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Abstract:

Speech Enhancement systems improve
the quality and intelligibility of noisy
speech signals. It has been proved that
conventional loss functions such as
MSE do not correlate highly with how
humans perceive speech, and they do
not perform well in subjective listening
tests. On the contrary, objective met-
rics used as loss functions show better
performance on objective tests. How-
ever, there is not always a correlation
between the subjective and objective
intelligibility tests. In this Thesis, an
Automatic Speech Recognition (ASR)
model is employed as a loss function in
the Speech Enhancement system, aim-
ing at closing the gap in intelligibility
performance between subjective and
objective tests. The hypothesis is that
minimizing the Word Error Rate of a
noisy speech signal will improve intel-
ligibility in both cases.
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Chapter 1

Introduction

1.1 Speech Enhancement

Environments with ambient noise, reverberation, and multiple competing speakers
distort the desired speech signal, making it harder for the listener to understand.
This is even more intense in cases where processing is required. Such examples
can be for people that are dependent on hearing aid devices, telecommunications
including a wide range of applications, from everyday calls in mild noise environ-
ments (online meetings in big offices, making a call during public transportation,
etc.) to communication for professionals working in dangerously loud conditions
(airport workers, firefighters, etc.), or other technologies such as Automatic Speech
Recognition (ASR) which is a speech to text algorithm. Hearing aid and other
devices do not focus sufficiently on the target speaker while separating the noisy
background conversations, widely known as the cocktail party problem. It remains
a challenging problem to solve even with today’s state-of-the-art methods [1].

Speech enhancement aims to solve this problem. It is a process where the
perceptual quality and intelligibility of the observed noisy speech signal are im-
proved by trying to retrieve the original clean signal. This process may find use in
the cases mentioned, such as hearing aid devices, telecommunications, automatic
speech recognition, etc. An example of this process can be seen in Figure 1.1

The most reliable way of measuring the performance of a speech enhancement
algorithm is by performing subjective listening tests. However, this way is time-
consuming and requires trained listeners to evaluate the processed signals. There-
fore, researchers try to set objective metrics that can evaluate performance. The
processing level of these metrics varies, as there are low-level processing metrics,
psychoacoustics, and higher-level ones, such as linguistics, etc. [2]. Therefore, the
performance of a Speech Enhancement System can be measured with quality and
intelligibility metrics such as:

• Time-Domain Mean-Square Error (MSE) - Waveform-Match Metric

1



2 Chapter 1. Introduction

• Signal-to-Distortion Ratio (SDR) - Waveform-Match Metric

• Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) - Waveform-Match Metric

• Perceptual Evaluation of Speech Quality (PESQ) - Quality Metric

• Short-Time Objective Intelligibility (STOI) - Intelligibility Metric

• Extended STOI (ESTOI) - Intelligibility Metric

Figure 1.1 illustrates the general use of a speech enhancement system using a Deep
Neural Network (DNN). The speaker’s speech is mixed with background noise,
and the trained DNN system tries to retrieve the original speech signal. As ma-
chine learning and, specifically, Neural Networks show more and more potential,
outperforming other methods, these objective metrics could be used for training a
Neural Network (NN) architecture. Therefore, training a model to achieve higher
scores in the quality metrics can also improve the overall intelligibility of the sys-
tem in subjective tests. This, however, is not always the case in intelligibility tests
[3]–[9].

Speech
Enhancement

DNN

Speech

Noise

Figure 1.1: Signal model of a Speech Enhancement System.

1.2 State-of-the-Art

One of the first approaches for speech enhancement was simple solutions such
as spectral subtractive algorithms, which learn the spectral properties of a noisy
signal during the absence of speech signals and try to subtract. Other approaches
include statistical information of the signal, such as Wiener filters and statistical
models, such as Maximum Likelihood, MMSE, etc. Additionally, euclidean algebra
algorithms were also widely used, as they assume that noise resides in a subspace
of the signal and can be removed by using decomposition [2].

Machine Learning approaches started becoming popular over time as the tech-
nology progressed. The reason behind the transition to DNN models was to better
analyse the noise, as the previously suggested methods suffer from either poor per-
formance in unseen conditions or from artifacts after the signal is enhanced. The
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first suggested architectures used DNN models with features of spectral energy
[10], [11].

With the DNN models becoming more popular in speech enhancement, DNN
implementations using autoencoder structures have been proposed for signals in
the time domain. These models accept time-domain signals and return outputs
also in time-domain. The key have been found to be loss functions in the frequency
domain, which have been proven to work well with speech enhancement. This
method has the benefit of the model learning how changes in the frequency domain
affect the time domain since the process is end-to-end [12], [13].

Regarding the loss function used in the training process, it was found that
using conventional methods that perform well in other tasks, such as Mean Square
Error (MSE), does not result in a good performance in speech enhancement, as
the results do not perform well in subjective and objective metrics [3], [14]. On
the other hand, using human perception-based criteria for optimizing the model
shows better results with improved quality and intelligibility [3], [6], [7], [9], [14],
[15].

1.3 Motivation and Problem Description

It is well known that end-to-end time-domain DNN models tend to perform sig-
nificantly better than the ones that operate in the magnitude spectral domain [12],
[13]. Additionally, as mentioned, subjective metrics can better evaluate the per-
formance of a speech enhancement algorithm. Objective intelligibility and quality
metrics can be sufficient; however, there is not always a correlation between ob-
jective intelligibility and subjective performance, meaning that even though the
objective metrics might show an improvement in the intelligibility of the speech
signal, subjective metrics could show otherwise [15].

Speech
Enhancement

DNN

Automatic
Speech

Recognition

Speech to TextDistorted Speech Signal

Speech line 1
Speech line 2
Speech line 3
Speech line 4

Enhanced Speech Signal

Figure 1.2: Signal flow graph of Speech Enhancement System explored in this Thesis.

The hypothesis of this Thesis lies in the fact that using an Automatic Speech
Recognition (ASR) system as a loss function in a model architecture that has been
proven to work well with speech enhancement could eventually close the gap be-
tween subjective and objective metrics. The system in theory could play the role of
a trained listener based on which the speech enhancement system is optimized dur-
ing the training process for maximizing overall perceptual intelligibility of speech
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signals. Additionally, it has been proven that the Word Error Rate of the ASR
model has an inverse correlation to intelligibility metrics, such as STOI and qual-
ity metrics, such as PESQ [16]. In other words, a lower Word Error Rate in ASR
ensures better scores in these metrics. Employing an ASR model as an objective to
the Speech Enhancement model can be beneficial for two main reasons. Firstly, in
contrast with the actual subjective evaluation test, the ASR method is neither time-
consuming nor laborious. Secondly, similarly to objective tests, it allows the use
of mathematical procedures to determine how well the system performs. Figure
1.2 illustrates the general idea of the process. First, the signal is enhanced by the
speech enhancement model and then the enhanced speech signal is fed into the
ASR system.

Training a Speech Enhancement model with ASR metrics as objectives, such as
Character Error Rate (CER) and Word Error Rate (WER), could improve the intel-
ligibility of the estimated signals. Hypothetically by doing so, the system would
not only score high in objective intelligibility and quality metrics, but, more impor-
tantly, it would also score better in subjective intelligibility and quality metrics.



Chapter 2

Theoretical Background

This chapter discusses the theoretical background of Machine Learning that is re-
quired for explaining the methods that were used in this Thesis. Specifically, for-
ward propagation in DNN models is explained and how the weights are updated
using optimizers that they minimize a given loss function. Different types of mod-
els are further discussed, such as convolutional models and recurrent models, as
well as the cases that perform well. Finally, a specific case of Automatic Speech
Recognition (ASR) and the CTC process which is often used as a loss function in
training ASR models are discussed.

2.1 Machine Learning and Neural Networks

Machine Learning is a data-driven process where data are used to train a model
to perform certain tasks. In this Thesis, supervised learning is used, in which the
models are trained using labelled data (target t), where the desired outcome is
known.

2.1.1 Neural Networks

Neural Networks consist of M linear combinations of fixed non-linear basis func-
tions ϕj(x) as shown in the Equation 2.1. Usually, function f (·) of the equation is
a non-linear activation function in the case of classification methods and an iden-
tity function in the case of regression. The function ϕj(x) could be either a linear
or a non-linear function, and its parameters of the function are adjustable. This
extends the model with weight coefficients wj, which are initially randomized and
adjusted during training. This is illustrated in Equation 2.2, where the superscripts
(1) and (2) indicate which layer the weight coefficients belong to. The second layer
of this example is the output layer, and the subscript variable k belongs to the set

5
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x0

x1

x2

xD

z0

z1

z2

zM

y1

y2

yK

w layer 1 w layer 2

y outx in

Figure 2.1: Neural Network as described in Equation 2.2, with the nodes x0 and z0 being the biases.
Superscripts in weights illustrate the layer they belong to and subscripts the node connection [17].

{1, · · · , K} where K is the total amount of outputs [17]. A diagram of the same
model is also illustrated in Figure 2.1.

y(x, w) = f (
M

∑
j=1

wjϕj(x)) (2.1)

yk(x, w) = f (
M

∑
j=0

w(2)
jk h(

D

∑
i=0

w(1)
ij (xi)) (2.2)

The Equation 2.2 can be derived by describing the basic NN model into a series
of functional transformations as shown in Equation 2.3, where j = 1, . . . , M and
with parameter wj0 being called bias and x0 = 1. Integrating the bias parameter
inside the sum, results in the Equation 2.4.

aj =
D

∑
i=1

w(1)
ij xi + w(1)

0j x0 (2.3)

aj =
D

∑
i=0

w(1)
ij xi (2.4)
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2.1.2 Activation Functions

The quantities aj of linear combinations illustrated in the function in Equation 2.3
are called activations. Activations aj are transformed by using a differentiable,
non-linear function h(·), known as activation function, as shown in Equation 2.5.

zj = h(aj) (2.5)

These layers are known as hidden layers as their output is not directly observable
in any part of the process [17], [18]. The activation functions that can be used in
a Neural Network model vary depending on the target problem and data type.
Such examples can be Sigmoidal functions such as tanh as shown in Equation 2.6,
or logistic sigmoid as can be seen in Equation 2.7, Rectified Linear Unit (ReLU),
which is derived as shown in the Equation 2.8 [18]. In recent research regarding
deeper convolutional networks, Parametric Rectified Linear Unit (PReLU) is used,
defined as shown in Equation 2.9. PReLU learns a factor a that controls the slope
and can improve the performance of a model with negligible extra computation
cost. The parameter a only affects the negative part of the function. Manually
defining the slope as a very small value, such as α = 0.001, the Equation 2.10
defines the Leaky ReLU, an activation function that holds the properties of ReLU
but with only one zero value, at x = 0. which helps with gradient computation.
In contrast with PReLU, the coefficient α of the Leaky ReLU is prefixed and not a
trainable parameter [19].

