
 
 

 
 

  

Are equity returns still predictable? The case of industry 
portfolios and ARIMA models 

 

With the application of the Box-Jenkins methodology  
 
 

 
 
 
 
 

Place of study 
Aalborg University Business School (AAUBS) 

 
Education 

MSc. Finance 10th Semester 
 

Presented by 
Hans Lauge Hagelskjær (20176702) 

 
Supervisor 

Full Professor of Finance, Cesario Mateus  
 

Due Date 
1st of June 2023



 
 

 
 

i  

0.1 Abstract  
The efficient market hypothesis is a fundamental concept in financial economics that suggests 

asset prices fully reflect all available information. As a result, investors cannot consistently achieve 

higher returns than the market average by using historic and publicly available information. 

However, there is ongoing debate about the degree to which markets are efficient and whether it 

is possible to predict asset returns. This thesis contributes to the debate by investigating the weak-

form of efficiency and the relevance of ARIMA models for predicting log returns of self-constructed 

industry portfolios in Sweden. The results indicate a rejection of the weak-form of efficiency for 

industry portfolios in Sweden. This finding suggests that past prices and returns is not fully 

reflected in today’s prices, and that investors may be able to achieve excess returns by using 

historic information in active investment strategies. However, the economic-value add of ARIMA 

models for predicting log returns was found to be inconsistent across industries. This implies that 

the predictability of returns may vary depending on the specific industry or sector being analysed. 

 

These results have significant implications for researchers and professionals interested in the 

predictability of industry returns and market efficiency. By shedding light on the limitations of 

market efficiency and the potential for return predictability in certain industries, this thesis 

contributes to the ongoing debate about the efficiency of financial markets and the potential for 

investors to achieve superior returns through active investment strategies. 

 

Key words: ARIMA, Autoregressive Integrated Moving average, market-efficiency, weak-form, predictability, 

Augmented Dickey fuller test, stationarity, Random walk, Ljung-Box test, autocorrelation. 
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1. Introduction 
 
Asset returns has undergone exhaustive research in recent years for whom the greatest interest 

comes from academics and professionals in the financial industry. The time period applied for this 

study is from in Jan. 2010 to Dec. 2022 for log returns of Swedish industry portfolios. To the best of 

my knowledge this period hasn’t undergone similar research. 

 

The great interest for predictability is due to the consequences of being able to continually make 

economic value-added forecast for investment purposes. The question if asset returns are 

predictable has developed into two main theories. The theory for asset returns to be 

unpredictable is that they follow a random walk, meaning that the behaviour of the returns is 

completely random. This is due to the market being efficient and the impossibility of earning an 

excess return relative to the market return by using historic- or public information for investment 

strategies (Fama, 1995). Originally Eugene Fama (1970) introduced his theory of market efficiency 

stating three levels hereof, for which a common tested form of market efficiency is the weak-form, 

stating all prior historic information can’t be used for earning excess returns1.  

 

The common applied methods in research for testing the validity of the weak-form is the 

Augmented-Dickey Fuller- and Ljung-Box test (Shaker, 2013; Afeef, Ihsan & Zada, 2018; 

Worthington & Higgs, 2003). The null hypothesises for the tests is respectively, that the time series 

of returns follows a random walk and if rejected, then there is significant evidence for the time 

series is stationary and thereby mean-reverting. Whereas if rejecting the null hypothesis for the 

Ljung-Box, then significant evidence for autocorrelation is provided and returns thereby are 

dependent on each other. To the best of my knowledge the most recent study for the Swedish 

market was conducted by Shaker (2013) who found significant evidence for rejecting the null 

hypothesis for both the Augmented Dickey Fuller- and Ljung-Box test for the main index OMXS30. 

Thereby rejecting the validity of the weak-form of efficient market in Sweden, which gives an 

incentive to further study the predictability in the Swedish market.  

 
1 A detailed description of the Efficient Market Hypothesis is provided in section 2.1.1 The Efficient Market Hypothesis.  
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1.1 Swedish Industry Portfolios 
The Swedish stock market is the largest in Scandinavia in terms of the number of listed companies, 

with 1068 investable equities for the period of investigation (see Chapter 4, section 4.1 of the 

present thesis). This provides a rich source of data for statistical analysis and the possibility of 

studying multiple industry portfolios. For this study, a total of five self-constructed industry 

portfolios consisting of 66 companies in total is used. The data collected contains both monthly 

and weekly observations from Jan. 2010 to Dec. 2022 to capture any potential patterns in returns. 

The use of monthly and weekly data has been applied in previous studies, which have similar 

methodology as to this study (Chowdhury, 1999; Frennberg & Hansson, 1993; Kim & Shamsuddin, 

2008; Har, Sundaram & Ong, 2008). 

 

This study opted to construct its own industry portfolios rather than relying on industry indexes, as 

this approach provides greater investability and allows for a more direct comparison of returns 

across industries. By using equal-weighting rather than value-weighted the reflection of the 

idiosyncratic risk of each industry is clearer (Kittsley, 2006). This could become useful for 

professional portfolio managers in enhancing their decision making for purposes such as tactical 

asset allocation. The five industries of interest are Biotechnology, Information Technology, 

Packaged Software, Real Estate Development, and Industrial Machinery2. These industries were 

selected based on their distinct characteristics in terms of idiosyncratic risk. 

 

1.2 Predictability of industry portfolios 
For predicting the returns of the industry portfolios, the Autoregressive Integrated Moving average 

(ARIMA) model is applied. It was presented by George Box and Gwilym Jenkins in 1970 and is a 

study of autocorrelation for a time series, where the dependent- and independent variable is a 

part of the same data generating process (Box, Jenkins, Reinsel & Jung., 2015). For the usage of 

ARIMA models the Box-Jenkins methodology was introduced, which is a 3-step framework for 

model identification, estimation, and diagnostics (Box et al., 2015)3. In time series analysis the 

application of ARIMA is commonly applied across industries and academia for forecasting. Within 

 
2 Further specification and description of the industry portfolios is provided in chapter 4. Data collection. 
3 The Box-Jenkins framework and ARIMA model is respectively specified in section 2.4 Prediction of asset returns and 
3.6 Autoregressive Integrated Moving average model. 
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financial research it has been heavily applied for stock returns for the creation of investment 

strategies and enhancement of decision making. Examples of evidence for predictability using 

ARIMA models is found by Bakar, Rosbi and Uzaki (2018) for Malaysian oil and gas sector, and 

Rounaghi and Zadeh (2016) for stocks on the London Stock Exchange and in the SP500 Index. 

 

1.3 Research questions  
In this thesis, the objective is to investigate the weak-form of market efficiency and predictability 

of self-constructed Swedish industry portfolios using ARIMA models. The research questions are as 

follows: 

 
1) Are the weak-form of market efficiency valid for the log returns of specific industry 

portfolios in Sweden? 

 

2) Are ARIMA models still relevant in predicting the log returns of self-constructed Swedish 

industry portfolios? 

 

To the best of my knowledge prior research about the validity of weak-form market efficiency and 

predictability using ARIMA is highly limited for industry portfolios, while similar studies for main 

indexes has undergone much research. Therefore, the results from this study provides new 

evidence for market efficiency and predictability for the given industries in Sweden. The weak-form 

of market efficiency was rejected for all industry portfolios by using the Augmented Dickey Fuller 

test, therefore significant evidence for rejecting the random walk model is provided, which is in 

support of previous studies conducted for the Swedish market. Regarding the results for the Ljung-

Box test and predictability using ARIMA models, these aren’t homogenous across industries and 

observation frequency. This can be due to the level of homogeneity for companies in each industry 

vary and autocorrelation is less frequent on a weekly and monthly basis.  
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1.4 Thesis structure 
To investigate the research questions and provide the reader with sufficient knowledge of the field 

the following structure of the thesis has been formed. 

 

Chapter 2. Literature review introduces the debate of predictability of asset returns with regard to 

the random walk model and efficient market hypothesis, followed by an introduction to the Box-

Jenkins framework for the application of ARIMA models. 

 

Chapter 3. Methodology explains the concept of stationarity and non-stationarity, including the 

method for testing it, and the importance hereof for a time series when doing ARIMA modelling. 

Besides this the constituents of the ARIMA model are presented, and the goodness of fit 

measurements applied in this study.  

 

Chapter 4. Data collection presents the method used for stock selection for the industry portfolios, 

and a general introduction to each industry. Besides this the method for calculation of portfolio 

returns is presented followed by a section of descriptive statistics.  

 

Chapter 5. Analysis of results presents the findings obtained from the application of the Box-

Jenkins framework in a chronological order of identification, estimation, and diagnostics, followed 

by an evaluation off the model’s forecasting performance. Towards the end of the chapter, a 

summary of the results is provided. This summary consolidates the key findings and highlights the 

main findings drawn from the analysis 

 

Chapter 6. Reflection aims to provide suggestions for future studies and address the limitations of 

this study. It discusses the applicability of the results in future research, highlighting potential 

implementations to the methodology. 

 

Chapter 7. Conclusion applies the results of this study to synthesize the findings and their 

implications, providing a conclusive response to the research question and highlighting the study's 

contributions. 
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2. Literature review 
 
This chapter introduces the existing literature about the predictability of asset returns and how 

this relies to the efficient market hypothesis, while bringing an in-depth overview of the studies of 

market efficiency in Sweden. Hereafter the concept of mean reversion and relevant studies in 

financial academia for ARIMA models is introduced, as well as the methodology of constructing 

this econometric model using stock returns.  

 

2.1 The predictability of asset returns 

Market participants have endeavoured to predict the fluctuations of stock prices through a variety 

of methods. The methods have ranged from analysing financial reports and estimating intrinsic 

values of stocks to applying technical analysis to identify price patterns (Fama, 1995). In academia, 

the predictability of asset returns has led to the development of several quantitative models, 

where this study applies the ARIMA model. To understand the reason for why stock prices can be 

predicted the efficient markets hypothesis originated, stating predictability depends upon the 

market efficiency.  

 

2.1.1 The Efficient Market Hypothesis  
 In 1970 Eugene Fama published the paper Efficient capital markets: A review of theory and 

empirical work, where he presents his theory of the efficient market hypothesis (EMH), which tries 

to explain different levels of efficiency dependent upon the information priced into the market, 

and how come prices can deviate from an equilibrium. This resulted in the introduction of three 

forms of market efficiency namely.  

 

• The weak-form of market efficiency states that all historic price data is reflected in current 

prices, therefore investment strategies incorporating this wouldn’t be beneficent.  

• The semi-strong form states that all public information available is reflected in the market 

prices and assumes that all new information released to the public quickly will be priced 

correctly. Thereby any investment strategy using fundamental analysis wouldn’t be 

beneficiary.  
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• The strong-form states that all insider information is efficiently priced into the market, and 

thereby insiders having monopoly on their information would not be able to generate 

excess returns on behalf of this (Fama, 1970).  

 

The origin of the EMH is due to the random walk model. According to Fama the random walk 

model was part of the idea of financial markets being a “fair game”, and equivalent to a coin-flip 

contest, where the outcome is random. Though non sought to find the rationale of the 

randomness, which his EMH was set to explain (Fama, 1970;1995). 

 

Prior research has found evidence for multiple anomalies to the efficient market hypothesis, which 

contradicts that markets are efficient. For example, Wu and Mazouz (2016) who found significant 

evidence for industry reversals for the UK markets using monthly and daily data from Jan. 1970 to 

Dec. 2011. The results indicate losing industries outperforms winning industries in the following 

five years, and that industry reversals are robust through good- and bad periods of the economy.  

These results were based upon the methodology introduced by Fama and French (1993) with the 

applications of factors using multiple linear regression. In the same article Fama and French found 

evidence for size- and value effects could explain stock returns.   

 

 For evaluating market efficiency, time series analysis is a commonly applied method for testing the 

weak- and semi-strong form. The weak-form is tested for significant evidence against the random 

walk model using the Augmented Dickey-Fuller test, and the Ljung-Box test for autocorrelation in 

the time series of returns4. The semi-strong form is tested using event studies of news releases, 

while the strong form of efficiency shall be viewed as a theoretical benchmark of market efficiency 

(Fama, 1995).  In this study, the is focus on testing the weak-form of market efficiency and 

therefore the application of ARIMA models for prediction is appropriate. 

 

2.1.2 Prior research about market efficiency in Sweden 
To the best of my knowledge, the most comprehensive studies for testing the weak-form of 

efficiency in the Swedish market are shown in table 1. A study by Jennergren and Korsvold (1974) 

 
4 The tests are further explained in section 2.2.1 Testing for random walk and 3.8 Ljung-Box test respectively.  
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tested 30 stocks on the Swedish exchange from 1967-1971 using daily closing prices and their log 

returns. Their study found evidence for rejecting the weak-form of market efficiency due to  

autocorrelation in the returns, but proposed others to test if the significance of continuous 

abnormal returns could be obtained, in order to verify the rejection of the weak-form of efficiency. 

The study by Frennberg and Hansson (1993) applied the Variance Ratio test and Autoregressive 

model test on their data consisting of monthly real- and excess return data from 1919-1990 for a 

Value-weighted Swedish stock index. Their findings rejected the weak-form of efficiency in Sweden 

and found short term autocorrelation with a maximum of twelve months, and negative auto 

correlation on longer horizons, but insignificant within the 5% level for the latter. A more recent 

study was conducted by Shaker (2013), where he used the Ljung-Box-, Augmented Dickey-Fuller-, 

and Variance Ratio test for the log returns of daily price data for the main index OMXS30. In the 

article significant evidence is found for autocorrelation at the 1% significance level for the first 10 

lags (Shaker, 2013). Besides this evidence is found for rejecting the weak-form of market efficiency 

according to the Augmented Dickey-Fuller test, which is supported by the results from the Variance 

Ratio test.  

 

Table 1: Summary of EMH literature for Sweden 

 

From previous studies in Sweden there is significant evidence for autocorrelation and stationarity 

in asset returns using historic price data. Therefore, all studies in Table 1 provides evidence for 

rejection of the random walk model and weak-form of efficiency. 

 

2.2 Random walk model & White Noise 

The Random walk model assumes stock prices are in equilibrium implying historic- and public 

information is priced into the market efficiently. This means the current market price is the best 

estimate of a stocks fair value, and deviations is due to market participants with different strategies 

Jennergren and Korsvold 

(1974)

Frennberg and Hansson 

(1993)
 Shaker (2013)

Sample 30 single stocks Main index Main index

Time period 1967-1971 1919-1990 2003-2013

Frequency Daily Monthly Daily 
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will move the prices randomly (Fama, 1995). Different random walk models have evolved through 

time. 

 

One such model is the The Martin Gale model Originated in the 15th century from Girolamo 

Gardano an Italian mathematician, who inspired by the theory of gambling proposed the principle 

of equal conditions for all participants in order for a game to be fair (Campell, Lo & MacKinlay, 

1997). Therefore, the process of the game inherently must be a stochastic process defined in 

equation 1. 

 

                                                                𝐸[𝑃𝑡+1 | 𝑃𝑡 , 𝑃𝑡−1 , … , 𝑃𝑡−𝑘] = 𝑃𝑡                                            (1)

  

In equation 1, P represents the price of an asset and t denotes the time of today whereas 𝑃𝑡−1 is 

price at the time of the previous observation i.e., last month for a monthly series (Campell et al., 

1997). Equation 1 shows that the best prediction for the price at time 𝑡 + 1  is the price at time 𝑡, 

therefore its current price. This is commonly referred to as the Martingale property. This implies 

market participants applying linear econometric models doesn’t a gain sustainable advantage 

(Campell et al., 1997).  

 

Another model is the Random Walk with a drift, which is similar to the Martingale model, though 

with the application of a drift 𝜇 and underlying assumptions of the error terms 𝜀𝑗 having a zero 

mean and nonzero variance. The model is defined in equation 2: 

 

𝑃𝑡 = 𝜇 + 𝑃𝑡−1  + 𝜀𝑡 ,     𝜀𝑗~𝑊𝑁(0, 𝜎2) (2) 

 

The random walk model is a stochastic process meaning the series is random, since the error term 

is assumed to be white noise (Tsay, 2005). In practice the randomness of asset returns is depended 

upon the efficiency of the market according to the EMH. For determining if the log returns follow a 

random walk the Augmented Dickey-Fuller (ADF) test is applied. Shaker (2013) applied the ADF-

test to a series of the OMXS30 and found significant evidence for rejecting the null hypothesis. A 

rejection of the null hypothesis indicates stationarity and thereby the series to be mean reverting. 
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A White Noise process is a time series process where the returns are identically distributed and 

independent meaning the variance and mean are constant and the series are uncorrelated, 

therefore linear models can’t help in predicting future returns. The returns are thereby described 

as 𝑟𝑡 = 𝜀𝑡 ,    𝜀𝑡~𝑊𝑁(0, 𝜎2), where 𝜀𝑡 has a zero-mean, constant variance and the series is 

uncorrelated (Tsay, 2005). The series is stationary, but unpredictable using a linear model like 

ARIMA. The Ljung-Box test described in section 3.8 is commonly applied for testing a series for 

white noise behaviour. A White Noise series though can have non-linear dependence between 

observations.  

 

2.2.1 Testing for random walk 
For testing if asset returns follow a random walk the ADF test is applied. The regression formula in 

the ADF test is defined in equation 3. Where ∆𝑃𝑡 presents the change at time t, which for this 

study is the percentage change of the log price. Whereas gamma γ presents the presence of a 

unit-root in the time series (Tsay, 2005). 

∆𝑃𝑡 = 𝜙0 + 𝛾𝑃𝑡−1 + ∑ 𝜙𝑖∆𝑃𝑡−𝑖 + 𝜖𝑡

𝑝

𝑖=1

,     𝜖𝑡~𝑊𝑁(0, 𝜎2) (3) 

The hypothesis of the test is:  

 

𝐻0 ∶  𝛾 = 0 

𝐻𝑎 ∶  𝛾 < 0 

 

Under the null hypothesis the time series follows a random walk. The test performs a t-statistic for 

𝛾 = 0 which is evaluated on the Dickey-Fuller distribution. One should reject the null, when the t-

statistics is below the critical value of the Dickey-Fuller distribution on the chosen significance 

level (Tsay, 2005). If the null is rejected it’s due to statistical evidence for the time series to be 

stationary, meaning the properties of the series is constant through time and mean reverting 

(Tsay, 2005).  
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2.3 Econometrics and mean reversion 

The predictability of asset returns has been subject to extensive research, including the analysis 

and forecasting of time series of asset returns. In this thesis the linear regression model Auto 

Regressive Integrated Moving Average (ARIMA) is applied. The constituent of the model is the 

Autoregressive (AR) parameter with lag p, Integrated is the number of times the series has been 

differenced d to obtain stationarity, and the Moving Average with lag q is the number of lags for 

previous forecasting errors. The notation of ARIMA models is that an ARIMA (1,0,0) is equal to an 

ARMA(1,0) and AR(1) model. Going forward the terms ARIMA, ARMA, AR, and MA is going to be 

used interchangeably5.  

