
Network analysis system for
self-propagating malware

Supervised by Marios Anagnostopoulos & Peyman Pahlivani

Master’s Thesis

Aalborg University
Electronics and IT

Preface

Aalborg University, June 1, 2023

Mohamed Msaad
mmsaad18@student.aau.dk

David Holm Audran
daudra21@student.aau.dk

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Network analysis system for self-
propagating malware

Theme:
Master’s Thesis

Project Period:
Spring Semester 2023

Project Group:

Participant(s):
Mohamed Msaad
David Holm Audran

Supervisor(s):
Marios Anagnostopoulos
Peyman Pahlevani

Page Numbers: 102

Date of Completion:
June 1, 2023

Abstract:

Malware continues to pose a threat to
computer systems worldwide. Some
come equipped with worm capabili-
ties, meaning they can self-propagate
from one system to another without
human interaction. Moreover, the
evolution of malware to being form-
changing makes it increasingly dif-
ficult for traditional detection tech-
niques to effectively identify and mit-
igate those threats. Furthermore, ex-
isting sandboxing techniques must be
improved when studying the network
behavior of self-propagating malware.
In this work, we present the integra-
tion of SPM analysis into the exist-
ing CAPEv2 Sandbox and enable au-
tomatic SPM analysis and data gather-
ing. Furthermore, we integrate Secu-
rity Onion and all its available network
monitoring and forensic tools to work
alongside CAPEv2. Giving more pos-
sibilities to the malware analyst. We
also provide complete documentation
and recommendations to build and en-
hance the analysis system for physical
and virtual testbeds. While offering
guidance to the different use cases. Fi-
nally, we demonstrate the efficiency of
the system with real-world samples.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued in agreement

with the author(s).

Contents

Preface i

1 Introduction 2
1.1 Motivation . 3
1.2 Problem Formulation . 4
1.3 Scope . 4
1.4 Contribution . 5
1.5 Delimitation . 5
1.6 Outline . 6

2 Methodology 7
2.1 Process Model . 7
2.2 Literature search . 8
2.3 Project requirements . 9
2.4 Threat model . 10
2.5 White/Black box testing . 10
2.6 Testing and validation . 10

3 Background 11
3.1 Malware explained . 11

3.1.1 Malware types . 11
3.1.2 Malware evolution . 13

3.2 Malware analysis . 14
3.3 Malware detection techniques . 14
3.4 Honeypots . 15
3.5 Malware Propagation Modeling . 15
3.6 Evasion Techniques . 16
3.7 Summary . 18

4 Related Work 19
4.1 Summary . 27

v

vi vi

5 Technical analysis 28
5.1 Hardware . 31
5.2 Network . 32
5.3 Software . 34

5.3.1 CAPEv2 . 34
5.3.2 Testbed OS . 37
5.3.3 FOG . 37
5.3.4 Security Onion . 37
5.3.5 Malware selection . 39
5.3.6 Firewall rules . 39
5.3.7 Honeypots . 40

5.4 Implementation . 41
5.4.1 Milestone 1: Prepare the host 41
5.4.2 Milestone 2: Prepare the testbeds 41
5.4.3 Milestone 3: Configure the Sandbox & Troubleshooting . . . 42
5.4.4 Milestone 4: Integrating The SPM analysis support 42
5.4.5 Milestone 5: Prepare the backup tool 46
5.4.6 Milestone 6: Prepare the monitoring tool 46

5.5 Test and Validation . 47
5.5.1 Sandbox Test . 47
5.5.2 FOG test . 53
5.5.3 Security Onion Test . 56

6 Discussion & Conclusion 59

Bibliography 61

A Host Setup 71

B Testbed setup 73

C Sandbox configuration & Troubleshooting 76

D SPM integration 83

E FOG documentation 88
E.1 Installing and Configuring the FOG Server 88
E.2 Installing and Configuring the FOG Client 90

F Security Onion documentation 93
F.1 Security Onion - figures . 93
F.2 Security Onion installation and configuration 93

vii vii

G Test and validation 100

1 1

Table 1: Acronyms and abbreviations used in the report

Acronym or abbreviation Definition
AUB Aalborg University Library
SPM Self Propagating Malware
LAN Local Area Network
WAN Wide Area Network
VM Virtual Machine
PhM Physical Machine
CSV Comma-Separated Values
CVE Common Vulnerabilities and Exposures
DNS Domain Name System
CnC Command and Control
SDN Software Defined Network
ARP Address Resolution Protocol
DHCP Dynamic Host Configuration Protocol
MAC Media Access Control
SMB Server Message Block
TCR Tree Connect Request
URI Uniform Resource Identifier
NBNS Net-Bios Name Service
UDP User Datagram Protocol
TCP Transport Control Protocol
ICMP Internet Control Message Protocol
NIC Network Interface Card
ET Evasion Technique
GW Gateway
SMB Server Message Block
FTP File Transfer Protocol
HTTP Hypertext Transfer Protocol
NFS Network File System
POC Proof of Concept
SPM Self-propagating Malware

Chapter 1

Introduction

The COVID-19 pandemic has changed our societies and shifted most of the work
online. This fast transition offered new attack surfaces to the attackers, which led
to an increase in cyber-attacks, making the year 2021 the highest in 17 years[54].
The attackers take control over the target machine by installing malicious software
and deceiving the victim into clicking or downloading malicious Malware. The
latter poses a significant threat to the security of the Internet as in 2021 alone, a
Ransomware attack caused $159.4bn loss [18]. Malware comes in different fami-
lies and is classified based on its purposes, such as Spyware, Adware, and Ran-
somware. Their purpose can range from data compromise and DDoS attacks to
the system’s real corruption. Moreover, other Malware comes equipped with the
worm capability. A computer worm is a subset of the Trojan malware that can self-
propagate from one computer to another without human activation after infecting
a system. The first infected machine is referred to as Patient-0. A worm typically
spreads across a network through the Internet or across the Local Area Network
(LAN). Self-Propagating Malware (SPM) are very dangerous and can quickly take
over an entire network of n nodes. In a ransomware attack [14] caused by the
WannaCry Malware, more than 300 thousands vulnerable devices in 150 countries
were infected in a few days. Other cyber-attacks were carried out on the state
level, where the Stuxnet malware caused substantial damage to the Iranian nuclear
program.[15].

Cybersecurity researchers, on the other hand, are fighting back by analyzing
Malware. Two analysis methods exist. Static and Dynamic analysis [28, 99]. Static
analysis is based on reverse engineering the Malware’s binaries to obtain the source
code to understand the Malware’s structure. Dynamic analysis, also known as
Sandbox, is a dynamic analysis system where the Malware runs in an isolated en-
vironment and test malware or any other untrusted third-party programs [96]. It
offers good isolation and prevents the Malware from escaping. However, many
things could be improved by this technology. The attackers know its existence

2

3 3

and build their Malware with evasion techniques. With this, the Malware inspects
its runtime environment and detects the existence of the Sandbox [42]. The other
drawback is the standalone concept, where the Sandbox runs the Malware in a ma-
chine, a Physical-Machine (PhM) or virtual machine (VM). Typically, the Sandbox
only spins one machine to run the Malware and study its behavior. Eventually, the
LAN contains only one host, so the worm cannot spread to other hosts. Conse-
quently, the worm behavior of the Malware cannot be thoroughly studied.

1.1 Motivation

In 2021, the Cybersecurity and Infrastructure Security Agency (CISA) observed
ransomware attacks against 14 of the 16 U.S. critical infrastructure sectors, such
as Food and Agriculture, Defense, Energy, Information Technology, and Govern-
ment facilities [26]. ENISA (European Union Agency for Cybersecurity) also ranks
malware and ransomware as two of the eight threats against the EU. Stating that
after the COVID-19 pandemic, malware detection is rising again caused by an
increase in the total number of malware [41]. In their white paper, SonicWall re-
ported 465,501 never before seen malware variants by their systems in 2022, and
the first time their total number of detection exceeded 450,000 [40]. With the av-
erage cost of ransomware infection being $812,960, this is a very lucrative market
for cybercriminals [102]. Furthermore, the development of Malware-as-a-Service
(MaaS) has permitted adversaries without programming skills to launch attacks
using complex malware [72]. It makes it easier for low and nonskilled people to
integrate into the cybercriminal market while reducing the risk of exposure for the
top cyber criminals. Some MaaS vendors ask for a share of the ransom revenue
instead of an investment upfront.

Our project is motivated by several factors. Firstly, we seek to provide a plat-
form to help understand the propagation mechanisms used by self-propagating
malware in networks. This knowledge can inform the development of improved
defense strategies and enable earlier detection of such threats.

Secondly, we aim to address some of the limitations of sandboxing techniques,
which rely on isolated environments to test and analyze untrusted software. This
approach is often restricted to a single physical or virtual machine, which hinders
the study of network behavior in the context of self-propagating malware.

Thirdly, we recognize the shortcomings of traditional signature-based malware
detection systems, particularly in the face of polymorphic or other form-changing
malware. Such threats alter their binary or instruction sets without modifying their
behavior, rendering traditional detection techniques ineffective [32].

Finally, we note the need for dedicated platforms for analyzing the network
behavior of self-propagating malware. To the best of our knowledge, no such
platform exists.

4 4

1.2 Problem Formulation

Malware continues to pose a significant threat to computer systems and networks
worldwide. It is crucial to have effective methods for analyzing their behavior
to mitigate their potential impact, as new forms are continually being developed.
Current analysis methods have limitations, especially concerning self-propagating
malware. Therefore, there is a need for a dynamic analysis system that can monitor
the behavior of self-propagating malware in real time.

The goal of this Master’s thesis is to design and develop a dynamic analysis
system to study the network behavior of self-propagating malware. This system
should be able to monitor and capture network traffic generated by the malware
and analyze its behavior to identify its propagation patterns and potential targets.
To construct the project goals and challenges, we address the following research
questions:

• How to integrate the analysis of self-propagating malware into a dynamic analysis
tool?

• How to build a heterogeneous environment as a testbed for self-propagating- mal-
ware?

• How to collect evidence from self-propagating malware?

The proposed system will be evaluated using a range of self-propagating mal-
ware samples, and its effectiveness will be measured based on its ability to accu-
rately identify and analyze its behavior. This work will provide a deeper under-
standing of the behavior of self-propagating malware and hopefully contribute to
developing effective methods to detect and mitigate these threats.

1.3 Scope

The scope of the research project will be limited to developing and evaluating a dy-
namic malware analysis tool that addresses the limitations of existing tools regard-
ing self-propagating malware (SPM). The objectives of the research are: Perform
an in-depth analysis of the current literature and related work done in the field.
This will help us obtain information critical to the project and inspire us to build
our malware analysis environment. Furthermore, we offer thorough documenta-
tion about the test environment and the SPM integration measures to enhance the
test-environment performance. Attached with step-by-step documentation of the
entire system setup and guidance throughout the design. Ensuring an easy repli-
cation process and saving time. However, we do not cover the evasive techniques
related to the Sandbox technology. But, we discuss the evasion techniques that
might arise from our SPM integration.

5 5

We do not go in-depth with the malware analysis. Nevertheless, we use it to
verify the functionality of the Sandbox. We use our results to confirm the authen-
ticity of the analysis and confirm the Sandbox is well functioning. While going
in-depth for the related work!

1.4 Contribution

Our contribution revolves around investigating the current literature on general
malware analysis and SPM analysis. Moreover, we provide detailed documentation
of the setup and test of the Sandbox and fix all the bugs encountered during the
sandbox setup. We integrate SPM analysis into the current Sandbox technology
without changing or decreasing the performance of the Sandbox by adding the
SPM option as a plugin on demand. I.e., the user can specify SPM or a regular
analysis. Additionally, we integrate Security Onion with the Sandbox to enable
additional monitoring and forensics tools to the Sandbox.–For instance: Identify
network scans, and create real-time alerts that can help raise instant actions in case
of an incident.

1.5 Delimitation

In this section, we list the research delimitation for this master thesis. The present
research is delimited in the following aspects:

• The research approach: The research employs a methodology comprising a
literature review and empirical experiments. The literature review examines
existing publications to gain insight into self-propagating malware and its
analysis. Additionally, it helps gather information about our test methods
and hints at where to find malware traces in our test results. For instance,
what communication protocol and ports are used by the malware. Empirical
experiments are conducted to validate and test the proposed testbeds.

• The test environment: The research is constrained to two implemented testbeds,
one composed of physical machines and the other virtual. These testbeds
are configured in a specific way to correspond to the research requirements.
While the test environment provides a controlled system for experimentation,
it does not encompass all possible hardware, network setups, or software
variations.

• Specific tools: The research focuses on specific tools employed for malware
analysis and detection. The primary tools utilized include the CAPEv2 sand-
box, the FOG project server and client, Security Onion, and virtualization
tools such as KVM-QEMU and VirtualBox.

6 6

• The type of malware studied: This research focuses solely on self-propagating
malware. It aims to investigate its characteristics, behavior, and detection
techniques.

• Honeypots usage: We do not use the honeypots to study the malware or to
capture traffic. This is due to the redundancy introduced if the honeypot cap-
tures malware payload, as it will also be captured by the Sandbox. Moreover,
besides enriching the network’s heterogeneity, they are used as a physical
and visual notifiers of malware connection attempts.

• The sophistication of the malware tested: This research aims to test the inte-
gration of SPM analysis within the Sandbox technology. Hence, we use less
sophisticated malware with known behavior. We do not test new or advanced
malware due to its risk to the AAU network infrastructure and data privacy.

1.6 Outline

The first chapter introduces the project and covers its motivations, problem formu-
lation, scope, delimitations and contributions. In Chapter 2, we provide a detailed
description of the different methods used to conduct the research. Chapter 3 high-
lights the background knowledge we consider is essential for this research. It pro-
vides an explanation of malware by going through its definition, different types,
and evolution over the years. Malware analysis, detection techniques as well as
evasion techniques are also discussed. Furthermore, we mention how malware
propagation can be modeled. Chapter 4, provides an in-depth analysis of the cur-
rent literature in the field. The goal being to find relevant information that we can
use for our research. Chapter 5 provides the technical analysis of the project. We
go through the used hardware, software and network setup, describing those dif-
ferent pieces and justifying their use. Additionally, we cover the implementation
of the project, which is the one of the critical parts. In that section, we describe
the installation and configuration of the different parts of the system. Finally, we
go through the other critical part, which is the testing and validation of the im-
plemented system. Chapter 6 discusses the research as well as future work, and
concludes the report.

Chapter 2

Methodology

This chapter provides a detailed description of the methods we used to conduct our
research. It helps us justify and explain the different techniques and the reasoning
behind our choices. This also ensures that our research is reliable and reproducible.

2.1 Process Model

We used Process Model as a tool to keep track of the project advancement and the
software development process. The project includes the following phases: Install,
test, integrate, and test. We decided to follow the Agile model because of its toler-
ance to adaptive planning and flexibility in the continuous improvement/changes
of the final product [110]. The project is divided into four main stages:

Figure 2.1: Process stages

The project aims to integrate SPM analysis within the Sandbox technology as
an extra plugin. The plugin will only be active on demand. This choice ensures

7

8 8

no altering of the Sandbox’s original mechanism. Furthermore, the process model
consists of four stages: –Plan: Emphasizes highlighting the current sprint’s goal.
Further, the work is distributed among the group members for the build process.
The planning is always related to the project’s requirements. Build: Turning the
plan into a product to meet the project requirement. Test: The test phase focuses
on testing the built product for stability, performance, and meeting the project’s
requirements. Release: An automated after a successful test that meets all the
requirements. Finally, the improvement phase is only needed if the product fails
to meet the requirement satisfaction. Hence, it is included as an optional phase.

2.2 Literature search

A literature search helps to establish the context of the research by identifying the
current state of knowledge in the field. It provides a theoretical foundation for our
project and can help identify literature gaps. The literature review also includes
information on the research methodology used by other authors, which allows us
to select our own. Finally, it ensures that our research is original, relevant, and
contributes to the existing body of knowledge. We consider the following criteria
to ensure the study is an eligible source of information for our project:

• Relevance - The paper should be related to the topic or research question. It
should address similar issues and problems that the project aims to explore.

• Quality - The paper should be high quality and published in a reputable
journal or conference proceedings. We check if the journal is considered
predatory using Beall’s list [11].

• Recency - The paper should be relatively recent and up-to-date. It should
reflect the latest developments and trends in the field. We choose to not
include papers older than 2018.

• Clarity - The paper should be clearly written, and the research should be easy
to understand and follow.

To find literature for our project’s state-of-the-art, we searched for different
articles with the following keywords to target specifically related research:

• Computer worms

• Self-propagating malware (SPM)

• SPM analysis.

• Malware analysis surveys

9 9

• Dynamic malware analysis

• Malware network analysis

• Bot and botnets analysis

Furthermore, we filter the search, sort, and select material if it contains one of the
following pieces of information:

• The test-bed schema or topology for our project’s state-of-the-art. We want
to inspire ourselves from recent research and use the results and experience
gathered to build our platform efficiently and effectively.

• Provides malware hashes: Malware hashes identify specific variants of mal-
ware. Collecting them to see how our system performs against known mal-
ware with known behavior.

• Provides an analysis strategy so we know where to look. This will give us
hints on how to build our own analysis strategy.

2.3 Project requirements

The project focuses on integrating and automating the SPM analysis option within
the Sandbox technology. Hence, we derive the project’s essential pillars and use
the MoSCoW prioritization method to sort and prioritize the features. The four
categories of the method are Must have, Should have, Could have, and Won’t have.

- An environment with multiple hosts (n >1) on the LAN.
Namely, the infected machine has other targets to scan and will
trigger the worm characteristic of the malware.

Must Have - Be reproducible. I.e., the sandbox can be reproduced if the
physical requirements are met.
- Collect network evidence from the SPM analysis for investiga-
tion

Should Have - A heterogeneous environment.
- Automated forensic tools during analysis

Could Have - TLS for communication between the Sandbox and the testbed.
Won’t Have Be portable. I.e., the system can be ported from one machine to

another like a docker container for instance.

Table 2.1: The project’s requirements

We define them as follows: Must have are the critical features, and if not
achieved, the project/tool is considered a failure. Should have are essential for

10 10

the project completion but not critical. Could have are desirable features but have
a negligible impact on the project/tool if left out. They can be included if there is
enough time and resources. Won’t have features are the ones that are not a priority
at all for the project and will not be included in the final product.

2.4 Threat model

We use the threat model to explain the Sandbox topology and the entire ecosystem.
This helps to understand the system and define the malware’s possible scenarios.
Additionally, the threat model helps identify the malware’s capabilities and limita-
tions inside and outside the Sandbox ecosystem. The Sandbox technology allows
the choice between a physical machine as a testbed or a Virtual Machine. Hence,
we provide a threat model for both use cases.

2.5 White/Black box testing

CAPEv2 is an open-source sandbox, so we used white-box testing to find informa-
tion about its structure and different parts. The documentation is well structured
on the official website [57] and helps us set up the sandbox. –For instance, the
installation and the configuration of the testbeds (physical and VM). WhiteBox
testing helped us find the structure of the sandbox as a program and know where
to change the sandbox’s code to integrate the SPM analysis. Nevertheless, the
official documentation must include steps critical to the sandbox’s functionality.
Hence, we used white-box testing to detect, find, and solve the errors and missing
packages and report them in the fully detailed documentation. We also used Black-
Box testing to determine the best setup for some project software. For example, we
need to find out how the imaging server manages the memory compression of a
physical machine. Thus, by using BlackBox testing, we discovered how to map the
machine’s memory for a faster restoration time.

2.6 Testing and validation

To ensure that the dynamic analysis ecosystem runs without exceptions that might
interrupt the analysis and hence give incorrect data, we developed a testing strat-
egy to ensure all the functionalities are running: - Functional Test: We test the
system for all the project’s requirements. - Multi-Platform Test: We conduct tests
on both system types and ensure no critical errors exist. - Robustness Test: We
test the system against real-life malware to test its performance and recovery from
damage. - Data test: We test if the system captures the required data for the anal-
ysis.

Chapter 3

Background

In this chapter, we highlight what we consider as the essential background knowl-
edge we need to have to fulfill our project requirements. We start by exploring what
malware is and how it has been classified by researchers. We continue by mention-
ing different malware analysis techniques and what has been done by malware
developers to counter those, known as evasion techniques. We also cover how the
malware propagation can be modelled.

3.1 Malware explained

Malicious software, known as malware, is a program that performs unauthorized
operations on the environment in which it executes and can sometimes cause dam-
age [108]. They come in different forms (exe, dll, excel sheets) and serve other
purposes, such as Spyware, Ransomware, Trojans, etc.

3.1.1 Malware types

Due to this broad definition, malware can serve different purposes. Thus, the
researchers started dividing them into sets or families and are as follows:

Virus: Is a self-replicating malware. Usually found as an executable and spreads
by copying itself to the target system. However, they are passive malware and need
human intervention to spread. This can be done via USBs, media files, or networks.
Depending on the level of sophistication, the virus can be polymorphic, meaning
that it can modify its replicated version to avoid detection [60, 101]. Moreover, a
Virus can have different purposes, from data theft and spying to complete system
damage.

