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existing sensorless drive structure to im-
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Preface

This Master Thesis is written by a group of 10th-semester students, at Aalborg University’s Energy
Engineering Master’s degree programme, with specialisation in Mechatronic Control Engineering. The
thesis was written in the period February 2023 to June 2023, and supervised by Kaiyuan Lu.

To draft this thesis the following software has been used:

• Overleaf: For thesis writing.
• Draw.io: For illustrations.
• MATLAB: For calculations, modelling, data analysis, and plots.
• Simulink: For simulations.
• dSPACE: For controlling the test setup.

Reading guide

This thesis is written in LATEX, each chapter is denoted with a certain number, and divided into
section and sub-section. The appendixes follows the same notation, however with letters. Citations
follow the Harvard method. [Surname, year]. A full list of all citations is given in alphabetic order
in the bibliography found at the end of the report. Figures, equation, and tables are numbered by
chapter number, thus the first figure in chapter 1 has figure number 1.1 and the subsequent figure has
figure number 1.2. Hyperlinks are shown in the PDF version as: Figure 1.1.

Symbol guide

All symbols and constants used in this project can be found in the nomenclature. In this thesis, vectors
are denoted as □, matrices as □, time derivative □̇, references as □∗, and estimated values as □̂. In
the discrete domain □[k] will be used to denote sample number. Furthermore, the error between an
actual value and a reference value, and the error between an actual value and an estimated value will
be denoted as seen below.

Reference Error: ∆□ = □∗ −□
Estimation Error: □̃ = □− □̂
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Resumé

Elektriske motorer er brugt i mange applikationer og systemer, som f.eks. elektriske biler,
vaskemaskiner, og elevatorer. En meget anvendt type af 3-faset elektriskmotorer er permanent
magnetiseret synkronmotorer, grundet dens høje effektivitet og pålidelighed. Encoderer bruges ofte
til position-og hastighedstilbagekobling for regulering, men har ofte større omkostninger og tilføjer
pålidelighedsproblemer. Derfor er sensorløse reguleringsmuligheder undersøgt.

Formålet med denne afhandling er at designe et sensorløst drev til permanent magnetiseret
synkronmotorer, og undersøge hvordan et Kalman filter kunne blive introduceret til at forbedre
systemets respons til belastninger.

For at undersøge dette problem blev der taget udgangspunkt i en forsøgsopstilling, med et testmotorsys-
tem koblet til et belastningsmotorsystem, med en encoder for validering. For at løse problemstillingen
blev testmotorsystemet modelleret, en hastighedsregulering og kraftmomentestimator designet, tunet
og implementeret. Derefter blev en estimeringsalgoritme baseret på motorens modelektromotorisk kraft
og tilhørende fase-låste sløjfer designet for position-og hastighedsfiltrering. Denne estimeringstuktur
blev analyseret og et Kalman filter blev implementeret som afløste kraftmomentestimatoren samt den
fase-låste sløjfe for hastigheden.

Begge estimeringsstrukturer blev testet og deres estimeringer blev brugt til hastighedstilbagekobling og
kraftmomentfremkobling. Her blev det observeret at estimeringstrukturen med de fase-låste sløjfer og
kraftmomentestimatoren tog 0,7 sekunder med oscillationer før den ramte en stationær tilstand efter
en kraftmoments belastning. Strukturen med Kalman filteret tog derimod 0,3 med ingen oscillationer
før den nåede en stationær tilstand.

Det konkluderes at tilføje et Kalman filter i estimeringstukturen kan forbedre et sensorløst drevs
respons til momentbelastninger.
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Nomenclature

Abbreviations
αβ The alpha-beta reference frame
abc The three phase reference frame
dq The direct-quadrant reference frame
AC Alternating current
DC Direct current
EMF Electromotive force
FOC Field oriented control
INFORM Indirect flux online reluctance measurement
MTPA Maximum torque per ampere
PI Proportional Integral controller
PLL Phase locked loop
PMSM Permanent Magnet Synchronous Machine
PWM Pulse width modulation
Q-SMO Quasi-sliding mode observer
RPM Round per minute
SMO Sliding mode observer
SPMSM Surface mounted Permanent Magnet Synchronous Machine
SVM Space vector modulation
VSI Voltage source inverter
Symbols
N Gaussian normal distribution −
O Observability of a system −
µ Mean −
ωc Cutoff frequency rad

s

ωr, ωe Electrical rotational velocity and mechanical velocity rad
s

σ Standard deviation −
τe, τf , τl Machine-, friction-, and load torque Nm

λabc, λdq0, λαβ Peak flux linkage abc, dq, and αβ Wb

d State space disturbances −
eabc, edq0, eαβ0 Back-EMF vector in abc, dq, and αβ V

fs Switching function −
iabc, idq0, iαβ0 Current vector in abc, dq, and αβ V

Lobs, Ld Luenberger gain and discrete Luenberger gain −
q Process noise −
r Sensor noise −
S Sliding variable −
u State space input −
vabc, vdq0, vαβ0 Voltage vector abc, dq, and αβ V

x State space states −
y State space output −
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A,Ad System matrix, discrete system matrix −
B,Bd Input Matrix, discrete input matrix −
C,Cd, Output Matrix, discrete output matrix −
E Disturbance Matrix −
I Identity matrix −
KC ,KC

−1 Clark’s and inverse Clark’s transformation −
KP ,KP

−1 Park’s and inverse Park’s transformation −
KCP ,KCP

−1 Clark-Park’s and inverse Clark-Park’s transformation −
Kkal Kalman gain −
K SMO gain matrix −
L Inductance matrix H

P Covariance matrix −
Q Gaussian process covariance −
R Gaussian sensor covariance −
GOL, GCL Open and closed loop transfer function, speed loop −
Hτ Mechanical model transfer function −
Hd Digital delays transfer function −
HOL, HCL Open and closed loop transfer function, current loop −
HPLL PLL transfer function −
KP ,KI Proportional and integral gain −
Laa, Lbb, Lcc Phase self inductance H

Lab, Lbc, Lca Phase mutual inductance H

p Probability −
P1, P2.P3 Polynomial coefficients −
POL, PCL Open and closed loop pole −
W1,W2,W3 Weights for tuning −
ZOL, ZCL Open and closed loop zero −
ϕB Q-SMO boundary −
θr, θe Mechanical and electrical angle 0

i, I AC, DC Current A

sα, sβ Sliding components in αβ −
v, V AC, DC Voltage V

Vo Fundamental voltage magnitude V

Constants
ϵ Sigmoid slope 0.6 −
λm Peak flux linkage 0.1179 Wb

ωrated PMSM rotational velocity rating 4500 RPM

τc Coulomb friction 0.416 Nm

τrated PMSM load rating 5.8 Nm

a Linear PLL slope 5 −
Bv Viscous friction 0.0011 Nm·s

rad

fs Sampling frequency 5000 Hz

fe,rated PMSM eletric frequency rating 300 Hz

Irated PMSM current rating 7.4 A

J Inertia 0.011 kg ·m2

Ks Safety factor 30 −
Kτ Machine Torque Constant 0.72 Wb
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Ld, Lq, Ls d and q inductance 6.4 mH

np Number of pole pairs 4 −
Prated PMSM power rating 2.8 kW

R Sensor covariance 5.82 · 10−4 −
Rs Stator resistance 1.21 Ω

Ts Sampling time 0.0002 s

Td Time delay 1/3333 s

Vrated PMSM voltage rating 380 V
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Introduction 1
This chapter presents an introduction of the subject sensorless drives. Here a problem statement is for-
mulated. The test setup of this thesis is described and lastly the methods and limitations are outlined.

Electric machinery is found in many applications and is widely used in industries. Electrical motors
can be found in systems such as cars, washing machines, elevators, and more. A common type of AC
motor is the Permanent Magnet Synchronous Machine (PMSM). The PMSM is increasing in popularity
due to its high efficiency, high reliability, and fast dynamical response . The PMSM is therefore often
used in systems where the rotational speed needs to be controlled. Encoders are often used to measure
the motor’s speed and position for feedback in PMSMs. In some systems encoders are not always
possible to implement, encoders create extra reliability problems and have an extra cost associated.
A sensorless approach that relies on estimating the states of the motor can be used as an alternative.
[Hanejko, 2022; Ömer Göksu, 2008]

1.1 Sensorless Drives

A common control method for PMSM is field-orientated control (FOC). FOC allows for speed and
current control, where the optimal currents are generated based on speed and current feedback.
However FOC requires heavy computation due to the different reference frames, and it needs precise
position and speed. [Wilson, 2011]

The position and the speed can be found using sensorless estimation methods. Two commonly used
approaches for position estimation is to use different observers to estimate the machine’s flux-linkage
or back-electromotive force (EMF), which has a physical relationship with the machine’s position
[Rasmussen et al., 2019; Lu and Wang, 2022]. These methods however become problematic at low
speeds (<10% rated speed) due to the signals becoming smaller in relation to noise. Meaning that
other methods during low speed operations is needed. This could be alternative estimation methods
designed for low speed such as the INFORM method, or it could be startup methods that use a
temporary control structure as I/F and V/F controllers until back-EMF or flux linkage estimation is
feasible. [Schroedl, 1996; Strobel, 2022]

While the estimation methods give knowledge about the position, the speed can be found by
differentiation, however this results in undesired noise. An alternative method is using phased locked
loops (PLL), shown in figure 1.1. A PLL is a filtering structure, that locks onto the input frequency
and removes undesired high-frequency components. It is also possible to get the speed estimation out
from the PLL without taking the derivative. [Wang et al., 2017]

10



1.2. The Problem Statement Aalborg University

Position PLL

Speed PLL

Estimation
Algorithm

Figure 1.1. Estimation structure with position processing.

The PLL give good estimations in steady state, however, they are challenged when load dynamics
acting on the motor is introduced. In these scenarios, errors in the speed and position estimations may
occur, if the magnitude of the errors becomes too big, it may cause the drive to fail. This is worsened
at low speeds where the magnitudes of the back-EMF and flux linkage become smaller in relation to
the noise, making it more difficult to extract an estimated position. [Wang et al., 2017]

1.2 The Problem Statement

This thesis will investigate methods of modifying or improving the PLL structure in figure 1.1 for
better signal processing. The Kalman filter is a well-known algorithm with a good performance for
tracking signals with uncertainties [Marwade, 2020]. A Kalman filter can perhaps be introduced into
the filtering process to improve the system’s ability to handle noises and uncertainties. This could
improve the estimated position and speed, as well as improve the drive’s load transient response and
make it robust to load changes. An initial sensorless drive with the PLL filtering structure needs to be
designed, to investigate where and how the Kalman filter can be used. To evaluate the performances,
load dynamics will be introduced, to investigate whether the load transient response has been improved.
This leads to the problem statement of the thesis:

How can a sensorless drive with phased locked loops for position and speed filtering be designed, and
how can a Kalman filter be implemented in the design to improve the load transient response of the

drive?

11
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1.3 Description of the System

To investigate the problem statement, the thesis takes offset in the system shown in figure 1.2. Where
a Drive System that consists of a voltage source inverter (VSI), a dSPACE controller for the motor
control, and a Surface-mounted Permanent Magnet Synchronous Machine (SPMSM) is shown. This is
connected to a Load System, which also includes a VSI and a controller.

VSI SPMSM Load Motor

Controller

VSI

dSPACE

(Controller)PWM PWM

Rotor
Coupling

Drive System Load System

Figure 1.2. Illustration of the test setup: Drive System connected with a Load System.

This diagram has an associated laboratory setup, which is shown in figure 1.3.

Load MotorSPMSM

dSPACE
Controller

Power
Converter

Figure 1.3. Picture of the laboratory setup showing the motors, power
converter, and dSPACE controller.

The motor is an SPMSM from Siemens with specifications shown in the table 1.1. The system includes
a Danfoss frequency converter and within is the VSI and power supply. The specifications for the
frequency converter is 500V AC and 10A continuous current. The DSP for this system is a dSPACE
processor, which compiles a control structure based on a Simulink model. [Danfoss, 2023; Siemens,
2023]

12
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SPMSM: Siemens Brushless Servormotor 1FT6081-8AH71-1AG0

Vrated = 380 [V] Irated = 7.4 [A] Prated = 2.8 [kW]
ωrated = 4500 [RPM] τrated = 5.8 [Nm] fe,rated = 300 [Hz]

Table 1.1. The SPMSM motor ratings.

1.4 Method and Limitations

This section goes through the methodology and strategy used for solving the problem statement, while
also introducing the different assumptions and limitations in this thesis.

Methods

To solve the problem statement, it is divided into smaller sub-problems which can more easily be
solved. These sub-problems are listed below:

System Modelling: The PMSM’s dynamics have to be modelled in the necessary reference frames, and
the unknown parameters must be experimentally found.

Controller Design: A speed controller needs to be designed based on the modelled dynamics. Since an
encoder is available, it will be used for feedback to ensure that the speed controller works as intended.

Estimation Algorithm: An appropriate estimation algorithm needs to be designed such that a position
may be estimated.

PLL Design: An appropriate phase locked loop design needs to be tuned to improve the signals from
the estimation algorithm and extract a speed estimation which can be used for feedback.

Kalman Filter: The existing system is analysed, to give allocation of where the Kalman filter can be
implemented. Then an appropriate tuning of the Kalman filter needs to be investigated.

