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Abstract:

This study is based on the methods pro-
posed in [Klein et al., 2023], which uses
Bayesian inference, echo state networks
(ESNs), and copulas to tackle the prob-
lem of probabilistic forecasting of intraday
electricity prices in Nordic countries. By
capturing the complex dynamics of elec-
tricity pricing data, the objective is to
increase the precision and dependability
of forecasting models. A robust frame-
work for probabilistic modelling is pro-
vided by Bayesian inference, which enables
the inclusion of prior information and mea-
surement of uncertainty. ESNs, like re-
current neural networks, capture tempo-
ral linkages and non-linear patterns in the
data. In contrast, Copulas represent the
joint distribution of several variables and
take the relation between the variables
into account. The investigation empha-
sises the need for further model develop-
ment by exposing limitations in capturing
extreme events and tail behaviour. De-
spite these difficulties, Copulas, ESNs, and
Bayesian inference show promise in prob-
abilistic forecasting; nonetheless, further
study and calibration are required to raise
their performance.
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Motivation 1

This chapter is based on [Spot, 2023], [Taillon, 2023], [Segal, 2022], [Kenton, 2022],
[Norway, 2023], [Stanwell, 2023], [Ørsted, 2023], [Politiken, 2021], [Bellis, 2018],
[Madaleno and Pinho, 2008], and [Klein et al., 2023]

In today’s world, energy in the form of electricity has become a necessary good. It
not only provides light and warmth, but it also forms the foundation of all industrial
endeavours. The initial historical energy sources are called primary sources, such as
water wheels operating next to waterfalls. Today, most electricity is generated from
so-called secondary energy sources; among these are nuclear energy and fossil fuels
like coal and oil, along with renewable sources, including wind, solar, hydropower, and
geothermal energy. The electricity generated from these diverse sources is transmitted
using the necessary infrastructure.

The 1990s saw the deregulation of the power market in the Nordic countries Denmark,
Norway, Sweden and Finland, which are the primary focus of this project. The
deregulation reduced or eliminated governmental control over the sector and provided
investment opportunities by allowing competitors to enter the market, encouraging
innovation and potential price drops benefiting the consumers.

Wholesale and end-user sales are two categories of the power market. Power pro-
ducers, power suppliers, energy businesses etc., purchase and sell large quantities on
the wholesale market. In comparison, end-users are customers who buy power for
personal consumption, such as homeowners, businesses, etc. In addition, individual
consumers sign contracts to purchase electricity from a power supplier of their choice
in the end-user market. Various markets make up the wholesale market. In these
markets, bids are made and where prices are set. They comprise the intraday market,
the balance market and the day-ahead market.

This project focuses on intraday electricity prices. In this context, intraday describes
a continuous exchange of electricity on the same day it is provided. In other words,
participants engage in nonstop trading throughout the day. Furthermore, due to its
great degree of flexibility, intraday trading can be utilised to balance positions closer
to real-time and make last-minute modifications.
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Group 4.117a 1. Motivation

The balance market is used to control consumption or production to maintain an
equilibrium. A balance is established between the day-ahead and intraday markets’
production and consumption of electricity. However, events, such as uneven elec-
tricity distribution, that can throw off balance within a given hour are inevitable.
Consequently, the balancing market will adjust production or consumption upward
or downward depending on what is required to maintain an immediate equilibrium.

In the day-ahead market, agreements are formed for deliveries between buyers and
sellers the next day. In other words, it describes the purchase or sale of electricity
before its actual production or delivery.

Returning to the intraday market, a theoretical price called the system price, which
is based on the presumption that no grid congestion is determined daily. Power
producers place bids outlining the volume of energy they are willing to produce for a
given price. This price is directly related to the cost of operating a power plant and
reflects the value producers place on their output. Power suppliers place bids stating
how much they are willing to buy at various prices. As a result, the system price is
established at the equilibrium where supply and demand are equal. It should be noted
that electricity cannot be stored, at least not directly; as a result, it is produced and
used instantaneously. Supply and demand must, therefore, consistently be balanced
in real-time. This balance is created using an order book, which is an electronic
list of buy and sell orders. Those orders represent the current supply and demand
conditions in a particular market area. The energy price will hereafter be determined
by matching supply and demand orders using data from the order book. Since trades
are the product of intense competition among order exchange participants in an open
and transparent environment, they always represent the most up-to-date information.

In addition to system prices, area prices, or the cost of electricity in a particular
area, also need to be considered. Since this project primarily focuses on the Nordic
countries of Denmark, Norway, Sweden, and Finland, the regions or "bidding zones"
considered are DK1 and DK2 in Denmark, NO1-NO5 in Norway, Sweden having four
SE1-SE4, and Finland having one FI.

These area prices differ, and in the event of congestion brought on by, for example,
changes in demand, insufficiently planned transactions, etc., some places may experi-
ence a deficit of energy, which is when supply is insufficient compared to demand. In
contrast, others may experience a surplus of energy, that is, when supply is greater
than demand. As a result, power is moved from locations with a surplus to those with
a shortfall. As a result, prices are often higher in locations with a power shortage
than in those with a surplus. Nonetheless, local pricing will match the system price
throughout all areas if there are no restrictions on the electricity grid.
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A phenomenon of negative prices exists, exclusively observed in the wholesale market.
It occurs when the supply offered at negative prices is higher than the demand, a
power surplus. Negative price scenarios are typically observed in the middle of the
day due to competition between generators trying to dispatch their energy. This
phenomenon indicates that supply must be constrained or demand must be raised.
How costly and fast energy production can stop and start depends on the energy
source. Sources like solar and wind energy can stop and start relatively quickly,
meaning that these types of energy sources can avoid negative price periods. Nuclear
power and coal-fired generators are two examples of energy sources that require hours
to restart and incur significant costs when they are stopped and started. These energy
sources continue to produce energy during the negative price phase because it is the
most cost-effective. Also, this guarantees that the energy demand is still satisfied in
the evening when, for example, solar energy is no longer available.

Some stylised facts about electrical market pricing, in general, are provided below.

• Seasonality, or the varying supply and/or demand of power, can, e.g., be caused
by business operations. When intraday trading is taken into account, seasonal-
ity is connected to the structure of the business day-weekend structure. In other
words, prices start to rise as the workday officially begins, then subsequently
decline when it finishes and demand shifts predominantly towards domestic us-
age. The weather also regulates the seasonal effect. That is, shifting climate
factors like temperature and the length of daylight directly affect prices.

• The mean-reverting or anti-persistent nature of electricity prices. In other
words, data shocks are temporary and revert to the previous price level.

• Unexpected jumps or spikes in cost are the most noticeable aspect of power
prices. That is to say, system costs might rise significantly quickly and then drop
back to their previous level. Such jumps are particularly infamous during, for
instance, peak consumption seasons like the winter. These spikes are typically a
result of supply changes brought on by severe weather conditions and/or power
outages.

• Leptokurtosis. Electricity prices commonly exhibit leptokurtosis, meaning that
both minor and significant price changes occur more frequently than they would
under a normal distribution. To put it another way, the distribution of elec-
tricity prices shows fat tails.

• Volatility. Electricity prices are generally very volatile because of transmission
and storage issues and the market’s need to establish equilibrium pricing im-
mediately. Due to the difficulty of resolving supply and demand imbalances in
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Group 4.117a 1. Motivation

the short term, the price changes in the electricity market are more dramatic
than those in other financial or commodity markets.

Some other factors affecting the electricity price are how various factors influence the
different types of energy sources. Examples include the absence of wind, which would
reduce energy output and supply. CO2-quotas, or the right to emit CO2, are another
consideration. Each CO2 quota entitles the holder to one ton of CO2 emission. These
CO2 quotas are intended to be a tool for reducing CO2 emissions. The quotas are
distributed among others to businesses producing energy and emitting CO2. Thus, a
smaller supply of quotas would result in an increase in their price, which would have
an impact on energy prices. War and politics are a couple of other things that affect
energy prices. Here, sanctions can directly affect energy prices, which was observed
when Russia cut back on and eventually stopped exporting gas to Europe due to
European sanctions against Russia.

This project’s primary goal is to apply some of the methods mentioned in the recently
published paper [Klein et al., 2023] since their approaches are innovative in generating
probabilistic price forecasts for energy prices using data from the Australian market.
However, as mentioned, this project focuses on the Nordic region’s energy market. For
the market to run smoothly and profitably for participants, accurate intraday price
predictions are essential. Probabilistic forecasts are particularly interesting because it
is a stylized fact that electricity prices frequently exhibit leptokurtosis, and hence it is
not just the mean and variance that matters. The paper [Klein et al., 2023] introduces
statistical time series models based on echo state networks, a type of recurrent neural
network. Here, the output layer coefficients of the echo state network are estimated
by Bayesian techniques. In addition, an output layer coefficient shrinkage prior is
included to provide regulation or control. Additionally, a different strategy is used,
employing implicit copulas of time series derived from an echo state network. The
copula model is coupled with a marginal distribution of the data to represent the
serial dependence in the time series accurately. After the models are in place, a
probabilistic forecast is created using predictive distributions over K different weight
configurations.

The project is outlined as follows:

• Chapter 2: Briefly introduces the later utilised theory from Bayesian statistics
to obtain the predictive distribution for forecasting intraday electricity prices
in the Nordic region.

• Chapter 3: Provides information on neural networks, focusing on recurrent
neural networks and echo state networks, which form the basis of the final
forecasting models.
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• Chapter 4: Outlines the theory of copulas, which is incorporated into the second
forecasting model.

• Chapter 5: Describes the Gaussian probabilistic and Copula models, the two
specific models used for making predictions.

• Chapter 6: Applies the models to actual data provided by Nord Pool. The
chapter begins with an introduction and preliminary examination of the data,
followed by obtaining probabilistic forecasts using the models.

• Chapter 7: Discusses the different approaches used in the two models and some
of the decisions made during the project.

• Chapter 8: Presents the conclusion of the project.

• Chapter 9: Discusses additional viewpoints or methods that could have been
incorporated into the models and the project.

• Appendix: Contains supplementary figures related to the application in Chapter
6 and formulas used throughout the project.

Problem Statement

The primary objective is to investigate the application of neural networks and the
incorporation of copulas to develop two distinct models capable of generating prob-
abilistic forecasts for intraday electricity prices in the Nordic regions encompassing
Denmark, Norway, Sweden, and Finland.
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A Brief Introduction to

Bayes Inference 2

This chapter is based on [Marin and Robert, 2014], [Lee, 2004], [Hoff, 2009a], [Taboga,
2023a], [Taboga, 2023b], and [Hoff, 2009b]

Throughout this project Bayesian statistics will be used, a theory in the field of
statistics based on the Bayesian interpretation of probability. Therefore, the prob-
ability is understood as a reasonable expectation indicating a level of knowledge or
a measurement of a personal conviction rather than the frequency or propensity of
any occurrence. One of the primary purposes of introducing Bayesian inference is
to get access to the so-called predictive distribution used to construct probabilistic
forecasts. The distinctive feature of Bayesian statistics is the application of Bayes’
theorem in a broader range of circumstances than in classical statistics. In particular,
Bayesian statisticians are always willing to talk about the probability of a hypothe-
sis, both unconditionally (its prior probability) and given some evidence (its posterior
probability). In contrast, other statisticians will only talk about the probability of a
hypothesis in restricted circumstances. In broad outline, prior beliefs are assumed
about various possible hypotheses, and these prior beliefs are modified in the light of
more relevant data collected to arrive at posterior beliefs.

For unknown parameters, ✓ = (✓1, . . . , ✓k) for k 2 N, a prior belief about their value
can be expressed in terms of their pdf,

Prior : p(✓). (2.1)

Furthermore, for n observations of relevant data on their values, X = (X1, . . . , Xn),
for n 2 N, have a probability distribution that depends on the k unknown quantities
as parameters so that the pdf (continuous or discrete) of the vector X depends on the
vector ✓ in a known way. Typically the components of ✓ and X will be integers or real
numbers so that components of X are random variables, and hence the dependence
of X can be expressed in terms of a pdf,

Likelihood : p(X | ✓). (2.2)

7



Group 4.117a 2. A Brief Introduction to Bayes Inference

This pdf, considered as a function of X for a fixed ✓, is a density. However, often
the pdf is thought of as a function of ✓ for fixed X. If this is the case, it does not
have quite the same properties, e.g., it is not necessary to sum (or integrate) to unity.
Thus, in the extreme case where ⇡(X | ✓) does not depend on ✓, it is possible for it
to sum (or integrate) to 1. Thus, when considering ⇡(X | ✓) as a function of ✓, it is
referred to as the likelihood function, as stated in (2.2). Thus,

l(✓ | X) = p(X | ✓).

