finally, in the bottom-right, the slipage of the grasping
object during the picking motion.

The outcome of this test, as depicted in figure 6.7, reveals that the motion
planner successfully generates all the necessary arm control motions, ensuring the
correct approach to the grasping object. However, an error arises when the gripper
command is issued to close. The motion planning interface encounters difficulty
as the gripper’s fingers fail to reach their intended goal due to the presence of the
grasping object between them. Consequently, the grasping quality is compromised,
resulting in the object slipping from the gripper during the lifting motion.

6.2.4 Evaluation of the Robot Arm System

The testing conducted on the robot arm system demonstrates that its overall basic
functionality is operational. The communication between Moveit2 and Isaac Sim is
successfully established, allowing the executed trajectories to be transferred to the
simulated robot via ROS2 topics. However, the second test revealed a significant
limitation in the system’s perception capabilities, leading to its failure to detect
the table and avoid collisions. Addressing this issue requires exploring several
approaches.

The first approach involves defining the scene in the Moveit interface, including
all the collision objects present in the environment. This would make the motion
planner aware of the scene and enable collision avoidance. However, implementing
this solution efficiently becomes challenging for a mobile manipulator system like

6.2. Robot Arm System 59

ours.
The second approach involves calibrating the robot arm when the mobile ma-

nipulator reaches the table. This can be achieved through force-based calibration,
as demonstrated in the work of Burger et al.[3] where the robot used a touch-
sensitive 6-point calibration method to enhance its positioning precision. The robot
touches six points on a cube that is associated with each experimental station to
find the position and orientation of the cube relative to the robot.

The final approach entails implementing vision-based perception. Upon reach-
ing the table, images of the scene can be captured, and machine learning algo-
rithms can be employed for object recognition, object detection, and grasping pose
estimation. Either of these last two approaches is necessary to achieve the fully
autonomous behavior of the system. Currently, all goal joint positions are pre-
defined, and even minor changes in the scene can lead to unexpected motion plan-
ning outcomes.

In the final test, an error was encountered during the execution of the close
gripper command. This occurred because the presence of the grasping object pre-
vented the gripper’s fingers from fully closing, resulting in a poor-quality grasp.
Currently, the implementation of the gripper command defines the gripper’s open
and close states based on the position of the fingers. To address this issue, a modi-
fication is required to shift from a position-based definition to an effort-based one.
This means defining a force threshold that determines the gripper’s close state.
By adopting this approach, the Moveit interface would no longer return an error
when the fingers are not fully closed. Moreover, by defining the force threshold,
the grasping quality can be improved, as sufficient force would be applied to firmly
grip the object and prevent it from slipping while being lifted.

Chapter 7

Discussion

This section discusses the potential improvements for the design of the proposed
robotic system outlined in this work. Subsequently, an evaluation of the project
objectives is provided, followed by suggestions for further development and im-
provement of this work.

7.1 System Design

The thesis focuses on the integration of the Franka Emika Panda robot arm and
Summit XL omnidirectional mobile platform to create a robotic mobile manipulator
specifically designed for the MAPs use case in a laboratory environment. The
motion planning approach adopted for this system is separate planning, where the
mobile platform and the robot arm are treated as independent systems for motion
planning purposes. To facilitate this, the navigation stack 2 is implemented to
handle navigation for the mobile platform, while Moveit2 is utilized for motion
planning and trajectory execution for the robot arm.

Although the proposed system is designed and evaluated in a simulated en-
vironment, certain practical considerations need to be addressed for real-life im-
plementation. In particular, the Panda robot arm requires a power supply, and
its control necessitates the connection of a controller unit. These aspects were not
addressed in the simulation. Therefore, in order to make the setup functional in
real-world scenarios, a controller unit and power inverter need to be mounted on
the mobile platform.

