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Prediction of football actions and identification of optimal
sensor placements using a semi-supervised learning approach

Aske Gye Larsen & Giovanni Papi

Abstract

The aim of this study was to combine the use of IMUs in football and the principles commonly
used in Human Activity Recognition, to be able to predict some of the most common football
actions, and herein also which placements of the sensors are the most important. This pro-
cess was split into two parts, starting with predicting the football actions, i.e. pass, dribbling,
first touch, and positioning, using a bidirectional Long Short Term Memory neural network
(LSTM). The second part consisted of predicting head scans with a Deep Learning Artificial
Neural Network (DNN) separately, as the head scan happened simultaneously with the other
actions. 14 male and 3 female football players participated in the study. Prior to any pre-
dictions, the data was split 50/50 into labeled and unlabeled data, and the labeled data was
further split 80/20 into training data and testing data. All data were normalized and balanced
by using Adaptive Synthetic Sampling Approach (ADASYN). 5250 statistical time domain fea-
tures were calculated over a sliding window of 200 ms, with 50 % overlap, but later reduced
with a Principal Component Analysis retaining >95 % of the variance. A semi-supervised
uncertainty-aware pseudo-labeling technique was used to decrease the time needed for label-
ing. The LSTM showed decent results for predicting football actions, with a cross-validation
score of 0.74 and an F1-score of 0.74. The DNN prediction of head scans showed overall slightly
better results, mainly due to the lower number of classes, with a cross-validation score of 0.79
and an Fl-score of 0.78. The sensor placement that supplied the most relevant information
to the LSTM was the one placed on the right calf with an Fl-score of 0.65. For the DNN the
most important sensor placement was the one placed on the head, which showed an F1-score
of 0.69.

Introduction eter, gyroscope, and magnetometer to mea-
sure the movements of the agents in 3D. The

combination of tracking devices and Al have
the ability to accurately predict future risk fac-
tors for injuries and have therefore been help-
ful in keeping athletes healthy by decreas-
ing the risk of overtraining, or by detecting
movement patterns that are similar to athletes
who possess a greater risk of injury (Richter
et al. 2019, Franklyn-Miller et al. 2017, Rom-
mers et al. 2020). Moreover, in the competi-
tive nature of sports, every involved agent is
seeking to achieve advantages over competi-
tors in one way or another, which opens the
door for Al to be an important way for ath-

The use of technology has seen a steep and
continuous rise within the world of sports,
both for training and in competition. This has
lately been boosted even further by the rise of
Artificial Intelligence (AI), which is used with
most sports tracking devices. More specifi-
cally in football (soccer), it is nowadays com-
mon for players to practice or play in com-
petitions wearing vests with a tracking device
below their shirts. The tracking devices nor-
mally include a GPS and an Inertial Measure-
ment Unit (IMU), which is a sensor that typi-
cally utilizes the combination of an accelerom-



letes, clubs, trainers, etc. to gain that com-
petitive edge by using it to increase perfor-
mance. One way to increase performance is by
supplying the clubs opportunities to perform
spatial temporal analysis on individual play-
ers, or on a team-level basis (Gudmundsson &
Horton 2017, Aughey 2011, Barron et al. 2014).
However, most tracking devices are placed on
the torso of the player, as this is an area that
rarely interferes with the ball or other play-
ers, making these the only ones having been
approved by FIFA to be used on a profes-
sional level. However, in recent years multiple
companies have applied for FIFA’s approval
of their hardware, which often are located on
the players’ calves and just beneath the lat-
eral ankles. Each sensor placement supplies
different information, and sensors placed on
the lower body are today used to predict the
football actions done by the players. These ac-
tions include passing, first touches, dribbling,
etc. This can give valuable information to the
coaches and players, as it is a way to quantify
workload, how fast a player can perform ac-
tions with the ball etc. Therefore, it would be
beneficial for the players and coaches to have a
system that recognizes these actions automat-
ically, as the quality of feedback to the players
would increase if it is backed up and helped
by advanced data.

The recognition of movements within
sports is a branch of human activity recog-
nition (HAR), which is an area that has cap-
tivated researchers in recent years. The rise
of the interest has especially been notewor-
thy since the breakthrough of wearables such
as smartwatches and smartphones, where the
extraction of the data from the accelerometers
has been a key development since it enables
tracking of the persons movements without
invasive maneuvers (Bayat et al. 2014). How-
ever, most literature on HAR solely or pri-
marily classify activities of daily living (ADL),
which usually consist of continuous move-

ments, such as walking, sitting, lying, etc.
Some have tried to automatically recognize
specific sports actions using video recordings
(Tsunoda et al. 2017, Wu et al. 2022, Xing
& Li 2022), however, within sports, video-
based movement recognition has the disad-
vantage that they are costly and not eas-
ily transportable to new locations (Cuperman
et al. 2022), principally making them unavail-
able for smaller clubs or individuals. An-
other issue with predicting sports movements
is that they are often categorized as being
discrete, which is opposite to the continu-
ous movements seen in ADL. This means that
an athlete can perform many actions within
a short amount of time. This can be an is-
sue, as usually classification algorithms are
based on supervised learning, meaning all ac-
tions needs to be labeled. This is especially
time-consuming when using temporal data,
as each frame usually needs to be labeled
(Berthelot et al. 2019). One way to avoid this
problem is to move away from a supervised
learning approach, to a more time and labor-
beneficial semi-supervised learning (SSL) ap-
proach (Rizve et al. 2021, Zhou 2018, Zhang
et al. 2021). The use of SSL within HAR has
also been investigated and has often shown
promising results in applications where solely
manual labeling is not feasible. (Oh et al.
2021, Bi et al. 2022, Singh et al. 2021, Rizve
et al. 2021). Furthermore, as the focus of this
study is the classification of football actions
and many of these are discrete, the use of SSL
is presumed to be a tenable solution.
However, literature on the use of specifi-
cally IMUs for recognition purposes in foot-
ball is scarce. Cuperman et al. and Stoeve et
al. have investigated the feasibility of classify-
ing actions in football. They mainly focus on
the easier distinguishable movements such as
jumping, running, passing, shooting, etc. (Cu-
perman et al. 2022, Stoeve et al. 2021). With
the exception of passing and shooting, these



are generally movements that are already of-
ten recognized within the field of HAR, and
while running or jogging provide valuable
information on the workload of the play-
ers involved, these movements do not pro-
vide the in-depth analysis of football actions
that a player or trainer might want. Move-
ments, such as dribbling, passing and first
touch are generally harder to distinguish from
each other, since the movements required see
a lot of overlap. Nevertheless, these foot-
ball actions provide valuable information on
a player’s technical ability. Moreover, most
of these studies include multiple IMUs, which
usually is not feasible for use in the field. Pre-
viously, the optimal sensor placements have
been investigated within HAR by Rahn et al.
and Xia & Sugiua 2021, and subsequently in
Hockey by Shahar et al., who focused on sen-
sors on the upper body (Rahn et al. 2021, Sha-
har et al. 2020, Xia & Sugiura 2021). However,
no studies to date have investigated the opti-
mal sensor placements for automatically clas-
sifying football actions.