Hence the posterior belief is given by Bayes’ Theorem for random variables, gener-
alised to deal with random vectors, where it is known that,

Posterior : p(✓ | X) / p(✓)p(X | ✓). (2.3)

It should be noted that differing priors result in varying posterior beliefs; however,
with enough collected data, the posterior beliefs will usually become very close.

Markov Chain Monte Carlo (MCMC) techniques are frequently employed when the
posterior distribution cannot be determined analytically. Monte Carlo methods ap-
proximate a feature of the probability distribution of a random variable Y , such as
the expected value.

In MCMC, the draws produced by the computer, y1, · · · , yn, are serially correlated
rather than independent, which gives it a unique spin on the traditional Monte Carlo
approach. The draws are more specifically realisations of the n random variables
Y1, · · · , Yn that make up a Markov Chain. In particular, if a random sequence Yn
meets the Markov Property, it is referred to as a Markov Chain.

Proposition 2.1 (Markov Property).
Regardless of the chain’s historical trajectory, the probability distribution of its
future values solely depends on its current values Yn.

P(Yn+t = y | Yn, Yn�1, · · · , Yn�k) = P(Yn+t = y | Yn).

The proof of this proposition is omitted from the project.

The chains generated by MCMC have the property of asymptotic independence. In
other words, two variables Yn and Yn+t are not independent, but they approach inde-
pendence as n ! 1. This specifically indicates that as n becomes larger f(yn+t | yn)
converge to f(yn+t). This property is significant because it shows that as n increases,
the initial value of the chain, which is often selected randomly, has a decreasing

8
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impact on the distribution.

There is often a difference between the distribution of the first terms of the chain and
the target distribution, which is the distribution from which samples are extracted at
the end. In the case of this project, the target distribution is the posterior distribu-
tion. As a result of this difference, an MCMC sample’s initial draws are frequently
discarded, called the burn-in sample. Hence, draws from the burn-in sample are elim-
inated, that is, draws that are distant from the target distribution, while draws closer
to the target distribution are retained.

After the burn-in sample is eliminated, a sample of draws from a distribution that
closely resembles the target distribution is acquired; the draws, however, are not
independent. Here the idea of the effective sample size can be employed, meaning
that a smaller number of independent observations is equivalent to n dependent
observations. The effective sample size decreases, and the accuracy of the MCMC
approximation generally declines as the correlation between adjacent observations
increases. As a result, most work in MCMC samplers is focused on minimising
correlation.

Specifically, in the application, Chapter 6, the Metropolis-Hasting algorithm will be
employed. The Metropolis-Hasting algorithm is stated as follows:

Algorithm 1 Metropolis-Hasting
1: Choose a proposal kernel q(x, y).
2: Define the Hasting ratio as follows:

H(x, y) =
⇡(y)q(y, x)

⇡(x)q(x, y)
,

with H(x, y) = 1 if ⇡(x)q(x, y) = 0.
3: The acceptance probability is given by

a(x, y) = min
�
1, H(x, y)

 
.

Another feature of Bayesian statistics is the existence of a predictive distribution. A
predictive distribution of a random variable Y is a probability distribution such that
known quantities are conditioned on, and unknown quantities are integrated out.

Suppose that a new data point y is acquired after the data X have been observed and
the posterior distribution described in (2.3) has been determined. Assume further
that the distribution of y is independent of X conditional on ✓, but dependent on ✓.
That is,

p(y | ✓,X) = p(y | ✓).

9



Group 4.117a 2. A Brief Introduction to Bayes Inference

The distribution of y given X is then given by

p(y | X) =

Z

✓

p(y,✓ | X)d✓

=

Z

✓
p(y | ✓,X)p(✓ | X)d✓

=

Z

✓
p(y | ✓)p(✓ | X)d✓.

To summarise, the predictive distribution can be expressed as

Predictive distribution : p(y | X) =

Z

✓
p(y | ✓)p(✓ | X)d✓. (2.4)

10



Neural Networks 3

This chapter is based on the sources [Aggarwal, 2015], [Hastie, 2001], and [Stanford,
2023]

The deep learning method Neural Networks, abbreviated NN, takes inspiration from
the human nervous system, composed of cells referred to as neurons and connected
at contact points referred to as synapses. Changing the strength of these synaptic
connections between neurons is the basis of learning in living organisms. Therefore,
neural networks can be considered a simulation of this biological process.

Individual nodes in artificial Neural Networks, similar to those in biological networks,
are referred to as neurons. These neurons are computation units that receive input
from other neurons, perform computations on these inputs, and feed it back into
other neurons. The computation function of a neuron is defined by the weights on
the neuron’s input connections, simulating the strength of a synaptic connection. The
computation function can be learned by appropriately changing these weights, which
is analogous to learning synaptic strength in biological neural networks. The training
data serves as the "external stimulus" in artificial neural networks for learning these
weights. The idea is to incrementally modify the weights whenever the current set
of weights makes incorrect predictions. The architecture used to arrange connections
between nodes is critical to the neural network’s effectiveness.

Several different architectures are accessible, depending on the network type being
evaluated. A recurrent neural network, abbreviated RNN, is introduced in this chap-
ter with the purpose of extending it to an echo state network, abbreviated ESN. An
introduction to neural networks can be found in [Hastie, 2001] and [Stanford, 2023].

3.1 Recurrent Neural Networks

This section is based on [Pra, 2020], [Liu, 2020], [IBM, 2023], [Faik, 2021], [Engati,
2023c], [Madhan, 2020], and [McDermott and Winkle, 2017]

Given their fundamental design principles, classical neural networks, especially feed-
forward neural networks, see [Hastie, 2001], lack inherent means to manage time

11



Group 4.117a 3. Neural Networks

dependence. No matter the temporal order in which inputs are delivered, these net-
works are designed to operate independently on input data. Therefore, traditional
neural networks do not explicitly model relationships or temporal dependencies be-
tween subsequent inputs but instead treat each input as a distinct unit. This short-
coming, however, becomes apparent when dealing with sequential or time-dependent
data, when the timing and order of inputs matter. In certain situations, standard
neural networks might perform less well because they cannot accurately capture the
temporal dependencies. Recurrent neural networks (RNNs) provide a solution to this
problem.

The recurrent neural network distinguishes itself from the above-mentioned tradi-
tional neural network by its memory. RNN uses information from preceding inputs
to influence current input and output, in contrast to classical neural networks, which
assume inputs and outputs are independent of one another. Thus, RNNs eliminate
the independence between input and output. This particular memory architecture
has a stronger analogy to how living beings’ brain works, namely that it tries to find
correlations, also known as long-term dependencies, between past situations to better
understand an event happening in the present. As a result, RNNs offer the possibility
of processing data that takes the form of a sequence, such as time series.

Note that only unidirectional RNNs are considered for this project; therefore, only
past events will be considered. In other words, forecasts won’t be based on what will
happen in the future.

In an RRN, opposite to NNs, the nodes are assigned a fixed time step, and the hidden
layers are forwarded in a time-dependent direction.

The architecture of an RNN is illustrated in Figure 3.1 below, with a following defi-
nition of a basic RNN. Neither the illustration nor the definition include a bias term,
but it is still possible to include it.

12



3.1. Recurrent Neural Networks Aalborg University

Figure 3.1: Illustration from [Pra, 2020]. The architecture of a recurrent neural
network. A fixed time stamp is given to each node in the RNN, progressing from left
to right. Hence, it can be thought of as numerous feed-forward network replicas, each
of which sends a message to a descendant. The input layer is represented by the red
circles, the hidden layer by the blue, and the output layer by the green. Indicated by
the letters U, W, and V are the weight matrices that connect the input and hidden
layers, the hidden layers at various times, and the hidden layer and the output layer,
respectively.

Definition 3.1 (Basic Recurrent Neural Network).
For time t = 1, . . . , T :

response: Yt = fo (ot) (3.1)

output: ot = V ht (3.2)

hidden state: ht = (1� )ht�1 + h̃t, (3.3)
eht = fW (Wht�1 + Uxt) , (3.4)

Here Yt is an ny-vector of responses at time t, xt is an nx-dimensional input vector
(typically, assumed to include a one in the first position for an “intercept”), ot is
an ny-vector of outputs that are associated with a linear transformation of the nh-
dimensional hidden unit vector ht, eht being its update. The hidden layer weight
matrices W , U are nh ⇥ nh and nh ⇥ nx, respectively, and V is the ny ⇥ nh output
weight matrix. Lastly, fo(·) and fW (·) are specified activation functions, and the 
parameter, known as the leaking rate takes a value (0, 1].

An activation function determines and controls the transformation of the output
from the weighted sum of inputs in a certain layer of the network. In other words, it
determines the node’s output based on the supplied input. Three types of activation
functions exist; a binary step function, a linear activation function, and a non-linear

13
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activation function, hereunder

Tanh Function (Hyperbolic Tangent) : f(x) =

�
ex � e�x

�

(ex + e�x)
, (3.5)

ReLU Function (Rectified Linear Unit) : f(x) = max(0, x), (3.6)

Sigmoid Function (Logistic : f(x) =
1

1 + ex
, (3.7)

are commonly used activation functions.

As illustrated in 3.1, the input-to-hidden connections are parameterised by U , and
hidden-to-hidden recurrent connections are parameterised by W . Hidden-to-output
connections are parameterised by V , and all these weights (U, V,W ) are shared across
time. The before-mentioned memory of the RNNs is kept in the hidden state, as seen
in Equation 3.4, where its calculation is based on the current input and information
from the previous hidden state. The weight matrices are fixed and are subject to
change through the process of backpropagation, BP, and gradient descent, i.e., an
algorithm that updates the weights. For a small introduction to the backpropagation
algorithm see [Ognjanovski, 2019]. The BP used in RNNs distinguishes itself by
considering the time as a factor and is referred to as backpropagation through time
(BPTT). It can be interpreted as a generalisation of the backpropagation algorithm
but specifically applied to RNNs. This is not introduced further in this project, due
to its drawbacks.

As with the BP, a loss function L must be minimised to train the network. However,
not only V but also W and U need to be updated. Since W considers all the previous
hidden states, all the gradients must be accumulated to update W . This results in
long calculi that have to be repeated for each time-step to obtain all the partial losses
Lt, and since input sequences often consist of thousands of time steps, it would require
a huge number of derivatives to perform a single weight update. Consequently, BPTT
results in a quite inefficient algorithm in terms of computation time. However, this is
not BPTT’s main drawback. BPTT can suffer from two severe problems, which could
significantly affect the training process. Consequently, BPTT, hereunder RNNs, are
rarely used in practice.

Firstly, the vanishing gradient problem involves training and modifying the network’s
initial layers. Gradients tend to get smaller until they approach zero as the backward
propagation algorithm moves from the output to the input layer. This tendency
results from the gradients of the first layers being derived by multiplying the gradients
of the later layers. As a result, their multiplication diminishes at a particularly high
rate if the gradients of the later layers are smaller than one, which entails that the
initial or first layers’ weights will essentially stay the same. As a result, the gradient
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descent never converges to the ideal state. Furthermore, since the first layers are
crucial for identifying the main components of the input data, the network as a whole
could become inaccurate if the weights and biases are not appropriately updated. A
network may exhibit symptoms of a vanishing gradient problem when parameters in
the later layers change quickly, but parameters in the first layers change very little
or not at all, the weights of the model may zero out, or the model learns slowly and
stagnate in its early stages.

Secondly, the exploding gradient problem, which may be seen as the opposite of the
vanishing gradient problem, is another restriction associated with the gradient. The
gradients, in this case, are always greater than one. As a result, this issue arises when
significant error gradients accumulate, which leads to substantial modifications to the
network’s weights during training. These values can get extremely large to the point
that they overflow and produce NaN values, which could lead to an unstable model
that cannot learn from the training data.

RNNs have many extensions that were developed to address the drawbacks mentioned
above. The Echo State Network, often known as ESN, is one such approach. The ESN
is simple to implement and does not suffer from vanishing or exploding gradients.

3.2 Echo State Networks

This section is based on [Engati, 2023a], [Engati, 2023b], [Ciortan, 2019], [REU,
2021], [McDermott and Winkle, 2017], and [Klein et al., 2023]

Echo state networks and liquid state machines, LSMs are two approaches often la-
belled more generally as reservoir computing methods, where reservoir refers to a
dynamic system which is identified by a mathematical function that explains how a
point in space behaves over time. Reservoir computing considers sparsely connected
hidden layers, typically less than 10% connectivity, that allow for sequential inter-
actions and can be viewed as a "black box". In addition, a crucial component of
such reservoir models is that the connectivity and the weights for the hidden units
are fixed yet randomly assigned. That is, the input data goes into a hidden fixed
reservoir that contains sequential linkages.

