
Master’s Thesis
Mathematical Engineering

Combining Algorithm Unrolling with
Self-Supervised Learning

for Image Super-Resolution

Authors:
Andreas Kühne Larsen
Mads Arnløv Jørgensen
Magnus Jónhardsson

Supervisors:
Christophe Biscio

Zheng-Hua Tan

June 2nd 2023

Dept. of Mathematical Sciences
Skjernvej 4A

DK-9220 Aalborg Ø
http://math.aau.dk

Title:
Combining Algorithm Unrolling with Self-
Supervised Learning

Theme:
Image Super-Resolution

Project Period:
September 2022 to June 2023

Project Group:
MATTEK 4.105A

Authors:
Andreas Kühne Larsen
Mads Arnløv Jørgensen
Magnus Jónhardsson

Supervisors:
Christophe Biscio
Zheng-Hua Tan

Numbered Pages: 86

Date of Completion:
June 2nd 2023

Abstract:

Deep learning methods have shown to out-
perform model-based methods at image
upscaling, and exhibit state-of-the-art per-
formance. However, deep learning tech-
niques suffer from drawbacks such as im-
mense data requirements, computational
costs, lack of interpretability/explainabil-
ity, and overfitting. In an attempt to ad-
dress these issues, the compatibility of al-
gorithm unrolling and self-supervised learn-
ing is explored. First, the consequences
of utilising the SSL framework data2vec
to train a network inspired by ISTA-Net
is examined. Then, replacing the linear
projection in the encoder of vision trans-
formers with LISTA and pre-training us-
ing the masked autoencoder framework,
is investigated. Results for the first ap-
proach indicate that pre-training an ISTA-
Net network using data2vec, might lead to
increased generality in scarcely annotated
scenarios, however strict attributions re-
main impossible. The results for the second
approach indicate an increased perform-
ance in all the experiments. However, to
solidify this result, an ablation study on
how much can be attributed to the unrolled
algorithm over an increased parameterisa-
tion, must be conducted.

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the authors.

http://math.aau.dk

Preface

This project is written in the period 01/09/2022 to 02/06/2023 by the group MATTEK
10 - 4.105A, attending the final semesters of the masters’ programme in Mathematical
Engineering at Aalborg University. For the algorithms attached, Python 3.8 along with
PyTorch 1.13 are used - specifically, the PyTorch NGC Container V22.09. The figures
shown throughout the project are created using Tikz and matplotlib.

The group would like to thank Christophe Biscio and Zheng-Hua Tan for supervision
and guidance throughout the period of writing the project. The group would also like to
extend our gratitude to Yonina C. Eldar for consultation and academic sparring, as well as
CLAAUDIA for the access to and support with cloud HPC.

—————————————– —————————————–
Andreas Kühne Larsen Mads Arnløv Jørgensen

—————————————–
Magnus Jónhardsson

iii

Contents

1 Problem Analysis 1
1.1 Introduction . 1
1.2 Image Super-Resolution . 1
1.3 Iterative Soft Thresholding Algorithm . 3
1.4 Deep Learning . 3
1.5 Algorithm Unrolling . 4
1.6 Self-Supervised Learning . 5
1.7 Problem Statement . 7

2 Decision Making Algorithms 9
2.1 Model-Based Methods . 10
2.2 Data-Based Methods . 11
2.3 Algorithm Unrolling . 12

3 Self-supervised Learning 15
3.1 Training Pipline . 15
3.2 Pretext Tasks . 17

4 The Vision Transformer 23
4.1 Transformers . 23
4.2 Attention . 24
4.3 Positional Encoding . 29
4.4 An Image as a Sequence . 31

5 Models 35
5.1 LISTA . 35
5.2 ISTA-Net: LISTA for Image Super-Resolution 36
5.3 Masked Autoencoder . 38
5.4 data2vec . 40

iv

CONTENTS MATTEK 4.105A

6 Experiments 43
6.1 General Setup . 43
6.2 ISTA-Net . 44
6.3 MAE . 45
6.4 ISTA-MAE . 46
6.5 ista2vec . 47

7 Results 49
7.1 Baseline . 49
7.2 Restriction . 54
7.3 Generality . 57

8 Discussion 63
8.1 Model Performance . 63
8.2 Shortcomings and Sources of Error . 64
8.3 General Considerations . 65

9 Conclusion 67

10 Bibliography 69

Appendices 73

A ISTA Preliminaries 75

B Proximal Operator Derivations 77
B.1 With L1 Regularisation in Transform Domain 77
B.2 With L1 Regularisation in Nonlinear Domain 78

C Positional Encoding 81

D Dataset Deficiencies 83

v

1 | Problem Analysis

1.1 Introduction

Continued pursuit of higher quality imaging is often hindered by the increasing costs of
sensor-chips and optical components [Farsiu et al., 2004]. Additionally, certain imaging
systems may be limited by past technological constraints, as it can be impractical or
cost-prohibitive to upgrade their hardware components. In this context, super-resolution
(SR) techniques offer a compelling solution to overcome these limitations by leveraging
post-processing, and is thus widely used in the industry.

Consider, for example, satellite imaging. Upgrading lens components is extremely
impractical because of their placement in orbit, thus if the requirements change during
deployment, SR might be able to compensate. Similarly, consider security cameras, which
are often acquired en mass and thus required to be low-cost. Because of their low cost,
the camera hardware might not provide a resolution suitable for tasks such as person or
vehicle identification, unless they are aided by SR. Thus, SR techniques can provide a
viable alternative to costly hardware upgrades.

1.2 Image Super-Resolution

This section is mainly based on Image Super-Resolution as Sparse Representation of Raw
Image Patches by Yang et al. [2008].

Formally, SR is the process of increasing the resolution of a signal through post-
processing. Despite significant SR research, this still remains a challenging problem in
some fields due to factors such as noise, blur, and limited data availability. In the context
of images, SR pertains to the recovery of a high-resolution image given a low-resolution
representation, and is often performed by assuming a prior on the relationship between the
high- and low-resolution image. SR is theoretically possible by modelling the complete
photographic process, from the initial reflection of light on a surface to the arrival of digital
data on a computer. This process involves numerous distortions, noise processes, and
non-linear transformations that are difficult to model accurately. Therefore, simplifications
and assumptions can be made to create a tractable model that can be computed efficiently,
often leading to a sufficiently good solution. To facilitate this, note that digital images can
be stored as 3-dimensional tensors representing the light-intensities of the three primary
colours red, green, and blue. Now assume that a high-resolution image x ∈ Rh×w×c,
and a low-resolution image y ∈ Rh′×w′×c are flattened such that they are represented
by the vectors x ∈ Rn and y ∈ Rm respectively. Then the photographic process can be

1

CHAPTER 1. PROBLEM ANALYSIS

approximated by a linear model, represented by the over-determined set of equations:

y = Φx, (1.1)

where Φ ∈ Rm×n is called the forward-projection matrix.
The general task of recovering x given its linear projection y, is referred to as the linear

inverse problem. The traditional solution to Equation (1.1) is given by the least squares
problem

arg min
x

∥Φx− y∥22. (1.2)

However, since the forward-projection matrix Φ is wide, the problem is ill-conditioned,
which makes a solution to the least squares problem, if it exists, meaningless. This can
be overcome through regularisation to stabilise the solution. The following approach to
regularisation is based on results from compressive sensing, which ensure that, under some
assumptions, the high-resolution image can be precisely recovered from its low-resolution
representation.

Given an over-complete dictionary matrix Ψ ∈ Rn×k, assume the image x ∈ Rn can be
written as a linear combination of atoms

x = Ψα,

where α ∈ Rk is a vector with very few (≪ k) non-zero entries. Then an observation y of
x can be modelled as

y = Φx = ΦΨα,

where Φ ∈ Rm×n is the projection matrix with m < n. The equation x = Ψα is under-
determined for the sparse coefficient vector α, and thus y = ΦΨα is as well. However, the
sparsest solution to the equation is unique if the dictionary satisfies the restricted isometry
property [Foucart and Rauhut, 2013, p 133-135]. Consequently, it is possible to perfectly
recover the high-resolution image x from a low-resolution image, assuming x is represented
by a sufficiently sparse vector α. However, the restricted isometry property is hardly ever
fulfilled, and though it can be relaxed if approximate solutions are sufficient, it is still very
difficult to validate. Consequently, the coherence [Foucart and Rauhut, 2013, p. 111,114] is
often used instead, as it is much easier to compute.

By utilising a sparsity prior for regularisation, the least squares problem in Equation (1.2)
can be replaced with the pursuit problem

α̂P = arg min
α

∥α∥0 s.t. ∥ΦΨα− y∥22 ≤ ϵ,

where ∥·∥0 counts the number of non-zero elements. Having found the sparse representation
the high-resolution image can be reconstructed as

x̂ = Ψα̂P .

Solving the pursuit problem is NP-hard, but the problem can be relaxed by substituting
the ℓ0 norm with the ℓ1 norm. The problem then becomes

α̂BPD = arg min
α

∥α∥1 s.t. ∥ΦΨα− y∥22 ≤ ϵ.

The solutions to the ℓ0 and ℓ1 problems are known to agree for sufficiently sparse α [Donoho,
2006]. The problem can alternatively be formulated using Lagrange multipliers:

α̂BPD = arg min
α

λ∥α∥1 + 1
2∥ΦΨα− y∥22, (1.3)

2

1.3. ITERATIVE SOFT THRESHOLDING ALGORITHM MATTEK 4.105A

where λ dictates the trade-off between sparsity and reconstruction discrepancy. This
problem is called basis pursuit denoising (BPD). Thus, a solution to the SR task can be
found by solving the BPD problem and reconstructing the high-resolution image with the
corresponding dictionary.

1.3 Iterative Soft Thresholding Algorithm

The Iterative Soft Thresholding Algorithm (ISTA) is a simple, widely used optimisation
method for solving the BPD problem in Equation (1.3). The core concept of ISTA involves
updating the solution vector iteratively by performing an entrywise soft-thresholding
operation. The iterative nature of ISTA allows for sequential refinement of the solution at
each step, which, under certain conditions, leads to convergence towards the true sparse
solution.

ISTA belongs to a popular class of optimisation algorithms known as proximal gradient
methods, which are used to solve, possibly non-smooth, convex optimisation problems.
Consider a general, non-smooth, solvable, convex optimisation problem:

min
x
f(x) + g(x), (1.4)

where f, g : Rn → R are convex functions, and ∇f is L-Lipschitz (Appendix A.1). Since
the function g is possibly non-smooth, gradient methods which assume differentiability
might fail, however, it is possible to alleviate this issue by utilising proximal gradient
methods which rely on the proximal operator (see Appendix A.2). The proximal gradient
method arrives at a solution to Equation (1.4) from a starting point x(0) by sequential
application of the update step

x(k) = proxλg(x(k−1) − λ∇f(x(k−1))), (1.5)

where λ > 0 can be interpreted as a step size.
When f(x) = ∥Ax− y∥22 and g(x) = ∥x∥1, i.e. the BPD problem, the update step in

Equation (1.5) reduces to the ISTA iteration step

α(k) = Sλ/L

(
x(k−1) − 1

L
AT (Ax(k−1) − y)

)
,

where
Sλ(x)i = sign(xi) max(|xi| − λ,0) (1.6)

is the entry-wise soft-thresholding function and L is the Lipschitz constant of ∇f , which
is an upper bound on the largest eigenvalue of A⊺A [Beck and Teboulle, 2009]. The
soft-thresholding operation promotes sparsity by reducing the magnitude of every entry.

1.4 Deep Learning

The BPD problem is traditionally solved using model-based optimisation algorithms, such
as ISTA. Recent developments have shown deep learning to be a powerful alternative to
model-based methods, relying on increased parameterisation to be applicable to a wider
range of optimisation problems, including the BPD problem. The primary advantage
of deep learning methods is their ability to approximate complex mappings by fitting

3

CHAPTER 1. PROBLEM ANALYSIS

over-parametrised models to a dataset. This is achieved through the utilisation of deep
neural networks (DNN), which permit learning abstract representations of the data. DNNs
are capable of adapting to a multitude of different problems by fitting to data, making them
incredibly versatile. For example, Dong et al. [2015] proposed a deep learning framework
for SR, composed of a convolutional neural network (CNN) taking low-resolution images as
input and producing corresponding high-resolution images, that, at the time, demonstrated
state-of-the-art restoration quality.

DNNs have exhibited impressive performance in numerous fields, highlighting their
great capacity to advance state-of-the-art. As a result, there has been considerable interest
and investment in deep learning research, with many academic institutions establishing
dedicated research groups focused on the development and implementation of deep learning
methods12. However, deep learning methods also have a set of challenges and limitations
which must be considered carefully when they are applied to real-world problems.

Some of the major issues DNNs face are:

• Overfitting: Because of over-parameterisation, DNNs are sometimes capable of
remembering the entire dataset, acting more like a dictionary than a model describing
the problem. Consequently, this results in decreased performance when presented
with unseen data.

• Data and training: The most prominent method to increase the inference performance
of DNNs is to increase their size and parametrisation, which in turn requires more
data. Specifically, high-quality data is needed to obtain powerful models, which is
expensive to acquire. Furthermore, the training of large DNNs is computationally
costly and requires a lot of time.

• Explainability and interpretability: The inherent black-box nature of DNNs makes
it difficult to interpret the causality of predictions and representations. Achieving
high levels of accuracy is sometimes irrelevant without the ability to reason for the
outcome, particularly in critical applications such as medical diagnosis.

Explainability & Interpretability

In the context of DNNs explainability refers to the knowledge that a specific parameter
represents and how important is is to the performance of the model. Although similar,
interpretability refers to the ability to determine cause and effect of the entire model.

[Johnson, 2020]

This project focuses on improving some of these limitations in the context of super-
resolution. To facilitate this, some prevalent deep learning techniques will be examined.

1.5 Algorithm Unrolling

The progress and practical deployment of deep learning methods is heavily inhibited by the
large data requirement and inherent black-box nature. In contrast to deep learning methods,

1https://www.aicentre.dk/the-centre-p1
2https://research.google/teams/brain/

4

https://www.aicentre.dk/the-centre-p1
https://research.google/teams/brain/

1.6. SELF-SUPERVISED LEARNING MATTEK 4.105A

model based methods rely on domain knowledge to design models. By hand-crafting models
based on domain knowledge, model-based methods result in effective models, where each
step of the procedure has an explicit purpose. Consequently, ensuring both explainability
and interpretability.

An important emerging deep learning technique called Algorithm Unrolling (AU)
attempts to alleviate the data requirements and black-box nature of DNNs by recasting
iterative algorithms as neural networks. In the seminal work by Gregor and LeCun [2010],
they propose a neural network architecture based on existing iterative BPD solvers to
speed up sparse coding. One of the iterative solvers that they treat is ISTA, which is
subsequently unrolled into learned ISTA (LISTA). LISTA is thus an AU method that can
be used to solve the SR problem, as it is an iterative BPD solver.

AU inherits the inductive biases from the iterative algorithm which can decrease
parameterisation, alleviating the data size requirements and increasing inference speed.
Thus, AU enables a parsimonious DNN model which can represent complex mappings as a
sequence of explainable operations, that can be optimised using back-propagation.

AU is however not without disadvantages. For example, unrolling can result in the loss
of certain properties of the underlying iterative algorithm, such as convergence or stability
guarantees, which are important in many applications. Additionally, effective training and
initialisation schemes for AU networks are not thoroughly researched [Monga et al., 2019].

1.6 Self-Supervised Learning

Until recently, supervised learning (SL), which requires large annotated datasets, was the
predominant approach for training DNNs. One of the major factors inhibiting the further
improvement of deep learning models in many domains is the availability of annotated data.
Annotations can be prohibitively expensive and/or time consuming to acquire, particularly
in domains such as medical imaging, video analysis, and natural language processing (NLP).
It is also difficult to create descriptive annotations that encompass all the important target
features. Further, the performance of SL models is heavily dependent on the quality and
resolution of annotations (think of an incorrect translation or unspecific dog breed) and
the diversity of the dataset needs to be sufficient as to not over-represent any particular
input-feature.

An emerging technique in deep learning called self-supervised learning (SSL) facilitates
training using annotations derived programatically from unannotated data, these are
referred to as pseudo-annotations. The pseudo-annotations are generated from some
intrinsic structure in the data, which SSL then leverages to learn meaningful representations.
These representations can subsequently be used in tasks such as image classification, object
detection, and NLP.

An SSL framework typically involves a self-supervised pretext- and supervised downstream-
task which are solved sequentially. The aim of the pretext-task is to learn useful repres-
entations of the data that can be beneficial for downstream-tasks. Successful design of
pretext-tasks typically necessitates prior knowledge of the underlying structure of the data.
Additionally, the design process must take into account the representation requirements of
the downstream-task, as different pretext-tasks can induce different invariance properties
within the learned representations. Note that the pretext-task does not need to be directly
related to the downstream-task.