Worm: An active self-replicating malware that can spread over the network
and infect other machines by exploitation of a vulnerability or multiple ones at
different levels. The primary levels are the Operating System (OS) level, with, for

11

12 12

instance, the Eternal-Blue vulnerability in Windows 7 OS [CVE-2017-0144] [30, 91],
and the Application level, such as the LOG4J vulnerability[CVE-2021-44228] [31,
51, 44]. The vital concept of a computer worm is its ability to spread without
human intervention [20]. Additionally, the worm can serve different purposes as
the virus, such as data theft, sabotage, spying, or being a part of a botnet. Moreover,
the worm uses the network to spread. Hence it will leave propagation traces that
can be studied and used to detect future attacks. As this paper focuses on SPM,
more recent research on worm behavior will be detailed in the following chapter.

Trojan Horse: Known as Trojan, malware disguises itself as benign programs.
Its mechanism is to embed the malicious program within a legit application. Once
executed on a machine, it drops the malicious executable and changes features on
the victim’s machine to enable its persistence [50, 82]. However, the Trojan can
not self-replicate and relies on the OS to activate (it activates on the next boot).
Moreover, the Trojan can give different options to the attacker through a backdoor
for CnC. This allows the attacker to step in and do malicious activities.

Spyware: The primary purpose of such malware is to spy on the victim’s ma-
chine looking for valuable data to exfiltrate. However, Spyware can be equipped
with other utilities or upgraded throughout the CnC channel. Spyware spreads like
Trojans by attaching themselves to legitimate software to camouflage its existence.
Usually, the Spyware is user’s behavior specific and achieves its goal by listening to
the user activities and input on the infected machine [13, 67]. An excellent example
of Spyware is the KeyLogger [58].

Adware: A malware mainly designed to generate income for its owner. This is
achieved by delivering advertisements and pop-up windows, especially on web-
sites. The Adware infects the server and starts displaying Ads for any visitor.
However, some Adware can be equipped with extra features, such as Spyware,
and hence can be used for other purposes [104, 83].

Rootkit: A malicious program that deploys stealth techniques to avoid detection
in a system. These techniques are complex and advanced. For instance, DLL hijack-
ing and process injection are some methods to keep the Rootkit undetected [115].
The danger of a Rootkit is the ability to take complete control of the system and
gain high privileges. Some Rootkits can modify the kernel’s data structures via Di-
rect Kernel Object Manipulation (DKOM). Which leads to incorrect user requests
and hinders the existence of malicious activities [100, 39, 81]. This makes Rootkits
very invasive and hard to remove.

Bots: Deriving its name from Robots, Bots were first created to manage the
Internet-Relay-Channel (IRC) chat channels. Which is a text-based communication
protocol developed by Jarkko Oikarinen in 1988 [70]. Not all Bots are harmful.
Some Bots are used for commercial and legit business, such as Chat-Bots that can
welcome a user and answer some questions. For example, the Slackbot. Others
are built to do malicious activities and can form a Botnet, a set of interconnected

13 13

Bots. Several botnet typologies exist, such as Distributed or centralized [8]. More-
over, Bots are controlled via a CnC channel and can serve different purposes–For
instance, running a Spam campaign, DDoS attacks, and others. A good example
is the Mirai Botnet used to perform DDoS attacks on legitimate businesses [45,
116]. Botnets are also known for their fast-spreading capabilities and for infecting
vulnerable devices. Bots aim to infect as many devices as possible and grow the
botnet. The latter can be used for different purposes [19]

Ransomware: A malware that infects the victim’s machine and holds it hostage,
until the user pays a ransom, usually in the form of a Crypto-Currency transaction.
The malware installs itself and starts encrypting the system’s files. When the en-
cryption is finished, the user is prompted with a window holding the details of the
incident and how to get the data back. WannaCry is an example of Ransomware
family [7]. Moreover, WannaCry propagates using the same means as a computer
worm. These behavior have been witnessed with the two Ransomware versions
found in the wild WannaCryptor and Petya [82].

3.1.2 Malware evolution

The first malware documented ranks back to the floppy disk era, where malware
needed human interaction to move from one machine to another. After the birth
of the Internet, we witnessed the appearance of new types of malware and an en-
hancement in their capabilities. Over the years, malware has gone from an experi-
ment/prank to an uncontrollable threat to any machine. In their paper, Namanya
et al. [82] present an overview of the world of malware and provide details on its
evolution. They mention five malware generations:

• The first generation of malware mainly replicate with the assistance of human
activity and through floppy disks, removable media, and CDs.

• Second-generation malware self-replicate without help and share the func-
tional characteristics of the first generation. They propagate through files
and media.

• Third Generation utilizes the capabilities of the Internet in their propagation
vectors leading to big-impact viruses.

• Fourth Generation is more organization-specific and uses multiple vectors to
attack mainly antivirus software or systems due to the commercialization of
malware.

• Fifth Generation is characterized by the use of malware in cyber-warfare and
the different variations of Malware-as-a-Service, which importance was men-
tioned in 1.1.

14 14

From what is known about malware today, and through this overview, we can
clearly see that malware has evolved incrementally, adding new capabilities with
each generation, building upon the previous one. For instance, Fifth generation
malware can have all the abilities of the previous ones. It can replicate using
removable media, as the First; self-replicate and use files as the Second; use the
Internet to spread as the Third; and finally use multiple vectors as the Fourth.

3.2 Malware analysis

Malware analysis is the study of malware’s behavior. The objective is to understand
how malware works and how it can be detected and eliminated. The malware clas-
sification is based on malware analysis, composed of two methods: Static and Dy-
namic analysis [28]. Static analysis revolves around analyzing the source code of
a program without running it. It is considered the safest way to analyze malware.
However, malware is found as executable programs. Hence, the static analysis
is based on reverse engineering the malware’s binary to obtain the source code.
With this at hand, the researchers can predict the malware behavior, extract the ex-
ploit, and build a detection mechanism against it. Some Reverse-Engineering tools
available to the community are Ghidra [84] and Radare2 [89]. However, no auto-
mated process exists yet, and the whole operation is performed manually. Making
it time-consuming and requiring knowledge of low-level programming languages
such as Assembly. The other type is dynamic analysis, also known as Sandboxing,
where the malware runs in a Sandbox and is monitored during its entire execution
lifetime. This makes studying malware faster, as the researchers can obtain the
process, memory, and network traces left by the malware and develop detection
techniques based on it.

3.3 Malware detection techniques

Malware detection techniques are methods to identify malicious software or code
on a system. Sandboxes can extract a lot of information about the malware runtime.
From this, detection methods are created, and they can detect the presence of
malware by the following:

Behavioral based: The detection techniques are based on the malware’s behavior,
meaning all the actions it takes during its execution time. For instance, created files,
accessed files, API calls, changing parameters in the host machine, and others. All
this is collected as a dataset and is used to write appropriate detection [2].

Anomaly based: This relies on Machine-Learning where a model is trained with
datasets. The model classifies the program based on anomalies [85, 90].

Signature based: This technique can be static and is based on identifying a se-

15 15

quence of bytes in the malware’s binary. Or dynamic, based on the malware’s
inspection during runtime. All the data produced by the malware can be used to
build a detection signature. Usually, by identifying a sequence of bytes, payload
bytes, dropped file names, and their cryptographic hash values. This technique is
very efficient against monomorphic malware as the payload and other produced
bytes are constant. However, this fails miserably against polymorphic malware.
Polymorphic malware is a sophisticated type and uses different techniques to avoid
detection. The malware changes all the produced data during its runtime by using
code obfuscation and encryption to replicate. Hence, for all the dropped files, the
payload will have high entropy [2]. Since this project’s scope is dynamic analysis,
we focus more on the issues and short-comes of this field.

3.4 Honeypots

A honeypot is designed to appear vulnerable and lure adversaries into attacking
it. The honeypots simulate a vulnerable program by returning fake data to ad-
versaries, such as a vulnerable version of a communication protocol, such as SMB
and others. Honeypots can be used in two scenarios; the first one is for defense
purposes, where the honeypots reside behind the firewall to deceive any adversary
that could reach the LAN into interacting with it. The other goal is for research,
where the honeypot is placed in the open with a public IP. Hence, it can be ac-
cessed from anywhere. This will attract any adversary, malware, or bots that scan
the Internet for future attack targets.

Honeypots can be divided into three categories depending on the interaction
they offer to an adversary. Low Interaction Honeypots (LiHo) are the simplest, and
they do not offer much except returning fake data to the user. Examples of such
honeypots are Dionaea for computers and HosTaGe for mobiles [106]. They are
considered very efficient as they can extract valuable data without much simula-
tion overhead. Other honeypot types are Medium Interaction Honeypots (MeHo)
and High Interaction Honeypots (HiHo). Moreover, Honeypots are a good defense
tool and offer a platform for studying malware behavior and catching exploit pay-
loads [98].

3.5 Malware Propagation Modeling

To study and evaluate malware propagation schemes, researchers adopt different
methods to create some formulas that can be applied to predict the propagation
behavior of malware. Malware Propagation Modeling (MPM) creates mathematical
models to describe malware behavior during its propagation in a network or a
system. The models predict how the malware will propagate into new systems,

16 16

identify vulnerabilities, and build mitigation strategies. Although it is not in the
scope of this project, we briefly introduce some terminology used within the field
of malware analysis and will be used in this report. There exist different MPMs,
such as:

- Agent Based Model (ABM), which is based on the simulation of different agents
in a simulated environment, aims to study these agents’ behavior based on estab-
lished rules. These models have three main characteristics: agents, environments,
and rules [17, 16]. This approach can provide more detailed information about how
malware spreads in specific scenarios. Nevertheless, it can be more complex, and
this complexity introduces an overhead when the number of agents to simulate
rises due to the simulation computational cost.

- Machine learning models: By teaching Machine Learning (ML) models with
data from previous malware infections to predict how new malware will propa-
gate [61, 93]. However, it requires large amounts of data and is often used with
other modeling approaches to enhance the correct prediction ratio.

- Epidemiological models: These models are built based on the epidemiology
principles, which study the spread of diseases in Biology. The models use several
parameters, such as infection and recovery rates, to simulate and predict mal-
ware propagation through a population of nodes (devices). In the recent year,
several models have been introduced. The Simple (Classical) Epidemic Model—SI
Model was the first model trained to predict malware propagation. The model is
a straightforward adaptation of epidemics models used broadly in Biology. Typ-
ically, these models have been used to study virus propagation in a closed, con-
trolled population, such as flu and other viruses [56]. Different models have been
proposed to enhance the detection approach as the SI model fails to detect sophis-
ticated spreading techniques, such as SIS, SIR, and SIRS models [64].

3.6 Evasion Techniques

One of the significant drawbacks of dynamic analysis is the evasion techniques
(ETs) used by malware. As most of the deployed Sandboxes are open-source, the
attackers can fingerprint them and build malware with evasive techniques to avoid
being analyzed and revealing their cyber weapons. During its runtime, the mal-
ware can check if it exists inside a VM or the existence of a Sandbox by different
means [79, 65, 78, 113]. In a survey by Sharma et al., they demonstrate such ETs
utilized by Advanced Persistent Threats (APTs). According to CrwodStrike and
other intelligence agencies, the APT is defined as follows: APT is a sophisticated
and sustained cyberattack in which an intruder establishes an undetected network
presence to steal sensitive data over a prolonged period via evasion techniques [3,
4]. Nevertheless, the interesting part of the survey is the summary of all the en-
countered ETs and anti-analysis techniques demonstrated below.

17 17

Evasion Manoeuvres

Stealth
Mechanism

Anti-Analysis
Mechanism

Cover
Communication

Attribution
Evasion

Network Perimeter
Defense Evasion

Process Injection
Anti-Debugging

&
Anti RE

Fast Flux
Encrypted

Communication

DLL Hicjaking Anti-Emulation
Domain Generation

Algorithms
Network

Protocol Abuse

Fileless Technique Anti-Virtualization
Abusing Cloud
Infrastructure

Obfuscation Anti-Sandbox
Polymorphic &
Metamorphism

Table 3.1: Evasion Maneuvers summary

For instance, we can see that malware author can utilize anti-debugging tech-
niques to prevent the malware from being debugged. This is usually used by
calling API such as isDebuggerPresent on Windows OS. Moreover, we see the Anti-
Virtualization and Anti-Sandbox techniques. Nevertheless, the project’s scope is
limited to ETs since we want the studied SPM to trigger and propagate. The ETs
are summarized in two categories:

Timing-based techniques: The malware uses the system’s resources to verify its
identity. For instance, using the RTSC instruction. Since the Pentium appearance,
the RTSC has been used as a 64-bit register on all x86 processors to count the
number of cycles since reset [111]. Other methods involve a sleeping period, where
the malware sets a future date for the execution. However, since the Sandbox runs
only for a limited period (By default, 300 seconds), the malware will not run and
cannot be studied.

Artifact-based techniques: The malware detects the presence of a VM or Sandbox
based on traces left in the system. For VM detection, the malware can sense the
presence of a hypervisor [12, 65]. Or check the file system and the registry. Or
Check if a registry key exists [23]. All the disclosed ETs are listed here [42].

Human Artifact based: Another way the malware can check the environment for
analysis artifacts is the lack of human behavior in a Sandbox. Usually, a Sandbox
runs the malware. Hence, the malware can check for human activities by verifying
mouse movement, browsing history, installed applications, and others [59, 5, 63].

Networking Artifact base: A Sandbox can usually allow Internet communication
or prohibit it by dropping all outgoing packets. However, a DNS sinkhole such as
InetSim can reply to all DNS queries with fake IP addresses [52]. Moreover, when

18 18

the Internet is allowed, the malware can inspect the global IP of the network and
verify if it belongs to a known Sandbox provider or a research facility. Sometimes
the malware will not trigger if no Internet is allowed inside the Sandbox [24]. An-
other way of detecting Sandbox via network artifacts is discussed in [114], where
they crafted a program that collects data about its environment and sends it back
to a server for processing. They submitted their program to some public Sandbox
providers, such as VirusTotal, and gathered intelligence about the environment.
The intelligence data includes public IP addresses, internet routes, and others.
They demonstrated that an adversary can have the same approach and build eva-
sive malware based on the gathered data.

3.7 Summary

In conclusion, there are many aspects to consider about malware, for instance,
the fact that multiple malware families can be self-propagating or that a specific
malware program can combine capacities from different malware families. Eva-
sion Techniques (ET) also have to be considered, no matter what type of analysis.
However, due to many known evasion techniques, especially those related to vir-
tualization. By looking at the public ET database, we spot categories such as Hard-
ware, Network, and others [42]. Moreover, since our project aims to build a testbed
system that will allow analyzing the network behavior of an SPM. We will focus
only on the ET the virtualization produces on the network aspect. We definitely
recommend eliminating as many artifacts as possible. However, this is fine-tuning
the Sandbox and is a secondary step of our project, as we consider building and
integrating SPM as the primary goal.

Chapter 4

Related Work

This chapter aims to browse the literature on SPM and their network analysis to
obtain valuable information about SPM behavior obtained. Eventually, one of the
goals of this project is to build an analysis system for SPM analysis. Meaning other
related work where the structure of the analysis system is shared will be valuable
information that can guide us throughout the system’s development. Furthermore,
we will look at the detection techniques built and what dataset they were built
upon. Lastly, as mentioned in the delimitation[1.5], we look for SPM candidates
tested previously if the exact cryptographic value of the malware is presented
(SHA256 or MD5). Otherwise, it will be hard for us to determine the candidates as
most of the malware sample databases such as Virusshare, malwarebazar or virusbay
do not have any label or tag for SPM. Other databases have the TAG option, such
as tria.ge. However, the TAGS are arbitrary and can sometimes be misleading.

Akbanov et al. [6] study two Ransomware with worm capability. Both SPMs
are different WannaCry versions, and their cryptographic hash value is
db349b97c37d22f5ea1d1841e3c89eb4 and 84c82835a5d21bbcf75a61706d8ab549. They use
two VMs with Windows 7 OS to simulate an environment for propagation. This en-
ables the propagation of the two SPMs as they use the EternalBlue exploit to infect
and take control. The VMs are interconnected using Open-vSwitch, designed to
enable massive network automation through programmatic extension. The third
VM has Ubuntu OS and is the GW for the two other VMs. Additionally, it has
a network sniffing tool (Wireshark) and is used to capture the traffic for further
analysis.

Moreover, they perform static analysis on the executable files with the Pestudio
tool, free software used to examine executable files and supports 32-bit and 64-
bit architectures. They reveal that the SPM has different components: The Worm,
the Encrypter, and the Decrypter. During the SPM’s execution, the worm invokes
the iphlpapi.dll to get the network configuration of the infected host. Later, the en-
crypter invokes the kernel32.dll and msvcrt.dll. Further, the Crypto APIs are used

19

20 20

to generate random symmetric and asymmetric cryptographic keys. However, we
are interested in the SPM execution and will focus on the dynamic analysis part.
Additionally, they performed dynamic analysis using Sandbox technology with
VM-based hosts, as shown above. The test showed that the SPM’s worm compo-
nent invokes the InernetOpenUrl function and attempts to establish a connection to
www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com. They confirm that this net-
work operation is a kill-switch or an evasion technique. The worm stops running
if the domain is active and cannot connect to the requested domain name. It con-
tinues running under the process name mssecsvs 2.0 on the infected machine. After
the WannaCry installs itself as a service, the worm component extracts hardcoded
resources and place them in the following directory: C:\Window\taskche.exe. Next,
the encrypter is invoked and checks if at least one of the three mutual exclusion
objects (mutexes) exists. If so, the encrypter terminates immediately. Otherwise,
the encryption process starts. They do not mention why the encrypter behaves in
such a way. However, we think it is to check if the machine is already infected, and
the encrypter should not encrypt another time. Furthermore, they mention that the
encrypter uses an AES 16-byte symmetric key with the help of CryptGenRandom.
Lastly, all the AES keys are encrypted with the hardcoded public RSA key so only
the malware owner can decrypt them. The SPM completes the infection process
and renames all the encrypted files with the extension .WNCRY.

After infecting the first machine, referred to as Patient-0, the next phase infects
other hosts available on the LAN. After the kill-switch connectivity check to the
malicious domain name is passed. The worm component is active, retrieving its
local IP to identify the subnets via the GetAdaptersInfo. It initializes the mssecsvs
2.0 service, which tries to spread the WannaCry’s payload to other hosts in the
network through the SMB vulnerability on any vulnerable system [75]. From their
analysis of the worm behavior, they noticed that WannaCry creates two separate
threads that simultaneously replicate the payload on the LAN and WAN. Next,
patient-0 tries to establish connections to all the possible addresses on the subnet
(from XX.XX.XX.2 to XX.XX.XX.254). For instance, they see that patient-0 with
the IP 192.168.180.130 sent SMB packets to the other VM at 192.168.180.134. Fur-
thermore, they see that patient-0 tries to spread to external networks by spoofing
IP addresses and attempting TCP connections on port 445. Another remark is
the spoofed IPs used to connect to external networks, namely 192.168.56.20 and
172.16.99.5. These IPs are hardcoded into the worm and can be obtained by ex-
tracting strings from the WannaCry binaries. Particularly, WannaCry sends three
NetBIOS session-setup packets. Two of the NetBIOS session packets contain the
two aforementioned spoofed IP addresses. Additionally, the WannaCry tries to
establish external connections to the C&C server using the data available on the
c.wncry file, which holds the configuration data and a list of endpoint onion ad-
dresses in the form of .onion next to the compressed Tor installation file. While

21 21

communicating with Tor addresses, WannaCry creates a secure HTTPS connection
on port 443, using standard Tor ports 9001 and 9050 for network traffic and direc-
tory information. All the pinpointed behavior of WannaCry is used as a basis for
designing their detection and mitigation mechanism. Regarding their solution to
the WannaCry spreading mechanism, they propose an SDN-based detection that
relies on DNS traffic inspection with dynamic blacklisting. The solution monitors
the network traffic for malicious links and IP addresses initiated during the Wan-
naCry C&C communication. Each malicious domain or IP name is blacklisted,
and a new open-flow table is added to the SDN mechanism. This mechanism has
been proposed here [21] in a similar work against another version of Ransomware
CryptoWall.

Finally, they tested their proposed solution and showcased its efficiency against
the WannaCry Ransomware. They also claim that it can be used against any SPM
that behaves similarly. For instance, the new flow table of the vSwitch will contain
the infected machine’s IP (192.168.180.130) and the corresponding TCP port num-
bers 445 and 139. Nevertheless, this basic solution relies on hardcoded domain
names and IPs. I.e., If the malware uses a randomly generated domain name as a
kill-switch, uses randomly generated spoofed IPs, or uses random ports, this de-
tection method will be absolute. Another drawback is the detection concept. The
system will allow the first infection to learn new malicious domain names and cre-
ate the appropriate control flow to block future requests from the newly infected
host. However, it will certainly stop any SPM that follows the same procedure with
hardcoded data.

In another similar work against another variant of the WannaCry ransomware
by Rouka et al. [97]. They followed the same strategy with the SDN setup and the
number of hosts but with the ExPetr ransomware. The system setup is similar to the
previous work mentioned above. It has the following hosts: Two Windows7 VMs,
one the infected machine (Patient-0) and the other uninfected with the IPs 10.0.0.3
and 10.0.0.4 accordingly. An Ubuntu VM is acting as Gateway with 10.0.0.2. We
will skip the infection process and focus on propagation to avoid repetition since
the ransomware variants have the same final purpose [103].