 

Hybrid models that incorporate both linear and nonlinear processes in a time series for returns 

have been developed, such as Hidden Markov Models, Artificial Neural Networks, and Genetic 

Algorithms, limitations of these models exist due to the lack of consistent methods for identifying 

changes in the time series between linearity and nonlinearity (Dong, Guo & Hu, 2020; Hassan, 

Nath & Kirley, 2007). The ARIMA model, remains a highly regarded model and is still widely applied 

in academic research about predictability of stock returns. For instance, the previous named 

studies of Bakar et al. (2018) and Rounaghi et al. (2016), but also the studies of Ariyo, Adewumi 

and Ayo (2014) and Affef, Ihsan and Zada (2018) for whom both studies found ARMIA models to 

have predictive power for stock returns.   

 

2.3.1 The concept of mean reversion 
The concept of mean reversion has a long history and has been applied in various contexts beyond 

financial academia. To the best of my knowledge Sir Francis Galton was the who first introduced 

the idea in 1886 when he observed that the height of children tended to revert towards an 

average, even when their parents were abnormally tall or short (Galton, 1886). In the world of 

finance, studies have investigated the effect of mean reversion in different situations and asset 

classes, with varying methods and objectives.  

 

 
5 Further specification for constituents and complete model is provided in section 3.6 Autoregressive Integrated 
Moving average model 
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One area of interest is asset allocation for investors. If asset prices followed a random walk model, 

there would be no incentive for investors to actively change their allocation. However, if asset 

returns reverted towards a fundamental value equivalent to a monthly or yearly expected return, 

investors would have incentives to adjust their portfolios. 

 

Jaggia and Thosar (2005) studied the effect of mean reversion in a multiple asset portfolio 

consisting of large cap US stocks and T-bills. They found that, for an investment horizon of six years, 

it was beneficial to overweight equities for four years followed by a decrease in equity exposure 

for the remaining two years. This suggestion was made relative to a buy-and-hold strategy and 

tested on an autocorrelated sample and one that followed a random walk model (Jaggia & Thosar, 

2005). It should be noted that the same suggestion clearly would not be advantageous if the time 

series followed a random walk model. Though the study found the strength of the reversion as 

weak, which according to the article should be expected, since otherwise market participants 

would quickly exploit the strong predictability of the asset returns (Jaggia & Thosar, 2005).  

 

Another usage of mean reversion for investment strategies applies different market ratios for 

deciding whether a stock could be regarded as cheap or expensive. A method of the famous 

investor Benjamin Graham had a mean reverting characteristic, because of his focus towards 

stocks with low P/E ratios. This was due to his conviction that stocks with low multiples should 

revert towards a normalized level (Bondt and Thaler, 1989). A study of the P/E ratio for the SP500 

index was made by Becker, Lee and Gup (2012), finding evidence for the P/E ratio to be a stationary 

process when allowing for structural breaks. Their study consisted of 100 years of monthly P/E 

observations for the SP500, where they for the whole period found evidence for a non-stationary 

process, but by using the unit-root test with Fourier function originally suggested by Enders and 

Lee (2004), which allows for structural breaks in the time series. It was shown that structural 

changes had provoked non-stationarity. After allowing for structural changes the P/E was a 

stationary process under 3.7 cycles averaging at 33 years (Becker et al. 2012). A similar study by 

Sauer and Chen (1996) have found mean reversion of stock prices to be a phenomenon of the pre-

war era for UK-listed companies. 
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Another study examining mean reversion was conducted by Akarim and Sevim (2013), who aimed 

to test the market efficiency of 18 emerging markets between 1995 and 2010 using a mean 

reversion model for monthly data. The study found evidence for mean reversion in all countries. 

(Akarim & Sevim, 2013).  

 

The concept of mean reversion is relevant for this thesis, since stationarity is required for making 

ARIMA models. Therefore, the null hypothesis of the ADF test must be rejected prior to model 

identification, and differencing can be applied to enhance stationarity. Differencing is done by 

subtracting the series such as ∆𝑟𝑡 = 𝑟𝑡 − 𝑟𝑡−1 for a series of returns. In addition to using ARIMA 

models, the variance ratio test has also been commonly applied to test for market efficiency and 

whether a time series of returns has a mean-reverting behaviour. The test was originally 

introduced by Lo and MacKinlay (1988) and has been widely used in academic research by Poterba 

and Summers (1988), Shaker (2013), Frennberg and Hansson (1993) etc. In simple terms, the 

variance ratio test has a null hypothesis stating that the autocorrelation of the time series is equal 

to zero and therefore uncorrelated (Charles & Darné, 2009). 

 

2.4 Prediction of asset returns 
In academia, multiple methods have evolved for forecasting returns, such as factor investing 

introduced by Fama and French (1993) have shown evidence for explanatory power for factors 

being proxies for value- and small cap companies, while in time series analysis ARIMA is highly 

regarded and commonly applied for forecasting. For this study ARIMA is the appropriate model for 

forecasting returns since prior research have found evidence for rejecting the weak-form of 

efficiency in Sweden due to stationarity and autocorrelation. The steps for fitting an ARIMA model 

to a time series were put into a framework by Box et al. (2015), where the iterative steps of the 

model fit can be defined as follows. 

 

1) Identification: The objective is to identify appropriate ARIMA models for a time series. 

Though first the series is tested for stationarity using the ADF test. If evidence is against 

rejecting the null hypothesis for non-stationarity, then it’s recommended to difference the 

series. But over-differencing can cause false autocorrelation. For determining a qualified 

order for the number of lags for AR(p) and MA(q), the autocorrelation and partial 
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autocorrelation function is used, since plotting these as correlograms can indicate the 

number of significant lags (Box et al., 2015). Besides applying correlograms the Akaike 

Information Criterion (AIC) presented by Akaike (1974a) shall be used. According to Box et 

al. (2015) and Tsay (2005) AIC is a supplementary tool in the identification phase, while for 

Mondal et al. (2014) a primary tool for model identification. The usage of AIC for model 

selection is also recommended by Dong, Guo and Reichgelt (2020). Using an information 

criterion for model identification and selection yields the possibility of doing parameter 

estimation of numerous models and further specify those with the greatest fit. 

2) Estimation: Involves the usage of Maximum Likelihood to estimate the parameter values of 

the selected models. This means fitting the identified models with their given number of 

lags to the time series. As stated by Box et al. (2015) the identification and estimation stage 

are highly similar. In the context of this thesis the ARIMA models will be fitted and selected 

according to the identified models by AIC and correlograms.  

3) Diagnostics: Concerns the evaluation of the fitted models to the time series and ultimately 

decide its adequacy, as Box et. al describe “All models are approximations and no model 

form can ever represent the truth absolutely” (Box et al., 2015, p. 285). The overall 

objective is to find models, which have evidence for being the best representation of the 

given time series. By estimating the parameters using Maximum Likelihood the residuals 

become the object of investigation in the diagnostics phase. The residuals should first be 

investigated for any patterns using ACF and PACF correlograms. Besides this the residuals 

are investigated for autocorrelation using the Ljung-Box test, which Box et al. (2015) 

recommends. The null hypothesis states there is no significant evidence for joint 

autocorrelation in the sample, meaning if the null fails to be rejected the model captures all 

the autocorrelation in the time series. Though if one rejects the null additional the model 

needs additional lags. 

 

After estimation the models is diagnosed and redefined if necessary. Hereafter a forecast through 

the period Jan. 2020 to Dec. 2022 is made, where goodness of fit measurements is applied for 

model evaluation.  
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3. Methodology 
 
The methodology applied in this thesis follows the approach of the Box-Jenkins framework, which 

was described in the literature review section in 2.4. This chapter aims to introduce the theoretical 

methods and concepts applied in this study with regard to calculation of returns, identification-, 

estimation- and diagnostics of ARIMA models, and out-of-sample 1-step ahead forecast.  

 

3.1 Simple returns 
Financial assets such as stocks and bonds are quoted in markets by their price, but when doing 

statistical analysis, the usage of prices can lead to spurious models. The simple return is the 

percentage return commonly shown by brokers and defined in equation 4. 

 

𝑅𝑡 =
𝑃𝑡

𝑃𝑡−1
=

𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1
(4) 

 

For a period consisting of multiple observations the simple return equals: 

 

𝑅𝑡 =
𝑃𝑡

𝑃𝑡−𝑘
− 1 =

𝑃𝑡 − 𝑃𝑡−𝑘

𝑃𝑡−𝑘
(5) 

 

In the above formulas 𝑅𝑡 is the simple return for a period. 𝑃𝑡 is the price at time t and 𝑃𝑡−1 and 

𝑃𝑡−𝑘  is respectively the price at time t-1 or t-k (Tsay, 2005). Though for statistical analysis log 

returns has attractive properties, and multiple of the referenced papers from the literature review 

applies this. 

 

3.2 Log returns 
In timeseries literature, log returns are preferred over simple returns when working with time 

series models. The equation for log returns is defined as: 

 

ln(𝑟𝑡) = ln (
𝑃𝑡

𝑃𝑡−1
) = ln(𝑃𝑡) − ln (𝑃𝑡−1) (6) 
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In equation 6 𝑃𝑡 is the price at time t, the denominator presents the price at the previous 

observation, and ln(𝑟𝑡) is the log return at time t. Additionally, log returns tend to have a 

symmetric distribution around zero, making them more suitable for statistical analysis relative to 

simple returns (Tsay, 2005). The relationship between log- and simple returns can be summarized 

as: 

 

ln(𝑟𝑡) = ln(1 + 𝑅𝑡) ,                 𝑅𝑡 = 𝑒𝑟𝑡 − 1 (7 & 8) 

 

The property of log returns ultimately is of greatest use when working with time series models, 

and therefore it’s commonly used in academia for time series analysis (Tsay, 2005). Log returns 

can be regarded as the first difference of a log price series as shown in equation 6, and often 

makes the time series stationary (Tsay, 2005). 

 

3.3 Stationarity 
Time series processes can be defined as strictly-, weakly- or nonstationary. A strictly stationary 

time series is defined by the joint distribution the time series is constant through time, whereas 

weakly stationarity is defined by: 

 

 1)The mean of the process is time invariant such that 𝐸(𝑟𝑇) = 𝜇 

2)The variance of the process is time invariant and non-zero: Var(𝑟𝑡) = 𝜎2,  

3)The covariance is a function of the lagged distance between the return of 𝑟𝑡 and ,k and thereby 

not dependent on time t such that 𝐶𝑜𝑣(𝑟𝑡 , 𝑟𝑡−𝑘) = 𝛾𝑘  (Tsay, 2005).  

 

These three properties of a timeseries must be valid before identifying lags to the ARIMA model 

according to the Box-Jenkins methodology. Generally, time series of raw macroeconomic data such 

as for the unemployment rate, consumer price index, GDP growth or stock prices doesn’t have the 

properties of strict- or weak stationarity therefore data is converted to log returns or differencing 

of the time series is applied to stabilize the series for trends and seasonality (Tsay, 2005). A 

stationary time series has mean reverting behaviour towards the unconditional mean of the 

process. The test for stationarity is the described ADF test from section 2.2.1 in the literature 

review. 
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3.4 Unit-root nonstationary 
A unit-root nonstationary process is a stochastic time series characterized by having means and 

variance that are time dependent, and the future value of the process is unpredictable (Tsay, 

2005). The common example for a unit-root nonstationary process is the Random Walk model 

without a drift defined in equation 9. 

 

𝑃𝑡 = 𝑃0 + ∑ 𝜀𝑡

𝑡

𝑖=1

,       𝜀𝑡~𝑊𝑁(0, 𝜎2) (9) 

 

Where the price 𝑃𝑡 is the price a time t and defined as the sum of 𝑃0 + ∑ 𝜀𝑡
𝑡
𝑖=1 , where 𝜀𝑡 is a white 

noise process (Box et al., 2015). Hereby the series doesn’t have a long-term fixed value. Due to the 

properties of a unit-root nonstationary time series, which is common for price data it’s not 

appropriate for ARIMA modelling and forecasting. 

 

According to the Box-Jenkins methodology a time series must be differenced until stationarity. 

Generally, the methodology states the amount of differencing d should not exceed more than two, 

since over differencing would provoke additional autocorrelation and the number of 

Autoregressive- and Moving average lags would increase making the model unnecessary complex 

(Box et al., 2015). Though the usage of log returns generally makes financial data stationary (Tsay, 

2005).  

 

3.5 Autocorrelation Function (ACF) & Partial Autocorrelation Function (PACF) 
As mentioned in the literature review the method of identifying ARIMA models implies the usage 

of the ACF and PACF correlograms. The general formula for estimating the correlation coefficient 

at lag-l is shown in equation 10 for a weakly stationary process. 

 

𝜌𝑙 =
𝐶𝑜𝑣(𝑟𝑡 , 𝑟𝑡−𝑙)

√𝑉𝑎𝑟(𝑟𝑡)𝑉𝑎𝑟(𝑟𝑡−𝑙)
=  

𝐶𝑜𝑣(𝑟𝑡 , 𝑟𝑡−𝑙)

√𝑉𝑎𝑟(𝑟𝑡)
(10) 

 

The correlation relationship between variables can range between -1≤ to ≤ 1 and captures the 

linear dependence (Tsay, 2005). If the estimated value is equal to -1 the relationship is said to be 
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perfectly uncorrelated, if the correlation coefficient is equal to zero a correlation effect is non-

existing, while if equal to 1 the variables are perfectly correlated (Tsay, 2005). For a data sample 

the estimated autocorrelation for lag-l becomes: 

 

�̂�𝑙 =
∑ (𝑟𝑡 − �̅�)(𝑟𝑡−𝑙 − �̅�)𝑇

𝑡=𝑙+1

√ ∑ (𝑟𝑡−𝑙 − �̅�)2𝑇
𝑡=1 

(11) 

 

In equation 11  �̅� represents the sample mean for the given time series, while 𝑟𝑡−𝑙 and 𝑟𝑡 is the log 

return at time t and 𝑡 − 𝑙, and �̂�𝑙  is the estimated correlation coefficient (Tsay, 2005). The 

correlation between 𝑟𝑡 and 𝑟𝑡−𝑙  is of great interest in time series analysis, since if estimated 

positive a positive return yesterday will on average be followed by a positive return today (Tsay, 

2005). The question of interest hereafter becomes, how does one identify a statistically significant 

autocorrelation in a time series, and how can one model it?  

 

For model identification the answer is correlograms, where the ACF shows the correlation 

coefficient between 𝑟𝑡 and 𝑟𝑡−ℓ, whereas the PACF shows the correlation coefficient between 𝑟𝑡 

and 𝑟𝑡−ℓ, while removing the effect of intermediate lags (Box et al., 2015). The correlograms is 

appropriate for identification of trends, seasonality, and the number of potential lags in the 

model. The significance lines indicates that correlation coefficients falling outside the lines are 

significant. A significance level at the 95% level is presented in equation 12. 

 

[
−1,96

√𝑛
 ,

1,96

√𝑛
] (12) 

 

In the above formula 𝑛 represents the number of observations in the data sample. For a series to 

be white noise, then at all lags the correlation coefficients should be close to zero and therefore 

within the lines. Following parameter estimation, a correlogram of the residuals should be plotted, 

and analysed to identify misspecifications. The usage of correlograms ultimately is a critical way 

when inspecting time series and evaluating model fits, which according to Box et al. (2015) can’t 

be substituted by statistical test.  
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3.6 Autoregressive Integrated Moving average model 
As presented in the introduction the second research question regards the predictability of 

industry portfolios using ARIMA. The aim is to find an ARIMA model describing the time series 

most accurately.  

 

3.6.1 Autoregressive model 
The Autoregressive model denoted as AR(p), whereas p is the number of lags. This model assumes 

linearity between the return of today 𝑟𝑡 the dependent variable, and previous returns 𝑟𝑡−1 and 

𝑟𝑡−𝑘  the independent variables. The parameter coefficient is named phi 𝜙𝑘, and when the total 

absolute values of the parameters are <1 the process is mean reverting (Tsay, 2005). A generalized 

AR(p) model is presented in equation 13. 

 

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 + ⋯ + 𝜙𝑘𝑟𝑡−𝑘 + 𝜀𝑡 ,        𝜀𝑡~𝑊𝑁(0, 𝜎2) (13) 

 

As the above formula describes 𝑟𝑡 is a function of previous log returns (Tsay, 2005). In the model 

it’s assumed 𝜀𝑡 is white noise process with a zero mean and a variance. For an AR(p) model it’s 

assumed the log return of the time series has an expected value in the long run, which is defined 

as: 

 

𝐸(𝑟𝑡) =
𝜙0

1 − 𝜙1 − ⋯ − 𝜙𝑃

(14) 

 

In the above equation 𝜙0 is the constant of the process and 𝜙1 − ⋯ − 𝜙𝑃 is the estimated 

Autoregressive lags of the model (Tsay, 2005). 

 

3.6.2 Moving average model 
The Moving Average model denoted MA(q) where q is the number of lags, assume a linear 

relationship between 𝑟𝑡 the past error terms of the series. This indicates 𝑟𝑡 being predictable by 

the historic forecasting errors, and the parameter 𝜃𝑘  can be interpreted as an error correction to 

the previous errors of (Tsay, 2005). The MA(q) model is defined in equation 15. 
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𝑟𝑡 = 𝑐0 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑘𝜀𝑡−𝑘 ,       𝜀𝑡~𝑊𝑁(0, 𝜎2) (15) 

 

The unconditional mean of the MA(q) models is 𝐸(𝑟𝑡) = 𝑐0 (Tsay, 2005). Though some time series 

processes are complex and thereby require a combination of the AR and MA models. 

 

3.6.3 The combined ARIMA model 

The combined model of AR(p) and MA(q) is denoted as ARIMA(p,d,q), where I stand for Integrated, 

and the number of differencing’s used to achieve stationarity. An ARIMA (p,d,q) is defined as: 

 

𝑟𝑡 = 𝜙0 + ∑ 𝜙𝑖𝑟𝑡−𝑖 + 𝜀𝑡 − ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

,

𝑝

𝑖=1

    𝜀𝑡~𝑊𝑁(0, 𝜎2). (16) 

     

The above definition of the general ARIMA(p,d,q) conditions that the parameters of the model is 

<0. Besides this the property of the unconditional mean is similar to the one of AR models in 

equation 14 (Tsay, 2005). When performing identification of AR, MA or ARMA models AIC and 

visual analysis of the correlograms of ACF and PACF is used. The latter is an indispensable part of 

the model identification and diagnostics part (Box et al., 2015).  

 

For estimation of the parameters the Maximum-Likelihood method is applied, thereby the 

estimated parameters are obtained by maximizing the likelihood function to obtain the best fit 

between the identified model and the observed data. The Maximum Likelihood approach aims to 

find the parameter estimate that make the observed data most likely to occur based on the 

identified model structure  (Tsay, 2005). 