Given the limited space and payload capacity of 50 kg of the mobile platform,
this setup may not be optimal. As a result, alternative solutions provided by
robotics companies such as Clearpath Robotics and Robotnik can serve as exam-
ples. For instance, the XL-GEN mobile manipulator utilizes the same Summit XL
mobile platform but mounts a lightweight Kinova arm on the front-top area, incor-
porating embedded controllers at each actuator. This arrangement saves space for

60

7.2. Evaluation of Project Objectives 61

additional equipment or transportation.
Another noteworthy example is the Ridgeback Franka mobile manipulator from

Clearpath Robotics, which combines the Panda arm with the Ridgeback mobile
platform. The Ridgeback platform possesses omnidirectional capabilities as the
Summit XL, but it boasts a significantly higher payload capacity of 100 kg. This in-
creased payload capacity enables more efficient utilization of the system in transportation-
oriented use cases.

7.2 Evaluation of Project Objectives

This section will assess the degree to which the stated project objectives from chap-
ter 3 have been completed.

Project objective 1
The implemented mobile manipulator system has demonstrated successful inte-
gration within the simulated environment. However, as mentioned in the previous
section, it is crucial to address the key components necessary for the real-life im-
plementation of the Panda robot arm.

Project objective 2
The robotic mobile manipulator system was successfully simulated in Isaac Sim,
leveraging its ROS2 bridge. The implementation included Moveit2 platform-based
motion planning for the robot arm and navigation stack-based motion planning for
the mobile platform. Additionally, Python scripts were utilized to achieve success-
ful execution of various tasks, including sending navigation goals for the mobile
platform, as well as goal poses and gripper commands for the robot arm.

Project objective 3
A simulated environment resembling a laboratory setting was created. This en-
vironment contains walls, fume hoods, and different tables typically found in a
chemical laboratory. Additionally, a sample rack was incorporated into the simu-
lation as a grasping object.

Project objective 4
This objective has been partially fulfilled. Thorough testing of the low-level func-
tionalities of both the navigation system and the robot arm system was carried
out and analyzed. Moreover, specific issues with the current implementation were
identified, and potential approaches to address these issues were proposed. How-
ever, the overall task defined as navigating to the goal, grasping the object, trans-
porting it to the storage location, and placing it there, remains incomplete.

Project objective 5
The GitHub repository containing the source code, installation and running in-
structions can be found in Appendix A, along with the documented videos show-
casing the testing and development process in Appendix B.

7.3. Future Works 62

7.3 Future Works

This section discusses planned and incomplete work, as well as future work pro-
posed for this project.

As detected and discussed in the chapter 6, some of the functionalities of both
the navigation system, and robot arm system did not perform well. There are
several possible direction this work could take in order to address those issues.

• In order to achieve autonomous operation of the system, the perception sys-
tem for the robot arm needs to be implemented. Currently, the lack of this
functionality requires predefined goal poses for the robot arm and the posi-
tion of the grasping object. This approach poses challenges when integrating
with the navigation system, as it cannot guarantee perfect alignment with the
navigational goal due to inherent errors in goal position alignment.

To address this issue, future work could explore implementing a camera sen-
sor on the robot arm along with vision-based grasping approaches. This
would allow for real-time perception of the environment, enabling more ac-
curate alignment and object detection. Alternatively, another direction to
tackle this issue would involve implementing a force-based calibration sys-
tem, which could enhance the system’s ability to adapt and align with the
goal position by utilizing feedback from force sensors.

• To address the documented issues with the navigation system, a thorough
exploration of the various parameters of the system can be conducted to
understand their impact on functionality. This analysis would involve doc-
umenting the effects of different parameter configurations on the system’s
performance.

Additionally, testing different plugins, particularly the controller plugin, is
crucial. Currently, the implemented DWB controller tends to move very close
to the corners of collision objects, which is undesirable. Exploring alterna-
tive controllers designed for omnidirectional robots, such as the TEB con-
troller, could be beneficial. By evaluating and comparing the performance
of different controller options, a more suitable controller can be identified
to improve the navigation system’s behavior and achieve more precise and
efficient movements.

Apart from addressing the current issues of this system, future improvements
can be centered around implementing low-level control logic, such as state ma-
chines. These advancements would enable the system to handle more complex
tasks compared to the one defined in this thesis, thereby bringing it closer to au-
tonomously solving and assisting in real-life laboratory environments.