ftanh(x) =
ex − e−x1
ex + e−x (2.6)

fsigmoid(x) =
1

1 + e−x (2.7)

fReLU(x) = x+ = max(0, x) (2.8)

fPReLU(x) =

{
x if x ≥ 0

ax if x < 0
(2.9)

fLeaky ReLU(x) =

{
x if x ≥ 0

αx if x < 0
(2.10)

2.1.3 Deep Neural Networks

Higher complexity tasks cannot be mapped by a single series of activations, as
discussed earlier. In Neural Networks, this can be achieved by using more series,
known as layers, and more components in each one of the layers. This kind of
network is known as Deep Neural Network (DNN). Equation 2.1 for calculating
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the NN output can now be rewritten for L layers as shown in Equation 2.11. For
clarification, the second set of dots denotes the closing parenthesis.

yk(x, w) = f (
M

∑
j=0

w(L)
jk . . . g(

U

∑
u=0

w(2)
uv h(

D

∑
i=0

w(1)
iu (xi))) . . . ) (2.11)

DNNs can often use fewer components on each layer while being capable of
better generalization. The drawback of the increase in the number of layers is the
ease of computing the gradient and minimizing the loss function. Knowing the
exact number of layers and/or the components needed is impossible, as there is no
mathematical way to do so. The process of finding a suitable architecture for the
task is by extensive experimentation and monitoring of the loss function [18], [20].

2.1.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a special type of NN able to handle
grid-like topology, including grids in 1 dimension, 2, or even more. Such examples
can be sampled time-series data for 1D, images in 2D, etc. As the name suggests,
CNN employs convolutional layers that operate the convolutional function instead
of a general matrix multiplication operation.

Assuming as an example a time-series input x convolved with a weight function
w, the function can be defined as shown in Equation 2.12. Assuming also that the
two series x and w are discrete (sampled data) and defining the time t and an age
factor a, the Equation 2.12 can be computed as shown in Equation 2.13. The factor
of age a of samples is flipped compared with the samples of time t. An illustration
of this process for 1D convolution can be seen in Figure 2.2.

s(t) = (x ∗ w)(t) (2.12)

s(t) =
∞

∑
a=−∞

x(a)w(t − a) (2.13)

Generalizing the terminology, the series x can be described as the input to the
layer and the weight series w as the convolution kernel. The process’s output s is
widely referred to as feature map.

CNNs, therefore, are called networks that contain at least one convolutional
layer. CNNs are known for their characteristics: sparse interaction, parameter
sharing and equivariant representation. The first property of sparse interaction is
achieved as the kernel is significantly smaller than the input, meaning the inter-
action occurs only between close samples. This implies that the kernel can be
used for small feature extraction, which can be information such as edges in pic-
ture pixels, timbre or other events across the timeline in audio samples, etc. This
also gives better statistical efficiency as fewer parameters are used in the model,
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which means less memory and operations are needed. From this property, the sec-
ond property of parameter sharing can be derived, as the same parameters are used
across all operations. In contrast, conventional NNs use different parameters for
the needed components in the layer. Parameter sharing is illustrated in Figure 2.2,
as the same parameters {w1, w2, w3, w4} are repeated across the input, and they are
not updated. Again, this property allows the final property of equivariance, that
changes in the input will also imply the exact change in the output. In this prop-
erty, f (g(x)) = g( f (x)) holds between functions f and g, and these two functions
are called equivariant to each other. For example, applying transformation and
then convolution to x will be exactly the same as first applying convolution and
then transforming x.

x1 x2 x3 x4 x5 x6 x7 xN

x1w4 x2w3 x3w2 x4w1

x2w4 x3w3 x4w2 x5w1

x3w43 x4w3 x5w2 x6w1

xN-3w4 xN-2w3 xN-1w2 xNw1

xN-2w4 xN-1w3 xNw2 0w1

+ + + + + + + + + +
s1 s2 s3 s4 s5 s6 s7 sN sN+1

Figure 2.2: Convolution process with a 4-size kernel. Entry sN+1 illustrates that the kernel may be
extended over the edges. It always depends on the problem and the implementation of how the
edges are treated.

Finally, it is worth mentioning that three stages take place in typical CNN. The
first stage is applying the convolution to the input, which returns a set of feature
maps. In the second stage, a non-linear function is applied to each of the feature
maps, as discussed earlier in Subsection 2.1.2, which is also known as detector stage.
Finally, in the third stage, a pooling function is used. In this stage, the output
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is replaced based on statistical criteria of nearby values. Examples include max
pooling, which reports the maximum value within the range, average pooling, L2

norm, etc. In this way, pooling changes the relation between input and output, as
small input changes produce invariant output changes.

2.1.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs), as the name suggests, use memory to store
older states. This property makes them ideal for use in time-series data, sequences,
etc. Such examples are text prediction, handwritten recognition, or Automatic
Speech Recognition (ASR).

Standard RNNs

There are various ways how an RNN can be implemented. Figure 2.3 illustrates
two examples of recursive sections in RNN architecture. The left graph illustrates
an example of recurrent connections between hidden units. As can be seen in
the Figure, the recurrent connection is weighted with W matrix. Assuming an
activation function of the node h(a), the recurrent function a can be described as
shown in the Equation 2.14, where h is the output of the h(a) function, x is the
input, b is the bias and with he superscript being the time step in the process.

a(t) = b + Wh(t−1) + Ux(t) (2.14)

Similarly, the right graph shows the recurrent connection between different
nodes. Therefore, the output of another layer is used as the recurrent input to the
recurrent layer, which mathematically can be described as shown in Equation 2.15.

a(t) = b + Wk(t−1) + Ux(t) (2.15)

Bidirectional RNNs

In cases such as ASR, samples from the past might not be sufficient to conclude
information for the current sample. For example, when two or more phonemes are
articulated together (coarticulation), the current phoneme might depend on the
next few phonemes. In order to connect information from both the past and the
future, two sub-RNNs are used, one for each direction. This kind of network is
called Bidirectional RNN.

Figure 2.4 illustrates an example of a bidirectional RNN over time (t − 1), (t)
and (t + 1). As can be seen, layer h propagates forward in time, illustrated with
blue arrows, while layer d does the opposite, illustrated with red arrows. In this
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h

V

U

W

k

x

h

k

x

V

U

W

Figure 2.3: Two possible use cases of a Recurrent layer. The left graph shows a graph model of the
recurrent layer h taking previous values of itself. Matrix factors U, W and V are used to weight the
outputs of the corresponding layers at time (t), the output of layer h at time (t − 1) and the output
of layer h at time (t) respectively. The right graph shows a graph model when the output of another
layer is used in the recurrent layer. This time, matrix factor W is used to weight the output of layer
at time (t − 1).

way, the output unit k can benefit from the summation of past and future informa-
tion at each time step.

The information propagation concept can be extended to more dimensions as
well. In the same way, as information is propagated forwards and backwards in 1d
sequence, it propagated, for example, up, right, down and left in a 2d matrix, etc.
In this way, the nodes capture mostly the local information from nearby nodes but
still have a dependence on long-range information due to the overall propagation
process. This computation is more expensive than convolution; however, it allows
interaction between nodes that correlates features between them.

LSTM and GRU layers

Optimizing an RNN network can be a difficult task due to the backpropagation
process (discussed in Subsection 2.2.2). The gradients of the weights are calculated
at each one of the steps. The problem of the gradients in RNN networks can be
easily visualized by taking a look at Figures 2.3 and 2.4 in the opposite way of what
the arrows indicate, which is how backpropagation takes place. This can possibly
lead to one of the following cases;

• the Gradients shrink exponentially for small gradients of weights

• the Gradients grow exponentially for large gradients of weights

which is known as the vanishing/exploding gradient problem. A way to restrict
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h(t-1)

k(t-1)

g(t-1)

d(t-1)

k(t)

g(t)

d(t)

h(t-2) h(t+1)

k(t+1)

g(t+1)

d(t+1) d(t+2)

h(t)

Figure 2.4: Illustration of bidirectional RNN over time samples (t − 1), (t) and (t + 1). Blue arrows
indicate forward-time propagation and red arrows indicate backward-time propagation to the past.

the problem is by applying some form of gating in the layers. Such examples are
LSTM and GRU.

Long short-term memory (LSTM) utilizes gates (usually referred to as the in-
put, output, and forget gates) to control the gradient propagation in the recurrent
network’s memory. These gates are considered neural network layers, and they
learn when to forget, ignore, or keep the information.

Gated Recurrent Unit (GRU) holds similarities with LSTM in functionality.
However, it has lower complexity and increased efficiency, which is achieved by
deploying fewer parameters. For this reason, the choice of one over the other hap-
pens empirically or by conducting experiments to test their actual performance. It
is implied that in case both have the same performance, GRU layers are deployed
as they are more efficient.

In this Thesis, GRU layers are used in the RNN model. LSTM, however, is
directly comparable to GRU and, for this reason, is also mentioned. The steps to
compute GRU are given by Equation 2.16. Variable x is the input, h is the output,
z and r are the update and reset parameters, and W, U and b the weights of the
parameters and the bias. Symbol ◦ indicates the element-wise multiplication [20].

zt = fsigmoid(Wzxt + Uzht−1 + b)

rt = fsigmoid(Wrxt + Urht−1 + b)

h̃t = ftanh(Whxt + (Uhht−1 ◦ rt) + b)

ht = (1 − zt) ◦ h̃t + zt ◦ ht−1

(2.16)
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2.2 Training

Model training is an iterative process in which the weights in the layers of the
model are adapted accordingly. Weights are updated through the process of back-
propagation, where, as the name suggests, the error flows backwards. The error
is a scalar value and is calculated in each iteration. It is usually some form of
mathematical distance between the target and the predicted values, and the way of
computation depends on the defined loss function.

One problem with training DNN models is that they are prone to overfitting, as
it cannot always be known in advance if an architecture can or cannot be employed
for a task, and also usually a vast amount of parameters are used. Overfitting is
referred to the relationship between training loss which is the prediction error of
the data that are used in the training process, and validation loss which is the error
of the data that are used for monitoring purposes. If there is no correlation between
the training and validation losses is an indicator that the overfitting occurred. Ways
of limiting this phenomenon include dropout layers which randomly drop a certain
amount of weights by multiplying with either zero on one, early stopping with the
training process stops according to certain criteria about the validation loss, etc
[17], [18], [20].