The reservoir is typical of a higher dimension than the input, so there is a dynamical
expansion of the input, thus adding model flexibility. The reservoir states are then
mapped to the desired output, and importantly, training has been limited to this
output step since only the weights at this mapping phase are estimated. In a classical
setting, the reservoir must possess two qualities: it must be made up of distinct, non-
linear units and be able to retain data. Reservoir computing is a strategy designed
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to enable machine learning algorithms to analyse data more quickly and at reduced
learning costs.

The architecture of an ESN is illustrated in Figure 3.2, consisting of an input layer,
a hidden layer - now the reservoir with the appropriate properties discussed above -
and an output layer.

Figure 3.2: Illustration from [Demiris, 2023]. Architecture of an ESN. The input layer
feeds the network with the input time series. Calculations are then performed in the
reservoir, which represents the input stream in a higher dimension. The reservoir and
output layer are connected by a weight matrix V .

Considering the basic RNN from Definition 3.1, the ESN version of this simple RNN
considers the hidden layer matrices U and W (the reservoir weights) to be fixed. They
are drawn once from a distribution centred around zero, with added sparsity. Only
the output matrix V is estimated. Herein lies the reduced learning cost since there
are only relatively few output weight parameters, which can be estimated through
standard regularisation-based statistical estimation approaches. E.g. if fo(·) is the
identity function, then a simple ridge regression estimation of V is typically used.

The hidden units in the reservoir act as a nonlinear expansion of the input vector,
xt, and as a way to establish memory or account for the sequential nature of the
dependence in the input vectors and, ultimately, the response. The idea of a nonlin-
ear expansion in a high dimension helps to magnify potentially important dynamic
features of the input, and the output weights provide a way to select those expanded
states that are important for the response.

The name ’echo state’ refers to the echo state property i.e., the spectral radius (largest
eigenvalue) of W must be less than one. This property allows the hidden states to lose
dependence on the initial input conditions with large enough time increments. How-
ever, suppose the spectral radius is not less than one. In that case, the hidden state
can experience complex nonlinear dynamics, e.g., multiple fixed points, periodicities,
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and chaotic behaviour, which destroys the echo state property. A rule of thumb is
that a smaller spectral radius should be used if the responses are more dependent on
the input at recent times, and a larger value (but still less than one) should be used
if the responses depend more on the past.
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Copulas 4

This chapter is based on [Ruppert, 2011], [Smith, 2023], [Hofert et al., 2018], and
[McNeil et al., 2005]

Copulas play a fundamental role in statistical modelling, mainly when dealing with
multivariate data. They provide a powerful tool for understanding and analyzing
the dependence structure between random variables independent of their marginal
distributions. Copulas have gained significant attention in various fields, including
finance, insurance, environmental sciences, and engineering.

When comparing two bivariate data sets, (X1, X2) and (Y1, Y2), in terms of their
underlying variables, the linear correlation coefficients can be estimated between the
parameters in each data set. If the data sets have distinct marginal distributions,
this will undoubtedly affect how the potential differences in dependence are per-
ceived. Therefore, a comparison would be more accurate if the two data sets were
transformed to be comparable regarding the underlying marginal distributions. This
comparison is accomplished by transforming the marginal distributions of the two bi-
variate data sets in this scenario to match a common distribution, such as a uniform
distribution. Copulas is one such method that can be used to isolate and describe
marginal behaviour and the dependence structure.

Definition 4.1 (Copula).
A distribution function in the range [0, 1]d with uniform standard marginal dis-
tributions is called a d-dimensional copula.

A function C : [0, 1]d 7! [0, 1], where

C(u) = C(u1, . . . , ud),

with u = (u1, . . . , ud)> denoting the marginal distribution functions, is a copula if
the following three properties are fulfilled:

1. C(u1, . . . , ud) is increasing in each element ui.
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2. C(1, · · · , 1, ui, 1, · · · , 1) = ui for all i 2 {1, · · · , d} and ui 2 [0, 1].

3. The rectangle inequality: For all (a1, . . . , ad), (b1, · · · , bd) 2 [0, 1]d, where ai 
bi, it follows that

2X

i1=1

. . .
2X

id=1

(�1)i1+...+idC
�
u1i1 , . . . , udid

�
� 0, (4.1)

with uj1 = aj and uj2 = bj for j 2 {1, · · · , d}. In other words if (U1, . . . , Ud)>

is a random vector with distribution function C, then P(a1  U1  b1, . . . , ad 
Ud  bd) > 0.

The first property is required of any multivariate distribution function, and the sec-
ond is required of uniform marginal distributions. The third property is less obvi-
ous, but the so-called rectangle inequality in (4.1) ensures that if the random vector
(U1, . . . , Ud)

0 has df C, then P (a1 6 U1 6 b1, . . . , ad 6 Ud 6 bd) is non-negative. Note
also that, for 2 6 k < d, the k-dimensional margins of a d-dimensional copula are
themselves copulas.

The requirement of standard uniform margins in Definition 4.1 can be regarded as
arbitrary. The important message is that the way a multivariate distribution is
"standardised" from the point of view of its margins does not alter the philosophy
behind the concept of a copula. However, the choice of U(0, 1) margins is sensible due
to the following proposition. Proposition 4.1 introduces some important operations,
probability and quantile transformation, used when considering copulas.

Proposition 4.1.
Let F denote a distributional function, and F its generalised inverse. That is,
F (y) = inf{x 2 R : F (x) � y}.

1. Probability transformation: Let Y have continuous univariate distribution
function F , then F (Y ) ⇠ Unif(0, 1).

2. Quantile transformation: Let U ⇠ Unif(0, 1), then P
�
F (U)  y

�
=

F (y).

Proof. Let u 2 (0, 1) and y 2 R.

Probability transformation:

P(F (Y ) 6 u) = P
�
F � F (Y ) 6 F (u)

�
= P

�
Y 6 F (u)

�
= F � F (u) = u.
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The first equality follows by the fact that F is strictly increasing by applying the
property that for an increasing F , it holds that F is continuous , F is strictly
increasing. The second equality follows by the property that if Y is a random variable
with distribution function F , then P

�
F � F (Y ) = Y

�
= 1. The last equality follows

by the property that if F is increasing and F < 1, then F being continuous entails
that F � F (y) = y.

Quantile transformation:
Using

F (y) � u , F (u)  y,

it follows that
P
�
F (U)  y

�
= P

�
U  F (y)

�
= F (y).

For continuous and strictly increasing distribution functions F , F equals the or-
dinary inverse F�1. The probability transformation transforms a random variable
with continuous distribution function F to a standard uniform random variable. The
continuity of F is crucial since, if not, the range of F would not contain (0, 1). The
quantile transformation transforms standard uniform random variables into variates
from a distribution with distribution function F . In this case, it should be noted that
F does not need to be continuous.

Copulas are essential in the investigation of multivariate distribution functions. Sklar’s
Theorem is regarded as the central theorem of copula theory, explaining how cop-
ulas play a crucial role in determining the dependence structure among the com-
ponents of a random vector. Moreover, it explains why copulas determine the de-
pendence between the components of a random vector. Given a univariate df F ,
ranF = {F (x) : x 2 R} denotes the range of F and F denotes the quantile func-
tion associated with F . Recall that the latter is merely the ordinary inverse F�1 if
F is continuous and strictly increasing.

Theorem 4.2 (Sklar’s Theorem).

1. For any d-dimensional df F having univariate margins F1, . . . , Fd, a d-
dimensional copula C exists such that

F (x) = C
�
F1 (x1) , . . . , Fd (xd)

�
, x 2 Rd (4.2)
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The copula C is uniquely defined on
Q

d

j=1 ranFj and is given by

C(u) = F
�
F 1 (u1) , . . . , F

 
d (ud)

�
, u 2

dY

j=1

ranFj . (4.3)

2. Conversely, given a d-dimensional copula C and univariate dfs F1, . . . , Fd,
F defined by (4.2) is a d-dimensional df with margins F1, . . . , Fd.

Proof. The following proof of existence and uniqueness of a copula is given for the
case with F1, · · · , Fd being continuous. The converse is given in its general form.

For x1, · · · , xd 2 R̄ = [�1,1], it is inferred that if X has distribution function F ,
then

F (x1, · · · , xd) = P
�
F1(X1), F1(x1), · · · , Fd(Xd)  Fd(xd)

�
.

Because F1, · · · , Fd are continuous, it follows from Proposition 4.1 and Definition
4.1 that the distribution function of (F1, · · · , Fd) is a copula, denoted C. Hence the
identity (4.2) is obtained.

Evaluating (4.2) at the argument xi = F 
i
(ui), for 0  ui  1, with i = 1, · · · , d, and

using that if F is continuous then F � F (y) = y, the following is obtained:

C(u1, · · · , ud) = F
�
F 1 (u1), · · · , F d (ud)

�
. (4.4)

This establishes uniqueness by explicitly expressing C in terms of F and its margins.

Assume that C is a copula in the opposite assertion and that F1, · · · , Fd are uni-
variate distribution functions. A random vector is created using (4.2) by setting
X :=

�
F 1 (U1), · · · , F d (Ud)

�
, where U is a random vector with distribution function

C. It is hereafter verified, using that since F is right-continuous then F (x) � y ,
F (y)  x, that

P (X1  x1, · · · , Xd  xd) = P
�
F 1 (U1)  x1, · · · , F d (Ud)  xd

�

= P
�
U1  F1(x1), · · · , Ud  Fd(xd

�

= C
�
F1(x1), · · · , Fd(xd)

�
.

According to Sklar’s Theorem, copulas refer to functions that combine the univari-
ate marginal distribution functions F1, · · · , Fd to form a d-dimensional distribution
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function F. Essentially, copulas establish a connection or a "coupling" between multi-
variate distribution functions and their marginal distributions. Consequently, copulas
are of significant interest when examining the dependence among the components of
a random vector. The copula C is unique if the margins are uniform; otherwise, C
is uniquely determined on the ranges of Fi for i = 1, . . . , d. Conversely, F is a joint
distribution function with margins F1, · · · , Fd if C is a copula and the margins are
univariate distributed functions.

The extension of a copula to multivariate distribution functions with continuous
margins is shown or demonstrated in equation (4.4). In addition, (4.4) demonstrates
how copulas represent reliance on a quantile scale because the value C(u1, · · · , ud) is
the joint probability that X1 sits below its u1-quantile, X2 sits below its u2-quantile,
and so forth. Also, according to Theorem 4.2, defining the concept of a distribution’s
copula in the context of continuous margins makes sense.

A copula can also be expressed in terms of its density, obtained for the continuous
case by differentiating Equation (4.2) in the following way:

f(x1, · · · , xd) =
@d

@x1 · · · @xd
F (x1, · · · , xd) = c

�
F1(x1), · · · , Fd(xd)

� dY

j=1

fj(xj),

with fj = @

@xj
Fj , and c(u) = @

d

@u1···@um
C(u) for u = (u1, · · · , ud)> being the copula

density.

Definition 4.2 (Copula of F ).
Let X be a random vector having a joint distribution function F , with
continuous marginal distributions F1, . . . , Fd. Then the distribution, C, of�
F1(X1), · · ·Fd(Xd)

�
is the copula of F ( or X).

Under strictly increasing marginal transformations, a valuable property of the copulas
of a distribution is that it remains unchanged.

Proposition 4.3 (Invariance Principle).
Assume (X1, · · · , Xd) is a random vector with continuous margins and a copula
C. Assume further, that (T1, · · · , Td) is a set of strictly increasing functions.
Then

�
T1(X1), · · · , Td(Xd)

�
has copula C as well.

Proof. The transformed variable Ti(Xi) is first demonstrated to have continuous dis-
tribution function F̃i(y) := Fi � T i (y). Using that for T increasing and T (y) < y
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it follows that if T is strictly increasing then T � T (y) = y, it is first seen that

F̃i(y) = P
�
Xi  T i (y)

�
= P

�
T i � Ti(Xi)  T i (y)

�
.

Applying the rule that, since T is an increasing transformation, P(F (X) 6 F (x)) =

P(X 6 x), where F denotes the distribution function of the random variable X,
results in

F̃i(y) = P
�
Ti (Xi) 6 y

�
+ P

�
Xi = T i (y), T (Xi) > y

�
.