Limitation

To limit the scope of this thesis, there are several self-imposed major limits and assumptions that are
taken, as seen below.

10% Rated Speed: A major limitation is that this thesis explores the speed range that is over 10 %
of the SPMSM rated speed, the reason for this is that at low speeds it is extremely difficult to get a
good estimation because of poor signals to noise ratio. Since speeds below 10% are not investigated,
an encoder is used for speed feedback during startup. Another possible solution for startup is I/F- or
V/F control however, these methods were not utilised in this thesis.

Inverter: An inverter modulation strategy was already implemented on the system and is based on
space vector modulation. The system also has an existing inverter voltage compensation algorithm
which is utilised for observers. The principle of both is explained in appendix C. It is assumed that
both the inverter control and the voltage compensation algorithm works.

Load System Control: The drive system is connected to a load system, but only the drive system is
investigated. The load system has speed and torque control implemented and is assumed to be working.
The load torque has furthermore no sensors and therefore the reference is assumed to be correct.

13



The System Model 2
This chapter presents a system model, which are based on the electrical and mechanical aspects of the
PMSM. The electrical machine model is derived for the αβ- and dq-reference frame and the mechanical
model is based on Newton’s second law. Furthermore, the characteristics of the PMSM are experimen-
tally determined.

2.1 Reference Frames

When modelling a PMSM, there are certain parameters that are position dependent, and this means
a linear model is difficult. However, changing the model to another reference frame may simplify
some aspects. In this thesis three reference frames are utilised, the abc-frame, the αβ-frame, and the
dq-frame, illustrated in figure 2.1.

Figure 2.1. The abc, αβ, dq reference frames.

The abc reference frame represents the actual system, by representing all three phases in the PMSM.
The αβ-frame represents the three phase axes with two axes instead. The αβ frame is useful in inverter
control strategies and for estimation. Both of these reference frames are stationary frames.The last
reference frame is the dq-frame, and the difference from αβ is that dq is a rotating reference frame.
The dq reference frame rotates, meaning that the steady state signals appears as DC signals. The
dq-frame is therefore, a suitable frame for modelling purposes. The signal of a three phase system in
the different reference frames are plotted in figure 2.2

14



2.2. The SPMSM Model Aalborg University

0 50 100 150 200 250 300 350
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0 50 100 150 200 250 300 350
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0 50 100 150 200 250 300 350
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0
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Figure 2.2. Signals for the three difference reference frames.

2.2 The SPMSM Model

The PMSM can be separated into two major components, a stator and a rotor with surface mounted
permanent magnets. The motor is illustrated in figure 2.3 where the rotor is encased within the stator.
The stator contains a multitude of phase windings, this is illustrated to the right.

Electric

Figure 2.3. Surface mounted PMSM structure

To represent the PMSM in the dq reference frame, the d-axis is aligned with a north pole, with the
q-axis leading by 90o electric degrees. Any current produced on the q-axis will produce a magnetic
field, which interacts with the permanent magnets to produce torque, making rotation possible. In
figure 2.3 there are 8 poles total, 4 north poles and 4 south poles giving 4 pole pairs. One pole pair
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represent 360o electric with corresponding phases illustrated to the left in figure 2.3. Since the machine
has 4 pole pairs, one mechanical rotation, θr(t), will result in four electrical rotations, θe(t), which can
be expressed mathematically with equation (2.1), where np is the number of pole pairs.

θe(t) = θr(t) · np (2.1)

As the permanent magnets are mounted on the surface of the rotor, the reluctance path is uniform
around the motor, meaning the motor will have no to little saliency resulting in the inductance of d
and q axis to be equal and henceforth denoted as Ls.

Ld = Lq = Ls (2.2)

2.2.1 The Three Phase Machine Model

Figure 2.4. Equivalent PMSM
Circuit.

The PMSM can be modelled in the the abc reference
frame as an electrical circuit which consists of three
major components. The machines stator resistance Rs,
induction of the stators winding L, and the variable
back-electromotive force (EMF) voltage e, in which
the latter two make up a equivalent expression for the
rate of change in the machines magnetic flux λ. A
model for each phase can be written in matrix form as
seen in equation (2.3). [Mathworks, 2022; Beser, 2021]

va(t)vb(t)

vc(t)

 =

Rs 0 0

0 Rs 0

0 0 Rs


ia(t)ib(t)

ic(t)

+
d

dt

λa(t)

λb(t)

λc(t)


(2.3)

The flux of the machine is related to the flux from
the stator windings and the permanent magnets. The
abc model can be expanded to include those terms and
be written as equation (2.4), which takes offset in the
equivalent circuit shown in figure 2.4.

va(t)vb(t)

vc(t)

 =

Rs 0 0

0 Rs 0

0 0 Rs


ia(t)ib(t)

ic(t)

+
d

dt


Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc


ia(t)ib(t)

ic(t)

+

 λmcos(θ(t))

λmcos(θ(t)− 2π
3 )

λmcos(θ(t) + 2π
3 )


︸ ︷︷ ︸

λm,abc(t)


(2.4)

This model can be written compactly as seen in equation (2.5), where the derivative of the peak flux
linkage is the back-EMF, eabc(t).

vabc(t) = Rs · iabc(t) + L · i̇abc(t) + eabc(t) (2.5)

eabc(t) = λ̇m,abc(t) (2.6)
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2.2.2 The Direct-Quadrature Machine Model

Transforming the model from the abc frame to the dq frame will make the d-axis be aligned with
the machine’s flux from the permanent magnets. To transform the machine model, the Clark-Parks
transform seen in appendix A and denoted as KCP is applied to the voltage model in equation (2.5)
and the abc flux linkage in equation (2.8).

vdq0 = KCP · vabc (2.7)

λdq0 = KCP · λabc (2.8)

This will yield the equivalent machine model in the dq reference frame seen in equation (2.9), which
was derived in appendix B.2 from equations (2.7) and (2.8).

vdq0(t) = Rs · idq0(t) + λ̇dq0(t) + edq0(t) (2.9)

Where the back-EMF and flux linkage components can be expressed with the vectors in equations (2.10)
and (2.11). The indutances in equation (2.11) is shown as Ld and Lq and should be noted that these
can also be written as Ls.

edq0(t) =

ed(t)eq(t)

e0(t)

 =

−ωe(t) · λq(t)

ωe(t) · λd(t)

0

 (2.10) λdq0(t) =

λd(t)

λq(t)

λ0(t)

 =

Ld · id(t) + λm

Lq · iq(t)
L0 · i0(t)

 (2.11)

Taking equation (2.9) and inserting the definitions for λdq and edq the voltage equations for the d and
q components can be written as in equations (2.12) and (2.13). Furthermore it is assumed that the
zero component have a magnitude around zero and is therefore assumed to have no impact on the
machine.

vd(t) =Rs · id(t) + Ls · i̇d(t) + ed(t) (2.12)

vq(t) =Rs · iq(t) + Ls · i̇q(t) + eq(t) (2.13)

To model the PMSM’s dynamics, equations (2.12) and (2.13) is rearranged into equations (2.14)
and (2.15) to isolate the current dynamics.

i̇d(t) =
1

Ls

(
vd(t)−Rs · id(t)− ed(t)

)
(2.14)

i̇q(t) =
1

Ls

(
vq(t)−Rs · iq(t)− eq(t)

)
(2.15)

With the expression for the current dynamics isolated, the system of equations is now transformed
into a state space model with the form shown in equation (2.16). Here A is the system matrix, B is
the input matrix and E is the disturbance matrix. The vector x is the system states, u is the system
inputs, and d is the disturbances.

17



Mads W. Toft & Franz A. R. Aldous 2. The System Model

ẋ(t) = A · x(t) +B · u(t) + E · d(t) (2.16)

y(t) = C · x(t) (2.17)

The systems states ẋdq(t) is defined as d and q currents, the inputs udq(t) as the voltages and the
disturbance ddq(t) as the back-EMF. From equations (2.14) and (2.15) this will give the state space
system seen in equations (2.18) and (2.19).

[
i̇d(t)

i̇q(t)

]
︸ ︷︷ ︸
ẋdq(t)

=

[
−Rs
Ls

0

0 −Rs
Ls

]
︸ ︷︷ ︸

Adq

·

[
id(t)

iq(t)

]
︸ ︷︷ ︸
xdq(t)

+

[
1
Ls

0

0 1
Ls

]
︸ ︷︷ ︸

Bdq

·

[
vd(t)

vq(t)

]
︸ ︷︷ ︸
udq(t)

+

[
−1
Ls

0

0 −1
Ls

]
︸ ︷︷ ︸

Edq

·

[
ed(t)

eq(t)

]
︸ ︷︷ ︸
ddq(t)

(2.18)

[
id(t)

iq(t)

]
︸ ︷︷ ︸
ydq(t)

=

[
1 0

0 1

]
︸ ︷︷ ︸

Cdq

·

[
id(t)

iq(t)

]
︸ ︷︷ ︸
xdq(t)

(2.19)

2.2.3 The Alpha-Beta Machine Model

To model the PMSM in the αβ reference frame, the dq model is transformed from a rotational
reference frame to a stationary reference frame using equations (2.20) and (2.21). Where ejθe is the
transformation component for transforming the d and q vectors into stationary α and β vectors.

vαβ(t) = vdq(t) · ejθe(t) (2.20)

λαβ(t) = λdq(t) · ejθe(t) (2.21)

The resulting αβ model equations (2.22) and (2.23) are derived from equations (2.20) and (2.21) in
appendix B.3.

vαβ(t) = Rs · iαβ(t) + λ̇αβ(t) (2.22)

λαβ(t) = Ls · iαβ(t) + λm · ejθe(t) (2.23)

The flux linkage in equation (2.23) is inserted into the voltage model in equation (2.22) and will result
in a function depending on the current dynamics and the back-EMF in equation (2.24). Where the
back-EMF is a function of the rotors velocity and position in equation (2.25).

vαβ(t) = Rs · iαβ(t) + Ls · i̇αβ(t) + eαβ(t) (2.24)

eαβ(t) =

[
−ωe(t) · λm · sin

(
θe(t)

)
ωe(t) · λm · cos

(
θe(t)

) ] (2.25)

The α and β component from equation (2.24) are separated such that the current dynamics i̇α and i̇β
can be isolated, leading to equations (2.26) and (2.27).
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i̇α(t) =
1

Ls

(
vα(t)−Rs · iα(t)− eα(t)

)
(2.26)

i̇β(t) =
1

Ls

(
vβ(t)−Rs · iβ(t)− eβ(t)

)
(2.27)

These dynamics can be written into the same state space form from equation (2.16) as was done for
the dq model. The systems states xαβ(t) are defined as the alpha and beta currents, the input vector
uαβ(t) as the alpha and beta voltages, and the disturbances dαβ(t) as the back-EMF. This yields from
equations (2.26) and (2.27) the state space model seen in equations (2.28) and (2.29).

[
i̇α(t)

i̇β(t)

]
︸ ︷︷ ︸
ẋαβ(t)

=

[
−Rs
Ls

0

0 −Rs
Ls

]
︸ ︷︷ ︸

Aαβ

·

[
iα(t)

iβ(t)

]
︸ ︷︷ ︸
xαβ(t)

+

[
1
Ls

0

0 1
Ls

]
︸ ︷︷ ︸

Bαβ

·

[
vα(t)

vβ(t)

]
︸ ︷︷ ︸
uαβ(t)

+

[
−1
Ls

0

0 −1
Ls

]
︸ ︷︷ ︸

Eαβ

·

[
eα(t)

eβ(t)

]
︸ ︷︷ ︸
dαβ(t)

(2.28)

[
iα(t)

iβ(t)

]
︸ ︷︷ ︸
yαβ(t)

=

[
1 0

0 1

]
︸ ︷︷ ︸

Cαβ

·

[
iα(t)

iβ(t)

]
︸ ︷︷ ︸
xαβ(t)

(2.29)

2.2.4 The Machine Parameters

The machine models have been found symbolically, however some of the parameters are unknown.
These have to be found to simulate the system, design controllers, and for estimation algorithms.
The different parameters that need to be found is the peak flux linkage λm, stator resistance Rs, and
inductance Ls.

The Peak Flux Linkage

The peak flux linkage can be found using the model described in equation (2.4). This model can be
simplified if the current is zero and therefor has no effect. This simplifies the model to equation (2.30),
and this can further be simplified. Taking offset in va, the equation can be written as equation (2.31),
and since they are both dependent on the same θe angle, the sinusoidal component can be removed.
The flux linkage can then be isolated as in equation (2.32).

vabc(t) = eabc(t) (2.30)

va(t) = Vm · sin(θe(t)) = ωe(t) · λm · sin(θe(t)) (2.31)

λm =
Vm

ωe
(2.32)

The experiment was conducted by first removing the connection from the inverter to the PMSM. Then
an oscilloscope is attached to measure the line-to-line voltage, and this voltage will be transformed
into line-to-neutral, to use in equation (2.32). The motor is then spun at a constant speed, where the
voltage and the frequency is measured, and this procedure is applied for different speeds. The first
test results are shown in figure 2.5.
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Figure 2.5. Back-EMF voltage, the PMSM spun at 600 rpm or 62.8 rad/s.