After the host is infected, the worm component of ExPetr starts gathering infor-
mation about the LAN. In the case of the presence of a DHCP server running, the
worm extracts the set of existing IP addresses using DHCPS.dll and NETAPI32.dll
libraries. In the case of no DHCP, the worm uses ARP to extract all the available
hosts on the network. This is a significant upgrade from the previous ransomware
version, where the worm uses TCP SYN scan to extract running hosts and open
ports on the LAN. Hence, using a legit way of scanning. Nevertheless, the ARP
broadcast packet needs to be sent n times, where n is the number of hosts on the
LAN, trying to resolve each host at the time. Only the machine with the corre-
sponding IP address will reply with the corresponding MAC address [55].

22 22

After the IPs of all the hosts on the LAN are resolved with ARP, the worm starts
a TCP handshake, trying to connect ports 139 and 445. This TCP connection is to
establish the SMB Protocol Negotiation and Session Setup. The credentials used
to authenticate are retrieved from the Windows Active Directory during infection.
However, If no Active Directory exist, they only witnessed the worm using the
stolen credentials of the patient-0. Further, patient-0 sends a TCP request to connect
to the admin folder of the target host. If this is successful, patient-0 copies some
files into the admin folder. These malicious files will be remotely executed and
infect the target host. Once the mission is completed, patient-0 performs an SMB
Tree Disconnect, and the session is terminated between the two hosts, and the
cycle of discovering other hosts continues. However, the ExPetr has a slightly
different approach towards failed connections on TCP ports 139 and 445 with a
running server. They witnessed the ExPetr trying to copy the malicious executable
to the admin folder of the Ubuntu machine using an HTTP PROPFIND request.
According to Microsoft, the HTTP PROPFIND method retrieves properties for a
resource identified by request URI [53]. Nevertheless, the Ubuntu servers replied
with error code 501 (Method Not Implemented). In conclusion, the ExPetr malware
shows much sophistication by using a different scan via the ARP method and
attempting connections with other protocols (SMB and HTTP). Nevertheless, these
payload inspections are limited to this variant in this version. If the strings are
different, these procedures will be absolute. Additionally, the strings to compare
against are obtained beforehand using reverse engineering and not in real time.

Regarding their solution, they propose similar approaches to stop worm prop-
agation as the previously discussed work. For instance, dropping all TCP packets
with destination port 445 or 139 used for the SMB protocol (Port Blocking). Addi-
tionally, they propose protocol payload inspection searching for the bitcoin address
associated with the ExPetr ransomware. The latter is extracted through reverse-
engineering the binaries, and each SMB packet on ports 139 445 is inspected for the
matching string "1 Mz715 3HMuxXTuR2R1t78mGSdzaAtNbBWX". However, they
do not elaborate on the matching strategy if it is String A == String B or match-
ing the pattern. Regarding the HTTP protocol, they inspect all the traffic for the
keyword "PROPFIND ladmin$". Any packets that contain the malicious payload
are dropped in both protocols. Later, they mention that the payload inspection has
fewer false positives than the port blocking since it is more specific.

In a similar work by Alotaibi [10], they investigate the behavior of another
ransomware named BadRabbit. They follow the same approach in the previous two
related works [6, 97] by using SDN-based network security to stop the spread of
theBadRabbit. However, their analysis system structure contains extra hosts and
is listed as follows: They used VirtualBox to host the virtual machines (VMs) for
dynamic analysis with four VMs created. The first is with REMnux as a GW, which
hosts a fake HTTP service. Two Windows 10 systems, one infected with BadRabbit

23 23

and one clean, and one Windows 7 VM. They used different clean Windows OS to
simulate different scenarios to better study the behavior of the worm in detail as
follows:

1. Scenario 1: One uninfected Windows 7 VM with a password that does not
exist in the worm’s dictionary attack list. The other is a Windows 10 VM
with the same credentials as the infected host. This is to see the propagation
techniques of the BadRabbit.

2. Scenario 2: One Windows7 not patched against the MS17-010 vulnerabilities
with an active SMBv1 authentication. The same is true for infected Windows
10 VM. This is to verify if BadRabbit did or did not exploit the EternalRomance
vulnerability [80].

3. Scenario 3: One Windows 10 VM with credentials not in the worm’s dictio-
nary attack list. We failed to understand what they meant by the following
sentence

"This has been done to monitor ransomware activity in an other-
wise well-secured network."

However, we believe they used this scenario to monitor the BadRabbit ’s be-
havior when it cannot crack the credentials for the target host.

4. Scenario 4: One Windows 10 VM with existing credentials in the worm’s
dictionary attack list. The other host is a Windows 7 with credentials missing
from the worm’s dictionary attack list. However, they need to mention the
purpose of such a scenario.

Regarding the BadRabbit propagation phase, the worm conducts a network enu-
meration to obtain the hosts on the LAN. The first enumeration is to extract the
already known hosts by using the GetExtendedTcpTable function to retrieve a table
containing a list of TCP endpoints available to the application [47]. We consider
this operation a stealthy way of retrieving all the hosts known to the machine in-
stead of scanning for them and producing network-traffic noise. However, this
does not guarantee to have all the hosts within the current LAN the infected ma-
chine is on. The second enumeration is performed using the GetIpNetTable function
to retrieve the IPv4 to physical address mapping table. From Windows Vista and
later, the GetIpNetTable2 function can retrieve the other hosts’ IP addresses [48].
The worm uses NetServerEnum to extract all the running servers’ IPs on the net-
work. The last enumeration method is by using the following Windows DHCP
APIs DhcpEnumSubnetClients, DhcpEnumSubnets, and DhcpGetSubnetInfo. We be-
lieve the worm uses them in the following order for stealth, and according to their
description on Microsoft documentation:

24 24

1. DhcpEnumSubnets: Returns an enumerated list of subnets defined on the
DHCP server [34]. This way, the worm checks if any subnets exist without
scanning blindly for subnets.

2. DhcpGetSubnetInfo: Returns information on a specific subnet [35]. The
worm can see if anything exists on the found subnet.

3. DhcpEnumSubnetClients: Returns an enumerated list of clients with served
IP addresses in the specified subnet [33]. This way, the worm will have a list
of available hosts without scanning.

If any hosts are found on the same LAN, the worm propagates using similar
methods to the ExPetr malware. I.e., it uses the infected host’s stolen credentials to
authenticate to other target hosts. They mention that the malware uses Mimikatz
tool [77] to obtain the credentials. Moreover, it uses a similar exploit against the
SMB protocol vulnerabilities (EternalRomance). Furthermore, they mention that
the BadRabbit worm component has some evasion techniques against anti-viruses
and has countermeasures against debugging. Lastly, the mitigation proposed
against the BadRabbit is similar to the previously discussed works. I.e., the de-
tection algorithms target the protocols used by the malware (SMB and HTTP and
the used ports 80, 139, and 445). Nevertheless, they suggest the usage of Honeypots
to detect the BadRabbit as it sends packets on ports 445 and 139 to all the devices on
the network. Honeypots are fake system that emulates a vulnerable service to lure
attackers into attacking it. Any connection or connection attempts (network scan)
will trigger the honeypot and raise a network alarm [107, 106]. Honeypots can be
deployed in different places in a network to serve other purposes. If the honeypot
is located behind the router, it will be an early detection system. Additionally, it
can be exposed to the Internet; in this case, it serves as a data collection tool about
the different attacks attempted on it. Similarly, honeypots have been used to collect
intelligence about malware attacks and techniques. Sethia et al. have proposed to
use Dionaea honeypot to capture malware traffic [98].

Some important worm characteristics are mentioned in [62]. They discuss the
behavior of evasive worms, where the worm could be sophisticated and act cau-
tiously to avoid detection. They define the different types of worms depending
on their behavior. The Classic Worm is the least-sophisticated type and does not
take any consideration to its environment, bandwidth, or monitoring tools. How-
ever, this is the easiest to detect due to its network burst during the enumeration.
The Evasive Worm is more sophisticated with countermeasures against analysis
systems. However, they do not mention examples of the evasive techniques, but
we assume that the evasive worm could be equipped with Anti-Analysis or Anti-
Sandbox techniques. Similarly, Eder-Neuhauser[38] et al. discuss different classes
of worms depending on their level of stealth and sophistication. They name three
types and provide the real malware names that fit this classification.

25 25

• Pandemic Malware: Aggressive malware that follows a topological-scan strat-
egy to find and infect all devices on the network in the shortest time possible.
Examples: Code Red 1 and 2, Nimda, Slammer and Conficker.

• Endemic Malware: Sacrifices speed over stealthiness and operates with a less
conspicuous hit-list and permutation-scan strategy. Examples: Regin, Duqu,
and Flame.

• Contagion Malware: Does not scan the network or initiate connections and
appends on legitimate communication flows to avoid detection. Examples:
Gauss, Equation and AdWind.

Chernikova et al. propose a cyber resiliency strategy against the WannaCry
ransomware [25]. They study the problem of how to build a resilient system and
how to configure it against SPMs. Moreover, they develop a model (SIIDR) to map
the malware’s network behavior to recognize and stop it from spreading. Again,
the paper studies the old WannaCry relying on EternalBlue vulnerability and does
not provide its cryptographic hash value. They use an anonymized dataset from
an industry partner consisting of 3.4 million nodes and 50 million links for the
dataset. Moreover, they chose to study only the traffic on ports 80 and 22 based on
the Critical Watch Report of 20191, where it states that 65% of the vulnerabilities on
TCP/UDP ports are associated with three ports: 22, 443 and 80. Regarding their
testbed environment, they built a virtual-based analysis system with the following:
One VM vulnerable to EternalBlue Windows exploit that was used in the 2017
WannaCry attack and another VM infected with WannaCry. Nevertheless, they
do not mention the number of VMs. Furthermore, the model can identify the
WannaCry spreading behavior based on two characteristics: The number of threads
(∆T) used to scan the network and the time between each scan (∆t). Concluding
with their offered mitigation, which focuses on network segmentation principles
such as Node Splitting, Edge Hardening, and Node Hardening.

In a recent work by Almashhadani et.al. [9], they built a testbed composed of
two Physical machines (PhM) with Windows7, with one of them being patient-0
and the other one clean with two VMs under its subnet. A Linux machine with
a firewall enabled captures the LAN traffic and saves it to a database. The three
machines are connected to the same subnet using a switch connected to a router.
The test exhibit is Locky, and they provided the cryptographic value. Additionally,
they allow internet access to the testbed as their analysis focuses on bidirectional
communication analysis of the Ransomware. Regarding their analysis results, they
found that Locky uses 3.77% HTTP, 7.25% DNS, and 6.05% NBNS. Additionally,
they map all the TCP traffic for the Locky Ransomware and found out that around

1https://www.newnettechnologies.com/study-finds-majority-of-port-vulnerabilitiesare-found-
in-three-ports.html.

26 26

99% is malicious. They observed numerous TCP reset (RST, ACK) packets in Locky
’s traffic used to terminate the TCP connections abnormally. Which can be used as
a metric for detection.

Regarding botnets, which are also known for their propagation ability espe-
cially targeting IoT devices [112]. Gallopeni et.al [46] have built a cluster system
to study the behavior of the Mirai botnet closely. The system is a physical single-
board computer cluster based on an ASUS-Tinker board (similar to Raspberry Pi)
to simulate Mirai-infected hosts. They used a MikroTik router running Router-OS
to have more programmatic control over the network. Additionally, they used two
separate subnets to see the propagation scheme on two different levels. Their anal-
ysis showed that the scanning behavior can be identified by the number of ARP
requests on the LAN, which can be detected by setting a threshold. Moreover, the
C&C traffic can be identified by Telnet traffic, where the bot will initiate at least
one C&C connection. Lastly, the attack commands were identified by the keyword
"detected" in the payload.

We observed the lack of UDP from all the literature we have been through.
Most of the work concentrates on TCP since the studied malware uses TCP for
scanning. However, Norwawi et.al. [71] analyze the UDP-scanning behavior of in-
ternet worms. UDP is a connectionless protocol, which means it does not require
a constant, established connection between the hosts and does not require a con-
nection setup like the TCP handshake (SYN/SYN-ACK). Nevertheless, the UDP
can still scan hosts and determine their state depending on the errors returned.
The different scan scenarios are as follows: - Open port: If the destination host re-
sponds with UDP responses, the host is up, and the port is open. - Open port with
filter: The worm sends a UDP request, but the destination host does not respond.
This indicates an open port with a filter that UDP is considered to be open with
filter [73]. - Closed port: If the destination’s port is closed, the host responds with
an ICMP Port Unreachable (ICMP type 3 code 3). - host down: If the host is down
or the IP address is not used, the router will respond with an ICMP Unreachable
Host (ICMP type 3 code 1). - time out: In case the destination host or the router
drops a packet due to a time-out. An ICMP time exceeded is generated. Moreover,
they propose the UDP Scanning Worm Detector (UDPSWD), an algorithm that can
detect hosts that scan the network using the UDP. The algorithm is based on a
counter of UDP connection error packets and compares it to a threshold. Never-
theless, they mention that this will not detect the successful UDP connection that
could be made by an infected host. Regarding their setup, they used a Windows
2000 Professional Pack 4 with an Internet connection. They do not mention details
about the worm used in the experiment nor justify some mentioned host prepa-
ration. However, we consider this work relevant as it tackles the UDP scanning
aspect of SPM.

27 27

4.1 Summary

From all the discussed work, we have evaluated the testbeds mentioned above and
their analysis performance. Moreover, we could see the evolution of the worm’s
capabilities when it comes to the propagation phase. –For instance, an upgrade
in the scanning technique by using the ARP scan and avoiding using a TCP SYN
scan, known as the Defacto of the network enumeration phase of every cyber at-
tack. Another remark is the evolution of malware scanning targets and techniques.
As discussed earlier, the worm scans the network horizontally, i.e., scans its sub-
net for other hosts. In addition to a bidirectional vertical scan, by spoofing IPs
and scanning from the Gateway level, scan the infected machine’s subnet and its
client, if any exist. During our literature review, we usually encountered VM-based
testbeds. This is because it is an easy, cheap, and scalable solution. Additionally,
the malware sample tested uses an Internet-based kill-switch and do not check the
environment for evasion techniques. We assume such a conclusion because the
malware completes the installation phase, which is the phase where the malware
will check for evasion techniques and abort installation to avoid behavioral stud-
ies. Furthermore, we encountered studies that mention the term evasive worm. To
our knowledge, this term describes worms that have evasive techniques to not be
detected during the propagation phase. However, we believe a worm can be even
more sophisticated and fingerprint the testbed network for Sandbox traces. For
instance, the worm can fingerprint how many hosts are on the network and abort
if no other hosts exist.

Chapter 5

Technical analysis

To choose from the different possibilities to build an analysis system that can moni-
tor the behavior of SPM, we conducted a search on the available technologies. From
the literature review, we encountered the usage of Virtual Machines (VMs) or phys-
ical machines as testbeds. Furthermore, we experienced using REMnux, a Linux
toolkit for reverse engineering and malware analysis. It provides a valuable collec-
tion of free analysis tools. Nevertheless, it is not an open source, and we will have
less control over the Sandbox mechanism [94]. Thus, we shifted the focus to only
open-source dynamic analysis tools. We find the two most famous when looking at
the available open-source dynamic analysis tools (Sandbox). Cuckoo and CAPEv2.
CAPEv2 is the updated version of Cuckoo Sandbox and is actively maintained,
contrary to Cuckoo, which is discontinued for maintenance and updates [29]. The
choice of using the Sandbox instead of building a program from scratch is due to
its well documented and rich with other tools that might be needed next to the net-
work traffic monitoring. For instance, memory analysis and process analysis. The
other reason is to refrain from recreating the wheel and spending time enhancing
it instead.

Each time the Sandbox analysis terminates, the testbed are returned to their
initial saved state. For the VMs, the hypervisor manages all these operations and
runs the malware analysis on a snapshot. A snapshot is an image of the OS that the
hypervisor uses to run the OS without affecting the original state. Nevertheless, the
physical testbed can be imaged locally or remotely. The local imaging is performed
by using software like DeepFreeze or similar. DeepFreeze freezes the drivers (Stor-
age HDD) and restores them to their original state [43]. If the choice is remote
imaging, the FOG-Project server can be used. FOG is a free open-source network
computer cloning and management solution. It can image Windows, Linux, and
MacOS [92]. The FOG server is considered the most secure as it keeps the testbed
image in another location and sends it to the client machine over the network. This
is another precaution if the local backup gets corrupted. To raise confidence, we

28

29 29

recommend using both solutions. Moreover, FOG uses Preboot Execution Envi-
ronment (PXE) protocol to restore the physical testbed to the initial saved state.
PXE, an industry-standard crafted by Intel, provides pre-boot services at the de-
vice firmware. PXE enables downloading network boot programs to client devices.
However, the PXE requires the physical testbed to be connected via Ethernet, as
the PXE loads before the OS. This is another limitation because it will need a LAN
switch to build a populated network with physical devices that require restoration
in case of infection.

Regarding the testbeds, we prioritized the physical testbed to save time fight-
ing against evasive techniques. As discussed earlier, some malware is equipped
with evasive techniques that can detect the existence of a VM or the Sandbox
mechanism. Hence, it will not trigger malicious code and avoid being analyzed.
Nevertheless, we also prepare a VM testbed. This is due to their easy and fast
deployment. For instance, the VM’s OS installation takes less time than a physical
device. Hence, we used VMs to prepare and test the testbed for functionalities.
Followed by documenting each step to replicate it on a physical machine. This
helped to save a lot of time.

Finally, we present the ideal scenario, where the perfect system is presented as
a coupled different entities on the same device. Nevertheless, due to the previously
mentioned limitations (physical and software), we ended up with the same system
spread over different devices. It is worth noting that this limitation does not present
any performance decrease in the system.

Figure 5.1: Ideal System topology

30 30

The components of the system are labeled with capital letters and are as follows:

• Router: Used to create an isolated subnet.

• Switch: The switch creates a LAN network due to the router’s Ethernet port
limitation (only four LAN ports).

• A: The CAPEv2 Sandbox is installed on a bare-metal host running Ubuntu
22.04.

• B: The FOG imaging server. Due to its OS limitation, we moved it to another
host.

• C: The virtual environment created by the KVM hypervisor. It contains a
Virtual testbed (in red) and at least two other VMs acting as target hosts.

• D: Secure-Onion is a network monitoring and forensics tool with various free
plugins [86].

• E: The physical testbed where the malware will be executed. Due to the FOG
imaging server requirement, this machine must be connected via Ethernet.

• F: Another physical computer acting as a target for the SPM. This machine
is imaged using the FOG server and can be restored on demand. I.e., it can
be restored only in case of infection. Hence, it does not need to be connected
with Ethernet.

• G: A Samsung Mobile connected via WiFi and running a mobile honeypot
application. This honeypot is used to alert about scans on the LAN, acts as
another target on the network, and makes it heterogeneous.

Finally, due to the encountered limitations, we set up the sandbox and its help-
ing components in separate machines to test the proof of concept. Thus, installing
all the components on one machine is scheduled as future work. The current setup
is as follows:

31 31

Figure 5.2: Current system topology

5.1 Hardware

After displaying the system’s layout and its components, we list the hardware used
in the project. The hardware is listed in the table below:

Machine CPU cores RAM Storage
ThinkStation-1 16 48GB 450GB
ThinkStation-2 24 64GB 2TB
ThinkPad 4 8GB 250GB
Laptop 1 4 4GB 465GB
Laptop 2 4 4GB 465GB
Router xx xx xx
LAN switch xx xx xx

The Thinkstation-1 is the first received hardware to build the project. It has only
one NIC (Ethernet) and hence a limitation concerning subnetting. I.e., we could

32 32

bridge the WiFi card and the Ethernet to create a subnet, where the Thinkstation-
1 can act as a router while having an Internet connection available [69]. Other
limitations concerning Security Onion are listed in section 5.3.4. Furthermore, the
Thinkstation-2 was received a bit late during the project. It has more computational
power, RAM, and storage but only has one NIC. Hence, we decided to use it to
host Security Onion instead, as we focused on testing the concept. ThinkPad is
the laptop on which FOG Server is running, as it has required RAM and storage.
Laptop-1 is the physical testbed and acts as Patient-0. Once infected with an SPM,
we expect patient-0 to start scanning the LAN for other victims to propagate to.
Once the analysis is completed, the computer is restored to the initial saved state
via the FOG server. The Laptop-2 serves as a target for the SPM propagation. We
only repair it on demand in case of infection. The number of devices to act as
targets should be at least 1. The more devices, the better.

The router creates an independent network and avoids being on the same net-
work as other fellow students. It also gives us control over the DHCP server, where
we can reserve IP addresses for the different hosts without using static IP on the
machines.

Finally, the network switch is an 8-Port 10/100/1000Mbps Desktop Switch. We
use it to overcome the 4 LAN ports limitation on the router. Nonetheless, it is plug-
and-play and does not provide Port-Mirroring capability [105]. Port mirroring
enables sending a copy of network packets sent over one switch port to another
called a monitoring port. This is a considerable limitation to our project as we
intend to collect the network traffic from the infected machine towards the entire
network. While a LAN switch will direct Unicast packets only toward its recipient.
Hence, the Sandbox can only sniff packets with its IP and will not see others.
Nevertheless, we recommend a switch with the mirror-port capability to solve this
issue. For instance, the Catalyst 3750 Switch [27] allows the configuration of a
network analysis port, where the traffic can be directed for analysis. Otherwise,
we have to collect traffic from each machine.

5.2 Network

The network section is related to our threat model, where we list the malware
capabilities and limitations and map the entire system’s network for both scenarios.
The VM analysis is a more secure approach as the Sandbox has complete control
over the VMs. Namely, the Sandbox is the Gateway for the VMs and can allow or
drop the traffic generated from the VMs toward the outside internet. Hence, when
malware tries to scan other networks, the Sandbox can drop all traffic to different
interfaces and allow only scanning on the virtual interface.