7.3. Future Works 63

In addition, the implementation of digital shadow and digital twin could serve
as potential extensions to this work. Digital shadow refers to a virtual representa-
tion of a physical object or system, capturing its real-time state and behavior. On
the other hand, a digital twin is a more advanced concept that not only mirrors the
physical object or system but also utilizes real-time data to simulate and predict its
future behavior.

By incorporating digital shadow and digital twin into this system, the existing
simulation setup can be used to replicate the logic and movement of the physical
hardware in real life. This integration would enhance the system’s capabilities by
bridging the gap between the virtual and physical domains, allowing for better
monitoring, analysis, and control of the laboratory environment.

Chapter 8

Conclusion

The objective of this thesis was to acquire practical knowledge of working with
the Isaac Sim simulation tool and the ROS framework for controlling and simu-
lating robotic systems. Additionally, the goal was to explore the potential of au-
tonomous robotic systems in MAPs and provide a foundation for implementing an
omnidirectional mobile manipulator in a laboratory setting, thereby contributing
to CAPeX’s mission of revolutionizing new material discovery.

This thesis resulted in the development of a simulated mobile manipulator sys-
tem within a laboratory environment. The proposed system consists of an omnidi-
rectional Summit XL mobile platform with a 7 DoF panda robot arm mounted on
top. Furthermore, motion planning for this system was addressed by employing a
separate body planning approach. The overall task was divided into smaller sub-
tasks, with each sub-task being solved by either the robot arm or the mobile plat-
form. ROS-based frameworks, specifically the navigation stack 2 for autonomous
navigation of the mobile base and the Moveit2 platform for motion planning and
trajectory execution of the robot arm, were utilized in this work.

Moreover, comprehensive testing and exploration of the system’s capabilities
were conducted, providing valuable insights into the workflow and identifying
potential areas for future research and improvement. Although the overall task
outlined in Chapter 3 was not fully accomplished, it is anticipated that this work
will prove valuable for further investigations in both mobile manipulators and
MAPs. It provides a functional simulation of an omnidirectional mobile manipula-
tor and offers a modular solution for motion planning of both the mobile platform
and the robot arm.

64

Bibliography

[1] Meysam Basiri et al. “An autonomous mobile manipulator to build outdoor
structures consisting of heterogeneous brick patterns”. In: SN Applied Sciences
3 (May 2021). doi: 10.1007/s42452-021-04506-7.

[2] Kate Brush. What is a mobile robot? definition from whatis.com. 2019. url: https:
//www.techtarget.com/iotagenda/definition/mobile-robot-mobile-
robotics.

[3] Benjamin Burger et al. “A mobile robotic chemist”. In: Nature 583 (July 2020),
pp. 237–241. doi: 10.1038/s41586-020-2442-2.

[4] Chuang Cheng et al. “Stability Control for end effect of mobile manipulator
in uneven terrain based on active disturbance rejection control”. In: Assembly
Automation 41.3 (2021), 369–383. doi: 10.1108/aa-10-2020-0157.

[5] Nikolaus Correll et al. Introduction to autonomous robots: Mechanisms, sensors,
actuators, and algorithms. The MIT Press, 2022.

[6] Faza Fahleraz. “A Comparison of BFS , Dijkstra ’ s and A * Algorithm for
Grid-Based PathFinding in Mobile Robots”. In: 2018.

[7] Martha M. Flores-Leonar et al. “Materials Acceleration Platforms: On the
way to autonomous experimentation”. In: Current Opinion in Green and Sus-
tainable Chemistry 25 (2020), p. 100370. issn: 2452-2236. doi: https://doi.
org/10.1016/j.cogsc.2020.100370. url: https://www.sciencedirect.
com/science/article/pii/S2452223620300596.

[8] Isaac Sim. 2022. url: https://developer.nvidia.com/isaac-sim.

[9] Weria Khaksar et al. “A Low Dispersion Probabilistic Roadmaps (LD-PRM)
Algorithm for Fast and Efficient Sampling-Based Motion Planning”. In: In-
ternational Journal of Advanced Robotic Systems 10.11 (2013), p. 397. doi: 10.
5772/56973.