 

3.6.4 Forecasting 
There are multiple methods for forecasting returns for an ARIMA model. In this thesis the method 

applied is the one-step a head forecast with an expanding window. This is chosen contrary to the 

multiple steps ahead forecast, because of the quality of the predictions increases when allowing 

the model to forecast using the latest observations in the period, and reestimate the parameters 
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as estimation sample increases. The equation for the one-step ahead forecast for an ARMA (1,1) is 

defined in equation 17. 

 

�̂�𝑡+1 =  𝜙0 + 𝜙1𝑡
𝑟𝑡 + 𝜃1𝜀�̂� (17) 

(Tsay, 2005)  

 

3.7 Akaike information criterion  
As part of identifying the best fitting ARIMA model to a time series Akaike Information criterion 

(AIC) is applied. For model identification AIC is often referred to as a complementary use as 

described in chapter two regarding the Box-Jenkins methodology. AIC is defined as: 

 

𝐴𝐼𝐶 =
−2

𝑛
ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) +

2

𝑛
∗ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) (18) 

 

In equation 18 𝑛 is the sample size of the estimation period, and ln(likelihood) is the log likelihood 

of the given model (Tsay, 2005).  In equation 20 it’s presented there is an allowance for 

insignificant parameters, and a penalization of additional model complexity. The selection rule for 

AIC is to select the model with the lowest value, since the estimate of the equation is the relative 

information lost by a model (Wooldridge, 2015). As described in the literature review AIC is 

recommend as tool for model identification in time series analysis for financial data (Mondal et al., 

2014; Tsay, 2005; and Dong et al., 2015). AIC as a selection criterion allows for estimating multiple 

models efficiently, though with constraints regarding a maximum lag order of five for both AR and 

MA lags with, since over specifying is to be avoided (Box et al., 2015). 

 

3.8 Ljung-Box test 
To test for jointly significant autocorrelation in a timeseries the Ljung-Box test is applied, because 

of its usage in prior research articles with similar objectives and methodology. The test is defined 

in equation 19. 

 

𝑄(𝑚) = 𝑁(𝑁 + 2) ∑
�̂�ℓ

2

𝑁 − ℓ

𝑚

ℓ=1

(19) 
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The Ljung-Box test applies a chi-squared distribution, and the hypothesis for the test  is defined as: 

 

 𝐻0 ∶  𝜌1 = ⋯ = 𝜌𝑚 = 0 

𝐻𝑎 ∶  𝜌𝑖 ≠ 0 

 

In the Ljung-Box test the null hypothesis is rejected if Q(m) > 𝑋𝑎
2 (Tsay, 2005). Though with the 

application of statistical software the p-value for Q(m) is provided and is rejected if below the 

chosen significance level. In equation 21 𝑚 is the degrees of freedom, N the number of 

observations, and the test squares the autocorrelation for a given number of lags  ℓ (Tsay, 2005).  

The Ljung-Box test is applied for diagnostics in the Box-Jenkins methodology. In the literature 

review the study by Shaker (2013) tested the efficiency of the Swedish market using the Ljung-Box 

on a daily time series of the OMXS30. Generally, the test is applied in time series to the residuals 

of a model for evaluating misspecification, since if autocorrelation is identified in the residuals the 

model is not capturing all past information.  

 

3.9 Goodness of fit 
AIC is applied for both model identification and as a measure for goodness of fit. Besides this 

visual analysis of the ACF and PACF correlogram’s of the residuals is necessary when evaluating  

model fit to a timeseries. Other than that, the following measurements shall be used to evaluate 

the models on behalf of the forecasted results (Box et al., 2015). 

 

The Root Mean Squared Error (RMSE) is the standard deviation of the prediction errors, which is 

the forecasted log return subtracted by the actual log return for that period. RMSE is defined in 

equation 20: 

𝑅𝑀𝑆𝐸 = √∑
(𝑟�̂� − 𝑟𝑖)2

𝑛

𝑛

𝑖=1

     (20) 
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In equation 22 𝑟�̂� represents the predicted value of r, and n is the total number of observations. 

The squared values turn negative values into positive, which ultimately makes the method great 

for forecasts with outliers (Wooldridge, 2015).  

The last method for evaluating the goodness of fit, is the Mean Absolute Error (MAE) which 

estimates the actual average difference between the predicted values from the models and the 

actual values observed values. The method is defined as: 

 

𝑀𝐴𝐸 =
1

𝑛
 ∑|𝑟𝑖 − 𝑟�̂� |

𝑛

𝑖=1

 (21) 

 

As above 𝑟�̂� presents the predicted value at time. MAE indicates the average magnitude of errors in 

the predictions, and a low MAE indicates the predicted values are closed to the actual data 

(Wooldridge, 2015).  
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4. Data collection  

 
This section explains the data used for this study with regard to the specific industries and the 

method applied to create the Swedish industry portfolios.  

 

4.1 Stock selection 
The companies for the industry portfolios have been found using FactSet’s universal stock 

screener function where the following criterions was sat: 1) The stocks had to be listed on the 

Swedish exchange, 2) Be common stock like the criteria of Wu et al. (2016), 3) Have a closing price 

in the time frame of the 1st of January 2010 until 31st December 2022. The reasoning for stocks 

had to be listed during this timeframe is due to the avoidance of survivorship bias. This is valid 

because of the allowance to be listed or delisted during the period, and by randomly picking stocks 

from the investment universe.  

 

Figure 1: Figure of forecasting- and estimation period 

 

 

 

 

Setting these criteria’s, the total investment universe was constituted of 1.068 stocks before 

industry selection. The price data retrieved is closing prices on the last day of the month and 

closing prices on Fridays for weekly data. Using monthly and weekly data is similar to Mondal et al. 

(2014), Kim and Shamsuddin (2015), and Lo and MacKinlay (1988). The data is corrected for 

dividends and stock splits and represents the total returns. Five FactSet industries was chosen for 

this study after setting the above constraints. These was chosen due to their industry idiosyncratic 

risk is different.  

 

Biotechnology 

Biotechnology is an industry that involves the use of biological organism to create new products 

and technologies. This industry is primarily driven by research and development efforts for the 

specific company. The biotech industry includes companies that are engaged in the development 

Jan. 2010 - Dec. 2019 
Estimation  

Jan. 2020 - Dec. 
2022 

Forecast 
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of drugs, diagnostics, and medical devices (Investopedia.com). Biotech companies typically 

operate in a high-risk, high-reward environment due to the long development timelines and 

regulatory hurdles associated with their products, this implies a high level of company specific risk. 

The number of stock available was 48 during the whole period. 

 

Information Technology Services 

The information technology services industry includes companies that provide hardware, 

software, and services related to computing and telecommunications etc. Information technology 

companies operate in a variety of sectors, including healthcare, finance, and consumer goods 

(Statista.com). The differentiation of the companies can therefore vary. The number of stocks 

available was 62 during the whole period. 

 

Packaged Software 

The Packaged Software industry involves the development and sale of software packages. These 

packages can include accounting-, data structuring-, and gaming software therefore the 

homogeneity of the companies vary with regard to end customers and general market. The 

number of stocks available for the whole period was 154.  

 

Real Estate Development  

Real estate development involves the construction and sale of residential-, commercial-, and 

industrial properties. This industry is cyclical and is heavily influenced by macroeconomic factors 

such as interest rates (CFAinstitue.com). Real estate development is often considered a stable and 

profitable industry with steady cashflows. The number of stocks available was 143 for the whole 

period. 

 

Industrial Machinery  

The Industrial Machinery industry involves the manufacturing and sale of equipment and 

machinery used in a variety of sectors such as agriculture, construction, and manufacturing. The 

industrial machinery industry is influenced by the general economy, though the differentiation of 

the companies also is high. The number of stocks available for the whole period was 64. 
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Stocks were randomly picked after filtering for each industry at a time. The stock for each portfolio 

is listed in table 1 in appendix A. The sample consist of a total of 780 monthly and 3.385 weekly 

observations.  

 

4.2 Portfolio construction 
After the collection of price data, the industry portfolios were constructed as equally-weighted 

and rebalanced at the beginning of every year. For calculation of the portfolio value the following 

formula was used: 

 

𝑝𝑣 = 𝑛𝑖𝑡
· 𝑝𝑖𝑡

+ 𝑛𝑘𝑡
· 𝑝𝑘𝑡

, … , 𝑛𝑝𝑡
· 𝑝𝑝𝑡

(22) 

 

 The value of a portfolio 𝑝𝑣 is defined by the stock prices 𝑝𝑖,𝑘,𝑝,𝑡
 and number of shares held 𝑛𝑖,𝑘,𝑝𝑡

 

for each stock in the portfolios. For rebalancing the weights is defined as 𝑤 =
1

𝑛
, where 𝑛 is the 

number of investable stocks for the industry for the given year. The logarithmic price return is 

then calculated as in equation 6 for the portfolios. Going forward the industry portfolios will 

interchangeably be referred to as Biotechnology (B), Information Technology Services (IT), Real 

Estate Development (RED), Industrial Machinery (IM), and Packaged Software (PS).  

 

4.3 Descriptive statistics 
The Box-Jenkins framework for model estimation and selection has been applied to the period 

from January 2010 to December 2019 with a total of 119 observations for monthly data and 519 

for weekly data per industry. As mentioned in the introduction this study investigates the log 

difference of closing prices for the industry portfolios as calculated in equation 6. 

 

In table 2 the descriptive statistics is presented for each industry portfolio using monthly data. The 

five industry portfolios have similar characteristics regarding their average value which for all is 

slightly positive. Moreover, is the skewness of their distributions positive indicating a right-skewed 

distribution meaning a higher frequency of positive values. These instances are common when 

working with stock returns because stock prices generally will increase through time. The Swedish 
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GDP had an CAGR of 0,82% during the estimation period, therefore the Swedish economy in 

general was moving forward (Statista.com, 2022).  The kurtosis varies slightly throughout the 

industry portfolios, while all is below three. Generally, a normal distribution is expected to have a 

kurtosis value equal to three, indicating that all industry portfolios can be regarded as platykurtic 

(Wooldridge, 2015). This indicates the observations has a low number of extreme values, which is 

due to the observations consists of monthly log returns and diversified portfolios aren’t expected 

to experience a high degree of large price changes. Applying the Jarque-Bera test, where the null 

hypothesis states the data are normally distributed (Wooldridge, 2015). The null hypothesis is 

rejected for RED and PS. The histograms can be seen in Appendix A from figure 1-5. The relatively 

large maximum and minimum values is due to the observations is gathered monthly. Avg. 

Holdings represents the average number of stocks in the portfolio for each year. 

 

Table 2: Descriptive statistics of monthly data  

In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

 

 

A similar table of the weekly data is provided in Appendix A Table 2. For the weekly data the 

kurtosis is similar throughout the portfolios with values ranging from -0.432-1,470.  All 

distributions can be characterized as platykurtic meaning the tails is shorter than a normal 

distribution (Wooldridge, 2015).  

 

Monthly data B RED IT IM PS

n 119 119 119 119 119

Avg. Holdings 8 9 9 8 8

Avg. Log return 0,002 0,011 0,006 0,010 0,015

Std. 0,084 0,045 0,050 0,064 0,059

Maximum 0,257 0,180 0,127 0,181 0,233

Minimum -0,203 -0,093 -0,111 -0,138 -0,143

Kurtosis 0,799 1,470 -0,432 0,043 1,311

Skewness 0,407 0,705 0,083 0,318 0,668

Jarque-Bera 0.0621 0.0001*** 0.5235 0.3836 0.0005***

Notes: The sample period is from Jan. 2010 to December 2019.

*** Corresponds to 1% signifiance level
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The correlation coefficients for the five industry portfolios is shown in table 3 using monthly 

observations. The highest correlation is between RED and IT. Biotechnology has in general the 

lowest correlation coefficients with the other industries, which can be due price movements for 

this industry is due to idiosyncratics event rather than systemtic factors. Though none of the 

correlation coefficients rises any concerns.  

 
Table 3: Correlation matrix for monthly log returns from Jan. 2010 to Dec. 2019  

In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

 
 

The dataset applied in this study differentiates from prior studies in Sweden since the portfolios 

sampled act as proxies for their given industries. Therefore, the portfolios don’t represent the 

whole market of Sweden. Further this study differentiates by using self-constructed equal-

weighted portfolios to avoid potential biases from the value weighted main index used by 

Frennberg and Hansson (1993) and Shaker (2013), and eliminates idiosyncratic behaviour from 

single stocks, which was used by Jennergren and Korsvold (1974). 

 

 

 

 

 

 

 

 

 

 

Correlation B RED IT IM PS

B 1 0.172 0.286 0.121 0.097

RED 0.172247250.172 1 0.432 0.351 0.382

IT 0.285848330.286 0.432 1 0.422 0.390

IM 0.120451180.121 0.351 0.422 1 0.309

PS 0.097196910.097 0.382 0.390 0.309 1
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5. Analysis of results 

 
In this chapter the results from applying the Box-Jenkins methodology to the log returns of the 

Swedish industry portfolios are presented. The results are presented in separate sections in the 

chronological order of identification, estimation, diagnostics, and ending with the results from 

goodness of fit measurements. 

 

5.1 Identification 
As mentioned in section 2.4 a time series must be stationary prior to identification of lags. 

Therefore, the ADF-test was conducted to assess stationarity and if differencing should be applied 

to smooth the time series. Subsequently, the Ljung-Box test is employed to investigate the 

presence of significant joint autocorrelation. The identification of potential models is then 

performed using the ACF and PACF correlograms, followed by AIC selection.  

 

5.1.1 Augmented Dickey-Fuller test  
The null hypothesis of the ADF test states the series is non-stationary and follows a random walk as 

described in 2.2.1. Table 4 presents the obtained p-values using the ADF test to log returns of the 

industry portfolios. The results shows that all time series are stationary at a significance level of 1% 

meaning they exhibit mean-reverting behaviour, and the random walk model is rejected. 

Ultimately the number of differencing’s d in the coming models is equal to ARIMA(p,0,d). 

 

Table 4: ADF Test p-values for estimation period Jan. 2010 to Dec. 2019  
In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

6  
 

The results presented in Table 4 are supported by a visual inspection. The figures from 6-11 in 

Appendix A shows the time series plots, and indicates all processes are centred around zero and 

 
6 The ADF test was also applied for the whole sample period from Jan. 2010 to Dec. 2022 with similar rejection results.  

ADF test B RED IT IM PS

Monthly 2.48e-11*** 1.43e-09*** 7.27e-09*** 2.5e-07*** 6.13e-09***

Weekly 2e-16*** 2e-16*** 2e-16*** 2e-16*** 2e-16***

*** Corresponds to 0.001 signifiance level
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doesn’t have indication of trend. Notably, there are large spikes around 2012 and 2019 for all 

portfolios, which could be due to the European banking crisis in 2012, the trade war between USA 

and China in 2019, and the Covid-19 pandemic in 2019 and 2020.  

 

These findings support the earlier work of Shaker (2013), who rejected the null hypothesis of the 

ADF-test using daily log returns for the main index in Sweden OMXS30. The differences between 

the collected data sample used by Shaker (2013) and this study, are the frequency of observations 

and the nature of the sample as shown in table 1 of prior literature.  

 

5.1.2 Ljung-Box test  
The Ljung-Box test is commonly used to assess potential model misspecifications by examining the 

residuals. In this thesis, the Ljung-Box test is performed on the series of log returns and the 

residuals of the estimated models. The results presented in table 5 is of the log returns and shows 

that only weekly Packages Software exhibits significant evidence of joint autocorrelation. 

 

Table 5: Ljung-Box Test p-values for estimation period Jan. 2010 to Dec. 2019  

In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

7 

 

These findings differ from those reported by Shaker (2013), who discovered significant 

autocorrelation up to 10 lags at a 1% significance level. An explanation for this discrepancy is the 

use of daily observations, which are expected to exhibit a higher level of autocorrelation relative to 

weekly and monthly observations, due to for example clustering effects on a daily basis. 

 

 
7 The Ljung-Box test was also applied for the whole sample period from Jan. 2010 to Dec. 2022 with similar rejection 
results. 

Ljung-Box test B RED IT IM PS

Monthly 0.9726 0.6281 0.1104 0.9335 0.4869

Weekly 0.3105 0.186 0.656 0.6095 0.0066**

** Corresponds to 0.001 significance level
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5.1.3 Visual analysis of ACF & PACF  
The ACF and PACF correlograms for the industry portfolios at both weekly and monthly 

observations is shown in Appendix B, figure 11-21. As mentioned in section 3.5 the objective is to 

identify potential models for estimation by interpreting the significance of the correlation 

coefficients at different lags. The general framework for interpreting ACF and PACF correlograms is 

shown in the table below 6. 

 

Table 6: Framework for interpretation of ACF and PACF correlograms 

 

 

If the correlograms of the industry portfolios do not exhibit any significant lags of interest, the time 

series is considered to follow a white noise process, indicating unpredictable behaviour using 

ARIMA models. However, when dealing with a time series that includes both AR and MA lags, the 

framework presented in Table 6 has limitations.  

 

5.1.3.1 Monthly returns 
The plots of monthly correlograms are shown in Appendix B figure 11-15. For Biotechnology, Real 

Estate Development, and Industrial Machinery, the ACF and PACF correlograms showed no 

significant lags. This indicates that these time series follow a white noise process, and thereby the 

absence of Autoregressive (AR) and Moving Average (MA) processes. Therefore, the visual analysis 

suggest predictability using ARIMA isn’t found, which is supported by the Ljung-Box test results. 

 

For Information Technology Services, the ACF exhibits significance at lags 10 and 12, but this 

should not be interpreted as evidence for a well-defined model. Significance at later stages can 

indicate trends or seasonality in the time series. However, considering the lack of clear seasonality 

in the monthly plot (Appendix A, figure 7) and the results from the Ljung-Box test, these significant 

lags are random effects in the time series. The PACF shows similar significant lags with the addition 

of lag 20, further supporting the interpretation of the time series as a white noise process. 

Framework AR(p) MA(q) ARIMA(p,d,q)

ACF Tails off/Geometric decay Cutoff after lag q Tails off/Geometric decay

PACF Cutoff after lag p Tails off/Geometric decay Tails off/Geometric decay

(Box et al. 2015)
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For Packaged Software the ACF shows significance at lag 6 followed by a cutoff, while the same lag 

is significant in the PACF followed by a cufoff. Due to a lag restriction of five for both AR and MA 

parameters, this lag won’t be captured directly, but negative autocorrelation in the sixth lag could 

be an indication of a semi-annual mean reverting behaviour. Comparing this interpretation with 

the monthly plot (Appendix A, figure 8) and the results from the Ljung-Box test, the significant 

sixth lag should not be overemphasized. Ultimately this inspection suggests the time series to be a 

white noise process.  

 

The visual analysis of the correlograms aligns with the results of the Ljung-Box test, as no 

significant autocorrelation is found at meaningful lags for most of the industry portfolios. 

 

5.1.3.2 Weekly returns 
In the analysis of weekly log returns, similar interpretations of the correlograms are made as for 

the monthly time series, the correlograms are shown in Appendix B figure 16-20. For 

Biotechnology and Information Technology, both the ACF and PACF is significant at the first lag 

followed by a cutoff. This indicates that an AR(1) or MA(1) could be an appropriate model to fit for 

these time series.  