Therefore, this study aims to combine the
use of IMUs in football and the principles
commonly used in HAR, to be able to predict
some of the most common football actions,
and herein also which placements of the sen-
sors provide the most important information,
using an SSL approach.

Methods

Participants

14 male and 3 female football players partici-
pated in the study (19.1 + 6.9 yr, 174.5 + 10.3
cm, 62.4 +23.1 kg, 9.7 + 3.6 yr of football expe-
rience). The participants primarily played for
teams in the best Danish senior female foot-
ball league or the best youth leagues. The
participants wore their own football boots and
weather-appropriate clothing.

Technical design

In this study, the state-of-the-art full-body
motion capture system Xsens MVN Awinda
(Xsens Technologies B.V, Enschede, the
Netherlands) was used. This system consists
of 17 high-performance IMUs and motion was
captured using the state-of-the-art sensor fu-
sion Kalman filter (XKF3hm), supplied by the
included software, Xsens MVN Studios (ver-
sion 2021.0.1). The participants were fitted
with all 17 available sensors, as the software
Xsens MVN Studios required, but only 7 sen-
sors, shown in figure 1, were further used for
the data analysis. These were chosen to rep-
resent the common placement of wearables
used in soccer by the major player tracking
companies and included sensors on the head,
sternum, right wrist, right calf, right foot,
left calf and left foot. Three-axis accelerom-
eter (ACC) output (3D + 16g), three-axis gyro-
scope (AR) output (+20000/s), and three-axis
magnetometer (MAG) output (+ 1.9 Gauss)
respectively were measured with the IMUs
and four-axis quaternion (QUA) was calcu-
lated, all at 60Hz to develop a machine learn-
ing (ML) algorithm to detect football actions.
The video was recorded at 1080p / 60fps
(Nikon 1 J4 Model Camera with a 1 NIKKOR
VR 10-30mm f/3.5-5.6 PD-ZOOM lense) and
used to label each event as the ground truth
for the supervised ML algorithm to train and
test. The cameras were placed approximately
5 meters from the playing field, with an an-
gle of roughly 15° relative to the ground, to
make the whole exercise area visible during
the recording.

Practical design

A self-paced warm-up was instructed to the
participants to minimize the risk of injury and
to ensure that the participants had a full range
of motion, which is also to be expected dur-
ing a live game or practice session. Then the
participants’ body dimensions were measured
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Figure 1: The experimental setup illustrating the computer with the Xsens MVN Studios and a WIFI connection to the
Xsens MVN Awinda suit mounted on the participant as illustrated by the 7 used sensors. Furthermore, the camera is
illustrated pointing towards the training area surrounded by the Goal Station Focus 360.

along with being fitted with the 17 IMUs.
Both the measurements and the fitting of
the IMUs were executed following the guide-
lines from Xsens MVN Awinda (Myn et al.
2021). After being fit with the IMUs, a cal-
ibration within the Xsens MVN Studios was
completed. The calibration involved the par-
ticipant standing in a neutral pose (N-pose),
walking straight for 4 seconds with their nat-
ural gait, before turning around and walking
back to the start position, and ending the cali-
bration in a N-pose. Only calibrations defined
as good by the Xsens MVN Studios software
were accepted for this study. After the calibra-
tion of the IMUs, the participants completed
a training session as they would usually do.
The exercises were chosen to fit a large vari-
ety of common football actions, i.e. numerous
first touches, passes, dribbles, head scans, and
positioning. All exercises were specialized by
the coach to represent incidents the partici-

pant could expect given their playing posi-
tion. The common target for the participants
in all exercises using the Goal Station Focus
360 is to hit 12 walls (1.40 m x 0.8 m), that
light up in a particular color, as fast as pos-
sible, each of these exercises lasting approxi-
mately 30-50 seconds. These types of exercises
were chosen to simulate external output the
participant had to react to, as movement pat-
terns have demonstrated being different in re-
active movements contra planned movements,
the latter not being realistic in game-like situ-
ations (Wakatsuki & Yamada 2020).

In some exercises, the next wall that is to
be hit lights up in a different color, which fur-
ther incentives the participant to keep scan-
ning the field During the data gathering pe-
riod, the coach chose a total of 10 different
exercises, however, the main goal for the par-
ticipants of orientating themselves and hit-
ting the next lit-up board as fast as possible



never changed. The differences in the exer-
cises were mainly the locations of the boards.
To ensure synchronization between the IMUs
and cameras, interrupting periods were im-
plemented at the beginning and end of each
recording. During the interruptions, the par-
ticipants were instructed to stop all move-
ments for 5 s, then do three quick jumps and
subsequently stand still for 5 s. These peri-
ods were easily detectable on IMU recordings,
which enabled synchronization of the video
and the IMU recordings.

Data Processing

The data used in this study were sampled
from 186 complete trials. 10 trials were omit-
ted due to erroneous data, such as sensor
fallout or interference with the video record-
ings. The raw data from the IMUs were
hereafter exported to .xIsx files. The IMU
and video recordings were thoroughly gone
through frame by frame, and subsequently la-
beled manually in Excel by what action the
participant was performing at a given frame.
Furthermore, each file was given a unique
participant as well as an occurrence ID. The
actions involved were as follows: a pass, posi-

tioning, first touch, dribbling, head scanning
the field (head scan), and not head scanning
of the field (not head scan). Definitions of
each action are given in Table 1. The label-
ing of head scan was done independently of
the other labels, meaning that a given frame
could be labeled pass, positioning, first touch,
or dribbling as well as head scan or not head
scan. The labels are illustrated in figure 2 as
the mean values of all football actions used in
this study, normalized between 0 - 100 %, for
each of the outputs from all IMUs. All calcula-
tions and code were written using the Python
programming language (version 3.11.2), in
the open-source scientific environment Spyder
(version 5.3.3). The data was split (50%/50%)
into data that was labeled for the supervised
ML algorithm and data kept unlabeled for
the pseudo-labeling. Furthermore, the labeled
data was split (80%/20%) into a training and
test set and additionally, one-hot encoding
was implemented as a method to convert the
categorical data to numerical, as to ensure that
higher numbered classes did not carry more
weight (Potdar et al. 2017).

Table 1: Each football action included and definitions on when the action begins and ends.