Another way to increase the effectiveness of the training process is a variable
learning rate. In this way, the learning rate of the gradient descent is decreased
over time. This allows bigger changes in updating process of the weights at the
early stages of training, where the parameters are far from local minimum points,
and more precise updates when the weights are closer to local minimum points
[18], [20].

2.2.1 Optimizers

Optimizer refers to the method that is used for minimization of the loss function
with respect to the weight parameters. Supposing E is the error defined by the
loss function between target and predicted values. The weights in each iteration
are updated from w to w + δw, based on the error which is a function of δE ≈
δwT∇E(w). Vector ∇E(w) shows the direction of the error increase, and therefore
−∇E(w) is the direction that will result in better performance given the weights.
The general form of the weight update process can be seen in Equation 2.17. Neural
Networks take advantage of some form of the gradient-based optimization process,
such as the Gradient Descent, to choose the updated weights. Equation 2.17 can be
therefore rewritten to point out to the negative gradient direction as illustrated in
Equation 2.18.

wτ+1 = wτ + ∆wτ (2.17)

wτ+1 = wτ − η∇E(wτ) (2.18)
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After the update, the weights are re-evaluated, and the process is repeated. Pa-
rameter η > 0 is called the learning rate, and scales the step to the next step of
update. In other words, it determines how fast or slow the weights w change [17].
Optimally one should choose neither a large nor very small value. In the former
case, the optimizer might skip the desired minimum, while in the latter case, the
optimizer might never reach it.

ADAM Optimizer

Adaptive Moment Estimation is a widely used optimizer as it is more efficient
and less memory demanding. It computes individual adaptive learning rates from
the estimates of the first and the second moments of the error function gradient.
Additionally, it exponentially decays the average of the past of previous squared
gradients while it also incorporates an average of past gradients mt [21].

The steps for computing the ADAM parameters are illustrated in Equation 2.19.
First, values α, β1 and β2 are required, which are the stepsize and the exponential
decay rates, respectively. The exponential decay rates take values from the subset of
[0, 1). The stochastic objective function f (θ) of the parameter θ is also required. The
1st-moment vector m0, the 2nd-moment vector v0, and the timestep moment are all
initialized to zero. The bias-corrected second moment ût is then computed, and
the parameters θt are updated. The whole process is iterative until θt converges,
where the value of θt is returned by the algorithm [21].

t := t + 1

gt := ∇θ ft(θt−1)

mt := β1mt−1 + (1 − β1)gt

ut := β2ut + (1 − β2)g2
t

m̂t :=
mt

1 − βt
1

ût :=
ut

1 − βt
2

θt := θt−1 − α
m̂t√

ût + ϵ

(2.19)

2.2.2 Backpropagation

Backpropagation is used in the context of neural networks as it is an efficient way
of numerically calculating the gradient of the loss function E(w) with respect to
weights. The computation takes place in two distinct parts. In the first part, the
derivatives are calculated through the backpropagation process, and then in the
second part, the derivatives are used in order to calculate the updated weights.
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Figure 2.5: Information flow in Neural Networks. Forward propagation is illustrated with blue
arrows, and backward propagation is illustrated with red.

Derivatives of the loss function are calculated as shown in 2.20. As shown
earlier in Equation 2.3, each unit computes a weighted sum of its inputs. This
is illustrated in a more general form in Equation 2.21 where zi is the non-linear
transformation function of the unit i, as shown in Equation 2.5.

∂E
∂wji

=
∂E
∂aj

∂aj

∂wji
(2.20)

aj = ∑
i

wijzi (2.21)

Letting the partial derivatives of error E with respect to the activation aj, as
shown in Equation 2.22, simplifies the notation, and therefore the relation shown
in 2.20 can be rewritten as shown in Equation 2.23.

δj :=
∂E
∂aj

(2.22)

∂E
∂wij

= δjzi (2.23)

Additionally, it is possible to compute derivatives of functions by composing
other functions whose derivatives are known. This is called the chain rule of cal-
culus, and its form is defined as shown in Equation 2.24. As can be seen, the left
part has already been defined as δj in Equation 2.22.

∂E
∂aj

= ∑
k

∂E
∂ak

∂ak

∂aj
(2.24)

Combining the definition of the chain rule with the definition of δj in Equation
2.22 and Equations 2.21, 2.5 and 2.23, it can be seen that the derivatives can be
calculated as shown in the Equation 2.25.

δj = h′(aj)∑
k

wkjδk (2.25)
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Function h′(·) is the derivative of the activation function. As an example, in the
case of ReLU defined in Equation 2.8, the function h′ReLU(·) is 1 for x > 0, 0 for
x < 0 and undefined in x = 0.

Therefore, it can be concluded that the partial derivative δ values, which deter-
mine the step for updating the weights, can be derived by propagating the gradient
higher in network layers, as shown in Figure 2.5. Values of δk (output) are easily
derived as shown in Equation 2.26, where yk and tk are the predicted and target
values, respectively. Taking advantage of the backpropagation properties allows
calculating the rest of δ values in all hidden layers [17], [18].

δk = yk − tk (2.26)

2.3 Automatic Speech Recognition

As the name suggests, Automatic Speech Recognition (ASR) is a process where
an application can recognise the speaker’s speech, usually converting it to text.
This process has been achieved with many implementations in the past, mainly by
machine learning approaches such as Hidden Markov Models (HMM), which can
model the state of transitions of speech representation, such as spectrum transi-
tions. The first attempts to introduce neural networks to the ASR problem were
by still relying on HMM models for sequence modelling with hybrid HMM/DNN
models. Many modern end-to-end DNN systems have been proposed where the
whole process takes place in a single Neural Network model [20].

2.3.1 Spectrogram Calculation

The spectrographic analysis S of the audio signal is often used in Automatic Speech
Recognition applications, as it offers an extra dimension of information compared
to time-domain signals. A window analysis can be applied to the signal for acquir-
ing quasi-stationary segments allowing the study of the temporal characteristics
that do not drastically change over the steps. Depending on the application, one
can favour different aspects of the spectrogram by adjusting the window length
of the process. As an example, Hamming window is widely used in speech signal
analysis and is given as shown in Equation 2.27. L is the window size in time-
domain samples [2].

w(n) =

{
0.54 − 0.4cos( 2πn

L−1 ) 0 ≤ n ≤ L − 1

0 Otherwise
(2.27)

Spectrograms are a visual way to illustrate the differences in the signal magni-
tude over the frequency bands of the spectrum. A widely used tool to obtain time-
varying spectral and temporal characteristics is by applying Short-Time Fourier
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Transform (STFT) to the signal. STFT is applied in a time analysis window w, usu-
ally 10 to 30 ms, in which the properties of the signal do not drastically change.
STFT is given as shown in the Equation 2.28, with x(m) being the input samples
[2], [22].

X(n, ω) =
∞

∑
m=−∞

x(m)w(m − n)e−jωm (2.28)
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Figure 2.6: Comparison between Narrow and wide band spectrograms of the phrase "in being com-
paratively modern". Smearing can be noticed on the Y-axis in the narrow band and on the X-axis in
the wide band. In this example, the FFT size is adjusted according to the window size, resulting in
different frequency bins.

Applying a long-duration window to the signal produce a narrow-band spec-
trogram. Narrow-band spectrograms have pronounced detail in frequency resolu-
tion; they lack, however, time resolution. As a result, individual harmonics of the
signal can be easily resolved, but short-duration segments are temporally smeared.
On the other hand, a short-duration window produces a wide-band spectrogram
which shows very good temporal resolution; however, it has a drawback in the
frequency resolution representation. Smearing now happens in the frequency axis.
However, the clear resolution in the time axis makes it suitable for applications
such as language analysis. These differences between narrow-band and wide-band
spectrograms can be seen in Figure 2.6. A method that is often used in DSP ap-
plications is to apply overlapping between the windows. Many of the window
functions, such as Hanning, Hamming, etc., use fading in the edges to prevent
spectral leakage as they spread across the whole frequency spectrum and not only in
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the center frequency. As a rule of thumb, 50% of overlapping and added-together
windows are often used to overcome the fading. The size window of the window
is equal to the wide-band seen in Figure 2.6. The resulting spectrogram can be
seen in Figure 2.7 [2].
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Figure 2.7: Spectrogram of the same audio sample as 2.6, however, overlapping is used between the
sample windows, which also alters the number of time steps on the signal.

2.3.2 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is an algorithm able to align sam-
ple inputs in the form of x = [x1, x2, · · · , xN ] with outputs in the form of y =

[y1, y2, · · · , yM], where the ratio N/M is neither known nor constant [23]. For this
reason, it is widely prevalent among ASR models, as the same text output can
result from speakers with variations in speaking speed, pronunciation, etc.

The CTC algorithm in ASR models is used for decoding a string of N samples
into a string of M characters. In the case of using spectrograms as inputs in the ASR
model, N depends on the frame hop size of the STFT. Probabilities are assigned
for each possible character to each of the N sampled windows by the ASR model.
Either the most probable character or the most probable beam is selected during the
CTC decoding. Finally, duplicate entries are discarded based on specific criteria,
and the decoding process results in a string of M characters, where N > M. The
mentioned types of search and the criteria for discarding duplicate entries are
further explained in Appendix A.



Chapter 3

Speech Enhancement with DNN

This section discusses in more detail the processes that are commonly used for
designing and evaluating a DNN model for speech enhancement. First, the ob-
jective intelligibility and quality metrics are explained. Then, autoencoder models
are explained for use in speech enhancement tasks. Finally, it is discussed why
using metrics as loss functions improves the overall performance of the speech
enhancement models.

3.1 Speech Intelligibility and Quality Metrics

Two kinds of test methods can be conducted to evaluate how well a speech en-
hancement system works. The subjective listening evaluation test is the more re-
liable one. This requires a group of listeners who assess the differences between
the original (speech + noise) and the processed (enhanced) signals. The drawback
of this method is how time-consuming it is. On the other hand, objective metrics
mathematically evaluate the performance of the processed (enhanced) signal. For
the objective metrics to be valid, there should be a high correlation between the
objective and subjective tests [2]. In this Thesis, only selective objective methods
will be discussed.

