
Department of Computer Science
Selma Lagerlöfs Vej 300
9220 Aalborg East, Denmark
www.cs.aau.dk

Title
Curiosity-driven Planning with Reinforcement Learning

Project Type
Master’s Thesis

Project Period
Spring 2023

Project Group
cs-23-mi-10-04

Author
Kim Nguyen

Supervisors
Christian Schilling
Kim G. Larsen

Number of pages: 12
Date of completion: June 9, 2023

Summary

Reinforcement Learning (RL) approaches are most often clueless of what to do in environments
of sparse extrinsic rewards. Nonetheless, humans and animals are able to learn under similar con-
ditions. This is primarily due to curiosity, which is fundamental in how we, humans, and animals
learn. In this work, we investigate the potential of how curiosity can enhance a model-based RL
agent’s learning in visual environments of only sparse extrinsic rewards. We introduce a novel
model-based curiosity-driven RL agent that uses a Monte Carlo Tree Search (MCTS) algorithm.

As we are concerned with visual inputs, we train a Convolutional Neural Network Variational
Autoencoder (CNN-VAE) to learn a mapping of the high-dimensional visual inputs into abstract
low-dimensional latent representations, where the latent representations still preserve enough
information to be reconstructed – to an adequate degree – back to their initial high-dimensional
representation. Our proposed agent is given these compact latent representations as input.

For generating curiosity, we use the concept of Random Network Distillation (RND) to derive an
intrinsic reward that decays with familiarity. With RND, we use the modelling errors of a predictor
network as measures of novelty, whose aim is to predict the output of a fixed and randomly
initialised target network that is given the current latent state as input. This approach ensures that
the agent is not curious about stochastic elements of the environment.

The MCTS algorithm relies on a learned policy network and value network to sample and evaluate
actions. This effectively simplifies the MCTS procedure, as it entirely removes the need of doing
Monte Carlo rollouts. We encourage curiosity-driven planning in the MCTS by using the intrinsic
RND rewards as episodic exploration bonuses, such that the agent is incentivised to explore novel
states, that has not yet been visited in the current episode, and discouraged to revisit familiar
states, that it has already been to in the current episode.

We demonstrate that giving an MCTS agent curiosity enhances its learning, as the curiosity
MCTS agent is able to solve a visual environment of sparse rewards, called Frozen Lake – a
seemingly simple 8 × 8 grid environment with RGB pixel inputs and sparse rewards – that is,
surprisingly, otherwise unsolvable by a vanilla MCTS agent and a model-free vanilla Proximal
Policy Optimisation (PPO) agent.

Finally, we examine the prospect of building a visual and temporal abstract world model, that can
be used as a MCTS simulation environment, such that our curiosity MCTS agent does not need
direct access to the environment’s dynamics. We build a predictive world model for an environ-
ment of complex dynamics using a CNN-VAE and a Mixture Density Network Recurrent Neural
Network (MDN-RNN). We, however, find the world model inapplicable as an MCTS simulation
environment in its current state, due to either a too simple experience gathering method, a limited
modelling capacity, or both.

i

Nomenclature

BCE Binary Cross Entropy

CNN Convolutional Neural Network

ELU Exponential Linear Unit

FC Fully Connected

FNN Feedforward Neural Network

GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

KL Kullback-Leibler

MCTS Monte Carlo Tree Search

MDN Mixture Density Network

MR Montezuma’s Revenge

MSE Mean Squared Error

PPO Proximal Policy Optimisation

PUCT Probabilistic Upper Confidence Threshold

ReLU Rectified Linear Unit

RGB Red, Green and Blue

RL Reinforcement Learning

RND Random Network Distillation

RNN Recurrent Neural Network

VAE Variational Autoencoder

Mathematical Notation

x Scalar (integer or real)
x Vector
X Matrix
X Set

ii

Curiosity-driven Planning with Reinforcement Learning

Kim Nguyen

Abstract

Reinforcement Learning (RL) approaches are most often clueless of what to do in environments of only sparse extrinsic rewards.
Nonetheless, humans and animals are able to learn under similar conditions due to curiosity, as it gives us an intrinsic drive to
explore what is novel. In this work, we investigate the potential of how curiosity can enhance a model-based RL agent’s learning
and encourage exploration in a visual environment of only sparse extrinsic rewards. We introduce a novel model-based curiosity-
driven RL agent, that learns and uses a compact latent representation of the visual environment as input, employs the concept of
Random Network Distillation (RND) to generate episodic intrinsic rewards and encourage curiosity-driven planning in a Monte
Carlo Tree Search (MCTS). We demonstrate that curiosity enhances the learning of a model-based agent, as our proposed agent is
able to solve a visual environment of sparse rewards, that is otherwise unsolvable by a model-free and model-based agent without
curiosity. Finally, we examine the prospect of building a world model that can be used as an MCTS simulation environment.

Keywords: Model-based Reinforcement Learning, Monte Carlo Tree Search, Exploration, Curiosity Learning, Random Network
Distillation, World Models

1. Introduction

The reward function plays an integral role in the success of
any form of Reinforcement Learning (RL) application. How-
ever, designing an appropriate reward function is not a straight-
forward matter. RL tends only to learn something of use with
dense reward functions. However, designing these in practice
are most often time-consuming and a cumbersome matter of
trial-and-error, as the RL agents are in the habit of discovering
ways to get rewarded in undesired ways. On the other hand,
if the RL agents are left with the opposite – a sparse reward
function – they are most often clueless of what to do [1].

To look for ways to solve this issue, we can take inspira-
tion from how humans and animals learn. Despite having only
sparse extrinsic rewards available to us, we are able to learn due
to an intrinsic motivation – curiosity – that drives us to explore
what is novel. Curiosity is fundamental in how we, humans, and
animals learn. We can generally define curiosity as an intrinsic
motivation to seek out novel stimuli, which diminishes as we
become more familiar with it [2]. In light of this, to achieve
such a behaviour, a notion of what is novel is needed, which
then can be used to derive an intrinsic reward that decays with
familiarity. To this extent, there have been several proposed
ways of doing so.

Some works, such as Bellemare et al. [3] use a count-based
exploration approach, where visit counts are used to encourage
exploration of novel states. Other works, such as Schimidhu-
ber [4] and Stadie et al. [5], involve using prediction models,
and use the prediction modelling errors as measures of novelty
to which intrinsic rewards can be derived from. A key chal-
lenge, however, in using prediction errors as intrinsic rewards,
is that high prediction errors can also be a result of stochasticity
in the environment. A local source of entropy in the environ-

ment, such as a TV with white noise would be an irresistible
attraction to the agent, as the agent would simply get rewarded
for endlessly watching the noisy TV.

Pathak et al. [6] propose to solve this by first training an
inverse dynamics model, that predicts the action at given the
current state st and the next state st+1. In doing so, the in-
verse dynamics model learns a latent space Z that only con-
tains environmental features that are of relevance to the agent,
i.e. things that are influenced by the agent’s actions, or things
that the agent cannot control, but can be influenced by. Subse-
quently, the authors train a forward latent dynamics model, that
predicts the next latent state zt+1 given the current state z and
action at. As a result, the agent is not curious about things that
are inconsequential to it.