Action

Defintion

Pass

Begins with the passing foot leaving the ground,

and ends when the passing foot makes contact with the ground again

First touch

Begins when the foot doing the first touch

leaves the ground, and ends when the foot makes contact with the ground again

Dribble

Begins when the foot doing the dribble leaves the ground,

and ends when the foot makes contact with the ground again

Positioning

Begins the participant is not in possession of the ball,

Head scan

and is therefore moving around to get in a better position,
and ends when the participant is lifting a foot to prepare for a first touch or a pass

Head scan denotes an active head movement where a participant’s face is temporary
directed away from the ball to gather information in preparation
for subsequently engaging with the ball (Jordet et al. 2020).
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Figure 2: Shows the 9 sensor outputs (3D accelerations, 3D angular rate, and 3D Gauss) measured by the 7 IMUs
(Sternum, Head, Wrist, Right calf, Right foot, Left calf, and Left foot) for the four football actions as well as the binary
classification detecting head scans, all movements normalized between 0 to 100 %.



Balancing the data

To overcome any imbalances in the data sets,
which is expected due to the low interfer-
ence within the training, an adaptive synthetic
sampling approach (ADASYN) was used (He
et al. 2008). ADASYN is an oversampling ap-
proach, which artificially generates more data
points from the minority classes, and puts
more weight on those minority classes that
are harder to learn, compared to the major-
ity class that are easier to learn (Santos et al.
2018).

Feature Extraction

When handling signal-type temporal data,
manual feature extraction is a common tech-
nique to improve the performance of the algo-
rithm (Preece et al. 2008, Cust et al. 2019, Kan-
jilal & Uysal 2021). This is why the deriva-
tives were calculated from the raw data, as
Hamaéldinen et al. showed that the jerk-type

features are especially productive in devel-
oping a robust algorithm (Hamaéldinen et al.
2011). From both the raw data and the deriva-
tives, the magnitude was calculated as the
square root of the squared sum of the 3-
axis (4-axis for quaternion). After construct-
ing each data vector, a rolling window of 12
frames with 50 % overlap was used. The
12 frames were chosen as Jaén-Vargas et al.
demonstrated that moderate to large windows
yielded the highest-performing algorithms,
and suggested a 1/5 of the Sampling Fre-
quency (60 Hz) is the minimum size window
for optimal performance (Jaén-Vargas et al.
2022). The 50 % overlap that was chosen as the
feature extraction in this project was mainly
based upon the features proposed in Zhu et
al. (Zhu et al. 2017) where they used 67 %
overlap, however, Dehghani et al. showed
no increase in performance with higher over-
lap (Dehghani et al. 2019), which is why the

[PA] [PO] [FT] [DR] [PA] [PO] [FT] [ORI]
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Figure 3: The Feature Extraction with the 13 raw data output being X, Y, and Z axis of the accelerometer, gyroscope,
and magnetometer as well as the W, X, Y, and Z axis quaternion output. The derivatives and magnitudes of the raw
output were used to calculate the final features, being mean, median, standard deviation, average absolute difference,
minimum, maximum, difference between minimum and maximum, median absolute deviation, interquartile range,
10th and 90th percentile, negative count, positive count, values above the mean, peaks, entropy, skewness, kurtosis,
energy, average resultant acceleration, signal magnitude area and autoregression coefficients with Burg order equal to
four correlation coefficients between two signals respectively.



slightly lower 50 % was chosen. Furthermore,
Zhu et al. also demonstrated that keeping the
data from both the accelerometer, gyroscope,
and magnetometer as well as the quaternion
output is the most optimal, and they also
suggest that the features should be kept in
the time domain (Zhu et al. 2017). Over
each window the following features were cal-
culated; mean, median standard deviation
(STD), average absolute difference, minimum,
maximum, difference between minimum and
maximum, median absolute deviation, 10th
and 90th percentile, interquartile range (IQR),
negative count, positive count, values above
the mean, peaks, entropy, skewness, kurtosis,
energy, average resultant acceleration, signal
magnitude area (SMA) and autoregression co-
efficients with Burg order equal to four corre-
lation coefficients between two signals, illus-
trated in figure 3. This gives a total of 750
features from each of the 7 IMUs and thereby
5250 features for each window. All features
were normalized between 0 and 1 to ensure
that larger values won’t carry more weight
than smaller values.

Development of the algorithm

To find the best performing algorithm, the fol-
lowing ML algorithms were tested: random
forest, XGBoost, gaussian naive bayes, man-
hattan distance k-nearest-neighbor, multino-
mial logistic regression, support vector ma-
chine with radial basis function kernel, deep
learning artificial neural network (DNN),
bidirectional long short-term memory (biL-
STM) neural network, and finally a multilay-
ered 2D-convolutional neural network (CNN).
These were chosen as they are some of the
most commonly used algorithms for HAR
(Narayanan et al. 2020, Cust et al. 2019, Herold
et al. 2019, Kwapisz et al. 2011, Ariza-Colpas
et al. 2022, Dehghani et al. 2019, Garcia-
Gonzalez et al. 2020, Jaén-Vargas et al. 2022,
Kanjilal & Uysal 2021, Khanal et al. 2021,
Nunavath et al. 2021, Preece et al. 2008, Prasad
et al. 2021, Stoeve et al. 2021, Walse et al. 2016).
All models were tested, as illustrated in ta-
ble 2, on the following metrics: accuracy, F1-
score, precision, recall, Krippendorf’s alpha
for the multiclass labels, Cohen’s Kappa for
the binary labels, and finally, five-fold cross-

Table 2: Showing the performance metrics (accuracy, precision, recall, F1-score, Krippendorf’s Alpha/Cohen’s Kappa
and a five fold cross-validation) for each of the algorithms tested for both the prediction of football actions and head

turns.

Football action algorithm Accuracy  Precision  Recall ~Fl-score  Krippendorf’s Alpha  Cross-Validation
Random Forrest 0.68 0.56 0.68 0.62 0.34 0.60
Artificial Neural Network 0.73 0.70 0.73 0.71 0.54 0.77
XGBoost 0.58 0.62 0.58 0.59 0.35 0.66
Gaussian Naive Bayes 0.48 0.59 0.38 0.48 0.35 0.35
K-Nearest-Neighbour 0.58 0.57 0.58 0.57 043 0.54
Multinomial Logistic Regression 0.53 0.59 0.53 0.43 0.03 0.62
Support Vector Machine 0.58 0.60 0.58 0.59 0.42 0.62
Multilayered 2D Convolutional Neural Network 0.70 0.69 0.70 0.69 043 0.64
Long Short-Term Memory Neural Network 0.75 0.73 0.75 0.74 0.55 0.74
Head scan algorithm Cohen’s Kappa

Random Forrest 0.70 0.72 0.70 0.70 0.23 0.72
Artificial Neural Network 0.78 0.84 0.76 0.78 0.61 0.79
XGBoost 0.67 0.66 0.67 0.66 0.48 0.63
Gaussian Naive Bayes 0.53 0.64 0.43 0.53 0.40 0.40
K-Nearest-Neighbour 0.60 0.78 0.50 0.58 0.23 0.58
Multinomial Logistic Regression 0.63 0.67 0.65 0.65 0.33 0.67
Support Vector Machine 0.71 0.73 0.71 0.71 0.33 0.71
Multilayered 2D Convolutional Neural Network 0.73 0.69 0.72 0.70 0.47 0.69
Long Short-Term Memory Neural Network 0.74 0.81 0.71 0.74 0.54 0.78




validation. The best performance was defined
as the algorithm that produced the highest F1-
score. Furthermore, all of these models under-
went hyperparameter tuning using a system-
atic grid search from the scikit-learn library,
to make sure the most optimal version of each
model was tested. The best-performing model
for classifying the 4 different football actions
was the deep learning biLSTM (LSTM) with
an Fl-score of 0.74 and the best-performing
model for the classification of head scans was
the DNN with an Fl-score of 0.78.