The second probability on the right hand side equals 0, because F is continuous. C

being X’s copula makes it possible to determine that

C (u1, . . . , un) = P
�
F1 (X1) 6 u1, . . . , Fd (Xd) 6 ud

�

= P
⇣
F̃1
�
T1 (X1)

�
6 u1, . . . , F̃d

�
Td (Xd)

�
6 ud

⌘
,

where F̃i � Ti(x) = Fi � T i � Ti(x) = Fi(x). It then follows from Definition 4.2 that
C is a copula of

�
T1(X1), · · · , Td(Xd)

�
.

The following theorem involving the Fréchet-Hoeffding bounds is a cornerstone of
copula theory. The upper and lower Fréchet-Hoeffding bounds M and W are referred
to as any copula C’s pointwise bounds. In other words, for every given set of marginal
distributions, M and W are the greatest and smallest possible value, respectively, that
the copula can have.

Theorem 4.4 (Fréchet-Hoeffding Bounds).
The limits for each copula C (u1, · · · , ud) are given as

w(u) = max

8
<

:

dX

i=1

ui + 1� d, 0

9
=

;  C(u)  min{u1, · · · , ud} = M(u).

Proof. The second inequality results because for all i,
\

ijd

�
Uj  uj

 
⇢ {Ui  ui} .

The first inequality follows because

C(u) = P

0

@
\

16i6d

{Ui 6 ui}

1

A = 1� P

0

@
[

16i6d

{Ui > ui}

1

A
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> 1�
dX

i=1

P (Ui > ui)

= 1� d+
dX

i=1

ui.

Section 5.2 constructs a model employing a Gaussian copula, which will be elaborated
on shortly. It is an implicit copula i.e., a copula defined by (4.3). The term implicit
copula given in [Smith, 2023] will now be formally introduced since this concept is
utilised throughout the application. The term is used for the copula, which is implicit
in the multivariate distribution of a continuous random vector Z = (Z1, . . . , Zm)>,
and are constructed from multivariate distributions that already exist. This copula
family is broad and flexible, and they all share an auxiliary representation that makes
estimation manageable in high dimensions.

If Z has distribution function FZ with marginals FZ , . . . , FZm , then its implicit copula
function is given by

CZ(u) = FZ

⇣
F�1
Z1

(u1), · · · , F�1Zm
(um)

⌘
. (4.5)

The implicit copula density is obtained by differentiating (4.5) with respect to u;

cZ(u) =
@m

@u1 · · · @um
C(u) =

fZ(z)Q
m

j=1 fZj

�
zj
�

Here z = (z1, · · · , zm)> is a function of u, with zj = F�1
Zj

(uj), j = 1, · · · ,m. The
implicit copula model uses Sklar’s theorem twice, once to form the joint distribution
FY with arbitrary marginals and a second time to construct the implicit copula from
the joint distribution FZ .

Copula models can be viewed as transformations from Y to U = (U1, · · · , Um)> 2
[0, 1]m. Instead of looking directly at the domain of Y, it is typically simpler to cap-
ture multivariate dependence using C on the vector space [0, 1]m. As mentioned im-

plicit copulas have a second transformation from U to Z =
⇣
F�1
Z1

(U1), . . . , F
�1
Zd

(Ud)
⌘>

,
capturing the dependence structure using the distribution of Z, FZ . The vector U
are referred to as the copula vector and Z the auxiliary vector, where a pseudo code
for simulation from an implicit copula model is provided below, in the case where FZ

is tractable. The algorithm provides a draw y ⇠ FY .
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Algorithm 2 Random iterate generation from an implicit copula model

1: Generate z = (z1, . . . , zm)> ⇠ FZ

2: For j = 1, . . . ,m, set uj = FZj

�
zj
�
, and u = (u1, . . . , um)>

3: For j = 1, . . . ,m, set yj = F�1
Yj

�
uj
�
, and y = (y1, . . . , ym)>

Notice that the transformation Uj = FZj (Zj) ⇠ Uniform[0, 1] removes all features of
the marginal distribution of Zj . This becomes an important observation for estab-
lishing parameter identification when constructing implicit copulas.

The before-mentioned Gauss copula belongs to the family of elliptical copulas, which is
extensively utilised copulas in practical applications. They describe the dependence
structure of the multivariate normal distribution using the Gauss copula and the
dependence structure of the multivariate t distribution using the (Student) t copula.

As elliptical copulas are implicitly constructed through Sklar’s Theorem, thus an
implicit copula, their properties are typically derived from the properties of the cor-
responding elliptical distributions. Consequently, comprehending the construction
and properties of elliptical distributions becomes crucial.

Definition 4.3 (Elliptical Distributions).
A d-dimensional random vector X has an elliptical distribution with location
vector µ 2 Rd, scale (or dispersion) matrix ⌃ = AA0 where rank(⌃) = k  d for
a matrix A 2 Rd⇥k and radial part R � 0 if

X
d
= µ+AY , for Y

d
= RS,

where R and S are independent and where S ⇠ Unif

✓n
x 2 Rk : kxk= 1

o◆
, k·k

denotes the Euclidean norm, that is S is uniformly distributed on the unit sphere
in Rk. The distribution of Y is known as spherical distribution.

By the implicit construction, elliptical copulas are of the form (4.3), with F denoting
a multivariate elliptical df and F1, . . . , Fd the corresponding univariate margins. In
accordance with Proposition 4.3, marginal location-scale modifications made before
using (4.3) will not affect the copula. Hence, F can be assumed such that µ = 0 =

(0, . . . , 0) and ⌃ is a correlation matrix P . These assumptions imply that F1 = · · · =
Fd = F , that is, the univariate margins of F are identical. When using an arbitrary
df (on [0,1)) for the radial component R, the common univariate marginal df F of
X frequently loses tractability.

Due to (4.3), it may be challenging to evaluate an elliptical copula C when the
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evaluation of F or its marginal quantile function F is numerically challenging. For
example, randomised quasi-Monte Carlo methods are used to evaluate multivariate
normal and t dfs in three or more dimensions.

If Y ⇠ Nd(µ,⌃) is a Gaussian random vector, then its copula is referred to as a
so-called Gauss copula. Because the process of standardising the margins entails
performing a sequence of strictly increasing transformations, the copula of Y and the
copula of X ⇠ Nd(0, P ), where P = ⇢(⌃) is the correlation matrix of Y , are identical
by Proposition 4.3. By Definition 4.2 the Gauss copula is given by

Definition 4.4 (Gauss Copula).

CGa
P (u) = P

�
� (X1) 6 u1, . . . ,� (Xd) 6 ud

�
(4.6)

= �P

⇣
��1 (u1) , . . . ,�

�1 (ud)
⌘
, (4.7)

with � denoting the standard univariate normal df and �P denoting the joint df
of X.

The notation CGa
P

emphasises that the copula is parameterised by the 1
2d(d � 1)

parameters of the correlation matrix; in two dimensions we write CGa
⇢ , where ⇢ =

⇢ (X1, X2)

The Gauss copula does not have a simple closed form but can instead be expressed
as an integral over the density of X; for|⇢|< 1 in two dimensions it follows, using
(4.6), that

CGa
⇢ (u1, u2)

=

Z ��1(u1)

�1

Z ��1(u2)

�1

1

2⇡
�
1� ⇢2

�1/2 exp
(
�
�
s21 � 2⇢s1s2 + s22

�

2
�
1� ⇢2

�
)
ds1 ds2

For d = 2 and P having off-diagonal entries ⇢ = �1, such that Cn
P

= Cn
⇢ equals

the lower Fréchet-Hoeffding bound W , and for d � 2 and P having off-diagonal
entries equal to ⇢ = 1, the homogeneous Gauss copula Cn

P
= Cn

⇢ equals the upper
Fréchet-Hoeffding bound M .
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In this chapter, two of the models from Klein et al., 2023, namely the Gaussian
Probabilistic ESN, and the Copula model are set up with the help of the preceding
theory.

5.1 Gaussian Probabilistic ESN

This section is based on [Klein et al., 2023] and [McDermott and Winkle, 2017]

Classical ESNs rarely consider uncertainty quantification, and in this section, a prob-
abilistic ESN that does so is outlined.

When predicting nonlinear spatio-temporal processes, it can be useful to include
quadratic interactions between hidden processes and the response and embeddings,
i.e., lagged values of the input. [McDermott and Winkle, 2017] have shown this
will increase predictive accuracy for series with highly nonlinear dependence. These
quadratic interactions are represented with simple modifications of the basic ESN,
referred to as a basic quadratic ESN, QESN. A type of QESN is stated below in
Definition 5.1 for continuous output, i.e., where fo(·) is the identity function. Since
the disturbances in Definition 5.1 are Gaussian, Equation (5.1) are referred to as the
Gaussian probabilistic ESN.

Definition 5.1 (Gaussian probabilistic ESN ).
Let {Yt} be a stochastic process, then the ESN with Gaussian disturbances
"t ⇠ N

�
0,�2

�
takes the following form for t � 1:

Response Equation : Yt = �0 + h0t�1 +
�
h0t
��2

�2 + "t, (5.1)

Hidden State Equation: ht = (1� )ht�1 + h̃t (5.2)

h̃t = fW

✓
�

�W
Wht�1 + Uxt

◆
(5.3)
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In the definition above, ’�2’ denotes the element-wise square of a matrix, and the
parameter 0 <   1 is the leaking rate. The constant �W is the largest eigenvalue
of W , and 0 < � < 1 is a scaling parameter so that

�
�/�W

�
W has a spectral radius

less than one.

The elements of the matrices W = {wil} , U =
�
uij
 

are assumed to be random and
distributed independently from mixtures of a uniform distribution and a point mass
at zero. If U(a, b) denotes a uniform distribution over domain (a, b),B(⇡) denotes a
Bernoulli distribution with mean ⇡, and �0 is the Dirac function at zero, then the
weights are given as,

wil = �wilU (�aw, aw) +
�
1� �wil

�
�0, �wil ⇠ B (⇡v) , (5.4)

uij = �uijU (�au, au) +
⇣
1� �uij

⌘
�0, �uij ⇠ B (⇡u) . (5.5)

Following [McDermott and Winkle, 2017] av = au = ⇡v = ⇡u = 0.1 providing a
sparse structure.

Equations (5.1)-(5.3) can be written as a linear model,

Y = B⇠(X)� + ", " = ("1, . . . , "T )
0 ⇠ N

⇣
0,�2I

⌘
. (5.6)

Here Y = (Y1, . . . , YT )
0 for T time series observations of the stochastic process with

corresponding T ⇥ nx matrix of feature values X =
⇥
x1|· · · |xT

⇤0. ⇠ = {W,U,, �},
H⇠(X) =

⇥
h1|· · · |hT

⇤0 is the T⇥nh matrix of hidden state values, B⇠(X) =
⇥
◆, H⇠(X) | H⇠(X)�2

⇤
,

with ◆ as a vector of ones, and � =
�
�0,�01,�

0
2

�0.

The hidden state matrix H⇠(X) is known without errors provided ⇠, X and h0 = 0 are
given. This is because the hidden state vectors may be calculated recursively. Only
the two model parameters � and �2 require estimation. Their Bayesian posterior
distribution is used for this purpose. A regularisation of � is done by adopting the
shrinkage prior.

� | ⌧2 ⇠ N
✓
0, P

⇣
⌧2
⌘�1◆

, �2 ⇠ IG(a, b) (5.7)

with IG denoting an Inverse Gamma distribution. A ridge prior with P
�
⌧2
�
= ⌧2I,

and hyper-prior ⌧2 ⇠ IG(ã, b̃) will be used in this case. The regularised linear model’s
parameters, # =

�
�,�2, ⌧2

�
, can be calculated using the standard MCMC sampler.
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5.1.1 Probabilistic Forecasting of Gaussian Probabilistic ESN

This section is based on [Gneiting and Katzfuss, 2014], and [Klein et al., 2023]

This project uses probabilistic forecasting, i.e., forecasts taking the form of probability
distributions over future quantities or events. Such forecasts are a crucial component
of the most effective decision-making because they help to measure the uncertainty
in a prediction.

The absence of a mechanism to quantify the uncertainty of model predictions in most
traditional Echo State Network (ESN) applications is surprising, considering that
the reservoir weight parameters are selected randomly rather than estimated. The
expectation is that the model’s behaviour would exhibit variation with different sets
of W and U weights, particularly when the number of hidden units is relatively small.
Although conventional ESN models typically incorporate a large number of hidden
units, the inclusion of multiple ensemble members with a reduced number of units is
advantageous. This approach offers flexibility by preventing the risk of overfitting,
allowing the ensemble members to function as a collective of relatively weak learners,
and providing a more realistic estimation of prediction uncertainty for out-of-sample
forecasts. Thus, an ensemble of forecasts can be generated.