5

CHAPTER 1. PROBLEM ANALYSIS

An example of a pretext-task is masked prediction. Masked prediction involves training
models to predict missing information given a partial view of the input. In NLP, this can
involve predicting hidden words in a sentence based on the surrounding text, motivating a
representation that captures the contextual and semantic meaning of words. Such learned
representations can be utilised in downstream-tasks like sentiment analysis and machine
translation. Similarly, in computer vision, masked prediction may involve training a model
to predict masked regions of an image from the surrounding pixels, thereby motivating the
development of representations that capture the visual semantics of objects and scenes.
Masked prediction methods rely on the assumption that missing information in the data
can be inferred from the context. An illustration of the masked prediction process in NLP
can be seen in Figure 1.1, where the masked word to be predicted is illustrated as a black
box.

I would like to order a pizza with extra pepperoni

I would like to order a pizza with extra pepperoni

Figure 1.1: Masked prediction pretext-task for NLP, where the masked word to be predicted
is illustrated as a black box.

Another explanatory example pretext-task is the jigsaw puzzle. The jigsaw task involves
partitioning an image into equally sized tiles and shuffling them, and then training a model
to arrange the tiles back into their original configuration. The goal is then for the learned
representation to capture the spatial relationship between objects and scenes. The model
trained on the jigsaw task can then be used for downstream-tasks such as object recognition,
image segmentation, and classification. An illustration of the jigsaw process can be seen in
Figure 1.2.

Figure 1.2: Illustration of the jigsaw pretext-task.

It is important to be aware of possible shortcomings of a pretext-task and how it relates
to the downstream-task. Consider for example the jigsaw task: The model can solve this
task by only checking the edges of each tile and then aligning the tiles such that the edges
agree. In this case the model has not learned the underlying structure of the images or any
semantics related to it, and the performance in a downstream-task may deteriorate.

For computer vision, a pretext-task referred to as contrastive learning has garnered
significant attention. One of the most successful contrastive learning methods is Sim-
CLR [Chen et al., 2020], which has produced state-of-the-art results on several benchmark
datasets, including ImageNet.

Overall, the use of SSL enables transfer learning based on large amounts of unannotated
data, reducing the reliance on annotations. By learning useful representations of the data
by solving a pretext-task, the model can then more efficiently be applied to a wide range

6

1.7. PROBLEM STATEMENT MATTEK 4.105A

of downstream-tasks, making SSL a versatile and valuable tool in the field of machine
learning.

1.7 Problem Statement

In the context of super-resolution, the traditional approaches utilise model based solvers
such as ISTA. However, deep learning approaches have demonstrated superior performance
compared to model based methods. Despite their success, deep learning methods present
certain notable drawbacks compared to model based methods, i.e. enormous data require-
ments, large computational cost, lack of explainability/interpretability, and a tendency
towards overfitting. To further advance the field of super-resolution and address these
issues, it might be beneficial to explore alternative approaches.

This report focuses on combining two prominent deep learning techniques, namely AU
and SSL, as a novel approach to solving the SR problem. AU allows for construction of
more parsimonious models which have a higher degree of explainability/interpretability.
By training the models using self-supervision, it becomes more feasible to deploy them in
domains with limited annotated data. Within this context, two distinct approaches for
integrating AU and SSL emerge. The first approach involves using a prevalent SSL training
framework to train an unrolled network. The second approach involves introducing an
unrolled algorithm as a module to an existing DNN architecture that is traditionally used
in SSL. By examining both approaches, this report aims to deepen our understanding, and
explore the feasibility, of the combined utilisation of algorithm unrolling and self-supervised
learning in the context of solving the super-resolution problem.

This leads to the following problem statement:

How can algorithm unrolling and self-supervised learning be combined to construct and
train a deep neural network capable of solving the super-resolution task?

7

2 | Decision Making Algorithms

This chapter is based on Model-Based Deep Learning: On the Intersection of Deep Learning
and Optimization by [Shlezinger et al., 2022].

The theory of algorithm unrolling is typically formulated as operating on the intersection
between iterative algorithms and neural networks. Thus, to describe algorithm unrolling in
a more rigorous framework, consider the unifying framework of decision making. Decision
making is underpinned by the group of algorithms, broadly referred to as decision making
algorithms. The design of such algorithms comprises two parts: a model of a problem,
and the corresponding solver. Traditionally, a problem is described with a mathematically
and computationally tractable model by assuming some prior. The corresponding solver
then relies on domain knowledge to find the best solution. This approach to algorithm
design is generally referred to as model-based methods. Alternatively, the design can take
a data-centric approach, with the benefit that the solver can be learned end-to-end from
data. State-of-the-art data-centric solvers mainly utilise deep neural networks (DNN) as
their representation power allows them to be model agnostic [Abiodun et al., 2018].

The goal of decision making is to design a decision rule f : X → S, with observations
x ∈ X and decisions s ∈ S. The design procedure comprises three steps:

1. Choose the decision rule family.

2. Tune the parameters of the family.

3. Evaluate the decision rule.

The design procedure is illustrated in Figure 2.1.

Select decision
rule family

Tuning
parameters

Evaluate in
simulations

Parameter
Space Θ

Decision
rule f

Task, System
constraints

Decision rule object-
ive, Training data

Evaluation objective,
Validation data

Figure 2.1: Illustration of the decision rule design procedure [Shlezinger et al., 2022].

Decision rules can be categorised into types depending on their formulation and
assumptions. The focus of this chapter will be on the following two decision rule types:

9

CHAPTER 2. DECISION MAKING ALGORITHMS

• Iterative algorithms: An iterative algorithm computes a decision from a sequence of
mappings h(t) : S×X → S, i.e. it iteratively computes decisions s(t) = h(t)(s(t−1), x)
until convergence, starting with an initial decision s(0). The algorithm is said to
have converged when some error bound is reached. Alternatively, the algorithm
is terminated after a fixed number of iterations T ∈ N, thus the decision becomes
s = h(T)(h(T−1)(· · ·h(1)(s(0),x),x),x).

• Neural Networks: Traditional feed-forward neural networks (NN) are a special case of
iterative algorithms utilising t = 1, . . . , T, T ∈ N mappings h(t)(z) = σ(W (t)z + b(t)),
where σ is a non-linear function, and {W (t),b(t)} are parameters of h(t). The decision
s is then computed as s = h(T)(h(T−1)(· · ·h(1)(x))), i.e. the decision rule f comprises
nested applications of h(t+1) on the intermediate decisions s(t) = h(t)(s(t−1)). Each
separate application of the mapping h(t) is referred to as a network layer, and the
number of layers is always fixed.

Examples of other common decision rule types are affine transformations, decision trees,
and optimisation-based decisions. The parameters of a decision rule are denoted θ, and the
process of selecting the correct parameters is called tuning. Tuning can be performed by
utilising domain knowledge related to the task, or based on some algorithm using synthetic
or real data. Tuning the parameters of a decision rule using data is referred to as training,
and is the approach for neural networks. The set F = {f(·; θ)|θ ∈ Θ} containing the
decision rule for all choices of parameters θ ∈ Θ is called the decision rule family. Typically,
a larger parameter space Θ allows for more general and broad decision rule mappings.

After selecting a decision rule, its performance can be evaluated either from observation-
decision pairs not used in the tuning process, or through simulations. Performance is
subsequently determined by an evaluation objective l : F × X × S → R+. The objective l
thus evaluates a decision rule f(·; θ), from the observations x and corresponding desired
decisions s∗, by assigning a score. However, for tuning the decision rule family a surrogate
to l that admits optimisation may be required since the evaluation objective can be highly
complex or abstract. The surrogate objective used for optimisation over the parameter
space Θ is called the decision rule objective L : F → R+. When the evaluation objective is
well behaved, then it may be used as the decision rule objective. In the context of NNs
the decision rule objective is typically referred to as the loss function. There are different
approaches to the decision rule design procedure which depend on the assumptions and
priors available to solve the underlying problem.

2.1 Model-Based Methods

Model-based methods are characterised by mathematical models that utilise domain
knowledge to describe the problem. To ensure a tractable optimisation problem, it is often
necessary to simplify the model, as accurate statistical models relating observations to
decisions are in general difficult to obtain. To decrease model discrepancy, model-based
methods also impose additional assumptions on the simplified model. Though model-based
decision rules typically possess a low parameterisation, they can be applied to a broad
range of observations as long as the underlying assumptions of the simplified model hold.
Consequently, it is often possible to explicitly state when a model based method will work.
This allows model-based methods to be both explainable and interpretable. Model-based
methods have solvers with structures derived from the formulation of the model. Commonly,
decision rule families are explicit solutions or iterative solvers. Tuning is performed by

10

2.2. DATA-BASED METHODS MATTEK 4.105A

optimising an analytic decision rule objective L, which is derived from an understanding of
the model and the evaluation rule objective l [Shlezinger et al., 2022].

Example 2.1 (Iterative Shrinkage Thresholding Algorithm)
Suppose a decision s ∈ S is related to the observation x ∈ X by x = D(s), where
D : S → X . Determining the decision from the observation is in this case known as the
inverse problem, which is ill-posed when D is not invertible. However, by assuming some
prior, a solution can be found by minimising

E(x,s) = d(x,D(s)) +R(s),

where d is a metric and R is a regulariser to the solution founded in the prior. Given the
linear inverse problem x = Ds with x ∈ Rn, s ∈ Rm, and D ∈ Rn×m, the solution can
be found by assuming sparsity as a prior and minimising

E(x,s) = ∥x−Ds∥22 + λ∥s∥1.

[Beck and Teboulle, 2009, p.184]
This can be solved using the iterative shrinkage thresholding algorithm (ISTA), which
recursively determines the decision by applying

s(t) = h(t)(s(t−1)) = S

(1
L
D⊺x +

(
I − 1

L
D⊺D

)
s(t−1); τ

)
, (2.1)

where S(v; τ) = sign(v) max(|v| − τ, 0) is the soft-shrinkage function with parameter τ ,
and L ∈ R is the Lipschitz constant of ∇∥x−Ds∥22 which is an upper bound on the
eigenvalues of D⊺D [Beck and Teboulle, 2009, p.191]. Thus, the decision rule family is
defined over Θ = {τ ∈ R, D ∈ Rn×m}. Depending on the modality of the observations,
different domain knowledge can be exploited to tune the parameters.

2.2 Data-Based Methods

Data-based methods, such as neural networks, select the decision rule mapping by training,
and are in general model agnostic. In the case of neural networks, the decision rule is
highly parameterised, and thus belongs to a family applicable in a wide range of scenarios.
Consequently, the resulting decision rule may be subject to overfitting. This generally
occurs when the parameterisation is too large relative to the diversity of data used for
training. Thus, data-based models often require large datasets and do not generalise well
to out-of-distribution data. To mitigate issues such as overfitting, regularisers, restricting
the parameter space, can be introduced to the decision rule objective working in tandem
with the empirical measures. Note however, that backpropagation [Werbos, 1990] is the
traditional training mechanism for neural networks, which necessitates that the decision
rule objective has a defined gradient.

The complex and generic structure of neural networks results in lack of both explainab-
ility and interpretatbility, making it is very difficult to infer the rationale behind decisions,
and identify decision rule limitations and potential failure cases. Consequently, it is difficult
to determine which parts of the network are required, and which are largely redundant.

11

CHAPTER 2. DECISION MAKING ALGORITHMS

As interpretable systems allow for concise and efficient regularisation design, which can
increase performance in inference tasks, it is desired to introduce this property to neural
networks.

2.3 Algorithm Unrolling

Model-based and data-based methods are fundamentally different approaches and vary
significantly in specificity and representation power. However, both are data-reliant
parametric mappings, and can be described in the same decision-making framework. This
motivates the idea of combining different aspects of both approaches to realise a new
balanced decision rule type. One such type is called algorithm unrolling (AU), which
recasts the iterations of an iterative algorithm as layers in a neural network. This allows
parameters to be learned end-to-end from data, while exploiting the domain knowledge
introduced by a model. The general process of unrolling an algorithm is illustrated in
Figure 2.2

Iterative Algorithm

Input: x, s(0), Output: s(T)

for t = 1,...,T do
s(t) ← h(t)(s(t−1),x; θ(t))

end for

Unrolled Network

h(t)(s(t−1),x; θ(t))s(t−1)· · ·s(0) s(t) · · · sT

Figure 2.2: Illustration of the general unrolling process. Each iteration is mapped to a
single layer, which is then stacked to form a DNN.

Iterative algorithms correspond to models with high bias and low variance, whereas
NNs corresponds to models with high variance and low bias [Monga et al., 2019]. Unrolled
networks are desired to be an intermediary between the two. Furthermore, by unrolling
an iterative algorithm its representation power increases, since the parameterisation of
the decision rule is increased. Typically, unrolled networks have less representation power
than conventional NNs, but generalise better [Monga et al., 2019]. AU generally reaches
similar performance to its iterative algorithm counterpart, while using significantly fewer
iterations, thus AU can improve inference speed.

Contrary to iterative algorithms, which traditionally share parameters between itera-
tions, unrolled networks do not necessarily share weights between layers, as each parameter
is separately determined from training. Learning iteration-dependent parameters {θ(t)}Tt=1,
where T is the number of unrolled iterations, allows the network to admit accurate decision
rules within a predefined number of iterations [Shlezinger et al., 2022]. Iteration-dependent
parameters, increase the parameterisation and abstractness of the decision rule compared
to sharing parameters. However, unrolled networks are less parametrised and more task
specific than traditional NNs. This typically results in AU requiring less data for training.
By training using data obtained from the true underlying system, the increased paramet-
erisation allows unrolled networks to better overcome possible inaccuracies of the simplified
model.

12

2.3. ALGORITHM UNROLLING MATTEK 4.105A

Some potential benefits of unrolled networks are thus, increased interpretability and
lower parameterisation compared to traditional NNs, as well as faster inference compared
to model-based methods. A comparison of all the presented decision rule types is seen in
Table 2.1.

Approach Parameterisation Interpretability Generalisability Inference
Iterative Algorithm Low High High Slow
Generic Neural Network High Low Low Fast
Algorithm Unrolling Medium Medium Medium Fast

Table 2.1: Feature comparison between different decision rule types. [Monga et al., 2019]

Example 2.2
The model-based method ISTA, detailed in Example 2.1, can be unrolled into a DNN
architecture called Learned-ISTA (LISTA) [Gregor and LeCun, 2010].

To motivate this, notice that iterations of ISTA, described in Equation 2.1, consist of
linear operations followed by the non-linear soft-thresholding operation. This is similar
to the architecture of a multi-layer perceptron with ReLU activations. Thus, the LISTA
architecture can be constructed by recasting the linear operations in each ISTA iteration
into a fully connected layer with ReLU activations, and subsequently stacking T layers to
form a DNN. In other words, the decision rule computes a decision s from an observation
x and initial decision s(0) by nested applications of Equation (2.1):

s = f(x)

= S
(
W

(T)
d x +W (T)

e

(
· · ·Sτ (1)

(
W

(1)
d x +W (1)

e s(0); τ (1)
))

; τ (T)
)
,

where the implicit substitutions of parameters

1
L
D⊺ 7→W

(t)
d ,

I − 1
L
D⊺D 7→W (t)

e ,

has been performed to further expand the representation power. For LISTA the decision
rule family F is defined for f over Θ = {τ (t),W

(t)
d ,W

(t)
e }Tt=1.

13

CHAPTER 2. DECISION MAKING ALGORITHMS

ISTA

Input: x, s(0) Output: s(T)

for t = 1,...,T do
s(t) = S

((
I − 1

LD
⊺D
)

s(t−1) + 1
LD

⊺x; τ (t)
)

end for

Network Layer

+s(t)

x

W
(t)
d

W
(t)
e

S s(t+1)

I − 1
LD

TD 7→W
(t)
e ,

1
LD

T 7→W
(t)
d(a) (b)

LISTA

(c)

s(0) + S s(1) + S s(2) · · · s(T)

x · · ·

W
(0)
e W

(1)
e

W
(0)
d W

(1)
d

Figure 2.3: Illustration of unrolling procedure behind LISTA. A deep unrolled network is
formed by stacking T ISTA iterations recast into network layers. (a) Iterative algorithm.
(b) A single unrolled iteration. (c) Unrolled network.

14

3 | Self-supervised Learning

Self-supervised learning is a training paradigm for deep neural networks that utilises pseudo-
labels as supervisory signals during training. These pseudo-labels are programmatically
obtained from unlabelled data. There are various strategies for the pseudo-label generation
procedure, some of which are outlined in this chapter. The purpose of self-supervised
learning is to more effectively utilise the vast amount of unlabelled data available to train
deep models. A fundamental engine of SSL is the data augmentation process which steers
the learning of the model.