Figure 2.5 shows the sinusoidal response and the Fourier transform of the signal. The mechanical
speed was 600 rpm, and the measured frequency is 4 times higher, confirming that the motor has 4
pole pairs. In figure 2.5, the fundamental amplitude is found and used to find the flux linkage. The
results are inserted into table 2.1. The table shows the results at different velocities, and the mean
flux linkage of λm = 0.1179 is used.

ωr [ rads ] 62.83 125.66 188.47 251.33 314.15 377 439.83
ωe [ rads ] 251.33 502.65 753.88 1005.3 1256.6 1508 1759.3
V0 [V ] 29.58 59.28 88.99 119.13 148.19 177.67 207.23
λm [Wb] 0.1177 0.1179 0.1180 0.1185 0.1179 0.1178 0.1178

Table 2.1. The table shows the flux linkage and the fundamental amplitude
at different velocities. The mean peak flux linkage is λm = 0.1179.

The Resistance and Inductance

To determine the resistance Rs and inductance Ls, the PMSM is aligned at θe = 0 and its rotor locked.
Thus the speed of the rotor will be zero as well as the back-EMF, meaning that there would be no
disturbances and the model in the dq reference frame can be reduced to equations (2.33) and (2.34).

ẋdq(t) = Adq · xdq(t) +Bdq · udq(t) (2.33)

ydq(t) = Cdq · xdq(t) (2.34)

Giving an input udq(t) and measuring the outputs, the parameters can be determined from the systems
response. In figure 2.6 such a response can be seen where only an input was given on vd and vq was
kept at zero.
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Figure 2.6. Fitted model parameters.

The system dynamics are transformed into the Laplace domain, where it is two decoupled first order
systems seen in equations (2.35) and (2.36).

Hdq(s) = Cdq · (s · I −Adq)
−1 ·Bdq (2.35)[

id(s)

iq(s)

]
=

[
1

Ls·s+Rs
0

0 1
Ls·s+Rs

]
·

[
vd(s)

vq(s)

]
(2.36)

In steady state the first order transfer function is reduced to id = 1
Rs

· vd meaning the resistance can
be determined by Ohms law: R = V

I . The resistance is then calculated for the different steps and the
mean is taken, giving Rs = 1.21 Ω. The inductance Ls was found to be 6.4 mH, by fitting it until the
simulated response in figure 2.6 matched the systems response.

2.3 The Mechanical System

Figure 2.7. Rotating body.

In the test system utilised in this thesis, the PMSM
is mechanically coupled to another motor which can
provide the load torque. To model this mechanical
system, the coupled rotors can be seen as a rotating
body with an equivalent inertia J . This body will
experience rotational acceleration, motor torque τe(t)

from the PMSM, friction torque τf (t), and load torque
τl(t) from the load motor, illustrated in figure 2.7.
This body can be modelled using Newton’s second law,
which gives equation (2.37).

ω̇r(t) · J = τe(t)− τl(t)− τf (t) (2.37)
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2.3.1 Motor Torque

The torque that is produced from the motor is denoted as τe, and can also be called the electrical
torque. Equation (2.38) is the general torque equation for a three phase AC Motor, where it can be
seen that the torque is dependent on the machines number of pole pairs, the d and q components of the
magnetic flux and the currents. Inserting the expression for the magnetic fluxes from equation (2.11)
the torque equation for the PMSM can be expressed as equation (2.39). In this equation there are
two terms which will generate torque. The first term is the torque from the interaction between the
stator’s and rotor’s magnetic field, and the second term is torque generated due to the stator’s field
interacting with any saliency in the rotor. [Wang, 2022a]

τe(t) =
3

2
· np ·

(
λd(t) · iq(t)− λq(t) · id(t)

)
(2.38)

τe(t) =
3

2
· np · (λm · iq(t)︸ ︷︷ ︸

PM Term

+(Ld − Lq) · iq(t) · id(t)︸ ︷︷ ︸
Reluctance Term

) (2.39)

The machine utilised in the thesis, is a synchronous PMSM, meaning that it is assumed that
Ld = Lq = Ls. Thus any torque that could be generated from saliency in the rotor is assumed
to be zero. Meaning the torque from the rotor can be simplified to only coming from the stator and
rotors magnetic field interacting, making the expression for the motor torque as seen in equation (2.40).
Note that in the future for simplifying calculations 3

2 · np · λm = Kτ will be used.

τe(t) =
3

2
· np · λm · iq(t) = Kτ · iq(t) (2.40)

2.3.2 Friction Torque

Friction will influence the system dynamics as a torque working opposite the rotational direction. To
determine a model for the friction, an experiment is performed on the system. First an initial speed
control structure was implemented on the system, which makes it possible to rotate the machine with
a constant velocity. Secondly no external load is applied to the motor. Thus Newton’s second law in
equation (2.37) can be reduced to equation (2.41), making τf (t) equal to the motor torque τe(t).

0 = τe(t)− τf (t) (2.41)

The PMSM is then rotated at different velocities in steady state, and the current iq(t) measured and
used to calculate τe(t). To insure that any noise have minimal influence the mean of iq(t) over a period
is used. The calculated motor torque is plotted against the respective rotational velocities as seen in
figure 2.8. The experiment was only performed for positive velocities, and it was assumed the same
for negative.
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Figure 2.8. Fitted friction model.

To model the friction in relation to the rotational velocity, a simple friction model in equation (2.42)
is utilised and fitted to the data. The parameters of the model is the coulomb friction τc which is a
constant friction which the machine have to initially overcome, and the viscose friction coefficient Bv,
which is speed dependent.

τf = τc · sign(ωr(t)) +Bv · ωr(t) (2.42)

When the model is fitted to the data the Coulomb friction was approximated to be τc = 0.41 Nm and
the viscose friction coefficient to be Bv = 0.0011. Nm·s

rad .

2.3.3 Load Torque

The load torque in the system is an unknown input being applied from the load motor. For this reason
it is almost impossible to model it directly and instead it will be seen as a disturbance to the system,
where it instead can be determined based on its impact on other parameters. Taking offset in newton’s
second law equation (2.41) can be used to isolate the load torque as seen in equation (2.43).

τl(t) = τe(t)− τf (t)− ω̇r(t) · J (2.43)

2.3.4 Inertia

To find the inertia of the system a deceleration experiment was performed. This was done by first
spinning the PMSM up to 3000 RPM and then cutting the power to the motor by setting id and iq to
zero. This would result in Newtons second law to be reduced to equation (2.44) and the expression for
the inertia can be found to be dependent on the friction and the acceleration seen in equation (2.45).
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ω̇r(t) · J = −τf (ωr) (2.44)

J =
−τf (ωr)

ω̇r(t)
(2.45)

The rotational velocity is measured with the encoder, which is fitted to a third order polynomial,
so a smooth expression for the acceleration can be found, as seen in equations (2.46) and (2.47)
and figure 2.9.

ωr(t) = P1t
3 + P2t

2 + P3t+ P4 (2.46)

ω̇r(t) = 3 · P1t
2 + 2 · P2t+ P3 (2.47)
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Figure 2.9. Deceleration data with fitted polynomial.

As the expression for the velocity and acceleration is known, the inertia can be found at each time
using equations (2.42) and (2.45), the mean of which is J = 0.0108 kg ·m2.

2.3.5 The Mechanical Model

As the expressions for the different torques have been investigated, a dynamic model for the rotating
body can be set up. Note the only non-linear aspect in this model is in the friction model with
the Coulomb torque term. To make this term linear, sign(ωr(t)) · τc is simplified to τc. Hereafter two
differential equations for the system can be setup. Equation (2.48) where it is stated that the rotational
velocity is the derivative of the angle. Equation (2.49) is an extension of equation (2.37), where the
expression for the motor torque and friction torque have been inserted and the rotational acceleration
isolated.

θ̇r(t) = ωr(t) (2.48)

ω̇r(t) =
1

J
·
(
Kτ · iq(t)−Bv · ωr(t)− τc − τl(t)

)
(2.49)
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The equations for the dynamics of the rotating body can be written into the same state space form as
in equation (2.16). The systems states xr(t) are defined as the position angle and rotational velocity,
the input vector ur(t) as d and q current from the PMSM, and the disturbances dr(t) as the load
torque. This yields from equations (2.48) and (2.49), the state space model seen in equations (2.50)
and (2.51)

[
θ̇r(t)

ω̇r(t)

]
︸ ︷︷ ︸

ẋr(t)

=

[
0 1

0 −Bv
J

]
︸ ︷︷ ︸

Ar

·

[
θr(t)

ωr(t)

]
︸ ︷︷ ︸

xr(t)

+

[
0 0

0 Kτ
J

]
︸ ︷︷ ︸

Br

·

[
id(t)

iq(t)

]
︸ ︷︷ ︸
ur(t)

+

[
0 0

0 −1
J

]
︸ ︷︷ ︸

Er

·

[
0

τl(t)

]
︸ ︷︷ ︸
dr(t)

(2.50)

[
θr(t)

ωr(t)

]
︸ ︷︷ ︸

yr(t)

=

[
1 0

0 1

]
︸ ︷︷ ︸

Cr

·

[
θr(t)

ωr(t)

]
︸ ︷︷ ︸

xr(t)

(2.51)

2.4 The State Space Model of the System

In section 2.2.2 a machine model was determined in the dq-reference frame, where the outputs was
the d and q current components. In the state space model for the rotating body the inputs was the
same current components making ydq = ur. Therefore to model the whole system the two state space
models from equations (2.18), (2.19), (2.50) and (2.51), can be sat in series as seen in figure 2.10, and
will include both the electrical and mechanical dynamics.

Figure 2.10. Block Diagram of the system model.

The parameters for this model have been determined using various experiments and are summed up
in table 2.2.

PMSM parameters

np λm Ld Lq Rs J τc Bv

4 0.118 [Wb] 6.4 [mH] 6.4 [mH] 1.21 [Ω] 0.011 [Kg ·m2] 0.41 [Nm] 0.0011 [Nm·s
rad ]

Table 2.2. Table of all the found parameters of the PMSM.
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The Control Strategy 3
This chapter presents a strategy based on FOC for speed and current control. This is done using an
encoder as feedback, to ensure that the controllers performance is validated individually. The chosen
controllers are PI controllers, that are tuned using pole-zero cancellation and pole placement. Compen-
sation strategies are used to reduce the influence of back-EMF and load torque.

3.1 Field Oriented Control

Field oriented control (FOC) is a control structure that directly controls the torque of the PMSM
by controlling the current vectors in the dq-reference frame. For SPMSMs where Ld = Lq, torque
is only generated from the q-current as described by equation (2.40), thus the motor torque can be
controlled by controlling the q-axis current. The d-axis current needs to be controlled to zero to achieve
maximum-torque-per-ampere (MTPA). The FOC structure can be expanded with an extra control
loop, for speed control as seen in figure 3.1, where the output from the speed controller becomes the
i∗q current command. This should ensure that only the needed torque is applied to the motor to reach
and hold the reference speed. [Wilson, 2011; Wang, 2022b]

VSI

PMSM

SVM

Encoder

Load

PWM

Plant

+

-

+

+
+

-

+ +

+ +

Figure 3.1. Illustration of the FOC cascaded system’s block diagram.

Figure 3.1 illustrates the FOC applied to the system, which is a cascaded control structure. There are
two loops, the inner loop which refers to the current controllers, and the outer loop which is the speed
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control. The speed loop needs a speed reference, which in turn will give a i∗q current reference to the
inner loop.

Providing voltage to the motor is done by a voltage source inverter (VSI), transforming the voltage
reference commands into phase voltages. The inverters transistors are controlled using space vector
modulation (SVM), further described in appendix C.

3.2 The Controller Designs

The FOC structure can be modelled as a cascaded model, seen in figure 3.2. The cascaded model
in this case does include the compensated disturbance terms. The reason behind using a cascaded
model is that if the inner loop is sufficiently faster than the outer loop, the loops control can be tuned
individually.

Figure 3.2. Illustration of the cascaded system model.

The disturbance, ddq(t) = [ed(t) eq(t)]
T and dr(t) = [0 τl(t)]

T , are undesired system dynamics which
are always present. These can be compensated for, using equation (3.1). Where the disturbances are
estimated and removed.

d̃(t) = d(t)− d̂(t) ≈ 0 (3.1)

This can be written in the state space model as equation (3.2). This compensation term needs to be
added into the input signal which is further explored in section 3.3.

ẋ(t) = A · x(t) +B · u(t) + E · d̃(t) (3.2)

3.2.1 Current Controller Design

The inner loop is the current controlled loop, which includes the back-EMF. To design the controllers
for the inner loop, it is assumed the back-EMF is compensated for, and any compensation error, will
have minimal influence on the system dynamics. The system was transformed from the state space
form in equation (2.18) to the Laplace domain using equation (2.35). This gives the transfer function
matrix in equation (3.3). From this transfer function it can be determined that the poles are placed at
s = −Rs

Ls
= −186.1 rad

s . As these transfer functions are decoupled and have the same dynamics, only
one controller will be designed. This control will be used for both current controls.[

id(s)

iq(s)

]
=


1
Ls

s+Rs
Ls

0

0
1
Ls

s+Rs
Ls

 ·

[
vd(s)

vq(s)

]
(3.3)
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The loop includes a digital delay, the sampling frequency of the system is fs = 5000 Hz making the
sampling time Ts =

1
fs

. In an ideal controller the system would take the measurement, do the control
calculation, and give and output instantaneously at the sampling time t(k). However, in reality this
computation takes time, illustrated in figure 3.3. It is assumed that this computational time is a
maximum of half the sampling time. [Lu, 2022]

Measure FOC Calculation Output

Calculation Delay

Figure 3.3. Illustration of the added digital delay in the control structure.