Burda et al. [7] propose a simpler approach to address the
noisy TV problem. Their approach, called Random Network
Distillation (RND), involve using two neural networks of simi-
lar anatomy: A fixed randomly initialised target network F, and
a predictor network F̂, whose aim is to predict the output of the
target network given the current state as input. As a result, the
answer to the prediction problem is now one of a deterministic
nature. Furthermore, as both networks are of identical compo-
sition, the prediction problem is also ensured to be within the
modelling capacity of the predictor network.

One drawback of both mentioned solutions, however, is that
they are not robust to stochastic noise generated by agent itself.
E.g. if the agent had a TV remote and its actions would switch
the TV channels, it would waist all its time perpetually sapping
between channels [8]. To resolve this problem, Pathak et al. [9]
propose training an ensemble of forward dynamics models, in-
stead of training only a single forward dynamics model, where
the ensemble of models each have different initialisation and are
trained on different randomly sampled subsets of data. As such,

Department of Computer Science, Aalborg University, Denmark June 9, 2023

their predictions on novel states will differ from one another.
In other words, they will disagree with each other. This dis-
agreement amongst the ensemble of models is then used as the
intrinsic reward. As more data is gathered and trained on, the
ensembles’ predictions will converge, their disagreement will
decrease, and eventually the ensemble will come to agreement
with each other. This intrinsic reward makes the agent robust to
stochastic noise from both the environment and the agent itself.

A limitation of the works mentioned so far is that their ex-
ploration bonus is inter-episodic. Meaning, once the novelty
of a state wears off, the agent is never encouraged to visit it
again, despite the fact that the state might lead to undiscov-
ered treasures. Badia et al. [10] propose to solve this by having
an intrinsic reward that has both an episodic and inter-episodic
exploration bonus, such that the agent is encouraged to revisit
familiar states – whose potential might not be fully explored
– across different episodes, but not in the same episode. For
generating the episodic exploration bonus, they take inspiration
from Pathak et al. [6], and first train an inverse dynamics model
in order to learn a latent space that only contains relevant as-
pects of the environment. Subsequently, they store each visited
state in their latent state representation in an episodic memory
buffer. They then derive an episodic exploration bonus by mea-
suring the similarity between the current state and the contents
of the memory buffer. As the life-long inter-episodic explo-
ration bonus, they use the RND reward of Burda et al. [7]. By
having these two intrinsic rewards, they incentivise the agent to
never give up in exploring.

Currently, most works – including those mentioned so far
– use curiosity learning to enhance the learning of model-free
RL approaches, and have done so with great success. On the
other hand, the potential of curiosity learning with model-based
RL approaches remains rather uncharted grounds. With model-
based RL, the agent has a model of the environment, which it
can use to predict how the environment will respond to its ac-
tions. This gives the agent planning capabilities, as the agent is
able to simulate the outcome of different courses of action and
use this to act accordingly [1]. Model-based RL approaches
have played a central role in recent remarkable breakthroughs
in the field of artificial intelligence. Two striking examples
are: DeepMind’s AlphaStar by Vinyals et al. [11] that in 2019
reached a rank above 99.8% of human players in the real-time
strategy game StarCraft II, and DeepMind’s MuZero by Schrit-
twieser et al. [12] that in 2020 achieved state-of-the-art perfor-
mance in Go, Chess, Shogi and 57 Atari games. Both these
accomplishments have been achieved using a Monte Carlo Tree
Search (MCTS) [13] as the planning algorithm.

In this work we introduce, curiosity MCTS, and explore the
prospect of curiosity learning with model-based RL in visual
environments of only sparse extrinsic rewards. We use an
MCTS algorithm, inspired by some aspects of MuZero [12],
that relies on a policy network and a value network to sam-
ple and evaluate actions. This simplifies the whole search pro-
cedure, as it entirely removes the need of doing Monte Carlo
rollouts. Besides this, we also use the Probabilistic Upper Con-
fidence Tree (PUCT) bound and MCTS policy of MuZero [12].

For generating curiosity we use an intrinsic RND reward.
The RND reward is used due to its simple nature. We encourage
curiosity-driven planning by using it as an episodic exploration
bonus, that is updated after each step the MCTS agent makes in
the actual environment. As we are concerned with visual inputs,
we train a Convolutional Neural Network Variational Autoen-
coder [14] (CNN-VAE), and use its encoder to map the high-
dimensional visual input X into abstract low-dimensional latent
representations z. These learned latent representations are then
used as input to the MCTS agent, and in computing the intrin-
sic RND rewards. Our results show that giving an MCTS agent
curiosity enhances its learning, as the curiosity MCTS agent is
able to solve a modified version of Frozen Lake [15] – a seem-
ingly simple 8× 8 grid environment with RGB pixel inputs and
sparse rewards, where the agent’s goal is to cross a frozen lake
without falling into any holes – that is, surprisingly, otherwise
unsolvable by a vanilla MCTS agent and a model-free vanilla
Proximal Policy Optimisation (PPO) agent [16].

2. Curiosity MCTS

The curiosity MCTS consists of three parts:

• CNN-VAE: First, we map the high-dimensional visual in-
put X into a learned abstract and compact latent state vec-
tor z using a trained CNN-VAE.

• RND-network: Next, we use an RND network RI that
takes z as input and generates intrinsic rewards rI to be
used for curiosity-driven planning.

• MCTS agent: Finally, we use an MCTS agent, that simu-
lates the outcome of different courses of action and uses
this information to act accordingly. During the agent’s
search, it is guided by a policy network π̂, a value network
V̂ and the RND network RI , where the policy network and
value network also take z as input. When the MCTS agent
has finished its search, it takes an action a in the environ-
ment using its own MCTS policy π.

A design overview of the three parts is shown in Fig. 1.

Environment

CNN-VAE

Policy
Network

MCTS
Agent

Value
Network

RND
Network

Fig. 1: Design overview of curiosity MCTS.

Ensuingly, we elaborate upon each part in further details.

2

DecoderEncoder

Input Space Latent Space

Latent
Representation

Reconstructed
RGB Image

Original
RGB Image

z

Input Space

Fig. 2: Overview of the CNN-VAE.

2.1. Learning latent state representations with CNN-VAE
With a CNN-VAE we learn to map items from a high-

dimensional input spaceX into a learned latent space1Z, where
the latent representations still preserve enough information to
be reconstructed – to an adequate degree – back to their initial
high-dimensional representation. A CNN-VAE is a generative
model2 that consists of two components. First, we have an en-
coder that maps the visual input to a probability distribution in
a learned latent space. Subsequently, we can sample from this
distribution and use a decoder – that does the opposite of the en-
coder – to reconstruct the latent representation back to its initial
form. An overview of a CNN-VAE is illustrated in Fig. 2.

In this work, our CNN-VAE architecture takes inspiration
from Ha and Schmidhuber [17]. We give the CNN-VAE a re-
sized 96 × 96 RGB pixel image3 with normalised values4 in
range [0, 1] as input X. The CNN-VAE passes X through its
encoder – four convolutional layers – which maps X into two
32× 1 low-dimensional vectors µ and σ of a Gaussian distribu-
tionN . Next, we then sample a 32×1 latent vector z ∼ N(µ,σ).
Finally, we pass z through the decoder – four deconvolutional
layers – to reconstruct the pixel image. The details of the archi-
tecture is shown in Fig. 3.