Thus, instead of only a single set of weights drawn from (5.4) and (5.5) in ESN imple-
mentations, this project follows the approach of [McDermott and Winkle, 2017] and
[McDermott and Wikle, 2019]. Hence, K = 100 matrices {W k, Uk; k = 1, . . . ,K}
are simulated from (5.4) and (5.5). The probabilistic forecasts are subsequently con-
structed by integrating over the weight matrices U and W using an ensemble.

Let ⇠k =
n
W k, Uk,, �

o
. The following ensemble is then the density forecast of YT+h

at time T where h = 1, . . . , h1 in the forecast window, is then the ensemble

fT+h|T (yT+h) ⌘
1

K

KX

k=1

pk
�
yT+h | X,y

�
. (5.8)

In this case, the subscript indicates that fT+h|T is conditional on the filtration at
time T .

In (5.8), pk denotes the Bayesian posterior predictive density. The following equation
is used to calculate this posterior predictive density for the configuration ⇠k. Given
that X(t) ⌘

⇥
x1|. . . |xt

⇤0, this posterior predictive density is

pk
�
yT+h | X,y

�
=

ZZ
p
⇣
yT+h | X(T+h),#

⌘
p
�
xT+2, . . . ,xT+h | #, X,y

�

p(# | X,y)dxT+2 . . . dxT+h d#. (5.9)
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Keep in mind that this constitutes an integral over any unobserved feature value
and the posterior of the model parameter. The first term in the integrand is by

Definition 5.1 the density of a N
✓
h0
T+h

�1 +
⇣
h0
T+h

⌘�2
�2,�2

◆
distribution. Here

hT+h is determined by the recursion of the hidden state equation. As a result, hT+h is
a deep function of x1, . . . ,xT+h. By averaging draws from the posterior p(# | X,y)

acquired by running the MCMC sampler, the outer integral pertaining # may be
computed.

Throughout the application, xt will provide historical data on the electricity prices in
the focal area. This differs slightly from the approach presented in [Klein et al., 2023]
since their xt also contains past values from the other regions. Hence, at or before
time T , x1, . . . ,xT+1 are observed. Some elements, xT+2, . . . ,xT+h, are unobserved.
The integral over these feature vectors in (5.9) is, therefore, only with respect to their
unobserved components. The integrals are calculated using a Monte Carlo approach
by simulating the values of each of the considered bidding areas in turn from their
respective predictive distributions.

5.2 Copula Model

This section is based on [Gneiting et al., 2007], [Klein et al., 2023], and [Smith, 2023]

The Gaussian ESN from the previous section has two limitations. First, the fea-
ture vector only influences the mean of the response equation. Second, the density
forecasts lack calibration. To address these just mentioned drawbacks, this section
presents a copula model. This deep distributional time series model incorporates
the feature vector to impact the entire predictive distribution. Moreover, it ensures
that the probabilistic forecasts are marginally calibrated, which will be elaborated in
Section 5.2.3.

A copula model for the joint distribution of Y(t) = (Y1, · · · , Yt)> conditional on X(t) =⇥
x1 | · · · | xt

⇤> and weight configuration ⇠ is employed. The density decomposition
of Y(t) is given for t � 2 as

p
⇣
y(t) | X(t), ⇠

⌘
= cESN

⇣
FY (y1), · · · , FY (yT ) | X(t), ⇠

⌘ tY

s=1

pY (ys), for t � 2

(5.10)
with y(t) = (y1, · · · , yt)>, and u(t) = (u1, . . . , ut)

0. The deep copula process has
t-dimensional density cESN

⇣
u(t) | X(t), ⇠

⌘
specified below.

The density pY and distribution function FY remain constant over time. These two
functions are estimated from the training data without using fixed parameters, called
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non-parametric estimation.

In (5.10), it is assumed that the distribution Yt | xt is marginally invariant with regard
to xt. In other words, it is required that, regardless of the value of xt, the distribution
of the variable Yt at a specific time t and a particular feature vector value xt remains
constant. The joint distribution, however, maintains the relationship between the
distribution Yt | Xt and the matrix of feature vector values X(t). As a result, the
joint distribution still has an indirect impact on the Y distribution for a particular
time step.

Equation (5.10) utilises an implicit copula process with a density cESN , which is
derived from the joint distribution of a second stochastic process Z̃s. The latter
process follows the Gaussian probabilistic ESN introduced in Definition 5.1 with the
parameter � integrated out under the prior in (5.6). Aside from being used to specify
the implicit copula, Z̃s is not directly observed.

Recall from (5.7) given as � | ⌧2 ⇠ N
⇣
0, P

�
⌧2
��1⌘, which is assumed to be a

proper prior. The distribution with � integrated out is guaranteed to be proper by
this assumption.

Keeping this in mind, the t observations Z̃(t) =
⇣
Z̃1, · · · , Z̃t

⌘>
is conditionally dis-

tributed as follows

Z̃(t) | X(t),�
2, ⌧2, ⇠ ⇠ N

 
0,�2

✓
I �B⇠

⇣
X(t)

⌘
⌃B⇠

⇣
X(t)

⌘>◆
!
, (5.11)

where ⌃ =
⇣
B⇠(X(t))

>B⇠(X(t)) + P (⌧2)
⌘
, and with B⇠(X(t)) =

⇥
H⇠(X) | H⇠(X)�2

⇤
,

stated in (5.6). Because level in a copula is unidentified, the first column, the inter-
cept, has been omitted. Here ’level’ refers to the intercept level in the model and
hence represent the level of the dependent variable when all predictor variables are
zero.

The variance, or more precisely
✓
I �B⇠

⇣
X(t)

⌘
⌃B⇠

⇣
X(t)

⌘>◆
, in (5.11) can be sim-

plified using the Woodbury formula, stated in Appendix A. Recalling from (5.7) that
P (⌧2) = ⌧2I, (5.11) can be simplified to

Z̃(t) | X(t),�
2, ⌧2, ⇠ ⇠ N

 
0,�2

✓
I +

1

⌧2
B⇠(X(t))B⇠(X(t))

>
◆!

. (5.12)

By standardising Z̃i to have unit variance, the correlation matrix of (5.12), denoted
R, is obtained as shown below. Let Z(t) = (Z1, · · · , Zt)

> = ��1SZ̃(t), with S =
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diag( 1, · · · , t) being a diagonal scaling matrix with elements  s =
⇣
1 + b>

s bs

⌧2

⌘�1/2
,

where b denotes the s’th row of B⇠(X(t)).

This result in Z(t) | X(t),�
2, ⌧2, ⇠ ⇠ N(0, R), with

R = S

✓
I +

1

⌧2
B⇠(X(t))B⇠(X(t))

>
◆
S

As a result, the copula has density cESN

⇣
u(t) | X(t), ⇠, ⌧

2
⌘
= �(0,R)Qt

s=1 �1(s)
, with �(0, R)

denoting the density of a N(0, R) distribution, �1 denotes standard normal density,
zt = ��11 (ut), and zt = (z1, · · · , zt)>. Because �2 is not featured in R and remains
unidentified in the copula, it is safe to assume that �2 = 1 throughout.

The dependence structure in {Zt} is captured by the copula; hence xt contains past
values of this process. This can be computed as Zt = ��1

�
FY (Yt)

�
. Note that since

cESN is conditional on X(t), this Gaussian copula is said to be a process on the feature
space.

5.2.1 Estimation

The sole unknown copula parameter for a configuration ⇠ is ⌧2, for which the Weibull
prior in [Klein and Kneib, 2016] with scale parameter b⌧2 = 2.5 is employed.

Because the evaluation of cESN

�
u | X, ⇠, ⌧2

�
necessitates inversion of the correlation

matrix R, which is computationally demanding for all but small sample sizes, direct
estimation using the likelihood in (5.10) is challenging, even though the likelihood is
given on closed form.

By stating the likelihood conditional on � as follows, this can be circumvented ef-
fectively. Consider, therefore, a sample of size T . Indicate the feature matrix as
X ⌘ X(T ) and the observations as y ⌘ y(T ). Changing the variables from y to
z = (z1, · · · , zt)>, where zt = ��11

�
FY (yt)

�
yields the following conditional likelihood

p
⇣
y | X,�, ⇠, ⌧2

⌘
= p

⇣
z | X,�, ⇠, ⌧2

⌘ TY

t=1

pY (yt)

�1(zt)
= �

⇣
0, SB⇠(X),S2

⌘ TY

t=1

pY (yt)

�1(zt)
.

(5.13)

Since S is a diagonal matrix, (5.13) can be evaluated in O(T ) operations. This
computationally effective method enables estimation to be completed in an acceptable
amount of time, even for large datasets.

This is estimated by an MCMC sampler which generated draws from the augmented
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posterior of (�, ⌧2), such that � is integrated out and avoiding direct computation of
R.

5.2.2 Probabilistic Forecast of the Copula Model

This section is based on [Klein et al., 2023] and [Smith, 2023]

Following a similar approach as in Section 5.1.1, the forecast is once again provided by
(5.8), which is repeated below by using an ensemble to integrate over the distribution
of U and V .

fT+h|T (yT+h) ⌘
1

K

KX

k=1

pk
�
yT+h | X,y

�
. (5.8)

To recall, equation (5.9) is shown below.

pk
�
yT+h | X,y

�
=

ZZ
p
⇣
yT+h | X(T+h),#

⌘
p
�
xT+2, . . . ,xT+h | #, X,y

�

p(# | X,y)dxT+2 . . . dxT+h d#. (5.9)

The copula model is used to obtain the ensemble components pk or the Bayesian
posterior predictive densities in equation (5.9), where # =

�
�, ⌧2

 
.

By switching the variable yT+h to zT+h = ��11

�
FY (yT+h)

�
, the first term in the

integrand of (5.9) is derived, such that

p
⇣
yT+h | X(T+h),#

⌘
= p

⇣
zT+h | X(T+h),�, ⌧

2
⌘ pY (yT+h)

�1(ZT+h)

=
1

 T+h

�1

 
��11

�
Fy(yT+h)

�
� µT+h

 T+h

!
pY (YT+h)

�1
⇣
��11

�
FY (yT+h)

�⌘ .

(5.14)

In the above  T+h =
⇣
1 + 1

⌧2
bT+hb>T+h

⌘�1/2
, µT+h = 1

 T+h
bT+h�, where bT+h =

✓
h>
T+h

,
⇣
h2
T+h

⌘>◆
denotes a row vector.

In this case, predictive distribution in (5.14) of the variable Yt+h is a non-linear func-
tion of the feature vector xT+h, which result in YT+h not being marginally invariant
of xT+h.

The posterior mean E(# | y) is obtained using Monte Carlo samples and is sub-
sequently inserted as � and ⌧2 in (5.14), which can then be used to estimate the
response variable at a future time point.
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5.2.3 Marginal Calibration

The Gaussian Probabilistic ESN model described in Section 5.1 offers probabilistic
forecasts, but it also has significant limitations, including the fact that the feature
vector only impacts the mean of the response equation and that no calibration has
been applied to the density forecasts.

Different types of calibration exist, including probabilistic, exceedance, and predictive
marginal calibration. Marginal calibration will be used throughout the project when
considering the copula model; hence, only marginal calibration will be described in
this part. An introduction of the various calibration techniques can be found in
[Gneiting et al., 2007].

Definition 5.2 (Marginal Calibration).
Let t = T+1, · · · ,1. Assume that a stochastic process Yt has a future observation
with true distribution Ht|T (y) and forecasting distribution Ft|T (y). Here the
subscript shows that both distributions are conditional on the filtration at time
T . Define the limits as

H̄(y) ⌘ lim
h1!1

8
<

:
1

h1

h1X

h=1

HT+h|T (y)

9
=

;

F̄ (y) ⌘ lim
h1!1

⇢
1

h1
FT+h|T (y)

�
.

The forecast distribution is said to be marginally calibrated if and only if

H̄(y) = F̄ (y).

Note that Ht|T (y) is unknown for t > T and hence a direct comparison of H̄(y) and
F̄ (y) cannot be made. Instead, an approach would be to compare the empirical dis-
tribution function of the actual observations over the forecast period to the empirical
distribution function of the corresponding forecast distribution.

36



Application 6

The models described in Chapter 5 are currently being applied to the data provided
by Nord Pool. Initially, a concise overview of the data is presented before utilising
the models introduced in Chapter 5 with the given data.

6.1 Data Introduction

This section presents the data used throughout the application and a preliminary
analysis.

The information used has been provided by Nord Pool and spans the period between
01/01/2019 and 05/05/2023. The data includes hourly intraday details regarding
trades and, consequently, prices measured in EUR/MWh made in the Nordic regions.
Coordinated universal time, or UTC, is used for all timestamps provided in the data.