The digital delay can be modelled with equation (3.4), where Td = Ts · 1.5 making the system pole
lie at 1

Td
= −3333 rad

s . If the closed loop system is tuned such that this pole is still significantly faster
than the dominating closed loop poles, its influence may be neglected.

Hd(s) =
1

Td · s+ 1
(3.4)

The controller chosen is a PI controller. The PI contains a zero, and a free integrator. The zero can
be used to cancel the system pole, and the free integrator can be place to ensure a fast response and
zero steady state error. This new pole will be placed such that it dominates the dynamics compared
to the digital delay pole, so its influence may be neglected in the controller design.

Digital Delay PlantController

Figure 3.4. Illustration of the controlled inner loop, with back-EMF
Compensation.

Taking figure 3.4 and writing the transfer function for the open loop, will give equation (3.5), where
the digital delay is neglected.

HOL(s) =
KP,i · s+KI,i

s
·

1
Ls

s+ Rs
Ls

=
KP,i · s+KI,i

s · (Rs + Ls · s)
(3.5)

The open loop is then closed with unity feedback H = 1, which will give equation (3.6).

HCL(s) =
HOL

1 +HOL ·H
=

KP,i · s+KI,i

Ls · s2 + s · (Rs +KP,i) +KI,i
(3.6)

The next step is finding the locations of the closed loop zero ZCL,i and the closed loop poles PCL,i.
This is done taking the nominator equal to zero and solving for s. The same approach is done for
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the denominator, but since the denominator is a second order equation the quadratic formula is used.
These are shown in equations (3.7) and (3.8).

Zero : ZCL,i = −
KI,i

KP,i
(3.7)

Poles : PCL,i =
−(Rs +KP,i)±

√
(Rs +KP,i)2 − 4 · Ls ·KI,i

2 · Ls
(3.8)

Equations (3.7) and (3.8) are solved for KI,i and KP,i, where the positive in ± for equation (3.8) is
chosen. The result becomes equations (3.9) and (3.10), which is now a function of PCL,i and ZCL,i.

KP,i =−
PCL,i · (Rs + Ls · PCL,i

PCL,i − ZCL,i
(3.9)

KI,i =
ZCL,i · PCL,i · (Rs + Ls · PCL,i

PCL,i − PCL,i
(3.10)

3.2.2 Speed Controller Design

The mechanical model was written as equation (2.50) and the load torque disturbance will be
compensated which means the system is reduced to the matrices Ar, Br, and Cr. The transfer function
matrix can be found using equation (3.11).

Hr(s) = Cr · (s · I −Ar)
−1 ·Br =

[
0 Kτ

s·(J ·s+Bv)

0 Kτ
J ·s+Bv

]
(3.11)

The transfer function matrix from equation (3.11) can be rewritten as equation (3.12). In the transfer
function of θr(s) it can be determined that there is a free integrator and a pole at s = −Bv

J . For ωr(s)

the pole is placed at s = −Bv
J .[

θr(s)

ωr(s)

]
=

[
0 Kτ

s·(J ·s+Bv)

0 Kτ
J ·s+Bv

]
·

[
id(s)

iq(s)

]
(3.12)

The outer loop control structure is shown in figure 3.5. The inner loop will be tuned such that it is
sufficiently faster than the outer loop. Thus it is assumed that the reference from the control is the
same as applied to the plant.

Inner Loop PlantController

Figure 3.5. Illustration of the controlled outer loop

The same tuning procedure for tuning the current controller is utilised for the speed controller. The
first step is to write the combined transfer function in the open loop and closed loop, equations (3.13)
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and (3.14).

GOL =

Kτ ·KP,ω

J ·
(
s+

KI,ω

KP,ω

)
s ·
(
s+ Bv

J

) (3.13)

GCL =
GOL

1 +GOL · 1
=

Kτ ·KP,ω ·
(
s+

KI,ω

KP,ω

)
J · s2 + s · (Bv +Kτ ·KP,ω) +Kτ ·KI,ω

(3.14)

Similarly, as for the inner loop, the closed loop poles and zero are found, shown in equations (3.15)
and (3.16).

Zero : ZCL,ω = −
KI,ω

KP,ω
(3.15)

Poles : PCL,ω =
−(Bv +Kτ ·KP,ω)±

√
(Bv +Kτ ·KP,ω)2 − 4 · J ·Kτ ·KI,ω

2 · J
(3.16)

Equations (3.15) and (3.16) are are solved for KI,ω and KP,ω giving equations (3.17) and (3.18). These
gains will change depending on the chosen placement of the closed loop pole and zero.

KP,ω =−
PCL,ω · (Bv + J · PCL,ω)

Kτ · (PCL,ω − ZCL,ω)
(3.17)

KI,ω =
ZCL,ω · PCL,ω · (Bv + J · PCL,ω)

Kτ · (PCL,ω − PCL,ω)
(3.18)

3.2.3 Control Tuning

The speed controller is tuned first, as the dynamics of the inner loop needs to be significantly faster,
than the outer loop. The speed controller is tuned via pole-zero cancellation and pole placement using
equations (3.17) and (3.18). To cancel out the plant’s pole, the closed loop zero from the controller is
placed at the same location. The location is POL,ω = −Bv

J = −0.10 rad
s , and to determine a new pole

location it has to follow a ramp function of 2000 rpm
s . The new closed loop pole from the controller is

placed at PCL,ω = −60 rad
s , resulting in a time constant of τs = 1

60 = 0.016s. This should allow the
system to follow the reference with the given ramp and reject noise in frequencies above the cutoff
frequency.

The inner loop is tuned from the dynamics of the tuned outer loop. The inner loop needs to be fast
enough to ensure that the outer loop reference is equal to the actual value given to the plant. Therefore
the inner loop is chosen to be 20 times faster. The same approach is used thus cancelling the pole at
POL,i = −Rs

Ls
= −186.1 rad

s and then moved to PCL,i = −1200 rad
s , using equations (3.9) and (3.10) the

controller values are found. This results in a closed loop system with poles placed as seen in Figure 3.6.
These placed poles and zeroes yields the controller parameters [KP,ω, KI,ω]

T = [0.92, 0.09]T , and
[KP,i, KI,i]

T = [7.68, 1452.00]T for the speed controller and current controllers respectively.
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Figure 3.6. Pole-Zero map of the closed loop system.

The system’s frequency response is shown with a bode diagram in figure 3.7. This is the bode diagram
of the closed inner and outer loop. This shows that the inner loop does have a higher bandwidth, but
that the dynamics of the two are similar. This and the pole-zero map both indicate that the system is
stable and therefore these are the controllers that are used.
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Figure 3.7. Bode plots of the closed inner and outer loop.

3.3 Compensation

The controllers for the current and speed loop, are designed with the basis that the disturbances
are compensated. This section goes through how disturbances to the plant can be estimated. The
compensation written in equation (3.2) can be expanded to include the unchangeable dynamics in the
system and disturbance matrix, and the changeable input signal with the added compensation term,
see equation (3.19).

ẋ(t) = A · x(t) + E · d(t)︸ ︷︷ ︸
States & Disturbance

+ B · u(t)− E · d̂(t)︸ ︷︷ ︸
Input & Compensation

(3.19)
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3.3.1 Back-EMF Compensation

The disturbance to the inner loop is the back-EMF. To remove the effect of the back-EMF, a
compensation term is added, shown in equation (3.19). For the back-EMF, this can be written as
equation (3.20).

Bdq · udq(t)− Edq · d̂dq(t) =

[
1
Ld

0

0 1
Lq

]
·

[
vd
vq

]
−

[
−1
Ld

0

0 −1
Lq

]
·

[
êd(t)

êq(t)

]
= Bdq ·

[
vd(t) + êd(t)

vq(t) + êq(t)

]
(3.20)

The compensation signal is added to the controllers response, meaning the compensated model can be
rewritten as equation (3.21), which shows the compensated input signal.

ẋdq(t) = Adq · xdq(t) + Edq · ddq(t) +Bdq ·
(
udq(t) + d̂dq(t)

)
(3.21)

The back-EMF can be calculated directly with equation (3.22), based on the measurements of the
encoder and current sensor.

d̂dq(t) = edq(t) =

[
−ωe(t) · Ls · iq(t)

ωe(t) ·
(
Ls · id(t) + λm

)] (3.22)

3.3.2 Load Torque Compensation and Observer

Similar to the inner loop, there is a compensation term that is included to handle the disturbances,
that in the outer loop is the load torque. The principle of compensation for the outer loop is the same
as the inner loop.

The state space model of the outer loop is shown in equation (2.50). Similar to the inner loop the
compensation is defined symbolically as equation (3.23).

Br · ur(t)− Er · d̂r(t) =

[
0 0

0 Kτ
J

]
·

[
id(t)

iq(t)

]
−

[
0 0

0 −1
J

]
·

[
0

τ̂l(t)

]
(3.23)

The compensation of the load torque, is further defined using equation (3.24), where the compensation
current is defined.

τ̂l(t) = Kτ · îl(t) (3.24)

This is then implemented into equation (3.23), where the estimated disturbance can be written as a
current, shown in equation (3.25).

Br · ur(t)− Er · d̂r(t) =

[
0 0

0 Kτ
J

]
·

[
id(t)

iq(t)

]
−

[
0 0

0 −Kτ
J

]
·

[
0

îl(t)

]
= Br ·

[
id(t)

iq(t) + îl(t)

]
(3.25)

Then the final compensated model can be written as equation (3.26).

ẋr(t) = Ar · xr(t) + Er · dr(t) +Br ·
(
ur(t) +

1

Kτ
· d̂r(t)

)
(3.26)

This means that as long as the estimated disturbance is equal to the actual load torque, then the effect
from the load can be removed. Since the load torque cannot be measured, an estimations strategy
needs to be used.
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Load Observer

To design an observer the mechanical state space model is revisited, the load torque is an exogenous
input to the system from the load motor, and was seen as a disturbance to the system model. However,
if assuming the change of the load torque τ̇l is significantly slower than the change in rotational velocity
ω̇r, then an additional equation can be setup. Then the system can be described with three differential
equations as seen in equations (3.27) to (3.29). [Kuang et al., 2019]

θ̇e(t) = np · ωr(t) (3.27)

ω̇r(t) =
1

J
·
(
Kτ · iq(t)−Bv · ωr(t)− τc − τl(t)

)
(3.28)

τ̇l(t) ≈ 0 (3.29)

The mechanical state space model from equations (2.50) and (2.51) can be rewritten to equations (3.30)
and (3.31), where the load torque is seen as an additional state instead of a disturbance. As the load
torque is a state in the system it is possible to setup an observer structure for estimating the states,
which can be used for load torque compensation. θ̇eω̇r

τ̇l

 =

0 np 0

0 −Bv
J

−1
J

0 0 0

 ·

θeωr

τl

+

0 0

0 Kτ
J

0 0

 ·

[
id(t)

iq(t)

]
(3.30)

[
θe
ωr

]
=

[
1 0 0

0 1 0

]
·

θeωr

τl

 (3.31)

To simplify the observer design and its implementation, the state space model’s order is reduced to a
second order system that includes the speed ωr and load torque τl as states. This is possible since, the
position is the integrated speed. This yields the state space model equations (3.32) and (3.33).[

ω̇r

τ̇l

]
︸ ︷︷ ︸
ẋobs

=

[
−Bv
J

−1
J

0 0

]
︸ ︷︷ ︸

Aobs

·

[
ωr

τl

]
︸ ︷︷ ︸
xobs

+

[
0 Kτ

J

0 0

]
︸ ︷︷ ︸

Bobs

·

[
id(t)

iq(t)

]
︸ ︷︷ ︸

ur

(3.32)

ωr︸︷︷︸
yobs

=
[
1 0

]
︸ ︷︷ ︸
Cobs

·

[
ωr

τl

]
︸ ︷︷ ︸
xobs

(3.33)

The observability of the system is checked to determine if an observer design is feasible. If the system
is observable it is possible to reconstruct the load torque from the measured output yobs = ωr. The
observability is calculated using equation (3.34) and checking the rank, which should equal the states.
In this case the rank is two which matches the states, and the system is therefore observable. [Franklin
et al., 2015]

Rank (O) = Rank


 Cobs

Cobs ·Aobs


 = 2 (3.34)

The observer structure chosen is the Luenberger observer. The Luenberger observer relies on a virtual
model that will correct any model errors. The error between the estimated speed and the measured
speed is corrected by feeding it through a gain matrix Lobs, and back into the observer as seen in
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figure 3.8 and expressed mathematically in equation (3.35). The effect from the Coulomb friction has
to be subtracted otherwise it will affect the observer estimation.

Mechanical Plant

Figure 3.8. Load torque observer structure.