In this chapter all the neural networks are assumed to apply a function f on the form
f = tψ ◦ hλ where hλ : X → Z is some feature extractor with parameters λ ∈ Λ and
tψ : Z → S is an output module with parameters ψ ∈ Ψ. The spaces X ,Z, and S represent
the observation, representation, and decision spaces respectively. The space of augmented
data is denoted X̃ and the space of the pseudo-labels is denoted S̃.

3.1 Training Pipline

This section is based on Self-Supervised Representation Learning: Introduction, advances,
and challenges by Ericsson et al. [2022].

SSL is typically not applied by itself but incorporated into a training pipeline consisting
of a pretext- and subsequently downstream task. The goal of the pretext task is to
design a model that produces meaningful representations by training on self-supervisory
signals. The downstream model then utilises these representations, typically along with
human-supervisory signals, to solve a specific task.

Definition 3.1 (Pretext and Downstream Task)
Let X , and S be the space of observations and decisions respectively. Let P : X → X̃ ×S̃
be a process which generates pseudo-labelled data, and let

Fp =
{
kγ ◦ hλ : X̃ → S̃ | γ ∈ Γ, λ ∈ Λ

}
,

be a family of decision rules, where X̃ and S̃ are the space of augmented data and
pseudo-labels respectively. Define a task

arg min
γ,λ

Lp(kγ ◦ hλ), (3.1)

for the objective Lp : Fp → R+.
Similarly define a family of decision rules

Fd = {gϕ ◦ hλ : X → S | ϕ ∈ Φ, λ ∈ Λ},

15

CHAPTER 3. SELF-SUPERVISED LEARNING

with the objective Ld : Fd → R+, and the task

arg min
ϕ,λ

Ld(gϕ ◦ hλ). (3.2)

Equation (3.1) and (3.2) then defines a pretext- and downstream task respectively.

In a DNN with model f = tψ ◦ hλ, the feature extractor hλ is referred to as the trunk,
and the output module tψ the head. The head of a model is task-specific, whence the
distinction between kγ and gϕ in Definition 3.1. The training pipeline utilising SSL consists
of the following steps:

1. With observations x ∈ X and decisions s ∈ S, obtain annotated data Da =
{(xi,si)}Mi=1 for the downstream task and unannotated data Du = {xi}Ni=1, with
N ≫M , for the pretext task.

2. Define a pretext task with a pseudo-label process P , objective Lp, and corresponding
head kγ .

3. Construct the data set Dp = P(Du).

4. Determine λ⋆ by solving the pretext task on Dp.

5. Replace the head kγ from the pretext model with a head gϕ for the downstream
application.

6. Determine (ϕ∗,λ∗) by solving the downstream task on Da with hλ⋆ .

The training pipeline is illustrated in Figure 3.1.

Lp
xi P x̃i

s̃i

hλ kγ
s̃′
i

Update λ,γ

Pretext Task

Ld
xi

si

hλ⋆ gϕ
s′
i

Update (λ⋆),ϕ

Downstream Task

Figure 3.1: DNN training pipeline incorporating SSL. Notice that, λ does not necessarily
get updated in the downstream task.

3.1.1 Linear Readout and Fine-tuning

There are two main approaches to using a pre-trained trunk to solve the downstream task:
linear readout and fine-tuning.

Suppose (λ⋆,γ⋆) are the weights of a pre-trained model kγ⋆ ◦ hλ⋆ . In linear readout
the trunk weights λ⋆ are frozen while the head’s weights are optimised, thus the training

16

3.2. PRETEXT TASKS MATTEK 4.105A

objective is
arg min

ϕ
Ld(gϕ ◦ hλ⋆),

where Ld is the downstream objective. It is dubbed linear readout as the output layer of
the head gϕ is typically a linear function.

In fine-tuning both the trunk and head weights are optimised jointly, and the downstream
training objective is

arg min
λ,ϕ

Ld(gϕ ◦ hλ)

where the trunk is initialised in λ⋆.
The choice between using linear readout or fine-tuning depends on the amount of

available annotated data. Linear readout is generally preferable when annotations are
few. However, the parameterisation of the head, i.e. the number of trainable weights,
may be advantageously increased for better performance, given more annotated data.
Fine-tuning is the preferable approach to fit the downstream model parameters in the case
of mismatched pretext and downstream tasks, unsuitable pretext training data, and/or
sufficient annotated data. Both methods can effectively transfer knowledge from the pretext
task to the downstream task. [Ericsson et al., 2022]

3.2 Pretext Tasks

To derive self-supervisory signals, SSL relies heavily on data augmentations such as masking,
adding noise, or modality-specific augmentations like rotations and crops. In Definition 3.1,
x̃ ∈ X̃ represents an augmented view of the observation x ∈ X . Thus, the pseudo-label
process P associated with the pretext task also defines the augmentation process. In order
for the pretext model to learn meaningful representations, it must be able to recognise and
exploit the intrinsic structure in the data. The augmentation process must therefore be
designed to facilitate this, and consequently some degree of domain knowledge is required.
As alluded to in Section 3.1.1, the pretext task and the downstream task are related by more
than just sharing a trunk. Consider the downstream task of optical character recognition.
If the augmented view x̃ is a rotation of the image x, then the pretext task facilitates
representations agnostic to rotations. Consequently, the downstream task is significantly
harder, since characters such as "6" and "9", or "d" and "p" become indistinguishable.
Furthermore, it is crucial that the augmentation process induces a sufficiently complex
task, otherwise the pretext model may fail to learn meaningful representations.

3.2.1 Masked Prediction

This augmentation strategy relies on the assumption that the missing information from
a partial view of an observation can be inferred from context, given that the held-out
information is intrinsically related to the partial view. Given a data set Du = {xi}Ni=1, the
pseudo-label process P returns the data set Dp = {(x̃i,s̃i)}Ni=1, where x̃i is a partial view of
xi and the pseudo-label s̃i is the remaining components of xi [Ericsson et al., 2022]. This
process is illustrated in Figure 3.2. Since the dimensions of x̃i and xi are different, it can
cause problems in the downstream task if the trunk does not process input as sequences.
This can be mitigated by changing the pseudo-label process to produce augmented views
x̃i of the same dimension as xi, where the masked components are represented with some

17

CHAPTER 3. SELF-SUPERVISED LEARNING

mask token. The design of the mask token is non-trivial and various considerations must
be made. A mask token can, for example, be the value 0, indicating lack of information.
There are however issues with this token, such as skewing the distribution of the input.
The strategy for selecting which values to mask can vary between implementations, such as
masking related or random information. Furthermore, the proportion of the signal that is
masked can also be changed. The pretext model is trained to minimise a suitable objective
Lp, such as the empirical mean squared error:

λ⋆,γ⋆ = arg min
λ,γ

1
N

∑
(x̃i,s̃i)∈Dp

(kγ(hλ(x̃i))− s̃i)2.

Masking is an effective data augmentation strategy for natural language processing,
computer vision, and speech Baevski et al. [2022]. The difficulty of solving the pretext
task is intimately related to the masking strategy and ratio, which heavily depend on the
modality of the data. Some results have shown that for images, it is important to mask a
large proportion of the input in order to learn meaningful representations, since images
are highly information redundant. Conversely, natural language is a highly information
dense modality, and therefore a high masking ratio can result in the inference task being
too complex. He et al. [2021]

Px

x̃

s̃

Figure 3.2: Pretext task pseudo-label process for masked prediction.

3.2.2 Transformation Prediction

By assuming that inputs have a canonical view, transformation prediction learns meaningful
representation by perturbing the input [Ericsson et al., 2022]. For natural images, the
canonical view might be dictated by gravity creating a notion of direction, thus rotations
can be an obvious perturbation method.

Given an unlabelled data set Du containing data points in canonical view, the pseudo-
label process P applies a transformation Tω, with parameter ω ∈ Ω, to the data points.
The resulting pseudo-labelled dataset is thus Dp = {(x̃i,s̃i)}Ni=1, where x̃i = Tωi(xi) and
s̃i = ωi. This process is illustrated in Figure 3.3. The pretext model is then trained to
predict the transformation parameter by minimising an objective such as the categorical
cross entropy loss:

λ⋆,γ⋆ = arg min
λ,γ

1
N

∑
(x̃i,s̃i)∈Dp

−
∑
ω∈Ω

s̃i(ω) log(kγ(hλ(x̃i))(ω)),

when the pseudo-labels s̃i and predictions kγ(hλ(x̃i)) are considered PMFs. Note, that
the categorical cross entropy loss is only valid given a discrete set of transformations Ω.

18

3.2. PRETEXT TASKS MATTEK 4.105A

In this case Ω comprises distinct classes, where each class represents a specific transform-
ation parameter. The DNN is then tasked with predicting which class was used for the
transformation, rather than the specific transformation parameter.

There are some considerations regarding the utilisation of transformation prediction.
Specifically, in the absence of a canonical view of the input with respect to the applied
transformations, the pretext model will fail to learn meaningful representations of the data.
Furthermore, by utilising transformation prediction the pretext model learns to produce
representations that maintain the notion of the applied transformation in latent space.
Hence, the representations of the model become equivariant to the applied transformation,
i.e., for a function f : X → S, and two transformations Tω : X → X and T ′

ω′ : S → S the
equivariance property is

f(Tω(x)) = T ′
ω′(f(x)), x ∈ X

which may not be desireable for the downstream task.

P = Tω
x

x̃

s̃
ω = 90 deg

Figure 3.3: Pretext task pseudo-label process for transformation prediction.

3.2.3 Instance Discrimination

Instance discrimination is a pretext task in which each data point in an unlabelled dataset
Du = {xi}Ni=1 is treated as its own class, i.e. the model is trained to discriminate between
N distinct classes.

The classical way of employing instance discrimination is by assigning each data point
a label as P(xi) = s̃i for i = 1,2, . . . ,N , where s̃i is a vector with zero-valued entries
except at index i, where it is one. Assigning each data point xi a one-hot vector admits
instance discrimination using the categorical cross-entropy. This approach to instance
discrimination has issues, such as scalability to large data sets, since the number of classes
directly depends on the number of data points. In extreme cases this results in millions or
even billions of classes. Another issue is a lack of intraclass variation, as every class is only
represented by a single training example.

A different approach to instance discrimination is contrastive learning. Contrastive
learning seeks to solve both of the issues related to classical instance discrimination:
scaleability and poor intraclass variation. It achieves this by generating different views of
each class through data augmentation and the task is then simply to predict if pairs of
inputs belong to the same class. This implies that the target label is binary; 1 if the pair
belongs to the same class and 0 otherwise.

The difficulty of contrastive learning lies in obtaining different views of the unlabelled
data. Given a data point xi, two different views are generated by a process Φ as xa ∼
Φ(xi) and x+ ∼ Φ(xi), where xa is referred to as the anchor and x+ as a positive
sample. The anchor is then contrasted to its positive sample and to k negative samples,

19

CHAPTER 3. SELF-SUPERVISED LEARNING

{x0}2i=0 P 0

1

2

{x̃i,s̃i}2i=0

Figure 3.4: Pretext task pseudo-label process for instance discrimination.

obtained by applying the process to other data points than xi as x−
j ∼ Φ(xj) for j ∈

Ik = {j1, . . . ,jk}, k < N where Ik ∩ {i} = ∅. Thus, for each input xi create the
positive pair (xa, x+) and k negative pairs {(xa,x−

j)}j∈Ik
and concatenate these as x̃i =

[(xa,x+),(xa,x−
j1

), . . . ,(xa,x−
jk

)] with pseudo label s̃i = [1,0, . . . ,0] containing k zeroes for
the negative pairs. The pretext pseudo-label process repeats this for all inputs, i.e.
P(Du) = Dp = {(x̃i,s̃i)|i = 1, . . . ,N}.

The model weights are determined as

λ⋆,γ⋆ = arg min
λ,γ

∑
(x̃i,s̃i)∈Dp

−E
[
log

(∑k
l=1 Ψ(kγ(hλ(x̃i,l)))s̃i,l∑k
l=1 Ψ(kγ(hλ(x̃i,l)))

)]

where the operations of the trunk and head are applied separately to each element of the
2-tuple, and Ψ is some appropriate similarity measure [Ericsson et al., 2022].

Contrastive learning is most efficient when there is a large number of negative pairs,
however increasing the number of negative pairs also increases the computational load
during training. Note, that if too few negative pairs are used, then the model may not
learn the details that distinguish instances. Furthermore, the most effective choice of k,
the ratio between positive to negative samples, and how exactly to sample negative values,
is not obvious [Ericsson et al., 2022].

The data augmentation and use of positive and negative pairs is what separates
contrastive learning from classical instance discrimination. However, the data augmentation
process needs to be designed carefully, as the process Φ can cause the model to be invariant
to such processes. Contrastive learning further builds upon the base assumption of instance
discrimination, that all instances represent semantically different objects. In many datasets
this assumption does not hold since there will be multiple examples of similar objects,
thereby creating false-negatives during training. Despite this, contrastive learning has
proven to be an effective task.

3.2.4 Self-Distillation

Self-distillation relies solely on the model itself to generate pseudo-labels, and can be seen
as a special case of knowledge-distillation. Knowledge-distillation is typically utilised to
perform model compression, alleviating the problem of parameter space inflation when
scaling up the size of DNNs. Knowledge-distillation works by employing two models, one
serving as a teacher, and the other as a student. While the teacher model is trained only on

20

3.2. PRETEXT TASKS MATTEK 4.105A

Px

s̃1 = 1

s̃2 = 0

hλ

Increase similarity

Increase dissimilarity

Figure 3.5: Pretext task for contrastive learning with pseudo-label process

ground truth labels, the student model is trained on both ground truth and the teacher’s
predictions [Pham et al., 2022]. Thereby facilitating the transfer of knowledge between the
two models, which for model compression, necessitates that the student’s parameterisation
is smaller than the teacher’s. Self-distillation however, refers to the case where both models
utilise the exact same architecture.

In a self-supervised setting, the concept of self-distillation can be introduced using a
single model to represent teacher and student. Let hλ(0) : X → S be a model parameterised
by an initial state λ(0). Given the dataset Du = {xi}Ni=1, let the pseudo-label process at
step k ∈ N be defined as

P(k)(Du) = {A(xi), hλ(k−1)(xi)}Ni=1 =
{(
x̃i,s̃

(k)
i

)}N
i=1
,

where A denotes some data augmentation. Self-distillation finds the parameterisation λ(k)

greedily based on the predictions from the previous model parameterisation:

λ(k) = arg min
λ

∑
xi∈Du

Lp(hλ(x̃i)), s̃(k)).

Suitable objectives Lp can range from the empirical mean squared error to the categor-
ical cross entropy [Balestriero et al., 2023]. The single-model self-distillation concept is
illustrated in Figure 3.6.

A

x

x̃

hλ(0) Lp hλ(1) Lp · · · hλ(k−1) Lp hλ(k)
s̃(1)

s̃′(1)

λ(1) s̃(2)

s̃′(2)

λ(2) λ(k−1) s̃(k)

s̃′(k)

λ(k)

Figure 3.6: The single-model interpretation of the self-distillation process.

In a practical setting, self-distillation is typically implemented using the dual model
teacher/student setup. The student and teacher are then shown different augmentations of
the input to ensure that they are not presented with the same information, and the student
subsequently attempts to predict the teacher’s response. The augmentation strategy often

21

CHAPTER 3. SELF-SUPERVISED LEARNING

involves either a mask or transformation [Balestriero et al., 2023]. The teacher is then
updated based on the parameterisation of the student, after which the process repeats.
The dual model allows the teacher and student to update using separate schedules, which
helps alleviate model collapse. This can be seen in models such as BYOL [Grill et al.,
2020] and data2vec [Baevski et al., 2022] which utilise an exponential moving average of
the student’s parameterisation to update the teacher instead of a drop-in replacement.

22

4 | The Vision Transformer

Trying to extract information encoded in images using a computer poses an interesting
problem. Though humans instinctively know how to decode this information, it is hard to
formalise this process. Until recently, convolutional neural networks were the dominant
approach. CNNs exhibit certain characteristics such as locality, weight sharing, and
translation invariance for small perturbations [Goodfellow et al., 2016]:

• Locality ensures that neighbouring pixels are related as they all contribute to the
same weighted sum.

• Weight sharing refers to the convolution reusing the same weights for different parts
of the image, imparting the idea that certain patterns repeat.

• Translation invariance is achieved by combining the translation equivariance property
of convolutions with pooling layers, allowing small translations of the input to
correspond to the same output.

– Translation equivariance indicates that a shift of the input will result in a
corresponding shift to the output.

– Pooling works by applying spatially local summary statistics, such as the sample
mean or max operations.

These inductive biases are consistent with how vision is expected to work in cats [Goodfellow
et al., 2016], LeCun et al. [1989], [Hubel and Wiesel, 1962].