 

For Packaged Software the correlograms indicate the appropriate model is more complex than the 

previous simple models. The first lag is insignificant, but two significant lags with geometric decay 

are observed in both the ACF and PACF. Additionally, three other lags (lags 6, 16, and 24) are 

significant with direct decays. Although the latter three lags are not of great interest, this 

inspection suggests the need for multiple models and parameter combinations. The following 

models could be considered: AR(2), MA(2), ARMA(2,2), ARMA(2,1), and ARMA(1,2). 

 

For Real Estate Development the correlograms indicate a white noise behaviour. The only 

significant lags are observed at 19 and 20 for both the ACF and PACF. While a geometric decay is 

observed in the ACF and PACF for the first three lags, though not significant. The late significant 

lags are random behaviour, since withholding this inspection with the results from the Ljung-Box 

test, there isn't indications of other explanations. 
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For Industrial Machinery the correlograms suggest a white noise process, as significant lags are 

found at 10 and 14 in both the ACF and PACF. However, these lags do not provide substantial 

evidence for model identification, therefore these two is interpreted as random behaviour, 

supported by the Ljung-Box results. 

 

The interpretations of the ACF and PACF correlograms are contrary to the results of the Ljung-Box 

test for 3 out of 5 industry portfolios using weekly log returns. On the other hand, the 

correlograms were consistent with the Ljung-Box test for the monthly log returns, indicating white 

noise processes. These results highlight the importance of visual inspection, as the Ljung-Box test 

assesses overall joint autocorrelation, while the correlograms help isolate individual lags. 

 

5.1.4 Akaike information criterion 
In accordance with the literature review in section 2.4, AIC is used for model identification. The 

maximum constraints of five lags for both the AR and MA regressors were applied to test models 

ranging from ARIMA(0,0,0) to ARIMA(5,0,5). The selection rule for AIC involves selecting the model 

with the lowest value. 

 

5.1.4.1 Monthly returns 
In Table 7, the best-fitted model for each industry portfolio is highlighted in bold font. The 

complete table of AIC values for all models can be found in Appendix B, from Table 1 to Table 5, for 

the industry portfolios.  

 

ARIMA(0,0,0) with a zero-mean was identified as the best-fitted models according to AIC for 

Biotechnology and Information Technology, which is equivalent to a white noise process. Similarly, 

the best-fitted models for Real Estate Development and Industrial Machinery were ARIMA(0,0,0), 

but with a non-zero mean indicating a drift in the time series, therefore the series should be 

interpreted as random noise, since white noise processes is conditioned to a zero-mean. The best 

fitting model for Packaged Software according to AIC was an MA(1) with a drift indicating 

dependence on past residuals. 
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Table 7: Best fitted models using AIC for monthly data 

In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

 

 

The models identified as the best-fitted models using AIC align with the results obtained from the 

Ljung-Box test, which found no significant evidence of autocorrelation. Additionally, the 

interpretations of the ACF and PACF for all industry portfolios supported the models for white 

noise behaviour, which indicates ARIMA models isn’t appropriate for prediction of the returns. An 

exception is made for Packaged Software, where an MA(1) model was identified as the best model 

indicating dependence on past residuals.  

 

5.1.4.2 Weekly returns 
In Table 8, the best-fitted models for the industry portfolios using AIC are highlighted with bold 

font. Notably, Industrial Machinery stands out as the only industry portfolio where the best-fitted 

model is an ARIMA(0,0,0) with a non-zero mean, meaning the series is best explained as random 

noise. This finding is consistent with the interpretation of the correlograms and the results of the 

Ljung-Box test. 

 

Table 8: Best fitted models using AIC for weekly data 

In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

 

 

Model B IT PS RED IM

ARIMA(0,0,0)* -252,911 -373,654 -328,312 -393,383 -312,618

ARIMA(0,0,0) -250,973 -373,206 -333,773 -395,183 -313,648

ARIMA(0,0,1) -248,974 -371,206 -334,601 -390,800 -312,552

Notes: * indicates a zero-mean

Model B IT PS RED IM

ARIMA(0,0,2)* -1.806,140 2.340,073-  -2.118,253 -2.509,700 -2.048,732

ARIMA(2,0,2)* -1.802,283 -2.343,425 -2.122,483 Inf Inf

ARIMA(1,0,4) -1.799,096 -2.339,476 -2.129,906 -2.512,971 -2.051,969

ARIMA(1,0,0) -1.803,649 -2.342,557 -2.121,438 -2.517,274 -2.054,123

ARIMA(0,0,0) -1.795,439 -2.340,264 -2.123,090 -2.516,576 -2.055,845

Notes: * indicates a zero-mean
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For Biotechnology, AIC identified an additional Moving Average lag than that interpreted by the 

correlograms. For Information Technology AIC identified a combined ARMA(2,2). The most 

complex model was identified for Packaged Software, as it included the highest number of lags, 

according to both AIC and the correlograms. Additionally, Packaged Software was the only industry 

portfolio where the null hypothesis was rejected for the Ljung-Box test, providing significant 

evidence for autocorrelation in the time series. For Real Estate Development, the ACF and PACF 

correlograms did not provide any indications of potential models. However, according to AIC, the 

best-fitted model for the series was an AR(1). 

 

5.1.5 Identified models 
In Table 9 a summary is presented of the identified models for the monthly data. This analysis 

suggests that white- or random noise process is present for most industry portfolios, while AIC 

identified an MA(1) model found for Packaged Software. 

 

Table 9: Identified ARIMA models for monthly data 

In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

  

A greater number of models was identified for weekly observations using both visual analysis of 

correlograms and the results from AIC, as summarized in Table 10. This suggests the weekly time 

series are more characterised by Autoregressive and Moving average processes compared to 

monthly.  

 

 

 

 

 

 

Model B RED IT IM PS

ARMA(0,0,0) ACF & PACF ACF & PACF ACF & PACF ACF & PACF ACF & PACF

MA(1) AIC

AR(1) AIC



MSc. Finance Aalborg University 1st of June 2023 
 

 35 

 

Table 10: Identified ARIMA models for weekly data 

In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

 

5.2 Model estimation 
In this stage of the Box-Jenkins methodology, the identified models from table 9 and 10 have been 

fitted to their given time series for the estimation period from January 2010 to December 2019. An 

inspection of the results is provided beginning with the use of monthly data. 

 

5.2.1 Monthly returns 
In table 11 a summary of the estimated models is provided. For Biotechnology and Information 

Technology the inspection of correlograms did not identify any potential lags, and AIC indicated 

that the best fitting models as ARIMA(0,0,0). This is evidence for the series to be white noise 

processes and thereby unpredictable using ARIMA. 

 

For Packaged Software the MA(1) model is significant at 10% level relative to an insignificant AR(1). 

Besides this the MA lag has a parameter estimate of 0.1604, meaning that with 90% certainty the 

returns of today as a 16,04% dependence of the previous lagged residual. The constant of the 

models is equivalent to the drift of the series and significant within a 5% level.  

 

For Real Estate Development and Industrial Machinery, the visual analysis of correlograms did not 

identify any potential lags since the time series displayed a white noise behaviour. Applying AIC for 

Model B RED IT IM PS

ARMA(0,0,0) ACF & PACF ACF & PACF + AIC

AR(1) ACF & PACF AIC ACF & PACF

AR(2) ACF & PACF

AR(3) ACF & PACF

MA(1) ACF & PACF ACF & PACF

MA(2) AIC ACF & PACF

MA(3) ACF & PACF

ARMA(1,2) ACF & PACF

ARMA(2,1) ACF & PACF

ARMA(2,2) AIC ACF & PACF

ARMA(1,4)  AIC
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model identification, the proposed models were ARIMA(0,0,0) with non-zero means equivalent to 

the models being random noise with a drift. The drift for Real Estate Development is significant 

within a 1% level, whereas the drift for Industrial Machinery is insignificant within 5%.  

 

Table 11: Estimated models for monthly data 

 

 

5.2.2 Weekly returns 
For the weekly observations more potential AR and MA lags was identified in the time series for all 

industry portfolios except for Industrial Machinery. The results of the estimated models are shown 

in table 12. 

 

For Biotechnology the correlograms indicated the potential of AR(1) or MA(1), and AIC proposed 

an MA(2), where all estimated models have a zero mean. The AR(1) indicates a negative 

autocorrelation of the first lag of -0.1402, which is the highest estimated parameter estimate for 

Biotechnology and significant at 1% level. The MA(1) has a parameter estimate of -0.1226 and 

significant at 1% level. According to AIC the best fitted model is an MA(2), for which the first lag is 

estimated to -0.1366 and the second lag 0.0865, where latter is insignificant at the 5% level. 

Ultimately the results indicate with 96% certainty linear dependence in the time series for all three 

models.  

Industry portfolio Model Parameter Estimate
Standard 

Error
Z-value p-value AIC

Biotechnology ARIMA(0,0,0) - 0.000 - - - -252.91

Information 

Technology
ARIMA(0,0,0) - 0.000 - - - -373.65

ARIMA(0,0,0) Constant 0.0150 0.0054 2.7751 0.0055 ** -334.43

MA(1) Constant 0.0149 0.0062 2.4059 0.0161 * -334.6

MA(1) 0.1604 0.0924 1.7338 0.0829 .

AR(1) Constant 0.0149 0.0062  2.3840 0.0171 * -334.28

AR(1) 0.1441 0.0905 1.5929 0.1111

Real Estate 

Development
ARIMA(0,0,0) Constant 0.0106 0.0041 2.6017 0.0092** -400.76

Industrial Machinery ARIMA(0,0,0) Constant  0.0103 0.0059 1.7516 0.0799 . -313.65

Notes: *** Corresponds to 0.001 signifiance level, ** Corresponds to 0.01 signifiance level, 

* Corresponds to 0.05 signifiance level '"." Corresponds to 0.1

Packaged Software
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For Information Technology the visual analysis of correlograms identified the models of AR(1) and 

MA(1), which is estimated to have a zero mean. The magnitude of the estimated parameters in the 

AR(1) and MA(1) is low meaning a weak level of autocorrelation is in the time series, though both 

are significant at the 5% level. Therefore, significant evidence for dependence of past returns and 

forecasting error, but due to the magnitude of the parameters is low, actual economic value is not 

expected for forecasting. The ARMA(2,2) identified by AIC has a higher level of parameter 

estimates and significant at 5% level. The model is mean reverting since the absolute values AR of 

MA lags doesn’t exceed 1 in absolute value, though high parameter estimate for the AR and MA 

lags has an offsetting effect. 

 

For Packaged Software multiple models was identified as potential, and all estimated with a 

significant drift at 1% level. A general evaluation of the models indicates that the simple models 

AR(2), AR(3), MA(2) and MA(3) doesn’t capture the same information as the combined models of 

ARMA(1,2) and ARMA(1,4), when comparing AIC values. The models of ARMA(1,2) and ARMA(2,1) 

is significant through all parameters at the 5% level, and the first having the lowest AIC of -2128,29 

relative to -2127,05. Regarding the most complex models namely ARMA(2,2) and ARMA(1,4), 

where the latter was identified using AIC, all the estimated parameters isn’t significant, which in 

general is allowed if the last estimated lag is significant within 5% level. Besides this the magnitude 

of the parameter estimates could be expected to have an economic value add when forecasting.  

 

For Real Estate Development, the identified model by AIC is the AR(1), where the Autoregressive 

lag is significant at 1% level and estimated at 0.0721. This level of autocorrelation is considered 

weak and therefore, the autocorrelation in the series is not expected to add significant economic 

value for predictions. By interpreting the correlograms, an ARIMA(0,0,0) was proposed and 

estimated with a significant constant equivalent to the mean of the process.  

 

For Industrial Machinery, both the correlograms and AIC suggested an ARIMA(0,0,0) model, as the 

series exhibited a white noise behaviour. The model was estimated with a drift, indicating that the 

time series has a positive constant, and the series is random noise with a drift.  
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Table 12: Estimated models for weekly data 

 

Industry portfolio Model Parameter Estimate
Standard 

Error
Z-value p-value AIC

AR(1) Zero mean - - - - -1805.64

AR(1) -0.1402 0.0437 -3.2107 0.0013**

MA(1) Zero mean - - - -1804.38

MA(1) -0.1226 0.0404 -3.0361 0.0023 **

MA(2) Zero mean - - - - -1806.14

MA(1) -0.1366 0.0439 -3.1094 0.0019 **

MA(2) 0.0872 0.0446 1.9558 0.0504 . 

AR(1) Zero mean - - - - -2342.02

AR(1) -0.0865 0.0437 -1.977 0.0481 *

MA(1) Zero mean - - - - -2342

MA(1) -0.0855 0.0430 -1.9909 0.0465 *

ARMA(2,2) Zero mean - - - - -2343.42

AR(1) 1.3884 0.1566 8.8643 2.2e-16***

AR(2) -0.6233 0.1617 -3.8548  0.0001 ***

MA(1) -1.4772 0.1352 -10.9262 2.2e-16 ***

MA(2) 0.7379 0.1397 5.2824 1.275e-07 ***

AR(2) Constant 0.0045 0.0015 3.0281 0.0025 ** -2125.46

AR(1) -0.0228 0.0436 -0.5232 0.6008

AR(2) 0.1076 0.0438 2.4650 0.0138 * 

AR(3) Constant 0.0045 0.0016 2.7486 0.0063 ** -2127.76

AR(1) -0.0325 0.0437 -0.7431 0.4574

AR(2) 0.1105 0.0436 2.5336 0.0112 *

AR(3) 0.0912 0.0439 2.0784 0.0376 *

MA(2) Constant 0.0045 0.0014 3.1087 0.0020 ** -2125.59

MA(1) -0.0422 0.0447 -0.9443 0.3450

MA(2) 0.1076 0.0431 2.4969 0.0125 *

MA(3) Constant 0.0045 0.0016 2.8701 0.0041 ** -2127.97

MA(1) -0.0416 0.0437 -0.9527 0.3407

MA(2) 0.1073 0.0414 2.5928 0.0095 **

MA(3) 0.0888 0.0420 2.1136 0.0345 *

ARMA(1,2) Constant 0.0045 0.0017 2.6859 0.0081 ** -2128.29

AR(1) 0.5381 0.1622 3.3182 0.0009 ***

MA(1) -0.5782 0.1622 -3.5649 0.0004 ***

MA(2) 0.1483 0.0459 3.2351 0.0012 **

ARMA(2,1) Constant 0.0045 0.0017 2.6572 0.0072** -2127.05

AR(1) 0.4224 0.1724 2.4506 0.0143 * 

AR(2) 0.1331 0.0442 3.0104 0.0026 **

MA(1) -0.4532 0.1703 -2.6606 0.0078 **

ARMA(2,2) Constant 0.0045 0.0016 2.7212 0.0065 ** -2127.45

AR(1) 0.7962 0.2692 2.9579 0.0031 **

AR(2) -0.2857 0.2494 -1.1456 0.2519

MA(1) -0.8323 0.2555 -3.2568 0.0011 **

MA(2) 0.4219 0.2320 1.8184 0.0690 . 

ARMA(1,4) Constant 0.0045 0.0016 2.7805 0.0055 ** -2129.91

AR(1) -0.8656 0.0942 -9.1871  2.2e-16 ***

MA(1) 0.8394 0.1020 8.2305 2.2e-16 ***

MA(2) 0.0744 0.0569 1.3084 0.1907

MA(3) 0.1804 0.0556 3.2441 0.0011 **

MA(4) 0.1406 0.0444 3.1673  0.0015 **

ARIMA(0,0,0) Constant 0.0030 0.0009 3.2255 0.0012 ** -2516.58

AR(1) Constant 0.0030 0.001 3.0049 0.0999 . -2517.27

AR(1) 0.0721 0.0438 1.6449 0.0026 **

Industrial Machinery ARIMA(0,0,0) Constant 0.0037 0.0015 2.5043 0.0123 * -2055.84

Notes: *** Corresponds to 0.001 signifiance level, ** Corresponds to 0.01 signifiance level, 

* Corresponds to 0.05 signifiance level '"." Corresponds to 0.1

Real Estate 

Development

Biotechnology

Information 

Technology

Packaged Software
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The estimation period begins two years after the 2008 financial crisis and ends with the effect of 

the COVID-19 pandemic. For this period positive drifts are found significant for the monthly and 

weekly models of Packaged Software, Real Estate Development, and for Industrial Machinery only 

for the weekly data. 

 

5.3 Diagnostics 
To ensure the consistency and right specification of the estimated models, it is essential to conduct 

appropriate diagnostic tests. In accordance with the Box-Jenkins methodology, this study examines 

the residuals of the models to evaluate their behaviour, which should resemble white noise. 

Specifically, this study employs the Ljung-Box test and analyse the ACF and PACF correlograms of 

the residuals to assess their behaviour. 

 

5.3.1 Ljung-Box test results 
The Ljung-Box test is regarded obligatory when doing diagnostics of ARIMA models, since all 

autocorrelation in the time series should be captured, otherwise the time series isn’t properly 

specified. Although the Ljung-Box test didn’t provide evidence for autocorrelation in the log 

returns prior to estimation except for weekly Packaged Software, the residuals of the models still 

must be tested.  

 

The ARIMA(0,0,0) models have the same significance levels as the time series, for Packaged 

Software there wasn’t significant evidence for autocorrelation prior to model fit. Ultimately the 

MA(1) model was properly fitted with a parameter estimate of 0.16, but only significant within the 

10% level.   

 
Table 13: Ljung-Box test p-values of model residuals using monthly data 
In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

 
 

Ljung-Box test B RED IT IM PS

ARIMA(0,0,0) (0.9257) (0.1406)

ARIMA(0,0,0) 0.6843 0.9382 0.538

MA(1) 0.6534

AR(1) 0.6406

Note: () Indicates a zero-mean
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Prior to model estimation, the weekly data for Packaged Software showed significant evidence of 

autocorrelation. Table 14 presents the p-values from the Ljung-Box test for the weekly data. The 

results indicate that for all models besides the simple models of AR(2) and MA(2), the null 

hypothesis fails to reject at a 5% significance level. Therefore, no evidence for autocorrelation in 

the residuals is found for the weekly models.  

 

Table 14: Ljung-Box test p-values of model residuals using weekly data  
In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

 
 

 
5.3.2 ACF and PACF of residuals 
 To visually diagnose the residuals of the estimated models, the ACF and PACF are applied to 

evaluate whether the residuals of the models follow a white noise process. Only models with a 

total number of lags above zero are inspected since otherwise, the correlograms is similar to the 

time series of log returns.  

 

5.3.2.1 Monthly returns 
For the monthly data only Packaged Software models are inspected. The correlograms in Appendix 

B figure 21-22 shows the ACF and PACF for the MA(1) and AR(1) respectively. Comparing these to 

the correlograms of the raw series, the residuals correlation coefficient becomes smaller and has a 

clearer expression of being white noise. Though the model can’t capture the significant correlation 

at lag 6 for both models. This ultimately can be handled by increasing the number of lags to six for 

Ljung-Box B RED IT IM PS

ARIMA(0,0,0)  0.186 0.6095

AR(1) (0.8808) 0.3783 (0.8224)

AR(2) 0.0805 .