Feature Reduction

One of the issues with a vast amount of
data, comprehensive feature extraction, and
deep neural networks is the computational
power required. Therefore, the feature im-
portance of each feature was calculated for
both the LSTM and DNN through the Ten-
sorFlow (2.12.0) library, to ensure no redun-
dant features were used. However, no clear
outliers were detected, but some features out-
performed others and the five most impor-
tant features are illustrated in Table 3. An-
other way to reduce the dimensionality of the
data is the state-of-the-art method of Princi-
pal Component Analysis (PCA). PCA sepa-
rates itself by not looking at the feature im-
portance but by investigating the variance of
the data. PCA is a technique that trans-
forms high-dimensionality data into a lower-
dimensionality while retaining as much infor-
mation as possible. The PCA does this by
finding the directions of maximum variance in
high-dimensional data and projecting it onto a
new subspace with fewer dimensions (Abdi &
Williams 2010). PCA has been widely used in
HAR, where the main advantage is the reduc-
tion in required computational power, while
still maintaining a high accuracy (Aljarrah &
Ali 2019, 2021, Fergani et al. 2013, Walse et al.
2016, Ariza-Colpas et al. 2022). For some ap-
plications, PCA has even improved the re-

sults, mainly by reducing the noise (Chen
et al. 2017, Zhao et al. 2022). In this study,
the first 948 principal components were used
out of the 5250 features, as they were able
to explain >95% of the variance, which is in
the common range for PCA in HAR (80 - 95
%) (Aljarrah & Ali 2019, 2021, Fergani et al.
2013, Walse et al. 2016, Ariza-Colpas et al.
2022). The PCA reduced the computational
time needed by 56 and 47 % from the LSTM
(3 hours, 16 minutes) and DNN (2 hours, 27
minutes) respectively, while not lowering the
Fl-score, as illustrated in figure 4.

LSTM DNN

F1-Score

00

Original  85%  80%  85%  B0% Original  95%  90%  B5%  B0%
Variance after PCA Variance after PCA

FlScore Secands of runtime

Figure 4: Shows the Fl-score and computational time of
both the LSTM and DNN run with the original dataset
as well as different amounts of variance kept after the
PCA. Both were run mainly on the GPU (AMD Radeon
RX Vega 7), with fewer smaller computations on the CPU
(AMD Ryzen 7 4700U).

Semi-supervised learning

In SSL, portions of the data are kept unla-
beled and different methods are then used
to predict the unknown labels. One of the
most used methods is pseudo-labeling, where
you train an algorithm on the labeled data,
use the algorithm to predict the class for the
unlabeled data, and then train another algo-
rithm on the combined dataset of the man-
ually labeled data and the predicted labels
(Thapa et al. 2023, Fu et al. 2021, Xu et al.
2022). There is no clear consensus on the split
between labeled and unlabeled data, how-
ever, Xu et al. demonstrated that larger pro-
portions of labeled data yields higher perfor-
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Table 3: Showing the feature importance, mean, and standard deviation (std) of the five most important features with
normalization, for both the LSTM and the DNN, followed by which sensor and its output (MAD = Mean absolute

deviation).
LST™M IOR sternum Entropy sternum Entropy right IOR Median SMA
acceleration (Z) acceleration (Z) calf Gauss (Y) right calf (Y) right foot jerk (X)
Feature Importance 1.60 e-8 1.54 e-8 133 e-8 1.27 -8 9.87 e-9
Pass 0.09 £+ 0.05 2.06 £+ 0.90 3.12 +0.29 0.22 +£0.23 499 +3.21
First touch 0.04 £+ 0.06 2.09 £+ 0.87 2.02 + 0.07 0.15 + 0.12 1.61 +7.30
Dribble 0.07 £+ 0.06 2.09 + 0.88 248 + 0.11 0.12 £ 0.11 4.62 + 3.20
Positioning 0.05 + 0.05 2.23 + 0.73 2.28 + 0.09 0.13 + 0.11 8.97 +1.32
DNN MAD Sternum MAD Sternum Entropy MAD Sternum MAD
acceleration (Z) quaternion (Z) Head acceleration (X)  quaternion (Y) Head jerk (Y)
Feature Importance 1.80 e-8 1.28 e-8 9.77 e-9 9.72 e-9 9.11e9
Head scan 236 £ 537 1.08 £ 2.28 1.98 +0.97 0.55 £ 0.69 6.99 +7.58
Not a head scan 101 + 360 0.52 + 1.56 2.08 + 0.88 0.28 + 0.41 2.82 +3.02

mance, which is why the data in this study
was split (50%/50%) (Xu et al. 2022). The type
used in this study is an uncertainty-aware
pseudo-label selection method with a confi-
dence threshold of 0.70, run over 10 iterations
as proposed by Rizve et al. (Rizve et al. 2021).
This method only introduces data where the
model is more certain (> 70 %), which is a
trade-off, as it unavoidably leads to fewer data
points (22 %), but also less noise introduced.
Additionally, the process is repeated for 10 it-
erations, where the accuracy of the pseudo-
labeling is constantly improving. To ensure
that the unlabeled data was not solely intro-
ducing noise, 10 % of the unlabeled data was
labeled and the LSTM and DNN predicted
the labels of the 4 football actions and head
scans respectively. The results were an accu-
racy of 0.79 for the LSTM and an accuracy of
0.84 for the DNN, indicating that the majority
of the pseudo-labeled data would supply the
algorithms with valuable information. How-
ever, this is slightly less than the usual accu-
racy recommended for SSL (> 90 %), but the
method was substantiated as the Fl-score of
the LSTM was increased from 0.73 to 0.74 af-
ter the introduction of the uncertainty-aware
pseudo-labeled data. Similarly, the Fl-score
of the DNN increased from 0.76 to 0.78.