In computer vision an alternative approach to CNNs is the vision transformer (ViT).
ViT does not exhibit the same inductive biases as a CNN. However, contrary to a CNN,
the ViT allows every layer of the DNN to incorporate information from everywhere in an
image at the same time. This is only possible for a CNN with extreme kernel sizes. By
interpreting an image as a sequence, the ViT can attend globally to an image in each layer
by relying on the transformer architecture.

This chapter is mainly based on Attention Is All You Need by Vaswani et al. [2017],
and An Image is Worth 16x16 Words - Transformers for Image Recognition at Scale
by Dosovitskiy et al. [2021], with inspiration from the blog-posts of Bloem [2019], and
Kazemnejad [2019].

4.1 Transformers

Traditional feed-forward NNs excel at extracting information and structure from data,
however, they fail to consider sequential information. For a modality such as text, where

23

CHAPTER 4. THE VISION TRANSFORMER

the relation between subsequent words in a sentence is extremely important, the lack
of sequential information can be detrimental when trying to understand context, e.g.
think of words with multiple meanings such as “set”. This problem can be alleviated by
using recurrent neural networks (RNN), which incorporate previous network states when
processing new input, enabling the network to consider the temporal information of an
input sequence. However, as there is a dependency in time, RNNs are inherently restricted
to sequential computations, akin to iterative algorithms. Consequently, RNNs do not scale
well to long sequences as computing long-term dependencies is slow and introduces the
vanishing gradient problem [Salem, 2022, p. 60-61]. There exists gated RNNs, such as Long
Short Term Memory, which mitigate these problems, though they are still fundamentally
RNNs and thus sequential [Salem, 2022, p. 71-72].

In the seminal paper Attention is All You Need [Vaswani et al., 2017], the transformer
model is proposed for sequence transduction tasks. The transformer abandons recursion
in favour of a feed-forward structure, relying on attention mechanisms and positional
encodings. This allows entire sequences to be processed simultaneously, while modelling
sequence dependencies, decreasing computational complexity compared to RNNs, and
providing state-of-the-art performance [OpenAI, 2023]. Typically, the transformer is pre-
trained on a large corpus and subsequently fine-tuned to a specific task. The transformer
architecture can be seen in Figure 4.1.

Embeddings

Norm

Multi-Head Attention

+

Norm

MLP

+

Figure 4.1: Transformer architecture.

4.2 Attention

To motivate the attention mechanism, consider a simple recommendation system. The
essence of such a system is calculating similarities between vector-embeddings. These
embeddings are simply vector representations of information, such as sounds, words, or
images.

Let x,y ∈ Rn be embeddings representing the same modality. A similarity score can
then be used to evaluate how closely related the two embeddings are perceived. The
inner product of embeddings can be utilised as an intuitive similarity measure. With this
approach, each entry in x and y contributes to a weighted sum giving the final score,
thereby imparting a notion of agreement between the two embeddings.

24

4.2. ATTENTION MATTEK 4.105A

Example 4.1 (Music Recommendation)
Let x ∈ Rn be an embedding of a piece of music describing the prevalence of different
genres. Similarly, let y ∈ Rn encode the listeners affinity for the corresponding genres.
Implicitly,

x =

Contains Jazz
Contains Rock

Contains Country
...

, y =

Likes Jazz
Likes Rock

Likes Country
...

,
where each entry corresponds to a numerical value. A recommendation can then be
made based on the score x⊺y: The more the listener likes jazz, the higher that attribute
is weighed in the score. Note, that negative values are allowed, and no normalisation
is applied. This allows for a listeners’ fondness for a particular genre to outweigh their
dislike for another. Consequently, if a piece of music is represented as containing a
negative amount of jazz, and the listener has a dislike for jazz, then the similarity is
impacted positively.

Building from Example 4.1, it becomes impractical to manually assign traits when
crafting embeddings for a recommendation system. However, from a mathematical per-
spective, there is no need to have tangible traits. Consequently, it is possible to simply
learn the features given enough data, and the specific learning task defines how features
are related. This is the underlying principle of attention.

The most basic attention mechanism calculates a sequence of attention vectors ai ∈
Rn from a sequence of input vectors xi ∈ Rn. Let X =

[
x1 x2 · · · xt

]⊺
and A =[

a1 a2 · · · at
]⊺

be input embeddings and attention vectors respectively, with the relation
A = WX where

Wij = σ(wi)j = ewij∑t
k=1 e

wik
, wij = x⊺

i xj , i,j = 1,2,...,t.

The softmax1 operation σ essentially creates a probability distribution. The weight matrix
W can be interpreted as the required attention between elements of the sequence X, i.e.
determining which elements of the sequence X are contextually related. An illustrative
example of the basic attention calculation can be seen in Figure 4.2.

4.2.1 Scaled Dot-Product Attention

The attention mechanism is often separated into three states: queries, keys, and values.

Query: The element xi of the input sequence X which is compared to every other element to
compute the weights for the attention ai.

Key: Every element xj of the input sequence X which is compared to the element xi to
compute the weights for the attention ai.

Value: Every element of the input sequence X which is used in a linear combination to form
the attention ai.

1https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html

25

https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html

CHAPTER 4. THE VISION TRANSFORMER

x⊺
1

w11
σ ×

x1

x1

x⊺
1

w12
σ ×

x2

x2

x⊺
1

w13
σ ×

x3

x3

+

a1 a2 a3

Figure 4.2: An illustration of the calculations involved in the basic attention mechanism.
Note the slight abuse of the softmax operation σ.

This lends itself to the interpretation of performing a dictionary lookup. Each input (query)
is compared to the index (keys) to see which entries (values) match. As described, the input
X ∈ Rt×n is pulling triple duty as query, key, and value. To increase the representation
power, new vectors are derived using linear transformations to represent the three states.
Let, T q, T k ∈ Rn×d, and T v ∈ Rn×m be the linear transformations utilised to generate the
queries qi ∈ Rd, keys ki ∈ Rd, and values vi ∈ Rm respectively, as

Q = XT q, Q ∈ Rt×d

K = XT k, K ∈ Rt×d

V = XT v, V ∈ Rt×m.

This extension of the attention mechanism can be seen in Figure 4.3.
Note that, in general, as the dimensionality of the queries and keys increases, so does

the magnitude of each wij = q⊺
i kj . As the softmax operation produces very small gradients

at the limits of its domain, a scaling factor corresponding to the dimensionality is applied
before the softmax.

Definition 4.2 (Scaled Dot-Product Attention)
Let Q ∈ Rt×d, K ∈ Rt×d, and V ∈ Rt×m have rows comprised of query, key, and value
vectors respectively. The scaled dot-product attention mechanism A is then

A(Q,K,V) = σ

(
QK⊺
√
d

)
V.

[Vaswani et al., 2017]

In most practical cases, the dimension of the values m is equal to the embedding
dimension n to allow residual connections.

26

4.2. ATTENTION MATTEK 4.105A

a1 a2 a3 a4

x1 x2 x3 x4

...
...

...
q⊺

2

w23

k3 v3

×

σ

+

Figure 4.3: Illustration of the extended attention mechanism. Note the slight abuse of the
softmax operation σ.

The computational complexity of the attention operation is O(nt2), compared to O(n2t)
a recurrent layer [Vaswani et al., 2017]. Consequently, when the sequence length t is smaller
than the embedding dimension n, which is often the case, the attention calculation is faster
than an RNN.

4.2.2 Multi-Head Attention

It is possible to run multiple attention mechanisms in parallel, by creating additional queries,
keys, and values using h learned projections. To keep the computational cost in line with a
single attention operation, the attention vectors are mapped to a smaller dimension. After
computing each of the h attention operations their outputs are concatenated and a final
linear projection TO is applied to return to the input dimension n.

Definition 4.3 (Multi-Head Attention)
Let Q ∈ Rt×d, K ∈ Rt×d, and V ∈ Rt×m represent queries, keys, and values respectively.
Let i ∈ {1,2, . . . ,h}, where h is a common factor of d and m, and let

TQ,i ∈ Rd×d/h, TK,i ∈ Rd×d/h, T V,i ∈ Rm×m/h, TO ∈ Rm×n.

Define
Ai = A(QTQ,i,KTK,i,V T V,i), Ai ∈ Rt×m/h.

The multi-head attention mechanism with h heads is then

AMulti(Q,K,V) =
[
A1 A2 · · · Ah

]
TO.

[Vaswani et al., 2017]

27

CHAPTER 4. THE VISION TRANSFORMER

A block diagram depicting the different approaches to attention can be seen in Figure 4.4.

Scaled Dot-Product Attention

MatMul

SoftMax

Scale

MatMul

Q K V

Multi-Head Attention

Linear

Concat

Scaled Dot-Product AttentionScaled Dot-Product AttentionScaled Dot-Product Attention

LinearLinearLinearLinearLinearLinear LinearLinearLinear

Q K V

Figure 4.4: Block diagrams of single- and multi-headed attention.

Multi-head attention allows the transformer to attend to information from different
subspace-representations at different positions jointly Vaswani et al. [2017]. This means
that in a sentence like “Andreas buys potatoes from Mads” there is a possibility of one
head that encodes for who receives the potatoes, and another that encodes for who sells the
potatoes. Another example would be encoding grammatical gender (masculine, feminine,
neutral) or quantity (singular, plural). This is contrary to a single scaled dot-product
attention where all of this information is necessarily summed, decreasing its ability to
discriminate.

An illustration of the attention behaviour can be seen in Figure 4.5

I would like to order a cake with chocolate filling

I would like to order a cake with chocolate filling

I would like to order a cake with chocolate filling

Figure 4.5: Constructed example of how different words in a sentence might attend to
each other for two different attention heads. The colour opacity corresponds to a higher
attention.

28

4.3. POSITIONAL ENCODING MATTEK 4.105A

4.3 Positional Encoding

Though utilising multiple heads enables attending to different associations of a sequence,
it does not incorporate any information regarding the position of the embedding in the
sequence. The transformer handles this problem by introducing positional embeddings
directly to the input embeddings, allowing the information to be cascaded through the
network.

The naive approach to positional encoding is to represent the embedding xi with a
number τi which scales linearly with the index i. This approach does not generalise well
however, as every sequence length then should be represented during training. Furthermore,
for long sequences, this might have the problem of introducing energy to the model and
potentially inflating the importance of input embeddings positioned later in a sequence. This
can be alleviated by normalising the range such that τ ∈ [0,1]. However, the normalisation
also removes information pertaining to the length of the sequence, which results in an
inconsistent interpretation of the positional embedding when presented with sequences of
varying lengths. To circumvent all of these problems the transformer represents positions
using sinusoids.

Definition 4.4 (Sinusoidal Positional Embedding)
Let xi ∈ Rn be the i’th vector in a sequence X =

[
x1,x2, . . .xt

]
, and let

ωj = ρ− 2j
n , ρ > 1, j ∈

{
1,2, . . . ,n2

}
.

The sinusoidal positional embedding pi corresponding to xi is then

pi =
[
sin(iω1) cos(iω1) sin(iω2) cos(iω2) · · · sin

(
iωn/2

)
cos
(
iωn/2

)]⊺
.

[Vaswani et al., 2017]

Definition 4.4 can alternatively be expressed in matrix form:

Pik =

sin
(
iω(k+1)/2

)
, k is odd

cos
(
iωk/2

)
, k is even,

for P =
[
p1 p2 · · · pt

]⊺
. (4.1)

Notice that i ∈ {1, 2, . . . , t} denotes the position of an element in the sequence, and
k ∈ {1, 2, . . . , n} indexes the embedding dimension. Thus, for each entry k in the input
embedding a different phase-frequency pair is assigned, creating a geometric progression
of wavelengths from 2π to 2πρ. Examples of the positional embeddings created from
Equation (4.1) can be seen in Figure 4.6, and Figure 4.7.

The encoding scheme presented in Equation (4.1) satisfies the following:

• Each sequence position has a unique embedding.

• Increasing the sequence length to t+ 1 does not change the first t positional embed-
dings.

29

CHAPTER 4. THE VISION TRANSFORMER

Figure 4.6: Sinusoidal positional embeddings with varying dimensionality.

Figure 4.7: Sinusoidal positional embeddings with varying sequence lengths.

30

4.4. AN IMAGE AS A SEQUENCE MATTEK 4.105A

• The values are bounded between -1 and 1.

[Kazemnejad, 2019]
Furthermore, the sinusoidal embeddings allow the transformer to calculate attention

based on relative positions since pi+k = Tpi, i.e. every positional embedding can be
represented by a linear projection of any other (Appendix C). The attention mechanism
essentially assigns a score to such a projection, and thus the sinusoidal positional encoding
behaves nicely in this context.

Lastly, as can be seen in Figure 4.8, the sinusoidal positional encoding also ensures
that the distance between neighbouring embeddings pi and pi+l is symmetric and changes
smoothly with l. This helps promote input embeddings placed closely together in a sequence,

Figure 4.8: ℓ2-distance between neighbouring sinusoidal positional embeddings.

while de-emphasising distant embeddings in the attention mechanism.

4.4 An Image as a Sequence

The transformer was originally envisioned to work on sequences of text, but a slight
reframing of how images are represented, allows the transformer to operate on these as
well. Building on the transformer architecture, the vision transformer (ViT) employs the
same attention mechanism and a nearly identical structure to generate meaningful image
embeddings.

Recall that digital images are often represented by a matrix encoding light intensities.
If the image x ∈ Rh×w×c is flattened to form a vector x ∈ Rhwc, it is possible to consider
it as a hwc-length sequence with scalar embeddings, or as a 1-length sequence with a
hwc-dimensional embedding. However, these either do not scale well with the attention
mechanism, or circumvent it entirely. Consequently, a balance must be struck by partitioning

31

CHAPTER 4. THE VISION TRANSFORMER

the image into t patches, each considered an element in a sequence. In [Dosovitskiy et al.,
2021] a single linear projection is applied to each flattened patch to create the input
embeddings.

More explicitly, let h,w denote the height and width in pixels of an image, c the
number of colour-channels, hp, wp denote the height and width in pixels of an image patch
with hp,wp factors of h and w respectively. Given an image x ∈ Rh×w×c, first separate
it into t = hw

hpwp
patches xp,i ∈ Rhp×wp×c, then flatten to xi ∈ Rhpwpc for i = 1,2, . . . ,t,

and concatenate these to form X ∈ Rt×hpwpc. A linear projection L ∈ Rhpwpc×n maps
the patches to the embedding dimension and a learnable [class] token is prepended.
Finally, the positional embedding P ∈ R(t+1)×n is added to yield the final image embedding
E ∈ R(t+1)×n:

E =
[

[class][
x1 x2 · · · xt

]⊺
L

]
+ P (4.2)

=
[
[class]
XL

]
+ P.

This embedding is then processed by the transformer. An overview of the vision transformer
(ViT) architecture can be seen in Figure 4.9.

· · ·

Linear Projection

· · · # # # #[class]

Transformer

Figure 4.9: Vision transformer architecture. An image is segmented into patches, a linear
transformation is applied to each patch, and a positional embedding is added to each of
the input embeddings before entering the transformer. An additional learnable [class]
token is included after the linear projection [Dosovitskiy et al., 2021].

When the attention mechanism is applied to image patches, the transformer is allowed
to attend between image regions. This might result in patches containing eyes attending
strongly with patches containing other facial features, such as a mouth or nose. Similarly,
the background patches might attend weakly with the main subject of the image. An
illustration of the basic attention mechanism presented in Section 4.2 applied to an image
can be seen in Figure 4.10. Note that the basic attention mechanism applied to image
patches will have a tendency to favour regions of high colour-intensity, as shown by the
figure. Furthermore, when multiple attention mechanisms are applied simultaneously, a
heatmap representing the receptive field of the transformer can be calculated using, e.g.,
attention flow [Abnar and Zuidema, 2020], however this is beyond the scope of this project.

32

4.4. AN IMAGE AS A SEQUENCE MATTEK 4.105A

Figure 4.10: The basic attention mechanism applied to a 224x224 image using 4x4 patches.

33

5 | Models

This chapter is designed to define and explain the models which are utilised to explore
the intersection between algorithm unrolling and self-supervised learning. This chapter
formulates models encompassing the two distinct approaches: Training a traditional unrolled
network using self-supervision, and incorporating an unrolled network into a proven SSL
model. However, first the reference unrolled algorithms are introduced.

5.1 LISTA

As mentioned in Example 2.2, the LISTA architecture was originally proposed by Gregor
and LeCun [2010] to approximate solutions to the sparse coding problem in a fixed number
of iterations.