33 33

Figure 5.3: Virtual testbed network topology

Concerning the physical testbed, the Sandbox and the physical testbed are both
on the same LAN, with the following IPs 192.168.2.2 and 192.168.2.4, respectively.
This means the CAPEv2 Sandbox is visible to the malware as another host on the
same network, not its Gateway. This is due to the physical limitation we have
in our hardware. We only have one NIC and could not have a physical subnet
by bridging the two interfaces (WiFi and Ethernet). Thus, we use a router and
a switch to create a LAN. Moreover, firewall rules are adopted to minimize the
malware’s possibilities against the sandbox host machine. I.e., we cannot deny
all the traffic between the physical and the Sandbox itself. Nevertheless, we only
allow communication on the needed ports. Hence other connection attempts on
other ports are dropped. Finally, honeypots are used to alert about any network
scanning happening at the sandbox level in both the physical and the virtual setup.
Moreover, we do not use the honeypots to catch malware payload as the Sandbox
will already capture it. They are used to populate the network with targets for the
malware and create a heterogeneous network.

Figure 5.4: Physical testbed network topology

Finally, we assume that the malware can scan in all directions. It can scan the

34 34

LAN for other hosts or its DHCP server to check if it has other hosts in its subnet.
Lastly, it can scan the Gateway and its LAN for available hosts. The following
figure describes the possible malware scanning scenarios:

Figure 5.5: Possible scanning scenarios

5.3 Software

This section lists the software used in the project chronologically to follow the same
structure as in the Hardware section. It is worth mentioning that some software,
such as the Sandbox, is a coupling of different software. Nevertheless, we address
it as a single entity for simplification.

5.3.1 CAPEv2

CAPEv2 is an open-source automated malware analysis system, also known as
Sandbox. It enables automatic submission, extraction (if zipped), and execution
of sample programs (usually malware) inside a contained environment (Virtual
or physical). Below is the architecture from the official website. It only displays
the Virtual testbed option. However, the same architecture applies to the physical
testbed.

35 35

Figure 5.6: CAPEv2 architecture. Source[1]

CAPEv2 is installed on a Ubuntu 22.04 host machine. The OS version choice is
recommended by the CAPEv2 requirements [87]. However, Ubuntu 20.04 is also
supported. Nevertheless, we faced some issues with this version with the sandbox
installation and decided to leave it as future work. Moreover, CAPEv2 enables
retrieving the following information from the analysis:

• API-Trace: List of win32 API calls originating from all the processes spawned
by the malware.

• File-Trace: List all the opened, created, and deleted files created by the mal-
ware during the analysis time.

• Memory-Dump: Provides the memory dump of malware processes or the
option of obtaining the testbed machine’s full memory dump.

• Screenshots: Visual documentation of the desktop during the malware exe-
cution.

• Network-Trace: The option of obtaining the network traffic of the testbed ma-
chine. This is considered the most critical aspect of our project’s requirement,
as we focus on the network behavior of SPMs.

1https://capev2.readthedocs.io

36 36

Concerning the Virtual testbeds, the CAPEv2 official documentation recommends
using KVM-QEMU hypervisor over others as it offers better stealth than other hy-
pervisors such as VirtualBox. The Sandbox comprises four main processes and
runs as services on the host OS. Namely, cape.service is responsible for the whole
Sandbox. It manages the submission and triggers the cape-processor.service once the
analysis is done for processing. The cape-rooter.service is responsible for routing
and managing the traffic. As noted in the documentation, the cape-rooter is the
only service that runs with root privileges. Finally, the cape-web.service manages
the webserver to display data for the user. Moreover, CAPEv2 uses Postgresql by
default as the database to store the analysis data, such as Task-ID, the sample’s
cryptographic hash value (usually MD5 and SHA256), and others. While Mon-
goDB is used to keep the analysis processed data, such as network traffic files
(pcap), memory dump, process dump, and others. Below is a simplified diagram
to demonstrate the internal structure of the CAPEv2 sandbox with a virtual testbed
as an example.

Figure 5.7: CAPEv2 internal structure

Other tools are integrated with CAPEv2 and are used to obtain data, such as
tcpdump, a program to sniff the network traffic. It is a part of the system’s program,
so we do not include it in the diagram. Suricata and others are as well used by
CAPEv2. Nevertheless, the Sandbox uses it only to process data. Hence, it is
considered a plugin and not a core element of the Sandbox.

37 37

5.3.2 Testbed OS

Windows 7 is the OS for virtual and physical testbed and the clean target machines.
This choice is made upon the need to allow the testbed infection. I.e., we chose
an Operating-Systems that is known to be vulnerable to some known malware.
For instance, the SMB protocol vulnerability [74]. The earlier related work also
inspired the choice, where some Ransomware variants displayed self-spreading
abilities. Regarding the virtual testbed, we have three VMs. Patient-0 and another
clean Windows 7 VM. Next to a Windows 10 VM without user authentication to
ease malware propagation. An additional Ubuntu 22.04 server VM is added to
increase the virtual network heterogeneity.

5.3.3 FOG

FOG is a computer cloning and management solution that can capture and deploy
disk images over the network. In a dynamic malware analysis environment, it is
crucial to be able to restore a system to a clean state. The FOG Project allows us to
create clean, fully configured systems images. It is compatible with different ver-
sions of all the leading operating systems, namely Windows, Linux, and MacOS,
which can fit the diverse needs of malware analysis. FOG is designed to be scalable
and is particularly useful when multiple machines are required. Additionally, the
management is centralized, simplifying the administration of backup tasks across
multiple machines. FOG is considered more secure than other solutions, such as
DeepFreeze, as the machine images are kept in a remote location instead of locally,
eliminating the risk of the local backup image being corrupted by malware. Fur-
thermore, we can ensure a consistent configuration and state by deploying images
tailored to our needs. This consistency eliminates variations that may affect the ac-
curacy of our analysis results. It also ensures the results’ reproducibility, allowing
other researchers to validate findings and replicate experiments.

One of our first ideas was to have multiple Raspberry Pis acting as target ma-
chines, mainly due to the abundance in the university’s Lab. However, as Rasp-
berry Pis do not support PXE boot by default, FOG cannot capture and deploy
images of those. It is possible to make it work by modifying the firmware of the
Raspberry Pi and FOG’s source code. However, this is a really time-consuming
task and will derive us from the focus of our project. Hence, we decided to use
devices supported by FOG out of the box.

5.3.4 Security Onion

We use Security Onion as a monitoring tool. It is a free Linux distribution that
combines several open-source security tools, such as Zeek, Suricata, and Stenog-
rapher, into a single integrated solution. One of the core components of Security

38 38

Onion is the Security Onion Console (SOC), which serves as the primary interface
for managing and investigating security events. Security Onion is designed to be
scalable and handle large networks, which allows us to add machines at will. Fur-
thermore, Security Onion comes with predefined rules (that can be personalized)
and signatures that are used for real-time detection of malicious activities such
as network-based infections and CnC communication, but also behavioral analy-
sis making it capable of detecting derivations from normal behavior or suspicious
communication patterns. Finally, it incorporates the Elastic Stack, which collects
logs from different sources into a centralized, searchable repository. This allows us
to perform detailed forensic analysis, review network traffic, and correlate events
across other systems, even after the analysis is finished.

Security Onion provides different deployment types: Import, Evaluation, Stan-
dalone, and Distributed. The Import mode, which provides the most straightfor-
ward architecture, is a single box that runs components to import PCAP files and
analyze. It does not have any monitoring capabilities. The following architecture is
Evaluation. It has a network interface dedicated to sniffing live traffic and generat-
ing logs. It is designed for a quick installation to temporarily test Security Onion.
It is not intended for production usage. The Standalone deployment is similar to
the Evaluation. However, it will generate more logs and is suitable for testing,
labs, and POCs. It is designed for production in low-throughput environments.
The last deployment mode is Distributed, which, as the name implies, consists of
multiple nodes running sensors. It is the recommended deployment type, provid-
ing greater scalability and performance. However, it costs more upfront to set up,
as numerous machines across the network are needed. We chose the Standalone
deployment mode as it offers many integrated forensic tools within the Sandbox
ecosystem, contributing to a more effective and precise analysis.

Security Onion needs One "Management" NIC and one "Monitoring" NIC to
function correctly. The Management NIC is responsible for giving an IP address to
the Security Onion machine, where other computers in the network can access and
manage it. The Monitoring NIC has no IP address and is in promiscuous mode,
meaning it sniffs the whole network. However, this is a limitation. The ThinkSta-
tion computers we received to build this project have only one NIC. The solution
we found is to install Security Onion in a VM where 2 NICs are attached in bridge
mode to the physical network, with the Monitoring NIC being in "Promiscuous
mode -> Allow all". We also found another limitation by trial and error: This so-
lution only works with VirtualBox and not KVM. We also faced another hardware
limitation using Security Onion. Indeed, the router we were given for this project
does not support port mirroring. This dramatically limits the ability of Security
Onion to do real-time monitoring and automated analysis. However, this does not
render Security Onion totally useless, as the user can still manually import a pcap
file captured by the Sandbox for further analysis. By doing so, Security Onion will

39 39

import the pcap into the console and generate IDS alerts and network metadata,
which is more convenient for forensic analysis.

5.3.5 Malware selection

To test our Sandbox against malware to determine its accuracy and robustness, we
replicated the same experiment with the two candidates discussed in the section
Related Work [4]. Namely, the two Ransomware with the following MD5 cryp-
tographic Hash value. This will give us some data to compare to determine the
Sandbox’s functionality. Finally, we use Virushare [109] and MalwareBazre [68] as
database sources for the malware samples.

Malware Corresponding MD5
Candidate 1 db349b97c37d22f5ea1d1841e3c89eb4
Candidate 2 84c82835a5d21bbcf75a61706d8ab549

Table 5.1: SPM samples information

5.3.6 Firewall rules

To provide more security to the testbed, we set up firewall rules on three machines
in our testbed. Namely, the CAPEv2, the FOG, and the Security Onion machines.
The other machines are considered target machines and do not need security, as
the goal is to trigger malware. The firewall rules are access control mechanisms
that firewalls use to protect from unwanted traffic. In our case, we use them for
containment and isolation. The goal is to restrict malware in our specific test envi-
ronments and prevent it from spreading beyond.

For the FOG machine, we have multiple ports that need to be opened, as it
depends on some network protocols, like FTP, NFS, DHCP, and HTTPS.

PORT Usage
21 FTP - Used by FOG for file transfer and to move and rename image

files at the end of image capture.
80/443 HTTP/HTTPS - used by FOG for client-to-server communication.

111 RPCBIND - Used by FOG to help clients to determine the ports on
which other services in the system are running.

2049 NFS - Used by FOG for image capture and deployment.
3306 MySQL - The database holding information and metadata about hosts

and images.

Table 5.2: FOG machine required open Ports

40 40

Regarding the CAPEv2 Sandbox, the machine needs to allow communication
on port 8000 (HTTP) - for the Agent.py. Port 2042 (HTTP) must also be open for the
result server, which receives data from the testbeds. We do not want any incoming
connections to the machine for Security Onion. Hence, all incoming connections
on all ports are denied.

As it can be seen in figure [D.2], the port 22 is opened on all physical machines.
It is used to connect to the devices remotely and perform administration tasks. It is
used primarily for debugging purposes. Under analysis, we recommend that port
22 be closed on all machines. However, it is not mandatory as SSH is protected by
public key encryption and, in this case, a substantial 12 characters password.

5.3.7 Honeypots

Honeypots To Go, or HosTaGe, is a low-interaction mobile honeypot that aims at
porting the honeypot technology into smartphones. It helps detect malicious or
compromised WiFi networks by simulating a vulnerable application and attracting
adversaries. It can emulate the following protocols as of the latest version: AMQP,
COAP, ECHO, FTP, HTTP, HTTPS, MySQL, MQTT, MODBUS, S7COMM, SNMP,
SIP, SMB, SSH, SMTP, and TELNET [1]. Moreover, we ensure the mobile’s OS
where HosTaGe is installed is the latest version. Finally, we use the honeypot to
populate the network with heterogeneous devices. Nevertheless, we recommend
activating all the protocols supported to enhance the chance of malware-honeypot
interaction. This can be done by choosing the service Vigilant, or by selecting the
Windows 7 profile to simulate a vulnerable Windows7 machine:

(a) Vigilant Profile (b) Windows 7 profile

Figure 5.8: HosTaGe suggested profiles

41 41

5.4 Implementation

The CAPEv2 Sandbox documentation is well documented in general and detailed
around the Sandbox usage. However, some steps and crucial setup can hinder
functionality. This section gives a detailed installation guide and troubleshoots
some installation conflicts. The CAPEv2 team clearly states that their installation
script is not a silver bullet. Moreover, CAPEv2 is maintained in a rolling manner.
I.e., there is no release or version. Once you install it, you will pull the latest repos-
itory from GitHub [88]. Finally, our contribution will decrease the time needed to
install, configure and test CAPEv2 Sandbox to less than one hour.

5.4.1 Milestone 1: Prepare the host

The host OS choice is due to our experience with the Linux platform and due to
the continuous security updates support for Ubuntu 22.04. Furthermore, we used
Ubuntu 22.04 with minimal installation configuration. This is to ensure that all
packages are correctly installed. Both to free memory and avoid package conflicts.
Once done, we recommend installing Timeshift as a backup and recovery tool. It
will help keep a snapshot of the system and recover if the Sandbox installation
fails. Next is to equip the host with some tools and packages required to build the
KVM-QEMU hypervisor. The dependencies are collected in one install script[A.1].
Followed by installing the KVM-QEMU hypervisor. The CAPEv2 documentation
offers an install script, but we wrote our own to avoid errors. See the appendix for
the installation script[A.2]. Once the installation and reboot finish, we recommend
taking a snapshot with Timeshift after verifying that the virtual manager works
appropriately. Now the host is prepared for the Sandbox installation. To install the
Sandbox, we used the script provided by CAPEv2 on github [88]. Nevertheless,
we modified it slightly to avoid errors and some installation miss-configurations.
For instance, some dependencies needed to install MongoDB are omitted, breaking
the installation flow. Leading to a broken Sandbox installation with many errors.
Additionally, we add some Postgresql database commands to correct the user’s
permission. The Sandbox’s user needs to be an admin to create, write, and delete
tables from the database. The modified script is available on this link[2], as it is
very long to add to the appendix. After the installation is complete, a reboot is
recommended.

5.4.2 Milestone 2: Prepare the testbeds

During our experimentation with CAPEv2 Sandbox, we discovered that only the
Windows 7 32bit version works, and we decided to keep the documentation in

2https://drive.google.com/file/d/1VnAdzZbOJTnzL7rSAocxbd9WiKyIzFwe/view?usp=sharing

42 42

detail. Aiming to reduce the time required to prepare a testbed. Most of the
download links from Microsoft do not exist anymore. Hence we used the web
archive to find one. We recommend having a physical machine with at least 4
CPU cores and a minimum of 8GB RAM or a virtual machine with those exact
requirements, as we experienced good performance with these values. We must
first install the base OS - Windows 7 32bit. Second, we must install the software
needed to run the Sandbox - .Net Framework, Python3 32bit, CAPEv2 agent, and
re2 Python library, among others. Complete installation, configuration steps, and
details are in the appendix [B].

5.4.3 Milestone 3: Configure the Sandbox & Troubleshooting

After the testbeds are ready, we start configuring the Sandbox and fix upcoming
issues. We first begin to modify CAPEv2 configuration files used to configure the
general behavior of the Sandbox and the analysis options. As stated by CAPEv2
in the documentation, the automated installation of CAPEv2 uses third-party de-
pendencies that change frequently and can break the installation. Hence, we must
check the installation and CAPE service logs and fix the issues ourselves. While
experimenting with the installation script, we encountered some issues with Mon-
goDB, poetry, and Detect It Easy. Details concerning Sandbox configuration and
issues troubleshooting are attached in the appendix [C].

5.4.4 Milestone 4: Integrating The SPM analysis support

We must create and configure multiple hosts on the physical and virtual systems
to make the environment suitable for malware propagation. The essential part of a
good analysis is patient-0, where the malware has memory access. Hence, the VM
should be with as few artifacts as possible. For instance, the VM virtual hard drive
should be more than 60GB to avoid triggering the storage evasion technique [42].
Nevertheless, the other target hosts are not bound by this restriction since the mal-
ware is expected to only do network fingerprinting. We build multiple VMs with
the minimum space to support an Operating-System. For Windows 7 and 10 32bit
OS, 1 gigahertz (GHz) or faster x86 Processor, 1 GB RAM, and 16 GB available hard
disk space [76]. We build the target VMs with 20GB each with 5GB extra for addi-
tional software. The Ubuntu server VM has 10GB of storage. Furthermore, using
different VMs with different OS makes the virtual network heterogeneous and will
help study the malware in a better fashion. I.e., it could expose some hidden mal-
ware capability, where the malware tries to spread to different platforms. This is an
effort to advise towards heterogeneous networks, as most of the encountered work
does provide only a non-heterogeneous environment. Below is a snippet of the
KVM GUI showing all the target hosts prefixed with SPM next to the testbed VM
win7x86pro. We allow the network sharing option in the spm1_win7x86home to open

43 43

some connections ports that are used by some Ransomware variants to spread, as
witnessed in the related work section [97], where the WannaCry Ransomware uses
the SMB protocol to carry the attack.

Figure 5.9: VM-Testbed and other target hosts

Concerning the physical system, we use multiple machines, as discussed in sec-
tion [5.1]. We enable the Windows Home-Group network sharing option on both
systems. This will allow the SMB vulnerability known for the two Ransomware
samples we choose as candidates. Namely ensuring that the Sandbox can moni-
tor the SMB interaction and we can verify and validate by looking at the network
traffic. A full scan of both networks can be found in the appendix [D.1] and [D.2]
Furthermore, we conduct network forensics and remove the VM network artifacts.
During the SPM integration, we see a technical problem with the MAC Addresses
of the VMs. The KVM-QEMU uses the 52:54:00 identifier, and we do not want the
malware to be able to fingerprint the hosts using this artifact. Hence, we change
the identifier to DC:53:60, the MAC Address identifier for Intel. We need to do this
for each VM.

1 Nmap scan report for Jason-PC (192.168.122.218)
2 Host is up (0.0010s latency).
3 Not shown: 991 filtered ports
4 PORT STATE SERVICE
5 ...
6 MAC Address: 52:54:00:79:1E:A6 (QEMU virtual NIC)

Listing 5.1: Nmap scan results of the target VM

44 44

Additionally, the malware can fingerprint the default virtual gateway as shown
below:

1 Nmap scan report for Station0 (192.168.122.1)
2 Host is up (0.00019s latency).
3 Not shown: 995 closed ports
4 ...
5 MAC Address: 52:54:00:15:C5:A2 (QEMU virtual NIC)

To remove this network artifact, we need to change the KVM-QEMU MAC address
to F8:D1:11, which is the identifier of the TP-LINK vendor [66]. We emphasize
changing the MAC address of the virtual interface to something similar to a router
so it matches the network topology and enhances the heterogeneous network sim-
ulation. Regarding the physical testbed, the network is already heterogeneous
enough with different OS and devices (Mobile Phones). Furthermore, the file to
modify is at /etc/libvirt/qemu/networks/default.xml. Consequently, the hosts will dis-
play the real provider’s MAC address as shown from the nmap scan below. The
full scan results are included in the appendix[D.1].

1 # Qemu-Kvm Bridge (GATEWAY)
2 Nmap scan report for Station0 (192.168.122.1)
3 Host is up (0.000097s latency).
4 Not shown: 994 closed ports
5 PORT STATE SERVICE
6 ...
7 MAC Address: F8:D1:11:15:C5:A3 (Tp-link Technologies)
8 # win7x86pro (Patient-0)
9 Nmap scan report for 192.168.122.5

10 Host is up (0.00017s latency).
11 Not shown: 990 closed ports
12 PORT STATE SERVICE
13 ...
14 MAC Address: DC:53:60:18:97:37 (Intel Corporate)

After preparing the network environment to be heterogeneous, we need to
modify the CAPEv2 source code to adapt it for the SPM analysis. To do so, we
had to investigate the source code to find the script responsible for the submission.
Namely in the submit.py Python script. This script can be used by the user or
via the Web-GUI. Moreover, to modify the implementation without changing the
sandbox default behavior, we chose to follow the CAPEv2 developer’s approach,
and these are the following steps:

Create the spm.conf file, a configuration file where we can list the names of the
SPM VMs. The file is formatted as follows:

45 45

1 [spm]
2 # list of the spm-machines from [virsh list --all]
3 machines = spm1_win7x86home,spm2_win10x86

Now, we modify the submit.py to support an additional argument as follows: We
first import the module Config and read the spm.conf to load the SPM-VMS list.

1 # Import the spm conf file for reading
2 from lib.cuckoo.common.config import Config
3 spm_conf = Config("spm")

Next, we add the argument –spm to the argument parser of the submit.py, making
it accessible from the command line.

1 # adding the SPM argument >> execute the command [virsh start {
↪→ VM_NAME}]

2 parser.add_argument("--spm", action="store_true", default=False,
↪→ help="Spin other VMs for Self-Propagating-Malware SPM",
↪→ required=False)

The last step is to find the code line where the submission occurs. The following
code snippet is added after the check for remote is false. We do a for loop and spin
all the SPM-VMs using the KVM-QEMU command.