AR(3) 0.2272

MA(1) (0.9116) (0.8183)

MA(2) (0.9376) 0.0823 .

MA(3) 0.2258

ARMA(1,2) 0.2661

ARMA(2,1) 0.1941

ARMA(2,2) (0.9882) 0.3091

ARMA(1,4) 0.478

Notes: "." Corresponds to 0.1 significance level and () indicates a zero mean
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both models. The results from the Ljung-Box test indicates there isn’t evidence for autocorrelation 

in the series, and combining these results the most appropriate model is the MA(1). The strong 

significant lag 6 could be an indication of semi-annual mean reversion.  

 

5.3.2.2 Weekly returns 
For the weekly models the residuals of AR(1), MA(1) and MA(2) for Biotechnology is presentenced 

in appendix B figure 23-25. Comparing these to the time series of log returns, where the first lag 

was significant, indicates that all identified models capture this lag. This is complemented by the 

failure to reject the null hypothesis for the Ljung-Box test for all instances, therefore the residuals 

have a white noise behaviour. 

 

For Real Estate Development the proposed model by AIC was an AR(1) model. The correlograms of 

the log returns had white noise behaviour, though significant lags at 18 and 19. The low magnitude 

of the estimated AR parameter indicates a low dependency of past returns in the time series. 

Combining these interpretations of the correlograms with the results from the Ljung-Box test the 

best model is an ARIMA(0,0,0) with a drift equivalent to random noise with a drift. 

 

For Information Technology the proposed model using AIC as selection criteria was the ARMA(2,2), 

whereof the correlograms of the residuals can be seen in Appendix B figure 27. The model 

captures the autocorrelation in the time series, since the behaviour of the error terms is a clear 

white noise process. The correlograms for the MA(1) and AR(1) is shown in Appendix B in figure 28 

and 29 respectively. Through a visual analysis it can be seen, that both models capture the first 

significant lag, though the white noise process of the residuals isn’t as clear as for the ARMA(2,2).  

 

In the case of Packaged Software multiple models has been estimated. The simple models of AR(3) 

and MA(3) was able to capture the significant lags until the 17, the correlograms hereof is shown in 

Appendix B figure 30 and 32 respectively. When decreasing the number of lags to an AR(2) and 

MA(2) model, for which the correlograms are shown in Appendix B figure 31 and 33 respectively. 

For these the significant lag 6 is not captured. The more complex models of ARMA(1,2) and 

ARMA(2,1) is shown in appendix B figure 34 and 35 respectively. The correlograms indicates for 

ARMA(1,2) that all autocorrelation is captured until 17, though for the ARMA(2,1) the seventh lag 
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is slightly significant for the PACF. The correlograms of ARMA(2,2) and ARMA(1,4) is shown in 

Appendix B figure 36 and 37 respectively. The residuals of the latter two models have the clearest 

resemblance of white noise. 

   

5.4. Forecast and model evaluation 
To assess the predictive power of the estimated models and determine the best performing model 

for each industry, an out-of-sample one-step ahead forecast was conducted with an expanding 

window. The forecasting period ranged from January 2020 to December 2022, with a total of 36 

monthly observations and 155 weekly observations. The accuracy of the forecasts was evaluated 

using two metrics: the Root Mean Square Error (RMSE), which measures the standard deviation of 

the residuals, and the Mean Absolute Error (MAE), which measures the mean of the differences 

between the predicted values and the actual observations. The lowest values for these 

measurements, as well for AIC are presented in bold font in table 15 and 16 for monthly and 

weekly data respectively. 

 

5.4.1 Monthly returns 
For the predictive performance of the monthly models, only Packaged Software was forecasted 

and evaluated, as no alternative model specifications were considered for the other industry 

portfolios besides an ARIMA(0,0,0) model. Table 15 presents the performance values for the 

monthly models of Packaged Software. The model with the best performance according to the 

selection criteria’s is the MA(1) model. It has the best overall performance with an AIC of -334,60, 

RMSE of 0.08002, and MAE of 0.06465. While the performance differences among the models are 

small, the MA(1) model exhibits the strongest predictive strength for the time series. The models 

for Packaged Software has a standard deviation of prediction errors of approximately 8,0% and the 

absolute deviation between the forecasts and actual values ranges from 6,37%-6,47%. These 

values are relatively high, which is due to the observation frequency being monthly, and the period 

for estimation is volatile with regard to the covid-19 pandemic.  
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Table 15: Evaluation of models with AIC, RMSE and MAE 

8 

5.4.2 Weekly returns 
In table 16 the forecasting results is shown for the estimated models for the weekly industry 

portfolios together with their AIC value. For Biotechnology the best model according to AIC was 

the MA(2), which has superior performance in the prediction period compared to the AR(1) and 

MA(1) model, though the second lag of the MA(2) models is not significant within the 5% level, but 

within the 10% level. This means if constraining the significance level for all parameters to the 

normally applied level of 5% the MA(1) model is best, since it performs better in the forecasting 

period compared to the AR(1), even though the AIC value is higher for the AR(1) model. The 

average deviation for the forecasts are approximately 3,6%, while the absolute deviation is 

approximately 2,7%.  

 

For Information Technology the best model using AIC as selection criteria is the ARMA(2,2) but the 

simple regression indicates a bias due to a significant constant. Comparing the forecast 

performance for AR(1) and MA(1), they have a minor outperformance in RMSE and MAE 

respectively, ultimately the best performing model is AR(1). The standard deviation of the error 

forecast is highest for this industry at approximately 4,2%, with an average prediction error of 

3,1%.  

 

The Packaged Software time series proved to be the most challenging to interpret based on its 

correlograms, leading to the identification of multiple potential models with a drift. Upon 

evaluating the results in table 16, it was found that the ARMA(1,4) model, which was selected 

using the AIC, demonstrated the best performance across the goodness of fit measurements. The 

difference in RMSE and MAE is generally low for all models. For RMSE the lowest value is 0.03444 

 
8 A simple regression using the actual observations in the forecasting period as the dependent variable and forecasted 
observations as independent variable showed insignificant results within 5% level for both the estimated constant and 
beta.  

Industry Model AIC RMSE MAE

ARIMA(0,0,0) -334,40 0.08077 0.06374

MA(1) -334,60 0.08002 0.06465

AR(1) -334,28 0.08006 0.06478

Packaged Software
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for ARMA(1,4) and the highest is 0.03483 for ARMA(2,2). Taken the results for the forecasting 

period into account, the best model for Packaged Software is the ARMA (1,4), since the 

measurements indicates the greatest model fit. 

 

For Real Estate Development the identified model by AIC was an AR(1), while the correlograms of 

the log returns series didn’t give incentive to model estimation, due to a white noise behaviour. In 

Table 16 the results indicate that the best performing model in the forecasting period is the 

ARMA(0,0) with a drift compared to the AR(1) with a drift. The ARMA(0,0) with a drift states the 

return of today is defined by a random noise process with a drift.  

 
Table 16: Evaluation of models with AIC, RMSE and MAE for weekly models 

9 

 

5.5 Summary of results 

The result from this study provides evidence for the time series for all industry portfolios to be 

stationary using both monthly and weekly observations. The rejection of the null hypothesis of the 

ADF test provides significant evidence against the random walk model and for stationarity shown 

 
9  A simple regression using the actual observations in the forecasting period as the dependent variable and forecasted 
observations as independent variable gave insignificant results withing 5% level for both the constant and beta for all 
models, except for ARMA(2,2) for IT, where the constant and beta was significant indicating a poor model fit. 
 

Industry Model AIC RMSE MAE

AR(1)* -1805,64 0.03694 0.02782

MA(1)* -1804,38 0.03694 0.02769

MA(2)* -1806,14 0.03614 0.02763

AR(1)* -2342,02 0.04219 0.03114

MA(1)* -2342,00 0.04219 0.03113

ARMA(2,2)* -2343,42 0.04294 0.03157

AR(2) -2125,46 0.03460 0.02632

AR(3) -2127,76 0.03477 0.02664

MA(2) -2125,59 0.03465 0.02643

MA(3) -2127,97 0.03478 0.02669

ARMA(1,2) -2128,29 0.03478 0.02660

ARMA(2,1) -2127,05 0.03478 0.02649

ARMA(2,2) -2127,45 0.03483 0.02674

ARMA(1,4) -2129,91 0.03444 0.02635

ARMA(0,0) -2516,58 0.03423 0.02500

AR(1) -2517,27 0.03435 0.02511

Industrial Machinery ARMA(0,0) -2055,84 0.03716 0.02615

Notes: * indicates a zero mean

Biotechnology

Information 

Technology

Packaged Software

Real Estate 

Development
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in Table 4. These results support prior research in Sweden namely the ones by Shaker (2013). The 

results from the Ljung-Box test shown Table 5 was contrary to prior results for the OMXS30, 

except for the weekly observations for Packaged Software, where significant evidence for 

autocorrelation in the time series was provided. This could be an effect of the observation 

frequency differs since Shaker (2013) used daily log returns, and the nature of the applied series. 

Ultimately the results indicate a rejection of the weak-form of efficiency using the ADF test, while 

the results from the Ljung-Box test indicates the majority of the time series should be interpreted 

as white noise. The difference in results is explained by the objectives of the tests are different. 

 

Using visuals analysis of the correlograms and AIC for model identification gave incentive to 

estimate ARIMA models. The estimated models hereof can be seen in Table 11 for monthly 

observations and Table 12 for weekly observations. Using monthly data an MA(1) model with a 

was estimated with a 0,16 parameter estimate, significant within 10% level, and with predictive 

power compared to a random noise process. Generally, the industry portfolios using monthly 

observations had a white- and random noise behaviour with estimation of ARIMA(0,0,0) for 

Biotechnology and Information Technology, and ARIMA(0,0,0) with a drift for Real Estate 

Development and Industrial Machinery. 

 

For the weekly model’s significant lags within the 5% level was found for all industry portfolios 

except for Industrial Machinery, which can be due to autocorrelation in general is higher for 

weekly observations. In general, the estimated parameters are low, since the parameters with 

both AR and MA lags can have an offsetting effect. The significant positive drifts for Packaged 

Software, Real Estate Development, and Industrial Machinery can be explained by stock returns 

generally will increase through time. In the estimation period the main index of Sweden increased 

from 936 SEK to 1771 SEK equivalent to a CAGR of 6,28% (Nasdaqomxnordic.com). Given the 

contrarian effect of equal-weighting and exposure to small- and midcap stocks positive drifts is 

regarded as accurate presentations of these time series.  

 

An explanation for the difference in the results with regard to parameter magnitude and 

significance level for the estimated models is, that the industries have different characteristics 
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meaning that the homogeneity of the firms wary across industries. Companies such as Real Estate 

Developers has a high level of homogeneity, since business models and products are highly similar, 

and the complexity of the companies is low, while returns are expected to be driven by steady 

cash flows and macroeconomic factors such as interest rates and general economic development 

in the country. In an industry such as Biotechnology, the companies are highly specialized in their 

given research where the companies have a higher level of differentiation. The returns of 

Biotechnology companies are therefore more driven by company specific factors, such as 

achieving governmental approvals or successful research studies. The complexity in Biotechnology 

is therefore much higher relative to Real Estate Development. This could explain the higher level 

of parameter magnitude for weekly Biotechnology relative to other industries, since information is 

priced at a less efficient level compared to other industries.  

 

The distributions of all observations for the industry portfolios, was platykurtic meaning the data 

has a lower probability of extreme values compared to a normal distribution. This has an effect 

when estimating parameters, since an underestimation of extreme events is implied in the 

models. This implies platykurtic distributions isn’t optimal for forecasting through a volatile period. 

A simple regression was tested, where the observed values acted as dependent variable and 

predicted values as independent variable, the results hereof was insignificant constant and beta, 

except for model ARMA(2,2) for weekly IT. These results generally indicate the predicted values are 

not statistically significant in predicting the actual values, and the time series for the given period 

can be explained by other factors than autocorrelation.  
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6. Reflection 

 
The objective of this chapter is to reflect upon the methodology and results of this thesis and 

provide recommendations as to how these can be applied in future research. 

 

6.1 Implementation of volatility 
The period for estimation and forecasting includes significant events of systematic risk, such as the 

trade war between the United States and China in 2019 and the COVID-19 pandemic, which 

caused high levels of uncertainty and volatility in the financial markets (Chaudhary, Bakhshi, & 

Gupta, 2020; Nishimura, Dong & Sun, 2021). Estimating ARIMA models with relatively low 

parameter estimations and forecasting through a period with high levels of volatility, there is a 

possibility for enhancing the predictability by implementing volatility adjustments.  

 

Volatility of financial assets is commonly estimated as the variance or standard deviation of the 

given time series. Generally, the usage of volatility models implies the asset return of today 

depends on the past returns in a non-linear relationship, which can be captured using volatility 

models. A characteristic of volatility of financial assets is its dependence of time, since if returns 

followed a random walk the variance should be independent of time, but studies have found that 

the volatility of yesterday can help explain the volatility today (Tsay, 2005). The common applied 

models for forecasting volatility are the Autoregressive Conditional Heteroskedastic (ARCH) and 

Generalized Autoregressive Conditional Heteroskedastic (GARCH). The structure of these models is 

similar to an ARIMA model, since past values of the same time series is applied to estimate the 

conditional variance, which equals the variance of the next period (Tsay, 2005). 

 

An ARCH model has p number of lags for the regressor 𝛼𝑝. The regressors captures the volatility at 

time t-1 and t-p, which is conditioned to have an effect at time t. Though ARCH models have 

limitations, because it doesn’t differentiate negative and positive shocks in a time series, and it 

don’t capture the persistence of the shocks (Tsay, 2005). The most applied volatility model is 

GARCH (p,q), where p is the number of ARCH terms and q the number of GARCH terms in the 

model, which is seen in equation 23. Whereas the return equation is presented in equation 24 

(Tsay, 2005). 
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𝜎𝑡
2 =  𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯ + 𝛼𝑝𝜀𝑡−𝑝
2 + 𝛽1𝜎𝑡−1

2 + ⋯ + 𝛽𝑝𝜎𝑡−𝑝
2 (23) 

 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡 ,                𝜀𝑡 = 𝑣𝑡√𝜎2
𝑡
       𝑣𝑡~𝑁(0,1) (24) 

 

The rationale for using GARCH models relative to ARCH models is that ARCH models capture 

volatility spikes but do not adequately capture the persistence of volatility and the mean-reverting 

behaviour (Tsay, 2005). In contrast, GARCH models incorporate GARCH regressors 𝛽𝑝 that capture 

the persistence of the volatility. This is important because of the pace in which volatility mean 

reverts (Tsay, 2005). There has been developed various variants of ARCH and GARCH models to 

enhance their performance for specific modelling purposes. For example, the ARCH and GARCH 

models with t-innovations allows for higher kurtosis, accommodating greater shocks in the data 

(Tsay, 2005). This allowance for greater shocks can be suitable for industries with a higher 

frequency of large shocks, such as the Biotechnology industry. By implementing ARCH and GARCH 

models, one can capture time-varying volatility, and thereby incorporate past information that is 

not captured by ARIMA models and improve the accuracy of forecasting (Tsay, 2005). 

 

A previous study by Dritsakis and Savvas (2017) had the objective of studying the volatility effects 

in the four main Nordic indexes for Norway, Denmark, Finland, and Sweden. The data for Sweden 

was daily log returns from 30thSeptember 1986 to May 11th 2016. In the article the squared log 

returns are applied for the detection of an MA(3) for the Swedish index. A low magnitude of 

estimated parameters is found significant at 5% level,  and a constant with a p-value of 0.0593. In 

the article Dritsakis and Savvas (2017) found the best model for describing the volatility in Sweden 

to be an ARMA(0,3)-GARCH-M(1,1). Where GARCH-M models implements a constant in the model. 

This is due since log returns of stocks or indexes is expected to depend upon the volatility. 

Therefore, a constant effect is applied in the return equation such as:  𝑟𝑡 = 𝜇𝑡 + 𝑐 𝜎𝑡
2 + 𝜀𝑡. In the 

equation the constant effect if positive can be attributed as a risk premium factor, meaning if the 

volatility increases the return will increase as well (Tsay, 2005). Therefore, the GARCH-M can be 

favourable for stock returns because stock returns are known to have significantly different 

reactions to negative- and positive news (Zhang, 2006). 
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In an article by Hyytinen (1999) a similar study was made for Finland, Norway, and Sweden for the 

conditional volatility, though applying weekly data for value-weighted market indexes for the 

whole markets in the period 1983 until 1997. The results showed that the most appropriate model 

for the Swedish market was an EGARCH, where the E stands for Exponential. This model is 

appropriate for asymmetric volatility, meaning having a greater power of explaining distributions 

with fat tails (Hyytinen, 1999; Tsay, 2005).  

 
 

6.2 Equal- vs value-weighted  

The constructed industry portfolios for this study applied the equal-weighted method to determine 

the size for each holding at the start of every year, which was described in chapter 4. Data 

collection. Another method commonly used by financial institutions to construct indexes and 

benchmark portfolios is the value-weighted method. Using this method, the weight of each asset is 

determined by its market capitalization and the total market capitalization of the portfolio or 

index, meaning stocks with large market capitalizations has a greater weight in the portfolio or 

index, and the opposite for companies with small market capitalizations. Besides this the value-

weighted method have a momentum characteristic, since increasing capitalization of a stock 

naturally will increase its weight in the portfolio or index, whereas an equal-weighted portfolio 

with rebalancing can be said to have a contrarian approach, because of rebalancing the portfolio 

will sell companies with increasing prices and buy companies with decreasing share prices 

(Bolognesi, Torluccio and Zucherri, 2013).  

 

In an article by Bolognesi et al. (2013) evidence is found for equal-weighted indexes outperforms 

value-weighted indexes in the European markets using stocks from the DJ Euro Stoxx index. 

Besides this an equal-weighted index or portfolio allows for a greater diversification and exposure 

to small- and midcap stocks. These results are important findings since a common method for 

benchmark construction is value-weighing for financial asset management divisions and mutual 

funds. Though when deciding whether to apply equal- or value-weighted the objective for the 

portfolio construction should be the decider, since the methods is appropriate for different 

purposes (Bolognesi et al., 2013).  
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For industry and sector indexes Kittsley (2006) specifies why equal-weighting is the preferred 

method. He states these indexes are specified to segments that are smaller compared to large 

indexes, and therefore should focus on bearing the specific sector or industry risk. By applying 

equal-weighting the diversification increases, and idiosyncratic company risk minimizes implying 

the exposure to the sector or industry is more clearly reflected. When the objective for portfolio 

construction is test the market efficiency of an industry, and whether the time series of returns is 

predictable, the equal-weighted method is preferred. Another reason for choosing the equal-

weighted index is that the effect of rebalancing avoids momentum effects. A negative effect of an 

equal-weighted portfolio is it won’t capture the aggregate market of the industry compared to a 

value-weighted index (Kittsley, 2006). Future research could therefore create value-weighted 

portfolios containing the total number of stocks for the given industry. This could help to verify the 

results of this study and provide new evidence for broader industry portfolios or -indexes. 