The LISTA architecture is derived by unrolling ISTA, and as such, the network is
specifically designed to solve the BPD problem

min
α

1
2∥Dα− x∥22 + λ∥α∥, (5.1)

where α is the sparse code corresponding to the dictionary D and input vector x. ISTA
solves the BPD problem by iterating

α(k) = Sλ

(1
L
D⊺x + (I − 1

L
D⊺D)α(k−1)

)
, α(0) = 0, (5.2)

where Sλ is the entry-wise soft-thresholding operator, described in Equation (1.6), with
parameter λ. Using the unrolling process, each iteration is recast as

α(k) = Sλ(k)

(
W

(k)
d x +W (k)

e α(k−1)
)
,

where the predetermined dictionary D and shrinkage parameter λ are replaced by the
learnable parameters {W (k)

d }Tk=1, {W (k)
e }Tk=1, and {λ(k)}Tk=1. Thus, contrary to ISTA, each

iteration is allowed a unique parameterisation, increasing the representation power but
removing the domain knowledge associated with the dictionary construction. However,
it is possible to show that the optimal parameters tend to the weight coupling scheme
asymptotically [Chen et al., 2018]. Notice that the code α is essentially a high-dimensional
(sparse) embedding of the input x, which is relevant for Section 5.3.2.

Given a training-set of sparse codes {αi}Ni=1, αi ∈ Rn, where N denotes the batch size,
the loss function L is the empirical mean squared error:

L = 1
nN

N∑
i=1

∥∥∥α(T)
i −αi

∥∥∥2

2
.

35

CHAPTER 5. MODELS

Consequently, LISTA is trained supervised and requires knowledge of the sparse codes
beforehand. For images, sparse codes can be found using algorithms such as OMP [Elad,
2010, p.37] or ISTA, provided a suitable dictionary. Alternatively, both the sparse codes
and dictionary can be found greedily by applying K-SVD [Elad, 2010, p.234]. The LISTA
architecture can be seen in Figure 2.3.

Directly utilising the architecture presented in [Gregor and LeCun, 2010] for image
super-resolution, would require knowledge of both the sampling process Φ and the domain Ψ,
as presented in Section 1.2. With the BPD formulation in Equation (5.1), this information
is contained in D, meaning that the upscaling can only be performed after the LISTA
layers by multiplying Ψ and α. Consequently, each layer of the network is not utilised
directly for the super-resolution task, and extensive prior knowledge, might be required to
accurately reconstruct the high-resolution image. However, by reframing the BPD problem
a more suitable architecture can be extrapolated.

5.2 ISTA-Net: LISTA for Image Super-Resolution

To create a baseline for the experimental results, a LISTA inspired architecture called
ISTA-net [Zhang and Ghanem, 2018] will be utilised.

The ISTA-Net architecture is motivated with a slight reformulation of the basis-pursuit
denoising problem in Equation (5.1):

min
x

1
2∥Φx− y∥22 + λ∥Ψ̃x∥ 1. (5.3)

Here, x ∈ Rn and y ∈ Rm correspond to flattened high- and low-resolution images
respectively, while Φ ∈ Rm×n is a downsampling matrix, and Ψ̃x ∈ RN sparse codes. The
reformulation thus assumes Φ = DΨ̃ and α = Ψ̃x. Note that, Equation (5.3), contrary to
(5.1), explicitly states that the sparse codes α can be synthesised from x. Furthermore,
this formulation also directly solves the super-resolution task, rather than relying on a
separate reconstruction dictionary, creating a more efficient use of the unrolling mechanism
for solving the super-resolution task.

Because of Ψ̃, the solution to Equation (5.3) is not immediately analog to Equation (5.2).
Thus, consider the proximal step from Equation (1.5) in the context of Equation (5.3):

r(k) = ρΦ⊺y + (I − ρΦ⊺Φ)x(k−1)

x(k) = arg min
x

1
2
∥∥∥x− r(k)

∥∥∥2

2
+ λ

∥∥∥Ψ̃x
∥∥∥

1
, (5.4)

yielding the super-resolution image x(k) ∈ Rn. It can be shown that, if Ψ̃ is an orthogonal
matrix, then x(k) = Ψ̃⊺Sλ(Ψ̃r(k)) (Appendix B.1). The assumption of a linear bijection
might however be too restrictive. Motivated by the high representation power and the
universal approximation property of CNNs, ISTA-Net replaces the linear map Ψ̃ with the
trainable non-linear maps {Fτ (k)}Tk=1, where

Fτ (k) = Conv2D ◦ReLU ◦Conv2D,

with learnable parameters {τ (k)}Tk=1. The Conv2D operation is performed according to the
PyTorch implementation1, while ensuring sufficient padding as to keep the filtered input
the same length.

1https://pytorch.org/docs/1.13/generated/torch.nn.Conv2d.html

36

https://pytorch.org/docs/1.13/generated/torch.nn.Conv2d.html

5.2. ISTA-NET: LISTA FOR IMAGE SUPER-RESOLUTION MATTEK 4.105A

When utilising a non-linear operator, the solution to Equation (5.4) is harder to
find. Consequently, the ISTA-Net architecture assumes that x and Fτ (k)(x) are normally
distributed with mean r(k) and Fτ (k)(r(k)) respectively. Under these assumptions the
approximation ∥∥∥Fτ (k)(x)−Fτ (k)(r(k))

∥∥∥2

2
≈ κ(k)

∥∥∥x− r(k)
∥∥∥2

2
(5.5)

holds. Examination of the validity of this assumption is outside the scope of this project, but
can be found in the original ISTA-Net paper by Zhang and Ghanem [2018]. Incorporating
the approximation (5.5) into Equation (5.4) yields

x(k) = arg min
x

1
2
∥∥∥Fτ (k)(x)−Fτ (k)(r(k))

∥∥∥2

2
+ λ(k)κ(k)︸ ︷︷ ︸

θ(k)

∥Fτ (k)(x)∥1,

and thus
Fτ (k)(x(k)) = Sθ(k)(Fτ (k)(r(k))).

By also introducing F̃τ̃ (k) and enforcing F̃τ̃ (k) ◦ Fτ (k) = Id, the update step becomes

x(k) = F̃τ̃ (k)(Sθ(k)(Fτ (k)(rk))).

See Appendix B.2 for the derivation. To facilitate that F̃τ̃ (k) is the inverse of Fτ (k) , it is
designed with operational symmetry to Fτ (k) such that,

F̃τ̃ (k) = Conv2D ◦ReLU ◦Conv2D

with no bias. In other words, the number of kernels expands and contracts symmetrically
around the soft-shrink operation such that Fτ (k) produces multiple filtered versions of the
input signal, and F̃τ̃ (k) recombines these to a single output signal. The learnable parameters
for ISTA-Net are therefore {θ(k)}Tk=1, {τ (k)}Tk=1, and {ρ(k)}Ti=1.

Given the high-resolution training images {xi}Bi=1, where B denotes the batch size, the
loss function L comprises two terms:

LD = 1
nB

B∑
i=1

∥∥∥x(T)
i − xi

∥∥∥2

2
(5.6)

LIM = 1
nB

B∑
i=1

T∑
k=1

∥∥∥F̃ (k)
τ̃ (F (k)

τ (x(k)
i))− x(k)

i

∥∥∥2

2
(5.7)

Equation (5.6) is designed to lower the discrepancy between the original high-resolution
image xi and the estimated super-resolution image x(T)

i , while Equation (5.7) incentivises
the inverse morphism constraint F̃τ̃ (k) ◦ Fτ (k) = Id. Thus,

L = LD + γLIM,

where γ ∈ R is a regularisation parameter.
The initialisation x(0) is found as x(0) = Qinity where

Qinit = arg min
Q

∥QY −X∥2F = XY ⊺(Y Y ⊺)−1, Qinit ∈ Rn×m, (5.8)

with
X =

[
x1 · · · xq

]
, Y =

[
Φx1 · · · Φxq

]
,

given q high-resolution training images {xi}qi=1, and downsampling matrix Φ.
The ISTA-Net architecture can be seen in Figure 5.1.

37

CHAPTER 5. MODELS

x

Φ

y

Qinit

x(0)

r(1)

Sθ(1)

Fτ (1)

F̃τ̃ (1)

· · ·

x(k−1)

r(k)

Sθ(k)

Fτ (k)

F̃τ̃ (k)

· · ·

x(T−1)

r(T)

Sθ(T)

Fτ (T)

F̃τ̃ (T)

x(T)

Preprocessing

Figure 5.1: ISTA-Net for image super-resolution. The high-resolution image x is down-
sampled to the low-resolution image y. The low-resolution image y is then projected using
Qinit for the initial guess x(0). The initialised super-resolution image x(0) is then introduced
to the first layer, producing a refined image x(1). This is repeated for each of the T layers
producing the final super-resolution image x(T).

5.3 Masked Autoencoder

With the rise of self-supervised learning some traditionally unsupervised frameworks have
been revised or reformulated to include self-supervision. One such revision, is to utilise
masked prediction (Section 3.2.1) and task an autoencoder with inferring the held-out
information. Such autoencoders are called masked autoencoders (MAE). MAEs have
been successfully deployed for computer vision problems by using vision transformers
(Chapter 4), an asymmetric design of the encoder and decoder, and a masking ratio of
around 75% [He et al., 2021]. However, the concept of a masked autoencoder is not limited
to a specific architecture and may work for others as well.

5.3.1 Incorporating Vision Transformers

The MAE partitions an input image into patches and then randomly masks them according
to a given masking ratio. The encoder of the MAE only encodes non-masked patches,
which, when the masking ratio is high, yields a significant computational gain. The missing
elements of the encoded sequence are introduced to the decoder as shared and learned mask
tokens, to which positional embeddings are added. These tokens represent the missing
patches and together with the positional encoding, allows the decoder to better interpret
their spatial relationship. Thus, the decoder processes both the mask tokens and the
encoded patches. Typically, the decoder is designed to be significantly smaller than the
encoder. By processing the mask tokens only in the decoder, the encoder only sees real
patches. This translates well to downstream tasks, where it is unnatural to see mask
tokens. Furthermore, if the mask tokens are included in the encoder the performance
deteriorates, likely due to seeing inputs comprised of both unnatural mask tokens as well
as real patches He et al. [2021]. The MAE model is illustrated in Figure 5.2.

The masking procedure Mr in MAE takes an image embedding E ∈ R(t+1)×n (Equa-
tion (4.2)), randomly selects q = ⌊rt⌋ out of the t patch embeddings with r ∈ [0,1), and
generates a binary vector y ∈ Bt which indicates whether a patch is masked. The masking
procedure is described by

Mr(E) = (EM ∈ R(q+1)×n,y ∈ Bt).

Subsequently, K1 transformer blocks are used to encode EM , and after normalising, the
decoder linearly projects the code before inserting t− q learnable mask tokens. Then y is
used to organise the positions of the coded patches and K2 transformer blocks are used to

38

5.3. MASKED AUTOENCODER MATTEK 4.105A

Encoder

P1 +

Positional embedding

Mask Tokeniser T1 . . . TK1 Normalise

Decoder

P2
Mask
token

+

Positional embedding

T̃1. . .T̃K2NormaliseP3

Figure 5.2: Masked autoencoder model description.

decode the encoded sequence. Finally a linear projection maps the signal to the prediction
X ′ ∈ Rt×hpwpc.

The entire model is defined as kγ ◦ hλ where hλ : Rh×w×c → R(q+1)×n comprises the
encoder and kγ : R(q+1)×n → Rt×hpwpc the decoder. Thus, for an image x ∈ Rh×w×c the
model yields a prediction X ′ ∈ Rt×hpwpc as

X ′ = (kγ ◦ hλ)(x).

The MAE model predicts the full image given a partial view, but since the difficulty
of the task arises from predicting the missing patches of the image, the loss function
needs to reflect this. The loss function is the empirical mean squared error restricted to
the pixels associated with the missing patches. Thus for an unlabelled dataset of images
{xi ∈ Rh×w×c}Ni=1 the objective is

Lp = 1
Nq

N∑
i=1

((
(kγ ◦ hλ)(xi)−Xi

)⊺
yi
)2
,

where Xi ∈ Rt×hpwpc denotes the partitioned xi and yi is a binary vector that selects
patches.

The MAE is used as the pretext task to train the model kγ ◦ hλ. After pre-training,
the weights λ⋆,γ⋆ are transferred to the downstream model gγ⋆ ◦ hλ⋆ , after which the
parameterisation of the final projection P3 of g is increased by a factor m in order to
perform super-resolution. The downstream task is then to perform super-resolution on low
resolution images by utilising the training loss

Ld = 1
M

M∑
i=1

(
(gφ ◦ hλ)(Dm(xi))−Xi

)2

for the dataset {xi ∈ Rmh×mw×c}Mi=1 of high resolution images and downscaling operator
Dm that downscales with factor m.

5.3.2 Incorporating LISTA and Vision Transformers

Traditional ViT uses a linear projection to create embeddings (Equation (4.2)), that are
then encoded using self-attention and MLPs. In this section, the linear projection is replaced

39

CHAPTER 5. MODELS

by a non-linear projection F , specifically a T layer LISTA architecture (Section 5.1). This
model will be referred to as ISTA-MAE. For an image x ∈ Rh×w×c partitioned into patches
X ∈ Rt×hpwpc, the embedding E ∈ R(t+1)×n is given as

E =
[
[class]
F (X)

]
+ P.

Here F sequentially applies T LISTA layers to X with a zero-vector as initialisation for
the sparse code. Since the embeddings should be sparse they are penalised using the ℓ1
norm. Thus, the loss function is

Lp = 1
N

N∑
i=1

((
(kγ ◦ hλ)(xi)−Xi

)⊺
yi
)2

+ λ∥F (X)∥1,

with weighing parameter λ = 0.0001. The number of parameters for F is L(cnhw + n2)
compared to nhw parameters from a traditional ViT embedding. In relation to Figure 5.2
the proposed approach replaces the projection P1 with F .

In the proposed approach the attention mechanism attends to sparse representations of
the patches. Sparse codes are hypothesised to be an effective choice of embedding, since
they dictate which dictionary atoms are used to synthesise the inputs. By extension the
sparse codes must contain inherent semantic similarities between inputs. For example,
consider the case where the dictionary is a Fourier basis. In this feature space, images
which contain many of the same frequencies will tend to cluster together. For the basic
attention mechanism, sparse codes with disjoint support would result in zero attention.
That is, images which do not have any semantic relation with respect to the dictionary, will
not attend to each other. This relation is generally not sustained for the scaled dot-product
attention. However, utilising linear transformations on embeddings in a space where the
embeddings are already separable, is regarded to be an acceptable starting point for the
network. As such, the sparse embeddings are well suited for the attention mechanisms that
ViTs utilise.

5.4 data2vec

In an attempt to create a general framework for SSL, Baevski et al. [2022] propose
data2vec and show successful deployment for speech, language, and computer vision.
data2vec incorporates self-distillation (Section 3.2.4) along with a transformer architecture
(Chapter 4) to construct a unified learning framework. Thus, data2vec presents a model
relying on predicting latent representations from masked inputs.

As data2vec utilises self-distillation, the pseudo-label generation process comprises both
data augmentation and feature extraction. Consequently, two identical neural networks
are constructed, employing a masking strategy where the teacher is presented the full
input while the information presented to the student network is masked. Similarly to
MAE (Section 5.3), data2vec utilises the ViT, interpreting an image as a sequence of
image patches, and masks by replacing portions of the image sequence with a learned
mask embedding. Prediction is also only performed on the masked portion, and thus the
difficulty of the task depends on the masking ratio. Typical data2vec masking ratios for
computer vision are around 60% [Baevski et al., 2022].

Formally, let hλs and hλt denote the student and teacher networks. The parameters of
the teacher is updated as an exponentially moving average of the student’s parameters to

40

5.4. DATA2VEC MATTEK 4.105A

avoid model collapse. The weight update rule for the teacher network is thus

λt ← τλt + (1− τ)λs,

where τ determines how much the parameters are updated. A schedule is used for τ , such
that it linearly increases from an initial value of τ0 to a target value τe over j updates,
after which it is fixed. The student’s parameters are updated using backpropagation and
stochastic gradient descent.

For a teacher and student network with T layers, let s̃(t) denote the latent representation
of hλt(xi) at the t’th layer. The task of the student network hλs is then to predict

s̃ = 1
K

K∑
k=1

s̃(T−k),

the average latent representation of the last K layers. Thus, given the unlabelled dataset
Du = {xi}Ni=1, the pseudo-label process is given as P(Du) = {(Mr(xi),s̃i)}Ni=1.

An illustration of the data2vec process can be seen in Figure 5.3.

xi

Teacher Network

xMi

Student Network Predict latent
representations

Teacher tracks
student parameters

Figure 5.3: Illustration of the data2vec framework.

The objective of the pretext task is minimising the average smooth-L1 loss restricted
to the masked patches by yi:

Lp = 1
Nq

N∑
i=1
Lℓ1(hλ(xi),s̃i)⊺yi,

where q is the number of masked patches and the smooth-L1 loss is given by

Lℓ1(hλ(x),s̃) =

1
2(s̃− hλ(x))2β−1, |s̃− hλ(x)| ≤ β,

|s̃− hλ(x)| − 1
2β, otherwise.