1 if args.remote:
2
3 else:
4 if args.spm:
5 vms_list = spm_conf.spm.machines.split(",")
6 for i in vms_list:
7 print(f"VM name: {i}")
8 subprocess.run([’virsh’,’snapshot-revert’,’--domain’,f"{

↪→ i}","--snapshotname","snapshot1"])

Regarding the safety of the clean VMs, if they get infected by the malware, we
run only a snapshot of the VM. This will ensure any memory change is discarded
by the hypervisor. Finally, we automate the Sandbox’s submission process. We
provide the spm_submit.sh script to do so. The script will prompt about the file or
the folder path, then execute the submission. It is worth mentioning that this SPM
automation is only feasible on the VMs as we have complete control. While this
is not the case regarding the physical hosts. I.e., we cannot turn on a computer
remotely, limiting the automation. Nevertheless, the machines can go to sleep
mode to save energy, and FOG can use WAKE-ON-LAN API to bring them back
to operational mode.

46 46

1 echo "Please provide the sample path:"
2 read path
3 echo "Submit To specific Machine? Y:N"
4 read x
5 if ["$x" = "Y"]; then
6 echo "Provide machine name"
7 cd /opt/CAPEv2
8 read y
9 poetry run python3 utils/submit.py --spm --enforce-timeout --

↪→ Machine $y $path
10 else
11 cd /opt/CAPEv2
12 poetry run python3 utils/submit.py --spm --enforce-timeout $path
13 fi

5.4.5 Milestone 5: Prepare the backup tool

FOG Project has a client-server architecture. The server is responsible for manage-
ment and storage, while the client links the physical machine to the server. The
server has to be configured and running before the client can register. FOG Server
is made to be installed on RedHat-based and Debian-based distributions such as
CentOS, Fedora, or Ubuntu. We chose Ubuntu, an OS we have experience with,
specifically version 20.04, as recommended by the FOG Project itself. We are ready
to start installing the FOG server when our base distribution is installed. The in-
stallation steps are listed in the appendix [E.1]. When the server is up and running,
we can install the FOG client and prepare physical machines for imaging and re-
covery by following the steps specified in the appendix [E.2]. When all those steps
are performed, we can run malware on our physical machines and restore them to
a clean state.

5.4.6 Milestone 6: Prepare the monitoring tool

To set up our monitoring tool, we first need to create a VM in VirtualBox with at
least the following requirements: 12GB RAM, 4 CPU cores, 200GB of storage, and
2 NICs. As explained in section 5.3.4, one NIC has to be in promiscuous mode
and allow sniffing of all machines, as shown in the appendix [F.1]. That will be
the interface we use for monitoring. The other interface does not need that and
will be used for management. Both interfaces are in bridge mode. VirtualBox’s
bridged networking creates a new network interface in software. The host can
send data to the guest through that interface and receive data from it. This is very

47 47

convenient in our case, as it enables us to have multiple VMs on the same host
with different physical IP addresses and can communicate with one another and
the host, allowing us to circumvent certain hardware limitations.

By trial and error, we found that the installation must be done on VirtualBox
to circumvent the hardware limitations we face. This is because KVM’s bridge
mode is different from VirtualBox. Security Onion’s official documentation also
recommends VirtualBox or VMWare as hypervisors of choice.

However, this leads to software limitations. Indeed, as KVM and VirtualBox
are two different hypervisors, they can not run simultaneously on one machine.
As KVM is used for the virtualized system, the VirtualBox Security Onion VM has
to run on another physical system. Hence, the virtual system’s real-time monitor-
ing is impossible for Security Onion. Nonetheless, we can still capture the traffic
using the CAPEv2 Sandbox and tcpdump, and Security Onion can still be used for
forensics.

When the VM settings are done, we can start the installation of Security Onion.
That can be done on a CentOS 7 or Ubuntu 20 OS or using the Security Onion
ISO directly. The complete installation and configuration steps are in the appendix
[F.2].

Finally, we recommend backing up all the critical machines’ memory to have
a backup in case of memory damage due to malware propagation. Namely the
CAPEv2 Sandbox machine and the Security-Onion ones. Moreover, we recommend
using DeepFreeze or backing up the ready FOG server machine into an isolated
hard drive for security purposes. This way, we avoid losing all the backups if the
FOG machine is damaged.

5.5 Test and Validation

Test and validation are crucial steps in our system implementation. It helps us
identify eventual bugs and errors, as well as ensuring that the system is reliable
and consistent. To ensure that we walk through all the components test, we follow
the chronological order in which they are introduced.

5.5.1 Sandbox Test

The testing steps are listed in chronological order. The first step is to test the Sand-
box itself. Firstly, we test that the sample programs are submitted and executed.
This will ensure that the Sandbox runs appropriately from start to end and ensure
accurate analysis results. Namely, we encountered inaccurate data several times
due to an unhandled or missing package in the testbed, interrupting the analysis
as shown below.

48 48

(a) RE2 conflict error

(b) Networking related exceptions

Figure 5.10: VM testbed unhandled exceptions

49 49

We built a small application that simulates malware to avoid such a scenario.
A client-server application. The server application is submitted to the Sandbox
for analysis. While the client is continuously attempting to connect every 2 sec-
onds to the testbed machine. Once the server executes on the testbed machine, it
opens port 5000, and a TCP connection is established, simulating the Control and
Command (CnC) used by malware. As the server receives a connection, it replies
with a defined message. Indicating that the sample was executed on the testbed.
Furthermore, we collect the network traffic during the analysis as a dataset.

(a) Physical Machine testbed

(b) Virtual Machine testbed

Figure 5.11: Server-Client Sandbox execution proof

50 50

After ensuring a working Sandbox, the next step is to test for our SPM inte-
gration. Before running malware, we decided to make an nmap scan to simulate
malware scanning the network. The virtual network consists of the following hosts:
The testbed VM with the only static IP 192.168.122.5 and 3 other VMs. All the other
hosts are left to use DHCP to obtain an IP from the hypervisor. We use the Ubuntu
server at [192.168.122.101] to scan the virtual network while we submit the Sever-
Client application for analysis. We verify the network traffic and see that the nmap
scan can be seen as shown below. For instance, the scan on port 139. For other
functionalities, such as detection and other plugins, we append figures showing
the results of the tests G.3. It is worth mentioning that the physical testbed does
not display the entire network traffic due to the LAN-Switch limitation and will
not display traffic directed to other hosts.

(a) Physical Machine testbed

(b) Virtual Machine testbed

Figure 5.12: Nmap scan network proof

Moreover, we test the Sandbox with the two selected malware. This ensures that

51 51

the Sandbox detects the malicious behavior of malware and labels it accordingly.
Additionally, we test with the same malware and compare the behavior to deter-
mine the results’ accuracy and the Sandbox’s functionality. As displayed below,
we see the malware scanning behavior clearly. Additionally, we see the exact do-
main name resolution www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com, which is a
kill-switch designed to check for network connectivity and detect DNS Sinkholes.

(a) Physical Testbed

(b) VM testbed

Figure 5.13: Wannacry TCP sweep-scan

52 52

(a) DNS kill-switch

(b) ARP scan

(c) SMB connection attempts

Figure 5.14: Wannacry scanning sophistication

53 53

We can observe the exact behavior of the malware on both, as the scanning
method is different on the local network. The Worm uses the ARP protocol to scan
the network and initiate connections to the available ones using the SMB protocol.

The last test was to verify if the different platform analyses could also be used
to identify the evasive behavior of the malware. We did test the two selected
malware and other variants of WannaCry on both platforms. We observed a higher
VirusTotal score and accurate labeling when using the physical machine. We relate
this to the malware’s evasive techniques against the VM platform. We recommend
adopting the same approach of testing malware on different platforms. Namely,
to have different data to compare and to discover if the malware is equipped with
evasive techniques.

Figure 5.15: Physical Vs VM test results comparison

It is worth mentioning that the physical machine is ideal for evasive techniques
as it produces fewer artifacts than the VM. However, the Sandbox does not have
complete control over the machine. This can be confirmed when submitting the
Wannacry variants on the physical machine. After a few seconds from the malware
execution, the CAPEv2 fails to reboot the device via the FOG task. This leads to
the machine hanging in the Shutting-Down screen. We believe this is due to the
malware disabling something or scheduling a task the system fails to kill. To fix
this, we need to force the shutdown of the physical machine to complete the FOG
restoration procedure. Followed by a Sandbox reset to allow pending task if any:

1 sudo systemctl restart cape.service cape-processor.service cape
↪→ -rooter.service cape-web.service

5.5.2 FOG test

In order to test if FOG is working as intended, we first test the capture and de-
ploy process on a single machine. These can be launched through the FOG Web
Interface.

54 54

Figure 5.16: Host task scheduler - FOG Server

When those operations are successful, we can move on and test FOG’s integra-
tion with CAPEv2. We change CAPEv2’s configuration to use a physical machine.
However, we submitted the server-client application used to test the Sandbox in-
stead of submitting malware. CAPEv2 does the analysis, and when it timeouts, it
notifies the FOG server, which commands the target machine to reboot and restore
the system to the captured state. We know this step is successful by looking at the
target machine in its restoration phase, as shown in figure [5.17], and the CAPEv2
logs. The logs show the interaction between CAPEv2 and FOG.

Listing 5.2: CAPE service logs for the Physical testbed

1 # -- Machine reboot logs --
2 May 31 11:42:09 Station0 python3[49427]: DEBUG:modules.machinery.

↪→ physical:Socket killed from analysis machine due to reboot
3 May 31 11:42:09 Station0 python3[49427]: 2023-05-31 11:42:09,680 [

↪→ modules.machinery.physical] DEBUG: Socket killed from
↪→ analysis machine due to reboot

4 # -- Restore operation logs --
5 May 31 11:42:09 Station0 python3[49427]: DEBUG:modules.machinery.

↪→ physical:Restore operation for Mo still running
6 May 31 11:42:29 Station0 python3[49427]: 2023-05-31 11:42:29,905 [

↪→ modules.machinery.physical] DEBUG: Restore operation for Mo
↪→ still running

7 May 31 13:03:50 Station0 python3[49427]: DEBUG:lib.cuckoo.core.
↪→ resultserver:Task 8: Stopped tracking machine 192.168.2.4

8 May 31 13:03:50 Station0 python3[49427]: INFO:lib.cuckoo.core.
↪→ scheduler:Disabled route ’internet’

9 # -- Analysis logs --
10 May 31 13:03:50 Station0 python3[49427]: DEBUG:lib.cuckoo.core.

↪→ scheduler:Task 8: Released database task with status True
11 May 31 13:03:50 Station0 python3[49427]: INFO:lib.cuckoo.core.

↪→ scheduler:Task 8: analysis procedure completed

55 55

During our first tests with the FOG backup solution, we noticed that captur-
ing and deploying images took a long time. This was because we captured and
deployed the whole C drive of the machine, taking up to 100GB of storage and
more than one hour to complete. To shrink the size of the images and speed up
the process, we decided to split the hard drive into two different drives, namely C
and D. With C drive having enough storage to support Windows 7 installation and
all the software for the sandbox. While D has the rest storage. This has reduced
the image size to 21GB (after compression) and the time to complete a task to less
than 5 minutes, as shown in figure [5.17]. However, this approach will trigger one
evasive technique known by the community, where an evasive sample will check
the machine’s storage size and raise a flag if the storage is less than 60GB [95]. This
is a snapshot of the Pafish trace on our physical machine.

1 [-] Generic sandbox detection
2 [*] Checking username ... OK
3 [*] Checking file path ... OK
4 [*] Checking common sample names in drives root ... OK
5 [*] Checking if disk size <= 60GB via DeviceIoControl() ... OK
6 [*] Checking if disk size <= 60GB via GetDiskFreeSpaceExA() ...

↪→ traced!
7 [*] Checking if Sleep() is patched using GetTickCount() ... OK
8 [*] Checking if NumberOfProcessors is < 2 via PEB access ... OK
9 [*] Checking if NumberOfProcessors is < 2 via GetSystemInfo() ...

↪→ OK
10 [*] Checking if pysical memory is < 1Gb ... OK
11 [*] Checking operating system uptime using GetTickCount() ... OK
12 [*] Checking if operating system IsNativeVhdBoot() ... OK

Listing 5.3: Pafish trace on the physical testbed

However, it will only trigger 1 out of 2, as shown above. The only solution to
remove this artifact is to sacrifice the restoration speed and upgrade the C drive to
over 60GB.

56 56

Figure 5.17: Restoring the target machine

5.5.3 Security Onion Test

To test our monitoring tool, we want to ensure it works correctly. To do so, we can
check the Security Onion Console and the status command output. The Security
Onion Console shows that the expected machines are present according to their
IP addresses, as shown in the following image. That means that Security Onion
effectively monitors the physical network in real-time.

Figure 5.18: Identified IPs from Security Onion

The IP address 192.168.2.8 is the most present as it is the physical machine on
which Security Onion is installed, and it acts as a gateway for the Security Onion

57 57

VM.
Second, we type the following command in the Security Onion VM.

1 sudo so-status

Listing 5.4: Command to see the status of our Security Onion machine

That command gives us a positive result, as shown in the appendix [G.1], which
means everything works as intended.

The next thing is to test to which extent it is possible to monitor the traffic
from the Security Onion VM. To do so, we use a classic nmap scan from a physical
device in the network.

1 sudo nmap -sS -Pn 192.168.2.0/24

Listing 5.5: Nmap scan command

That command will tell nmap to scan the whole network, replicating one of the
possible malware behavior. In appendix [G.2], which shows screenshots from the
Security Onion Console, we can see the machine with the IP address 192.168.2.2
is scanning multiple ports of the device with IP address 192.168.2.8. Furthermore,
we can see alerts relating to the same network scan. Hence, the scanning behavior
is indeed detected in Security Onion.

For the virtual system, as it is impossible to have Security Onion monitor the
virtual network due to hardware and software limitations, we use the tcpdump
command as follows:

1 tcpdump -i [interface] -w [filename].pcap

Listing 5.6: Tcpdump command

Tcpdump will capture full-size packets on the specified interface and write them
into the specified file. Despite being unable to capture the traffic from the virtual
system in real-time, Security Onion can be used after the analysis to analyze pcap
files captured on the virtual system.

For the physical system, monitoring the traffic from the whole network is im-
possible due to hardware limitations, as specified in section [5.3.4]. The only scan-
ning behavior we can monitor is to our specific machine, 192.168.2.8, as shown in
the appendix [G.2].

Finally, we tested Security Onion with real malware samples that we selected.
Security Onion successfully flags the malicious behavior and generates expected
alerts. The malware is identified as a WannaCry variation, using Eternal Blue
vulnerabilities.

58 58

Figure 5.19: Security Onion generated alerts - Real Malware

The user can further investigate those alerts. The information found is the
source IP and port, the destination IP and port, the exact packet(s) that triggered
the rule, the rule, and the timestamp, among others. As mentioned in section
[5.3.4], those logs are stored in the Elastic Stack, which is responsible for keeping all
logs and making them searchable. The Security Onion web interface incorporates
Kibana, a data visualization tool for the Elastic Stack. Data is searchable and can
be exported into a desired format for future use by a machine learning model.

Chapter 6

Discussion & Conclusion

The sandbox technology is very promising, especially with its both testbed possi-
bility. This research studies the different behavior of malware on various platforms
and identifies evasive malware. Moreover, it is a complex system and can some-
times be a cumbersome process to set up and tune, or at least we encountered
many issues after the installation phase. Nevertheless, the time can be reduced to
only an hour, saving the researchers time on fine-tuning instead of debugging the
Sandbox. Moreover, we guarantee that our documentation will result in a fully
functional Sandbox with the SPM integration for both VM and Physical Sand-
box. Furthermore, the Sandbox is still in progress and many new tools have been
added, making it an excellent platform for SPM analysis. Nevertheless, we rec-
ommend spending more time fine-tuning the Sandbox and eliminating artifacts
that could be detected by the malware and hinder the analysis results, precisely
any artifact related to the network setup. –For instance, MAC addresses for the
VMs, the Virtual Gateway, and the VM hostnames to simulate a subnet with a
router. The better simulation, the higher chance of deceiving the malware. We
acknowledge that we did not focus on introducing a Linux or another OS testbed.
Nevertheless, we do not think it is a crucial requirement and could be planned as
future work. Regarding Sandbox’s test, we successfully tested its functionality and
provided evidence of bug-free runtime. Eventually, this guarantees a successful
malware analysis. Additionally, the Sandbox has passed successful malware tests
on the physical and virtual testbeds and has recovered entirely from the WannaCry
disk damage. Indicating a well-functioning FOG imaging server and ensuring the
system’s robustness. Moreover, the Sandbox offers the network traffic as a dataset
to be saved and processed with the monitoring tool of choice.

Eventually, we successfully implemented a test environment with multiple
hosts on the LAN. The test environment is also reproducible and effectively col-
lects network evidence from SPM analysis. Furthermore, it is heterogeneous as
it is compromised of various versions of different operating systems. Software

59

60 60

and hardware limitations significantly limit the Security-Onion monitoring tool,
rendering its use disputable. However, if the constraints are overcome, it is an
excellent addition to the dynamic malware analysis system. Indeed, it enables the
system to collect more logs and perform forensics analysis on that out-of-the-box.

Finally, for the SPM analysis system, we believe the AAU LAB should consider
purchasing professional network monitoring tools that could be easily integrated.
For example, A LAN switch with port mirroring capability would reduce the com-
plexity of the analysis system and the network. Moreover, the Sandbox-SPM inte-
gration is feasible and can offer more data than building the analysis system from
scratch. Finally, we suggest the enhancement of the Sandbox as future work to min-
imize the artifacts produced by the Sandbox installation and communication. –For
instance, the FOG imaging server and the CAPEv2 Sandbox use non-encrypted
communication (HTTP/FTP). While an encrypted communication will obfuscate
the payload, and no malware cannot be fingerprint it.

Bibliography

[1] AAU-Net-Sec. HosTaGe. 2023. url: https://aau-network-security.github.
io/HosTaGe/.

[2] Adel Abusitta, Miles Q. Li, and Benjamin C.M. Fung. “Malware classifica-
tion and composition analysis: A survey of recent developments”. In: Jour-
nal of Information Security and Applications 59 (2021), p. 102828. issn: 2214-
2126. doi: https://doi.org/10.1016/j.jisa.2021.102828. url: https:
//www.sciencedirect.com/science/article/pii/S2214212621000648.

[3] ADVANCED PERSISTENT THREAT (APT). 2023. url: https://www.crowdstrike.
com/cybersecurity-101/advanced-persistent-threat-apt/.

[4] Advanced Persistent Threats (APTs). 2023. url: https://www.mandiant.com/
resources/insights/apt-groups.

[5] Amir Afianian et al. “Malware Dynamic Analysis Evasion Techniques: A
Survey”. In: ACM Comput. Surv. 52.6 (Nov. 2019). issn: 0360-0300. doi: 10.
1145/3365001. url: https://doi.org/10.1145/3365001.

[6] Maxat Akbanov, Vassilios G. Vassilakis, and Michael D. Logothetis. “Ran-
somware detection and mitigation using software-defined networking: The
case of WannaCry”. In: Computers & Electrical Engineering 76 (2019), pp. 111–
121. issn: 0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2019.
03.012. url: https://www.sciencedirect.com/science/article/pii/
S0045790618323164.

[7] RANDI EITZMAN ALEX BERRY JOSH HOMAN. WannaCry Malware Pro-
file. 2021. url: https://www.mandiant.com/resources/blog/wannacry-
malware-profile.

[8] Kamal Alieyan et al. “Botnet and Internet of Things (IoTs): A definition, tax-
onomy, challenges, and future directions”. In: Research Anthology on Combat-
ing Denial-of-Service Attacks. IGI Global, 2021, pp. 138–150.

61

https://aau-network-security.github.io/HosTaGe/
https://aau-network-security.github.io/HosTaGe/
https://doi.org/https://doi.org/10.1016/j.jisa.2021.102828
https://www.sciencedirect.com/science/article/pii/S2214212621000648
https://www.sciencedirect.com/science/article/pii/S2214212621000648
https://www.crowdstrike.com/cybersecurity-101/advanced-persistent-threat-apt/
https://www.crowdstrike.com/cybersecurity-101/advanced-persistent-threat-apt/
https://www.mandiant.com/resources/insights/apt-groups
https://www.mandiant.com/resources/insights/apt-groups
https://doi.org/10.1145/3365001
https://doi.org/10.1145/3365001
https://doi.org/10.1145/3365001
https://doi.org/https://doi.org/10.1016/j.compeleceng.2019.03.012
https://doi.org/https://doi.org/10.1016/j.compeleceng.2019.03.012
https://www.sciencedirect.com/science/article/pii/S0045790618323164
https://www.sciencedirect.com/science/article/pii/S0045790618323164
https://www.mandiant.com/resources/blog/wannacry-malware-profile
https://www.mandiant.com/resources/blog/wannacry-malware-profile

62 62

[9] Ahmad O. Almashhadani et al. “A Multi-Classifier Network-Based Crypto
Ransomware Detection System: A Case Study of Locky Ransomware”. In:
IEEE Access 7 (2019), pp. 47053–47067. issn: 2169-3536. doi: 10.1109/ACCESS.
2019.2907485.

[10] Fahad M. Alotaibi and Vassilios G. Vassilakis. “SDN-Based Detection of
Self-Propagating Ransomware: The Case of BadRabbit”. In: IEEE Access
9 (2021), pp. 28039–28058. issn: 2169-3536. doi: 10.1109/ACCESS.2021.
3058897.