˙̂xobs = Aobs · x̂obs +Bobs ·

ur −

[
0
τc
Kτ

]+ Lobs(yobs − Cobs · x̂obs) (3.35)

The Luenberger gain matrix Lobs needs to be chosen such that the observer is stable and 3 to 5 times
faster than the observed system making it able to follow the changes in the rotor speed. The observer
poles will lie as seen in equation (3.36), meaning that desired poles can be chosen from which the Lobs

is calculated.

Pobs = eig
(
Aobs − Lobs · Cobs

)
(3.36)

The chosen observer poles are Pobs = [−60 − 50]T , which means that the observer is significantly
faster than the plant, and matches the speed control. Resulting in a Luenberger gain matrix of
Lobs = [109.86 − 32.46]T
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3.4 Validation

The control and compensation structure for both inner and outer loop has been designed and can be
seen in figure 3.9 with the values shown in table 3.1.

Mechanical Model

Load
Observer

Machine Model

Figure 3.9. Cascaded control structure with compensation.

Speed Controller Current Controller Luenberger Gain

KP,ω KI,ω KP,i KI,i Lobs(1) Lobs(2)

0.92 0.09 7.68 1452.00 109.86 -32.46

Table 3.1. Gain values for Luenberger, and controller values for speed and current.

The validation strategy is to validate each controlled segment individually. The current controlled loop
is validated first to ensure that proper current commands are generated and followed. Then the speed
loop is tested to ensure that it follows the ramp, afterwards the back-EMF is compensated to see if the
performance improves. Lastly the load is applied to test the performance and compensation ability of
the load observer.
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3.4.1 Closed Inner Loop Test

A validation test was performed on the inner loop in a similar manner as the machine parameters
experiment, with a locked rotor, to ensure that the back-EMF is zero. Instead of giving inputs in a
open loop, the loop is closed with the PI controllers. The id current is given a reference, to see how the
system responded. Both the id current and the controllers response is measured. The same reference
signal is given to the model for comparison, this is shown in figure 3.10.
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Figure 3.10. Response of implemented controller, the input is adjusted for
the inverter loss.

The model and the system both have similar response when the reference steps from 5 A to 7 A. It can
be observed that the model has a slightly slower response, which could be because of slight parametric
differences or un-modelled inverter dynamics. However, as this difference is minimal the controller is
accepted.

3.4.2 Closed Outer Loop Test

To validate the speed controlled system, the FOC structure was given a ramp speed reference with a
slope of 2000 RPM/s which ramped the system from 2000 RPM to 3000 RPM, with the load torque
kept at zero. Two tests are performed, one with back-EMF compensation and one without. This is to
see if the model behaves appropriately in both cases, and see the differences the compensation has.

The first test is without the back-EMF compensation, which is shown to the left in figure 3.11. Both
the measured and simulated ωr have a similar speed response. They are both slightly delayed but still
follow the reference closely. In the current response for id it is clear that most of the dynamics comes
during the start and end of the test. Here it is seen that the model follows the system fairly well, but
the system has noisy features. For the iq it can be seen that the system follows its reference well and
similar for the model. There are some difference between the reference the model and system generates,
which indicates that the system, needs more current than the model estimates. The non-compensated
model and system fit well and therefore is accepted.
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Figure 3.11. Response of implemented FOC Structure, with and without
back-EMF compensation.

Figure 3.11, to the right, shows the back-EMF compensated model where the test is the same. The
speed response is similar to the non-compensated model. The back-EMF compensation have removed
most of the unwanted dynamics in id, and iq. It is clear that the currents are mostly decoupled. For
iq, the difference between the model and the system is improved and is a better fit compared with the
non-compensated model.
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3.4.3 Load Torque Compensation Test

To validate the load observer, a load of 3 Nm is applied to the PMSM without the load torque
compensation added to the control structure. In figure 3.12, the reference given to the load motor
and the observed torque is shown. The observer follows well in steady state with minimal steady state
error. The transient response shows there is no overshoot as designed for and it follows the reference
to a satisfactory degree.
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Figure 3.12. Observed load torque.

To test the influences of the compensation, two tests are done, one with compensation and one without.
Both of the tests are performed at a speed of 500 RPM, where it was allowed to settle. The load is
then stepped from 0 Nm to 3 Nm at 1 second. The speed response of both a compensated and
uncompensated control structure is shown in figure 3.13.
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Figure 3.13. System response of a load step, without and with load compensation.
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It can be observed from figure 3.13 that when the load is applied, the uncompensated system’s speed
is reduced to 455 RPM. The uncompensated system takes more than 40 seconds to recover and
reach the speed reference. For the compensated model the speed is reduced to 465 RPM, and takes
approximately 0.2 seconds to recover to the speed reference. Thus, the compensated system with the
added load observer and compensation shows a significantly improvement in performance compared
with the uncompensated system.

The controllers and compensation structures are validated and the performance is satisfactory giving a
good starting point. The control was done using an encoder for position and speed feedback, however
the control becomes more complicated when implementing estimation strategies for the position and
the speed.
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This section introduces position estimation based on the back-EMF, which is used to design a SMO for
position estimation. Then a PLL structure is designed for post processing of the position, to extract
better speed and position estimations.

The FOC structure that is used for the control, can be modified to include a speed observer, replacing
the need for an encoder. The implementation of the observer block is shown in figure 4.1. As mention
under section 1.4, the startup is encoder based as only 10% rated speed and upwards is investigated
in this thesis.

VSI

PMSM

SVM

Encoder

Speed
Estimator

Load
Observer

Switch

Load

PWM

Plant

+

-

+

+

+
-

+
-

+ +

+ +

Figure 4.1. Illustration of the FOC structure with Observer implemented.

4.1 Position Estimation Principle

There are two common methods for speed estimation in a PMSM, either utilising the position of the
back-EMF or of the magnet flux. The magnetic flux λm is aligned with the north pole of the rotor,
where as the back-EMF is its derivative and displaced with 90o. This results in the back-EMF following
the q axis, and the flux from the permanent magnets following the d axis, illustrated in figure 4.2.
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S

N

Figure 4.2. Illustration of the estimation principle.

The back-EMF, eαβ is a space vector, thus from its αβ components its angle can be found. From its
angle it is possible to determine the rotor position as seen in equation (4.1). [Wang, 2022b]

θe(t) = tan−1

(
−eα
eβ

)
= tan−1

(
λβ − Ls · iβ
λα − Ls · iα

)
(4.1)

When estimating the position from the back-EMF there are a potential for errors. If the position error
is too high it will make the system unstable. Looking at figure 4.3, it can be seen that when an error
is introduced between the actual position and the estimated position, the estimated îq current vector
will no longer be on the real q axis. This can be shown with equations (4.2) and (4.3).

id = îd · cos(θ̃e) + îq · sin(θ̃e) (4.2)

iq = îd · sin(θ̃e) + îq · cos(θ̃e) (4.3)

Figure 4.3. Illustration of the error in estimated dq reference frame.
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The controllers will make îd = 0, meaning that its components will not influence the system, and
iq from equation (4.3) is reduced to iq = îq cos(θ̃e). To gain insight into how this may influence the
stability of the system, Newton’s second law from equation (2.49) includes this error term and becomes
equation (4.4).

ω̇r =
1

J
· (Kτ · îq · cos(θ̃e)− τf (ω)− τl(t)) (4.4)

The motor torque is reduced with cos(θ̃e) because of the difference between the actual and virtual
reference frame. The greater the error, the more the current will be applied on the d-axis, and
eventually the motor stalls as it cannot follow the speed reference.

Another consequence with an introduced position and speed error is it affects the compensations
strategies. Previously the compensation was calculated from the measured position and speed, however
with the addition of estimation errors, the compensation is only as good as estimated position and
speed. For the back-EMF compensation this change is reflected in equation (4.5).

d̂dq(t) = êdq(t) =

 −ω̂e(t) · Ls · îq(t)
ω̂e(t) ·

(
Ls · îd(t) + λm

) (4.5)

For the load observer the same is true, as the input signal will be the estimated current ûr = [̂id îq]
T ,

and instead of comparing the observed speed from the observer with measured speed, it will instead
be compared with the estimated speed from the speed estimator as seen in equation (4.6). Meaning
the observed load torque is likewise affected by estimation errors.

˙̂xobs = Aobs · x̂obs +Bobs · ûr + Lobs(ŷest − Cobs · x̂obs) (4.6)

4.2 Sliding Mode Observer

To estimate the back-EMF, an observation strategy needs to be used, sliding mode observers (SMO) are
commonly used in motor control structures because of their fast performance and ability to deal with
model errors, disturbances, and uncertainties. Making the SMO a good choice for a robust observer
[Shtessel et al., 2014; Wang, 2022b]. The estimated position can contain alot of noise, which needs
to be filtered. Similar is needed for the speed since taking the derivative amplifies any noise. The
observer structure is illustrated in figure 4.4.

SMO Position Filter

Speed Filter

Figure 4.4. Illustration of the speed and position estimator.

The structure of the SMO added to the system is illustrated in figure 4.5, and is a model reference
adaptive system, where the output of the plant is compared with the output of an adjustable model.

42



4.2. Sliding Mode Observer Aalborg University

An adaption mechanism is introduced to make the error between the model and plant zero. In the
SMO the adaption mechanism is a sliding mode controller. [Wang, 2022b]

Plant

Machine Model

Figure 4.5. Illustration of the sliding mode observer structure.

The estimated currents îαβ from the model is compared with the measured currents from the plant to
create a the sliding variable S, which is an expression of the error as seen in equation (4.7).

S(t) = îαβ(t)− iαβ(t) (4.7)

The adaption mechanism of the SMO feeds the output estimation error S back, via a nonlinear
switching function fs(S), and a gain matrix K seen in equations (4.8) and (4.9). If the magnitude
of the disturbances to the system is bounded, and the magnitude of this bound is known, the SMO
can force the sliding variable to converge to zero in finite time. As well making the estimated states
converge to the actual states of the plant. This is done by estimating the disturbances applied to the
system [Shtessel et al., 2014]. In this case it is known that the disturbances acting on the system are
back-EMF eαβ which means there exist a bound. As the SMO forces the sliding variable to zero the
observed back-EMF will equal the real back-EMF and can be used for position estimation.

fs(S(t)) = sign(S(t)) (4.8)

K =

[
Kα 0

0 Kβ

]
(4.9)
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4.2.1 Lyapunov Stability Analysis

To ensure that the SMO will make the sliding variable converge to zero and thus be stable, the gains in
the K matrix needs to be tuned. Because of the observer’s nonlinear nature, the approach for finding
these gains to ensuring stability is done using the Lyapunov’s stability theorem for non-autonomous
systems seen in theorem 4.2.1.

Theorem 4.2.1: Lyapunov’s Stability Theorem for Non-Autonomous systems

If in a ball B where the equilibrium point x0 = 0 ∈ B , there exists a scalar function V (t, x)

with continuous first partial derivatives, such that:
• V (t, x) is positive definite.
• V̇ (t, x) is negative semi-definite.

Then x0 is stable "in the sense of Lyapunov”. If furthermore:
• V (t, x) is decrescent, then x0 is uniformly stable.
• V̇ (t, x) is negative definite, then x0 is uniformly asymptotically stable.

Source : Slotine and Li [1991]

Using theorem 4.2.1, it can be concluded that if a positive definite Lyapunov candidate function is
chosen, finding the expression for the partial derivative and choosing the matrix K such that the
derivative is negative definite will ensure uniformly asymptotically stability of the SMO. This ensures
the sliding variable converges to zero as time goes to infinity.

A positive definite Lyapunov candidate function is chosen as equation (4.10), and its partial derivative
can be written as equation (4.11), where it can be seen that it is dependent on the derivative of the
sliding variable Ṡ(t).

V (S(t)) =
1

2
· S(t) · ST (t) =

1

2
·

[
sα(t)

sα(t)

]
·
[
sα(t) sα(t)

]
=

1

2
· (sα(t)2 + sβ(t)

2) (4.10)

V̇ (S(t)) =
1

2
· d

dt

(
sα(t)

2 + sβ(t)
2
)
=

1

2

(
2 · sα(t) · ṡα(t) + 2 · sβ(t) · ṡβ(t)

)
= ST (t) · Ṡ(t) (4.11)

The sliding variable was described in figure 4.5 and equation (4.7), since Cαβ is an identity matrix the
outputs yαβ are equal to the state variables xαβ . Thus the sliding variable and its derivative can be
described with equations (4.12) and (4.13).

S(t) = îαβ(t)− iαβ(t) = x̂αβ(t)− xαβ(t) (4.12)

Ṡ(t) = ˙̂iαβ(t)− i̇αβ(t) = ˙̂xαβ(t)− ẋαβ(t) (4.13)

From equation (4.13) it can be seen that the derivative of the sliding variable is a function of real
and estimated current dynamics, meaning the state space model from equation (2.28) can be inserted
giving equation (4.14), since the inputs to the plant and the model are the same it can be reduced to
equation (4.15).

Ṡ(t) = Aαβ ·
(
x̂αβ(t)− xαβ(t)

)
+Bαβ ·

(
uαβ(t)− uαβ(t)

)
+ Eαβ ·

(
d̂αβ(t)− dαβ(t)

)
(4.14)

Ṡ(t) = Aαβ · S(t) + Eαβ ·
(
d̂αβ(t)− dαβ(t)

)
(4.15)
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The disturbance of the real plant is the back-EMF, likewise the estimated disturbance from the SMO
is the estimated back-EMF and can be expressed with the switching function and gain matrix, seen in
equation (4.17).

dαβ(t) = eαβ(t) (4.16)

d̂αβ(t) = êαβ(t) = K · fs
(
S(t)

)
(4.17)

Using the definitions for the disturbances and for the system matrix Aαβ and the disturbance matrix
Eαβ , the derivative of the sliding variable can be expressed as equation (4.18).