β is a hyperparameter that determines the transition from a squared to an L1 loss.

41

CHAPTER 5. MODELS

5.4.1 Incorporating ISTA-Net

Though data2vec was originally formulated for computer vision using ViT architectures,
the authors specify that “[...] alternative architectures may be equally applicable” [Baevski
et al., 2022]. Thus, both teacher and student networks can be created as identical ISTA-Net
models (Section 5.2). As ISTA-Net does not consider the input as a sequence, the masking
procedure needs to change. Consequently, for the image xi ∈ Rh×w, the masking procedure
is

Mr(xi) = (xi ⊙M,y ∈ Bhw),

where M ∈ Bh×w is a matrix of ones where a random submatrix of size hm × wm is
replaced by zeros. The shape of the submatrix is constrained by the masking ratio r. This
corresponds to setting a rectangular region of each image to black. The masking procedure
is applied to the initialisation x(0). An example of the masking procedure can be found in
Figure 5.4. Thus, the ISTA-Net student is presented with both masked and non-masked

Figure 5.4: Random image crops from the ImageNet dataset. Top: Images presented to
the teacher. Bottom: Images presented to the student.

information. Pre-training is then performed using a combination of the smooth-L1 loss
and the inverse morphism constraint (Equation (5.7)):

L = Lp + γLIM.

For the downstream task, only the pre-trained student model hλ⋆ is transferred, and
both the teacher model and the masking procedure are discarded. The student is then
fine-tuned according to the original formulation of ISTA-Net. This corresponds to training
the ISTA-Net model hλ as presented in Section 5.2, but with the initial parameterisation
λ = λ⋆. This model will be referred to as ista2vec.

42

6 | Experiments

With a basis in the models presented in Chapter 5, this chapter outlines model parameters,
hyperparameters, evaluation metrics, and datasets for reproducibility. The goal is to design
experiments that test the performance of the models in different scenarios and allow for
fair comparisons between them. The code for training the models outlined in this chapter
can be found at https://github.com/LarsenAndreas/SSL_ISTA

6.1 General Setup

The models are trained on three distinct datasets: the 102 Category Flower Dataset [Nils-
back and Zisserman, 2008], the Oxford-IIIT Pet Dataset [Parkhi et al., 2012], and the 2017
ILSVRC dataset [Russakovsky et al., 2015]. To aid with readability, these datasets will be
referred to as Flowers, Pets, and ImageNet respectively. ImageNet is utilised exclusively
for self-supervised pre-training and is, as such, not needed for evaluation. Conversely, both
Flowers and Pets have the last 20% reserved for evaluation. Note that, the datasets are
pruned to only include RGB images.

Every model is fine-tuned/trained on either the first 80% or 1% of Pets or Flowers.
Subsequently, the models are denoted

1. MF trained on ≈ 80% (6551) of Flowers.

2. MP trained on ≈ 80% (5896) of Pets.

3. MF,R trained on ≈ 1% (81) of Flowers.

4. MP,R trained on ≈ 1% (73) of Pets.

A superscript will be used to denote the specific architecture.
The evaluation data is prepared by extracting a 128×128 center crop from the remaining

20% of the respective dataset, and subsequently downscaled to obtain 64×64 low-resolution
images. The low-resolution images are then preprocessed and upscaled, according to the
model specifications, to infer the super-resolution image. All experiments compare the
super-resolution image with the ground truth image by their Peak Signal-to-Noise Ratio
(PSNR):

PSNR(u, v) = 10 log10

(
I2

max
MSE(u, v)

)
,

where Imax = 1 for images with values in the range [0,1], and thus reduces to

PSNR(u, v) = −10 log10(MSE(u,v)).

43

https://github.com/LarsenAndreas/SSL_ISTA

CHAPTER 6. EXPERIMENTS

The experiments are divided into the three following categories:

• Baseline: MF, and MP are evaluated on Flowers and Pets respectively.

• Restriction: MF,R and MP,R are evaluated on Flowers and Pets respectively.

• Generality: MP, MP,R are evaluated on Flowers, and MF, MF,R are evaluated on
Pets.

The baseline experiments are designed to provide a reference for the model performance
when presented with in-distribution data. The restriction experiments are designed to
provide a similar reference, while mimicking a scenario with data-scarcity, as SSL has been
shown to increase the performance in such a scenario. The generality experiments should
provide insight into how well these model generalises to out-of-distribution data.

6.2 ISTA-Net

To establish a general baseline, four ISTA-Net models (Section 5.2) are trained to upscale
16×16 image patches to 32×32. As the images from both datasets posses both a horisontal
and vertical resolution much larger than required (≫ 32), each minibatch uniformly samples
32 × 32 crops of the full images as targets. Thus, for every minibatch, the images are
preprocessed as follows:

1. A random patch xp ∈ R32×32×3 is sampled.

2. The patch is flattened to the target/label x ∈ R1024×3.

3. The low-resolution input patch y ∈ R256×3 is calculated as y = Φx.

The downsampling matrix Φ is designed such that it corresponds to dividing a 32 × 32
image patch into a regular grid of 2× 2 squares, calculating the average pixel value of each
square, and using the averages as the pixels in the 16× 16 low-resolution image patch.

6.2.1 Model Parameters

The initilisation matrix QInit, is calculated for MF, MP, MF,R, and MP,R by uniformly
sampling the color channels of 6551, 5896, 81, and 73 high-resolution image patches respect-
ively to their training datasets. All models are trained using an Adam optimiser [Kingma
and Ba, 2017] with default PyTorch initialisation1.

The ISTA-Net models use 9 layers and take an input image of dimension 16× 16 and
upscale with a factor of 2 to obtain 32 × 32 high-dimensional images. The non-linear
operation F uses 32 and 322 3× 3 kernels for the first and second convolution respectively
in each layer. To have operational symmetry, F̃ uses 322 followed by 32 3 × 3 kernels.
The parameters are initialised according to the Xavier-normal scheme [Glorot and Bengio,
2010]. The models have in total 181,458 trainable parameters.

The hyperparameters are identical across the models and described in Table 6.1.
1https://pytorch.org/docs/1.13/generated/torch.optim.Adam.html

44

https://pytorch.org/docs/1.13/generated/torch.optim.Adam.html

6.3. MAE MATTEK 4.105A

Epochs Batch Size Learning Rate γ Decay Rates Stability Constant
500 64 10−4 0.01 (0.9, 0.999) 10−8

Table 6.1: Hyperparameters used for training the baseline ISTA-Net models.

6.3 MAE

To establish a self-supervised baseline, four MAE models (Section 5.3.1) are trained to
upscale 64× 64 images to 128× 128. The training of all four models comprises two stages:
1) The models are identically pre-trained using the MAE framework (Section 5.3), and 2)
fine-tuning is conducted following the general setup described in Section 6.1.

6.3.1 Model Parameters

The parameters are identical across the models and can be found in Table 6.2. The MLP
ratio for all transformers in both the encoder and decoder is 4. The models have a total of
5,317,632 trainable parameters.

Miscellaneous
Image size Patch size Masking ratio

64 8 0.75
ViT Encoder

Depth Number of heads Embedding size
6 8 256

ViT Decoder
Depth Number of heads Embedding size

2 8 128

Table 6.2: Model parameters of the MAE models.

6.3.2 Pre-Training

The pre-training is performed on ImageNet. Every image x in ImageNet is pre-processed
by sequential application of the following transformations:

1. A random patch xp ∈ Rh×w×3 of the original images is extracted. The height h and
width w are randomly selected between 20% and 100% of the original images’ vertical
and horisontal resolution.

2. The patch is resized to xp ∈ R64×64×3 using bicubic interpolation.

3. The patch is flipped horisontally with a probability of 50%.

4. The patch is normalised with respect to the pixel mean and standard deviation of
ImageNet.

The MAE models are trained using an AdamW [Loshchilov and Hutter, 2019] optimiser
with weight-decay and learning rate warm-up. All fully connected layers of the model are

45

CHAPTER 6. EXPERIMENTS

initialised following a Xavier-uniform [Glorot and Bengio, 2010] distribution, and the class
and mask token are initialised following a zero-mean Gaussian distribution with standard
deviation 0.02.

The hyperparameters used for pretext training are described in Table 6.3.

Epochs Batch Size LR Weight Decay Warm-up Epochs Warm-up Target
18 512 0.0001 0.05 10 0.002

Table 6.3: Hyperparameters used for pre-training the MAE models.

6.3.3 Fine-Tuning

After pre-training, the model weights are transferred to a downstream model and the
final fully connected layer is initialised following U(− 1√

n
, 1√

n
). Finally, the MAE model is

fine-tuned to perform super-resolution on data comprising pairs of high and low resolution
images, where the model predicts the high resolution image from the low resolution image
as described in Section 6.1.

The hyperparameters used for fine-tuning of MAE are described in Table 6.4.

Epochs Batch Size LR Weight Decay Warm-up Epochs Warm-up Target
1000 16 0.001 0.05 50 0.01

Table 6.4: Hyperparameters used for downstream training of MAE with ViT architecture.

6.4 ISTA-MAE

This section describes the training procedure for the ISTA-MAE model described in
Section 5.3.2 which utilises both ViT and LISTA. The training is split into two subsequent
phases: 1) self-supervised pretext training, and 2) supervised fine-tuning, utilising the
setup described in Section 6.1. The training setup is identical to the one used for the MAE
models, but the architecture differs in the initial encoding.

6.4.1 Model Parameters

The ISTA-MAE models utilise 5 LISTA layers to obtain the encoder embedding, and
similarly to the baseline MAE model it utilises an MLP ratio of 4. The remaining model
parameters are identical to the baseline MAE model seen in Table 6.2. The models have a
total of 5,778,437 trainable parameters.

6.4.2 Pre-Training

The hyperparameters used for self-supervised pre-training are identical to the ones used
for the MAE models, and these can be seen in Table 6.3.

46

6.5. ISTA2VEC MATTEK 4.105A

6.4.3 Fine-Tuning

The hyperparameters used for fine-tuning the ISTA-MAE models are identical to the ones
utilised for the MAE models, and these can be seen in Table 6.4.

6.5 ista2vec

This section describes the training procedure for the ista2vec model described in Section 5.4,
which utilises the data2vec training paradigm for ISTA-Net. Four ISTA-Net models
(Section 5.2) are trained to predict 32× 32 representations of 16× 16 image patches. The
training is split into two subsequent phases: 1) self-supervised pre-training, based on
the data2vec framework, and 2) supervised fine-tuning, utilising the setup described in
Section 6.1.

6.5.1 Model Parameters

The parameters of all four models are identical to the ISTA-Net models (Section 6.2.1, and
they are initialised following a Xavier-normal distribution [Glorot and Bengio, 2010]. Since
the model size is the same as the ISTA-Net models, these models each contain 181,458
trainable parameters.

6.5.2 Pre-Training

The pre-training phase adopts the data2vec student/teacher setup: Two ISTA-Net architec-
tures are initialised with identical parameterisations, and trained as described in Section 5.4
on ImageNet with preprocesing identical to Section 6.2. The pre-training hyperparameters
can be seen in Table 6.5. A cosine schedule is used to anneal the learning rate. Note that,

Epochs Batch Size Learning Rate K β

42 512 10−5 1 2
EMA Schedule Masking Ratio Decay Rates Stability Constant γ

(0.9995, 0.9998) 0.60 (0.9, 0.999) 10−8 0.01

Table 6.5: Hyperparameters used for pre-training ISTA-Net in the data2vec framework.

only the final representation from the teacher is predicted, i.e. K = 1. This is chosen
based on the original paper [Baevski et al., 2022] presenting a relatively small performance
increase for K > 1 on images, compared to text and sound. Furthermore, because of un-
rolling, each sequential ISTA-Net layer generates a more refined representation [Zhang and
Ghanem, 2018]. Consequently, averaging these would correspond to a worse representation
than simply using the final one.

To help increase the generality of the representations, the initialisation matrix QInit
(Equation (5.8)), is replaced with TorchVisions Resize function2 with bilinear interpolation.
Thus, QInit is not derived from ImageNet samples, hopefully increasing the effectiveness of
fine-tuning.

2https://pytorch.org/vision/0.15/generated/torchvision.transforms.Resize.html

47

https://pytorch.org/vision/0.15/generated/torchvision.transforms.Resize.html

CHAPTER 6. EXPERIMENTS

6.5.3 Fine-Tuning

After pre-training, the teacher models and input masking are dropped, and the student
models are fine-tuned in a supervised setting. Training is performed identically to Sec-
tion 6.2, thus replacing the Resize function with the initialisation matrix QInit. The
fine-tuning hyperparameters are shown in Table 6.1.

48

7 | Results

This chapter presents the findings of the experiments described in Chapter 6. The
observations in this chapter are based purely on the PSNR which is not necessarily
indicative of the perceptual quality of the reconstructions. Note that all the figures only
depict performance on the evaluation set, i.e. the last 20% of the respective datasets.

The performance of each model will be illustrated as bar plots of the average PSNR
over the entire evaluation dataset, as this allows for easy overall comparisons between
models on both Flowers and Pets. To contextualise the observations from the bar plots, the
individual model performance on a per-image basis is examined. This study is visualised
in terms of win rate plots, each depicting the absolute difference in PSNR between two
models. The plots always present the win rate for either ista2vec or ISTA-MAE against
their respective reference models. Thus, the ISTA-Net based models are never compared
with the MAE based models. The win rate plots serve as a high-resolution depiction of
the otherwise aggregated results of Figure 7.5-7.16, as averaging might grant an unfair
advantage to models which perform extremely well on very specific imagery.

Examples of recovered super-resolution images from every model can be seen in Fig-
ure 7.1-7.4.

HR M ISTA-Net
F M ISTA-Net

P M ista2vec
F M ista2vec

PLR

Figure 7.1: Low-resolution, high-resolution, and super-resolution images for the baseline
ISTA-Net and ista2vec models.

7.1 Baseline

This section will present the results from the baseline experiments. This includes the bar
plot in Figure 7.5 as well as the win rate Figure 7.6-7.9.

49

CHAPTER 7. RESULTS

HR MMAE
PMMAE

F M ISTA-MAE
PM ISTA-MAE

FLR

Figure 7.2: Low-resolution, high-resolution, and super-resolution images for the baseline
MAE and ISTA-MAE models.

HR M ISTA-Net
P,RM ISTA-Net

F,R M ista2vec
P,RM ista2vec

F,RLR

Figure 7.3: Low-resolution, high-resolution, and super-resolution images for the restriction
ISTA-Net and ista2vec models.

HR MMAE
P,RMMAE

F,R M ISTA-MAE
P,RM ISTA-MAE

F,RLR

Figure 7.4: Low-resolution, high-resolution, and super-resolution images for the restriction
MAE and ISTA-MAE models.

50

7.1. BASELINE MATTEK 4.105A

Figure 7.5: Baseline experiment. Average PSNR for the MF and MP models. The black
line denotes the standard deviation.

Figure 7.6: ista2vec win rate against ISTA-Net, both trained on 80% of Pets and tested
on the remaining 20% of Pets. Green indicates that ista2vec wins and red indicates that
ISTA-Net wins.

51

CHAPTER 7. RESULTS

Figure 7.7: ista2vec win rate against ISTA-Net, both trained on 80% of Flowers and tested
on the remaining 20% of Flowers. Green indicates that ista2vec wins and red indicates
that ISTA-Net wins.

Figure 7.8: ISTA-MAE win rate against regular MAE, both trained on 80% of Flowers
and tested on the remaining 20% of Flowers. Green indicates that ISTA-MAE wins and
red indicates that regular MAE wins.

52

7.1. BASELINE MATTEK 4.105A

Figure 7.9: ISTA-MAE win rate against regular MAE, both trained on 80% of Pets and
tested on the remaining 20% of Pets. Green indicates that ISTA-MAE wins and red
indicates that regular MAE wins.

The performance of M ISTA-Net
F compared with M ista2vec

F , and M ISTA-Net
P compared with

M ista2vec
P is indistinguishable when looking solely at Figure 7.5, as the average PSNR is

easily within the standard deviation. However, Figure 7.6 and Figure 7.7 seem to indicate
that ISTA-Net is the better performing model, having a difference as high as 10 dB and
average loss margin of 1 dB when comparing M ISTA-Net

F to M ista2vec
F .

Based on Figure 7.5 the performance of MMAE
F and M ISTA-MAE

F are similar. The figure
further shows that MMAE

P and M ISTA-MAE
P perform similarly. Noticably, Figure 7.8 and 7.9

show that ISTA-MAE has a higher PSNR on 79.4% and 100% of Flowers and Pets test
images respectively.

Lastly, Figure 7.5 also shows M ISTA-Net
F ,M ista2vec

F outperforming MMAE
F ,M ISTA-MAE

F
with an average PSNR approximately 5-7 dB higher. Note that this statement does not
hold for MP.