Post-processing

Due to the discrete nature of the movements,
the windows were relatively short and a soft
voting approach with a sliding window over 3
frames was therefore used. This sliding win-
dow calculated the mean of probabilities over
3 frames, with 50 % multiplied by the present
frame and 25 % multiplied by the previous
and subsequent frames. This made the predic-
tions more rigid to change, while still empha-
sizing the current frame more, as illustrated
for the LSTM in figure 5

The algorithms

The foundation of the LSTM for predicting
football actions and the DNN for predicting
head scans were based on a systematic grid
search but were subsequently fine-tuned us-
ing PyTorch (2.0) to find the optimal ones.
Usually, in SSL different hyperparameters are
needed for the model to predict the pseudo-
labels and the final model. However, in this
study, as only 50 % of the data was kept unla-
beled and 82 % of the unlabeled data was uti-
lized by using the uncertainty-aware pseudo-
labeled technique, the difference in data sizes
was not substantial enough to lead to differ-
ent hyperparameters needed for optimal per-
formance, which is why only a single LSTM
and DNN is illustrated in figures 6 and 7.
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Figure 5: Shows the data soft voting smoothed over a 3-frame sliding window (left) and the raw data (right).
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Figure 6: Shows the architecture of the LSTM to predict football actions. Under each layer is denoted the number of
neurons in the respective layer.
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Figure 7: Shows the architecture of the DNN to predict the head scans. Under each layer is denoted the number of

neurons in the respective layer.

LSTM

The LSTM, shown in figure 6, was written
using the application programming interface
Keras (2.12.0), which can be imported into the
system of choice through the ML platform
TensorFlow (Chollet et al. 2015). Built into
Keras are multiple ML tools that were used in
this study. The LSTM consisted of 2 bidirec-
tional LSTM layers (biLSTM) and 4 dense neu-
ral layers, each one using the parametric rec-
tified linear unit (ReLU) activation function,
except for the last output layer which used
the softmax activation function. A dropout
of 0.4 was implemented on all hidden layers,
the input layer, and an early stop of 35 epochs
to prevent overfitting. Focal categorical cross-
entropy was chosen as the loss function and
Adam was chosen as the optimizer. These
variables were chosen based on a systematic
grid search, which chose the combination of
variables that yielded the best-performing al-
gorithm.

DNN

As with the LSTM, the DNN, illustrated in fig-
ure 7, was based on a systematic grid search.
The DNN consisted of 4 hidden neural net-
work layers, each one using the parametric
rectified linear unit (ReLU) activation func-
tion, except for the last output layer which
used the sigmoid activation function. To pre-
vent overfitting, a dropout of 0.6 was imple-
mented on all hidden layers, the input layer,
and an early stop of 50 epochs. Focal cate-
gorical cross-entropy was chosen as the loss
function and Root Mean Square Propagation
(RMSProp) was chosen as the optimizer.

Results

Presented in table 4 is the performance scores
of the final SSL LSTM algorithm on predicting
football actions.



Table 4: Performance metrics scores of the final semi-
supervised LSTM model.

Football Action Prediction Model

Performance metrics Score
Accuracy 0.75
Precision 0.73
Recall 0.75
Fl-score 0.74
Krippendorff’s alpha 0.55
Cross Validation 0.74

The accuracy of the algorithm was found
to be 0.75, indicating that it correctly classi-
fied 75% of the instances. Precision was cal-
culated to be 0.73, which is a measure of the
proportion of true positives among all pos-
itive predictions. The recall was calculated
to be 0.75, which represents the proportion
of true positive predictions among all actual
positive instances. To provide a comprehen-
sive evaluation of the algorithm, the Fl-score
was calculated, yielding a value of 0.74. The
Fl-score is the harmonic mean between pre-
cision and recall, providing a balanced mea-
sure of the algorithm’s performance. To calcu-
late the inter-rater reliability, Krippendorft’s
alpha was calculated, resulting in a value of
0.55, which indicates a moderate agreement
between the four classes (Wong et al. 2021,
Landis & Koch 1977). Furthermore, a cross-
validation score of the algorithm was calcu-
lated to assess the algorithm’s generalizability.
This score was calculated to be 0.74, indicat-
ing the algorithm’s consistency in performing
across out-of-set data.

Ilustrated in figure 8 is a confusion matrix
based on the predictions of the football actions
made by the LSTM. As it illustrates, the algo-
rithm performed better when it had to predict
the positioning and passing actions, but had
more trouble when it had to predict the first
touch and dribbling actions.
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Figure 8: A normalized confusion matrix of the LSTM,
with predicted events on the x-axis, and actual events on
the y-axis. The hue indicates the share of the prediction.

This is further illustrated in the AUC-ROC
curve in figure 9, where the AUC-score is
greatest for the pass and positioning actions,
scoring an AUC-score of 0.87 and 0.81, respec-
tively, when comparing the prediction of the
single action vs. the rest. The dribbling and
first-touch actions had slightly worse AUC
scores of 0.75 and 0.77, respectively.

Tue Positive rate

0o

0.0 0z 04 0.6 0.8 10
False Positive Rate

=== Pass vs Rest (AUC=0.87)
Dribling vs Rest (AUC=0.75}

=== First Touch vs Rest (AUC=0.77)

=== Positioning vs Rest (ALUC=0.81)

Figure 9: A one vs rest AUC-ROC curve of the LSTM,
with the false positive rate on the x-axis and the true pos-
itive rate on the y-axis.



Similarly were the performance metrics
calculated for the DNN's ability to predict
head scans, as shown in table 5. The accu-
racy of the model was found to be 0.78, the
precision was calculated to be 0.84, the recall
was calculated to be 0.76, the F1-score was cal-
culated to be 0.78, the Cohen’s Kappa was cal-
culated, resulting in a value of 0.61, which in-
dicates a substantial agreement between the
two classes (Wong et al. 2021, Landis & Koch
1977). And finally, a cross-validation score of
the model was calculated to be 0.79. Like-
wise was a confusion matrix constructed for
the DNN, as shown in figure 8. The confu-
sion matrix indicates that the DNN performed
slightly better when classifying not head scans
compared to head scans. And finally, a AUC-
ROC curve is illustrated in figure 11, which
indicates the DNN’s overall decent ability to
distinguish between the two classes.

For predicting the football actions using
only a single sensor, figure 12 shows the F1-
score of the LSTM and DNN for the data from
each of the IMU sensors separately. It shows
that the IMU with the most valuable infor-
mation for classifying football actions was the
sensor on the right and left calves, with an
Fl1-score of 0.65 and 0.63, respectively, and the
IMU with the most valuable information for
detecting head scans was the head sensor with
an Fl-score of 0.69, followed by the sternum
with an F1-score of 0.66.

Table 5: Performance metrics scores of the final semi-
supervised DNN model.