The CNN-VAE learns by minimising a loss function of two
terms [14]:

LVAE = LR + LKL (1)

where LR =

N∑
i=1

x̂i log xi + (1 − x̂i) log(1 − xi) (2)

LKL =
1
2

M∑
j=1

(1 + logσ2
j) − µ

2
j − σ

2
j (3)

Eq. (2) is the reconstruction loss between the original image X
and its reconstructed counterpart X̂, where N is the total num-
ber of pixels in the image, and xi along with x̂i denotes the i-th
pixel. Between a Mean Squared Error (MSE) loss and a Bi-
nary Cross Entropy (BCE) loss, we use the latter to quantify
the reconstruction loss, at it was found to give the best results.

1A latent space is a meaningful lower-dimensional feature space, where sim-
ilar items are positioned closer to each other.

2A model that learns a probability distribution which we can sample and
generate values from.

3This resolution has been inspired by MuZero [12], that uses a 96×96 RGB
resolution and also implements an MCTS algorithm. Other common resolu-
tions are 64× 64 RGB images as in Ha and Schmidhuber [17], or 84× 84 RGB
images as in Pathak et al. [7].

4We divide by 255.

ReLU
Conv

ReLU
Conv

ReLU
Conv

ReLU
Conv FC

+

ReLU
Deconv

ReLU
Deconv

ReLU
Deconv

Sigmoid
Deconv

FC

Fig. 3: The CNN-VAE architecture. Encoder layers are blue and decoder lay-
ers are yellow. Each convolutional and deconvolutional layer is given by out-
put channels × kernel size. All convolutional and deconvolutional layers use a
stride of 2. FC are Fully-Connected Layers. All layers use a ReLU activation,
except the final deconvolutional layer which uses a sigmoid activation to ensure
an output range of [0,1]. The vectors µ, σ and z are of size 32 × 1. The latent
vector z is computed using Eq. (4).

Eq. (3) is the Kullback-Leibler (KL) divergence. With this term
we measure the similarity between the encoder generated distri-
bution and a standard Gaussian distribution, N(0, 1). In doing
so, this acts as a regularisation term, that enforces a Gaussian
prior over the latent vectors z, as it ensures that the encoder
generated distribution is Gaussian. Here, µ j and σ j denote the
j-th element of their respective vectors, and M is the size of z.

Lastly, when we sample the latent vectors z, we use the repa-
rameterisation trick [14]:

z = µ + σϵ where ϵ ∼ N(0, 1) (4)

Otherwise, we would not be able to backpropagate and compute
the gradients.

2.2. Curiosity Learning with Random Network Distillation
With RND we use a predictor network F̂ with parameter ψ,

and use its prediction errors as our measure of novelty to which
we can derive intrinsic rewards from. However, with RND our
predictor does not predict the next state, as such an approach is
prone to the noisy TV problem, where the agent is intrinsically
rewarded for seeking out local sources of entropy. Instead, we
aim to predict the output of a fixed and randomly initialised tar-
get network F. This changes the nature of the prediction prob-
lem by making it one of a deterministic nature, which makes
the agent not care about stochastic noise generated by the envi-
ronment. Moreover, the predictor network F̂ and target network
F both have the same network architecture, which ensures that
the prediction problem is within the modelling capacity of the
predictor network.

The original work by Burda et al. [7] use a resized 84 × 84
pixel image of the current state as input, and accordingly their
predictor and target networks are both CNNs. However, in our
case there is no need for this, as we, instead, use the abstract
and compact representations z – computed by the CNN-VAE –
of the current state as input. As such, F and F̂ are of a simpler
nature in this work. They are, instead, Feedforward Neural Net-
works (FNNs) with three hidden layers of size 512, where all
hidden layers use Exponential Linear Unit (ELU) activations.

We train the predictor network by minimising the expected
MSE between the two networks [7]:

LMS E = || f̂ (z;ψ) − f (z)||2 (5)

3

w.r.t. the parameter ψ. We use Eq. (5) as our intrinsic reward.
Resultingly, when we encounter novel states that are different
from the ones we have encountered and trained on before, we
get a high loss and a high intrinsic reward. However, as we be-
come more familiar with these states, their novelty diminishes,
and likewise does our loss and intrinsic reward.

In this work, we use the RND reward to incentivise episodic
curiosity-driven planning: The agent is encouraged to explore
novel states, that has not yet been visited in the current episode,
and discouraged to revisit familiar states, that it has already
been to in the current episode. We achieve this by doing two
things. First, we do not save the parameter updates of ψ be-
tween episodes, but instead reset ψ at the beginning of each
episode. In doing so, our intrinsic RND reward becomes an
episodic exploration bonus. This is different from the previous
model-free works by Burda et al. [7] and Badia et al. [10], who
both implement the RND reward as an inter-episodic bonus.
Second, we update the RND network after each step the MCTS
agent makes in the actual environment, such that the agent has
an immediate notion of what is old and where it has been be-
fore5.

Finally, we follow Burda et al. [7], and combine extrinsic and
intrinsic rewards as follows:

R(s, a) = cERE(s, a) + cIRI(z;ψ) (6)

where cE and cI are weight coefficients, that set the importance
of the extrinsic reward relative to intrinsic reward.

2.3. Planning with Monte Carlo Tree Search
In RL, planning refers to using simulated experience gener-

ated by a model in order to determine the best course of action.
MCTS is a tree-based decision-time planning method. Plan-
ning at decision time means that our planning only revolves
around using simulated experiences to determine best action to
do in the current state, and no further ahead than this. Meaning,
when we have selected an action and are presented with a suc-
ceeding state, we execute our planning again, and so on. MCTS
is a Monte Carlo method, where we estimate action values by
simulating trajectories and average their returns. Subsequently,
we then use these action value estimates to direct succeeding
MCTS simulations toward even better trajectories, which in
turn produces more accurate action value estimates [1]. We use
an MCTS variant that takes inspiration from MuZero [12]. Each
node in the search tree represents a state s and their correspond-
ing edges e(s, a) represents actions a from s. Each node stores
the following statistics:[

N(s, a),RE(s, a), Q̄(s, a), P(s, a)
]

where N(s, a) is the visit count, RE(s, a) is the extrinsic reward
given by the simulation environment, Q̄(s, a) is the mean action

5The original model-free method by Burda et al. [7] update their RND every
128 steps. However, we argue that this makes less sense in a model-based
context, as the agent would then first get a notion of what is old after 128 steps,
and in the meantime unknowingly plan to explore states, that might already
have been visited.

a. Selection b. Evaluation and Expansion c. Backup

Environment RND
Network

Policy
Network

Value
Network

Fig. 4: The three steps of our MCTS simulation. a. Selection: We traverse the
tree by selecting the children with the highest PUCT score, until we reach a leaf
node. The tree selection traversal is shown in blue, and the selected leaf node
is a filled blue node. b. Evaluation and Expansion: We evaluate the selected
leaf node, where we get the leaf node’s extrinsic reward rE from the simulation
environment, the intrinsic reward rI from the RND network, the action selection
probabilities π̂ from the policy network, and the estimated expected discounted
future return V̂ from the value network. After evaluation, we expand the leaf
node as shown in yellow. c. Backup: We update the node statistics of the search
tree by traversing backwards through parent nodes. The backup is shown in
orange.

value and P(s, a) is the prior action selection probability. The
MCTS iteratively builds its search tree through K simulations,
where each simulation begins with the current state s as root
node and ends at a leaf node. Our simulation consists of the
three steps shown in Fig 4.