53

CHAPTER 7. RESULTS

7.2 Restriction

This section will present the results from the restriction experiments. This includes the
bar plot seen in Figure 7.10 as well as the win rate plots in Figure 7.11-7.14.

Figure 7.10: Restriction experiment. Average PSNR for the models MF,R and MP,R. The
black line denotes the standard deviation.

Figure 7.11: ista2vec win rate against ISTA-Net, both trained on 1% of Flowers and tested
on the remaining 20% of Flowers. Green indicates that ista2vec wins and red indicates
that ISTA-Net wins.

The performance of M ISTA-Net
F,R compared with M ista2vec

F,R , and M ISTA-Net
P,R compared with

M ista2vec
P,R is indistinguishable when looking solely at Figure 7.10. However, by inspecting

Figure 7.11, a slight edge in performance on a per-image basis can be attributed to
M ISTA-Net

F,R , as it has a higher average PSNR lead of 0.5 dB compared to 0.25 dB. M ista2vec
P,R

has a higher win rate of 77.3% than M ISTA-Net
P,R , as can be seen in Figure 7.12.

54

7.2. RESTRICTION MATTEK 4.105A

Figure 7.12: ista2vec win rate against ISTA-Net, both trained on 1% of Pets and tested
on the remaining 20% of Pets. Green indicates that ista2vec wins and red indicates that
ISTA-Net wins.

Figure 7.13: ISTA-MAE win rate against regular MAE, both trained on 1% of Flowers
and tested on the remaining 20% of Flowers. Green indicates that ISTA-MAE wins and
red indicates that regular MAE wins.

55

CHAPTER 7. RESULTS

Figure 7.14: ISTA-MAE win rate against regular MAE, both trained on 1% of Pets and
tested on the remaining 20% of Pets. Green indicates that ISTA-MAE wins and red
indicates that regular MAE wins.

Figure 7.10 shows that the performance is similar for MMAE
F,R and M ISTA-MAE

F,R , as well
as for MMAE

P,R and M ISTA-MAE
P,R . The win rate plots in Figure 7.13 and 7.14 show that

ISTA-MAE has a higher PSNR for 86.3% and 92.8% of the Flowers and Pets test images
respectively. Note that for M ISTA-MAE

F,R has an average lead of approximately 2 dB over
MMAE

F,R .

As a final note on the restriction experiments, M ISTA-Net
F,R and M ista2vec

F,R outperform
MMAE

F,R and M ISTA-MAE
F,R as can be seen in Figure 7.10.

56

7.3. GENERALITY MATTEK 4.105A

7.3 Generality

This section will present the results from the generality experiments. This includes the bar
plots seen in Figure 7.15 and 7.16, and the win rate plots in Figures 7.17-7.24.

Figure 7.15: Generality experiment. Average PSNR for the MF and MP models. The black
line denotes the standard deviation.

Figure 7.16: Generality experiment. Average PSNR for the MF,R and MP,R models. The
black line denotes the standard deviation.

The performance of M ISTA-Net
P compared with M ista2vec

P , and M ISTA-Net
F compared with

M ista2vec
F is indistinguishable when looking solely at Figure 7.15. However, Figure 7.17 and

7.18, seem to indicate that ISTA-Net is the better performing model, having a difference as
high as 5 dB when comparing M ISTA-Net

F to M ista2vec
F . Note that the average loss margin is

smaller than 0.5 dB when comparing ISTA-Net to ista2vec.
When comparing MMAE

P and M ISTA-MAE
P on Flowers, Figure 7.15 show that ISTA-MAE

outperforms MAE. For MMAE
F and M ISTA-MAE

F on Pets however, the figure shows that the
models have similar performance. Figure 7.21 and 7.22 show that ISTA-MAE wins for
96.5% and 100% of the test images on Pets and Flowers respectively.

57

CHAPTER 7. RESULTS

Figure 7.17: ista2vec win rate against ISTA-Net, both trained on 80% of Pets and tested
on the remaining 20% of Flowers. Green indicates that ista2vec wins and red indicates
that ISTA-Net wins.

Figure 7.18: ista2vec win rate against ISTA-Net, both trained on 80% of Flowers and
tested on the remaining 20% of Pets. Green indicates that ista2vec wins and red indicates
that ISTA-Net wins.

58

7.3. GENERALITY MATTEK 4.105A

Figure 7.19: ista2vec win rate against ISTA-Net, both trained on 1% of Flowers and tested
on the remaining 20% of Pets. Green indicates that ista2vec wins and red indicates that
ISTA-Net wins.

Figure 7.20: ista2vec win rate against ISTA-Net, both trained on 1% of Pets and tested on
the remaining 20% of Flowers. Green indicates that ista2vec wins and red indicates that
ISTA-Net wins.

59

CHAPTER 7. RESULTS

Figure 7.21: ISTA-MAE win rate against regular MAE, both trained on 80% of Flowers
and tested on the remaining 20% of Pets. Green indicates that ISTA-MAE wins and red
indicates that regular MAE wins.

Figure 7.22: ISTA-MAE win rate against regular MAE, both trained on 80% of Pets and
tested on the remaining 20% of Flowers. Green indicates that ISTA-MAE wins and red
indicates that regular MAE wins.

60

7.3. GENERALITY MATTEK 4.105A

Figure 7.23: ISTA-MAE win rate against regular MAE, both trained on 1% of Flowers
and tested on the remaining 20% of Pets. Green indicates that ISTA-MAE wins and red
indicates that regular MAE wins.

Figure 7.24: ISTA-MAE win rate against regular MAE, both trained on 1% of Pets and
tested on the remaining 20% of Flowers. Green indicates that ISTA-MAE wins and red
indicates that regular MAE wins.

61

CHAPTER 7. RESULTS

When only inspecting the average PSNR shown in Figure 7.16, the performance of
M ISTA-Net

P,R compared with M ista2vec
P,R , and M ISTA-Net

F,R compared with M ista2vec
F,R is indistin-

guishable. However, from Figure 7.19 and 7.20 it is seen that M ista2vec
F,R and M ista2vec

P,R
have much higher win rates than their respective baseline models. Note that the PSNR
lead is only around 0.25 dB and 0.5 dB for M ista2vec

F,R and M ista2vec
P,R respectively. Further,

based on the results shown in Figure 7.16, M ista2vec
F,R can be said to outperform MMAE

F,R and
M ISTA-MAE

F,R on Pets.

When comparing MMAE
P,R and M ISTA-MAE

P,R on Flowers, Figure 7.16 show that they
obtain similar average PSNR. This also applies to MMAE

F,R and M ISTA-MAE
F,R on Pets. Fig-

ure 7.23 and 7.24 show that ISTA-MAE wins for 91.9% and 91.1% of the test images from
Pets and Flowers respectively.

62

8 | Discussion

The aim of this report is to study novel approaches to synergistically combining algorithm
unrolling and self-supervised learning, specifically in the context of solving the super-
resolution task. This leads to two proposed models, ista2vec and ISTA-MAE, which are
extensions of ISTA-Net and MAE respectively. The experiments outlined in Chapter 6
were conducted to analyse the performance of the models, and the results thereof were
presented in Chapter 7. This chapter encompasses a discussion of the results, the validity
of the proposed approaches, and general considerations.

8.1 Model Performance

The general results seem to indicate that ISTA-Net and ista2vec perform better than MAE
and ISTA-MAE for image super-resolution. This might be attributed to the transformer-
based models featuring a huge parameterisation, thus requiring a very large and diverse
dataset to train effectively, leading to long training times. Though the models are trained
on ImageNet, which contain approximately 1.3 million different images, because of hardware
constraints, MAE and ISTA-MAE might not have had enough time to train. Conversely,
the unrolled networks feature a much smaller parameterisation, thus alleviating the dataset
requirements. Furthermore, ISTA-Net and ista2vec utilise random crops during fine-tuning
compared to MAE and ISTA-MAE, which utilise center crops, thus enabling ISTA-Net
and ista2vec to better learn the underlying target distribution. However, ISTA-Net and
ista2vec are not definitively the best, as Figure 7.5 shows that the PSNR of all Pets based
models lie within the standard deviation of each other. Is is also worth noting that there
only exists one instance of every model, and thus bad performance can be attributed a bad
initialisation.

SSL should allow for more general models, which can be trained to successfully solve a
downstream task, utilising a smaller dataset than a purely supervised approach would allow.
Consequently, when comparing the performance of ISTA-Net and ista2vec, it is expected
that ista2vec is superior in the restriction and generality experiment. The generality
results presented in Section 7.3 seem to meet this expectation for the restricted case, while
ISTA-Net achieved higher performance for the unrestricted case. This is based on the win
rate over ISTA-Net, however, by examining the average win and loss margin, it can be seen
that these are smaller than 0.5 dB. Thus, it is difficult to conclude which model is better.
In the purely restriction experiment of Section 7.2, the results are very similar to the
generality experiment, though with slightly different attributions. However, as the win and
loss margins are still relatively small and their average PSNR is similar, it remains difficult
to favour either model. The restricted generality experiment poses the most difficult task,
as the models are trying to predict out-of-distribution targets, while being restricted to

63

CHAPTER 8. DISCUSSION

only 1% of the datasets during training. Thus, it is hypothesised that for the pre-training
performed on ista2vec to be advantageous, the downstream task needs to be sufficiently
difficult, as the default parameter initialisation otherwise provides a sufficiently efficient
starting point.

As described in the results, ISTA-MAE outperforms MAE in all experiments when
taking both the average PSNR and the win rate into account. Furthermore, the win margin
is generally higher for ISTA-MAE than it is for ista2vec while also achieving 100% win
rates in some experiments. Thus there is more evidence suggesting ISTA-MAE is the better
model. The increased performance may be attributed to algorithm unrolling allowing the
transformer to better utilise the features and generalise them to both datasets, as per the
consideration presented in Section 5.3.2.

Note that, in the restriction experiments (Section 7.2) neither ISTA-MAE nor MAE
perform well, despite being pre-trained on ImageNet. This may be due to the transfer
learning method: The models are trained downstream using fine-tuning instead of linear
readout. Thus all ≈5,000,000 parameters need to be fine-tuned on only 1% of the datasets.

Lastly, the performance differences between MAE, ISTA-MAE and ISTA-Net, ista2vec
may be explained by the super-resolution task being too difficult for the transformers to
perform utilising a single linear projection, and thus a more complex output module such
as an MLP may be more suitable.

8.2 Shortcomings and Sources of Error

Though there exists more sophisticated approximations1 to human perception, the PSNR is
a widely used empirical quality measure when reference imagery is available. Furthermore,
the PSNR is calculated using the MSE, which is consistent with the training objective
across all models. However, as the super-resolution imagery is all based on patching, and
PSNR is a per-pixel measure, the PSNR will therefore fail to capture discrepancies between
adjacent patches. Thus, for subsequent research, image quality metrics such as PIQE2

might yield more indicative results.
The datasets themselves constitute a source of error. Both Flowers and Pets are

relatively small datasets comprising less than 10,000 images. Pets is especially problematic,
as it does not have strongly defined subjects. Thus, the potential features present in Pets
might not be limited to features inherent to cats or dogs. In contrast, Flowers consists
mostly of centered subjects with a clear distinction between foreground and background.
The hypothesis of a difference in features is strengthened when comparing Figure 7.5 and
7.15 to Figure 7.10 and 7.16. These show that the average PSNR is similar for Flowers
and Pets with MF and MP except for specifically M ISTA-MAE

P , which has a 3 dB higher
average PSNR for Flowers than M ISTA-MAE

F . At the same time, the restriction experiments
show that the change in PSNR for Flowers ranges between -3 dB to -6 dB, while it remains
mostly the same for Pets, which ranges between -1.5 dB to +1.2 dB. Thus, the features
learned from Flowers seem to be more general, and it is expected that Flowers contains
a balance between low- and high-frequency features whereas Pets favour high-frequency
features. Additional examination of the datasets can be seen in Appendix D.

The extension of MAE to ISTA-MAE results in an increased parametrisation, as the
1https://www.mathworks.com/help/images/image-quality-metrics.html
2https://mathworks.com/help/images/ref/piqe.html

64

https://www.mathworks.com/help/images/image-quality-metrics.html
https://mathworks.com/help/images/ref/piqe.html

8.3. GENERAL CONSIDERATIONS MATTEK 4.105A

linear projection is replaced by a 5 layer LISTA architecture. Thus, an ablation study
is warranted, as it is unclear whether the increased performance is a consequence of the
introduction of the unrolled network, or simply because of the increased parametrisation.
Furthermore, as only fine-tuning is utilised when transferring weights to the downstream
task, the ablation study should be extended to also include performance testing of linear
readout. This is especially interesting for the restriction experiments as per Section 3.1.1.
Note also, that while the ISTA-MAE model utilises an L1 penalty term on the embedding
during pre-training to incite more sparse representations and thereby better utilise the
domain knowledge behind LISTA, it is uncertain if this regularisation is required. Pre-
liminary experiments showed that weighting the L1 term using λ = 0.0001 yielded the
best performance. As this choice of λ was also the smallest tested, this indicates that
it may not be necessary to include the L1 penalty. The ablation study should therefore
also include a more thorough examination of the applied L1 regularisation. In the same
vein, in its original formulation data2vec solely relies on the smooth-L1 loss. However,
the ista2vec model adds the inverse morphism constraint from the ISTA-Net formulation
during pre-training. This constraint is added to incentivise a better initialisation for the
downstream model, though it is unclear if the constraint is required for effective pre-training.
The ablation study should thus include pre-training and fine-tuning with and without the
inverse morphism constraint.

8.3 General Considerations

The aim of the project is to examine the intersection of algorithm unrolling and self-
supervised learning, specifically how they can be utilised in combination to construct
and train DNNs. Thus, the study is limited to establishing strategies for combining
both methods, and investigating the consequences thereof. Therefore, comparisons are
limited to the proposed models and their baseline counterparts, i.e. any comparison to
state-of-the-art methods is deemed beyond the scope. Since the study is unconcerned
with state-of-the-art performance, and due to time constraints, limited work has been
allocated towards hyperparameter tuning. Consequently, performance results should not be
considered as maximal potential the proposed methods. In order for transformer networks
to reach their maximal potential, they require a lot of training on copious amounts of
data. Dosovitskiy et al. [2021] claimed that the ViT was sufficiently pre-trained to achieve
excellent results when trained on the ImageNet21k dataset, which consists of 14,197,122
(14 million) images. Due to computational constraints the ViTs utilised in this project
were limited to train on ImageNet and were limited to have ≈5,000,000 parameters, which
might have led to subpar performance, compared to the architectures potential.

Because of its direct relation to an iterative algorithm, the latent representations of
unrolled networks are tangible, and represent a refined version of the previous decision.
Conversely, network architectures typically utilised for self-supervised learning provide
abstract latent representations that are not easily related to the input. Thus, the typical
SSL architecture does not impose restrictions on the latent representations and allows them
to freely mutate to fit the training task. This proves to be a challenge when framing AU in
a self-supervised setting, as the benefits of AU are generally attributed to the tangibility of
its representations. However, by not sharing parameters across layers, as was otherwise
originally proposed [Gregor and LeCun, 2010], the generality increases, which alleviates
some of the restrictions initially forced on the latent representation.

Replacing the ViT architecture in data2vec with the ISTA-Net architecture provides a

65

CHAPTER 8. DISCUSSION

simple approach to incorporating SSL. However, the original implementation of ISTA-Net
exhibits the same behaviour as an iterative algorithm, specifically that each latent repres-
entation is a refined version of the last, starting with the input [Zhang and Ghanem, 2018].
Thus, the latent representation that the student predicts is interpretable as a refinement of
the input image. Without a supervised objective, the refined representation created by the
teacher simply corresponds to an unspecified filtering of the input. Consequently, even if
the student learns to represent information in the masked area, it still would not necessarily
serve as a good initialisation, as iterative algorithms are advantageously initialised in
a state corresponding to a refinement of the original input. Similarly, this is also why
utilising a pre-trained network as a trunk to an unrolled network is not presented in this
work. As benefits of utilising algorithm unrolling arise from its priors, serving an unrolled
network with an abstract latent representation defeats the purpose of AU, unless the latent
representation can be guaranteed to fit the priors.

Utilising AU to create input embeddings represents the other proposed approach to
combining SSL and AU. This might allow more explicit utilisation of the benefits that
the unrolled architecture provides, while also producing abstract representations. This
approach does however, not inject interpretability into the gestalt of the model, as the final
representation is a heavily processed version of the original more tangible input embedding
provided by the unrolled algorithm. Even though the absolute PSNR is not nearly as high
as the ISTA-Net based models, the ISTA-MAE model consistently outperforms its MAE
counterpart, thus suggesting that the embedding strategy works.