Head Scan Prediction Model

Performance metrics Score
Accuracy 0.78
Precision 0.84
Recall 0.76
Fl-score 0.78
Cohen’s Kappa 0.61
Cross Validation 0.79
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Figure 10: A normalized confusion matrix of the DNN,
with predicted events on the x-axis, and actual events on
the y-axis. The hue indicates the sum of the prediction.
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sensors combined.
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Figure 13: Shows F1-score of the pairwise combinations of both the LSTM and DNN.

Finally, for the pairwise prediction of foot-
ball actions, figure 13 shows the best combina-
tion of the use of a two-sensor setup. The re-
sults show that the best combination of IMUs
for predicting football actions was the ster-
num and right calf sensor with an Fl-score of
0.70, and for the prediction of the head scan,
the best combination of sensors was found to
be the head and right calf IMUs, producing an
F1-score of 0.75.

Discussion

The results from this study showed that the
combined use of IMUs, ML algorithms, and
the principles commonly used in HAR has
some capability of predicting football actions,
hereunder head scans, with F1l-scores ranging
from 0.74 - 0.78. The literature on predicting
specific football actions using the same prin-
ciples as in this study is scarce, but predict-
ing specific actions in other sports have been
conducted, e.g. predicting tennis strokes, ta-

ble tennis strokes, ball-related actions in vol-
leyball, etc. (Blank et al. 2015, Dokic et al.
2020, Kautz et al. 2017, Connaghan et al. 2011).
These studies achieved accuracies in the range
of 82.5% and 96.7%, meaning that they scored
higher accuracies than the ones presented in
this study, but in different sports. The sports
that scored the best results, were tennis and
table tennis stroke detection, which have little
to no overlap with football actions, as they are
done with the upper extremities. This means
that actions such as running and changing di-
rections, in general actions with ground reac-
tion forces, won’t impact the sensors on the
upper extremities as they would on the sen-
sors on the lower extremities.

However, two studies have investigated ac-
tion prediction in football using IMUs. Cuper-
man et al. achieved excellent results with an
accuracy as high as 98.3% (Cuperman et al.
2022), also by using IMUs and deep learn-
ing, the included actions being sprinting, jog-
ging, shooting, jumping, and passing. These



actions were, however, done in a controllable
fashion, where participants would, e.g. per-
form 10 sprints followed by a shot. Cuper-
man et al. also used movements such as jog-
ging and sprinting, which already have been
shown to be recognizable movements by us-
ing ML and HAR principles before (Ahmadi
et al. 2014, Ghazali et al. 2018). The foot-
ball actions included in this study, i.e. pass-
ing, first touch, and dribbling show a great
amount of overlap and are very complex with
multiple movements happening at the same
time both involving upper and lower limb
segments. They are therefore harder to distin-
guish, even for humans, which is why the def-
initions of the movements were based around
the feet contact times as they where easily vis-
ible on the video. The results of the prediction
of the first touch and dribbling also showed
the lowest accuracy, as illustrated in figures
8 and 9, which further shows the complexity
and difficulty of predicting the first touch and
dribbling actions. Methodologically, the data
gathering in Cuperman et al., is further away
from a real training or competition setting
compared to our study, which could be a con-
tributing factor to their better results. Further-
more, the sliding window approach used in
Cuperman et al. is 1 s long, meaning a predic-
tion only occurs once every second. This gives
more stable predictions, but for fast and dis-
crete movements, such as the ones included
in this study, this approach is not preferable
as the movements were as short as 150 ms
and multiple football actions therefore might
happen in the same window. However, the
end-to-end method used by Cuperman et al.
seems promising, and further research could
look into if this method is also applicable with
less distinguishable movement.

Another study by Schuldhaus et al. tried
to differentiate between passes and shots
in football, achieving an accuracy of 84.2%
(Schuldhaus et al. 2015). Although still
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achieving a higher accuracy than this study,
Schuldhaus et al. only had to perform a bi-
nary classification of either a pass or a shot.
When dealing with predictions, the accuracy
of the model will tend to fall when the num-
ber of possible predictions increases (Goodfel-
low et al. 2016). Having to predict four actions
compared to two can have a big impact on the
accuracies, as seen in this study on the differ-
ence between predicting football actions and
head scans.

With regard to head scans, previous stud-
ies have shown the importance of them in
elite-level football, increasing the chances of
a successful follow-up pass if a head scan
has been performed prior to receiving the ball
(Jordet et al. 2020, 2013, McGuckian et al. 2019,
Aksum et al. 2021). The literature specifi-
cally on predicting head scans is very scarce,
but McGuckian et al. investigated the im-
portance of head scans using an IMU simi-
lar to the ones used in this study to investi-
gate the outcomes after a head scan (McGuck-
ian et al. 2018). However, no details about
the accuracy of their prediction model are to
be found, the author only stating that it had
been previously validated. This makes it diffi-
cult to compare the accuracy found on head
scans in this study with others. An accu-
racy score of 0.78 would mean that most of
the head scans a player performs will be de-
tected. Furthermore, no studies have to date
tried to detect head scans using a single sen-
sor setup on the trunk, where all FIFA ap-
proved wearables are currently placed, how-
ever, this was tested in this study. Although
the results shown in figure 12 indicate that
the most important sensor placement for de-
tecting head scans is the head with an F1-
score of 0.69, the sensor placed on the ster-
num was close behind with an Fl-score of
0.66. This shows the feasibility of detecting
head scans using the single sensor setup most
Sports Tech companies use today, which pre-



viously have not been demonstrated. As the
earlier mentioned studies showed, the rela-
tionship between when a head scan and a pass
is performed is extremely relevant and as the
method proposed in this study showed some
capability in predicting these, with 60 % of
the passes and 73 % of the head scans accu-
rately predicted as shown in figure 8 and 10
respectively. This could provide valuable in-
formation for players trying to improve their
awareness and passing accuracy (Jordet et al.
2020, Aksum et al. 2021).

Being on the topic of discussing move-
ments, a discussion of the confinements of the
movements is also relevant. Even though the
data for this study was attempted to be col-
lected in a low interference way compared to
similar studies, all participants were still in
a controlled environment with no opposition.
This is of course not relevant when compar-
ing it to some real-life settings, i.e. training
sessions or competitions, but implementations
were applied to account for this by having lit-
up boards function as a target to pass to. This
accomplishes an aspect of orientation that the
participant also has to account for in a training
session or competition. Furthermore, by im-
plementing time as a performance metric, the
participants performed the actions as fast as
possible, which is also an important factor for
the participants if they were in a match, which
should make the movements performed by
the participants as close to a competitive set-
ting as possible. This was important for this
study, as the aim was to use as close to a
competitive setting as possible, but without
including the risk of opposing players dam-
aging the sensors.