2.3.1. Selection
We traverse the search tree from the root node to a leaf node

using a Probabilistic Upper Confidence Threshold (PUCT)
score, where we repeatedly select the highest scoring child
node until we reach a leaf node. We use the PUCT score of
MuZero [12]:

U(s, a) = Q̄(s, a) + P(s, a)

√∑
b N(s, b)

1 + N(s, a)

·

(
c1 + log

(∑
b N(s, b) + c2 + 1

c2

))
(7)

where a and b are possible actions in the current state s, and
c1 = 1.25 and c2 = 19.652 are exploration constants that con-
trol the influence of P(s, a) in relation to Q̄(s, a) as the action’s
visit count increases. In Eq. (7), the first term is an exploitation
term and the second term is an exploration term. The general
idea of using Eq. (7) as our search strategy is that we initially
are explorative, where we prefer actions of high selection prob-
abilities and low visit counts (high uncertainty). However, each

4

time action a is selected – its visit count increases – and our
uncertainty in the estimate of Q̄(s, a) presumably decreases. As
a result, the influence of a’s exploration term decreases, and we
will increasingly come to measure the merits of a solely on our
estimate of Q̄(s, a). On the other hand, each time other sibling
actions are visited, the influence of action a’s exploration term
increases, such that we increase the probability of exploring less
favoured actions. Nonetheless, the use of the natural logarithm
ensures that these influence increases gets smaller over time,
but still in an unbounded manner [1]. All in all, with this search
strategy we start explorative, but become more greedy as search
time progresses.

2.3.2. Evaluation and Expansion
Now that we have reached a leaf node, the next step is to eval-

uate its value. Here, we use a value network V̂ with parameter
ϕ, an RND network with parameter ψ, and a policy network π̂
with parameter θ to guide our MCTS, where all networks take
the compact and abstract latent representation z – computed by
the CNN-VAE – as input. The use of a policy network and
value network is inspired by MuZero [12]. Commonly, a basic
MCTS is implemented with four steps: a. Selection, b. Expan-
sion, c. Rollout and d. Backup [1]. We skip the rollout step,
which involves simulating a complete episode from the current
leaf node until termination, in order to get a state value esti-
mate V(s). Instead, in this work, the value network provides
us with these estimates. This removes the need of doing any
rollouts, which effectively simplifies the MCTS procedure and
reduces computation time. Our value network has two output
heads and is trained to predict both the extrinsic and intrinsic
expected discounted future return, V̂E(zt+1;ϕ) and V̂ I(zt+1;ϕ).
The value network is trained with an MSE loss function, where
we do Monte Carlo updates and use the complete extrinsic and
intrinsic discounted return, GE

t and GI
t , of a whole episode as

our targets. We compute GE
t and GI

t as follows:

GE
t =

T∑
k=t+1

γk−t
E rE

k (8)

GI
t =

T∑
k=t+1

γk−t
I rI

k (9)

where T is the length of an episode, and γE and γI are discount
factors. We follow Burda et al. [7] and set γE = 0.999 and
γI = 0.99, such that our agent is far-sighted in an environment
of sparse rewards.

Using the extrinsic reward rE given by the simulation envi-
ronment’s reward function RE , the intrinsic reward rI from the
RND network RI and the future expected return from the value
network V̂ , we expand upon Eq. (6) and compute the value v of
a leaf node n as follows:

vn = cE
(
rE + V̂E

t+1(z;ϕ)
)
+ cI

(
rI + V̂ I

t+1(z;ϕ)
)

(10)

After evaluation, we ask the policy network for action selection
preferences, and expand the leaf node by creating its offspring.
We initialise each newly created child node as follows:[

N(s, a) = 0,RE(s, a) = rE , Q̄(s, a) = 0, P(s, a) ∼ π̂(a|z; θ)
]

Furthermore, following MuZero [12], we add Dirichlet noise to
the root node’s prior action selection probabilities:

P(s, a) = (1 − ϵ)P(s, a) + ϵη (11)

where η ∼ Dir(0.03) and ϵ = 0.25. This is done to achieve
additional exploration, such that we ensure all actions from the
root node are tried.

2.3.3. Backup
Next, we update the node statistics of all nodes that have been

visited during the MCTS simulation. This is done by traversing
backwards through the parent nodes. We update the statistics of
each visited node as follows [12]:

N(s, a)← N(s, a) + 1

Q̄(s, a)←
N(s, a)Q̄(s, a) + vn

N(s, a) + 1
(12)

2.3.4. MCTS Policy
Finally, after K simulations, we sample an action to take in

the actual environment from the MCTS policy, which is the visit
count distribution of the root node [12]:

π(a|s) =


N(s, a)1/τ∑
b N(s, b)1/τ , τ > 0

arg max
a

(
N(s, a)

)
, τ = 0

(13)

where τ ∈ [0, 1] is a greediness parameter. I.e. when τ = 1.0
we are explorative, whereas as τ→ 0 we become more greedy.
We start by setting τ = 1.0 at the beginning of our training, then
when we reach 50% of all updates we set τ = 0.5, and finally
when we reach 75% of all updates we set τ = 0.25. As a result,
our MCTS policy becomes more greedy as training progresses.

The policy network plays an integral role in guiding our
MCTS search, as we sample P(s, a) ∼ π̂(a|z; θ), where P(s, a)
heavily influences the PUCT-score, shown in Eq.(7), and conse-
quently, how we traverse down the tree during selection. When
the MCTS has finished its search, the end result is usually a
visit count distribution π that is better than our policy network
π̂. Therefore, it subsequently makes sense to train the pol-
icy network to match the improved visit count distribution of
the MCTS. This is done by minimising the cross entropy be-
tween the policy network’s action selection distribution and the
MCTSs visit count distributions. The updated policy network
is then used in the next MCTS iteration, which again improves
the policy network. In consequence, the MCTS variant used in
this work, acts as a policy improvement loop [18].

3. Frozen Lake Experiment

Frozen Lake [15] is a simple grid environment, where the
agent’s goal is to cross a frozen lake from start to goal without
falling into any holes. For this experiment we use the 8×8 map
shown in Fig 5.

5

Fig. 5: The 8 × 8 Frozen Lake map used in this experiment. The agent starts
in the top-left corner and its goal is to reach the gift in the bottom-right corner.
The agent dies if it fall into a water hole.

By default, the observation space is a discrete integer space.
However, we have modified the environment such that the ob-
servation space is of RGB pixel images. The action space con-
sists of four moves: Left, down, right and up. The goal can be
reached with a minimum of 14 steps. The environment is of
sparse extrinsic rewards:

rE =

+1, goal reached
0, otherwise

(14)

Finally, we have kept this experiment as simple as possible and
the lake is not slippery. Meaning, the agent is not at risk of
slipping to unintended directions when moving.

3.1. Setup and Training

In this experiment our agent has access to a perfect simula-
tor, as we use the actual environment itself as our MCTS sim-
ulation environment. We feed the CNN-VAE a 96 × 96 pixel
input6. We implement our value network as a Recurrent Neu-
ral Network (RNN) [19] – specifically, a Gated Recurrent Unit
(GRU) network [20] – as the intrinsic rewards cannot directly
be inferred from the current state, but depends on the agent’s
history. The policy network, on the other hand, is implemented
as an FNN, as the optimal actions can be inferred directly from
the current state7. We initialise our RND network with an or-
thogonal weight initialisation [21] using a gain of

√
3, as this by

coincidence was found to produce intrinsic rewards that mostly

6For an example of a resized 96×96 image and its CNN-VAE reconstruction,
see Appendix D.