66

9 | Conclusion

Algorithm unrolling and self-supervised learning can be combined under the unifying
mathematical framework of decision making algorithms. From this, two distinct approaches
were presented: ista2vec which focuses on utilising self-supervision to train the fully unrolled
network ISTA-Net, and ISTA-MAE which incorporates LISTA as a feature extractor in the
vision transformer. Though ista2vec is based on the established ISTA-Net architecture, it is
cast in the learning framework of data2vec. This allowed ista2vec to be pre-trained, using
self-supervision to determine its initialisation. ISTA-MAE extends the ViT architecture
by replacing the initial encoding step with LISTA, and pre-trains it using MAE. The
idea being to create embeddings based on domain knowledge. Both models were then
trained and compared to ISTA-Net and a traditional MAE for two datasets: 102 Category
Flower Dataset, and the Oxford-IIIT Pet Dataset. The results showed similar performance
between ISTA-Net and ista2vec, while ISTA-MAE outperformed MAE. Because of the
limited number of tests, it was impossible to directly attribute any increase in performance
to the inclusion of LISTA. The experiments and subsequent discussion does, however,
seem to indicate that the ISTA-MAE approach to combining the self-supervised learning
and algorithm unrolling is the most synergistic: By replacing task-specific modules of
existing general architectures, such as the transformer, with an unrolled algorithm, both the
performance and generality may increase. Conversely, it is not evident that self-supervised
pre-training of a fully unrolled network exploits the advantages of self-supervised learning,
and thus the combination is not properly motivated.

67

10 | Bibliography

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and Arshad,
H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon,
4(11):e00938.

Abnar, S. and Zuidema, W. (2020). Quantifying attention flow in transformers.

Baevski, A., Hsu, W.-N., Xu, Q., Babu, A., Gu, J., and Auli, M. (2022). data2vec: A
General Framework for Self-supervised Learning in Speech, Vision and Language.

Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F.,
Bardes, A., Mialon, G., Tian, Y., Schwarzschild, A., Wilson, A. G., Geiping, J., Garrido,
Q., Fernandez, P., Bar, A., Pirsiavash, H., LeCun, Y., and Goldblum, M. (2023). A
Cookbook of Self-Supervised Learning.

Beck, A. and Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1):183–202.

Bloem, P. (2019). Transformers from scratch. https://peterbloem.nl/blog/
transformers. Last Accessed: 18/04/2023.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A Simple Framework for
Contrastive Learning of Visual Representations.

Chen, X., Liu, J., Wang, Z., and Yin, W. (2018). Theoretical Linear Convergence of
Unfolded ISTA and Its Practical Weights and Thresholds. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, pages
9079–9089. Curran Associates Inc.

Denk, T. (2019). Linear relationships in the transformer’s positional encod-
ing. https://timodenk.com/blog/linear-relationships-in-the-transformers-
positional-encoding/. Last Accessed: 18/04/2023.

Dong, C., Loy, C. C., He, K., and Tang, X. (2015). Image Super-Resolution Using Deep
Convolutional Networks.

Donoho, D. L. (2006). For most large underdetermined systems of linear equations the
minimal l1-norm solution is also the sparsest solution. Communications on Pure and
Applied Mathematics, 59(6):797–829.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021).
An image is worth 16x16 words: Transformers for image recognition at scale.

69

https://peterbloem.nl/blog/transformers
https://peterbloem.nl/blog/transformers
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

CHAPTER 10. BIBLIOGRAPHY

Elad, M. (2010). Sparse and Redundant Representations. Springer New York, NY, first
edition. edition.

Ericsson, L., Gouk, H., Loy, C. C., and Hospedales, T. M. (2022). Self-Supervised Rep-
resentation Learning: Introduction, Advances, and Challenges. IEEE Signal Processing
Magazine, 39(3):42–62.

Farsiu, S., Robinson, D., Elad, M., and Milanfar, P. (2004). Advances and Challenges in
Super-Resolution. International Journal of Imaging Systems and Technology, 14(2):47–57.

Foucart, S. and Rauhut, H. (2013). A Mathematical Introduction to Compressive Sensing.
Applied and Numerical Harmonic Analysis. Birkhäuser.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. Journal of Machine Learning Research - Proceedings Track, 9:249–256.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Gregor, K. and LeCun, Y. (2010). Learning Fast Approximations of Sparse Coding. In
ICML 2010 - Proceedings, 27th International Conference on Machine Learning, pages
399–406.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch,
C., Pires, B. A., Guo, Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos, R.,
and Valko, M. (2020). Bootstrap your own latent: A new approach to Self-Supervised
Learning.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2021). Masked autoencoders
are scalable vision learners.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154.

Johnson, J. (2020). Interpretability vs explainability: The black box of machine learning.
Last acessed: 26-04-2023.

Kazemnejad, A. (2019). Transformer architecture: The positional encoding. https:
//kazemnejad.com/blog/transformer_architecture_positional_encoding/. Last
Accessed: 18/04/2023.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization.

Monga, V., Li, Y., and Eldar, Y. C. (2019). Algorithm Unrolling: Interpretable, Efficient
Deep Learning for Signal and Image Processing.

Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large
number of classes. In Indian Conference on Computer Vision, Graphics and Image
Processing.

OpenAI (2023). Gpt-4 technical report.

70

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

MATTEK 4.105A

O’Searcoid, M. (2007). Metric Spaces. Springer.

Parikh, N. and Boyd, S. (2014). Proximal Algorithms. Foundations and Trends in
Optimization. https://web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. V. (2012). Cats and dogs. In
IEEE Conference on Computer Vision and Pattern Recognition.

Pham, M., Cho, M., Joshi, A., and Hegde, C. (2022). Revisiting self-distillation.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252.

Salem, F. M. (2022). Recurrent neural networks : from simple to gated architectures.
Springer, Cham, Switzerland.

Shlezinger, N., Eldar, Y. C., and Boyd, S. P. (2022). Model-Based Deep Learning: On the
Intersection of Deep Learning and Optimization.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention Is All You Need.

Werbos, P. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560.

Yang, J., Wright, J., Huang, T., and Ma, Y. (2008). Image super-resolution as sparse
representation of raw image patches. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8.

Zhang, J. and Ghanem, B. (2018). Ista-net: Interpretable optimization-inspired deep
network for image compressive sensing.

71

https://web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf

Appendices

73

A | ISTA Preliminaries

The content of this Appendix is mainly based on [Parikh and Boyd, 2014].

Lipschitz Functions and Contraction

Definition A.1 (Lipschitz Function)
Given metric spaces (X,e) and (Y,d) and a function f : X → Y , then f is called
L-Lipschitz on X with Lipschitz constant L ∈ R+, if there exists a k such that

d(f(a),f(b)) ≤ Le(a,b), ∀a,b ∈ X.

[O’Searcoid, 2007, p.154]

Definition A.2 (Proximal Operator)
Given a closed proper convex function f , the Proximal operator proxf (v) : Rn → Rn of
f is defined as

proxf (v) = arg min
x

(
f(x) + 1

2 ||x− v||
2
2

)
.

The function which is minimised on the r.h.s above is strongly convex and not infinite
everywhere – it has a unique minimiser for every v. For a scaled function λf , where
λ > 0, the proximal operator can be expressed as

proxλf (v) = arg min
x

(
f(x) + 1

2λ ||x− v||
2
2

)
,

which is referred to as the proximal operator of f with parameter λ.
[Parikh and Boyd, 2014, p.124]

The proximal operator, proxλf (v), attempts to reduce the value of f without moving
too far away from the point v. The proximal operator proxf can be interpreted as a
sort of gradient step for the convex function f . The parameter λ dictates how large the
penalty is for straying away from v, in effect determining how far the points are mapped.
Upon application the points originally inside the domain of the function f remain inside,
and the points outside the domain move towards the boundary and the minimum. Since
explicit formulas of proximal operators are available for many simple penalty functions

75

APPENDIX A. ISTA PRELIMINARIES

f , proximal operators can often be computed efficiently. In addition, proximal operators
do not require f to be differentiable, making proximal operators useful for non-smooth
optimisation problems. [Parikh and Boyd, 2014, p. 124-125]

76

B | Proximal Operator Derivations

B.1 With L1 Regularisation in Transform Domain

Consider the optimisation problem

x(k) = arg min
x

1
2
∥∥∥x− r(k)

∥∥∥2

2
+ λ∥Ψx∥1

with solution

proxλf (r) = arg min
x

(∥Ψx∥1 + 1
2λ∥x− r∥22) = arg min

x
φ(x,r).

An analytical solution to the proximal operator is found by finding a critical point of φ(x,r).
The derivative of φ(x,r) w.r.t. x is

∂φ(x,r)
∂x = 1

2λ

(
∂

∂xx⊺x− ∂

∂xx⊺r− ∂

∂xr⊺x
)

+ ∂

∂x∥Ψx∥1

= 1
2λ(2x⊺ − 2r⊺) + sign(Ψx)⊺Ψ

= 1
λ

(x⊺ − r⊺) + sign(Ψx)⊺Ψ.

To see that ∂
∂x∥Ψx∥1 = sign(Ψx)⊺Ψ notice that for Ψ ∈ Rm×n and x ∈ Rn

∂

∂x∥Ψx∥1 = ∂

∂x(|Ψ⊺
1x|+ |Ψ⊺

2x|+ · · ·+ |Ψ⊺
mx|)

= sign(Ψ⊺
1x)Ψ⊺

1 + sign(Ψ⊺
2x)Ψ⊺

2 + · · ·+ sign(Ψ⊺
mx)Ψ⊺

m

= sign(Ψx)⊺Ψ.

By setting the derivative to zero, the critical point can be found as

∂φ(x,r)
∂x = 1

λ
(x⊺ − r⊺) + sign(Ψx)Ψ⊺ = 0

=⇒ r⊺ = x⊺ + λ sign(Ψx)Ψ⊺

r = x + λΨ⊺ sign(Ψx).

Now assume that Ψ is orthogonal, then

Ψr = Ψx + λΨΨ⊺ sign(Ψx)
= Ψx + λ sign(Ψx).

77

APPENDIX B. PROXIMAL OPERATOR DERIVATIONS

By examining the entries of Ψr it is found that

(Ψr)i =
{

(Ψx)i − λ, (Ψx)i < 0
(Ψx)i + λ, (Ψx)i > 0.

It follows that

(Ψx)i =

(Ψr)i + λ, (Ψr)i < −λ
0, |(Ψr)i| ≤ λ
(Ψr)i − λ, (Ψr)i > λ.

This can be expressed using the soft-shrinkage function Sν as

Ψx = Sλ(Ψr).

Finally, by orthogonality
x = Ψ⊺Sλ(Ψr).

B.2 With L1 Regularisation in Nonlinear Domain

Consider the optimisation problem

x(k) = arg min
x

1
2
∥∥∥x− r(k)

∥∥∥2

2
+ λ∥F(x)∥1

for nonlinear function F . By Zhang and Ghanem [2018]∥∥∥F(x)−F(r(k))
∥∥∥ ≈ α∥∥∥x− r(k)

∥∥∥2

2

and thus the optimisation problem is approximated as

x(k) ≈ arg min
x

1
2α
∥∥∥F(x)−F(r(k))

∥∥∥2

2
+ λ∥F(x)∥1.

The solution is given by the proximal operator

proxλf (r) = arg min
x

(∥F(x)∥1 + 1
2αλ∥F(x)−F(r)∥22) = arg min

x
φ(x,r).

An analytical solution to the proximal operator is found by finding a critical point of φ(x,r).
To find the derivative of φ(x,r) w.r.t. x, the substitution z = F(x) and y = F(r) is used,
and it is assumed that F ′ exists. Thus,

∂φ(x,r)
∂x

= 1
2αλ

(
∂z⊺z
∂z

∂z
∂x
− ∂z⊺y

∂z
∂z
∂x
− ∂y⊺z

∂z
∂z
∂x

)
+ ∂

∂z
∥z∥1

with ∂z/∂x = F ′(x). Simplifying yields the expression

∂φ(x,r)
∂x = 1

2αλ(2z⊺ − 2y⊺)F ′(x) + sign(z)⊺F ′(x)

=
((1

αλ
F(x)⊺ − 1

αλ
F(r)⊺

)
+ sign(F(x))⊺

)
F ′(x).

78

B.2. WITH L1 REGULARISATION IN NONLINEAR DOMAIN MATTEK 4.105A

Due to convexity of norms there exists only one minimum which can be found by solving

0 = 1
αλ

(F(x)⊺ −F(r)⊺) + sign(F(x))⊺

F(r) = F(x) + αλ sign(F(x)).

Using similar arguments as in Section B.1, the solution is found as

F(x) = Sαλ(F(r)).

Assume that there exists F̃ satisfying that F̃ ◦ F = ζ id, then

x = 1
ζ
F̃(F(x)) = 1

ζ
F̃(Sαλ(F(r))) ∝ F̃(Sαλ(F(r))).

79

C | Positional Encoding

Theorem C.1 (Linear Relationships in Sinusoidal Positional Encodings)
Let

pi =

sin(iω1)
cos(iω1)
sin(iω2)
cos(iω2)

...
sin
(
iωn/2

)
sin
(
iωn/2

)

, ωi ≜ ρ− 2i

n ,

where ρ ∈ R+, i ∈ N, and pi ∈ Rn.
Then there exists a linear transformation T k ∈ Rn×n such that

T kpi = pi+k,

for any k ∈ N.
Denk [2019]

Proof: Consider the following rules of arithmetic for sinusoids:

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)
cos(α+ β) = cos(α) cos(β)− sin(α) sin(β).

This corresponds to[
sin((i+ k)ωj)
cos((i+ k)ωj)

]
=
[

cos(kωj) sin(kωj)
− sin(kωj) cos(kωj)

]
︸ ︷︷ ︸

Ψj

[
sin(iωj)
cos(iωj)

]
.

Consequently, T k can be designed as

T k =

Ψ1 0 · · · 0
0 Ψ2 · · · 0
...

...
0 0 · · · Ψn/2

,

81

APPENDIX C. POSITIONAL ENCODING

where
0 =

[
0 0
0 0

]
.

■

82

D | Dataset Deficiencies

The performance of every model is affected by the quality of the dataset. This section aims
to explore the datasets to highlight potential problems, as well as to describe how these
are expected to affect the trained models.

D.0.1 Monotone Background Seperation

As both datasets contain images taken in the real world with a camera, the contrast
between the background and subject varies from image to image. Both datasets feature
images in which the subject is emphasized by stark contrast to the background. Examples
of these can be seen in Figure D.1 As can be seen, the separation between subject and
background is achived using a (mostly) monochrome background. Consequently, the model
might be inclined to learn low-pass filters in order to adequately represent these images.
As these images contrast with the larger part of the dataset, in which the background
includes some sort of texture, emphasizing low-frequency information might leads to a
degradation in performance.

D.0.2 Unclear Subject

The datasets are supposed to feature flowers or pets as the subject in the images. However,
both datasets include images in which it is not necessarily clear that these are the subjects.
Examples of these can be seen in Figure D.2. Consequently, the datasets might contain a
much more diverse set of images than initially expected. Though this can be considered
a positive for some tasks, this might significantly increase the complexity of the image
super-resolution task.

D.0.3 Unnatural Imagery

When doing image compressive sensing, there is often an assumption of working with
"natural" images. This generally refers to images which are not artificially constructed,
such as in a studio or using graphic design. Thus, as both datasets include images which
contains lettering either beside of across the main subject, and aspects of graphical design,
reconstruction performance might suffer. Examples of these can be seen in Figure D.3

83

APPENDIX D. DATASET DEFICIENCIES

Figure D.1: Example of images with an increased contrast between subject and background.

84

MATTEK 4.105A

Figure D.2: Example of images where there exists multiple subjects which are not flowers
or pets.

85

APPENDIX D. DATASET DEFICIENCIES

Figure D.3: Example of images with lettering or graphic design.

86

	Title page
	Problem Analysis
	Introduction
	Image Super-Resolution
	Iterative Soft Thresholding Algorithm
	Deep Learning
	Algorithm Unrolling
	Self-Supervised Learning
	Problem Statement

	Decision Making Algorithms
	Model-Based Methods
	Data-Based Methods
	Algorithm Unrolling

	Self-supervised Learning
	Training Pipline
	Pretext Tasks

	The Vision Transformer
	Transformers
	Attention
	Positional Encoding
	An Image as a Sequence

	Models
	LISTA
	ISTA-Net: LISTA for Image Super-Resolution
	Masked Autoencoder
	data2vec

	Experiments
	General Setup
	ISTA-Net
	MAE
	ISTA-MAE
	ista2vec

	Results
	Baseline
	Restriction
	Generality

	Discussion
	Model Performance
	Shortcomings and Sources of Error
	General Considerations

	Conclusion
	Bibliography
	Appendices
	ISTA Preliminaries
	Proximal Operator Derivations
	With L1 Regularisation in Transform Domain
	With L1 Regularisation in Nonlinear Domain

	Positional Encoding
	Dataset Deficiencies