 

6.3 Industry complexity 
As mentioned in the literature review the latest study about market efficiency in Sweden was for 

the main index by Shaker (2013), where evidence was found for stationarity and autocorrelation. 

The result from this thesis provides evidence for stationary time series for all industry portfolios 

independent of observation frequency. As mentioned in section 5.5 Summary of Results, the 

results for autocorrelation vary. This could be due to the homogeneity of the industries can have 

an effect on the predictability. From this study models with impactful magnitude have been found 

like an MA(1) for Packaged Software using monthly observations and ARMA(1,4) using weekly. This 

raises the question are some industries more predictable than others?  

 

Ultimately it could be due to variations in industry complexity, due to variation in homogeneity of 

companies and steadiness of cash flows. A study by Jim Liew and Ryan Roberts (2013) tested a 

statistical arbitrage strategy relying on mean reversion for nine different US industries such as 

materials, energy, financials, and technology. Their findings are that mean reversion strategies 

aren’t suited for all industries and sectors, since it according to their study depends upon the level 

of variables needed to explain the variation in returns for each industry. Therefore, the greater the 

level of variables needed to explain the variation in returns, the more appropriate is the industry 
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for mean reverting investment strategies (Liew & Roberts, 2013). Their findings were that sectors 

such as materials, energy and utilities wasn’t appropriate for a statistical arbitrage strategy relying 

on mean reversion, since the industry complexity is relatively low (Liew & Roberts, 2013).  

 

6.4 Limitations and further research 
Data limitations: The results of this study is constrained to the data applied for the chosen time 

period (Jan. 2010 to Dec. 2022), since it might not capture all relevant market conditions or 

economic events that could impact the industry portfolios. Besides this the whole time period 

including forecasting suffers from abnormal events such as the trade war between America and 

China, and the covid-19 pandemic. This study forecasted from Jan. 2020 to Dec. 2022 to capture 

the long-term performance of ARIMA predictions. Besides this the collected data doesn’t account 

for transaction costs and liquidity since the objective of this study has been to test the weak-form 

of market efficiency and predictability of returns. Future studies could apply similar methodology 

to other geographical markets and industries, use daily observations and test the forecasting 

performance through another period.  

 

Generalizability: This study focuses specifically on the Swedish market and the selected industries 

(Biotechnology, Information Technology, Packaged Software, Real Estate Development, and 

Industrial Machinery) for the given time period. Therefore, the findings and conclusions may not 

be directly applicable to other markets or industries. Sweden was chosen due to prior studies had 

found evidence for stationarity and autocorrelation in daily log returns, and the number of listed 

companies makes it appropriate for statistical analysis. In future research the geographic reach 

could be broadened, due to industries could be expected to have cross-border effects, such as 

companies in Packaged Software and Information Technology competing in a broader market of 

Scandinavia, Europe, or globally. This would complement the results of this study and provide new 

results about market efficiency and predictability for industry returns.  

 

Model selection: While ARIMA models are widely used in time series analysis, they are just one of 

many possible models used for forecasting, though the objective for this study was regarding the 

relevance of ARIMA for predictability equity returns. In general, the results indicate the economic 

value added for ARIMA prediction is not robust across industry portfolios. Therefore, other 
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statistical models could enhance the predictability. Alternative models, such as ARCH and GARCH, 

could yield different results, therefore future research could implement ARCH and GARCH models. 

This would provide new information about volatility of industry portfolios and verify a rejection of 

the weak-form of market efficiency and potentially enhance the predictability. 
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7. Conclusion 

 
This study had the objective to investigate the validity of the weak-form of the efficient market 

hypothesis, and test if ARIMA models still are relevant in predicting the returns of self-constructed 

industry portfolios in Sweden with a sample period from Jan. 2010 to Dec. 2022.  

 

The results from the ADF test gave significant evidence for rejecting the null hypothesis stating the 

series follows a random walk for all industry portfolios independent of observation frequency. 

Therefore, evidence was also found for stationarity. For the Ljung-Box test the null hypothesis was 

solely rejected for weekly observations of Packaged Software, indicating the majority of the time 

series follows a white- or random noise process, which is contrary to the results of Shaker (2013). 

This can be explained by the frequency of observations, since autocorrelation can be expected to 

be more frequent at daily observations, and general differences between OMXS30 and self-

constructed portfolios. Ultimately the test results are contradicting, regarding whether to reject 

the weak-form of efficiency, since the tests are applied for different properties of the time series. 

These results contribute with new results for weak-form of market efficiency in Sweden for the 

given industry portfolios. Future studies could apply models such as ARCH and GARCH to verify a 

rejection of the weak-form of efficiency.  

 

Prior to forecasting the Box-Jenkins methodology was applied for fitting ARIMA models to the time 

series. For 4 out of 5 industry portfolios using monthly data there wasn’t evidence for AR and MA 

processes. Using weekly observations AR and MA lags was identified and estimated significant 

within a 5% level for 4 out of 5 industries. For evaluating the predictive power of the estimated 

models a simple regression of the actual- and predicted values, AIC, RMSE and MAE was applied. 

The results from this study shows ARIMA models isn’t robust for creating economic value-added 

predictions for Swedish industry portfolios in the given period, despite evidence for significant 

dependence on past returns and forecasting errors. This is due to log return processes are complex 

and external factors other than autocorrelation in the time series has great impact. However, it's 

worth noting that the forecasting period has a high level of volatility due to the systematic event of 

covid-19.  
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Appendix 

 

Appendix A 

Histograms of monthly- and weekly log returns 
 
Figure 1: Histogram of the log returns Biotechnology from Jan. 2010 to Dec. 2019 
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Figure 2: Histogram of the log returns for Information Technology from Jan. 2010 to Dec. 2019 
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Figure 3: Histogram of the log returns for Packaged Software from Jan. 2010 to Dec. 2019 
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Figure 4: Histogram of the log returns for Real Estate Development from Jan. 2010 to Dec. 2019 
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Figure 5: Histogram of the log returns for Industrial Machinery from Jan. 2010 to Dec. 2019 
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Time series plots of monthly- and weekly returns 
Figure 6: Plot of the log returns for Industrial Machinery from Jan. 2010 to Dec. 2019 
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Figure 7: Plot of the log returns for Information Technology from Jan. 2010 to Dec. 2019 
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Figure 8: Plot of the log returns Packaged Software from Jan. 2010 to Dec. 2019 
 

 

 
 
 
 
 
 



MSc. Finance Aalborg University 1st of June 2023 
 

 67 

 
Figure 9: Plot of the log returns Real Estate Development from Jan. 2010 to Dec. 2019 
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Figure 10: Plot of the log returns Industrial Machinery from Jan. 2010 to Dec. 2019 
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Table 1: Stocks in industry portfolios  
In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate Development), IT (Information Technology Services), 

IM (Industrial Machinery), PS (Packaged Software). 

B IT PS RED IM

Spago Nanomedical AB  EXINI Diagnostics AB  FormPipe Software AB Kungsleden AB  HEXPOL AB Class B 

RLS Global AB  Servage AB  Aspiro AB Logistea AB Class B  Lindab International AB  

BioPhausia AB  Hoylu AB  Hoodin AB FastPartner AB  Munters Group AB  

BioInvent International AB  Transmode AB  Enea AB Neobo Fastigheter AB Josab Water Solutions AB  

QuiaPEG Pharmaceuticals Holding AB  Terranet AB Class B Plejd AB Dagon AB ITAB Shop Concept AB  

Toleranzia AB  Acando AB  G5 Entertainment AB Mofast AB  Rentunder Holding AB  

Xintela AB  3L System AB  Ranplan Group AB Samtrygg Group AB Class B  Finepart Sweden AB  

Lipum AB HMS Networks AB  LYYN AB NP3 Fastigheter AB  EasyFill AB Class B  

SenzaGen AB Exalt AB Edgeware AB HEBA Fastighets AB Class B  Arcam AB 

Saniona AB  Vitec Software Group AB Class B  Diadrom Holding AB Wihlborgs Fastigheter AB  Alfa Laval AB 

Active Biotech AB Cybercom Group AB  Eurocon Consulting AB Castellum AB  Hedson Technologies International AB 

Fluicell AB  Empir Group AB Class B  Spiffbet AB JM AB  

Mendus AB  Addnode Group AB Class B  Fortnox AB   AB Sagax  

Probi AB  Pricer AB Class B  Catena AB  
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Table 2: Descriptive statistics for weekly data 
In the table the letters are an abbreviation for the given industries: B (Biotechnology), RED (Real Estate 

Development), IT (Information Technology Services), IM (Industrial Machinery), PS (Packaged Software). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Weekly data B RED IT IM PS

n 519 519 519 519 519

Avg. Holdings 8 9 9 8 8

Avg. Log return 0,000 0,003 0,002 0,004 0,005

Std. 0,043 0,021 0,025 0,033 0,031

Maximum 0,155 0,067 0,096 0,133 0,116

Minimum -0,148 -0,092 -0,093 -0,101 -0,096

Kurtosis 1,303 1,439 1,415 1,179 1,266

Skewness 0,273 -0,374 -0,043 0,380 0,328

Jarque-Bera 8.071e-10 *** 2.402e-07 *** 7.761e-10 *** 1.322e-09 *** 3.947e-10 ***

Notes: The sample period is from Jan. 2010 to December 2019.

*** Corresponds to 0.000 signifiance level
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Appendix B 

ACF and PACF correlograms of monthly- and weekly log returns 
 
Figure 11: ACF & PACF of monthly log returns for Biotechnology from Jan. 2010 to Dec. 2019 

  
Figure 12: ACF & PACF of monthly log returns for Information Technology from Jan. 2010 to Dec. 
2019 
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Figure 13: ACF & PACF of monthly log returns for Packaged Software from Jan. 2010 to Dec. 2019 

  
 
Figure 14: ACF & PACF of monthly log returns for returns Real Estate Development from Jan. 2010 
to Dec. 2019 

  



MSc. Finance Aalborg University 1st of June 2023 
 

 73 

 
Figure 15: ACF & PACF of monthly log returns for Industrial Machinery from Jan. 2010 to Dec. 2019 

  
Figure 16: ACF & PACF of weekly log returns for Biotechnology from Jan. 2010 to Dec. 2019 
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Figure 17: ACF & PACF of weekly log returns for Information Technology from Jan. 2010 to Dec. 
2019 

  
Figure 18: ACF & PACF of weekly log returns for Packaged Software from Jan. 2010 to Dec. 2019 
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Figure 19: ACF & PACF of weekly log returns for Real Estate Development from Jan. 2010 to Dec. 
2019 

  
Figure 20: ACF & PACF of weekly log returns for Industrial Machinery from Jan. 2010 to Dec. 2019 
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ACF and PACF correlogram of monthly- and weekly residuals 
 
Figure 21: ACF and PACF for monthly residuals for MA(1) Packaged software  

 
Figure 22: ACF and PACF for monthly residuals for AR(1) Packaged software  
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Figure 23 ACF and PACF for weekly residuals for MA(1) Biotechnology  

 
 
Figure 24: ACF and PACF for weekly residuals for AR(1) Biotechnology  
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Figure 25: ACF and PACF for weekly residuals for MA(2) Biotechnology  

 
Figure 26: ACF and PACF for weekly residuals for AR(1) Real Estate Development 
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Figure 27: ACF and PACF for weekly residuals for Information Technology ARMA(2,2)   

 
Figure 28: ACF and PACF for weekly residuals for Information Technology MA(1)   
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Figure 29: ACF and PACF for weekly residuals for Information Technology AR(1)   

 
 
Figure 30: ACF and PACF for weekly residuals for Packaged Software AR(3)   
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Figure 31: ACF and PACF for weekly residuals for Packaged Software AR(2)   

 
Figure 32: ACF and PACF for weekly residuals for Packaged Software MA(3)   
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Figure 33: ACF and PACF for weekly residuals for Packaged Software MA(2)   

 
 
Figure 34: ACF and PACF for weekly residuals for Packaged Software ARMA(1,2)   
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Figure 35: ACF and PACF for weekly residuals for Packaged Software ARMA(2,1)   

 
 
Figure 36: ACF and PACF for weekly residuals for Packaged Software ARMA(2,2)   
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Figure 37: ACF and PACF for weekly residuals for Packaged Software ARMA(1,4)   
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AIC selection tables for monthly- and weekly models 
Table 1: Biotechnology results from auto.arima function in R 

 

Model Mean AIC Model Mean 0 AIC

ARIMA(0,0,0) with zero mean     : -252,911 ARIMA(0,0,0) with zero mean     : -1.797,434

ARIMA(0,0,0) with non-zero mean : -250,973 ARIMA(0,0,0) with non-zero mean : -1.795,439

ARIMA(0,0,1) with zero mean : -250,912 ARIMA(0,0,1) with zero mean : -1.804,383

ARIMA(0,0,1) with non-zero mean : -248,974 ARIMA(0,0,1) with non-zero mean : -1.802,388

ARIMA(0,0,2) with zero mean : -249,257 ARIMA(0,0,2) with zero mean : -1.806,140

ARIMA(0,0,2) with non-zero mean : -247,330 ARIMA(0,0,2) with non-zero mean : -1.804,144

ARIMA(0,0,3) with zero mean : -248,120 ARIMA(0,0,3) with zero mean : -1.804,333

ARIMA(0,0,3) with non-zero mean : -246,182 ARIMA(0,0,3) with non-zero mean : -1.802,338

ARIMA(0,0,4) with zero mean : -246,189 ARIMA(0,0,4) with zero mean : -1.802,564

ARIMA(0,0,4) with non-zero mean : -244,255 ARIMA(0,0,4) with non-zero mean : -1.800,568

ARIMA(0,0,5) with zero mean : -244,357 ARIMA(0,0,5) with zero mean : -1.802,113

ARIMA(0,0,5) with non-zero mean : -242,413 ARIMA(0,0,5) with non-zero mean : -1.800,117

ARIMA(1,0,0) with zero mean : -250,912 ARIMA(1,0,0) with zero mean : -1.805,643

ARIMA(1,0,0) with non-zero mean : -248,974 ARIMA(1,0,0) with non-zero mean : -1.803,649

ARIMA(1,0,1) with zero mean : Inf ARIMA(1,0,1) with zero mean : -1.804,497

ARIMA(1,0,1) with non-zero mean : -246,990 ARIMA(1,0,1) with non-zero mean : -1.802,502

ARIMA(1,0,2) with zero mean : -248,114 ARIMA(1,0,2) with zero mean : -1.804,290

ARIMA(1,0,2) with non-zero mean : -246,186 ARIMA(1,0,2) with non-zero mean : -1.802,291

ARIMA(1,0,3) with zero mean : -246,286 ARIMA(1,0,3) with zero mean : -1.802,867

ARIMA(1,0,3) with non-zero mean : -244,352 ARIMA(1,0,3) with non-zero mean : -1.800,871

ARIMA(1,0,4) with zero mean : -244,287 ARIMA(1,0,4) with zero mean : -1.801,087

ARIMA(1,0,4) with non-zero mean : -242,353 ARIMA(1,0,4) with non-zero mean : -1.799,096

ARIMA(1,0,5) with zero mean : -242,403 ARIMA(1,0,5) with zero mean : -1.800,114

ARIMA(1,0,5) with non-zero mean : -240,461 ARIMA(1,0,5) with non-zero mean : -1.798,117

ARIMA(2,0,0) with zero mean : -249,231 ARIMA(2,0,0) with zero mean : -1.805,263

ARIMA(2,0,0) with non-zero mean : -247,303 ARIMA(2,0,0) with non-zero mean : -1.803,267

ARIMA(2,0,1) with zero mean : -248,154 ARIMA(2,0,1) with zero mean : -1.804,089

ARIMA(2,0,1) with non-zero mean : -246,226 ARIMA(2,0,1) with non-zero mean : -1.802,092

ARIMA(2,0,2) with zero mean : Inf ARIMA(2,0,2) with zero mean : -1.802,283

ARIMA(2,0,2) with non-zero mean : Inf ARIMA(2,0,2) with non-zero mean : -1.800,287

ARIMA(2,0,3) with zero mean : Inf ARIMA(2,0,3) with zero mean : Inf

ARIMA(2,0,3) with non-zero mean : Inf ARIMA(2,0,3) with non-zero mean : -1.799,557

ARIMA(2,0,4) with zero mean : Inf ARIMA(2,0,4) with zero mean : Inf

ARIMA(2,0,4) with non-zero mean : Inf ARIMA(2,0,4) with non-zero mean : Inf

ARIMA(2,0,5) with zero mean : -240,324 ARIMA(2,0,5) with zero mean : Inf

ARIMA(2,0,5) with non-zero mean : Inf ARIMA(2,0,5) with non-zero mean : Inf

ARIMA(3,0,0) with zero mean : -247,912 ARIMA(3,0,0) with zero mean : -1.804,731

ARIMA(3,0,0) with non-zero mean : -245,974 ARIMA(3,0,0) with non-zero mean : -1.802,735

ARIMA(3,0,1) with zero mean : -246,318 ARIMA(3,0,1) with zero mean : -1.803,258

ARIMA(3,0,1) with non-zero mean : -244,384 ARIMA(3,0,1) with non-zero mean : -1.801,262

ARIMA(3,0,2) with zero mean : -244,418 ARIMA(3,0,2) with zero mean : Inf

ARIMA(3,0,2) with non-zero mean : Inf ARIMA(3,0,2) with non-zero mean : -1.799,552

ARIMA(3,0,3) with zero mean : Inf ARIMA(3,0,3) with zero mean : Inf

ARIMA(3,0,3) with non-zero mean : Inf ARIMA(3,0,3) with non-zero mean : Inf

ARIMA(3,0,4) with zero mean : Inf ARIMA(3,0,4) with zero mean : Inf

ARIMA(3,0,4) with non-zero mean : Inf ARIMA(3,0,4) with non-zero mean : Inf

ARIMA(3,0,5) with zero mean : Inf ARIMA(3,0,5) with zero mean : Inf

ARIMA(3,0,5) with non-zero mean : Inf ARIMA(3,0,5) with non-zero mean : Inf

ARIMA(4,0,0) with zero mean : -246,033 ARIMA(4,0,0) with zero mean : -1.803,152

ARIMA(4,0,0) with non-zero mean : -244,101 ARIMA(4,0,0) with non-zero mean : -1.801,156