This project examines the electricity price information from 12 distinct Nordic regions
located in the countries - Denmark, Norway, Sweden, and Finland. The regions are
designated as DK1, DK2, NO2, NO3, NO4, NO5, SE1, SE2, SE3, SE4, and FI.
They each represent a separate geographical location. A map showing the regions is
provided in Figure 6.1 below to give a visual idea of their geographic location.
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Figure 6.1: A map displaying the Nord Pool market coupling. That is, this maps
shows the geographical location of the regions in the Nordic countries, Denmark,
Norway, Sweden, and Finland. Illustration from [Li and Becker, 2021]

DK1 represents Denmark’s western region, whereas DK2 represents Denmark’s east-
ern region which includes the nation’s capital city of Copenhagen. The five regions in
Norway cover the nation’s extensive coastline and mountainous landscape. Oslo, the
nation’s capital, is included in NO1’s coverage of the southeast, while NO2 includes
the southwest. The three regions, NO3, NO4, and NO5, represent Norway’s northern
and central regions. Sweden comprises four regions, with SE1 covering the northern-
most portion and the centre covered by SE2. The metropolitan regions of Stockholm
and Gothenburg are included in SE3. The southwestern region of Sweden, including
the surrounding area of Malmö, is a part of SE4. Last is the region FI, which covers
the entire nation of Finland.

The time series of DK1 is shown in Figure 6.2 as an example of price evolution and
movements of one of the investigated areas. In Appendix C, plots of all the considered
areas for the same period are shown.
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Figure 6.2: Illustration of the DK1 time series, that is price movements for the period
between 01/01/2019 and 05/05/2023. The time is depicted along the y axis, while
the price of electricity is displayed along the y axis in EUR/MWh.

All regions share a common characteristic: an increase in volatility in their respective
time series during the latter half of 2021 and throughout 2022. The economic recovery
following Covid-19 and the relaxations of travel restrictions may be the cause of the
increased volatility in 2021. Another aspect of the observed increase in volatility
could potentially be climate changes, an example could be the increased demand for
energy used for cooling during summer heat waves experienced across Europe. The
Russian invasion of Ukraine on February 24, 2022, is another event that could have
contributed to increased volatility, particularly in 2022. As a result of the European
Union’s sanctions on Russia, Russia opted to fully stop supplying gas to a number
of European nations, creating supply instability. Given that electricity and heat
generation account for 31.4% of the European gas supply, this may have had a direct
impact on electricity prices [Council, 2023c]. [Council, 2023a], and [Council, 2023b]

NO3 and NO4, see Appendix C are a couple of the time series that stand out. These
series show that a significant portion of the EUR/MWh values are exactly 0. The cost
of power has historically been relatively low in Norway. The fact that traditionally
electricity in Norway has been generated almost entirely by hydropower explains
these remarkably low electricity prices. Wind power and thermal plants are a couple
of additional sources, but their shares are fairly insignificant. Less rain than usual fell
in the southern part of Norway in 2022, whilst more rain fell in the northern portion
of Norway, particularly around Trondheim. Less rain implies that the reservoirs of
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hydropower are not as full, which results in less electricity being produced, pushing
the price of electricity up. On the other side, due to the additional rain, some areas
of central and northern Norway produce more electricity than usual, creating a power
surplus that is causing some electricity stations to operate at a loss. Furthermore, the
electricity generated in northern Norway cannot be transmitted to southern Norway,
where less electricity is being produced, because the infrastructure does not have
enough capacity for north-south transmission. [in Norway Editorial Team, 2022]

A preliminary analysis of the 12 different time series is conducted to determine
whether they are stationary. The Dickey-Fuller test is used to determine whether
this is the case by comparing the null hypothesis - that a unit root exists - with the
alternative hypothesis - that the time series is stationary or trend-stationary. These
tests showed that neither time series contained any unit roots, and as a result, all of
the time series for the areas under consideration are stationary. Even though each
region is examined and applied independently, their correlation is also examined, and
is displayed in Appendix D.

To provide further insight into the data, a table of summary statistics is presented,
specifically for DK1 in Table 6.1 below. A table containing the summary statistics
for all 12 considered areas can be found in Appendix E.

Min Max Mean SD Skew Q1 Q2 Q3
DK1 -111.54 825.51 89.04 106.97 2.41 28.24 48.07 110.6

Table 6.1: Summary statistics for DK1’s electricity prices, expressed in EUR/MWh,
between January 1, 2019, and May 5, 2023. In other words, the three quantiles
(Q1, Q2, and Q3) are shown along with the minimum, maximum, mean, standard
deviation, and Pearson skew.

The price difference between the minimum and maximum is 937.05 EUR/MWh,
considering the whole period, as can be seen from the summary statistics of DK1
in Table 6.1 above indicates the wild fluctuations seen in Figure 6.2. The standard
deviation, which assesses the spread or dispersion of the data, also displays the vast
range of price fluctuations. The distribution of prices is skewed to the right, according
to a positive skewness value of 2.41, which is also displayed in the histogram in Figure
6.3 below. In other words, the distribution may have a longer right tail, suggesting
substantially higher prices or price spikes.
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Figure 6.3: Histogram of the prices for DK1 during the entire considered period.

The data is hereafter divided into a training and a test period to assess how well
the constructed forecasts are performing since this project aims to make probabilistic
forecasts of intraday electricity prices. More specifically, the training period will run
from 01/01/2019 to 31/03/2023, and the test period will run from 01/04/2023 to
05/05/2023. That is, the test period spans 35 days.

Hence, a probabilistic forecast is made for each of the 12 considered areas. A feature
matrix, where each row xt at time t is constructed as follows

xt = (1,YAll,t�1,YAll,t�2, . . . ,YAll,t�24| {z }
Prices in the previous 24 hours

,YAll,t�48,YAll,t�120, . . . ,YAll,t�168| {z }
Prices at the same hour 2 to 7 days prior

),

with

YAll,t =
�
YDK1,t, YDK2,t, YNO1,t, YNO2,t, YNO3,t, YNO4,t, YNO5,t, YSE1,t, YSE2,t, YSE3,t, YSE4,t, YFI,t

�
.

To put it another way, xt has intercept 1, time series of values all lagged over the
preceding 24 hours, and lagged corresponding to the same time t 2 to 7 days prior.
And each deep time series models are trained independently for each price region.

Due to the computational burden of the feature matrix, principal component analysis
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(PCA) is performed on the data before applying the models. The following provides
a brief overview of PCA; for more information, see [Nielsen et al., 2022] and [Hastie
et al., 2009].

Principle component analysis (PCA) is a feature extraction technique where the orig-
inal features are transformed into new, more pertinent features called principal com-
ponents (PCs). PCA transforms the data into orthogonal components, with the first
PC containing the most information. Hence, PCA is a dimension reduction method
where only a few PCs are kept while preserving most information. Overall, PCA
seeks to find linear combinations of these constructed PCs that explain most of the
variance in the data. [Nakagome, 2019][Dwivedi, 2021]

It should be noted that the intercept 1, which is a constant, is not included in the
PCA because there is no variability to capture because the intercept has no variation.
Figure 6.4 displays the results of the PCA, specifically, how much of the total variation
in the data the various PCs account for, which is used to determine how many PCs
to use in further analysis.

Figure 6.4: After performing PCA on the data, the figure on the left displays the
percentage of variance explained by each principal component. The cumulative per-
centage of variance is depicted in the graphic on the right.

The precise number of PCs to include in the subsequent investigation can be deter-
mined using various techniques, some of which are introduced in [Pramoditha, 2022].
In this project, the number of PCs to be used as features in the resulting reduced
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feature matrix X is determined by PCs that take into account 80% of the variation
in the initial data. In this instance, the first 12 PCs make up 80% of the variation,
or in more precise terms, 80.13% of the variance.

The models presented in Chapter 5 will be applied to the reduced feature matrix X.

6.2 Application of the Gaussian Probabilistic ESN

Model

The data in the reduced feature matrix constructed by PCA will now be applied in
the Gaussian Probabilistic ESN to obtain probabilistic forecasts of the 12 considered
regions. The following procedure is only presented for one region, DK1, and the
models are then run separately for the remaining 11 regions.

The posterior distributions of the models parameters, # =
�
�,�2, ⌧2

 
, are first cal-

culated using a standard MCMC sampler. This MCMC sampler is run over 10000
iterations. MCMC samplers are made to converge to the target distribution, in this
instance, the posterior distributions for the model parameters. The MCMC samples
are therefore ensured to have converges, that is, to be reflective of the real posterior
distributions, by employing a large number of iterations.

The produced posterior distributions are hereafter employed to obtain the predictive
distributions, using a Monte Carlo approach, specifically for K = 100 configurations
⇠1, · · · , ⇠K , the following steps are performed:

1. Use a standard MCMC sampler to obtain the posterior distribution for a con-
sidered region. That is, compute #.

2. For iterations i = 1, · · · , N and times t = T + 1, · · · , T + h1, where h1 denotes
the number of hours in the test period, the following is computed.

a) xi,t is called out from the feature matrix X.

b) The hidden state hi,t is computed from
�
hi,t�1,xi,t

 
. This computation

is made using Definition 5.1 in Chapter 5.

c) Lastly, yi,t is drawn from a Gaussian distribution N
✓
h0
T+h

�1 +
⇣
h0
T+h

⌘�2
�2,�2

◆
,

where the values of � and �2 were found in step 1, and the hidden state
determined in step b.

The final samples of step c above are saved in an array and are the final draws of the
Gaussian probabilistic ESN model.
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These samples are now used to plot the out-of-sample forecasts for DK1, as illustrated
in Figure 6.5 below, along with a box plot of the out-of-sample observations for the
test period. In Appendix F plots for the 12 different regions are displayed.

Figure 6.5: The light blue histogram is the logarithm of the out-of-samples observa-
tions for Y , here DK1, during the test period from April 1, 2023, to May 5, 2023.
The deep time series predictive density obtained by the Gaussian probabilistic ESN
model is represented by the red line.

From a visual point of view, the probabilistic forecast in Figure 6.5 shows that the
observed values during the test period, represented by the DK1 variable, are located
in the right-most tail of the forecast density. This visual analysis indicates that the
true values tend to exceed the upper bounds of the forecasted distribution. The
discrepancy between the observed data and the forecasted distribution in the tail
region suggests that the model may have underestimated the occurrence of high
values or failed to capture the extreme events of the DK1 variable. As a result, the
forecasted density might not fully encompass the variability and extreme behaviour
exhibited by the true values. This observation highlights the potential limitations of
the probabilistic forecast in accurately capturing and representing the tail behaviour
of the DK1 variable.

Hereafter the forecast accuracy is measured using the mean absolute error (MAE)
and the root mean squared error (RMSE). The quantile scores corresponding to the
lower and upper quantile, ↵ = 0.05 and ↵ = 0.95, are considered measures of tail
accuracy. These measures of forecast accuracy are presented in Table 6.2 below. In
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Appendix G a table containing these measures of forecast accuracy for all 12 distinct
regions is presented.

MAE RMSE ↵ = 0.05 ↵ = 0.95
DK1 94.52 100.88 15.82 146.60

Table 6.2: This table shows the mean absolute error (MAE, root mean squared error
(RMSE), along with the lower and upper quantile, ↵ = 0.05 and ↵ = 0.95, respec-
tively, for the area DK1 as a measure of forecast accuracy for the Gauss probabilistic
ESN model.

Table 6.2 provides a comprehensive overview of the forecast accuracy for the Gauss
probabilistic ESN model applied to the DK1 area. The Mean Absolute Error (MAE)
of 94.52 represents the average absolute difference between predicted and true values.
The Root Mean Squared Error (RMSE) value of 100.88 is the square root of the
average squared difference between predicted and true values. Similar to MAE, a
lower RMSE suggests higher accuracy in the forecasted values. In addition to MAE
and RMSE, the table presents the lower and upper quantiles, ↵ = 0.05 and ↵ = 0.95,
respectively. For example, the ↵ = 0.05 quantile of 15.82 suggests a 5% probability
that the true values will fall below this lower bound. Similarly, the ↵ = 0.95 quantile
of 146.60 indicates a 95% probability that the true values will be below this upper
bound. These quantiles help assess the uncertainty and provide a range of values
within which the true observations are expected to lie.

In conclusion, Table 6.2 and the visual analysis of Figure 6.5 show the Gauss prob-
abilistic ESN model’s shortcomings in catching extreme values and making reliable
projections for the DK1 region. These conclusions highlight the necessity of future
model improvement to enhance the model’s ability to capture tail behaviour and
conduct probabilistic forecasting.