7Out of curiosity we also tried implementing the policy network as an RNN
in two ways. The First RNN policy network was given the latest eight states.
The second RNN policy network was given the latest eight state-action pairs.
We found that both RNN policy networks performed worse than the FNN pol-
icy network. Furthermore, we also tried implementing the policy network and
value network as a single RNN of three output heads and a joint loss function,
which also performed poorly.

are in a desired range around [0, 1] in the Frozen Lake environ-
ment. All setup details of the curiosity MCTS agent are shown
in Appendix A.

We use two baselines. First, we have a model-based base-
line – a vanilla MCTS agent – that uses the same setup as the
curiosity MCTS agent, but without the RND network. Second,
we have a model-free baseline – a vanilla PPO agent – that uses
the CNN architecture of Mnih et al [22], and as input receives a
temporal frame stack of the latest four 84×84 grey-scaled pixel
images.

All training was done using a desktop8 with a single GPU.
The CNN-VAEs training consisted of 135 updates with 512
steps of random actions per update. Both the curiosity MCTS
and vanilla MCTS agent trained for 1024 steps with 600 MCTS
simulations per step (∼3 hour run time). The vanilla PPO agent
trained for 1 000 000 steps (∼3.5h run time).

3.2. Results

Despite Frozen Lake’s seemingly simple nature, the visual
environment of sparse rewards is, surprisingly, too difficult to
solve for both baselines. Both spend all their time aimlessly
wandering the environment without even reaching the goal a
single time. This goes to show how RL – both model-based
and model-free – falls short in visual environments of sparse
rewards, as they are clueless of what to do. The curiosity MCTS
agent, on the other hand, manages to solve the environment. Its
learning results are shown in Tab. 1.

Update Goal reached Average steps to goal
0 / 7 1 / 6 17.0
1 / 7 4 / 5 24.0
2 / 7 5 / 7 18.0
3 / 7 5 / 8 18.2
4 / 7 7 / 8 16.6
5 / 7 8 / 8 15.7
6 / 7 8 / 8 15.6
7 / 7 8 / 8 15.0

Tab. 1: Learning results of the curiosity MCTS agent.

As shown in Tab. 1, prior to any updates, the intrinsic RND
reward encourages curiosity-driven planning, as the curiosity
MCTS agent is already able to find the goal 1 / 6 times with
a randomly initialised policy and value network. After the 5th
update, the curiosity MCTS agent is able to consistently find
the goal. However, it never learns to consistently do so in the
least amount of possible steps of 14 during its training.

With these results, we can conclude that adding an intrinsic
RND reward to an MCTS agent enhances learning and encour-
ages curiosity-driven planning in a visual environment of sparse
extrinsic rewards, as this environment is, otherwise, unsolvable
without curiosity.

8Desktop specifications: I7-11700F 2.5 GHz CPU, 32GB RAM and
NVIDIA GeForce RTX 3060 GPU.

6

4. World Models

Up and until now, the curiosity MCTS agent have relied on
planning using a perfect mental model of the world, as it had
direct access to the environment’s dynamics. This naturally re-
stricts the general applicability of the curiosity MCTS agent, as
it requires access to a perfect simulator in order to do its plan-
ning – a prerequisite that might not always feasible or practical
in real world domains. By contrast, we, humans do not have
this prerequisite imposed on us. We do not have a perfect men-
tal model of the world at our disposal. Instead, we have from
experience learned a visual and temporal abstract world model,
which we use to predict the outcome of different courses of ac-
tion, such that we can plan accordingly. According to Machado
et al. [23] designing a world model that is fast and accurate, and
subsequently using an imperfect world model for planning, re-
main two open problems. In this section, we concern ourselves
with the first problem, and shortly explore building an abstract
world model9 for visual environments of sparse rewards, that
then can be used as the MCTS simulation environment in fu-
ture works. We take inspiration from Ha and Schmidhuber [17],
who are able to train a model-free agent by only having it learn
inside its own generated world model.

Ha and Schmidhuber [17] propose building a predictive
world model using a CNN-VAE and a Mixture Density Net-
work Recurrent Neural Network (MDN-RNN). As we already
have the first component, the CNN-VAE, we in this section look
into building the MDN-RNN. The MDN-RNN is an RNN com-
bined with an MDN [29] as the output layer. It is a generative
prediction model that is given the history Ht of the T latest la-
tent state action pairs (zt, at), and predicts the future. In our
case, where our goal is to have a world model that can be used
as an MCTS simulation environment, the MDN-RNN needs
to predict two aspects of the future: The next latent state zt+1
and whether or not the agent dies in the next step dt+1. With
an MDN-RNN we generate the next latent state zt+1 using a
Gaussian Mixture Model (GMM) – a weighted sum of multi-
ple Gaussians – where the probability distribution P of a GMM
with K components is expressed as follows [29]:

P(zt+1 | Ht; θ) =
K∑

k=1

Πk(Ht; θ)N
(
zt+1

∣∣∣ µk(Ht; θ),σk(Ht; θ)
)

(15)

where θ is the parameter of the MDN-RNN, Nk is the k-th
Gaussian component with mixing weightΠk, mean µk and stan-
dard deviation σk. All of σk are positive, and all weights Πk

sum to one. We follow Ha and Schmidhuber [17] and set the
number of GMM components, K = 5.

From Eq. (15) it follows that the MDN-RNN needs three out-
put heads, such that we can produce Πk, µk and σk for each
Gaussian component, in order to fashion a GMM. The three
outputs are learned using an MDN loss, which is defined as

9For further readings on the concept of world models, see the works by
Schmidthuber [24], Kaiser et al. [25], and Hafner et al. [26] [27] [28].

CNN-VAE

MDN-RNN

Environment

Agent
death

Fig. 6: Overview of the MDN-RNN.

the negative logarithm of the likelihood, or in other words, the
loss between the predicted distribution vs. the actual distribu-
tion [29]:

LMDN =

− log
[K∑

k=1

Πk(Ht; θ)N
(
zt+1

∣∣∣ µk(Ht; θ),σk(Ht; θ)
)]

(16)

With a GMM we can generate the next latent state zt+1 in two
ways:

zt+1 ∼ P(zt+1 | Ht; θ) (17)

zt+1 =

K∑
k=1

Πkµk (18)

Eq. (17) is for stochastic environments, where we sample zt+1
from P, and Eq. (18) is for deterministic environments, where
we assume zt+1 to be the weighted mean of P.

Finally, the MDN-RNN also needs the ability to predict
whether or not the agent dies in the next step, if it is to be used
as an MCTS simulation environment. As such, our MDN-RNN
has a fourth output head, that predicts the agent’s death as a
binary classification. Thus, our MDN-RNN has a total of four
output heads, and a joint loss of two terms10:

LMDN−BCE = LMDN + LBCE (19)

where the first term is the MDN loss of Eq. (16), and the second
term is the BCE loss between the MDN-RNNs binary death pre-
diction vs. whether or not the agent actually dies. An overview
of the MDN-RNN is shown in Fig. 6. In order to use the world

10At first, we followed Ha and Schmidhuber [17] and only used LMDN of
Eq. (16) as the loss function. However, we found LMDN−BCE of Eq. (19) to give
better results in terms of death predictions. Nonetheless, there is trade-off. The
improved death predictions are at the cost of a slightly higher MDN-RNN loss
than its counterpart. For further details, see Appendix C.