Ṡ(t) =

[
−Rs
Ls

0

0 −Rs
Ls

][
sα(t)

sβ(t)

]
+

[
−1
Ls

0

0 −1
Ls

][
Kα · fs

(
sα(t)

)
− eα(t)

Kβ · fs
(
sβ(t)

)
− eβ(t)

]
(4.18)

The derivative of the sliding variable is now inserted into the derivative of the Lyapunov candidate
function giving equation (4.19) which can be simplified to equation (4.20).

V̇ (S) = sα

(
−Rs

Ls
· sα +

−1

Ls

(
Kα · fs(sα)− eα

))
+ sβ

(
−Rs

Ls
· sβ +

−1

Ls

(
Kβ · fs(sβ)− eβ

))
(4.19)

V̇ (S) =
−Rs

Ls
(s2α + s2β) +

1

Ls
· (eαsα −Kα · fs(sα)sα) +

1

Ls
· (eβsβ −Kβ · fs(sβ)sβ) (4.20)

The switching function is a signum function, meaning when multiplying it with the same variable as
included in the signum function, it becomes the absolute value of the variable as seen in equation (4.21).
Thus V̇ (S) can be written as equation (4.22).

|x| = sign(x) · x (4.21)

V̇ (S) =
−Rs

Ls
(s2α + s2β) +

1

Ls
· (eαsα −Kα · |sα|) +

1

Ls
· (eβsβ −Kβ · |sβ|) (4.22)

By breaking equation (4.22) up into its individual terms in equations (4.23) to (4.25), the first term
is negative definite independent of the input. However, this is not true for the last two terms which
depends on magnitude of Kα and Kβ . Note that the Kα and Kβ are scaled with the absolute values
of the S components and the back-EMF is multiplied with both components. Thus Kα and Kβ needs
to be equal or greater than the back-EMF components for V̇ (S) to be negative definite.

0 ≥− Rs

Ls
(s2α + s2β) Always regardless of input (4.23)

0 ≥ 1

Ls

(
eα · sα −Kα · |sα|

)
, Only if Kα ≥ eα (4.24)

0 ≥ 1

Ls

(
eβ · sβ −Kβ · |sβ|

)
, Only if Kβ ≥ eβ (4.25)

Using this information, a stability criterion can be set up for the SMO. The magnitudes of Kα and Kβ

must be greater or equal to the maximum magnitude of the back-EMF. If this is true the V̇ (S) will be
negative definite and the SMO will be asymptotically stable.

Kα ≥ max(|eα(t)|) = max
(
| − ωe(t) · λm · sin

(
θe(t)

)
|
)

(4.26)

Kβ ≥ max(|eβ(t)|) = max
(
|ωe(t) · λm · cos

(
θe(t)

)
|
)

(4.27)

45



Mads W. Toft & Franz A. R. Aldous 4. Sensorless Control

The gain matrix can be written as equation (4.28), where the sin(θe(t)) = cos(θe(t)) = 1 to ensure the
maximum value. The speed reference is used since it is the ideal operating speed of the system. The
Kαβ also include a Ks which is a safety constant to ensure that it is above the actual back-EMF even
if speed overshoot or other errors occur.

K(t) =

[
ω∗
r (t) · np · λm +Ks 0

0 ω∗
r (t) · np · λm +Ks

]
(4.28)

4.2.2 Chattering

Implementing the SMO, it can be observed in figure 4.6 that chattering is introduced. Where the
measured currents iαβ of the system is compared with the estimated current îαβ from the SMO. This
chattering is undesired since it will be reflected in the back-EMF estimation.
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Figure 4.6. Estimated current of the SMO with Ks = 30.

To eliminate or reduce the chattering, a solution could be a first order low pass filter, however this
method will delay the phase of the back-EMF signal which would need to be accounted for. Another
solution is to utilise a quasi-sliding mode observer (Q-SMO), which is widely used and is chosen in this
thesis. [Shtessel et al., 2014]

4.3 Quasi-sliding Mode Observer

Figure 4.7 A) illustrates the sliding surface for a continues SMO, where it ideally would converge to
the sliding surface and afterwards to zero. However, since the SMO was implemented in a discrete
system it resulted in the chattering observed in figure 4.6, which can be illustrated in the phase plane as
figure 4.7 B). The SMO in the discrete system does not converge to the sliding surface, but will instead
chatter around it. To reduce the chattering, a Q-SMO can be used. The idea behind the Q-SMO is
that a boundary is introduced as seen in figure 4.7 C), where the sliding variable will converge to the
boundary around the sliding surface instead of the surface itself. The trade off with this is that an
error is introduced since the Q-SMO will only guarantee a convergence to the boundary layer. [Slotine
and Li, 1991; Shtessel et al., 2014]
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A) Ideal SMO B) Discrete SMO C) Quasi-SMO

Figure 4.7. Sliding surfaces.

The Q-SMO works almost identically to the SMO, the difference however is that the signum switching
function have been replaced with an alternative switching function. A common replacement is the
sigmoid function seen in equation (4.29) and plotted in figure 4.8. In the Q-SMO the sigmoid function
is a smooth and continues approximation to the signum function, where ϵ will relate to the boundary
thickness introduced.

fs(x) =
x

|x|+ ϵ
(4.29) ϵ =

ϕB

100
(4.30)
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Figure 4.8. Illustration of the Sigmoid with different ϵ and Signum function.

The boundary thickness ϕB is directly correlated with the sigmoid scalar ϵ as seen in equation (4.30).
Decreasing ϵ makes the sigmoid function more closely approximate the signum function, and reduces
the boundary thickness. Thus, reducing the introduced error, while increase any chattering. Increasing
ϵ makes the boundary thickness and convergence error increase, while decreasing the chattering. As a
result of introducing the sigmoid as the switching function, there now exists two tune able variables in
the Q-SMO structure, the safety factor Ks, and sigmoid variable ϵ.
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4.3.1 Q-SMO Tuning

The approach for tuning was to investigate the optimal ratio between the variables Ks and ϵ to find
the lowest error with reduced chattering. The method chosen was to sweep Ks from 10 to 100 with an
interval of 10, and ϵ from 0.1 to 1 with the interval of 0.1. Two of the sweeps are shown in figure 4.9.
This figure shows that for each ϵ there is a Ks that gives the best response. Figure 4.9 shows that
there is little difference between both iα and iβ at the same values.

Figure 4.9. Illustration of two SMO sweeps where Ks is swept from 0 to 100.

To find the optimal values for the parameters, the estimation error is investigated. This is done using
the relation in equation (4.31), which investigates the magnitude relation between the signals.

|̃iαβ| = |iαβ| − |̂iαβ| (4.31)

Using the equation (4.31) for all sweeps, an interpolation between data points for the estimation is
analysed and the result is shown in figure 4.10.
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Figure 4.10. Q-SMO estimations error, interpolated between data points.
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Figure 4.10 shows that there is a span that has a lower error than the rest. While a low ϵ and high Ks

produce a large error, the same cannot be said for high ϵ. However, the figure 4.10 shows that there
is a ratio that produces the lowest error. One of the points at the lowest error within the sweep is
Ks = 30 and ϵ = 0.6, and this point is chosen for the Q-SMO.

Figure 4.11 shows the results of the Q-SMO with the chosen values implemented. Here the current
response for iα and iβ are compared at 450 RPM and 4000 RPM. It can be seen that in the low speed,
the estimated has a larger amplitude and most of the chattering has been attenuated. At 4000RPM,
the amplitude difference is larger and resulting in a higher error, furthermore chattering is still present,
however, it is significantly reduced compared with the SMO in figure 4.6.
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Figure 4.11. Estimated currents of the Q-SMO with Ks = 30, ϵ = 0.6.

The Q-SMO results indicates that the chattering has been attenuated and improved compared with
the SMO. The error is larger in the higher speed, but the estimated current is still in phase with the
real current. This leads to the analysis of the back-EMF comparison which is shown in figure 4.12.
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Figure 4.12. Comparison of the back-EMF in low and high speed.

Figure 4.12 is a plot of the estimated back-EMF from the Q-SMO and the actual back-EMF calculated
from the measured speed and position. The results show the same tendency as the measured and
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estimated currents, with the estimated back-EMF in the low speeds having some chattering. At the
higher speeds, there still exists a lot of chattering in the estimated back-EMF signal.

To analyse this further, the signals are investigated in the frequency domain. This is to analyse the
possibility of extracting a position from the back-EMF at higher speeds. Figure 4.13 shows that in
lower speeds the fundamental of the estimated back-EMF matches the real back-EMF with a difference
in magnitude. Besides this difference, the estimated back-EMF also have small higher frequency
components.

For the higher speeds it is clear that the estimated contains a lot more undesired frequency components.
Furthermore, the fundamental frequency has a larger magnitude difference compared to the real. This
indicates that a position can be extracted, if most of these higher frequency components are reduced
using an appropriately designed filtering structure.
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Figure 4.13. Frequency domain comparison of the back-EMF in low and
high speed.
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4.4 Phase Locked Loop

A phase locked loop (PLL) is a filter structure, which has similar characteristics as a low-pass filter,
without phase shift. The PLL does not include the same phase shift as a low-pass filter, as it locks
onto the input frequency, while still removing undesired high frequency components. It is also possible
to get the speed estimation out from the PLL without taking the derivative. The structure of the PLL
is shown in figure 4.14. [Wang et al., 2017; Wang, 2022b]

PI

Figure 4.14. Phase locked loop for the position.

The closed loop transfer function of the PLL structure, shown in figure 4.14, is equation (4.32).

HPLL(s) =
KP,PLL · s+KI,PLL

s2 +KP,PLL · s+KI,PLL
(4.32)

An important aspect of the PLL is that it has a close to linear relation between the cutoff frequency
and the controller gains KP,PLL and KI,PLL. This can be shown by taking the equation (4.32) and
solving it for the cutoff frequency as −3dB = 1√

2
. [Wang et al., 2017]

HPLL(j · ωc) =

∣∣∣∣∣ KP,PLL · j · ωc +KI,PLL

(j · ωc)2 +KP,PLL · j · ωc +KI,PLL

∣∣∣∣∣ = 1√
2

(4.33)

Solving equation (4.33) gives the relation that is shown in equation (4.34). Here the cutoff frequency
can be found if the controller gains are known. However, this can be further simplified.

ωc =

√√√√K2
P,PLL + 2 ·KI,PLL +

√
(K2

P,PLL + 2 ·KI,PLL)2 + 4 ·K2
I,PLL

2
(4.34)

An assumption that simplifies the equation (4.34) is a linear relation between the controller gains,
shown in equation (4.35). The variable a determines the relation between the controller gains. This
will simplify equation (4.34) to approximately equation (4.36), which is a linear relation. [Wang et al.,
2017]

KI,PLL = KP,PLL · a (4.35) ωc ≈ KP,PLL + a (4.36)

The relation between the controller gains and the cutoff frequency is plotted in figure 4.15, using both
equations (4.34) and (4.36) with a = 5. The figure shows a linear relation between the cutoff frequency
and the controller gain KP,PLL. From the figure it is possible to select a cutoff frequency and thereby
also selecting the controller values.
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Figure 4.15. Phase locked loop for the position.

4.4.1 The Position PLL Design

The PLL for the position θ̂e is shown in figure 4.16. This loop includes a sinuous function and a reset
block, and these are implemented to ensure that the position can only be between 0 to 2π. The output
of the PI controller is the speed which goes further into a speed filter. [Wang, 2022b]

PIsin

PLL Speed

Figure 4.16. Phase locked loop for the position.

Tuning the PLL can be done using the linear approach that was shown in equation (4.36), where a
desired cutoff frequency can be chosen. This simplifies the tuning of the PLL significantly as only
a desired cutoff frequency needs to be chosen. Shifting the cutoff frequency to be low, the PLL will
reject more noise to give a better position estimation in steady state, however this makes it slower to
respond in dynamic situations. When choosing the cut off frequency to be high the opposite will be
true, making the PLL give a better dynamic response but make the output signal contain more noise.
Tuning the position PLL was done by iterative shifting the cutoff frequency until at desired response
was found. The tuning process is illustrated with three different cutoff frequencies, in figures 4.17
and 4.18 where the former is a bode-plot of the PLLs and the latter plot is corresponding the results
when implemented.
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Figure 4.17. Bode plot of position PLL.

The PLLs with different cutoff frequencies are tested with a load step of 3 Nm, with the encoder used
for feedback and compensation. The Q-SMO and position PLL is computed parallel to the system.
The estimated position from the PLL can then be compared with the actual position from the encoder
to gain insight into how the different cut-off frequencies will change the position estimation.