[11] Originally Jeffrey Beall updated by anonymous. Beall’s list. 2021. url: https:
//beallslist.net/.

[12] Anti-debugging and anti-VM techniques and anti-emulation [updated 2019]. url:
https://resources.infosecinstitute.com/topic/anti-debugging-and-
anti-vm-techniques-and-anti-emulation/.

[13] Kalyan Anumula and Joseph Raymond. “Adware and Spyware Detection
Using Classification and Association”. In: Proceedings of International Confer-
ence on Deep Learning, Computing and Intelligence: ICDCI 2021. Springer. 2022,
pp. 355–361.

[14] Mike Azzara. What is WannaCry Ransomware and How Does It Work? May
2021. url: https://www.mimecast.com/blog/all-you-need-to-know-
about-wannacry-ransomware/.

[15] Bojana Bakić et al. “10 years since Stuxnet: What have we learned from this
mysterious computer software worm?” In: 2021 25th International Conference
on Information Technology (IT). Feb. 2021, pp. 1–4. doi: 10.1109/IT51528.
2021.9390103.

[16] Farrah Kristel Batista, Angel Martín del Rey, and Araceli Queiruga-Dios. “A
New Individual-Based Model to Simulate Malware Propagation in Wireless
Sensor Networks”. In: Mathematics 8.3 (2020). issn: 2227-7390. doi: 10.3390/
math8030410. url: https://www.mdpi.com/2227-7390/8/3/410.

[17] Farrah Kristel Batista, Angel Martín del Rey, and Araceli Queiruga-Dios.
“A Review of SEIR-D Agent-Based Model”. In: Distributed Computing and
Artificial Intelligence, 16th International Conference, Special Sessions. Ed. by En-
rique Herrera-Viedma et al. Cham: Springer International Publishing, 2020,
pp. 133–140. isbn: 978-3-030-23946-6.

[18] PAUL BISCHOFF. Ransomware attacks cost the US 159.4bn in downtime alone in
2021. July 2022. url: https://www.comparitech.com/blog/information-
security/us-ransomware-attacks-cost/.

[19] Adam Borys et al. “An Evaluation of IoT DDoS Cryptojacking Malware
and Mirai Botnet”. In: 2022 IEEE World AI IoT Congress (AIIoT). June 2022,
pp. 725–729. doi: 10.1109/AIIoT54504.2022.9817163.

https://doi.org/10.1109/ACCESS.2019.2907485
https://doi.org/10.1109/ACCESS.2019.2907485
https://doi.org/10.1109/ACCESS.2021.3058897
https://doi.org/10.1109/ACCESS.2021.3058897
https://beallslist.net/
https://beallslist.net/
https://resources.infosecinstitute.com/topic/anti-debugging-and-anti-vm-techniques-and-anti-emulation/
https://resources.infosecinstitute.com/topic/anti-debugging-and-anti-vm-techniques-and-anti-emulation/
https://www.mimecast.com/blog/all-you-need-to-know-about-wannacry-ransomware/
https://www.mimecast.com/blog/all-you-need-to-know-about-wannacry-ransomware/
https://doi.org/10.1109/IT51528.2021.9390103
https://doi.org/10.1109/IT51528.2021.9390103
https://doi.org/10.3390/math8030410
https://doi.org/10.3390/math8030410
https://www.mdpi.com/2227-7390/8/3/410
https://www.comparitech.com/blog/information-security/us-ransomware-attacks-cost/
https://www.comparitech.com/blog/information-security/us-ransomware-attacks-cost/
https://doi.org/10.1109/AIIoT54504.2022.9817163

63 63

[20] Azzedine Boukerche and Qi Zhang. “Countermeasures against Worm Spread-
ing: A New Challenge for Vehicular Networks”. In: ACM Comput. Surv. 52.2
(May 2019). issn: 0360-0300. doi: 10.1145/3284748. url: https://doi-
org.zorac.aub.aau.dk/10.1145/3284748.

[21] Krzysztof Cabaj and Wojciech Mazurczyk. “Using software-defined net-
working for ransomware mitigation: the case of cryptowall”. In: Ieee Network
30.6 (2016), pp. 14–20.

[22] CAPEv2. Requirements. 2023. url: https://capev2.readthedocs.io/en/
latest/installation/guest/requirements.html#requirements.

[23] Evasion Checkpoint. Check if particular registry paths exist. 2021. url: https:
//evasions.checkpoint.com/techniques/registry.html\#check-if-
particular-registry-paths-exist.

[24] Xu Chen et al. “Towards an understanding of anti-virtualization and anti-
debugging behavior in modern malware”. In: 2008 IEEE International Con-
ference on Dependable Systems and Networks With FTCS and DCC (DSN). June
2008, pp. 177–186. doi: 10.1109/DSN.2008.4630086.

[25] Alesia Chernikova et al. “Cyber Network Resilience Against Self-Propagating
Malware Attacks”. In: Computer Security – ESORICS 2022. Ed. by Vijayalak-
shmi Atluri et al. Cham: Springer International Publishing, 2022, pp. 531–
550. isbn: 978-3-031-17140-6.

[26] CISA. 2021 Trends Show Increased Globalized Threat of Ransomware. 2022. url:
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-
040a.

[27] Cisco. Catalyst 3750 Switch Software Configuration Guide, 12.2(52)SE. 2023.
url: https : / / www . cisco . com / c / en / us / td / docs / switches / lan /
catalyst3750/software/release/12- 2_52_se/configuration/guide/
3750scg/swspan.html.

[28] Ryan Clancy. A Quick Guide to Reverse Engineering Malware. 2022. url: https:
/ / www . eccouncil . org / cybersecurity - exchange / ethical - hacking /
malware-reverse-engineering/.

[29] cuckoosandbox. Cuckoo. 2023. url: https://github.com/cuckoosandbox/
cuckoo#readme.

[30] CVE-2017-0144 Detail. 2018. url: https://nvd.nist.gov/vuln/detail/
CVE-2017-0144.

[31] CVE-2021-44228 Detail. 2018. url: https://nvd.nist.gov/vuln/detail/
CVE-2021-44228.

https://doi.org/10.1145/3284748
https://doi-org.zorac.aub.aau.dk/10.1145/3284748
https://doi-org.zorac.aub.aau.dk/10.1145/3284748
https://capev2.readthedocs.io/en/latest/installation/guest/requirements.html#requirements
https://capev2.readthedocs.io/en/latest/installation/guest/requirements.html#requirements
https://evasions.checkpoint.com/techniques/registry.html\#check-if-particular-registry-paths-exist
https://evasions.checkpoint.com/techniques/registry.html\#check-if-particular-registry-paths-exist
https://evasions.checkpoint.com/techniques/registry.html\#check-if-particular-registry-paths-exist
https://doi.org/10.1109/DSN.2008.4630086
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-040a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-040a
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750/software/release/12-2_52_se/configuration/guide/3750scg/swspan.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750/software/release/12-2_52_se/configuration/guide/3750scg/swspan.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750/software/release/12-2_52_se/configuration/guide/3750scg/swspan.html
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/malware-reverse-engineering/
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/malware-reverse-engineering/
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/malware-reverse-engineering/
https://github.com/cuckoosandbox/cuckoo#readme
https://github.com/cuckoosandbox/cuckoo#readme
https://nvd.nist.gov/vuln/detail/CVE-2017-0144
https://nvd.nist.gov/vuln/detail/CVE-2017-0144
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

64 64

[32] Xiyue Deng and Jelena Mirkovic. “Polymorphic Malware Behavior Through
Network Trace Analysis”. In: 2022 14th International Conference on COM-
munication Systems & NETworkS (COMSNETS). 2022, pp. 138–146. doi: 10.
1109/COMSNETS53615.2022.9668396.

[33] DhcpEnumSubnetClients function (dhcpsapi.h). 2021. url: https : / / learn .
microsoft.com/en- us/windows/win32/api/dhcpsapi/nf- dhcpsapi-
dhcpenumsubnetclients.

[34] DhcpEnumSubnets function (dhcpsapi.h). 2021. url: https://learn.microsoft.
com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpenumsubnets.

[35] DhcpGetSubnetInfo function (dhcpsapi.h). 2021. url: https://learn.microsoft.
com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpgetsubnetinfo.

[36] doomedraven. choco.bat. 2023. url: https : / / github . com / kevoreilly /
CAPEv2/blob/master/installer/choco.bat.

[37] doomedraven. disable_win7noise1.bat. 2023. url: https : / / github . com /
doomedraven/Tools/blob/master/Windows/disable_win7noise.bat.

[38] Peter Eder-Neuhauser, Tanja Zseby, and Joachim Fabini. “Malware propa-
gation in smart grid networks: metrics, simulation and comparison of three
malware types”. In: Journal of Computer Virology and Hacking Techniques 15
(2019), pp. 109–125. issn: 2263-8733. doi: 10.1007/s11416-018-0325-y.

[39] Christopher C Elisan. Malware, Rootkits & Botnets A Beginner’s Guide. Mc-
Graw Hill Professional, 2012.

[40] ENISA. 2023 SonicWall Cyber Threat Report. 2023. url: https://www.sonicwall.
com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf.

[41] ENISA. ENISA Threat Landscape 2022. 2022. url: https : / / www . enisa .
europa.eu/publications/enisa-threat-landscape-2022.

[42] Evasion techniques. 2022. url: https://evasions.checkpoint.com/.

[43] Faronics. Deep Freeze. 2023. url: https : / / www . faronics . com / en - uk /
products/deep-freeze.

[44] Sylvia Feng and Muharman Lubis. “Defense-In-Depth Security Strategy in
Log4j Vulnerability Analysis”. In: 2022 International Conference Advancement
in Data Science, E-learning and Information Systems (ICADEIS). IEEE. 2022,
pp. 01–04.

[45] Getoar Gallopeni et al. “A practical analysis on mirai botnet traffic”. In: 2020
IFIP Networking Conference (Networking). IEEE. 2020, pp. 667–668.

[46] Getoar Gallopeni et al. “A Practical Analysis on Mirai Botnet Traffic”. In:
2020 IFIP Networking Conference (Networking). June 2020, pp. 667–668.

https://doi.org/10.1109/COMSNETS53615.2022.9668396
https://doi.org/10.1109/COMSNETS53615.2022.9668396
https://learn.microsoft.com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpenumsubnetclients
https://learn.microsoft.com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpenumsubnetclients
https://learn.microsoft.com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpenumsubnetclients
https://learn.microsoft.com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpenumsubnets
https://learn.microsoft.com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpenumsubnets
https://learn.microsoft.com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpgetsubnetinfo
https://learn.microsoft.com/en-us/windows/win32/api/dhcpsapi/nf-dhcpsapi-dhcpgetsubnetinfo
https://github.com/kevoreilly/CAPEv2/blob/master/installer/choco.bat
https://github.com/kevoreilly/CAPEv2/blob/master/installer/choco.bat
https://github.com/doomedraven/Tools/blob/master/Windows/disable_win7noise.bat
https://github.com/doomedraven/Tools/blob/master/Windows/disable_win7noise.bat
https://doi.org/10.1007/s11416-018-0325-y
https://www.sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://evasions.checkpoint.com/
https://www.faronics.com/en-uk/products/deep-freeze
https://www.faronics.com/en-uk/products/deep-freeze

65 65

[47] GetExtendedTcpTable function (iphlpapi.h). 2021. url: https://learn.microsoft.
com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getextendedtcptable.

[48] GetIpNetTable function (iphlpapi.h). 2021. url: https://learn.microsoft.
com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getipnettable.

[49] Google. re2. 2023. url: https://github.com/google/re2.

[50] Nana Kwarne Gyamfi and Ebenezer Owusu. “Survey of mobile malware
analysis, detection techniques and tool”. In: 2018 IEEE 9th Annual Informa-
tion Technology, Electronics and Mobile Communication Conference (IEMCON).
IEEE. 2018, pp. 1101–1107.

[51] Raphael Hiesgen et al. “The race to the vulnerable: Measuring the log4j
shell incident”. In: arXiv preprint arXiv:2205.02544 (2022).

[52] Erik Hjelmvik. Installing a Fake Internet with INetSim and PolarProxy. 2019.
url: https://www.netresec.com/?page=Blog&month=2019- 12&post=
Installing-a-Fake-Internet-with-INetSim-and-PolarProxy.

[53] HTTP PROPFIND Method. 2015. url: https : / / learn . microsoft . com /
en-us/previous-versions/office/developer/exchange-server-2003/
aa142960(v=exchg.65).

[54] IBM. How much does a data breach cost? 2021. url: https://www.ibm.com/
security/data-breach.

[55] IP Addressing: ARP Configuration Guide, Cisco IOS Release 15M&T. 2012. url:
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_arp/
configuration/15-mt/arp-15-mt-book/arp-config-arp.html.

[56] Vasileios Karyotis and M.H.R. Khouzani. “Chapter 3 - Early malware dif-
fusion modeling methodologies”. In: Malware Diffusion Models for Wireless
Complex Networks. Ed. by Vasileios Karyotis and M.H.R. Khouzani. Boston:
Morgan Kaufmann, 2016, pp. 39–60. isbn: 978-0-12-802714-1. doi: https:
//doi.org/10.1016/B978-0-12-802714-1.00013-X. url: https://www.
sciencedirect.com/science/article/pii/B978012802714100013X.

[57] kevoreilly. CAPEv2. 2023. url: https : / / capev2 . readthedocs . io / en /
latest/.

[58] KEYLOGGER. 2023. url: https://www.malwarebytes.com/keylogger.

[59] Mijoo Kim et al. “A study on behavior-based mobile malware analysis sys-
tem against evasion techniques”. In: 2016 International Conference on Informa-
tion Networking (ICOIN). Jan. 2016, pp. 455–457. doi: 10.1109/ICOIN.2016.
7427158.

[60] Joxean Koret and Elias Bachaalany. The antivirus hacker’s handbook. John Wi-
ley & Sons, 2015.

https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getextendedtcptable
https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getextendedtcptable
https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getipnettable
https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getipnettable
https://github.com/google/re2
https://www.netresec.com/?page=Blog&month=2019-12&post=Installing-a-Fake-Internet-with-INetSim-and-PolarProxy
https://www.netresec.com/?page=Blog&month=2019-12&post=Installing-a-Fake-Internet-with-INetSim-and-PolarProxy
https://learn.microsoft.com/en-us/previous-versions/office/developer/exchange-server-2003/aa142960(v=exchg.65)
https://learn.microsoft.com/en-us/previous-versions/office/developer/exchange-server-2003/aa142960(v=exchg.65)
https://learn.microsoft.com/en-us/previous-versions/office/developer/exchange-server-2003/aa142960(v=exchg.65)
https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_arp/configuration/15-mt/arp-15-mt-book/arp-config-arp.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_arp/configuration/15-mt/arp-15-mt-book/arp-config-arp.html
https://doi.org/https://doi.org/10.1016/B978-0-12-802714-1.00013-X
https://doi.org/https://doi.org/10.1016/B978-0-12-802714-1.00013-X
https://www.sciencedirect.com/science/article/pii/B978012802714100013X
https://www.sciencedirect.com/science/article/pii/B978012802714100013X
https://capev2.readthedocs.io/en/latest/
https://capev2.readthedocs.io/en/latest/
https://www.malwarebytes.com/keylogger
https://doi.org/10.1109/ICOIN.2016.7427158
https://doi.org/10.1109/ICOIN.2016.7427158

66 66

[61] Ayush Kumar and Teng Joon Lim. “EDIMA: Early Detection of IoT Malware
Network Activity Using Machine Learning Techniques”. In: 2019 IEEE 5th
World Forum on Internet of Things (WF-IoT). Apr. 2019, pp. 289–294. doi: 10.
1109/WF-IoT.2019.8767194.

[62] Jun Li, Devkishen Sisodia, and Shad Stafford. “On the Detection of Smart,
Self-Propagating Internet Worms”. In: IEEE Transactions on Dependable and
Secure Computing (2022), pp. 1–13. issn: 1941-0018. doi: 10.1109/TDSC.
2022.3194127.

[63] Songsong Liu et al. “Enhancing malware analysis sandboxes with emulated
user behavior”. In: Computers & Security 115 (2022), p. 102613. issn: 0167-
4048. doi: https://doi.org/10.1016/j.cose.2022.102613. url: https:
//www.sciencedirect.com/science/article/pii/S0167404822000128.

[64] Wanping Liu and Shouming Zhong. “Web malware spread modelling and
optimal control strategies”. In: Scientific reports 7.1 (2017), pp. 1–19.

[65] Yehonatan Lusky and Avi Mendelson. “Sandbox Detection Using Hardware
Side Channels”. In: 2021 22nd International Symposium on Quality Electronic
Design (ISQED). Apr. 2021, pp. 192–197. doi: 10.1109/ISQED51717.2021.
9424260.

[66] MAC Address Lookup. 2023. url: https://maclookup.app/search/result?
mac=F8:D1:11.

[67] KME Narasima Mallikarajunan et al. “Detection of spyware in software us-
ing virtual environment”. In: 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI). IEEE. 2019, pp. 1138–1142.

[68] MalwareBazaar. 2023. url: https://bazaar.abuse.ch/.

[69] Rajkumar Maurya. How to bridge WiFi and Ethernet adapters to share internet on
Windows 11 or 10. 2021. url: https://www.how2shout.com/how-to/bridge-
wifi-to-ethernet-adapter-to-share-internet.html.

[70] Dana Mayor. RC: History, Origin, and More. 2022. url: https://history-
computer.com/irc-guide/.

[71] Norita Md Norwawi et al. “Detection Algorithm for Internet Worms Scan-
ning that Used User Datagram Protocol”. In: International Journal of Informa-
tion and Computer Security 11 (Jan. 2019), p. 1. doi: 10.1504/IJICS.2019.
10016150.

[72] Per Håkon Meland, Yara Fareed Fahmy Bayoumy, and Guttorm Sindre.
“The Ransomware-as-a-Service economy within the darknet”. In: Computers
& Security 92 (2020), p. 101762. issn: 0167-4048. doi: https://doi.org/
10.1016/j.cose.2020.101762. url: https://www.sciencedirect.com/
science/article/pii/S0167404820300468.

https://doi.org/10.1109/WF-IoT.2019.8767194
https://doi.org/10.1109/WF-IoT.2019.8767194
https://doi.org/10.1109/TDSC.2022.3194127
https://doi.org/10.1109/TDSC.2022.3194127
https://doi.org/https://doi.org/10.1016/j.cose.2022.102613
https://www.sciencedirect.com/science/article/pii/S0167404822000128
https://www.sciencedirect.com/science/article/pii/S0167404822000128
https://doi.org/10.1109/ISQED51717.2021.9424260
https://doi.org/10.1109/ISQED51717.2021.9424260
https://maclookup.app/search/result?mac=F8:D1:11
https://maclookup.app/search/result?mac=F8:D1:11
https://bazaar.abuse.ch/
https://www.how2shout.com/how-to/bridge-wifi-to-ethernet-adapter-to-share-internet.html
https://www.how2shout.com/how-to/bridge-wifi-to-ethernet-adapter-to-share-internet.html
https://history-computer.com/irc-guide/
https://history-computer.com/irc-guide/
https://doi.org/10.1504/IJICS.2019.10016150
https://doi.org/10.1504/IJICS.2019.10016150
https://doi.org/https://doi.org/10.1016/j.cose.2020.101762
https://doi.org/https://doi.org/10.1016/j.cose.2020.101762
https://www.sciencedirect.com/science/article/pii/S0167404820300468
https://www.sciencedirect.com/science/article/pii/S0167404820300468

67 67

[73] James Messer. Secrets of Network Cartography: A comprehensive guide to nmap.
Professor Messer, 2007.

[74] Microsoft. Microsoft Security Bulletin MS17-010 - Critical. 2023. url: https:
//learn.microsoft.com/en-us/security-updates/SecurityBulletins/
2017/ms17-010.

[75] Microsoft. “Microsoft Security Bulletin MS17-010—Critical”. In: (2017).

[76] Microsoft. Windows 7 system requirements. 2020. url: https : / / support .
microsoft . com / en - us / windows / windows - 7 - system - requirements -
df0900f2-3513-a851-13e7-0d50bc24e15f.

[77] mimikatz. 2018. url: https://github.com/ParrotSec/mimikatz/blob/
master/README.md.

[78] Najmeh Miramirkhani et al. “Spotless Sandboxes: Evading Malware Analy-
sis Systems Using Wear-and-Tear Artifacts”. In: 2017 IEEE Symposium on Se-
curity and Privacy (SP). May 2017, pp. 1009–1024. doi: 10.1109/SP.2017.42.

[79] Samrah Mirza et al. “A Malware Evasion Technique for Auditing Android
Anti-Malware Solutions”. In: 2021 IEEE 30th International Conference on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE). Oct.
2021, pp. 125–130. doi: 10.1109/WETICE53228.2021.00034.

[80] MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Win-
dows Code Execution. 2018. url: https://www.rapid7.com/db/modules/
exploit/windows/smb/ms17_010_psexec/.

[81] Mifraz Murthaja et al. “An automated tool for memory forensics”. In: 2019
International Conference on Advancements in Computing (ICAC). IEEE. 2019,
pp. 1–6.

[82] Anitta Patience Namanya et al. “The World of Malware: An Overview”. In:
2018 IEEE 6th International Conference on Future Internet of Things and Cloud
(FiCloud). Aug. 2018, pp. 420–427. doi: 10.1109/FiCloud.2018.00067.