7

model as an MCTS simulation environment, we naturally need
to predict further into the future, beyond zt+1. To do so, we
need to compute succeeding predictions through bootstrapping,
where succeeding predictions are based on preceding predic-
tions. Inevitably, it follows that our predictions about the fu-
ture will increasingly become less accurate the further ahead
we look into the future, as predictions errors will accumulate.
As such, the world model needs to be very accurate in its pre-
dictions, if it is be used as an MCTS simulation environment.

5. Montezuma’s Revenge Experiment

Ha and Schmidhuber [17] have shown that their world model
is able to emulate two fairly simple environments with good re-
sults. First, a simple driving control task in a top-down Car Rac-
ing pixel environment [30]. Second, a simple movement control
task, where the agent has to move from side to side in order to
dodge fireballs shot by monsters in the VizDoom pixel environ-
ment [31]. In this section we investigate if their world model
concept is applicable to more complex environment dynamics.
The Atari game, Montezuma’s Revenge (MR)11, is known to
be a difficult environment, due to its complex dynamics and
sparse rewards [23]. As such, we in this section explore the
world model’s capabilities in emulating the first room of MR.
The layout of the first room is shown in Fig. 7.

Fig. 7: The first room of MR. To exit the first room the agent has to descend
the middle ladder, jump right using the rope, descend the bottom-right ladder,
jump over a deadly moving skull, climb the bottom-left ladder, collect the key,
then back track, after which the agent can exit by unlocking one of the two
yellow doors using the collected key. In this room the agent can die by falling
from any place, or when touching the moving skull that rolls back and forth.
The agent has six lives, and upon losing one the agent respawns on top of the
middle ladder. The game resets when all six lives are lost.

5.1. Training

All training was done using a GPU server12. The CNN-VAE
trained for 100 updates with 1024 random steps per update (∼3h
run time), and the MDN-RNN trained for 300 updates with
1024 steps per update (∼ 45 min. run time). To improve upon

11For further readings on works that try to solve MR, see the works by Belle-
mare et al. [3], Burda et al. [7], Badia et al. [10], Mnih et al. [22], Hafner et
al. [27] and Ecoffet et al. [32].

12CLAAUDIA GPU server [33].

our death predictions, we augmented the training data sets by
adding all sequences with death occurrences eight additional
times. All setup details are shown in Appendix B.

5.2. Results
When predicting the future in the first room of MR, the world

model only has to predict the future position of two entities.
Namely, its own position and the moving skull’s position. all
other parts of the environment are static. We evaluated the
world model with 10 episodes of 1024 random actions, where
our world model achieved an average MDN-RNN loss of 1.28.
Naturally, it is hard to tell by the number itself whether or not
this is a reasonable loss. However, upon visual inspection13, we
see that such a loss is not satisfactory. The MDN-RNN is capa-
ble of predicting the future position of the moving skull. On the
other hand, the MDN-RNN fails at multiple times to predict the
future position of the agent. We observe that the MDN-RNN
has a tendency to wrongly predict the agent to be on the middle
ladder, or on the rope. We suspect that this might be due to the
fact that we have only trained the MDN-RNN using random ac-
tions, which can lead it to getting stuck on either the middle lad-
der or rope. As such, the MDN-RNNs wrong predictions might
be a case of overfitting, as a consequence of a too simple ex-
perience gathering method, that is done solely through random
actions. Another explanation could be that the current network
architecture has a limited modelling capacity, and the first room
of MR is simply out of its reach. Besides this, the world model
is also too inaccurate in its death predictions, as it only gets an
F1-score of 57.10. All result details are shown in Appendix C.
In light of these results, we can conclude that our world model
is inapplicable as an MCTS simulation environment in its cur-
rent state. It does not have the sufficient abilities to emulate the
first room of MR, as it is inadequate in both future latent state
predictions and death predictions, due to either an inefficient
experience gathering method through random actions, a limited
modelling capacity, or both.

6. Conclusion and Future Work

In this work we introduced, curiosity MCTS, a novel model-
based RL-agent, that uses the concept of Random Network Dis-
tillation (RND) to generate episodic intrinsic rewards and in-
centivise curiosity-driven planning. We have demonstrated that
curiosity enhances a model-based RL agent’s learning in a vi-
sual environment of sparse rewards, that is otherwise unsolv-
able by both model-free and model-based agents without cu-
riosity. Finally, we explored the prospect of building a world
model, that can be used as the MCTS simulation environment,
such that there is no need for a perfect simulator. We, how-
ever, found our world model to be inadequate in emulating a
complex environment such as the first room of Montezuma’s
Revenge (MR), due to either a too simple experience gather-
ing method using solely random actions, a limited modelling
capacity, or both.

13For visual examples, see Appendix E.

8

For future work, the overall goal is to develop a world model
that is capable of emulating MR, and then use this as the sim-
ulation environment of the curiosity MCTS agent. The whole
game of MR is only of partial observability – as the game con-
sists of multiple rooms – and each room requires a complicated
set of actions to get rewards due to obstacles, timing-based traps
and moving adversaries.

To improve upon the modelling capacity of our current world
model there are multiple directions to explore. First, we can
take inspiration from Gemici et al. [34], and augment our world
model with an external memory system, as this has shown to
substantially improve performance on problems with sparse and
long-term temporal dependencies. Another interesting world
model architecture to explore is the recurrent state space model
of Hafner et al. [26], along with its loss function, called latent
overshooting, that enables multi-step predictions. Finally, the
prospect of using transformers [35] instead of RNNs could also
be interesting to explore, as transformers have achieved state-
of-the performance in different application such as natural lan-
guage processing [36], biology [37] and computer vision [38].

To improve upon our experience gathering method and also
deal with the partial observability of MR, we propose an itera-
tive training procedure of the curiosity MCTS agent, where we
initially train our world model using experience gathered from
random actions, and subsequently, iteratively refine our world
model using experience gathered by the MCTS agent.

Finally, in more complex environments of sparse rewards,
we need to ensure a high level of exploration. Otherwise, if
the agent becomes greedy and extrinsically reward-driven too
fast, it might converge prematurely to a suboptimal policy and
never learn to act optimally. To prevent this, we can take in-
spiration from Badia et al. [10], and have an intrinsic reward
that is both episodic and inter-episodic, such that we ensure ad-
equate exploration both within and across episodes. In doing
so, our agent is encouraged to revisit states – that might still
hold undiscovered treasures, e.g. a locked door – across differ-
ent episodes, and at the same time, slowly grow familiar with
states that have been visited many times across many episodes.
Here, we propose to use two separate RND networks: One for
episodic intrinsic rewards and one for life-long inter-episodic
intrinsic rewards.

7. Code Availability

• Curiosity MCTS repository:
https://github.com/kim-ngu/curiosity-MCTS

• PPO implementation modified from repository by Huang
et al. [39]: https://github.com/vwxyzjn/ppo-
implementation-details

• RND implementation inspired by:
https://github.com/jcwleo/random-network-
distillation-pytorch

• MCTS implementation inspired by:
https://github.com/ciamic/MCTS
https://github.com/dylandjian/SuperGo

References

[1] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, 2nd
Edition, The MIT Press, 2018.

[2] C. Kidd, B. Hayden, The psychology and neuroscience of curiosity, Neu-
ron 88 (2015) 449–460. doi:10.1016/j.neuron.2015.09.010.

[3] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton,
R. Munos, Unifying count-based exploration and intrinsic motivation
(2016). arXiv:1606.01868.