The results in figure 4.18, illustrates the lower cut off frequency of ωc = 470 rad/s having lower noise
but also a slower response, where the two higher cut off frequences contains more noise but also has a
faster response. Another thing to note is that a higher cutoff frequency will also introduce more noise
into the speed estimation, which has to be filtered out in the speed PLL. To avoid introducing to much
extra noise back into the system, but still having a good response, ωc = 940 rad

s is chosen, which gives
the proportional and integral gains of KP,PLL = 935 and KI = 5 ·KI,PLL. In figure 4.18 it can be seen
that for the chosen cutoff frequency there is a maximum position error of 4.5o, this means little when
going through a cosine function as cos(4.5o) = 0.997.
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Figure 4.18. Electrical position θe and electrical estimated θ̂e position in
steady state at different speeds.
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4.4.2 The Speed PLL Design

The speed filter is also a PLL, and the same tuning method as tuning the position PLL is used,
where the cutoff frequency is chosen at ωc = 45 rad

s , via iterative tuning and the results are shown in
figure 4.19. This shows that the speed follows the reference well and has a good steady-state response,
but it has an overshoot.
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Figure 4.19. PLL structure for the speed (Left) and results with ωc = 45rad/s (Right).

Another PLL strategy is using the reference as a feedforward, which changes the transfer function
to equation (4.37), and this is called the compensated PLL structure, shown in figure 4.20. The
compensated and the normal structure PLL has the same behaviour in steady state. [Wang et al.,
2017]

ωe,out =
KP,PLL · s+KI,PLL

s2 +KP,PLL · s+KI,PLL
· ωe,in(s) +

s2

s2 +KP,PLL · s+KI,PLL
· ω∗

e,ref (s) (4.37)

eω =
(
1−HPLL(s)

) (
ωe,in(s)− ω∗

e,ref (s)
)

(4.38)

The error can be expressed with equation (4.38) and when the accelerations of the reference and the
input estimation is approximately the same, it will converge to zero, making the compensated structure
better at following the reference. [Wang et al., 2017]
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Figure 4.20. PLL compensated structure for the speed (Left) and results with ωc = 45rad/s (Right).
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The compensated loop has a different transient response compared with the normal PLL structure, as
it does not include the overshoot. During the ramp, the compensated loop provides a better transient
response with a closer estimate to the real position.

4.5 Q-SMO and PLL Validation

To validate the performance of the sensorless algorithm, the estimated position and speed is used for
feedback, investigating if the system can still follow the reference. Note that no load is applied in the
first test. Afterwards the load observer is added to the structure and a load step is given to see the
systems transient response.

4.5.1 Speed Ramp Response

The encoder is used for startup, until the system reaches 10% rated speed. Afterwards it is switched
to the Q-SMO and PLL structures and allowed to settle. Then the speed reference ω∗

r is ramped from
450 to 1000 rpm and the systems response is plotted in figure 4.21.
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Figure 4.21. Speed ramp response with estimation ω̂r used for feedback.

In steady state both the position error and speed error resemble noise. During the ramp, the speed
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estimation has an error of ± 25 rpm when the ramp begins and ends. This is reflected in the speed
where a overshoot in both the estimated and real speed have been introduced at the end of the ramp.
The position error shows a slightly different dynamic, instead of having highest error at the beginning
and end of the ramp, it instead rises slightly to 11o until a steady state have been reached for the
speed, afterwards the position error is reduced until it reaches back its steady state.

In the estimated current it can be seen the back-EMF compensation still works reasonably well as the
currents are decoupled. Though in the îq(t) current overshoots and undershoots in the speed, which is
reflected in the current. However, in spite of the errors introduced the system can follow the reference
with only small errors in the estimations, and a small overshoot which is deemed acceptable.

4.5.2 Load Step Response

Adding the torque compensation to the control structure resulted in the results of the left plots in
figure 4.23 where undesired oscillations have been introduced. Where even if no load torque is added
to the system, the torque estimation will add noise to the system making it behave undesirable. To
reduce this added noise, a PLL filtering structure is added to the output of the load observer as seen in
figure 4.22, where a cutoff frequency of 25 rad/s was chosen. The cutoff frequency were tuned iterative
by decreasing it until the oscillations stopped.

Load
Observer PLL

Figure 4.22. Filtered load observer structure.

Figure 4.23. Added compensation, unfiltered and filtered τ̂l.
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The results of the load observer with the added PLL is seen in the plots to the right in figure 4.23.
Here it can be seen that the filter has removed most of the noise in the observed torque, and that
the estimated magnitude has increased during the load step. This means that the filter reduces the
oscillations during a speed step.
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Figure 4.24. Filtered load torque compensation, using SMO feedback

A load step is now given to the system to see its response, seen in figure 4.24. At the load step, it can
be seen that the estimated speeds lag a bit behind the actual speeds which creates a small speed error
of around 35 rpm. However, they are both able to recover in about 0.6 seconds. This error in speed is
reflected in the load observer where it also has some oscillations before settling. However, the position
error is not great and the system settles to the reference within approximately 0.6 seconds.

The Q-SMO, with PLL and load observer, will be denoted as estimation structure 1. This structure
performs reasonably well during a load step, however its response contains oscillations. The structure
could be improved by reducing the delays between the estimated and real speed, and likewise by
improving the load estimation.
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Kalman Filter 5
This chapter present a possible implementation of the Kalman filter, based on the existing estimation
structure and system model. The tuning of the Kalman filter is done using a weighted method and
evaluated based on its load transient performance.

5.1 Kalman Based Estimation Structure

Estimation structure 1 used a Q-SMO and two PLL’s to give a position and speed estimation. The
speed PLL’s low bandwidth forced the system to react slowly to changes, and therefore an improvement
in the speed loop bandwidth could be beneficial. A new structure is introduced in figure 5.1, which
replaces the speed PLL and the load observer with a Kalman filter. The Q-SMO and position PLL
is seen as a virtual position sensor. The Kalman filter is an algorithm that uses current and previous
measurements containing noise and other uncertainties to estimate the states of a system via joint
probabilities. Making it a useful algorithm to estimate the speed and load torque of the system as
it can account for the noise from the virtual sensor as well as process noise and uncertainties in the
system itself. [Marwade, 2020].

SMO PLL Kalman Filter

Virtual Position Sensor

Figure 5.1. Illustration of estimation structure 2, where a Kalman filter is
implemented.

5.2 The Gaussian Model

The previous mechanical model used in the load observer, equations (3.30) and (3.31) did not include
noise and uncertainties. These noises can be included by adding process noise q(t) and sensor noise r(t)
to the system, seen in figure 5.2. These noises are assumed to be distributed on a Gaussian probability
curve, as seen in figure 5.3 and equation (5.1), defined by its mean µ and standard deviation σ.
[ASTA-Team, 2020]
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Filter
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Figure 5.2. The model and Kalman Filter with
noise.

Probability

Figure 5.3. An illustration of a Gaussian
normal distribution.

f(x;µ, σ2) = N (x;µ, σ2) =
1√
2πσ2

exp
(
− 1

2σ2
(x− µ)2

)
(5.1)

This means that the state space model can be expanded to include these noises, where process noise
and sensor noise is added in equations (5.2) and (5.3) respectively. Both the process and sensor noise
are assumed to be Gaussian noise, with zero mean with some covariance as described in equations (5.4)
and (5.5).

ẋ(t) = A · x(t) +B · u(t) + q(t) (5.2)

y(t) = C · x(t) + r(t) (5.3)
q(t) ∼ N (0, Q) (5.4)

r(t) ∼ N (0, R) (5.5)

The state space model from equations (3.30) and (3.31), can be written as equations (5.6) and (5.7)
with the noise terms included in the model. Since a position sensor is not available, the virtual sensor
structure from figure 5.1 can be used instead. Meaning it is possible to "measure" the electrical position
θe(t), giving the Ckal as seen below.

 θ̇e(t)ω̇r(t)

τ̇l(t)

 =

0 np 0

0 −Bv
J

−1
J

0 0 0


︸ ︷︷ ︸

Akal

·

θe(t)ωr(t)

τl(t)

+

0 0

0 Kτ
J

0 0


︸ ︷︷ ︸

Bkal

·

[
id(t)

iq(t)

]
+

q1(t)q2(t)

q3(t)

 (5.6)

[
θe(t)

]
=
[
1 0 0

]
︸ ︷︷ ︸

Ckal

·

θe(t)ωr(t)

τl(t)

+ r(t) (5.7)

The system’s observability is checked using equation (5.8), and since the rank is equal to the states,
the system is fully observable, and it is possible to observe the rotational velocity and load torque.

Rank (O) = Rank




Ckal

Ckal ·Akal

Ckal ·Akal
2


 = 3 (5.8)
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The Kalman filter is a recursive algorithm, which is based on the system model. Thus for
implementation, the continuous model is discretized using equations (D.3) to (D.5) in Appendix. The
state space discretized model can be written as equations (5.9) and (5.10).

x[k] = Ad · x[k−1] +Bd · u[k−1] + q[k−1] (5.9)

y[k] = Cd · x[k] + r[k] (5.10)

5.3 The Kalman Filter Algorithm

Prior
Measurement


Likelihood

Posterior


Prediction

Figure 5.4. Illustration of the Kalman filter steps.

Figure 5.4 illustrates the principle behind the Kalman filter, the filter takes offset in a prior state
distribution equation (5.11), after which it predicts a new distribution equation (5.12) based on known
information. Then it makes a correction based on the measured values likelihood equation (5.13),
which it can use to calculate a posterior distribution equation (5.14) which is an expression of the most
probable location of the states. [Hammerstrand, 2021]

Prior: p(x[k−1]|y[1:k−1]) = N (x[k]; x̂[k−1|k−1], P[k−1|k−1]) (5.11)

Prediction: p(x[k]|y[1:k−1]) = N (x[k]; x̂[k|k−1], P[k|k−1]) (5.12)

Measurement Likelihood: p(y[k]|x[k]) = N (y[k];Ckal · x[k], R) (5.13)

Posterior: p(x[k]|y[1:k]) = N (x[k]; x̂[k|k], P[k|k]) (5.14)

This is a recursive process that can be separated into two steps. A prediction and a correction step
which compiles the predicted distribution and a posterior distribution respectively, illustrated with the
block diagram in figure 5.5. [Hammerstrand, 2021]
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Prediction Correction

Figure 5.5. Illustration of the recursive Kalman filter structure.

5.3.1 The Prediction Step

The prediction step takes offset in the state space model and the prior states from equations (5.9)
and (5.11) to compute the predicted distribution in equation (5.12) using theorem 5.3.1.

Theorem 5.3.1: Linear Combination of two Gaussian Variables

if z1 ∼ N (µ1,Λ1) and z2 ∼ N (µ2,Λ2) are independent Gaussian variables, then the combined
probability is:

z3 = B1 · z1 +B2 · z2 ∼ N
(
B1 · µ1 +B2 · µ2 , B1 · Λ1 ·B1

T +B2 · Λ2 ·B2
T
)

(5.15)

Source: [Hammerstrand, 2021; Meinhold and Singpurwalla, 1983]

In equation (5.9) it can be seen that x[k] is a linear combination of the terms Ad · x[k−1], Bd · u[k−1],
and q[k−1], where the standard density of input Bd · u[k−1] is assumed to be approximately zero, and
remembering the mean of q[k−1] to be zero. Theorem 5.3.1 can then be used to find the combined
density of x[k] in equation (5.16) giving an expression for a predicted distribution of the states.

p(x[k]|y[1:k−1]) = N (x[k];Ad · x̂[k−1|k−1] +Bd · u[k−1], Ad · P[k−1|k−1] ·Ad
T +Q) (5.16)

From the expression of the predicted distribution, its mean and covariance can be extracted. The
prediction step can be written as equation (5.17) and the covariance as equation (5.18).

x̂[k|k−1] = Ad · x̂[k−1|k−1] +Bd · u[k−1] (5.17)

P[k|k−1] = Ad · P[k−1|k−1] ·Ad
T +Q (5.18)

5.3.2 The Correction Step

With the predicted density from equation (5.16) known, the state estimate can be further improved by
taking the measurement y[k] and its likelihood described by equations (5.10) and (5.13) into account.
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Theorem 5.3.2: Conditional distribution of two Gaussian variables

If x and y are two Gaussian random variables with the joint probability density function

[
x

y

]
∼ N

[µx

µy

]
,

Pxx Pxy

Pyx Pyy


 (5.19)

then the conditional density of x given y is;

p(x|y) = N
(
x;µx + Pxy · Pyy

−1 · (y − µy), Pxx − Pxy · Pyy
−1 · Pyx

)
(5.20)

Source: [Hammerstrand, 2021; Meinhold and Singpurwalla, 1983]

This is done by taking offset in the joint distribution of x[k] and y[k] which can be expressed
with equation (5.21) from equations (5.9) and (5.10). x[k] and y[k] can then be conditioned on
all measurement up to [k − 1] as seen with equation (5.22). [Meinhold and Singpurwalla, 1983;
Hammerstrand, 2021]

x[k]
y[k]

 =

[
I

Cd

]
· x[k] +

[
0

I

]
· r[k] (5.21)

x[k]
y[k]


∣∣∣∣∣∣∣ y[1:k−1] ∼ N


 x̂[k|k−1]

Cd · x̂[k|k−1]

 ,

 P[k|k−1] P[k|k−1] · Cd
T

Cd · P[k|k−1] Cd · P[k|k−1] · Cd
T +R


 (5.22)

Using the definitions in theorem 5.3.2 it is possible to compute the posterior’s mean x̂[k|k] and covariance
P[k|k].

x̂[k|k] = µx + Pxy · Pyy
−1 ·

(
y − µy

)
(5.23)

P[k|k] = Pxx − Pxy · Pyy
−1 · Pyx (5.24)

These equations can be rewritten to equations (5.25) to (5.27) where K[k] is the Kalman gain.

x̂[k|k] = x̂[k|k−1] +Kkal,[k] ·
(
yk − Cd · x̂[k|k−1]

)
(5.25)

Kkal,[k] = Pxy · Pyy
−1 = P[k|k−1] · Cd

T ·
(
P[k|k−1] · Cd

T +R

)−1

(5.26)

P[k|k] =

(
I −Kkal,[k] · Cd

)
· P[k|k−1] (5.27)

5.4 The Saw-tooth Problem

The observed measurement y[k] in the Kalman filter is the position θ̂e from the PLL, which is reset
when θ̂e,[k] > 2π or θ̂e,[k] < 0 meaning the position is a sawtooth signal as illustrated in figure 5.6 a).
This leads to problems in the Kalman filter correction step as this reset is not included in the model,
where the speed is seen as the slope of the position as illustrated in figure 5.6 b).
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a) System b) Model

Figure 5.6. Illustration of saw-tooth input to the system and model.