6.3 Application of the Copula Model

Returning to the feature matrix constructed by PCA, the second model will now
be applied, that is, the Copula model. Again the purpose is to obtain probabilistic
forecasts for the 12 considered regions. This chapter presents the procedure for the
region DK1, and this model is also run separately for the 11 remaining regions.

The conditional likelihood in (5.13) is estimated using an MCMC method. Specifi-
cally, � and log(⌧2) are computed using a Metropolis-Hasting algorithm. As with the
previous model, this MCMC sample is also run 10000 times to achieve convergence.

The produced values of � and log(⌧2) are hereafter used in a Monte Carlo approach
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to obtain the predictive distribution. As with the previous model, this approach is
run over K = 100 configurations ⇠2, · · · , ⇠K . Hence for each configuration ⇠k the
following steps is performed:

1. � and log(⌧2) are computed as explained above.

2. For iterations t = 1, · · · , T , zi,t = ��11

�
FY (yt)

�
is computed.

3. For iterations i = 1, · · · , N and t = T + 1, · · ·T + h1, with h1 denoting the
number of hours in the test period, the following steps are performed:

a) xi,t is called out from the feature matix X.

b) Compute the hidden state hi,t from
�
hi,t�1,xi,t

 
, again using Definition

5.1 presented Chapter 5.

c) Let br
i,t

=

"⇣
hr

i,t

⌘>
,
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i,t
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#
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d) zi,t is drawn from a Gaussian distribution, N
⇣
 i,tbi,t�̂,

�
 i,r

�2⌘.

e) Lastly, set yi,t = F�1
Y

⇣
⇥1
�
zi,t
�⌘

, and store the samples in an array.

The samples obtained in step e above are the final draws of the Copula model.
Throughout this application, N = 100 and T = 840 have been used.

As with the Gauss probabilistic Model, the samples obtained for this Copula model
are used to plot out-of-sample forecasts for DK1, which is displayed in Figure 6.6
below. This probabilistic forecast is plotted on top of a box plot representing DK1
for the test period. In Appendix H these probabilistic forecasts are displayed for the
12 regions considered.
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Figure 6.6: The out-of-samples observations for Y , here DK1, during the test period
between April 1, 2023, and May 5, 2023, are represented by the light blue boxplot.
The deep time series predictive density obtained using the Copula model is displayed
as the red line.

Upon visually examining Figure 6.6, it becomes evident that the probabilistic forecast
generated by the copula model falls short of capturing the true density during the
test period. Notably, the forecasted distribution appears to be concentrated in the
range of 40-60, failing to capture the tail behaviour of the true distribution observed
in DK1. This observation highlights a limitation in the copula model’s ability to
accurately capture the extreme values and tail events in DK1’s distribution.

To assess the forecast accuracy, MAE and RMSE are considered. As before, the lower
and upper quantiles are furthermore considered to asses the tail accuracy. The result
of this analysis is presented for DK1 in the table below. In addition, this analysis of
forecast accuracy is presented in Appendix I for all 12 considered regions.

MAE RMSE ↵ = 0.05 ↵ = 0.95
DK1 47.48 54.76 -40.48 92.83

Table 6.3: This table shows the mean absolute error (MAE, root mean squared
error (RMSE), along with the lower and upper quantile, ↵ = 0.05 and ↵ = 0.95,
respectively, for the area DK1 as a measure of forecast accuracy for the Copula
model.
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The findings from Table I.1 further reinforces the limitations of the Copula model
observed in the previous figure (Figure 6.6). The relatively low MAE and RMSE
values indicate that, on average, the Copula model performs reasonably well in cap-
turing the central tendency of DK1’s distribution. However, when comparing the
forecast accuracy with the true density depicted in the previous figure, it becomes
evident that the model struggles to capture the tails of DK1’s distribution. The lower
quantile of -40.48 indicates that the Copula model underestimates the lower tail, and
the upper quantile of 92.83 suggests it underestimates the upper tail. These findings
align with the visual analysis of the previous figure, which showed that the model’s
forecast appears concentrated in the middle of the test density, failing to capture the
true distribution’s behaviour in the tail regions. Therefore, while the Copula model
demonstrates satisfactory overall accuracy regarding MAE and RMSE, its limitations
in accurately capturing extreme events and estimating the tails become apparent com-
pared to the true density. These results emphasise the need for further refinement
of the Copula model to improve its performance in capturing tail behaviour and
enhancing its probabilistic forecasting capabilities.
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There are several crucial design decisions and hyper-parameter considerations in the
context of echo state networks (ESNs) that might affect the functionality and be-
haviour of the network. One important consideration is the reservoir’s size, which
measures the network’s hidden states. Large reservoir sizes have historically been
preferred in ESN implementations since regularisations were thought to reduce the
possibility of overfitting. Smaller reservoir sizes are adequate for spatiotemporal ap-
plications when the available time series length may not be very large. An embedding
input (xt) compensates for the smaller reservoir size. A small reservoir size also en-
ables the ESN to function as a committee of weak performers, preventing overfitting.
Cross-validation is frequently used to determine the suitable reservoir size. The leak-
ing rate (↵), which regulates the impact of earlier states on the ESN’s current state
update, is another crucial element. Strong memory and more information persistence
are implied by an ↵ close to 1, as the preceding states have a larger influence on the
present state, which may be useful for activities that need the capturing of long-term
dependencies or when the dynamics of the underlying system are slow to change. On
the other hand, a smaller value of ↵, closer to 0, lessens the influence of earlier states
and increases the network’s sensitivity to more recent inputs, which can be helpful
for tasks when identifying quick dynamics or short-time patterns are essential. By
testing the network’s effectiveness using training and validation datasets, experimen-
tation and validation techniques are often used in practice to discover the ideal value
of ↵. Another crucial factor is the scaling of the reservoir weighting matrix (W ).
For the reservoir to remain stable and to ensure efficient information processing, W
must be scaled properly. Signals are increased or suppressed per the scaling factor,
which affects how well the network functions overall. To optimise the performance of
ESNs for particular tasks and datasets, this discussion emphasises the significance of
carefully choosing and modifying hyper-parameters. [McDermott and Winkle, 2017]

Markov Chain Monte Carlo (MCMC) methods have been used in this project. MCMC
approaches have several advantages, especially when direct sampling is impractical.
In these situations, they offer a useful tool for generating samples. MCMC methods
throughout the project are also made possible because their implementation is fairly
simple. Furthermore, MCMC methods show dependability when a high number of
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iterations is performed, ensuring robustness in the outcomes. It’s crucial to keep
in mind, nevertheless, that applying MCMC sampling techniques has its drawbacks.
One of these drawbacks is the longer computation time relative to situations when
direct sampling is possible. The overall computation may take longer using MCMC
methods since more samples are needed to obtain reliable estimations. Additionally,
analysing the precision and convergence of MCMC algorithms might be difficult, mak-
ing it hard to assess the quality of the created samples. This assessment is difficult
since MCMC approaches, unlike deterministic algorithms, lack well-defined conver-
gence criteria. The assessment becomes more challenging as it becomes increasingly
difficult to visualise and analyse the behaviour of the algorithm due to the high-
dimensional parameter spaces frequently used in MCMC algorithms. Additionally,
the difficulty in precisely evaluating convergence and estimating the accuracy of re-
sults is further complicated by elements like inadequate mixing, limited exploration,
and the presence of autocorrelation in MCMC chains. These difficulties underline the
necessity of rigorous monitoring and diagnostics to guarantee accurate inference and
improve trust in the reliability of MCMC-based analyses. [Mehta, 2023]

A copula model is one of the techniques used throughout the project’s implementa-
tion; thus, here is an overview of the advantages and drawbacks of utilising copula
models. One of the benefits of copula models is their ability to distinguish between
dependent and marginal structures. As a result, it is possible to modify the mod-
elling approach to account for the unique features of the data, such as the various
distributions for each variable. However, the relevance of individual marginal dis-
tributions may be reduced due to this adaptability, which would restrict the ability
to analyse variables separately. Another advantage is the Copula models’ robust-
ness, which allows them to manage complicated or non-linear marginal distributions
while accurately reflecting dependencies. Copula models can provide simulated data
while maintaining the dependence identified by the copula model. As has been done
throughout this study, this copula model feature can be utilised to produce forecasts
that offer important insights into how power costs will develop in Nordic nations. De-
spite these advantages, there are several disadvantages to copula models. The choice
of parameter values considerably impacts the model’s efficacy and fit, making the se-
lection of complex models problematic. The model selection procedure becomes more
challenging as the number of variables or dimensions increases. Copula models also
raise issues with over- and underfitting. Poor out-of-sample performance results from
overfitting, which occurs when the model grows extremely complex and captures
noise. Underfitting, on the other hand, happens when the model is oversimplified
and doesn’t adequately reflect the real underlying dependent structure. There isn’t
one ’optimal’ copula model that applies to all different kinds of data and dependent
structures. As a result, choosing the best copula model frequently necessitates exper-
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imentation and meticulous evaluation. The limited interpretation of copula models is
another drawback. It might be challenging to offer meaningful explanations or insight
based merely on the values of the parameters indicating the dependent structure be-
cause they are not necessarily simple or intuitive. Copula models are typically built
to capture statistical dependencies rather than causal relationships, further restrict-
ing interpretation. Copulas do not reveal the causes or consequences of substantial
statistical dependence between variables, despite the possibility of such dependence.
Additionally, the sample size plays a crucial role in accurate parameter estimation
for Copula models. With limited data points, accurate estimation becomes chal-
lenging, affecting the model’s performance and dependability. In summary, copula
models have advantages in terms of robustness, the ability to simulate, and the sep-
aration of marginal and dependence structures. However, they face difficult model
selection, constrained interpretation, and sample size sensitivity. Applying copula
models requires careful thought, analysis, and interpretation to ensure proper use
and interpretation. [Embrechts et al., 2002], and [Cherubini et al., 2004]
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This project tackled the problem of probabilistic forecasting intraday electricity prices
in the Nordic areas using a combination of Bayesian inference, Echo State Networks
(ESNs), and Copulas. These theoretical ideas were essential in capturing and simu-
lating the intricate dynamics of data on electricity prices.

By incorporating prior knowledge, observed data, and likelihood functions to estimate
the parameters of the models, Bayesian inference established a robust framework for
probabilistic modelling. Moreover, this method made it possible to quantify uncer-
tainty and produce probabilistic projections, both crucial for comprehending potential
outcomes.

Recurrent neural networks, namely Echo State Networks, provided a flexible and effec-
tive method for identifying temporal relationships and irregularities in the electricity
pricing data. In addition, ESNs provide a strong modelling approach to capture the
different dynamics of the system and produce accurate projections by utilising the
reservoir of randomly connected recurrent nodes and just training the output weights.
On the other hand, copulas provide a way to simulate the joint distribution of several
variables, such as the cost of electricity in various areas. Copulas made it possible to
create probabilistic forecasts that considered the relationships between the variables
because they could capture the marginal distributions and the dependence structure,
which was especially helpful in capturing the complicated relationships between the
electricity costs in Nordic countries. The project sought to use a combination of
copulas, echo state networks, and Bayesian inference to enhance the precision and
dependability of probabilistic forecasts.

The main goal of this study was to look into the approaches described in [Klein
et al., 2023], namely the use of neural networks and copulas for probabilistic intraday
electricity price forecasting in the Nordic areas. The results revealed the models’
advantages and disadvantages in reflecting the intraday dynamics of electricity price
changes.

According to the visual analysis of the Gauss probabilistic ESN model, the antici-
pated density differed from the observed values throughout the test period, especially
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for the DK1 variable. The genuine values tended to be higher than the anticipated
distribution’s upper bounds, suggesting that high values may have been underesti-
mated or extreme events had been missed. As a result, the projected density could
not adequately capture the fluctuation and extreme behaviour displayed by the gen-
uine values, revealing that the DK1 variable has some difficulties accurately reflecting
its tail behaviour.

In particular, the copula model showed flaws in representing the genuine density in
the tail regions. As a result, the extreme values seen in DK1 were not accurately
represented by the predicted distribution, which appeared to be centred in a smaller
range. This restriction suggests that the copula model faces difficulty identifying
extreme occurrences and calculating the tails of DK1’s distribution.

Both models did not perform satisfactorily overall when measuring forecast accu-
racy using measures like Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE), which indicate how well a model captures the central tendency of a distribu-
tion like DK1. The models’ shortcomings in precisely identifying extreme occurrences
and estimating the tails, however, were evident when contrasted with the true den-
sity and considered for the lower and upper quantiles. Particularly, the Copula model
underestimated the lower tail and gave insufficient predictions for the higher tail.

These findings highlight the need for further model improvement to improve both
models’ ability to capture tail behaviour and boost probabilistic forecasting accuracy.