With regard to the algorithm and pre-
processing steps, it could also be argued
that other state-of-the-art methods could have
been used. For example, Kanjilal & Uysal in-
vestigated whether or not manual feature ex-
traction performs better than using raw tem-

17

poral data (Kanjilal & Uysal 2021). They
achieved better results using raw temporal
data with a combination of a convolutional
neural network (CNN), which learns features
from the dataset without being told which fea-
tures are important (Goodfellow et al. 2016).
One of the drawbacks of using this method
is that it needs a vast amount of data for it
to be efficient (Kanjilal & Uysal 2021). Fur-
thermore, the understanding of what features
are important for HAR will decrease when us-
ing CNN algorithms, as the way the model
will learn patterns will be unrecognizable for
humans, meaning a deeper understanding of
what is important for predictions will be prac-
tically impossible. It can make sense to use
a CNN model when working with pictures
or other spatial data that needs predicting, as
it will be possible to get a visual representa-
tion of what the model deems to be impor-
tant to learn. But when working with tempo-
ral data, as in this study, there will be a need
to transform the input data into an arbitrary
feature space with multiple dimensions. This
gives no possibility to produce a feature map
that provides any valuable information, and
this "black-box" problem has for a long time
been one of the greater issues with using these
models, and a call has been made to switch
to more interpretable models instead (Rudin
2019). Especially when exploring uncharted
territory, using interpretable models will in-
crease understanding and how to conduct re-
search within the section.

Sensor Placement

The other main focus of this study was to in-
vestigate which sensor placements supplied
the most important information to predict
football actions. As figure 12 shows, the
most important sensor placements were on
the right calf to predict football actions, and
on the head to predict head scans. The drop-
off from using only one sensor compared to



all sensors was an Fl-score of 0.09 for the
LSTM and DNN algorithms. It is therefore
especially relevant, as most HAR research to-
day is based on a single wearable, as the drop
off in usability is high when including multi-
sensor setups (Cust et al. 2019). This further
suggests why the research on optimal sensor
placements is very important and this has ear-
lier been investigated within HAR (Rahn et al.
2021). The results by Rahn et al. showed that
the optimal sensor placement is very task spe-
cific. They also demonstrated that some pair-
wise combinations of sensors can be higher
performing than the combination of all sen-
sors, due to the removal of noise. This, how-
ever, was not the case in this study, as the per-
formance of all pairwise combinations of sen-
sors was lower for both algorithms than the
combination of all sensors. Nevertheless, this
study shows how it is still possible to achieve
decent results in some applications by using
fewer, but more relevant sensors. Meaning
that some of the sensors provide little to no
valuable information and the removal of data
from the 5 most irrelevant of the 7 sensors
only decreased the performance of the LSTM
by 0.04 and DNN by 0.03. This is especially
relevant for creating a system with the intent
of usability in the field, where the setup used
in this study with 7 sensors simply is not fea-
sible. And as all common hardware for move-
ment classification today is based on a sin-
gle or two sensors setup, researchers, coaches,
players, etc. should consider usability and ap-
propriate accuracy thresholds when choosing
which setup to use.

Schuldhaus et al. showed an accuracy of
82.4% by using sensors in the boots when pre-
dicting passes and shots from other events
(Schuldhaus et al. 2015). They stated that
future research should investigate the use of
different sensor placements, which was done
in this study, and it shows that placing sen-
sors on the foot of the players might not pro-
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vide the most relevant information, but sug-
gests placing sensors on the calves gives more
relevant information. This might be due to
the data quality, as slightly lower accuracies
on IMUs have been demonstrated at higher
movement velocities (Taylor et al. 2017). How-
ever, as this study did not include full power
movements, such as a shot, the possible de-
crease in accuracy should be minimal.

Data Quantity

When using ML algorithms, data quantity is
one of the most important factors to keep
in mind, as these algorithms require enor-
mous amounts of data to be able to achieve
optimal performance (Obermeyer & Emanuel
2016). Exactly how big of a quantity of data is
needed is difficult to assess, as the amount of
data required is very case specific. The DNN
is generally considered inferior to the LSTM
when dealing with time series data. However,
in this study, the DNN and LSTM performed
similarly. LSTMs usually need vast amounts
of data to perform optimally (Sarker 2021),
and the similar performance might therefore
be an indicator that there were an insufficient
amount of data for the optimal performance
of the LSTM in this study. Meanwhile, collect-
ing vasts amount of data will be beneficial for
the performance of the ML algorithms, even
when using an SSL approach, large quanti-
ties of this data have to be labeled, which
can be time-consuming and thereby not real-
istic in a real-world setting. This is especially
true when dealing with temporal data, where
recording is often done with a high-frequency
sampling rate device and subsequently each
time step has to be labeled manually. Further-
more, as this study investigates discrete move-
ments, where a participant can perform mul-
tiple movements within a second, the time to
manually label increases significantly. An op-
tion to boost the data quantity without more
time assigned to labeling is utilizing one or



multiple data augmentation techniques, such
as Variational Autoencoder (VAE) or Gener-
ative Adversarial Networks (GANSs), as pro-
posed by Talavera et al. for time series data
(Talavera et al. 2022). It was also possible
possible to increase the amount of data for
each window by using the data from all 17
IMUs. However, this would stray away from
the focus on investigating the common sensor
placements and the feasibility of using fewer
sensors, why other ways to boost the amount
of data seems preferable. Another similar ap-
proach to data augmentation is the one used
in Cuperman et al., where the combination of
a high sampling rate (500 Hz) and overlap (up
to 99 %) functioned as a form of data augmen-
tation (Cuperman et al. 2022). Nevertheless,
overall the data quantity in this study seems
to be sufficient, as the results of both predict-
ing models show decent accuracy, while also
withholding a high cross-validation score. A
low score of cross-validation could be an indi-
cator of the model overfitting, and while the
root cause for an overfit model can be many-
fold, it is often a lack of data that causes the
overfitting (Ying 2019). Even though an in-
crease in data quantity would always be ben-
eficial, the time required to manually label
the data would be unrealistic. This is the
main reason for using SSL in this study, as
it was then possible to collect a large amount
of data without manually labeling it. In this
study, the labeled and unlabeled data was
split 50-50, however, other studies show great
results splitting labeled and unlabeled data as
high as 5-95 (Tarvainen & Valpola 2017, Shi
et al. 2018). The key consideration centers
around whether or not there is a way to collect
data in big amounts without being too time-
consuming, and if the model beforehand has a
high enough accuracy on the training data, in
such a way that it can accurately pseudo-label
the unlabeled data. In light of this, it prompts
the inquiry if the performance of the method
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presented in this study could show even better
results with more data. For future research, it
should therefore be considered to make a cost-
benefit analysis on the time it takes to manu-
ally label the data, versus the time it takes to
collect data for pseudo-labeling, and how it
affects the accuracy. Furthermore, the split of
labeled vs. unlabeled data needs further re-
search to establish a consensus.