ARIMA(4,0,1) with zero mean : -244,244 ARIMA(4,0,1) with zero mean : Inf

ARIMA(4,0,1) with non-zero mean : -242,309 ARIMA(4,0,1) with non-zero mean : Inf

ARIMA(4,0,2) with zero mean : -242,450 ARIMA(4,0,2) with zero mean : Inf

ARIMA(4,0,2) with non-zero mean : -240,483 ARIMA(4,0,2) with non-zero mean : Inf

ARIMA(4,0,3) with zero mean : Inf ARIMA(4,0,3) with zero mean : Inf

ARIMA(4,0,3) with non-zero mean : Inf ARIMA(4,0,3) with non-zero mean : Inf

ARIMA(4,0,4) with zero mean : Inf ARIMA(4,0,4) with zero mean : Inf

ARIMA(4,0,4) with non-zero mean : Inf ARIMA(4,0,4) with non-zero mean : Inf

ARIMA(4,0,5) with zero mean : Inf ARIMA(4,0,5) with zero mean : -1.798,582

ARIMA(4,0,5) with non-zero mean : Inf ARIMA(4,0,5) with non-zero mean : -1.796,585

ARIMA(5,0,0) with zero mean : -244,474 ARIMA(5,0,0) with zero mean : -1.801,679

ARIMA(5,0,0) with non-zero mean : -242,525 ARIMA(5,0,0) with non-zero mean : -1.799,683

ARIMA(5,0,1) with zero mean : -242,595 ARIMA(5,0,1) with zero mean : -1.799,741

ARIMA(5,0,1) with non-zero mean : -240,649 ARIMA(5,0,1) with non-zero mean : -1.797,744

ARIMA(5,0,2) with zero mean : Inf ARIMA(5,0,2) with zero mean : -1.801,334

ARIMA(5,0,2) with non-zero mean : Inf ARIMA(5,0,2) with non-zero mean : -1.799,337

ARIMA(5,0,3) with zero mean : Inf ARIMA(5,0,3) with zero mean : -1.799,747

ARIMA(5,0,3) with non-zero mean : Inf ARIMA(5,0,3) with non-zero mean : -1.797,754

ARIMA(5,0,4) with zero mean : Inf ARIMA(5,0,4) with zero mean : Inf

ARIMA(5,0,4) with non-zero mean : Inf ARIMA(5,0,4) with non-zero mean : Inf

ARIMA(5,0,5) with zero mean : Inf ARIMA(5,0,5) with zero mean : Inf

ARIMA(5,0,5) with non-zero mean : Inf ARIMA(5,0,5) with non-zero mean : Inf

Monthly

Best model: ARIMA(0,0,0) with zero mean

Weekly

Best model: ARIMA(0,0,2) with zero mean     
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Table 2: Information Technology results from auto.arima function in R 

 

Model Mean AIC Model Mean 0 AIC

ARIMA(0,0,0) with zero mean : -373,654 ARIMA(0,0,0) with zero mean     : -2.340,128

ARIMA(0,0,0) with non-zero mean : -373,206 ARIMA(0,0,0) with non-zero mean : -2.340,264

ARIMA(0,0,1) with zero mean : -371,668 ARIMA(0,0,1) with zero mean : -2.342,002

ARIMA(0,0,1) with non-zero mean : -371,206 ARIMA(0,0,1) with non-zero mean : -2.342,571

ARIMA(0,0,2) with zero mean : -370,516 ARIMA(0,0,2) with zero mean : -2.340,073

ARIMA(0,0,2) with non-zero mean : -369,844 ARIMA(0,0,2) with non-zero mean : -2.340,604

ARIMA(0,0,3) with zero mean : -369,174 ARIMA(0,0,3) with zero mean : -2.340,275

ARIMA(0,0,3) with non-zero mean : -368,685 ARIMA(0,0,3) with non-zero mean : -2.340,593

ARIMA(0,0,4) with zero mean : -367,886 ARIMA(0,0,4) with zero mean : -2.339,872

ARIMA(0,0,4) with non-zero mean : -367,533 ARIMA(0,0,4) with non-zero mean : -2.340,026

ARIMA(0,0,5) with zero mean : -366,565 ARIMA(0,0,5) with zero mean : -2.338,072

ARIMA(0,0,5) with non-zero mean : -366,098 ARIMA(0,0,5) with non-zero mean : -2.338,169

ARIMA(1,0,0) with zero mean : -371,670 ARIMA(1,0,0) with zero mean : -2.342,022

ARIMA(1,0,0) with non-zero mean : -371,206 ARIMA(1,0,0) with non-zero mean : -2.342,557

ARIMA(1,0,1) with zero mean : -369,733 ARIMA(1,0,1) with zero mean : -2.340,030

ARIMA(1,0,1) with non-zero mean : -369,314 ARIMA(1,0,1) with non-zero mean : -2.340,585

ARIMA(1,0,2) with zero mean : -368,734 ARIMA(1,0,2) with zero mean : -2.341,221

ARIMA(1,0,2) with non-zero mean : -368,085 ARIMA(1,0,2) with non-zero mean : -2.341,082

ARIMA(1,0,3) with zero mean : -367,391 ARIMA(1,0,3) with zero mean : -2.341,420

ARIMA(1,0,3) with non-zero mean : -366,988 ARIMA(1,0,3) with non-zero mean : -2.341,207

ARIMA(1,0,4) with zero mean : -366,259 ARIMA(1,0,4) with zero mean : -2.339,709

ARIMA(1,0,4) with non-zero mean : -365,869 ARIMA(1,0,4) with non-zero mean : -2.339,476

ARIMA(1,0,5) with zero mean : -368,087 ARIMA(1,0,5) with zero mean : -2.337,821

ARIMA(1,0,5) with non-zero mean : -366,823 ARIMA(1,0,5) with non-zero mean : -2.337,568

ARIMA(2,0,0) with zero mean : -370,342 ARIMA(2,0,0) with zero mean : -2.340,045

ARIMA(2,0,0) with non-zero mean : -369,719 ARIMA(2,0,0) with non-zero mean : -2.340,622

ARIMA(2,0,1) with zero mean : -368,480 ARIMA(2,0,1) with zero mean : -2.338,170

ARIMA(2,0,1) with non-zero mean : -367,872 ARIMA(2,0,1) with non-zero mean : -2.338,774

ARIMA(2,0,2) with zero mean : Inf ARIMA(2,0,2) with zero mean : -2.343,425

ARIMA(2,0,2) with non-zero mean : Inf ARIMA(2,0,2) with non-zero mean : -2.343,262

ARIMA(2,0,3) with zero mean : Inf ARIMA(2,0,3) with zero mean : -2.341,662

ARIMA(2,0,3) with non-zero mean : Inf ARIMA(2,0,3) with non-zero mean : -2.341,568

ARIMA(2,0,4) with zero mean : Inf ARIMA(2,0,4) with zero mean : -2.338,056

ARIMA(2,0,4) with non-zero mean : Inf ARIMA(2,0,4) with non-zero mean : -2.337,837

ARIMA(2,0,5) with zero mean : -368,044 ARIMA(2,0,5) with zero mean : -2.336,234

ARIMA(2,0,5) with non-zero mean : -367,140 ARIMA(2,0,5) with non-zero mean : -2.335,975

ARIMA(3,0,0) with zero mean : -368,841 ARIMA(3,0,0) with zero mean : -2.339,786

ARIMA(3,0,0) with non-zero mean : -368,356 ARIMA(3,0,0) with non-zero mean : -2.340,111

ARIMA(3,0,1) with zero mean : -367,079 ARIMA(3,0,1) with zero mean : -2.340,767

ARIMA(3,0,1) with non-zero mean : -366,717 ARIMA(3,0,1) with non-zero mean : -2.340,595

ARIMA(3,0,2) with zero mean : Inf ARIMA(3,0,2) with zero mean : -2.341,651

ARIMA(3,0,2) with non-zero mean : Inf ARIMA(3,0,2) with non-zero mean : -2.341,554

ARIMA(3,0,3) with zero mean : Inf ARIMA(3,0,3) with zero mean : Inf

ARIMA(3,0,3) with non-zero mean : Inf ARIMA(3,0,3) with non-zero mean : Inf

ARIMA(3,0,4) with zero mean : Inf ARIMA(3,0,4) with zero mean : Inf

ARIMA(3,0,4) with non-zero mean : Inf ARIMA(3,0,4) with non-zero mean : -2.338,034

ARIMA(3,0,5) with zero mean : Inf ARIMA(3,0,5) with zero mean : Inf

ARIMA(3,0,5) with non-zero mean : Inf ARIMA(3,0,5) with non-zero mean : Inf

ARIMA(4,0,0) with zero mean : -367,629 ARIMA(4,0,0) with zero mean : -2.340,114

ARIMA(4,0,0) with non-zero mean : -367,327 ARIMA(4,0,0) with non-zero mean : -2.340,182

ARIMA(4,0,1) with zero mean : -366,191 ARIMA(4,0,1) with zero mean : -2.339,214

ARIMA(4,0,1) with non-zero mean : -365,832 ARIMA(4,0,1) with non-zero mean : -2.339,024

ARIMA(4,0,2) with zero mean : Inf ARIMA(4,0,2) with zero mean : Inf

ARIMA(4,0,2) with non-zero mean : Inf ARIMA(4,0,2) with non-zero mean : Inf

ARIMA(4,0,3) with zero mean : Inf ARIMA(4,0,3) with zero mean : -2.338,057

ARIMA(4,0,3) with non-zero mean : Inf ARIMA(4,0,3) with non-zero mean : Inf

ARIMA(4,0,4) with zero mean : Inf ARIMA(4,0,4) with zero mean : Inf

ARIMA(4,0,4) with non-zero mean : Inf ARIMA(4,0,4) with non-zero mean : Inf

ARIMA(4,0,5) with zero mean : Inf ARIMA(4,0,5) with zero mean : Inf

ARIMA(4,0,5) with non-zero mean : Inf ARIMA(4,0,5) with non-zero mean : Inf

ARIMA(5,0,0) with zero mean : -366,389 ARIMA(5,0,0) with zero mean : -2.338,362

ARIMA(5,0,0) with non-zero mean : -365,881 ARIMA(5,0,0) with non-zero mean : -2.338,357

ARIMA(5,0,1) with zero mean : -365,701 ARIMA(5,0,1) with zero mean : -2.337,216

ARIMA(5,0,1) with non-zero mean : -364,489 ARIMA(5,0,1) with non-zero mean : -2.337,025

ARIMA(5,0,2) with zero mean : -363,816 ARIMA(5,0,2) with zero mean : -2.337,955

ARIMA(5,0,2) with non-zero mean : -362,629 ARIMA(5,0,2) with non-zero mean : -2.337,836

ARIMA(5,0,3) with zero mean : Inf ARIMA(5,0,3) with zero mean : -2.336,274

ARIMA(5,0,3) with non-zero mean : Inf ARIMA(5,0,3) with non-zero mean : -2.336,281

ARIMA(5,0,4) with zero mean : Inf ARIMA(5,0,4) with zero mean : Inf

ARIMA(5,0,4) with non-zero mean : Inf ARIMA(5,0,4) with non-zero mean : Inf

ARIMA(5,0,5) with zero mean : Inf ARIMA(5,0,5) with zero mean    : Inf

ARIMA(5,0,5) with non-zero mean : Inf ARIMA(5,0,5) with non-zero mean : Inf

Monthly

Best model: ARIMA (0,0,0) with zero mean

Weekly

Best model: ARIMA (2,0,2) with zero mean
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Table 3: Packaged software results from auto.arima function in R 

 

Model Mean AIC Model Mean AIC

ARIMA(0,0,0) with zero mean     : -328,312 ARIMA(0,0,0) with zero mean     : -2.114,316

ARIMA(0,0,0) with non-zero mean : -333,773 ARIMA(0,0,0) with non-zero mean : -2.123,090

ARIMA(0,0,1) with zero mean : -331,137 ARIMA(0,0,1) with zero mean : -2.112,326

ARIMA(0,0,1) with non-zero mean : -334,601 ARIMA(0,0,1) with non-zero mean : -2.121,376

ARIMA(0,0,2) with zero mean : -329,165 ARIMA(0,0,2) with zero mean : -2.118,253

ARIMA(0,0,2) with non-zero mean : -332,765 ARIMA(0,0,2) with non-zero mean : -2.125,585

ARIMA(0,0,3) with zero mean : -327,198 ARIMA(0,0,3) with zero mean : -2.122,046

ARIMA(0,0,3) with non-zero mean : -331,721 ARIMA(0,0,3) with non-zero mean : -2.127,968

ARIMA(0,0,4) with zero mean : -326,110 ARIMA(0,0,4) with zero mean : -2.122,597

ARIMA(0,0,4) with non-zero mean : -329,736 ARIMA(0,0,4) with non-zero mean : -2.127,622

ARIMA(0,0,5) with zero mean : -324,479 ARIMA(0,0,5) with zero mean : -2.120,610

ARIMA(0,0,5) with non-zero mean : -329,341 ARIMA(0,0,5) with non-zero mean : -2.125,813

ARIMA(1,0,0) with zero mean : -331,078 ARIMA(1,0,0) with zero mean : -2.112,328

ARIMA(1,0,0) with non-zero mean : -334,282 ARIMA(1,0,0) with non-zero mean : -2.121,438

ARIMA(1,0,1) with zero mean : -329,163 ARIMA(1,0,1) with zero mean : -2.114,272

ARIMA(1,0,1) with non-zero mean : -332,693 ARIMA(1,0,1) with non-zero mean : -2.123,532

ARIMA(1,0,2) with zero mean : Inf ARIMA(1,0,2) with zero mean : -2.123,721

ARIMA(1,0,2) with non-zero mean : Inf ARIMA(1,0,2) with non-zero mean : -2.128,286

ARIMA(1,0,3) with zero mean : -325,317 ARIMA(1,0,3) with zero mean : -2.122,403

ARIMA(1,0,3) with non-zero mean : -329,760 ARIMA(1,0,3) with non-zero mean : -2.127,132

ARIMA(1,0,4) with zero mean : -324,147 ARIMA(1,0,4) with zero mean : -2.124,459

ARIMA(1,0,4) with non-zero mean : -327,762 ARIMA(1,0,4) with non-zero mean : -2.129,906

ARIMA(1,0,5) with zero mean : -324,327 ARIMA(1,0,5) with zero mean : -2.122,535

ARIMA(1,0,5) with non-zero mean : -331,760 ARIMA(1,0,5) with non-zero mean : -2.127,907

ARIMA(2,0,0) with zero mean : -329,158 ARIMA(2,0,0) with zero mean : -2.118,743

ARIMA(2,0,0) with non-zero mean : -332,966 ARIMA(2,0,0) with non-zero mean : -2.125,456

ARIMA(2,0,1) with zero mean : Inf ARIMA(2,0,1) with zero mean : -2.122,522

ARIMA(2,0,1) with non-zero mean : -333,919 ARIMA(2,0,1) with non-zero mean : -2.127,047

ARIMA(2,0,2) with zero mean : Inf ARIMA(2,0,2) with zero mean : -2.122,483

ARIMA(2,0,2) with non-zero mean : Inf ARIMA(2,0,2) with non-zero mean : -2.127,451

ARIMA(2,0,3) with zero mean : Inf ARIMA(2,0,3) with zero mean : -2.120,481

ARIMA(2,0,3) with non-zero mean : Inf ARIMA(2,0,3) with non-zero mean : Inf

ARIMA(2,0,4) with zero mean : -326,213 ARIMA(2,0,4) with zero mean : -2.122,671

ARIMA(2,0,4) with non-zero mean : Inf ARIMA(2,0,4) with non-zero mean : -2.127,907

ARIMA(2,0,5) with zero mean : -325,707 ARIMA(2,0,5) with zero mean : -2.121,018

ARIMA(2,0,5) with non-zero mean : -331,942 ARIMA(2,0,5) with non-zero mean : Inf

ARIMA(3,0,0) with zero mean : -327,185 ARIMA(3,0,0) with zero mean : -2.122,699

ARIMA(3,0,0) with non-zero mean : -331,090 ARIMA(3,0,0) with non-zero mean : -2.127,756

ARIMA(3,0,1) with zero mean : Inf ARIMA(3,0,1) with zero mean : -2.121,791

ARIMA(3,0,1) with non-zero mean : -329,150 ARIMA(3,0,1) with non-zero mean : -2.126,292

ARIMA(3,0,2) with zero mean : Inf ARIMA(3,0,2) with zero mean : -2.120,483

ARIMA(3,0,2) with non-zero mean : Inf ARIMA(3,0,2) with non-zero mean : -2.125,480

ARIMA(3,0,3) with zero mean : Inf ARIMA(3,0,3) with zero mean : -2.120,844

ARIMA(3,0,3) with non-zero mean : Inf ARIMA(3,0,3) with non-zero mean : Inf

ARIMA(3,0,4) with zero mean : Inf ARIMA(3,0,4) with zero mean : -2.121,589

ARIMA(3,0,4) with non-zero mean : Inf ARIMA(3,0,4) with non-zero mean : -2.126,361

ARIMA(3,0,5) with zero mean : -323,971 ARIMA(3,0,5) with zero mean : Inf

ARIMA(3,0,5) with non-zero mean : -331,052 ARIMA(3,0,5) with non-zero mean : Inf

ARIMA(4,0,0) with zero mean : -325,425 ARIMA(4,0,0) with zero mean : -2.122,666

ARIMA(4,0,0) with non-zero mean : -329,092 ARIMA(4,0,0) with non-zero mean : -2.126,969

ARIMA(4,0,1) with zero mean : -323,609 ARIMA(4,0,1) with zero mean : -2.125,130

ARIMA(4,0,1) with non-zero mean : -330,204 ARIMA(4,0,1) with non-zero mean : -2.129,660

ARIMA(4,0,2) with zero mean : Inf ARIMA(4,0,2) with zero mean : -2.123,193

ARIMA(4,0,2) with non-zero mean : -329,909 ARIMA(4,0,2) with non-zero mean : -2.127,996

ARIMA(4,0,3) with zero mean : Inf ARIMA(4,0,3) with zero mean : -2.121,526

ARIMA(4,0,3) with non-zero mean : Inf ARIMA(4,0,3) with non-zero mean : -2.126,121

ARIMA(4,0,4) with zero mean : Inf ARIMA(4,0,4) with zero mean : -2.119,612

ARIMA(4,0,4) with non-zero mean : Inf ARIMA(4,0,4) with non-zero mean : -2.126,377

ARIMA(4,0,5) with zero mean : Inf ARIMA(4,0,5) with zero mean : Inf

ARIMA(4,0,5) with non-zero mean : Inf ARIMA(4,0,5) with non-zero mean : Inf

ARIMA(5,0,0) with zero mean : -325,077 ARIMA(5,0,0) with zero mean : -2.121,647

ARIMA(5,0,0) with non-zero mean : -330,430 ARIMA(5,0,0) with non-zero mean : -2.126,645

ARIMA(5,0,1) with zero mean : -323,845 ARIMA(5,0,1) with zero mean : -2.123,171

ARIMA(5,0,1) with non-zero mean : -331,263 ARIMA(5,0,1) with non-zero mean : -2.127,913

ARIMA(5,0,2) with zero mean : -325,242 ARIMA(5,0,2) with zero mean : Inf

ARIMA(5,0,2) with non-zero mean : -331,312 ARIMA(5,0,2) with non-zero mean : -2.129,029