[10] Steven Macenski et al. “Robot Operating System 2: Design, architecture, and
uses in the wild”. In: Science Robotics 7.66 (2022), eabm6074. doi: 10.1126/
scirobotics.abm6074. url: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074.

65

https://doi.org/10.1007/s42452-021-04506-7
https://www.techtarget.com/iotagenda/definition/mobile-robot-mobile-robotics
https://www.techtarget.com/iotagenda/definition/mobile-robot-mobile-robotics
https://www.techtarget.com/iotagenda/definition/mobile-robot-mobile-robotics
https://doi.org/10.1038/s41586-020-2442-2
https://doi.org/10.1108/aa-10-2020-0157
https://doi.org/https://doi.org/10.1016/j.cogsc.2020.100370
https://doi.org/https://doi.org/10.1016/j.cogsc.2020.100370
https://www.sciencedirect.com/science/article/pii/S2452223620300596
https://www.sciencedirect.com/science/article/pii/S2452223620300596
https://developer.nvidia.com/isaac-sim
https://doi.org/10.5772/56973
https://doi.org/10.5772/56973
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

Bibliography 66

[11] Steven Macenski et al. “The Marathon 2: A Navigation System”. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2020.

[12] Mayank Mittal et al. Articulated Object Interaction in Unknown Scenes with
Whole-Body Mobile Manipulation. 2022. arXiv: 2103.10534 [cs.RO].

[13] Juan J. de Pablo et al. “New frontiers for the materials genome initiative”. In:
npj Computational Materials 5.1 (2019). doi: 10.1038/s41524-019-0173-4.

[14] Krishna Rajan, Christopher A Bockisch, and Kamal Choudhary. “The evo-
lution of Materials Acceleration Platforms: toward the integration of data-
driven discovery and optimization”. In: Journal of Materials Science 56.25 (2021),
15662–15677.

[15] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. “A review of
mobile robots: Concepts, methods, theoretical framework, and applications”.
In: International Journal of Advanced Robotic Systems 16.2 (2019), p. 1729881419839596.
doi: 10.1177/1729881419839596.

[16] Thushara Sandakalum and Marcelo H. Ang. “Motion Planning for Mobile
Manipulators - A Systematic Review”. In: Machines 10.2 (2022). issn: 2075-
1702. doi: 10.3390/machines10020097. url: https://www.mdpi.com/2075-
1702/10/2/97.

[17] Martin Sereinig, Wolfgang Werth, and Lisa-Marie Faller. “A review of the
challenges in Mobile manipulation: Systems design and Robocup challenges”.
In: Elektrotech. Informationstechnik 137.6 (2020), 297–308. doi: 10.1007/s00502-
020-00823-8.

[18] Ksenia Shabalina, Artur Sagitov, and Evgeni Magid. “Comparative Analysis
of Mobile Robot Wheels Design”. In: 2018 11th International Conference on
Developments in eSystems Engineering (DeSE). 2018, pp. 175–179. doi: 10.1109/
DeSE.2018.00041.

[19] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduc-
tion to autonomous mobile robots. MIT Press, 2011.

[20] Alexander S. Staal et al. “Towards a Collaborative Omnidirectional Mobile
Robot in a Smart Cyber-Physical Environment”. In: Procedia Manufacturing 51
(2020). 30th International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM2021), pp. 193–200. issn: 2351-9789. doi: https://doi.
org/10.1016/j.promfg.2020.10.028. url: https://www.sciencedirect.
com/science/article/pii/S2351978920318837.