[4] J. Schmidhuber, A possibility for implementing curiosity and boredom in
model-building neural controllers, in: Proceedings of the First Interna-
tional Conference on Simulation of Adaptive Behavior on From Animals
to Animats, MIT Press, Cambridge, MA, USA, 1991, p. 222–227.

[5] B. C. Stadie, S. Levine, P. Abbeel, Incentivizing exploration in reinforce-
ment learning with deep predictive models (2015). arXiv:1507.00814.

[6] D. Pathak, P. Agrawal, A. A. Efros, T. Darrell, Curiosity-driven explo-
ration by self-supervised prediction (2017). arXiv:1705.05363.

[7] Y. Burda, H. Edwards, A. Storkey, O. Klimov, Exploration by random
network distillation (2018). arXiv:1810.12894.

[8] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, A. A.
Efros, Large-scale study of curiosity-driven learning (2018). arXiv:

1808.04355.
[9] D. Pathak, D. Gandhi, A. Gupta, Self-supervised exploration via disagree-

ment (2019). arXiv:1906.04161.
[10] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kap-

turowski, O. Tieleman, M. Arjovsky, A. Pritzel, A. Bolt, C. Blundell,
Never give up: Learning directed exploration strategies (2020). arXiv:

2002.06038.
[11] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,

J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., Grand-
master level in starcraft ii using multi-agent reinforcement learning, Na-
ture 575 (7782) (2019) 350–354. doi:10.1038/s41586-019-1724-z.

[12] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., Master-
ing atari, go, chess and shogi by planning with a learned model, Nature
588 (7839) (2020) 604–609. doi:10.1038/s41586-020-03051-4.

[13] R. Coulom, Efficient selectivity and backup operators in monte-carlo tree
search, in: H. J. van den Herik, P. Ciancarini, H. H. L. M. J. Donkers
(Eds.), Computers and Games, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2007, pp. 72–83.

[14] D. P. Kingma, M. Welling, Auto-encoding variational bayes (2022).
arXiv:1312.6114.

[15] F. Foundation, Frozen lake, access date: 11/05/2023 (2022).
URL https://gymnasium.farama.org/environments/toy text/

frozen lake/

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov,
Proximal policy optimization algorithms (2017). doi:10.48550/
ARXIV.1707.06347.

[17] D. Ha, J. Schmidhuber, Recurrent world models facilitate pol-
icy evolution, in: Advances in Neural Information Process-
ing Systems 31, Curran Associates, Inc., 2018, pp. 2451–2463,
https://worldmodels.github.io.
URL https://papers.nips.cc/paper/7512-recurrent-world-
models-facilitate-policy-evolution

[18] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. v. d. Driessche, T. Graepel, D. Hassabis, Mastering
the game of Go without human knowledge, Nature 550 (7676) (2017)
354–359. doi:10.1038/nature24270.

[19] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations
by back-propagating errors, Nature 323 (1986) 533–536. doi:https:

//doi.org/10.1038/323533a0.
[20] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the properties

of neural machine translation: Encoder-decoder approaches (2014). doi:
10.48550/ARXIV.1409.1259.

[21] A. M. Saxe, J. L. McClelland, S. Ganguli, Exact solutions to the nonlin-
ear dynamics of learning in deep linear neural networks (2014). arXiv:
1312.6120.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep re-

9

https://doi.org/10.1016/j.neuron.2015.09.010
http://arxiv.org/abs/1606.01868
http://arxiv.org/abs/1507.00814
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1906.04161
http://arxiv.org/abs/2002.06038
http://arxiv.org/abs/2002.06038
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-020-03051-4
http://arxiv.org/abs/1312.6114
https://gymnasium.farama.org/environments/toy_text/frozen_lake/
https://gymnasium.farama.org/environments/toy_text/frozen_lake/
https://gymnasium.farama.org/environments/toy_text/frozen_lake/
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://worldmodels.github.io
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://doi.org/10.1038/nature24270
https://doi.org/https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1038/323533a0
https://doi.org/10.48550/ARXIV.1409.1259
https://doi.org/10.48550/ARXIV.1409.1259
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120

inforcement learning, Nature 518 (7540) (2015) 529–533. doi:10.1038/
nature14236.

[23] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht,
M. Bowling, Revisiting the arcade learning environment: Evaluation pro-
tocols and open problems for general agents (2017). arXiv:1709.06009.

[24] J. Schmidhuber, On learning to think: Algorithmic information theory for
novel combinations of reinforcement learning controllers and recurrent
neural world models (2015). arXiv:1511.09249.

[25] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell,
K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine, A. Mohiud-
din, R. Sepassi, G. Tucker, H. Michalewski, Model-based reinforcement
learning for atari (2020). arXiv:1903.00374.

[26] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, J. David-
son, Learning latent dynamics for planning from pixels (2019). arXiv:

1811.04551.
[27] D. Hafner, T. Lillicrap, M. Norouzi, J. Ba, Mastering atari with discrete

world models (2022). arXiv:2010.02193.
[28] D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap, Mastering diverse domains

through world models (2023). arXiv:2301.04104.
[29] C. Bishop, Mixture density networks, Workingpaper, Aston University

(1994).
[30] O. Klimov, Car racing, access date: 31/05/2023 (2023).

URL https://gymnasium.farama.org/environments/box2d/
car racing/

[31] M. Wydmuch, M. Kempka, W. Jaśkowski, ViZDoom Competitions: Play-
ing Doom from Pixels, IEEE Transactions on Games 11 (3) (2019) 248–
259, the 2022 IEEE Transactions on Games Outstanding Paper Award.
doi:10.1109/TG.2018.2877047.

[32] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, J. Clune, First re-
turn, then explore, Nature 590 (7847) (2021) 580–586. doi:10.1038/
s41586-020-03157-9.
URL https://doi.org/10.1038%2Fs41586-020-03157-9

[33] CLAAUDIA, Claaudia overview, access date: 01/06/2023 (2023).
URL https://aicloud-docs.claaudia.aau.dk/overview/

[34] M. Gemici, C.-C. Hung, A. Santoro, G. Wayne, S. Mohamed, D. J.
Rezende, D. Amos, T. Lillicrap, Generative temporal models with mem-
ory (2017). arXiv:1702.04649.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, I. Polosukhin, Attention is all you need (2017). doi:
10.48550/ARXIV.1706.03762.

[36] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
D. Amodei, Language models are few-shot learners (2020). arXiv:

2005.14165.
[37] J. M. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ron-

neberger, K. Tunyasuvunakool, R. Bates, A. Zı́dek, A. Potapenko,
A. Bridgland, C. Meyer, S. A. A. Kohl, A. Ballard, A. Cowie, B. Romera-
Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. A. Reiman,
E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, D. Hassabis, Highly accurate protein structure prediction with
alphafold, Nature 596 (2021) 583 – 589. doi:https://doi.org/
10.1038/s41586-021-03819-2.

[38] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
N. Houlsby, An image is worth 16x16 words: Transformers for image
recognition at scale (2021). arXiv:2010.11929.

[39] S. Huang, R. F. J. Dossa, A. Raffin, A. Kanervisto, W. Wang, The 37
implementation details of proximal policy optimization (2022).
URL https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/

[40] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014).
doi:10.48550/ARXIV.1412.6980.

[41] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent
neural networks (2013). arXiv:1211.5063.