3.1.1 Perceptual Evaluation of Speech Quality (PESQ)

This metric was initially developed as an ITU-T standard in order to evaluate the
speech signal in a wide range of applications, such as under network conditions,
analogue connections, codecs, packet loss, variable delay, etc. The method requires
the degraded or enhanced speech signal and the reference one which is a signal
without distorting at all. First, these two signals are aligned to a standard listening
level and are filtered, simulating a telephone transmission. In this stage, the Bark
spectrum is estimated, which is based on an FFT analysis using 32 ms Hamming

19
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windows with 50% overlap and then summing up the band powers. The bands
are spaced according to the Bark scale. The two signals are then aligned in time
to correct delays and equalized. The latter is compensation for the filtering effect
with a ratio of the average degraded Bark spectrum to the original Bark spectrum.
Auditory transform is applied to obtain the loudness spectra. This is computed
as shown in 3.1 where b is the Bark spectrum, in a total of 42 Bark bands, Si is
the loudness scaling factor, P0(b) is the absolute hearing threshold of the Bark
spectrum, B′

x(b) is the frequency compensated Bark Spectrum and γ = 0.23 for
b ≥ 4 or slightly higher otherwise [2], [24].

S(b) = Si

(
P0(b)
0.5

)γ [(
0.5 + 0.5

B′
x(b)

P0(b)

)γ

− 1
]

(3.1)

The signed difference between the original loudness spectra S(b) and the de-
graded S̄(b) which is also computed as shown in Equation 3.1, is denoted as
rn(b) = Sn(b)− S̄n(b), where subscript n indicates time, such as frames. A mask
m(b)n = 0.25min{Sn(b), S̄n(b)} is defined, and based on the numerical compar-
ison of rn(b) with mn(b), the disturbance density factor Dn(b) takes the values
rn(b) − m(b)n, 0 or rn(b) + m(b)n. The disturbance density is multiplied by an
asymmetry factor to determine the Asymmetry Disturbance Density DAn(b).

Disturbance Density and Asymmetry Disturbance Density are integrated using
norms, as shown in Equation 3.2. Dn and DAn are called frame disturbance, and
Wb are weights proportional to the width of the Bark bands.

Dn =

(
Nb

∑
b=1

Wb

)1/2( Nb

∑
b=1

[|Dn(b)|Wb]
2

)1/2

DAn =
Nb

∑
b=1

|DAn(b)|Wb

(3.2)

The frame disturbance is then checked to be between a certain threshold. If the
frame is not below the threshold, it is considered a bad frame and is recomputed
with different factors. The process is iterative until the frame fulfils the criterion.
Finally, the PESQ value is calculated as shown in Equation 3.3. Values dsym and
dasym are summations of frame disturbance and asymmetric frame disturbance over
n = {1, 2 . . . 20} frames, which overall spans 320 ms. PESQ score is -0.5 to 4.5 [2].

PESQ = 4.5 − 0.1dsym − 0.039dasym (3.3)

3.1.2 Signal-to-Distortion Ratio (SDR)

Source-to-Distortion Ratio (SDR) is a widely used metric for measuring the level
ratios of speech signals with their distortion. The enhanced speech signal ŝ(t) can
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be described as 3.4, where starget(t) is a deformation of the target source, einter(t)
is a deformation of source interfered by noise, enoise(t) is the noise that has been
interfered to the source, earti f (t) artifacts that are produced by the algorithm. The
SDR is given as illustrated in Equation 3.5, where sdist is the distorted component
filtered from the enhanced signal [25].

ŝ(t) = starget(t) + einter(t) + enoise(t) + earti f (t) (3.4)

SDR = 10 log10
∥sdist∥2

∥einter + enoise + earti f ∥2 (3.5)

3.1.3 Short-Time Objective Intelligibility (STOI)

Short-Time Objective Intelligibility (STOI) is an objective metric that shows a high
correlation with listening tests while managing to be simple in structure and trans-
parent. It is worth mentioning that this metric is designed for signals with a sample
rate of 10kHz. For this subsection, the clean signal is denoted as x and the pro-
cessed one as y. First, time-frequency representation is obtained, as discussed in
Subsection 2.3.1, for both target and processed signals, and 50% overlap is used.
Each one of the k DFT-bins for the m frames is denoted as the norm of the jth one-
third of the octave band, as illustrated in Equation 3.6, where k1 and k2 denote the
edge of the one-third octave band. Signal y gets a similar representation.

Xj(m) =

√√√√k2(j)−1

∑
k=k1(j)

|x(k, m)|2 (3.6)

A region of consecutive N values of TF-units xj(n) and yj(n) is used to calculate
the intelligibility measure. Each region, denoted as dj(m), belongs to a set of M =

{(m − N + 1), (m − N + 2), ..., m − 1, m}. The yj(m) units are scaled according to
a normalization factor a to equalize the energy compared to xj(m) inside the m
unit. The factor is calculated as shown in Equation 3.7. Equation 3.8 shows the
normalized and clipped TF-units, where β is the lower SDR bound.

a =

√(
∑n Xj(n)2

∑n Yj(n)2

)
(3.7)

y′ = max {min{aY, X + 10−β/20X}, X − 10−β/20X} (3.8)

Finally, each region is calculated as shown in Equation 3.9, where l = 1, . . . , M,
and then summed over all j one-third octave bands as illustrated in Equation 3.10
to produce the final metric [26].
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dj(m) =
∑n
(
Xj(n)− 1

N ∑l Xj(l)
) (

Y′
j (n)− 1

N ∑l Y′
j (l)
)

√
∑n
(
Xj(n)− 1

N ∑l Xj(l)
)2

∑n

(
Y′

j (n)−
1
N ∑l Y′

j (l)
)2

(3.9)

d =
1

JM ∑
j,m

dj(m) (3.10)

3.1.4 Extended STOI (ESTOI)

Extended Short-Time Objective Intelligibility (ESTOI) is a similar approach to STOI,
with the difference that in the case of ESTOI, it is not assumed independence be-
tween frequency bands. ESTOI is designed to work well with highly modulated
noise sources, while time-modulated noise maskers are better captured. Carrying
again x and y as clean and processed signals, respectively, the signals are nor-
malized as shown in Equation 3.11, where xj,m = [Xj(m − N + 1), Xj(m − N +

2), . . . , Xj(m − 1), Xj(m)] and Xj(m) are the STFT coefficient energies calculated as
shown in STOI subsection, in Equation 3.6. The mean of xj,m is calculated as shown
in Equation 3.12.

xj,m =
1

∥(xj,m − µxj,m 1)∥ (xj,m − µxj,m 1) (3.11)

µxj,m =
1
N

N−1

∑
m′=0

Sj(m − m′) (3.12)

Defining the row-normalized vector Xm = [ST
1,m, . . . , ST

J,m], the process of mean
and variance normalization of matrix Xm is repeated, resulting to X̌m = [ŠT

1,m, . . . ,
ŠT

J,m]. The intermediate intelligibility index is calculated as shown in Equation
3.13 depending on the time index m. Then, the temporal average of all indices is
calculated, as illustrated in 3.14 [7].

dm =
1
N

N

∑
n=1

x̌T
n,my̌n,m (3.13)

d =
1
M

M

∑
m=1

dm (3.14)

3.1.5 Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)

Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) is an objective metric in the time
domain proposed as an improved variation of SDR discussed in Subsection 3.1.2.
In this case, the mixture is considered as x = s + n, where s is the target signal
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0

Figure 3.1: Signal model of SI-SDR.

and n the noise. This can be visually seen in Figure 3.1. The processed/enhanced
signal is denoted as ŝ. SI-SDR ensures that the residual s − ŝ is orthogonal to
the target s. This is achieved by scaling the target signal by factor a, as seen
in Figure 3.1, and allows better properties regarding SNR. The SI-SDR metric is
calculated as illustrated in Equation 3.15 where the target signal is scaled with
optimal a = ŝTs/∥s∥2. [8].

SI-SDR = 10 log10 =

 ∥ ŝTs
∥s∥2 s∥2

∥ ŝTs
∥s∥2 s − ŝ∥2

 (3.15)

3.2 DNN Architectures For Speech Enhancement

A DNN architecture that performs well in Speech Enhancement tasks and has been
employed in many pieces of research in recent years is the Encoder-Decoder Fully-
Convolutional Neural Network [3], [12], [13], [15]. Fully-Convolutional Neural
Networks (FCNN), as the name suggests, are Neural Networks that consist only of
convolutional or deconvolutional layers.

Autoencoder is a special type of DNN model trained to copy the input to the
output. Autoencoders, however, are designed not perfectly to copy the input but
rather to alternate it based on certain criteria. As the name suggests, autoencoders
consist of two parts, the encoder part h = f (x) and the decoder part r = g(h)
part. The model learns how to prioritize aspects of the input, which leads to
learning the useful properties of the given signal. Allowing deeper information
processing using an Encoder-Decoder scheme network results in deconstruction
and then reconstruction of the data giving them specific properties. Autoencoders
for enhancing/denoising minimize the loss function of L(x, g( f (x̃))), where x̃ is a
degraded copy of x [18].
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For conventional speech-enhancing operations, however, it is common for the
implemented models to use Time-Frequency (TF) masking or spectral mapping as
the input signal. The benefit of the Fully convolution architecture is that these
models accept input signals in the time domain and return output also in the
time domain. Studies showed that frequency-domain-based loss functions play a
greater role in the performance of the model, and in this way, the model is able to
learn what adjustments in the frequency domain of the loss affect the time domain
signal. This integration is helpful for the core tasks of the speech enhancement
process. In the autoencoders form, convolution layers are used in the encoder part,
which decreases the size of the signal, and deconvolution layers are used in the
decoder part, which increases the size of the signal [12], [13].

3.3 Loss Function

A common method that was initially applied to DNNs models for speech en-
hancement was MSE and MAE of the time-domain waveform, including during
the development of the Encoder-Decoder FCNN mentioned in the previous sec-
tion. These methods, however, show a low correlation with how the human ear
perceives the quality and the intelligibility of speech [3], [12], [13], [15]. As the
objective metrics are designed to provide mathematical information on whether
or not the speech signal is pleasant or if its speech content is easily understand-
able, they can be adapted to be used to minimize an error function based on the
metric and maximise the performance of the given model in this metric. In fact,
it has been proven that using metrics as a loss function shows improvements in
speech-enhancing performance, according to test results in the objective metrics
[3], [15].



Chapter 4

Implementation

This chapter discusses in detail all the processes that took place during this Thesis
project.