Data Quality

One of the most important steps with ML
is to ensure as high data quality as possi-
ble. This is why the hardware used in this
study was state-of-the-art for motion capture.
This included 7 IMUs containing three-axis
accelerometer output (3D + 16g), three-axis
gyroscope output (+20000/s), and three-axis
magnetometer output (+ 1.9 Gauss) respec-
tively, which is standard rates and should be
sufficient to capture football actions as the up-
per limit for full power kicking motions is
around 12 g and 1700 o/s (Zhou et al. 2020,
Yu et al. 2022, Kellis & Katis 2007). The sam-
pling rate was set at the maximum possible
60 Hz, which for HAR and some sports ap-
plications are generally considered sufficient
(Khan et al. 2016, Twomey et al. 2018, Zhuang
& Xue 2019). However, no studies have inves-
tigated the optimal sampling rate within foot-
ball, although Gémez-Carmona et al. suggest
that a sampling rate of 10 Hz is insufficient in
estimating workload in football, and a sam-
pling rate of > 100 Hz is sufficient, however,
no testing of the sampling rates in between
was done (Gémez-Carmona et al. 2021). Sto-
eve et al. and Cuperman et al. used sampling
rates of 200 and 500 Hz respectively, which
might be a contributing factor to their overall
better results, although Khan et al. indicate
that such high sampling rates might be exces-
sive (Stoeve et al. 2021, Cuperman et al. 2022,
Khan et al. 2016).

Another common issue when dealing with



SSL is the uncertainty of the level of label
noise in the pseudo-labels (Lokhande et al.
2020). An attempt was made to overcome this
problem by using the uncertainty-aware SSL
method and tested with a random sample of
10 % showing an accuracy of 0.82 and 0.87
for the LSTM and DNN, respectively. This
inevitably introduces noise, which generally
is tolerated as the efficacy of SSL has been
demonstrated with up to 30 % label noise, but
as a rule of thumb, the accuracy needs to be
over 90 % (Lokhande et al. 2020). Neverthe-
less, the noise might be too high in this study,
although this approach overall improved the
results. However, no consensus has to date
been established and further studies inves-
tigating the required accuracy for pseudo-
labeling within HAR are needed.
Furthermore, the efficacy of the features
used in this study is uncertain. They were
mainly based on Zhu et al, who focused
on HAR and mainly continuous movements.
They suggest keeping both the accelerome-
ter, gyroscope, magnetometer, and quaternion
output as well as solely using time-domain
features, however, they computed their fea-
tures over a 3-second sliding window, which
is 15 times larger than the window used in this
study (Zhu et al. 2017). Thereby it is question-
able whether the same features are the most
optimal for the recognition of discrete mo-
tions, as the ones included in this study.

Data Balancing

In this study, an attempt was made to inter-
fere as little as possible during the training
sessions. This was done to ensure as high fi-
delity of the data as possible, which is gen-
erally wanted in ML as it theoretically im-
proves the robustness of the algorithm. How-
ever, this approach was for this application
double-edged, as the movements were quite
unbalanced. This is a problem; for example,
the DNN could get a > 95 % accuracy by sim-
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ply predicting ‘'not a head scan’ all the time.
Therefore, it was chosen to put more weight
on the minority classes by utilizing the state-
of-the-art oversampling algorithm ADASYN.
The efficacy of ADASYN has demonstrated
decent results in previous studies (Irvine et al.
2019, Chen et al. 2021). Oversampling, how-
ever, set up a paradox, as the focus was to en-
sure high fidelity data by low interference, but
then subsequently it was needed to syntheti-
cally upsample data, where the fidelity is hard
to ensure (Santos et al. 2018). The most op-
timal solution is to undersample the dataset,
but this is rarely done in real-life applications,
due to the usual scarcity of data, especially
for more complex algorithms, such as LSTMs
(Lemaitre et al. 2017, Ramyachitra & Manikan-
dan 2014). Furthermore, undersampling has
also been demonstrated as being inferior to
oversampling techniques such as ADASYN
for some applications, which is why ADASYN
was eventually selected for this study (Mo-
hammed et al. 2020). However, Alharbi et
al. suggest cluster-based oversampling meth-
ods are more efficient in HAR than Synthetic
Minority Oversampling Technique (SMOTE),
which is a slightly simpler, but similar tech-
nique to ADASYN and might warrant further
investigation (Alharbi et al. 2022).

Another imbalance in the dataset was re-
garding the participants, as 14 were male
but only 3 were female, and likewise only
3 participants were left-footed compared to
14 right-footed participants. This might be
an issue as Tuncer et al. have demon-
strated > 99 % accuracy in differentiating be-
tween genders in HAR (Tuncer et al. 2020),
and furthermore, significant differences have
been demonstrated between male and female
movements in football (Serensen et al. 2022,
Sakamoto et al. 2013). The robustness of
the algorithms for classifying female move-
ments might therefore be subpar to classify-
ing male movements. Likewise, there could



be a difference in the classification of right-
footed and left-footed individuals, as the ac-
celeration traces and angular rates are mir-
rored. However, no studies have investigated
this difference within HAR and until such ev-
idence is presented is the efficacy of the pre-
diction of left-footed players unknown. This is
one of the common issues in ML applications,
i.e. the bias versus variance trade-off. In this
study, both the LSTM and DNN were intro-
duced to a moderate amount of bias, mainly
through the dropout implemented. This was
done to ensure the models were not overfit-
ting and thereby increasing the generalization
of the models (Jankowsky & Schroeders 2022).
In general, as much variance as possible in
the participants is needed to properly repre-
sent the target group. However, this was not
possible with only 17 participants. They were
all Danish, under 30, and with decent football
experience, and thereby a larger and more di-
verse group of participants is needed to boost
the generalizability of the models.

Summary

Based on this study, the SSL algorithm seems
as a decent method to predict various foot-
ball actions (pass, dribbling, first touch, po-
sitioning, and head scans) with only tempo-
ral data from IMUs. The results showed an
Fl-score ranging from 0.74 to 0.78, with the
highest accuracy being the binary detection of
head scans and the lowest accuracy the simi-
lar movements dribbling and first touch. The
LSTM should be best suited for temporal-type
data, but the amount of data might be insuf-
ficient in this study and further studies are
therefore needed. Furthermore, the informa-
tion from the 7 most used sensor placements
was investigated and the right calf gave the
most important information for the prediction
of football actions, whereas the head was most
important for head scans, however, they both
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decreased the Fl-score of 0.09. In case a two-
sensor setup is possible, the F1-score can gen-
erally be maintained with only a decrease of
0.04 for the classification of football actions
with sensors both on the sternum and right
calf as well as a decrease of 0.03 for the clas-
sification of head scans with sensors on the
head and right calf. This suggests that setups
more feasible for coaches and players might
be advantageous if a slight decrease in accu-
racy is tolerable.
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