ARIMA(5,0,3) with zero mean : -323,262 ARIMA(5,0,3) with zero mean : -2.119,539

ARIMA(5,0,3) with non-zero mean : Inf ARIMA(5,0,3) with non-zero mean : -2.127,046

ARIMA(5,0,4) with zero mean : Inf ARIMA(5,0,4) with zero mean : Inf

ARIMA(5,0,4) with non-zero mean : -327,582 ARIMA(5,0,4) with non-zero mean : Inf

ARIMA(5,0,5) with zero mean : Inf ARIMA(5,0,5) with zero mean : Inf

ARIMA(5,0,5) with non-zero mean : Inf ARIMA(5,0,5) with non-zero mean : Inf

Monthly

Best model: ARIMA (0,0,1) with non-zero mean

Weekly

Best model: ARIMA(1,0,4) with non-zero mean
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Table 4: Real Estate Development results from auto.arima function in R 

 

Model Mean AIC Model Mean AIC

ARIMA(0,0,0) with zero mean : -393,383 ARIMA(0,0,0) with zero mean     : -2.508,252

ARIMA(0,0,0) with non-zero mean : -395,183 ARIMA(0,0,0) with non-zero mean : -2.516,576

ARIMA(0,0,1) with zero mean : -388,600 ARIMA(0,0,1) with zero mean : -2.510,051

ARIMA(0,0,1) with non-zero mean : -390,800 ARIMA(0,0,1) with non-zero mean : -2.517,073

ARIMA(0,0,2) with zero mean : -386,235 ARIMA(0,0,2) with zero mean : -2.509,700

ARIMA(0,0,2) with non-zero mean : -387,270 ARIMA(0,0,2) with non-zero mean : -2.515,976

ARIMA(0,0,3) with zero mean : -384,235 ARIMA(0,0,3) with zero mean : -2.509,631

ARIMA(0,0,3) with non-zero mean : -383,940 ARIMA(0,0,3) with non-zero mean : -2.515,047

ARIMA(0,0,4) with zero mean : -380,562 ARIMA(0,0,4) with zero mean : -2.507,722

ARIMA(0,0,4) with non-zero mean : -381,638 ARIMA(0,0,4) with non-zero mean : -2.513,545

ARIMA(0,0,5) with zero mean : -375,847 ARIMA(0,0,5) with zero mean : -2.505,731

ARIMA(0,0,5) with non-zero mean : -376,856 ARIMA(0,0,5) with non-zero mean : -2.511,632

ARIMA(1,0,0) with zero mean : -388,601 ARIMA(1,0,0) with zero mean : -2.510,475

ARIMA(1,0,0) with non-zero mean : -390,861 ARIMA(1,0,0) with non-zero mean : -2.517,274

ARIMA(1,0,1) with zero mean : -383,885 ARIMA(1,0,1) with zero mean : -2.510,216

ARIMA(1,0,1) with non-zero mean : -386,176 ARIMA(1,0,1) with non-zero mean : -2.516,009

ARIMA(1,0,2) with zero mean : -382,613 ARIMA(1,0,2) with zero mean : -2.508,580

ARIMA(1,0,2) with non-zero mean : -382,863 ARIMA(1,0,2) with non-zero mean : -2.514,289

ARIMA(1,0,3) with zero mean : -380,362 ARIMA(1,0,3) with zero mean : -2.507,790

ARIMA(1,0,3) with non-zero mean : -380,444 ARIMA(1,0,3) with non-zero mean : -2.513,515

ARIMA(1,0,4) with zero mean : -375,817 ARIMA(1,0,4) with zero mean : Inf

ARIMA(1,0,4) with non-zero mean : -376,856 ARIMA(1,0,4) with non-zero mean : -2.512,971

ARIMA(1,0,5) with zero mean     : inf ARIMA(1,0,5) with zero mean : Inf

ARIMA(1,0,5) with non-zero mean : Inf ARIMA(1,0,5) with non-zero mean : -2.510,987

ARIMA(2,0,0) with zero mean : -385,511 ARIMA(2,0,0) with zero mean : -2.510,109

ARIMA(2,0,0) with non-zero mean : -386,632 ARIMA(2,0,0) with non-zero mean : -2.516,109

ARIMA(2,0,1) with zero mean : -381,901 ARIMA(2,0,1) with zero mean : -2.508,507

ARIMA(2,0,1) with non-zero mean : -382,195 ARIMA(2,0,1) with non-zero mean : -2.514,227

ARIMA(2,0,2) with zero mean : Inf ARIMA(2,0,2) with zero mean : Inf

ARIMA(2,0,2) with non-zero mean : Inf ARIMA(2,0,2) with non-zero mean : Inf

ARIMA(2,0,3) with zero mean : Inf ARIMA(2,0,3) with zero mean : -2.505,831

ARIMA(2,0,3) with non-zero mean : Inf ARIMA(2,0,3) with non-zero mean : Inf

ARIMA(2,0,4) with zero mean : Inf ARIMA(2,0,4) with zero mean : Inf

ARIMA(2,0,4) with non-zero mean : Inf ARIMA(2,0,4) with non-zero mean : -2.510,953

ARIMA(2,0,5) with zero mean : Inf ARIMA(2,0,5) with zero mean : -2.501,949

ARIMA(2,0,5) with non-zero mean : Inf ARIMA(2,0,5) with non-zero mean : -2.509,071

ARIMA(3,0,0) with zero mean : -383,807 ARIMA(3,0,0) with zero mean : -2.509,119

ARIMA(3,0,0) with non-zero mean : -383,657 ARIMA(3,0,0) with non-zero mean : -2.514,561

ARIMA(3,0,1) with zero mean : -379,636 ARIMA(3,0,1) with zero mean : -2.507,796

ARIMA(3,0,1) with non-zero mean : -379,735 ARIMA(3,0,1) with non-zero mean : -2.513,359

ARIMA(3,0,2) with zero mean : Inf ARIMA(3,0,2) with zero mean : -2.505,893

ARIMA(3,0,2) with non-zero mean : Inf ARIMA(3,0,2) with non-zero mean : -2.512,023

ARIMA(3,0,3) with zero mean : Inf ARIMA(3,0,3) with zero mean : Inf

ARIMA(3,0,3) with non-zero mean : Inf ARIMA(3,0,3) with non-zero mean : Inf

ARIMA(3,0,4) with zero mean : Inf ARIMA(3,0,4) with zero mean : Inf

ARIMA(3,0,4) with non-zero mean : Inf ARIMA(3,0,4) with non-zero mean : Inf

ARIMA(3,0,5) with zero mean : Inf ARIMA(3,0,5) with zero mean : Inf

ARIMA(3,0,5) with non-zero mean : Inf ARIMA(3,0,5) with non-zero mean : Inf

ARIMA(4,0,0) with zero mean : -380,084 ARIMA(4,0,0) with zero mean : -2.507,814

ARIMA(4,0,0) with non-zero mean : -380,971 ARIMA(4,0,0) with non-zero mean : -2.513,928

ARIMA(4,0,1) with zero mean : -375,371 ARIMA(4,0,1) with zero mean : -2.506,059

ARIMA(4,0,1) with non-zero mean : -376,725 ARIMA(4,0,1) with non-zero mean : -2.513,196

ARIMA(4,0,2) with zero mean : Inf ARIMA(4,0,2) with zero mean : Inf

ARIMA(4,0,2) with non-zero mean : -372,459 ARIMA(4,0,2) with non-zero mean : Inf

ARIMA(4,0,3) with zero mean : Inf ARIMA(4,0,3) with zero mean : Inf

ARIMA(4,0,3) with non-zero mean : Inf ARIMA(4,0,3) with non-zero mean : Inf

ARIMA(4,0,4) with zero mean : Inf ARIMA(4,0,4) with zero mean : Inf

ARIMA(4,0,4) with non-zero mean : Inf ARIMA(4,0,4) with non-zero mean : Inf

ARIMA(4,0,5) with zero mean : Inf ARIMA(4,0,5) with zero mean : Inf

ARIMA(4,0,5) with non-zero mean : Inf ARIMA(4,0,5) with non-zero mean : Inf

ARIMA(5,0,0) with zero mean : -375,499 ARIMA(5,0,0) with zero mean : -2.505,824

ARIMA(5,0,0) with non-zero mean : -377,119 ARIMA(5,0,0) with non-zero mean : -2.512,140

ARIMA(5,0,1) with zero mean : -370,790 ARIMA(5,0,1) with zero mean : -2.505,614

ARIMA(5,0,1) with non-zero mean : -372,344 ARIMA(5,0,1) with non-zero mean : -2.511,602

ARIMA(5,0,2) with zero mean : Inf ARIMA(5,0,2) with zero mean : -2.503,953

ARIMA(5,0,2) with non-zero mean : Inf ARIMA(5,0,2) with non-zero mean : -2.511,033

ARIMA(5,0,3) with zero mean : Inf ARIMA(5,0,3) with zero mean : Inf

ARIMA(5,0,3) with non-zero mean : Inf ARIMA(5,0,3) with non-zero mean : Inf

ARIMA(5,0,4) with zero mean     : Inf ARIMA(5,0,4) with zero mean : Inf

ARIMA(5,0,4) with non-zero mean : Inf ARIMA(5,0,4) with non-zero mean : Inf

ARIMA(5,0,5) with zero mean : Inf ARIMA(5,0,5) with zero mean : Inf

ARIMA(5,0,5) with non-zero mean : Inf ARIMA(5,0,5) with non-zero mean : Inf

Monthly

Best model: ARIMA (0,0,0) with non-zero mean

Weekly

Best model: ARIMA(1,0,0) with non-zero mean
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Table 5: Industrial Machinery results from auto.arima function in R 

 

Model Mean AIC Model Mean AIC

ARIMA(0,0,0) with zero mean     : -312,618 ARIMA(0,0,0) with zero mean     : -2.051,605

ARIMA(0,0,0) with non-zero mean : -313,648 ARIMA(0,0,0) with non-zero mean : -2.055,845

ARIMA(0,0,1) with zero mean : -311,972 ARIMA(0,0,1) with zero mean : -2.049,663

ARIMA(0,0,1) with non-zero mean : -312,552 ARIMA(0,0,1) with non-zero mean : -2.054,105

ARIMA(0,0,2) with zero mean : -312,288 ARIMA(0,0,2) with zero mean : -2.048,732

ARIMA(0,0,2) with non-zero mean : -312,338 ARIMA(0,0,2) with non-zero mean : -2.052,774

ARIMA(0,0,3) with zero mean : -312,560 ARIMA(0,0,3) with zero mean : -2.048,918

ARIMA(0,0,3) with non-zero mean : -312,144 ARIMA(0,0,3) with non-zero mean : -2.052,392

ARIMA(0,0,4) with zero mean : -311,404 ARIMA(0,0,4) with zero mean : -2.048,408

ARIMA(0,0,4) with non-zero mean : -311,298 ARIMA(0,0,4) with non-zero mean : -2.051,459

ARIMA(0,0,5) with zero mean : -309,696 ARIMA(0,0,5) with zero mean : -2.046,408

ARIMA(0,0,5) with non-zero mean : -309,454 ARIMA(0,0,5) with non-zero mean : -2.049,487

ARIMA(1,0,0) with zero mean : -312,318 ARIMA(1,0,0) with zero mean : -2.049,669

ARIMA(1,0,0) with non-zero mean : -312,750 ARIMA(1,0,0) with non-zero mean : -2.054,123

ARIMA(1,0,1) with zero mean : -312,833 ARIMA(1,0,1) with zero mean : -2.054,784

ARIMA(1,0,1) with non-zero mean : -312,250 ARIMA(1,0,1) with non-zero mean : -2.052,255

ARIMA(1,0,2) with zero mean : -311,414 ARIMA(1,0,2) with zero mean : -2.055,063

ARIMA(1,0,2) with non-zero mean : -311,080 ARIMA(1,0,2) with non-zero mean : -2.055,723

ARIMA(1,0,3) with zero mean : -311,268 ARIMA(1,0,3) with zero mean : -2.053,224

ARIMA(1,0,3) with non-zero mean : -310,945 ARIMA(1,0,3) with non-zero mean : -2.053,968

ARIMA(1,0,4) with zero mean : -309,490 ARIMA(1,0,4) with zero mean : -2.051,229

ARIMA(1,0,4) with non-zero mean : -309,355 ARIMA(1,0,4) with non-zero mean : -2.051,969

ARIMA(1,0,5) with zero mean : -308,299 ARIMA(1,0,5) with zero mean : -2.049,240

ARIMA(1,0,5) with non-zero mean : -307,655 ARIMA(1,0,5) with non-zero mean : -2.049,970

ARIMA(2,0,0) with zero mean : -312,523 ARIMA(2,0,0) with zero mean : -2.048,783

ARIMA(2,0,0) with non-zero mean : -312,362 ARIMA(2,0,0) with non-zero mean : -2.052,743

ARIMA(2,0,1) with zero mean : -311,226 ARIMA(2,0,1) with zero mean : -2.054,954

ARIMA(2,0,1) with non-zero mean : -310,783 ARIMA(2,0,1) with non-zero mean : -2.055,572

ARIMA(2,0,2) with zero mean : -309,756 ARIMA(2,0,2) with zero mean : Inf

ARIMA(2,0,2) with non-zero mean : -309,721 ARIMA(2,0,2) with non-zero mean : Inf

ARIMA(2,0,3) with zero mean : -311,420 ARIMA(2,0,3) with zero mean : -2.047,016

ARIMA(2,0,3) with non-zero mean : Inf ARIMA(2,0,3) with non-zero mean : -2.050,910

ARIMA(2,0,4) with zero mean : Inf ARIMA(2,0,4) with zero mean : -2.046,299

ARIMA(2,0,4) with non-zero mean : Inf ARIMA(2,0,4) with non-zero mean : -2.049,792

ARIMA(2,0,5) with zero mean : -308,448 ARIMA(2,0,5) with zero mean : -2.046,034

ARIMA(2,0,5) with non-zero mean : Inf ARIMA(2,0,5) with non-zero mean : Inf

ARIMA(3,0,0) with zero mean : -312,130 ARIMA(3,0,0) with zero mean : -2.049,086

ARIMA(3,0,0) with non-zero mean : -311,583 ARIMA(3,0,0) with non-zero mean : -2.052,364

ARIMA(3,0,1) with zero mean : -311,103 ARIMA(3,0,1) with zero mean : -2.053,232

ARIMA(3,0,1) with non-zero mean : -310,607 ARIMA(3,0,1) with non-zero mean : -2.053,960

ARIMA(3,0,2) with zero mean : -312,222 ARIMA(3,0,2) with zero mean : Inf

ARIMA(3,0,2) with non-zero mean : Inf ARIMA(3,0,2) with non-zero mean : -2.050,953

ARIMA(3,0,3) with zero mean : Inf ARIMA(3,0,3) with zero mean : -2.052,347

ARIMA(3,0,3) with non-zero mean : Inf ARIMA(3,0,3) with non-zero mean : -2.052,748

ARIMA(3,0,4) with zero mean : Inf ARIMA(3,0,4) with zero mean : Inf

ARIMA(3,0,4) with non-zero mean : Inf ARIMA(3,0,4) with non-zero mean : Inf

ARIMA(3,0,5) with zero mean : Inf ARIMA(3,0,5) with zero mean : Inf

ARIMA(3,0,5) with non-zero mean : Inf ARIMA(3,0,5) with non-zero mean : Inf

ARIMA(4,0,0) with zero mean : -311,571 ARIMA(4,0,0) with zero mean : -2.049,313

ARIMA(4,0,0) with non-zero mean : -311,417 ARIMA(4,0,0) with non-zero mean : -2.051,975

ARIMA(4,0,1) with zero mean : -309,660 ARIMA(4,0,1) with zero mean : -2.051,235

ARIMA(4,0,1) with non-zero mean : -309,459 ARIMA(4,0,1) with non-zero mean : -2.051,968

ARIMA(4,0,2) with zero mean : Inf ARIMA(4,0,2) with zero mean : Inf

ARIMA(4,0,2) with non-zero mean : Inf ARIMA(4,0,2) with non-zero mean : -2.050,492

ARIMA(4,0,3) with zero mean : Inf ARIMA(4,0,3) with zero mean : -2.049,594

ARIMA(4,0,3) with non-zero mean : Inf ARIMA(4,0,3) with non-zero mean : Inf

ARIMA(4,0,4) with zero mean : Inf ARIMA(4,0,4) with zero mean : -2.049,065

ARIMA(4,0,4) with non-zero mean : Inf ARIMA(4,0,4) with non-zero mean : -2.049,518

ARIMA(4,0,5) with zero mean : Inf ARIMA(4,0,5) with zero mean : -2.047,258

ARIMA(4,0,5) with non-zero mean : Inf ARIMA(4,0,5) with non-zero mean : -2.047,827

ARIMA(5,0,0) with zero mean : -309,829 ARIMA(5,0,0) with zero mean : -2.047,467

ARIMA(5,0,0) with non-zero mean : -309,520 ARIMA(5,0,0) with non-zero mean : -2.050,008

ARIMA(5,0,1) with zero mean : -308,505 ARIMA(5,0,1) with zero mean : -2.049,326

ARIMA(5,0,1) with non-zero mean : -307,832 ARIMA(5,0,1) with non-zero mean : -2.050,011

ARIMA(5,0,2) with zero mean : Inf ARIMA(5,0,2) with zero mean : Inf

ARIMA(5,0,2) with non-zero mean : Inf ARIMA(5,0,2) with non-zero mean : -2.048,544

ARIMA(5,0,3) with zero mean : Inf ARIMA(5,0,3) with zero mean : -2.047,671

ARIMA(5,0,3) with non-zero mean : Inf ARIMA(5,0,3) with non-zero mean : -2.047,746

ARIMA(5,0,4) with zero mean : Inf ARIMA(5,0,4) with zero mean : -2.047,247

ARIMA(5,0,4) with non-zero mean : Inf ARIMA(5,0,4) with non-zero mean : -2.047,804

ARIMA(5,0,5) with zero mean : Inf ARIMA(5,0,5) with zero mean : Inf

ARIMA(5,0,5) with non-zero mean : Inf ARIMA(5,0,5) with non-zero mean : Inf

Weekly

Best model: ARIMA(0,0,0) with non-zero mean

Monthly

Best model: ARIMA (0,0,0) with non-zero mean
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Appendix C 
 

Excel files 

1) Portfolio_return_monthly.xlsx 

a. A file containing the monthly log returns for all industry portfolios. 

 

2) Portfolio_return_weekly.xlsx 

b. A file containing the weekly log returns for all industry portfolios. 

 

RStudio code 

1) Code_monthly.R 

(a) A code containing all code applied in this study for the monthly data 

 

2) Code_weekly.R 

(a) A code containing all code used for this study for the weekly data 

 

3) exp.R 

(a) Contains a function for the out of sample 1-step ahead with expanding window 

forecast for a vector of error prediction. 

 

4) exp1.R 

(a) Contains a function for the out of sample 1-step ahead with expanding window 

forecast for log returns. 
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