[83] Anitta Patience Namanya et al. “The world of malware: An overview”. In:
2018 IEEE 6th International Conference on Future Internet of Things and Cloud
(FiCloud). IEEE. 2018, pp. 420–427.

[84] NationalSecurityAgency. Ghidra Software Reverse Engineering Framework. 2023.
url: https://github.com/NationalSecurityAgency/ghidra.

[85] Sabila Newaz, Hasan Md Imran, and Xingya Liu. “Detection of Malware
Using Deep Learning”. In: 2021 IEEE 4th International Conference on Com-
puting, Power and Communication Technologies (GUCON). Sept. 2021, pp. 1–4.
doi: 10.1109/GUCON50781.2021.9573991.

[86] Security Onion. Security Onion. 2023. url: https://docs.securityonion.
net/en/2.3/about.html.

https://learn.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-010
https://learn.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-010
https://learn.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-010
https://support.microsoft.com/en-us/windows/windows-7-system-requirements-df0900f2-3513-a851-13e7-0d50bc24e15f
https://support.microsoft.com/en-us/windows/windows-7-system-requirements-df0900f2-3513-a851-13e7-0d50bc24e15f
https://support.microsoft.com/en-us/windows/windows-7-system-requirements-df0900f2-3513-a851-13e7-0d50bc24e15f
https://github.com/ParrotSec/mimikatz/blob/master/README.md
https://github.com/ParrotSec/mimikatz/blob/master/README.md
https://doi.org/10.1109/SP.2017.42
https://doi.org/10.1109/WETICE53228.2021.00034
https://www.rapid7.com/db/modules/exploit/windows/smb/ms17_010_psexec/
https://www.rapid7.com/db/modules/exploit/windows/smb/ms17_010_psexec/
https://doi.org/10.1109/FiCloud.2018.00067
https://github.com/NationalSecurityAgency/ghidra
https://doi.org/10.1109/GUCON50781.2021.9573991
https://docs.securityonion.net/en/2.3/about.html
https://docs.securityonion.net/en/2.3/about.html

68 68

[87] Kevin O’Reilly. CAPEv2. 2023. url: https://github.com/kevoreilly/
CAPEv2/.

[88] Kevin O’Reilly. To install CAPE. 2020. url: https://capev2.readthedocs.
io/en/latest/installation/host/installation.html#to-install-cape.

[89] radare org. Radare2: Libre Reversing Framework for Unix Geeks. 2023. url:
https://github.com/radareorg/radare2.

[90] Nagababu Pachhala, S. Jothilakshmi, and Bhanu Prakash Battula. “A Com-
prehensive Survey on Identification of Malware Types and Malware Clas-
sification Using Machine Learning Techniques”. In: 2021 2nd International
Conference on Smart Electronics and Communication (ICOSEC). Oct. 2021, pp. 1207–
1214. doi: 10.1109/ICOSEC51865.2021.9591763.

[91] Gonzalo De La Torre Parra et al. “Detecting Internet of Things attacks using
distributed deep learning”. In: Journal of Network and Computer Applications
163 (2020), p. 102662.

[92] FOG Project. FOG Project. 2023. url: https://fogproject.org/.

[93] Vinayakumar R. et al. “Ransomware Triage Using Deep Learning: Twitter
as a Case Study”. In: 2019 Cybersecurity and Cyberforensics Conference (CCC).
May 2019, pp. 67–73. doi: 10.1109/CCC.2019.000-7.

[94] REMnux. REMnux: A Linux Toolkit for Malware Analysis. 2023. url: https:
//docs.remnux.org/.

[95] Check Point Research. Evasions: Generic OS queries. 2023. url: https://
evasions . checkpoint . com / techniques / generic - os - queries . html #
check-if-hard-disk.

[96] kevoreilly Revision. Sandboxing. 2022. url: https://capev2.readthedocs.
io/en/latest/introduction/sandboxing.html.

[97] Elpida Rouka, Celyn Birkinshaw, and Vassilios G. Vassilakis. “SDN-based
Malware Detection and Mitigation: The Case of ExPetr Ransomware”. In:
2020 IEEE International Conference on Informatics, IoT, and Enabling Technolo-
gies (ICIoT). Feb. 2020, pp. 150–155. doi: 10.1109/ICIoT48696.2020.9089514.

[98] Vasu Sethia and A Jeyasekar. “Malware Capturing and Analysis using Dion-
aea Honeypot”. In: 2019 International Carnahan Conference on Security Tech-
nology (ICCST). Oct. 2019, pp. 1–4. doi: 10.1109/CCST.2019.8888409.

[99] S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi. “A Survey on malware
analysis and mitigation techniques”. In: Computer Science Review 32 (2019),
pp. 1–23. issn: 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2019.
01.002. url: https://www.sciencedirect.com/science/article/pii/
S1574013718301114.

https://github.com/kevoreilly/CAPEv2/
https://github.com/kevoreilly/CAPEv2/
https://capev2.readthedocs.io/en/latest/installation/host/installation.html#to-install-cape
https://capev2.readthedocs.io/en/latest/installation/host/installation.html#to-install-cape
https://github.com/radareorg/radare2
https://doi.org/10.1109/ICOSEC51865.2021.9591763
https://fogproject.org/
https://doi.org/10.1109/CCC.2019.000-7
https://docs.remnux.org/
https://docs.remnux.org/
https://evasions.checkpoint.com/techniques/generic-os-queries.html#check-if-hard-disk
https://evasions.checkpoint.com/techniques/generic-os-queries.html#check-if-hard-disk
https://evasions.checkpoint.com/techniques/generic-os-queries.html#check-if-hard-disk
https://capev2.readthedocs.io/en/latest/introduction/sandboxing.html
https://capev2.readthedocs.io/en/latest/introduction/sandboxing.html
https://doi.org/10.1109/ICIoT48696.2020.9089514
https://doi.org/10.1109/CCST.2019.8888409
https://doi.org/https://doi.org/10.1016/j.cosrev.2019.01.002
https://doi.org/https://doi.org/10.1016/j.cosrev.2019.01.002
https://www.sciencedirect.com/science/article/pii/S1574013718301114
https://www.sciencedirect.com/science/article/pii/S1574013718301114

69 69

[100] Rami Sihwail, Khairuddin Omar, and KA Zainol Ariffin. “A survey on mal-
ware analysis techniques: Static, dynamic, hybrid and memory analysis”.
In: Int. J. Adv. Sci. Eng. Inf. Technol 8.4-2 (2018), pp. 1662–1671.

[101] Michael Sikorski and Andrew Honig. Practical malware analysis: the hands-on
guide to dissecting malicious software. no starch press, 2012.

[102] Sophos. The State of Ransomware 2022. 2022. url: https://assets.sophos.
com/X24WTUEQ/at/4zpw59pnkpxxnhfhgj9bxgj9/sophos-state-of-ransomware-
2022-wp.pdf.

[103] Aditya Tandon and Anand Nayyar. “A Comprehensive Survey on Ran-
somware Attack: A Growing Havoc Cyberthreat”. In: Data Management,
Analytics and Innovation. Ed. by Valentina Emilia Balas, Neha Sharma, and
Amlan Chakrabarti. Singapore: Springer Singapore, 2019, pp. 403–420. isbn:
978-981-13-1274-8.

[104] F. Thomas. Adware: The Only Book You’ll Ever Need. 2015.

[105] TP-LINK. Installation Guide. 2023. url: https://static.tp- link.com/
upload/manual/2023/202304/20230411/7106509649_TL-SG108(UN)_IG.
pdf.

[106] Emmanouil Vasilomanolakis et al. “HosTaGe: A Mobile Honeypot for Col-
laborative Defense”. In: Proceedings of the 7th International Conference on Se-
curity of Information and Networks. SIN ’14. New York, NY, USA: Association
for Computing Machinery, 2014, 330–333. isbn: 9781450330336. url: https:
//doi.org/10.1145/2659651.2659663.

[107] Emmanouil Vasilomanolakis et al. “This Network is Infected: HosTaGe - a
Low-Interaction Honeypot for Mobile Devices”. In: Proceedings of the Third
ACM Workshop on Security and Privacy in Smartphones & Mobile Devices. SPSM
’13. New York, NY, USA: Association for Computing Machinery, 2013, 43–48.
isbn: 9781450324915. doi: 10.1145/2516760.2516763. url: https://doi.
org/10.1145/2516760.2516763.

[108] P Vinod et al. “Survey on malware detection methods”. In: Proceedings of the
3rd Hackers’ Workshop on computer and internet security (IITKHACK’09). 2009,
pp. 74–79.

[109] VirusShare.com - Because Sharing is Caring. 2023. url: https://virusshare.
com/.

[110] Visual-Paradigm. Adaptive vs Predictive Planning: When Agile? When Water-
fall? 2021. url: https://tinyurl.com/4wsj2sfp.

[111] Wikipedia. Time Stamp Counter. 2021. url: https://en.wikipedia.org/
wiki/Time_Stamp_Counter.

https://assets.sophos.com/X24WTUEQ/at/4zpw59pnkpxxnhfhgj9bxgj9/sophos-state-of-ransomware-2022-wp.pdf
https://assets.sophos.com/X24WTUEQ/at/4zpw59pnkpxxnhfhgj9bxgj9/sophos-state-of-ransomware-2022-wp.pdf
https://assets.sophos.com/X24WTUEQ/at/4zpw59pnkpxxnhfhgj9bxgj9/sophos-state-of-ransomware-2022-wp.pdf
https://static.tp-link.com/upload/manual/2023/202304/20230411/7106509649_TL-SG108(UN)_IG.pdf
https://static.tp-link.com/upload/manual/2023/202304/20230411/7106509649_TL-SG108(UN)_IG.pdf
https://static.tp-link.com/upload/manual/2023/202304/20230411/7106509649_TL-SG108(UN)_IG.pdf
https://doi.org/10.1145/2659651.2659663
https://doi.org/10.1145/2659651.2659663
https://doi.org/10.1145/2516760.2516763
https://doi.org/10.1145/2516760.2516763
https://doi.org/10.1145/2516760.2516763
https://virusshare.com/
https://virusshare.com/
https://tinyurl.com/4wsj2sfp
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Time_Stamp_Counter

70 70

[112] Hui Xia et al. “Modeling and Analysis Botnet Propagation in Social Internet
of Things”. In: IEEE Internet of Things Journal 7.8 (Aug. 2020), pp. 7470–7481.
issn: 2327-4662. doi: 10.1109/JIOT.2020.2984662.

[113] Akira Yokoyama et al. “SandPrint: Fingerprinting Malware Sandboxes to
Provide Intelligence for Sandbox Evasion”. In: Research in Attacks, Intrusions,
and Defenses. Ed. by Fabian Monrose et al. Cham: Springer International
Publishing, 2016, pp. 165–187. isbn: 978-3-319-45719-2.

[114] Katsunari Yoshioka et al. “Vulnerability in Public Malware Sandbox Analy-
sis Systems”. In: 2010 10th IEEE/IPSJ International Symposium on Applications
and the Internet. July 2010, pp. 265–268. doi: 10.1109/SAINT.2010.16.

[115] Ilsun You and Kangbin Yim. “Malware Obfuscation Techniques: A Brief Sur-
vey”. In: 2010 International Conference on Broadband, Wireless Computing, Com-
munication and Applications. Nov. 2010, pp. 297–300. doi: 10.1109/BWCCA.
2010.85.

[116] Xiaolu Zhang et al. “Iot botnet forensics: A comprehensive digital forensic
case study on mirai botnet servers”. In: Forensic Science International: Digital
Investigation 32 (2020), p. 300926.

https://doi.org/10.1109/JIOT.2020.2984662
https://doi.org/10.1109/SAINT.2010.16
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.1109/BWCCA.2010.85

Appendix A

Host Setup

1 #!/bin/bash
2 USER=$(whoami)
3 #update repo
4 sudo apt update -y && apt-get update -y
5 sudo apt install -y net-tools git curl wget
6 # install python and pip
7 sudo apt install python3-pip -y || return
8 python3 -m pip install testresources libmagic
9 # Install these deps, they are needed to build most of the

↪→ packages needed in cape install script
10 sudo apt-get -y install build-essential cmake ninja-build python3-

↪→ dev cython3 pybind11-dev libre2-dev libjansson-dev libcurl4-
↪→ gnutls-dev libgeoip-dev libxml2 libxslt1-dev libvirt-dev

11
12 # Then install python-libvirt. Better do it manually by getting

↪→ the source
13 wget https://files.pythonhosted.org/packages/77/64/066990

↪→ abfec62e6976e5e74a6fc6e8403fcc8b4f6d266deb85a31994f34f/
↪→ libvirt-python-8.8.0.tar.gz

14 tar -zxvf libvirt-python-8.8.0.tar.gz
15 cd libvirt-python-8.8.0
16 sudo make && sudo make install
17 sudo reboot now

Listing A.1: Dependencies installation script

1 #!/bin/bash
2 USER=$(whoami)

71

72 72

3 echo $USER
4 sudo apt update && sudo apt upgrade -y
5 sudo apt install qemu-kvm libvirt-daemon-system libvirt-clients

↪→ bridge-utils -y
6 sudo usermod -a -G kvm ${USER}
7 sudo usermod -a -G libvirt ${USER}
8 sudo systemctl enable --now libvirtd
9 sudo apt install virt-manager -y

10 sudo reboot now

Listing A.2: KVM-QEMU hypervisor installation script

Appendix B

Testbed setup

Program Description
.NET FRAMEWORK Microsoft .NET FRAMEWORK >= 4.8 is required by the

CAPEv2 sandbox.
Python 3 Required by the CAPEv2 sandbox. We recommend to

use the version 3.8.10 32bit. Install, add it to path and
disable path length if needed.

Git Needed to fetch repositories from GitHub by Python-
Package manager (pip).

CMake An open-source and cross-platform family of tools for
building, testing and packaging software. Needed to
compile and build some C libraries wrapped in Python.

MinGW Previously known as mingw32, is an open-source soft-
ware development environment to create applications
for Microsoft Windows. It includes a port of the GNU
Compiler Collection (gcc and g++). Required by some
Python packages.

Visual Studio. 2017 Required to build and compile some python packages
such as re and pyre2. From the installer, the user needs
to pick C++ development tools for installation and se-
lect the following for installation elements: VCC 2017
version 15.9 v16.16 latest. C++ profiling tools. Windows
sdk 10 10.0.177630 and Visual C++ tools for CMake. A
system reboot is required.

Chocolatey An open source project that provides a package man-
ager for Windows, and can be installed via Powershell 1.

Table B.1: Windows 7 32bit testbed dependencies

73

74 74

After the Windows 7 installation terminates, the following steps are similar to
the physical machine setup. We use the Windows 7 Professional Service Pack1,
and it needs some updates to be able to support Python 3. Namely windows6.1-
kb4457144x86. After the update is installed, the user can proceed with installing
all the following programs that are needed for the Sandbox as showed in the table
above.

Once finished, the user needs to install the two scripts provided by CAPEv2.
The choco.bat, which installs some Virtual machine core dependency [36]. Followed
by the disable_win7noise1.bat, which is a script for disabling some Windows net-
work programs that produce network noise [37]. After rebooting the machine, the
VM is ready for the sandbox communication setup. The CAPEv2 uses the agent.py
Python script to communicate with the VM and transfer all the analysis files and
binaries. Additionally, it transfers all the analysis data back to the Sandbox result-
server. However, the agent.py script uses a library that is not mentioned in the
official documentation, and it is not a native Python library. They only mention
Pillow, which is a python library used to take screenshots [22]. From the agent.py,
we see the import of the re2 package as shown below, which will throw the Mod-
uleNotFoundError exception:

1 try:
2 import re2 as re
3 except ImportError:
4 import re

Listing B.1: Agent.py re2 library import

RE2 is a regular expression library written in C++ and can be wrapped and im-
ported by Python [49]. We have encountered some difficulties compiling it on
Windows 7 due to some compiler conflict. Hence, we decided to build it from
source using. Nevertheless, we offer the compiled files to be simply downloaded
and placed in C:/Program Files/ to save time[2]. After putting the RE2 in the loca-
tion, install the python library pyre2. Now the VM testbed should be ready for the
last step. Adding the agent.py as a Windows task is well documented in the official
documentation. However, we recommend using pyinstaller or nuitka to compile the
agent.py into an executable for more stealth.

1 # can add other flags --nooutput --nowindow for more stealth
2 pyinstaller --onefile --name [exe-name].exe agent.py

Listing B.2: Agent.py to executable command

2https://drive.google.com/drive/folders/1JRVA9ZgOHZbFmubOFQVfjSM-
dd2oJ4A2?usp=sharing

75 75

After placing the agent executable as a task, reboot to verify if it runs on the OS
startup by suing a simple HTTP-GET request:

1 # can add other flags --nooutput --nowindow for more stealth
2 curl http://[testbed-ip]:8000

Listing B.3: Agent.py verification

Finally, we take a snapshot with KVM and exit. Regarding the physical testbed,
we take an image of the system using the FOG server.

Appendix C

Sandbox configuration & Troubleshoot-
ing

Before starting, we need to make sure that the /opt/CAPEv2/ directory is owned by
the Sandbox user (cape user). This was the case for us as some of the Python pack-
age installation inherits the root scope, and hence will be only accessible by root
user. This can be noticed from the installation script warning logs. Nevertheless,
we simply recursively change the ownership with:

1 sudo chown -R cape:cape /op/CAPEv2/

1 # Make sure this file exists. If not create a symbolic link of /
↪→ usr/bin/tcpdump and change the group of tcpdump to pcap
↪→ group

2 tcpdump = /usr/sbin/tcpdump
3 # change this to your virtual-bridge interface name. In our case

↪→ virbr0
4 interface = virbr0

Listing C.1: auxiliary.conf setup

The next file is cuckoo.conf. This is where the result server and the Postgresql
database credentials are defined. The result-server is where the sandbox is listening
for the analysis results. In our case 192.168.2.2. The Postgresql database is used
to store the analysis related data. Such as submission-task ID, testbeds names
and information and others. Without it, the cape.service will throw a connection
refused exception and stop running. To fix this, modify the connection string in
cuckoo.conf:

1 [database]
2 # For production we strongly suggest go with PostgreSQL

76

77 77

3 #connection = postgresql://[username]:[password]@localhost:5432/[
↪→ db-name]

4 connection = postgresql://cape:cs3.zer0.d4y@localhost:5432/cape

Listing C.2: cuckoo.conf setup

Now, we need to change a hardcoded database name in the CAPEv2 source code.
The file is at /opt/CAPEv2/lib/cuckoo/core/database.py

1 # Find the Line number 540 and change the value to cape.db
2 db_file = os.path.join(CUCKOO_ROOT, "db", "cuckoo.db")

The last step is to check if the public schema in the Postgresql database belongs to
the CAPEv2 user:

1 # start postgresql shell
2 psql
3 # check the ownership of the shcemas:
4 \dn
5 # change the ownership to the cape user.
6 ALTER SCHEMA public OWNER TO cape;
7 # quit to save
8 \q

If we decide to use the virtual testbed, we need to configure the kvm.conf and the
qemu.conf. This is where information about the VMs is kept.

1 [kvm]
2 # Obtain the list of your VMs from the GUI or via terminal [virsh

↪→ list --all]
3 machines = win7x32pro
4 # The interface on which the VM is spinned. In our case virbr0
5 interface = virbr0
6 [win7x32pro]
7 # Specify the label name of the current machine as specified in

↪→ your
8 # libvirt configuration.
9 label = Win7x86

10 # Specify the OS platform uof the VM-testbed
11 platform = windows
12 # Specify the IP address of the current virtual machine.
13 ip = 192.168.122.5
14 # Set the machine architecture
15 arch = x86

78 78

Listing C.3: kvm.conf setup

1 [qemu]
2 # Path to one qemu binary (assumes the other ones are there as

↪→ well)
3 path = /usr/bin/qemu-system-x86_64
4 # Specify a comma-separated list of available machines
5 machines = win7x32pro
6 # Specify the network interface for network traffic with tcpdump.
7 interface = virbr0
8 [win7x32pro]
9 label = win7x86

10 # image path
11 image = /var/lib/libvirt/images/win7x32pro.qcow2
12 # saved snapshot name
13 snapshot = snapshot1
14 #vm arch (x86/x64/arm/arm64/sh4/sparc/sparc64/powerpc/powerpc64/

↪→ mips/mipsel)
15 arch = x86
16 # [windows/darwin/linux].
17 platform = Windows
18 # Specify the IP address of the VM.
19 ip = 192.168.122.5

Listing C.4: qemu.conf setup

The routing.conf is responsible for the network routing between the CAPEv2 and
the VMs. The following two values need to be changed

1 # If you want to allow the internet, else chose none
2 route = internet
3 # Network interface that allows a VM to connect to the entire

↪→ internet:
4 internet = eno1

Listing C.5: routing.conf setup

If a physical machine is used as a testbed, we need to modify the physical.conf file
with the following information as shown below:

1 [physical]
2 # The name of the user on the target physical machine
3 machines = Mo

79 79

4 # the physical interface of the host where CAPEv2 is installed.
5 interface = eno1
6 [fog]
7 # Provide the ip of the machine where fog runs. In our case the VM

↪→ ’s IP
8 hostname = 192.168.2.7
9 # Find it in the menu: Settings/Fog Settings/ API Setting. Make

↪→ sure to enable it.
10 apikey = XXXX
11 # Find it under the menu: Users/List All users/fog-username/API.