In conclusion: While copulas and neural networks are promising methods for prob-
abilistic forecasting of intraday power prices in the Nordic areas, capturing extreme
events and estimating the tails of the price distributions was difficult. Additional
model refinements that consider regional variances and investigate alternative mod-
elling approaches are required to improve the models’ performance and strengthen
their probabilistic forecasting skills.
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In the context of this project, it is acknowledged that including a wider variety of
exogenous data has the potential to improve the precision and stability of the proba-
bilistic forecasting models. For instance, incorporating weather prediction data may
provide insightful information about variables like temperature, wind patterns, and
precipitation. Furthermore, it has been demonstrated that these weather-related
factors significantly affect the patterns of electricity prices. Therefore, a more thor-
ough grasp of electricity pricing dynamics may have been attained by including such
weather forecasts in the models. It’s also possible that using probabilistic demand
projections would have improved the models’ capacity for prediction. These projec-
tions offer a probabilistic view of future electricity consumption since they consider a
variety of variables, including consumer behaviour and economic data. A more sophis-
ticated and thorough framework for understanding the underlying unpredictability
and uncertainty inherent in electricity price dynamics might have been available had
these estimates been included as exogenous inputs. Extending the range of exoge-
nous data taken into account by the models can incorporate more data sources and
boost the overall effectiveness of the probabilistic forecasting models. The models
would have been better equipped to deal with the inherent complexity and uncer-
tainty present in the energy market had they taken into account a larger range of
pertinent parameters, such as weather forecasts and probabilistic demand estimates.
[Klein et al., 2023]

Exploring different probability distributions might have provided insightful informa-
tion and enhanced the precision of the probabilistic forecasting models. Even though
the described models may have worked well with the chosen distribution, taking into
account alternative distributional hypotheses would have given a more complete in-
sight into the underlying data generation process. For instance, non-Gaussian or
heavy-tailed distributions may have better-captured electricity market-specific non-
linear dynamics or dramatic price swings. In addition, it might have been possible to
acquire a more detailed knowledge of the uncertainties surrounding intraday power
price estimates by conducting sensitivity analysis under alternative distributional
assumptions. Future research in this area has the potential to identify alternative
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modelling frameworks that could result in more solid and trustworthy probabilistic
projections in the energy sector.

Energy storage is another intriguing factor that has a lot of potentials to improve
the precision and dependability of probabilistic forecasting models. The ability to
store excess electricity and release it at times of high demand has recently become
achievable due to the rapid advancement of energy storage technologies, such as
batteries and pumped hydro storage, in recent years. Data from energy storage
could be incorporated into probabilistic forecasting models to provide some intriguing
possibilities. It might reduce price volatility, maximise the use of renewable energy
sources, increase grid stability, and offer insightful information for business impact
and investment choices. Here grid stability refers to the ability of an electrical power
system, commonly known as the grid, to maintain a reliable and balanced supply of
electricity. The investigation of energy storage’s function in this situation has the
potential to advance electricity price forecasting. [Masterson, 2021]
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Appendix A

A.1 Woodbury Formula

This section is based on [Taboga, 2023c]

In the set-up of the copula model in Chapter ??, the Woodbury Formula is used.
This formula is presented below.

Theorem A.1 (Woodbury Formula).
Let A denote a k ⇥ k matrix, C an m⇥m invertible matrix, and U and V two
k ⇥m matrices. Then if

C�1 + V >A�1U

is invertible, then
A+ UCV >

is invertible, and its inverse is given as
⇣
A+ UCV >

⌘�1
= A�1 �A�1U

⇣
C�1 + V >A�1U

⌘�1
V >A�1.

The proof of this theorem can be found in [Taboga, 2023c].
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Appendix B

B.1 Weilbull Prior

This section is based on [Klein and Kneib, 2016]

The Weibull prior is used in the set-up of the copula model in Chapter ??. This
formula is hence presented below.

Theorem B.1 (Weibull Prior).
Let a denote the shape parameter, and b⌧2 the scale parameter. Then the
Weibull prior is given as

p
⇣
⌧2
⌘
=

a

b⌧2

 
⌧2

b⌧2

!a�1

exp

8
<

:�
 
⌧2

b⌧2

!a
9
=

; .

The proof of this theorem is omitted from the project.
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Appendix C

C.1 Time Series of Considered Areas

This section displays a time series plot for each area that was taken into
consideration.

Figure C.1: DK1 Figure C.2: DK2

Figure C.3: NO1 Figure C.4: NO2

Figure C.5: Illustration of the DK1, DK2, NO1, and NO2 time series is price move-
ments between 01/01/2019 and 05/05/2023.
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Figure C.6: NO3 Figure C.7: NO4

Figure C.8: NO5 Figure C.9: SE1

Figure C.10: Illustration of the NO3, NO4, NO5, and SE1 time series is price move-
ments between 01/01/2019 and 05/05/2023.
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Figure C.11: SE2 Figure C.12: SE3

Figure C.13: SE4 Figure C.14: FI

Figure C.15: Illustration of the SE2, SE3, SE4, and FI time series is price movements
between 01/01/2019 and 05/05/2023.
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Appendix D

D.1 Correlations of the Considered Regions

Below the correlation matrix for the 12 considered regions are presented.

DK1 DK2 NO1 NO2 NO3 NO4 NO5 SE1 SE2 SE3 SE4 FI

DK1 1
DK2 0.974 1
NO1 0.825 0.807 1
NO2 0.931 0.904 0.865 1
NO3 0.348 0.353 0.448 0.373 1
NO4 0.179 0.186 0.254 0.199 0.563 1
NO5 0.748 0.731 0.843 0.786 0.416 0.238 1
SE1 0.440 0.444 0.516 0.450 0.763 0.463 0.464 1
SE2 0.476 0.481 0.534 0.485 0.759 0.448 0.481 0.950 1
SE3 0.788 0.802 0.776 0.770 0.518 0.305 0.695 0.630 0.655 1
SE4 0.814 0.831 0.754 0.774 0.459 0.262 0.675 0.546 0.569 0.913 1
FI 0.725 0.732 0.684 0.717 0.452 0.261 0.611 0.591 0.631 0.861 0.791 1

Table D.1: Correlations between the 12 considered areas. Only the lower triangular
part is shown due to the matrix’s symmetry.
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Appendix E

E.1 Summary Statistics

Summary statistics for the 12 consideres areas are presented in the table below

Min Max Mean SD Skew Q1 Q2 Q3
DK1 -111.54 825.51 89.04 106.97 2.41 28.24 48.07 110.6
DK2 -77.5 831.89 88.22 106.10 2.46 28.83 47.8 107.37
NO1 -29.67 706.96 68.02 87.39 2.42 3.33 38.85 99.67
NO2 -29.82 817.91 79.86 100.67 2.46 13.68 43.4 108.81
NO3 -1247 569.36 26.86 40.94 3.59 0 16.79 39.26
NO4 -1247 573.87 13.67 29.12 3.39 0 0 20.5
NO5 -28.8 700.17 59.20 86.28 2.47 0 26.71 91.65
SE1 -53.41 544.64 37.20 46.17 4.15 11.68 29.22 44.93
SE2 -53.18 569.26 39.70 45.97 4.13 15.32 31.69 46.09
SE3 -34.81 744.57 62.58 78.47 3.12 20.98 38.88 67.67
SE4 -60.86 743.11 68.55 86.83 2.78 18 41.82 82.02
FI -44.28 1035.71 72.65 86.65 3.25 26.57 45.65 82.97

Table E.1: Summary statistics for the 12 considered area’s electricity prices, expressed
in EUR/MWh, between January 1, 2019, and May 5, 2023. In other words, the three
quantiles (Q1, Q2, and Q3) are shown along with the minimum, maximum, mean,
standard deviation, and Pearson skew.

73





Appendix F

F.1 Density Plots for the Gauss Probabilistic ESN

Model

This section presents the density plots along with the predictive density obtained by
the Gauss Probabilistic ESN model for each of the 12 considered areas.

Figure F.1: DK1 Figure F.2: DK2

Figure F.3: NO1 Figure F.4: NO2

Figure F.5: The light blue histograms represent the logarithm of the out-of-sample
observations for Y for the time series DK1, DK2, NO1, and NO2, in the four figures.
The red line in each plot represents the deep time series predictive density obtained
by the Gaussian probabilistic ESN.
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Figure F.6: NO3 Figure F.7: NO4

Figure F.8: NO5 Figure F.9: SE1

Figure F.10: The light blue histograms represent the logarithm of the out-of-sample
observations for Y for the time series NO3, NO4, NO5, and SE1, in the four figures.
The red line in each plot represents the deep time series predictive density obtained
by the Gaussian probabilistic ESN.
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Figure F.11: SE2 Figure F.12: SE3

Figure F.13: SE4 Figure F.14: FI

Figure F.15: The light blue histograms represent the logarithm of the out-of-sample
observations for Y for the time series SE2, SE3, SE4, and FI, in the four figures. The
red line in each plot represents the deep time series predictive density obtained by
the Gaussian probabilistic ESN.
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Appendix G

G.1 Forecast Accuracy for the Gauss Probabilistic ESN

Model

This section presents the measures of forecasting accuracy, MAE, RMSE, lower-,
and upper qunatiles, obtained after having applied the Gauss probabilistic ESN
model to the data.

MAE RMSE ↵ = 0.05 ↵ = 0.95
DK1 94.52 100.88 15.82 146.60
DK2 84.29 93.10 16.14 144.60
NO1 90.52 100.88 15.82 146.60
NO2 91.20 95.02 38.45 123
NO3 60.72 68.78 1.62 111.52
NO4 17.44 31.19 0.51 73.82
NO5 90.47 94.98 14.22 124.78
SE1 61.90 68.56 14.99 111.70
SE2 61.50 68.30 11.87 111.99
SE3 63.51 71.67 12.60 118.81
SE4 67.60 76.81 9.51 129.8
FI 63.06 71.28 9.75 117.64

Table G.1: This table shows the mean absolute error (MAE, root mean squared
error (RMSE), along with the lower and upper quantile, ↵ = 0.05 and ↵ = 0.95,
respectively, for the 12 distinct areas as a measure of forecast accuracy for the Gauss
probabilistic ESN model.
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Appendix H

H.1 Density Plots for the Copula Model

This section presents the density plots along with the predictive density obtained
using the Copula model for each of the 12 considered areas.

Figure H.1: DK1 Figure H.2: DK2

Figure H.3: NO1 Figure H.4: NO2

Figure H.5: The out-of-sample observations for Y , here DK1, DK2, NO1, and NO2,
during the validation period between April 1, 2023 and May 5, 2023, are represented
by the light blue boxplot. The deep time series predictive density obtained using the
Copula model is displayed as the red line.
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Figure H.6: NO3 Figure H.7: NO4

Figure H.8: NO5 Figure H.9: SE1

Figure H.10: The out-of-sample observations for Y , here NO3, NO4, NO5, and SE1,
during the validation period between April 1, 2023 and May 5, 2023, are represented
by the light blue boxplot. The deep time series predictive density obtained using the
Copula model is displayed as the red line.
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Figure H.11: SE2 Figure H.12: SE3

Figure H.13: SE4 Figure H.14: FI

Figure H.15: The out-of-sample observations for Y , here SE2, SE3, SE4, and FI,
during the validation period between April 1, 2023 and May 5, 2023, are represented
by the light blue boxplot. The deep time series predictive density obtained using the
Copula model is displayed as the red line.
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Appendix I

I.1 Forecast Accuracy for the Copula Model

This section presents the measures of forecasting accuracy, MAE, RMSE, lower-,
and upper qunatiles, obtained after having applied the Copula model to the data.

MAE RMSE ↵ = 0.05 ↵ = 0.95
DK1 47.48 54.76 -40.48 92.83
DK2 143.29 149.13 74.83 205.67
NO1 182.72 184.86 -239.16 -147.68
NO2 20.58 30.00 -65.94 20.98
NO3 125.56 129.68 65.37 177.64
NO4 337.65 129.68 65.37 177.64
NO5 179.61 181.95 -256.64 -144.4
SE1 320.35 321.48 -367.48 -269.15
SE2 294.70 296.32 -344.32 -243.04
SE3 253.74 256.02 202.32 310.55
SE4 360.91 362.87 302.64 424.65
FI 148.27 152.22 -201.04 -93.14

Table I.1: This table shows the mean absolute error (MAE, root mean squared error
(RMSE), along with the lower and upper quantile, ↵ = 0.05 and ↵ = 0.95, respec-
tively, for the 12 distinct areas as a measure of forecast accuracy for the Copula
model.
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