4.1 Dataset Preperation

As data are the driving factor of the DNN models, it is of the utmost importance
the data be sufficient and well-prepared. This means that the dataset has to be
properly cleaned and organized. Additionally, pre-processing of the dataset is
required in some cases. As an example, for the Speech Enhancement experiment,
the signals of speech passages are clean, and therefore, noise has to be applied
using a specific range of SNR, as described in detail in the Noise Signal section of
4.1.2.

4.1.1 Datasets Characteristics

Multiple datasets have been used in this thesis project, which is due to the fact
that different kinds of data are required for different tasks. LJSpeech contains
clean speech signals with their corresponding prompt text and is used for train-
ing purposes. The initial plan was to use the WSJ0 dataset for training the Speech
Enhancement Model to keep the methodology constant across similar research pro-
posals [3], [15] and the LJSpeech dataset for only training the model of ASR which
is used as a loss function later on. These two datasets however are sampled at dif-
ferent rates, and for simplicity reasons, only the LJSpeech has been used for both
models. Dataset SLR83 from OpenSLR is used complementarily for testing the
trained model alongside the test subset of the LJSpeech. Finally, complementary
datasets are used containing the noise that is added to the speech datasets.
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Noise Signals

For this dataset, 7 noise types are used, synthetically generated stationary speech-
shaped noise (SSN), synthetically generated non-stationary babble (NSB), café,
street, pedestrian street, bus [15] and construction building [27]. The café, street,
pedestrian street and bus noises come from the CHiME-3 dataset [28]. SSN is Gaus-
sian white noise filtered by a twelfth-order all-pole filter. The filter coefficients have
been obtained by linear predictive coding analysis of the concatenation of 100 ut-
terances that have been randomly picked from the TIMIT dataset [29]. NSB is a
mixture of utterances from 6 different speakers, both men and women. The speak-
ers have been randomly chosen from the TIMIT dataset. Construction building
noise has been added due to the fact that all the other provided noise types are
in lower sample rate of 16kHz, that in theory, could affect the performance of the
model as there is no frequency information above approximately 8kHz. Construc-
tion building was recorded in Aalborg University Hospital in 2021 during to its
construction state at a higher sample rate, and the purpose of this type of noise is
to show whether or not the absence of frequency information in the missing area
has indeed an effect on the metrics.

Pedestrian, bus and construction building types of noise are not used in the
training process, so some types of noise remain unseen in the test process. All the
files sampled at 16kHz are upsampled to the desired 22,050 Hz that the model is
trained with.

LJSpeech

The LJSpeech dataset is part of the LibriVox project. It consists of speech audio
clips of a female speaker reading text utterances. The average length of these
passages is around 10 seconds, and the recordings are sampled with a sample rate
of 22,050 samples/sec. [30]. The signals of this dataset are noise-free. This dataset
is further split into Training, Validation and Test subsets. Training and Validation
samples are segmented into 131,072 samples, which is approximately 6 seconds.
This is enough time for full spoken sentences. In case the utterance is less than 6
seconds, the samples are zero padded.

SLR83

This dataset contains transcribed audio of English sentences and has been recorded
by volunteers from different parts of the UK [31]. The audio files have a sample
rate of 44,100 samples/sec., which makes it ideal, as it allows downsampling to
22050Hz to be consistent with the operational sampling rate of the model.

From the SLR83 dataset, only a selected portion is used, as shown below;
• Midlands English female : 246 audio files
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• Midlands English male : 450 audio files
• Northern English female : 750 audio files
• Northern English male : 2,097 audio files

This dataset is used as supplementary in order to further test the performance of
the speech enhancement model in the objective metrics.

4.1.2 Data Processing

Since the aim of this Thesis is speech enhancement, noise should be introduced
to the speech passages. Assuming xclean ∈ RL is the clean speech signal vector
with time-domain samples, a segment of scaled noise signal n ∈ RL with the same
dimension is selected randomly from a noise sample and added to the clean signal,
resulting in a noisy speech signal, as shown in the Equation 4.1.

xnoisy = xclean + n (4.1)

The Signal-to-Noise Ratio (SNR) is drawn from a random uniform distribution,
as w ∼ U (−10, 10) dB. The noise is added according to ITU-T standards regarding
the proper filtering before measuring the power of the signal, and therefore prop-
erly defining the SNR by scaling the noise [25], [32]. The SNR value for signal x
and scaled noise n is defined as shown in 4.2. Therefore, for each one of the SNR
values of w, the noise is scaled accordingly.

SNR = 10 log10

(
∥x∥2

∥n∥2

)
(4.2)

4.2 ASR model with CTC loss function

The development of a proper Automatic Speech Recognition (ASR) model is es-
sential for the later design of the loss function. A suggested architecture by the
TensorFlow presented in one of its tutorials is used due to the time limitation of
the Thesis project [33]. The training of the model takes place using the LJSpeech
Dataset and the dictionary is formed by the letters and special characters (includ-
ing space characters) available in the prompt texts as shown below.

abcdefghijklmnopqrstuvwxyz’?!space

4.2.1 Spectrogram Calculation

The ASR model uses images of spectrograms to extract the features. The process of
spectrogram calculation is shown in the flow graph in Figure 4.1. As can be seen,
the spectrum S is first calculated using a short-time Fourier transform (STFT). The
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absolute value and the square root Ŝ in the frequency spectrum are then calculated.
Finally, the spectrogram ˆ̄S is batch normalized. Assuming L length size of a time-
domain signal x, the mean value µŜ and the standard deviation value σŜ are first
calculated, and then the normalized spectrogram is calculated as shown in the
Equation 4.3. The exponent value in the denominator stands for avoiding divisions
by zero.

ˆ̄S =
Ŝ − µŜ

σŜ + 10−10 (4.3)

STFT

Speech Signal Spectrogram

Figure 4.1: Flow graph of spectrogram calculation of a time-domain signal X

4.2.2 Label Encoding and Decoding processes

Since the Neural Networks are not good at working with letters, two processes
take place before and after the estimation process of the model. First, during the
Encoding, the letters are converted into lowercase ones. A lookup function occurs
afterwards, where the letters are mapped into integers.

The model outputs a tensor of probabilities in the shape of (samples, time_steps,
num_categories) which is used as input to the CTC loss function. In this case, the
number of categories is the number of characters in the dictionary. The time step
depends on the length of the audio file in samples and on the hop size of the
STFT. The output tensor is then decoded. In the decoding process, greedy search
is used, which means that simply the most prominent integer entry for each step is
selected and then decoded. The decoding of the string is described in more detail
in Appendix A. Finally, the selected path is mapped back to the characters.

4.2.3 ASR Model Structure

The architecture of the ASR model is proposed by TensorFlow and is based on the
DeepSpeech2 implementation [33], [34]. The model is implemented as shown in
the Figure 4.2 and consists of 20 layers (not counting the reshape). The first 2
are 2D convolutional layers with 32 channels, [11, 41] and [11, 21] kernel size and
with stride being [2, 2] and [1, 2] respectively. Each one of the 5 GRU layers in
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Figure 4.2: Diagram of the ASR model employed in this work.

this implementation has a size of 512 components, as suggested by TensorFlow. A
fully-connected (dense) layer follows which has double the amount of components
compared with the GRU layers. Finally, a projection layer is used (dense out),
which has the size of the dictionary.

4.2.4 Data preparation

The preparation of the dataset follows the instructions of the Keras model example
on their website [33]. The LJSpeech dataset contains the audio snippet as well as
the script transcriptions and normalized transcription, where numbers and sym-
bols have been expanded into full words (UTF-8) [30]. Normalized transcriptions
are used in the training process. As discussed earlier, the spectrograms are ex-
tracted from the audio snippets and the transcripts are mapped from characters to
numbers.

Further on, the dataset is split into two parts, namely, the training and valida-
tion. In order to favour the performance of the whole implementation, TensorFlow
dataset objects are used for both of these datasets. A function that loads and
processes the data is mapped on each dataset object, and the tuples of the spectro-
grams and their corresponding transcripts are yielded back in order to be used in
the training process.

4.2.5 Training

The ASR model is fitted with the aforementioned training and validation sets. The
processing takes place in batches of 32 samples. As a rule of thumb, the higher
the number of samples per batch, the better, as it more accurately approaches the
mean of the data.

After the forward propagation of the data through the model layers, a posterior
probability matrix is formed which contains the probabilities of each one of the
characters for all time steps. As a reminder, and since the model is optimized for
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batches and not single samples, the output of the model has the form of (samples,
time_steps, num_categories). The CTC loss is calculated based on this matrix for
each one of the samples of the batch. The loss is finally backpropagated for the
next mini-batch.

The loss function is minimized using the ADAM optimizer with a learning rate
of 0.0001. Additionally, early stopping with patience 5 and learning rate reduction
with a factor of 0.5 and patience 2 are deployed during the training process. The
patience factor denotes how many epochs the optimizer can wait without seeing a
decrease in the validation loss.

Finally, an additional callback function takes place at the end of each epoch,
where the validation data are used to display the model performance, as well as to
calculate the Word Error Rate (WER) and Character Error Rate (CER) performance
of the model, by comparing the predicted and true transcript strings of the given
sample. The displayed samples and their corresponding predictions are selected
randomly. In order to acquire the transcript strings from posterior probability
matrices, a CTC decoder is used. The decoder uses greedy search, similar to the
training process.

4.3 Speech Enhancement with ASR Loss

This section describes the process that took place for the development of the Speech
Enhancement model using the ASR model as a loss function. The model is iden-
tical to the ones deployed in the research papers that this Thesis took inspiration
from [3], [15], since it is proven that it performs well in speech enhancement. Ad-
ditionally, adopting the same model allows direct comparison between previously
studied methods of loss functions with the methods studied in this Thesis.

4.3.1 Implementation Description

The general idea of the Speech Enhancement approach can be seen in Figure 4.3.
Two different approaches have been considered for implementing CTC loss func-
tion. The first is minimizing the Kullback–Leibler distance (KLD) between the
clean and estimated posterior probability matrices, and the second is by learning
to decode the posterior probability matrix of the noisy one using CTC based on
ASR estimations of the clean signals.

The dataset contains two variations of the same speech signal, a clean signal and
a mixture of clean signal with noise, which is added as explained in the Subsection
4.1.2. The clean signal is encoded (spectrograms) and then is used as input in the
ASR model. At this stage, the ASR model is pre-trained, and its parameters are
frozen, meaning that no further optimization or weight changes take place during
the training of the Speech Enhancement model.
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Figure 4.3: Flow Graph of the implementation. (Left) Comparison of posterior probability matrices
using KLD. (Right) comparison of the decoded string of integers using the CTC loss function.