Appendix A. Curiosity MCTS Setup

CNN-VAE Setting
Network architecture See Fig. 3
Optimiser Adam [40]
Learning rate 1.0 · 10−3

Number of updates 135
Steps per update 512
Number of epochs 20
Batch size 32
Loss function BCE loss + KL Divergence, see Eq. (1)
RND Network Setting
Network architecture FNN: 3 h-layers w. size 512, ELU acts.
Optimiser Adam [40]
Learning rate 1.0 · 10−4

Number of updates 1
Steps per update 1
Number of epochs 8
Batch size 1
Extrinsic discount factor γE 0.999
Intrinsic discount factor γI 0.99
Extrinsic weight coef. cE 3.0
Intrinsic weight coef. cI 1.0
Loss function MSE, see Eq. (5)
Value Network Setting
Network architecture GRU: 1 h-layer w. size 256
Sequence length 8
Optimiser Adam [40]
Learning rate 1.0 · 10−5

Number of updates 8
Steps per update 128
Number of epochs 10
Batch size 16
Gradient value clipping 0.5
Loss function MSE
Policy Network Setting
Network architecture FNN: 4 h-layers w. size 512, ELU acts.
Optimiser Adam [40]
Learning rate 1.0 · 10−5

Number of updates 8
Steps per update 128
Number of epochs 10
Batch size 16
Loss function Cross Entropy
MCTS Setting
Simulations per step 600
Dirichlet α 0.03
Dirichlet ϵ 0.25

Tab. A.2: Curiosity MCTS setup

10

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1709.06009
http://arxiv.org/abs/1511.09249
http://arxiv.org/abs/1903.00374
http://arxiv.org/abs/1811.04551
http://arxiv.org/abs/1811.04551
http://arxiv.org/abs/2010.02193
http://arxiv.org/abs/2301.04104
https://gymnasium.farama.org/environments/box2d/car_racing/
https://gymnasium.farama.org/environments/box2d/car_racing/
https://gymnasium.farama.org/environments/box2d/car_racing/
https://doi.org/10.1109/TG.2018.2877047
https://doi.org/10.1038%2Fs41586-020-03157-9
https://doi.org/10.1038%2Fs41586-020-03157-9
https://doi.org/10.1038/s41586-020-03157-9
https://doi.org/10.1038/s41586-020-03157-9
https://doi.org/10.1038%2Fs41586-020-03157-9
https://aicloud-docs.claaudia.aau.dk/overview/
https://aicloud-docs.claaudia.aau.dk/overview/
http://arxiv.org/abs/1702.04649
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/https://doi.org/10.1038/s41586-021-03819-2
http://arxiv.org/abs/2010.11929
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://doi.org/10.48550/ARXIV.1412.6980
http://arxiv.org/abs/1211.5063

Appendix B. World Model Setup

CNN-VAE Setting
Network architecture See Fig. 3
Optimiser Adam [40]
Learning rate 1.0 · 10−3

Number of updates 100
Steps per update 1024
Number of epochs 10
Batch size 32
Loss function BCE loss + KL Divergence, see Eq. (1)
MDN-RNN Setting
Network architecture GRU: 1 h-layer w. size 512
Sequence length 32
Optimiser Adam [40]
Learning rate 1.0 · 10−3

Number of updates 300
Steps per update 1024
Number of epochs 20
Batch size 32
Gradient value clipping 0.5
Number of GMM components 5
Loss function MDN loss + BCE loss, see Eq. (19)

Tab. B.3: World Model setup

Instability Issues

When building the MDN-RNN, we discovered that it is rather
unstable and prone to producing NaN values for two reasons:
An exploding gradient problem [41] with the RNN, and numer-
ical instability issues with the MDN. To address the explod-
ing gradient problem, we added gradient value clipping, such
that the gradients are clipped when they exceed the range [-0.5,
0.5]. To combat the numerical instability issue with the MDN
we have modified how the MDN loss is calculated. We added
a stability parameter, ϵ = 10−5, at log operations, log(x + ϵ),
to prevent taking the log of zero, we added a ReLU function
prior to log operations, to prevent taking the log of a negative
number, and finally, we used the log-sum-exp trick to prevent
numerical overflows when using the exponential function, ex,
with large values of x. For the exact implementation details see
the code provided in section 7.

Alternative MDN-RNN Architecture

Besides the MDN-RNN architecture presented in section 4,
we also tried an alternative MDN-RNN architecture: RNN +
2 FNNs. Here, the RNN receives the the history Ht as input,
and produced the hidden state ht as output. We then separate
the task of predicting the next latent state zt+1 and death pre-
dictions dt+1 into two FNNs, P1(zt+1|ht) and P2(dt+1|ht). This
variant was found to be less successful, as illustrated in the re-
sults in Appendix C.

Appendix C. World Model Results

Avg. loss TP FP PPV TPR FPR TNR F1
1.28 177/279 164/713 51.91 63.44% 23.03% 76.97% 57.10

Tab. C.4: Prediction results of world model with joint loss, eq. (19).

Avg. loss TP FP PPV TPR FPR TNR F1
1.16 134/279 144/713 48.20 48.03% 20.22% 79.78% 48.11

Tab. C.5: Prediction results of world model with only MDN loss, eq. (16).

Avg. loss TP FP PPV TPR FPR TNR F1
1.59 62/279 74/713 45.59 22.22% 10.39% 89.61% 29.88

Tab. C.6: Prediction results of world model with an alternative MDN-RNN
architecture: RNN + 2 FNNs.

All values are averages computed from 10 episodes of 1024
random steps. For death predictions our threshold is set to 0.5.
Meaning, values ≥ 0.5, are classified as deaths, and values be-
low are not. The first column is the average MDN-RNN loss
using Eq. (19). The second column is True Positives (TP).
The third column is False Positives (FP). The fourth column is
the Positive Predictive Value (PPV), which is the proportion of
positive classification that were correct. The fifth column is the
True Positive Rate (TPR), which is the probability of correctly
classifying a true positive. The sixth column is the False Posi-
tive Rate (FPR), which is the probability of wrongly classifying
a true negative. The seventh column is the True Negative Rate
(TNR), which the probability of correctly classifying a true neg-
ative. The eighth column is the F1-score, which is a measure
that combines PPV and TPR into a single metric, with 100 as
the highest score and 0 as the lowest score.

Appendix D. Frozen Lake Visual Example

a. Original b. CNN-VAE Reconstruction

Fig. D.8: Frozen Lake CNN-VAE reconstruction example of a resized 96 × 96
pixel image.

11

Appendix E. Montezuma’s Revenge Visual Examples

a. Original b. CNN-VAE Reconstruction c. MDN-RNN Prediction

Fig. E.9: Five MR examples. All are 96 × 96 pixel images. Due to MR’s relatively deterministic nature, the MDN-RNN predictions are generated using Eq. (18).

12

	Introduction
	Curiosity MCTS
	Learning latent state representations with CNN-VAE
	Curiosity Learning with Random Network Distillation
	Planning with Monte Carlo Tree Search
	Selection
	Evaluation and Expansion
	Backup
	MCTS Policy

	Frozen Lake Experiment
	Setup and Training
	Results

	World Models
	Montezuma's Revenge Experiment
	Training
	Results

	Conclusion and Future Work
	Code Availability
	Curiosity MCTS Setup
	World Model Setup
	World Model Results
	Frozen Lake Visual Example
	Montezuma's Revenge Visual Examples