[21] B. Stellato et al. “OSQP: an operator splitting solver for quadratic programs”.
In: Mathematical Programming Computation 12.4 (2020), pp. 637–672. doi: 10.
1007/s12532-020-00179-2. url: https://doi.org/10.1007/s12532-020-
00179-2.

https://arxiv.org/abs/2103.10534
https://doi.org/10.1038/s41524-019-0173-4
https://doi.org/10.1177/1729881419839596
https://doi.org/10.3390/machines10020097
https://www.mdpi.com/2075-1702/10/2/97
https://www.mdpi.com/2075-1702/10/2/97
https://doi.org/10.1007/s00502-020-00823-8
https://doi.org/10.1007/s00502-020-00823-8
https://doi.org/10.1109/DeSE.2018.00041
https://doi.org/10.1109/DeSE.2018.00041
https://doi.org/https://doi.org/10.1016/j.promfg.2020.10.028
https://doi.org/https://doi.org/10.1016/j.promfg.2020.10.028
https://www.sciencedirect.com/science/article/pii/S2351978920318837
https://www.sciencedirect.com/science/article/pii/S2351978920318837
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2

Bibliography 67

[22] Daniel P. Tabor et al. “Accelerating the discovery of materials for clean energy
in the era of Smart Automation”. In: Nature Reviews Materials 3.5 (2018), 5–20.
doi: 10.1038/s41578-018-0005-z.

[23] Hamid Taheri, Bing Qiao, and Nurallah Ghaeminezhad. “Kinematic Model
of a Four Mecanum Wheeled Mobile Robot”. In: International Journal of Com-
puter Applications 113.3 (2015), pp. 6–9.

[24] Rama Vasudevan, Ghanshyam Pilania, and Prasanna Balachandran. “Ma-
chine learning for materials design and discovery”. In: Journal of Applied
Physics 129 (Feb. 2021), p. 070401. doi: 10.1063/5.0043300.

[25] Manman Yang et al. “Collaborative mobile industrial manipulator: A review
of system architecture and applications”. In: 2019 25th International Conference
on Automation and Computing (ICAC). 2019, pp. 1–6. doi: 10.23919/IConAC.
2019.8895183.

[26] Chengmin Zhou, Bingding Huang, and Pasi Fränti. A review of motion plan-
ning algorithms for intelligent robotics. 2021. arXiv: 2102.02376 [cs.RO].

https://doi.org/10.1038/s41578-018-0005-z
https://doi.org/10.1063/5.0043300
https://doi.org/10.23919/IConAC.2019.8895183
https://doi.org/10.23919/IConAC.2019.8895183
https://arxiv.org/abs/2102.02376

Appendix A

GitHub Repository

You can access the repository for the project by accessing the following link: https:
//github.com/mld95/Summit_ws

68

https://github.com/mld95/Summit_ws
https://github.com/mld95/Summit_ws

Appendix B

Video Documentation

The video documentation of the development process as well as the testing of the
system can be viewed at the following YouTube playlist: https://www.youtube.
com/playlist?list=PLr33eX-Y3mhEYlLT0T_l3PN-KqOlvLbCF

69

https://www.youtube.com/playlist?list=PLr33eX-Y3mhEYlLT0T_l3PN-KqOlvLbCF
https://www.youtube.com/playlist?list=PLr33eX-Y3mhEYlLT0T_l3PN-KqOlvLbCF

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Material Acceleration Platforms (MAPs)
	1.2 Autonomous Mobile Manipulators
	1.3 Motivation
	1.4 Challenges
	1.5 Initial Problem Formulation

	2 Problem Analysis
	2.1 Mobile Manipulator System
	2.2 Related works
	2.3 Summary of Analysis

	3 Problem Formulation
	3.1 Final Problem Formulation
	3.2 Task Definition
	3.3 Project Objectives

	4 Solution Architecture
	4.1 Robot Specifications
	4.2 Robot Operating System (ROS)
	4.3 Navigation Stack
	4.4 Motion Planning for Robot Arm
	4.5 Simulation Tool

	5 Implementation
	5.1 Robot Description
	5.2 Holonomic Controller
	5.3 Occupancy Map
	5.4 Localization and Navigation
	5.5 Arm Control
	5.6 System Overview

	6 Testing
	6.1 Navigation System
	6.2 Robot Arm System

	7 Discussion
	7.1 System Design
	7.2 Evaluation of Project Objectives
	7.3 Future Works

	8 Conclusion
	Bibliography
	A GitHub Repository
	B Video Documentation