The noisy signal is first propagated forward through the layers of the Speech
Enhancement model. Reconstruction of the waveform takes place in this pro-
cess, aiming at removing the added noise or, as the name suggests, enhancing
the speech. The reconstructed signal is then encoded (in the same way as the clean
signal) and then is also fed in the ASR model.

In the KLD approach, two posterior probability matrices are compared to min-
imize the distance between them. In this case, the matrices of the clean and re-
constructed (enhanced) signals are acquired from the ASR model output, and the
Kullback–Leibler divergence is calculated. The loss is then backpropagated to ad-
just the weights of the Speech Enhancement model accordingly.

In the CTC approach, the output of the Speech Enhancement model is decoded
using the CTC decoder. To do so, first, the posterior probability matrix of the clean
signal is decoded to a string of integers again using the same CTC decoder. This is
used as a target, and the loss is formed based on the difference between these two
decoded strings.
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4.3.2 Model Architecture
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Figure 4.4: Architecture of the Speech Enhancement Model. The dropout of some layers is up to
20%.

The Speech Enhancement model architecture deployed in this Thesis is an
encoder-decoder type fully convolutional neural network, which its benefits are
described in 3.2. It was initially proposed for Speech Enhancement of signals
in the time domain, using loss functions also in the time domain, such as Mean
Squared Error (MSE) or Mean Absolute Error (MAE); however, it has been proved
that these loss functions do not describe how humans perceive the speech, and
proposed a frequency domain loss instead [13]. Other research based on this archi-
tecture showed that the model performs better in objective intelligibility tests when
some form of objective intelligibility metric is deployed as a loss function, includ-
ing both time and frequency domains, making this architecture a good choice for
this implementation. [3], [6], [7], [9], [15].

The model consists of a total of 31 layers, where 17 of which are convolutional
layers with a filter size of 11 samples, as can be seen in Figure 4.4. The numbers
in the layers illustrated in the figure present the number of the feature maps of the
convolutional layers, and as can be seen, the layers deployed in the encoder and
decoder parts are mirrored.

The first section of the model is the encoder part, where, as can be seen in
Figure 4.4, convolution is used in the input signal x ∈ RL in the first convolutional
layer transforming it into x̂ ∈ RL×M, where M is the number of feature maps, and
t size of the input is decreased with a factor of 2, up to L/256. For the decoder
section, the opposite process takes place as the size of the signal is also increased by
a factor of 2. First, the information from the previous layer is upsampled and then
concatenated with the output for the corresponding encoder layer, as the figure
shows.

Finally, Parameterized Rectified Linear Unit (PReLU), discussed in Subsection
2.1.2, is used as an activation function for the convolutional layers, and dropout
layers are used with a dropout of 20%.
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4.3.3 Data Preparation

The first step to training a model to enhance speech signals would be adding
noise to the clean signals. Subsection 4.1.2 describes how the noise n is added
to the clean speech signal xclean. The noisy samples xnoisy are stored alongside
their corresponding clean ones for comparison during the training and evaluation
processes. In this way, the samples from the noisy signals are used as the input
to the Speech Enhancement model while the samples from the clean signals (in
any form, as will be described in the processes for calculating the loss functions in
Subsections 4.3.4 and 4.3.5) are used as the Ground Truth ytrue := xclean. The output
of the model with the enhanced signal is defined as ypred. In Neural Network
training, in many cases there are benefits if the data are processed in batches, such
as better memory allocation and more accurate statistics of the data. Therefore,
in the context of this chapter xnoisy, ytrue, ypred ∈ RB×L, where B is the size of the
batch.

For this process, the audio files should be normalized in duration. The audio
recordings are either split or zero-padded to fit the desired time. Due to the nature
of the model architecture, the number of samples of the audio recordings should
be an integer divisible by 256. Additionally, the length should be sufficient to fit
the average length of speech passages. 217 is chosen as the number of samples
since, with a sampling rate of 22,050kHz, the length is approximately 6 seconds.

4.3.4 KLD in ASR Loss Function

In this approach of loss function using the ASR model, the loss is calculated based
on the Kullback Leibler Divergence (KLD) of the two posterior probability matrices
of the ASR model. This method relies on the hypothesis that by minimizing the
probability distance between these two matrices, the decoding process would result
in an identical output string, and, in addition, it is also more efficient than decoding
the matrices.

A more detailed flow graph of the ASR loss function using KLD can be seen in
Figure 4.5. The diagram shows that the two snippets of audio are processed in par-
allel. Although it is feasible, the clean signal is handed as constant for performance
reasons and is preprocessed before the fitting of the Speech Enhancement model.
Therefore, the dataset contains only the batch posterior probability matrix of the
clean speech signal. In this way, the ASR model predicts the clean signals only
once during the training process instead of having to predict the same information
again and again in each epoch.

The loss is finally calculated by the KDL of the two posterior probability ma-
trices. This metric is in the form of the distance between two hypotheses. Let
yppm

true , yppm
pred ∈ IB×s×V the posterior probability matrices from clean and the en-

hanced signal, respectively, where I represent the Unit Interval [0, 1] set of prob-
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Figure 4.5: Flow graph of the ASR loss function, where the Kullback Leibler Divergence between the
two posterior probability matrices is calculated. The two chained processes do not occur in parallel,
as the clean signal can be treated as constant and calculated once.

abilities, B the batch size, s the number of time steps in the signal and V corre-
sponds to the cardinality of the set of characters. The KLD loss function is defined
as illustrated in Equation 4.4, where the symbol ⊙ denotes the element-wise mul-
tiplication [35].

LKLD = yppm
true ⊙ log

(
yppm

true

yppm
pred

)
(4.4)

4.3.5 CTC in ASR Loss Function

In this approach, the same process as with the Kullback Leibler Divergence is fol-
lowed, with the difference that the CTC decoding process follows after the retrieval
of the ASR posterior probabilities of the clean signal. The CTC decoding process
searches for the most probable sequence, which is then aligned and returned as a
string of integers. The decoded string of the clean signal is considered the Ground
Truth. This method has the advantage of not considering the total entries of the
posterior probabilities during the minimization process as KLD does. Applying
CTC might be more expensive as it requires decoding the posterior probability
matrix. However, in theory, it also focuses directly on the output string.

Again, the dataset is preprocessed beforehand for performance reasons to avoid
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Figure 4.6: Flow graph of the ASR loss function, where the CTC cost between the posterior proba-
bility matrix of the ASR output with the enhanced signal and the decoded string of integers of the
clean signal is calculated. The two chained processes do not occur in parallel, as the clean signal
can be treated as constant and calculated once. The figure shows the posterior probability matrices
propagating directly to the loss, as the CTC decoding is part of the CTC loss function in the imple-
mentation.

recalculating the spectrograms and the most probable string. Figure 4.6 illustrates
a more detailed diagram of the loss function.

Appendix A describes how the CTC algorithm aligns non-even inputs and out-
puts. The loss function LCTC, therefore, can be derived as illustrated in the Equa-
tion 4.5, with D symbolizing the vocabulary set and ydec

pred, ydec
true ∈ DD the decoded

strings, where D a fixed integer defining the number of entries in the string. Zero-
padding is applied if necessary. The fixed integer ensures that the same amount of
entries is compared each time. Although this is not important for the CTC algo-
rithm, software libraries such as TensorFlow that were used for the implementation
can really benefit from constant dimensions of data.

LCTC = ∑
(ydec

pred,ydec
true)∈D

−log p(ydec
true|ydec

pred) (4.5)

The loss LCTC stands for one entry. Loss LD
CTC in vector form contains individual

entries of LCTC. D Depends on the number of windows applied in the signal
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during the STFT (steps), as each one of the steps defines an entry of probabilities
over the whole set of recognizable characters. Integer D is set as 200, which works
well with 6 seconds of audio used in the training process. As a reminder, multiple
continuous entries can contain the same element, which is discarded later in the
decoding process, as discussed in Appendix A.

4.3.6 Training and Validation

For the training process, the data of the LJSpeech dataset is split into Training
Validation and Test subsets by 80%, 10% and 10%, respectively. Each sample in
the Test subset is further segmented into two 2-second samples. For Test samples
that have very short utterances that last less than 2 seconds, the second segment is
tossed. In this way, more than 2,000 Training samples that are needed for Testing
purposes are available.

At the end of each epoch, the performance of the Speech Enhancement model
is tested on the validation dataset by how accurately the ASR model performs on
the enhanced outputs. This is just for visualization purposes to illustrate whether
the performance of the speech enhancement model is improving or not over the
epochs. At this stage, WER and CER are also calculated; however, these metrics
do not play another role in the training process other than indicating whether the
training process was successful or not.

The learning rate of the optimizer is 0.0005, as it has been proven to work
well and is an essential factor in the training process [3], [15]. Similarly to the
training process of the ASR model discussed in Subsection 4.2.5, early stopping and
learning rate scheduling is deployed. These methods have a patience parameter
that determines how many epochs of no improvements in the validation loss the
method waits until it takes place.

Training with Single Loss Function

Training with a single loss function means only the ASR loss is used. ASR loss
includes either the method using KLD or the one using CTC. During the training,
the loss is calculated in mini-batches and is updated as a running average over each
mini-batch. When all mini-batches are propagated forward (epoch), the average
loss of the mini-batches is defined as the loss of the epoch. The validation dataset
is then used to calculate the validation loss of the model.

Training with Composite Loss Function

In this type of training, a composite loss is used, which combines the ASR loss, as
described in Subsection 4.3.6, with a loss function that has been proven to work
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well. In this case, SI-SDR is used due to its good performance in speech enhance-
ment tasks [3]. SI-SDR objective metric is defined in Equation 3.15. Due to the
fact, however, that higher SI-SDR values mean better performance, maximizing the
performance would be equivalent to minimizing the negative of SI-SDR. This is
defined as the loss function [3], [15].

The composite loss is defined by weighting individual losses and adding them
together. The function is defined in Equation 4.6, where α, β are the weights where
the individual loss functions are weighted with. The weights are normalized for
simplicity, meaning that α + β = 1. The LASR defines the ASR loss function, either
using CTC or KLD methods.

Lcomposite = αLASR + βLSI-SDR (4.6)

4.4 Metrics Evaluation

This section discusses the process used to test the performance of the speech en-
hancement model. Additionally, it is discussed what the baseline of comparison
is to determine how this implementation proposed in the Thesis stands against
previously proposed methods.