↪→ Make sure to enable it.
12 user_apikey = XXXX
13 [Mo]
14 # Specify the label name of the current machine as specified in

↪→ your
15 # physical machine configuration.
16 label = Thinkpad-AAU1
17 # Specify the OS of the physical machine
18 platform = windows
19 # Specify the IP address of the physical machine
20 ip = 192.168.2.5
21 # CAPEv2 server’s IP. THE THINKSTATION1 IP in our case.
22 resultserver_ip = 192.168.2.2
23 resultserver_port = 2042
24 # The physical machine’s architecture
25 arch = x86

Listing C.6: physical.conf setup

The last is reporting.conf, where the processed data is stored. This conf file is critical
to CAPEv2 and without MongoDB, the user cannot display the analysis results,
and will see some exception logs on the sandbox Web-GUI.

1 [mongodb]
2 enabled = yes
3 host = 127.0.0.1
4 port = 27017
5 db = cape
6 # Set those values if you are using mongodb authentication
7 username = cape
8 password = cs3.zer0.d4y
9 authsource = cape

80 80

Listing C.7: processing.conf setup

One of the errors we face is the MongoDB. We need to create the sandbox user
and change some values inside the MongoDB server to allow create/delete/drop
and other privileged operations. To achieve this, we use the following Mongo-Shell
commands:

1 # connect to the admin db. By default, there is not auth needed!
2 mongosh --port 27017
3 # now you are in. Use admin DB
4 test> use admin
5 switched to db admin
6 # Check if user cape or cuckoo exists?
7 admin> show users
8 []
9 # check for DB cape or cuckoo

10 admin> show databases
11 admin 40.00 KiB
12 config 12.00 KiB
13 local 40.00 KiB
14
15 # No such user. Create one with admin to any db
16 #Make sure you are connected to db admin (use admin)
17 admin> db.createUser({user: "cape", pwd: "cs3.zer0.d4y", roles:[{

↪→ role: "userAdminAnyDatabase", db: "admin"}]})
18
19 # Now create a db with name cape
20 > use cape
21 # create a collection otherwise the database creattion does not

↪→ take effect!
22 cape> db.createCollection("analysis")
23
24 # Just to be safe, create a user for DB cape
25 cape> db.createUser({user: "cape", pwd: "cs3.zer0.d4y", roles:[{

↪→ role: "userAdmin", db: "cape"}]})
26 # grant some rules (just to be on the safe side!). UserAdmin

↪→ should inherit read and write by default!
27 cape> db.grantRolesToUser("cape",["userAdmin",{ role: "readWrite",

↪→ db: "cape"}])
28 cape> db.grantRolesToUser("cape",["readWrite",{ role: "userAdmin",

↪→ db: "cape"}])

81 81

29 # That is all. quit to save
30 quit

Listing C.8: Fix MongoDB issues

There are hardcoded data again for mongoDB in their source code. The Find
the following Python script at /opt/CAPEv2/dev_utils/mongodb.py and change it:

Listing C.9: Fix MongoDB hardcoded data

1 # Line 11. The MongoDb database name > change to cape
2 mdb = repconf.mongodb.get("db", "cuckoo")
3 def connect_to_mongo()
4 host=repconf.mongodb.get("host", "127.0.0.1"),
5 port=repconf.mongodb.get("port", 27017),
6 username=repconf.mongodb.get("username"),
7 password=repconf.mongodb.get("password"),
8 # change this auth-source to match the cape user. > ("

↪→ authsource", "cape")
9 authSource=repconf.mongodb.get("authsource", "cuckoo"),

10 connect=True,

Concerning poetry, which is the tool used for dependency management and pack-
aging. We detected points to different directory than the one where CAPEv2
gets installed, namely /home/cape/ instead of /opt/CAPEv2/. To solve this issue, we
change the cache-dir and the virtualens.path to point at the desired directory:

1 # activate the enviroment
2 source .cache/pypoetry/virtualenvs/capev2-t2x27zRb-py3.10/bin/

↪→ activate
3 # change value cache-dir and virtualenvs.path
4 poetry config cache-dir "/opt/CAPEv2/.cache/pypoetry"
5 poetry config virtualenvs.path "/opt/CAPEv2/.cache/pypoetry/

↪→ virtualenvs"
6 # Now start installing the requirements from the requirements.txt
7 poetry run python3 -m pip install --upgrade pip
8 poetry run python3 -m pip install -r requirements.txt
9 # if you get errors such as "no such module for [missing module]",

↪→ run
10 poetry run python3 -m pip install [missing-module]

Listing C.10: Poetry conflict solution

Detect It Easy is a program used by CAPEv2 to detect the sample program’s exten-
sion (.exe, .dll, .bin and others). The installation fails installing it as some depen-

82 82

dencies are not included in the script and are not installed by default on the OS.
To solve this, we provide a manual installation script.

Listing C.11: DIEC install script

1 #!/bin/bash
2 # install some dependencies
3 echo "---[Installing dependencies]---"
4 sudo apt-get update -y && sudo apt-get install -y libqt5opengl5

↪→ libqt5scripttools5 libqt5script5 libqt5sql5
5 cd /tmp && wget https://github.com/horsicq/DIE-engine/releases/

↪→ download/3.07/die_3.07_Ubuntu_22.04_amd64.deb
6 # install diec
7 sudo dpkg -i die_3.07_Ubuntu_22.04_amd64.deb

A reboot is recommended and then the sandbox is ready for testing.

Appendix D

SPM integration

1 Completed SYN Stealth Scan at 13:25, 16.86s elapsed (4000 total
↪→ ports)

2 # GATEWAY
3 Nmap scan report for Station0 (192.168.122.1)
4 Host is up (0.000097s latency).
5 Not shown: 994 closed ports
6 PORT STATE SERVICE
7 22/tcp open ssh
8 53/tcp open domain
9 111/tcp open rpcbind

10 8000/tcp open http-alt
11 MAC Address: F8:D1:11:15:C5:A3 (Tp-link Technologies)
12
13 # win7x86pro (Patient-0)
14 Nmap scan report for 192.168.122.5
15 Host is up (0.00021s latency).
16 Not shown: 990 closed ports
17 PORT STATE SERVICE
18 135/tcp open msrpc
19 139/tcp open netbios-ssn
20 445/tcp open microsoft-ds
21 8000/tcp open http-alt
22 49152/tcp open unknown
23 49153/tcp open unknown
24 49154/tcp open unknown
25 49155/tcp open unknown
26 49156/tcp open unknown
27 49157/tcp open unknown

83

84 84

28 MAC Address: DC:53:60:18:97:37 (Intel Corporate)
29
30 # SPM1 win7x86home
31 Nmap scan report for Jason-PC (192.168.122.32)
32 Host is up (0.00026s latency).
33 Not shown: 993 filtered ports
34 PORT STATE SERVICE
35 21/tcp open ftp
36 22/tcp open ssh
37 135/tcp open msrpc
38 139/tcp open netbios-ssn
39 445/tcp open microsoft-ds
40 2869/tcp open icslap
41 5357/tcp open wsdapi
42 MAC Address: DC:53:60:79:1E:A6 (Intel Corporate)
43 # SPM2 win10x86
44 Nmap scan report for DESKTOP-674A24R (192.168.122.95)
45 Host is up (0.00026s latency).
46 Not shown: 997 filtered ports
47 PORT STATE SERVICE
48 21/tcp open ftp
49 22/tcp open ssh
50 135/tcp open msrpc
51 139/tcp open netbios-ssn
52 445/tcp open microsoft-ds
53 MAC Address: DC:53:60:92:1E:A6 (Intel Corporate)
54
55 # Ubuntu server
56 Initiating SYN Stealth Scan at 13:25
57 Scanning sspnserver (192.168.122.101) [1000 ports]
58 Discovered open port 22/tcp on 192.168.122.101
59 Completed SYN Stealth Scan at 13:25, 0.04s elapsed (1000 total

↪→ ports)
60 Nmap scan report for sspnserver (192.168.122.101)
61 Host is up (0.0000040s latency).
62 Not shown: 999 closed ports
63 PORT STATE SERVICE
64 22/tcp open ssh
65
66 Read data files from: /usr/bin/../share/nmap
67 Nmap done: 256 IP addresses (5 hosts up) scanned in 18.69 seconds

85 85

68 Raw packets sent: 7594 (326.040KB) | Rcvd: 4037 (165.624
↪→ KB)

Listing D.1: Virtual-Network full Nmap scan results

1 Starting Nmap 7.80 (https://nmap.org) at 2023-05-31 22:34 UTC
2 Nmap scan report for _gateway (192.168.2.1)
3 Host is up (0.0021s latency).
4 Not shown: 997 closed ports
5 PORT STATE SERVICE
6 80/tcp open http
7 1900/tcp open upnp
8 49152/tcp open unknown
9 MAC Address: F8:D1:11:72:A1:8A (Tp-link Technologies)

10 #Physical-Testbed.
11 Nmap scan report for 192.168.2.4
12 Host is up (0.00077s latency).
13 Not shown: 988 closed ports
14 PORT STATE SERVICE
15 135/tcp open msrpc
16 139/tcp open netbios-ssn
17 445/tcp open microsoft-ds
18 7070/tcp open realserver
19 8000/tcp open http-alt
20 49152/tcp open unknown
21 49153/tcp open unknown
22 49154/tcp open unknown
23 49156/tcp open unknown
24 49157/tcp open unknown
25 49158/tcp open unknown
26 49159/tcp open unknown
27 MAC Address: F0:DE:F1:E7:A8:B1 (Wistron Infocomm (Zhongshan))
28 #FOG server
29 Nmap scan report for 192.168.2.7
30 Host is up (0.00095s latency).
31 Not shown: 992 closed ports
32 PORT STATE SERVICE
33 21/tcp open ftp
34 22/tcp open ssh
35 80/tcp open http
36 111/tcp open rpcbind
37 443/tcp open https

86 86

38 2049/tcp open nfs
39 3306/tcp open mysql
40 MAC Address: 54:EE:75:DC:AD:04 (Wistron InfoComm(Kunshan)Co.)
41 #Sec-Onion Physical
42 Nmap scan report for 192.168.2.8
43 Host is up (0.00060s latency).
44 Not shown: 999 filtered ports
45 PORT STATE SERVICE
46 22/tcp open ssh
47 MAC Address: 04:7C:16:21:CA:BA (Unknown)
48 #Clean-target 1
49 Nmap scan report for 192.168.2.10
50 Host is up (0.0080s latency).
51 Not shown: 996 closed ports
52 PORT STATE SERVICE
53 135/tcp open msrpc
54 139/tcp open netbios-ssn
55 445/tcp open microsoft-ds
56 5357/tcp open wsdapi
57 MAC Address: 8C:70:5A:21:83:60 (Intel Corporate)
58 #Sec-onion
59 Nmap scan report for 192.168.2.50
60 Host is up (0.00090s latency).
61 Not shown: 997 filtered ports
62 PORT STATE SERVICE
63 22/tcp open ssh
64 80/tcp open http
65 443/tcp open https
66 MAC Address: 8C:17:5A:44:A5:5E (Unknown)
67 #Sandbox host
68 Nmap scan report for Station0 (192.168.2.2)
69 Host is up (0.0000030s latency).
70 Not shown: 995 closed ports
71 PORT STATE SERVICE
72 22/tcp open ssh
73 111/tcp open rpcbind
74 2042/tcp open isis
75 8000/tcp open http-alt
76 # Samsung Mobile (HosTaGe Honeypot)
77 Nmap scan report for 192.168.2.110
78 Host is up (0.040s latency).

87 87

79 Not shown: 990 closed ports
80 PORT STATE SERVICE
81 7/tcp open echo
82 21/tcp open ftp
83 22/tcp open ssh
84 23/tcp open telnet
85 25/tcp open smtp
86 80/tcp open http
87 443/tcp open https
88 1025/tcp open NFS-or-IIS
89 3306/tcp open mysql
90 5060/tcp open sip
91 MAC Address: AC:5F:3E:75:F5:98 (Samsung Electro-mechanics(thailand

↪→))
92
93 Nmap done: 256 IP addresses (7 hosts up) scanned in 20.55 seconds

Listing D.2: Physical-Network full Nmap scan results

Appendix E

FOG documentation

E.1 Installing and Configuring the FOG Server

The first step is to install git and clone the FOG repository. After this, we have to
enter the folder and launch the installer as root user. The installer asks the user a
few questions such as which distribution of Linux it is going to be installed on, or
which interface it will run on. Some choices are based on each specific setup. In
our case, here is the summary of the answers:

Figure E.1: Summary FOG Server configuration

The complete list of our answers for the setup can be found in table E.1. After
the installation, we recommend to reboot the computer. That done, the FOG Server
can be accessed using the provided IP address, in our case 192.168.2.7/fog. Now
that our backup server is set, we can move on and configure the clients we want to
backup.

88

89 89

Questions Answers
What version of Linux would you like to run the
installation for?

1) Redhat Based Linux
2) Debian Based Linux
3) Arch Linux 2
Starting Debian based Installation
What type of installation would you like to do?
[N/s (Normal/Storage)] N
We found the following interfaces on your sys-
tem:
* enp0s31f6 - 192.168.2.7/24

Would you like to change the default
network interface from enp0s31f6?
If you are not sure, select No. [y/N] N
Would you like DHCP to handle DNS? [Y/n]

What DNS address should DHCP allow? Y, 127.0.0.53
Would you like to use the FOG server for DHCP
service? [y/N]

y

This version of FOG has internationalization sup-
port,
would you like to install
the additional language packs? [y/N] N
Would you like to enable secure
HTTPS on your FOG server? [y/N] N
Which hostname would you like to use?
Currently is: damo-StandardUbuntu
Would you like to change it?
If you are not sure, select No. [y/N] N
FOG would like to collect some data:
We would like to collect the following informa-
tion:
1. OS Name (CentOS, RedHat, Debian, etc....)
2. OS Version (8.0.2004, 7.2.1409, 9, etc....)
3. FOG Version (1.5.9, 1.6, etc....)

What is this information used for?
We would like to simply track the common types
of OS
being used, along with the OS Version, and the
various
versions of FOG being used.
Are you ok with sending this information? [Y/n] Y

Table E.1: FOG Server Installer - Questions and answers

90 90

E.2 Installing and Configuring the FOG Client

From the client machine, we have to download the SmartInstaller.exe, which is
present on the FOG server. To do so, we access the following URL in our browser:
192.168.2.7/fog/management/index.php?node=client
or manually go to the "Client Management" page of the FOG server by clicking
"Client" on the bottom of the main management page, as described in figure E.2.

(a) Accessing client installers from FOG homepage

(b) Downloading the SmartInstaller

Figure E.2: Getting the SmartInstaller from FOG Server

When the installer is downloaded, we have to launch it. Exe files are executable
files that can be run on Windows operating systems. Hence, if we want to run the
installer on a Linux system, we first have to download a program that is able to

91 91

launch it. FOG Project recommends using mono. That can be achieved by typing
the following commands.

1 sudo apt install gnupg ca-certificates
2 sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --

↪→ recv-keys 3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF
3 echo "deb https://download.mono-project.com/repo/ubuntu stable-

↪→ focal main" | sudo tee /etc/apt/sources.list.d/mono-
↪→ official-stable.list

4 sudo apt update
5 sudo apt-get install xprintidle -y
6 sudo apt install mono-complete -y

Listing E.1: Installing mono on Linux clients

The installer has to be launched as root user. The only thing to specify is the
address of the FOG server.

When that is done, we have to register the machine in the FOG server. To do
so, we have to set the machine we want to register to boot using the network. The
machine should automatically find the FOG server, if not, we just have to specify
the IP address of the FOG server. After a few seconds, we get presented with a
FOG menu, where we choose the "Perform Full Host Registration and Inventory"
option, as shown in the following image.

Figure E.3: FOG menu after network boot

The only thing we have to specify in this step is the hostname of the machine
and the username of the user on it.

The next step is to register the image we want to create in the FOG Web User
interface. We click on the images tab on the top of the FOG page and then "Create
a new image". In this "New image" submenu, we can specify different things for
our image such as the name, the OS, the storage location and the compression rate
(shown in figure E.4). We finally click on "Add" to create the image.

92 92

Figure E.4: Creating an image on the FOG Server

The next step is to associate our host with the image we just created. To do
so, we go to the "Host Management" page and click on "List All Hosts" and finally
the name of the host we registered earlier. On the host image scroll menu, we
simply select the image we created in the previous step and click "Update" to
apply changes.

The final step is to launch a capture task to backup our host. From the Host
Management page of our host, we go to "Basic tasks" and then "Capture", where
we can choose when to schedule the task (shown in figure E.5).

Figure E.5: Creating a capture task on the FOG Server

Appendix F

Security Onion documentation

F.1 Security Onion - figures

Figure F.1: NIC setup on Security Onion VM for monitoring

F.2 Security Onion installation and configuration

The first step of the installation is to choose which type of installation we want, as
listed in section 5.3.4. In our case, we chose the Standalone type which is running
on only one machine and is production ready. The standalone type is the most
suited for us as we have a limited number of devices to use.

93

94 94

Figure F.2: Installation type

The next step is to choose the hostname we want to set for the machine.

Figure F.3: Hostname

Next, we have to set which interface will be used for management and mon-
itoring. In this step, we want to be careful in selecting which interface is which
as only one of those is set to promiscuous mode and thus will be able to monitor
traffic.

95 95

(a) Management NIC

(b) Monitor NIC

Figure F.4: NICs settings

Next, we can chose if we want the IP of the machine to be static or DHCP. For
simplicity, we recommend to use static.

Figure F.5: IP resolution

The next step is to chose if we want to personalize the configuration of the
machine. In our case, we go with the basic settings.

96 96

The following step is to create an email address to access the Security Onion
Console, along with a password, which is up to the user.

Figure F.6: Email

Following that, the user can choose how he wants network metadata and IDS
alerts to be generated. That can be using Suricata only or in combination with
Zeek.

Next, we chose which ruleset we want to set for the IDS. Here we have the
choice between three rulesets: Emerging Threats Open, Emerging Threats Pro and
Snort subscriber. We are forced to chose Emerging Threats Open as both other
rulesets need a paid license to be activated.

Figure F.7: Ruleset

Next we can chose which optional services we want to activate. We select all of
them as we want Security Onion to collect as much information as possible.

97 97

Figure F.8: Optional services

The following step is to choose how to access the web interface. The choice is
between using the IP address of the machine or the hostname. As the hostname
can be confused we another machine in the network if not configured correctly, we
recommend using the IP address.

Figure F.9: Web interface

In the next steps, we can select how much Zeek and Suricata processes we want
to be running on the machine. We decided to go with the default, which is two in
our case.

Figure F.10: Suricata processes

When asked about the Docker IP range, the NTP servers and the configuration,
we keep the default settings.

98 98

Figure F.11: NTP

Finally, we have to set an IP address or IP range we want to allow access to the
Security Onion Console. In our case, it is 192.168.2.0/24

Figure F.12: So-allow

Once those steps and the following installation are completed, Security Onion
is fully setup and ready to use.

The figures that show the summary of the configuration can be found in the
Appendix F.13.

99 99

(a) Configuration Summary 1/2

(b) Configuration Summary 2/2

Figure F.13: Summary of Security Onion configuration

Appendix G

Test and validation

Figure G.1: Output of so-status command

100

101 101

(a) PCAP

(b) Alerts

Figure G.2: Nmap scan test - Security Onion

102 102

(a) MITRE ATT&CK and screenshots

(b) Behavioral analysis

(c) Memory-Dump analysis

Figure G.3: Sandbox Plugins tests

	Front page
	Preface
	English title page
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Formulation
	1.3 Scope
	1.4 Contribution
	1.5 Delimitation
	1.6 Outline

	2 Methodology
	2.1 Process Model
	2.2 Literature search
	2.3 Project requirements
	2.4 Threat model
	2.5 White/Black box testing
	2.6 Testing and validation

	3 Background
	3.1 Malware explained
	3.1.1 Malware types
	3.1.2 Malware evolution

	3.2 Malware analysis
	3.3 Malware detection techniques
	3.4 Honeypots
	3.5 Malware Propagation Modeling
	3.6 Evasion Techniques
	3.7 Summary

	4 Related Work
	4.1 Summary

	5 Technical analysis
	5.1 Hardware
	5.2 Network
	5.3 Software
	5.3.1 CAPEv2
	5.3.2 Testbed OS
	5.3.3 FOG
	5.3.4 Security Onion
	5.3.5 Malware selection
	5.3.6 Firewall rules
	5.3.7 Honeypots

	5.4 Implementation
	5.4.1 Milestone 1: Prepare the host
	5.4.2 Milestone 2: Prepare the testbeds
	5.4.3 Milestone 3: Configure the Sandbox & Troubleshooting
	5.4.4 Milestone 4: Integrating The SPM analysis support
	5.4.5 Milestone 5: Prepare the backup tool
	5.4.6 Milestone 6: Prepare the monitoring tool

	5.5 Test and Validation
	5.5.1 Sandbox Test
	5.5.2 FOG test
	5.5.3 Security Onion Test

	6 Discussion & Conclusion
	Bibliography
	A Host Setup
	B Testbed setup
	C Sandbox configuration & Troubleshooting
	D SPM integration
	E FOG documentation
	E.1 Installing and Configuring the FOG Server
	E.2 Installing and Configuring the FOG Client

	F Security Onion documentation
	F.1 Security Onion - figures
	F.2 Security Onion installation and configuration

	G Test and validation