4.4.1 Baseline

As mentioned, this project relies on previous experiments. It would therefore be
advantageous to recreate the experiment of interest and reproduce the results with
the LJSpeech dataset used in this Thesis. Due to time limitations, only one method
is used for comparison, precisely the SI-SDR loss function [3]. The model and the
training process are identical to the ones mentioned for training using ASR loss,
with the difference that the SI-SDR loss function is used.

4.4.2 Test Process

The intelligibility, quality and waveform-level metrics used for evaluation purposes
were discussed in Section 3.1. For the training process, the 7 noise types discussed
in Subsubsection 4.1.1 are used and evaluated over the set of SNR values { -10, -5,
0, 5, 10, 15, 20}. For the process, 2000 files are randomly selected from the dataset
and chopped into a length of 44,288 samples, which is about 2 seconds of audio,
and then equal length noise is added to the speech signals. Separate experiments
are conducted with all the different types of noises. The noisy signals are then
enhanced. The resulting estimated speech signals are downsampled into 8k, as the
intelligibility metrics considered require it. The noise is added in the same way as
the training process, as mentioned in Subsection 4.1.2, again by using the ITU-T
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P.56 recommendation for scaling the noise signals. Although many metrics require
signals without silence, the silent parts are not removed before enhancement. This
approach is since, in real-work cases, the absence of speech in a received signal is
unknown [15]. Finally, the noisy signals are enhanced using the speech enhance-
ment model, and the enhanced signals are compared with the original clean ones
to calculate the metrics.
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Results

This chapter presents the quality and intelligibility metrics resulting from testing
the performance of the Speech Enhancement model.

5.1 Results with Test Speech Data

Table 5.1: Average Results

SNR Metric Noisy LSI−SDR LKLD LSISDR+KLD SNR Metric Noisy LSI−SDR LKLD LSISDR+KLD

STOI 0.53591 0.64452 0.45895 0.65264 STOI 0.64121 0.76171 0.5127 0.77078
ESTOI 0.21518 0.4285 0.23001 0.40555 ESTOI 0.33586 0.59091 0.32833 0.57642
PESQ 1.2295 1.5526 1.1988 1.5607 PESQ 1.3299 1.8621 1.2519 1.8697
SDR -9.4803 3.0189 -11.2334 2.6899 SDR -4.7512 6.7852 -8.9696 6.4735

-10

SI-SDR -9.9344 -0.1433 -17.8826 -0.84904

-5

SI-SDR -4.9295 4.455 -14.5126 3.6516

STOI 0.74969 0.83442 0.56638 0.84782 STOI 0.84198 0.88813 0.60367 0.89501
ESTOI 0.47392 0.70646 0.41203 0.69904 ESTOI 0.61307 0.79293 0.46845 0.79022
PESQ 1.509 2.1752 1.3153 2.1938 PESQ 1.7707 2.4764 1.3731 2.4947
SDR 0.15901 10.2739 -7.3054 10.0429 SDR 5.1303 13.5717 -6.241 13.5115

0

SI-SDR 0.072299 8.4344 -12.29 7.9008

5

SI-SDR 5.073 12.249 -10.752 12.0435

STOI 0.90846 0.93802 0.63025 0.94119 STOI 0.95026 0.96668 0.65579 0.96648
ESTOI 0.73826 0.86458 0.51379 0.86412 ESTOI 0.83773 0.90984 0.55853 0.90772
PESQ 2.1201 2.8188 1.4178 2.8242 PESQ 2.5542 3.1718 1.4533 3.1551
SDR 10.1212 16.7217 -5.2926 16.7109 SDR 15.1184 19.6239 -4.4494 19.5289

10

SI-SDR 10.0733 15.7264 -9.4357 15.4003

15

SI-SDR 15.0734 18.6507 -8.4657 18.0039

STOI 0.97402 0.9775 0.66904 0.97586
ESTOI 0.90667 0.93334 0.58435 0.92923
PESQ 3.0552 3.4533 1.4817 3.4274
SDR 20.1175 21.8724 -4.0102 21.6212

20

SI-SDR 20.0735 20.7345 -8.0335 19.7123

In this section, the results from testing the model’s performance in the test
subset of the LJSpeech dataset, in which the Speech Enhancement and ASR models
were trained on. The process is explained in Subsection 4.4.2. All the methods
that have been compared use the same DNN model as described in 4.3.2. The
loss functions tested are ASR with KLD, ASR with CTC, composite function with
KLD and SI-SDR, composite function with CTC and SI-SDR, and the SI-SDR for

39
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reference. The two composite methods are formed as shown in Equation 4.6 with
importance factors α = β = 0.5. Both single CTC and composite CTC did not
converge sufficiently during the training, and the models using these two functions
produced noisy and distorted outputs, even during the silent parts of the signal.
For this reason, their results are not presented.

Table 5.2: SSN (seen noise)

SNR Metric Noisy LSI−SDR LKLD LSISDR+KLD SNR Metric Noisy LSI−SDR LKLD LSISDR+KLD

STOI 0.47666 0.58812 0.43765 0.59265 STOI 0.58508 0.78648 0.48752 0.78007
ESTOI 0.13378 0.36182 0.16634 0.30946 ESTOI 0.26351 0.59102 0.29261 0.56228
PESQ 1.2153 1.3843 1.1495 1.3725 PESQ 1.2695 1.7631 1.1933 1.7382
SDR -9.4027 2.2578 -12.0388 1.6703 SDR -4.722 7.1736 -9.0043 6.7966

-10

SI-SDR -9.9356 0.25323 -16.8712 -0.23425

-5

SI-SDR -4.9312 5.9312 -12.7616 5.5256

STOI 0.71441 0.87864 0.53923 0.87679 STOI 0.82699 0.92371 0.58691 0.92315
ESTOI 0.42619 0.73402 0.41405 0.72748 ESTOI 0.58986 0.81741 0.49785 0.81659
PESQ 1.3807 2.107 1.2705 2.1338 PESQ 1.5529 2.433 1.3538 2.4721
SDR 0.17147 10.7831 -6.7953 10.4802 SDR 5.137 13.6466 -5.4257 13.3654

0

SI-SDR 0.069708 9.8032 -10.4313 9.4495

5

SI-SDR 5.0698 12.8792 -9.2098 12.4769

STOI 0.90408 0.94925 0.62443 0.9483 STOI 0.94991 0.96486 0.64876 0.96329
ESTOI 0.73034 0.86871 0.54749 0.86636 ESTOI 0.83709 0.90206 0.57436 0.89853
PESQ 1.8159 2.7583 1.419 2.7535 PESQ 2.1787 3.0213 1.4622 3.0027
SDR 10.1259 16.195 -4.6195 15.9536 SDR 15.1223 18.6092 15.0695 18.4463

10

SI-SDR 10.0696 15.5351 -8.5307 15.0685

15

SI-SDR 15.0695 17.9127 -4.1726 17.3464

STOI 0.97535 0.97448 0.66271 0.97252
ESTOI 0.91006 0.92475 0.58813 0.92039
PESQ 2.6267 3.2647 1.4864 3.26
SDR 20.1211 20.8755 -3.9288 20.7011

20

SI-SDR 20.0694 19.9844 -7.9455 19.1663

Regarding the metrics presented in this Chapter, some return invalid ("None"
type) results due to lack of signal energy, divisions by 0, etc. These values are ex-
cluded from the averaging performance of the metrics. The average results include
all 7 noises, 4 of which have been used in the training process, and 3 are not. The
average results across all 7 noise types can be seen in Table 5.1, where the noisy
column stands for the measurements of the metrics in the unprocessed mixture of
noise and speech signal samples. The following three columns stand for SI-SDR
loss function, ASR with KLD loss function and composite SI-SDR and ASR with
KLD. The best-performing model in each metric and for each SNR is highlighted
in green colour.

To further show how the models perform in seen and unseen data, two more
Tables are presented. Table 5.2 shows the average performance of the models in
speech-shaped noise (SSN), which is used in the training process. Similarly, Table
5.3 shows the results across construction building noise to which the models have
not been exposed to. In both tables, Green colour highlights the best-performing
model, while red also highlights the best-performing model, but the model perfor-
mance is degraded compared to the unprocessed noisy sample.

Regarding the LJSpeech dataset, it is clear that the ASR loss function is not
performing well, both in the case of the CTC method which heavily distorts the
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Table 5.3: Inside Construction Site (unseen noise)

SNR Metric Noisy LSI−SDR LKLD LSISDR+KLD SNR Metric Noisy LSI−SDR LKLD LSISDR+KLD

STOI 0.58469 0.35331 0.37836 0.37635 STOI 0.6952 0.35967 0.41424 0.43693
ESTOI 0.25056 0.10702 0.028634 0.091839 ESTOI 0.38339 0.19044 0.056871 0.16761
PESQ 1.2129 1.1311 1.1702 1.169 PESQ 1.3406 1.1536 1.1797 1.195
SDR -9.5462 -14.3154 -18.0037 -14.5018 SDR -4.7779 -10.1859 -16.8373 -10.6875

-10

SI-SDR -9.929 -24.0784 -38.2298 -27.2134

-5

SI-SDR -4.9275 -17.7481 -32.7652 -21.3995

STOI 0.79743 0.43992 0.47151 0.53871 STOI 0.87712 0.59455 0.49612 0.64675
ESTOI 0.52582 0.31068 0.084493 0.2792 ESTOI 0.66311 0.49813 0.10878 0.48919
PESQ 1.555 1.2132 1.1674 1.2328 PESQ 1.8632 1.3668 1.1654 1.4164
SDR 0.14547 -4.9798 -15.5785 -5.2284 SDR 5.1209 1.4017 -14.3601 2.1687

0

SI-SDR 0.072818 -10.8925 -27.9127 -12.404

5

SI-SDR 5.0729 -2.1472 -22.7767 -0.78117

STOI 0.93092 0.81831 0.53289 0.84671 STOI 0.9629 0.943 0.625 0.95084
ESTOI 0.78147 0.73845 0.21362 0.75039 ESTOI 0.86968 0.88173 0.41363 0.88775
PESQ 2.2561 1.9803 1.2004 2.0748 PESQ 2.7271 2.8794 1.2857 2.8828
SDR 10.113 8.3316 -11.1605 9.2369 SDR 15.1105 15.0854 -7.1155 15.4251

10

SI-SDR 10.0729 6.6298 -16.472 7.9258

15

SI-SDR 15.0728 14.0409 -11.2254 14.3174

STOI 0.98042 0.97477 0.67009 0.97469
ESTOI 0.92622 0.93178 0.53858 0.93014
PESQ 3.2696 3.4199 1.4001 3.3669
SDR 20.1097 19.939 -5.0742 19.678

20

SI-SDR 20.0728 18.8609 -9.061 18.1601

signal and in the case of KLD which as can be seen in all tables, degrades the
signal instead of enhancing it. The composite loss function using SI-SDR and ASR
with KLD shows slightly lower performance in average results in the intelligibility
metrics compared to SI-SDR. Interestingly, For SNRs less or equal to 10, the PESQ,
which is a quality metric, favoured the composite function.

Taking a look at the individual noises results, one can see that the results be-
tween the average performance and the SSN are pretty similar, with the SI-SDR
loss performing better. It has already been proven, however, that SI-SDR performs
well in stationary noise [3], [15]. On the other hand, on the unseen noise type of
construction site, the composite loss seems to perform better than SI-SDR in many
cases. According to the metrics, however, this performance is not sufficient enough,
as in most cases, the enhanced signal is worse than the unprocessed noisy signal.

5.2 Results with Unseen Speech Data

As both models have been trained using the LJSpeech dataset, which contains a
single female speaker, a supplementary dataset is adopted to test the models with
speech signals from unseen speakers. The dataset has been described in Subsection
4.1.1. The performance of the models is illustrated in Table 5.4. As can be seen,
the results are similar to the unknown noise type. The composite loss shows better
performance in quality metrics in general. Although it seems to be improvements
in enhancement for both SI-SDR and composite loss function in SNRs of -10 and
-5, in anything above that, the results are getting worse. Especially for higher
SNRs where the clean signal is more pronounced in the noisy mixture, the results
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Table 5.4: SLR83 (unseen speakers)

SNR Metric Noisy LSI−SDR LKLD LSISDR+KLD SNR Metric Noisy LSI−SDR LKLD LSISDR+KLD

STOI 0.5556 0.48297 0.41708 0.49981 STOI 0.66624 0.5827 0.44307 0.59052
ESTOI 0.23836 0.28835 0.14088 0.24657 ESTOI 0.37466 0.40268 0.19864 0.36611
PESQ 1.2739 1.3368 1.2296 1.3487 PESQ 1.35 1.4701 1.2166 1.4712
SDR -10.6368 -3.2273 -14.5561 -3.5838 SDR -6.026 -0.16839 -12.7566 -0.41525

-10

SI-SDR -11.2783 -10.3118 -22.5875 -11.2015

-5

SI-SDR -6.2719 -6.0333 -18.9408 -7.0299

STOI 0.77889 0.66043 0.47451 0.67352 STOI 0.87139 0.71333 0.49997 0.72402
ESTOI 0.53005 0.50327 0.25782 0.47551 ESTOI 0.68241 0.58396 0.3078 0.56606
PESQ 1.5086 1.6292 1.2193 1.6306 PESQ 1.7464 1.7997 1.2395 1.8069
SDR -1.1589 2.3143 -11.1302 2.1189 SDR 3.7978 4.4168 -9.9221 4.3777

0

SI-SDR -1.2701 -3.2398 -16.2466 -3.9302

5

SI-SDR 3.7304 -1.0848 -14.3674 -1.2115

STOI 0.93396 0.74614 0.51793 0.76199 STOI 0.96978 0.7679 0.5348 0.78879
ESTOI 0.80996 0.6464 0.35255 0.64169 ESTOI 0.89981 0.69285 0.39108 0.69388
PESQ 2.0589 1.9608 1.2605 1.9924 PESQ 2.4426 2.1099 1.2754 2.1771
SDR 8.7839 6.0859 -8.9812 6.2507 SDR 13.7795 7.2031 -8.1202 7.4408

10

SI-SDR 8.7305 0.62368 -12.9913 0.91502

15

SI-SDR 13.7305 1.786 -11.7821 2.1209

STOI 0.98752 0.78141 0.54643 0.80424
ESTOI 0.95278 0.72323 0.41703 0.72513
PESQ 2.8739 2.2542 1.2883 2.3408
SDR 18.7781 7.8375 -7.4793 8.0743

20

SI-SDR 18.7305 2.4241 -10.9806 2.6817

are disappointing as all methods heavily degrade it instead of enhancing it. This
shows the importance of the data in data-driven methods such as DNNs. Finally,
the KLD loss function failed in to improve the signals in all test cases.



Chapter 6

Discussion and Conclusion

This chapter discusses the results presented in the previous chapter and the con-
clusion of the Thesis.

6.1 Discussion

The challenge in ASR-based Speech Enhancement is that the performance of the
Speech Enhancement model depends on the performance of the ASR model. Al-
though there are many available well-organized datasets containing speech utter-
ances, the amount of these that also contain utterances in text form is significantly
lower. The Wall Street Jurnal (WSJ) dataset, which is widely used in speech en-
hancement, was a choice; however, the sampling rate that was recorded is 16kHz
and also many subsets of the datasets do not include the text. LJspeech is a better
option for training the ASR model, however, due to the fact that it is recorded at
22,050Hz and the model draws its features from the frequency spectrum, it means
that the trained ASR model would be incompatible with the lower sampling rate of
the WSJ. In other words, training the ASR model with LJSpeech and the Speech En-
hancement with WSJ was not an option, at least without downsampling LJSpeech.
Due to the limited time of this project, the LJSpeech dataset was selected for train-
ing both ASR and Speech Enhancement models, even though it has the drawback
of only one speaker reading all the utterances. The effect that the lack of variety
in speakers has on the enhancement process is clear in the results of the model in
the SLR83 dataset presented in 5.4, which are not in line with previous findings,
specifically with SI-SDR loss function [3], [15]. The results based on the LJSpeech
dataset presented in Chapter 5 are sufficient enough to make a conclusion; how-
ever, the limitations of the dataset in the performance of the models should be
taken into account.
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6.2 Conclusion

It is clear that ASR as a loss function cannot be used alone for Speech Enhancement.
Especially using the CTC method that performs well in ASR tasks shows terrible
results in Speech Enhancement. Additionally, although the KLD method manages
to make the speech pronounced clearer in the noisy samples compared to CTC,
listening to the estimated samples is unpleasant as it distorts both speech present
and speech absent parts.

On the other hand, the composite loss function using the ASR loss in combina-
tion with some other loss function, the SI-SDR in this case, showed more promising
results. Not only in many cases, the resulting metrics are slightly behind the SI-
SDR, but also, the composite loss showed better performance in the quality (PESQ)
metric compared to using SI-SDR alone.

As a conclusion for this Thesis, one can argue whether the methods using ASR
as a loss function discussed in this report can stand compared to state-of-the-art
methods used in Speech Enhancement. On the one hand, it is shown that combin-
ing ASR with other loss functions can improve certain areas of the signal, such as
the quality in the case of ASR and SI-SDR. On the other hand, the deviation of the
composite loss from the SI-SDR loss function in the intelligibility and waveform-
based metrics did not show sufficient improvement to justify the extra effort re-
quired for proper training of an ASR model and the extra computation power that
is required during the training compared to solely using SI-SDR as a loss func-
tions. And even for the gains in the quality metrics, the difference is so small in
most cases that the actual subjective difference is negligible.
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Appendix A

CTC Decoding

This chapter discusses the algorithm of Connectionist Temporal Classification, which
is a method for aligning uneven sequences between input and output. First, the
algorithm is described, and then the use case as a loss function is explained.

A.1 Algorithm Description

Connectionist Temporal Classification (CTC) is an algorithm widely used in Ma-
chine Learning and specifically in Deep Neural Networks for tasks that the input
does not perfectly align with the output. Examples of this kind of problem could
be automatic speech recognition, automatic handwriting recognition or other types
of sequence problems. For simplicity, an example with set D of characters is illus-
trated; however, this method can be used in any use mentioned above cases [23].

A.1.1 Decoding Process

Assuming the input as a length of samples X = [x1, x2, x3, . . . , xT] and the ground
truth as Y = [y1, y2, y3, . . . , yU ], the CTC algorithm addresses three problems. The
lengths of X and Y are unknown and can vary. The ratio between these two can also
vary; finally, no accurate alignment is known beforehand. Figure A.1 illustrates a
naive example of this process with 14 input samples and seven output samples.
Samples have been retrieved from an image shown in the first stage of the figure,
and as can be seen in the example, the length of input samples and ground truth
samples are different. Supposing one has access to the posterior probabilities ma-
trix of D, as shown in the second stage of the figure, two methods can be used to
decode the string and get the results illustrated in the third stage. The first method
is greedy search, which calculates the optimal output Y∗ as shown in the Equation
A.1 [23]
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Figure A.1: An exaggerated example of the CTC process for a handwritten-to-text classification. All
the letters are lowercase to simplify the example. The same example could have been illustrated
with spectrograms-to-text to showcase the actual use of the CTC in this Thesis. The example of
handwritten characters, however, makes clearer pointing out the process.

Y∗ = arg max
Y

p(Y|X) (A.1)

The second method is called beam search, and as the name suggests, beams are
used to estimate the total probabilities for possible paths, and the most probable
path is selected. Although not necessarily the most probable character is used, the
beam search can give an asymptotically better solution. Beam search calculates the
optimal beam A∗ by searching over several possible beams A ∈ AX,Y as shown in
the Equation A.2 [23].

A∗ = arg max
A

T

∏
t=1

pt(at|X) (A.2)
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A.1.2 Aligning process

CTC function uses a special token ϵ which denotes the characters that should not
be merged. This can be seen in the third and fourth stage of Figure A.1 between
the letters "a". Letters "b", "o", and "r", on the other hand, do not have special
tokens between them and therefore are merged. In this way, the final output Y =

[y1, y2, . . . , y7] shown in the last stage is retrieved.

A.2 CTC as loss function

CTC loss function provides a natural way of transitioning from each sample’s indi-
vidual probabilities to the output sequence’s overall likelihood. The type of search
can be tuned depending on the problem type, considering that the beam search is
more expensive than the greedy search.

The CTC as a loss function can be used to maximize the probability of selecting
the correct entries of D. Maximizing the likelihood is equivalent of minimizing the
negative log, and the loss function is given for any set space D as shown in the
Equation A.3 [23].

LCTC = ∑
(X,Y)∈D

−log p(Y|X) (A.3)
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