This means that after the first sawtooth wave the position in the system will reset back to zero, where
as the model will expect to continue with a slope corresponding to the speed. To solve this problem
a sine function is introduced in equations (5.28) and (5.29) to account for this phenomenon, as the
number of rotations the model is ahead or behind of the system, will not affect the generated error.

sin (θ) = sin (n · 2π + θ) (5.28)

sin
(
y[k] − Cd · x̂[k|k−1]

)
= sin

(
y[k]

)
− sin

(
Cd · x̂[k|k−1]

)
(5.29)

To test if the sine function will improve estimation of states, two discrete Luenberger observers are run
in parallel. The observers are based on equations (5.32) and (5.33), with the closed loop poles placed
at [−85 − 80 − 75]T resulting in a discrete Luenberger gain of Ld = [0.048 0.939 − 0.269]T . The
difference between the observers is how the errors are calculated. One observer calculates the error
with equation (5.30), and the other observers calculates the sine error with equation (5.31). Note that
2π is added to ensure that the error is scaled properly.

e1,[k] = y[k] − Cd · x[k] (5.30)

e2,[k] = 2π · sin
(
y[k] − Cd · x[k]

)
(5.31)

x̂1,[k] = Ad,kal · x̂1,[k−1] +Bd,kal · u[k−1] + Ld · e1,[k−1] (5.32)

x̂2,[k] = Ad,kal · x̂2,[k−1] +Bd,kal · u[k−1] + Ld · e2,[k−1] (5.33)

The left side of figure 5.7 shows the estimated states from the Luenberger observer in equation (5.32).
It can be seen that with the normal error, the observer tries to make the estimated position follow
the sawtooth signal, which results in the speed and load torque never reaching steady state and keeps
oscillating. The right side of figure 5.7, is the results of the Luenberger from equation (5.33). This
shows that the position in the observer goes upwards even though the "measured" position is a sawtooth
signal. Meaning the observer is able to better estimate the speed and the load torque.
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Figure 5.7. Results for the two Luenberger observers.

5.5 Kalman Filter Implementation

In figure 5.5 it was described how the Kalman filter is a recursive algorithm, thus for each time step
a prediction and a correction function can be computed. The prediction step for the Kalman filter is
shown in listing 5.1. This prediction step is only reliant on prior knowledge, and for the first step,
it needs initial conditions. In this case, the initial conditions for the states are zero, which means
x = [0 0 0]T , and the covariance matrix is equal to the identity matrix, P = I.

Listing 5.1. Kalman Prediction Step.

1 function [x_predict,P_predict] = fcn(x_prior,P_prior,Ad,Bd,Q,tau_c,K_tau)
2
3 % Computing Predicted Mean of States
4 x_predict = Ad * x_prior + Bd * (u-[0;tau_c/K_tau]);
5 % Computing Predicted Covariance of States
6 P_predict = Ad * P_prior * Ad' + Q;
7
8 end

The prediction step leads to the correction step in listing 5.2, where the Kalman gain and posterior
density is calculated. It is also in the correction where the sine from the sawtooth analysis is
implemented.
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Listing 5.2. Kalman Correction Step.

1 function [x_posterior,P_posterior] = fcn(x_predict,P_predict,y,Cd,R)
2
3 % Computing Kalman gain
4 K = P_predict * Cd' * inv(Cd * P_predict * Cd' + R);
5 % Computing error
6 e = sin(y - Cd * x_predict)
7
8 % Computing Posterior Mean of States
9 x_posterior = x_predict + K * e;

10 % Computing Posterior Covariance of States
11 P_posterior = (eye(3) - K * Cd) * P_predict;
12
13 end

5.6 Kalman Filter Tuning

To make the Kalman filter behave in a desired manner, it needs to be tuned such it can capture the
systems dynamics and give useful state estimations. There are two possible parameters that can be
tuned, the process noise covariance Q and sensor noise covariance R, as all other model parameters
are known.

When tuning the filter, it is important to have insight into how a change in R and Q will affect the
filters performance. If the sensor noise covariance R is small the filter will assume that the virtual
sensor is accurate. Whereas if Q is small it will trust the predicted density that are based on the
system model. A balance needs to be found of whether the Kalman filter trust the virtual sensor or
model, meaning that a likewise balance has to be found between R and Q. R and Q can therefore be
seen as a ratio where weights can be introduced to tell the kalman filter, how much it needs to trust
the model based predictions in relation to the observed measurement.

Q =

R ·W1 0 0

0 R ·W2 0

0 0 R ·W3

 (5.34)

If the weights are placed such that Q is much larger than R, the system will trust the measurements
over the process model, giving a fast adaptive filter, however this also means that the filter will include
more of the noise from the measurements in the estimated states. Conversely, if R is much larger than
Q, the filter will be more slow to react on changes in the measurements, since they are assumed to
be noisy. This leads to a more slowly adapting filter with less noise. The tuning strategy is then to
estimate R such that it may be fixed and then finding Q via iterative tuning weights in equation (5.34).

5.6.1 Virtual Sensor Noise Analysis

In some cases, the sensors that are used in a system can include knowledge about the sensor noise.
However, in this system a virtual sensor structure is used and knowledge about the sensor noise
covariant R will have to be determined experimentally. Three experiments were conducted at the
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speeds 450 RPM, 2000 RPM and 3500 RPM, where the system was in steady state. Each of the
tests compare the position of the virtual sensor and the encoder. Assuming any noise in the encoders
measurements is negligible in relation to the noise of the virtual sensor equation (5.35) is assumed to
be true.

θe,[k] = θ̂e,[k] + r[k] (5.35)

Then from equation (5.35) the error between θe,[k] and θ̂e,[k] must be the noise of the virtual sensor
r[k]. This noise is then assumed to be gaussian and fitted to a normal distribution to find R shown in
figure 5.8.

Figure 5.8. Noise analysis experimental results.

The results in figure 5.8 shows that between the encoder and the position estimator, there is a low
position error. The errors amplitude varies slightly as the speed increases. The occurrences of the
different amplitude of error is sorted into three different histograms, where after a Gaussian distribution
is fitted to them. The variance is then known for each of these Gaussian distribution, and the mean
variance is taken, which gives R = 5.82 ∗ 10−4.
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5.6.2 Process Noise Tuning

As the sensor noise covariance R has been estimated, Q now needs to be tuned by changing the weights.
The weights are tuned through an iterative process, online on the system where, initially all of the
weights are set at 10−5. Then they are changed individually until a good baseline is found where the
speed estimation has an acceptable amount of noise. The system was then switched from using the
encoder for feedback to running on the Kalman filter with its estimated speed used for feedback, and
its estimated load torque used for load compensation.

Weight Tuning a Tuning b Tuning c

W1 100 100 100
W2 10−4 10−4 10−4

W3 10 1000 104

Table 5.1. Kalman filter tuning weights.

Fixing W1 and W2 to be constants and only changing W3, made it possible to explore the load torque
estimation more closely. In figure 5.9, the three tunings from table 5.1 are tested to see how the system
will respond to a load step. Each of the tunings has a different value for W3.

Figure 5.9. System response to a 3 Nm load step, with the estimated speed
and load torque from Kalman filter used for feedback and compensation.

In figure 5.9 it can be seen, when decreasing W3 it will trust the model more, giving a slower settling
time, but less noise in the load torque estimation. Increasing W3 will make the filter more responsive
but also add a lot of noise to the estimated torque. This is in turn reflected in the speed where the
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tuning with a higher W3 is more robust to load changes. However, since the load torque is used for
compensation and added directly to i∗q(t), it is undesired for it to have a high amount of noise. Thus a
compromised tuning needs to be chosen, that will estimate the load torque such the system is robust
enough but also without adding too much noise back into the system. For these reasons tuning b is
chosen for the Kalman filter. As the filter with this tuning capture the dynamics of the system, without
adding too much noise back into the control structure.
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This chapter will compare the two estimation structures’, design, tuning, and performance. This leads
to a conclusion of the problem statement, and discusses options for continued development.

6.1 Discussion

Throughout this thesis, two estimation structures have been used, these are shown in figures 6.1 and 6.2.
The estimation structure in figure 6.1, is a commonly used approach [Wang et al., 2017], where the
position from the Q-SMO is filtered with two PLLs to give a cleaner angular position and angular
velocity.

Q-SMO PLL

PLL

Load Observer PLL

Load Estimation

Figure 6.1. Estimation Structure 1: PLL + Load Observer.

The structure is further modified with an added load observer and PLL used to estimate the load
torque for load compensation. This load observer was the basis of the Kalman filter design, which is
used to estimate the rotational velocity and load torque as seen in figure 6.2. Making the speed PLL,
load observer, and torque PLL in figure 6.1 redundant.

Q-SMO PLL Kalman Filter

Virtual Position Sensor

Figure 6.2. Estimation Structure 2: Kalman Filter.
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A major difference with these two estimation structures are the parameter requirements and the tuning
methods. The estimation structure in figure 6.2 requires both the PMSM parameters for the Q-SMO
design and the mechanical parameters for the Kalman filter, since it is based on the mechanical model.
Furthermore, the noise covariances R and Q are also needed, however these can be tuned, instead of
found. The PLL and load observer needs all the same parameter except for the noise covariances,
however if the estimation of the load torque is not needed then the mechanical parameters becomes
optional. This is listed in table 6.1.

Estimation Strategy Machine Parameters Mechanical Parameters
Ls Rs np λm J Bv τc R Q

PLL + Load Observer: R R R R O O O N N
Kalman Filter: R R R R R R R T T

Table 6.1. Table over needed parameter. R = Required, O = Optional, T =
Tunable, N = Not needed.

The PMSM was controlled using a FOC strategy, with two similar current controllers, and a speed
controller. The system was tuned using the encoder as feedback, such that the controlled response
would not be influenced by any unknown dynamics coming from an estimation structure. The tuning
method used for both the speed and current controllers was pole placement, where the inner loop
current controllers cutoff frequency was chosen to be 1200 rad/s and the speed controller’s to 60 rad/s,
giving the PI gain in table 6.2. The reason for choosing these were to insure a fast enough step response,
but also reject any additional noise when estimation signals is introduced.

The two estimation structures both include the Q-SMO and position PLL, which creates a similar
baseline. The Q-SMO was tuned based on Lyapunov stability theorem, and a sweep was used to
determine a good ratio between the safety factor Ks and the sigmoid slope ϵ as seen table 6.2, such
that any chattering may be reduced. The results in figure 4.11 shows that at higher speed, more
chattering is introduced, where perhaps a higher order Q-SMO could be used instead to improve the
performance and give a better back-EMF estimation. [Shtessel et al., 2014]

The PLL’s are tuned using the same method, where the PI gains are approximated to be linear in
relation to the cutoff frequency [Wang et al., 2017]. Thus the PLL’s can be tuned by choosing a
cutoff frequency, where the chosen cutoff frequencies can be seen in table 6.2. The cutoff frequencies
were chosen through an iterative process to find a desired response. Alternative approaches might
be sweeping a frequency span and choosing the best response, or changing the cutoff frequency
dynamically, such it is low in steady state and higher under a transient response.

Field Oriented Controller

Speed Controller PI Gains Current Controllers PI Gains

KP,ω = 0.92 KI,ω = 0.09 KP,i = 7.68 KI,i = 1452.00

Estimation Structure 1: PLL + Load Observer

Q-SMO Parameters Position PLL Cutoff Frequency Speed PLL Cutoff Frequency Torque PLL Cutoff Frequency Load Observer Gain

Ks = 30.00 ϵ = 0.60 ωc,θ = 940.00 ωc,ω = 45.00 ωc,τ = 25.00 Lobs =

[
109.86
−32.46

]
Estimation Structure 2: Kalman Filter

Q-SMO Parameters Position PLL Cutoff Frequency Kalman Filter Parameters

Ks = 30.00 ϵ = 0.60 ωc,θ = 940.00 R = 5.82 · 10−4 W1 = 100.00 W2 = 10−4 W3 = 1000.00

Table 6.2. Table of the tuned values used in the control structure.
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The load observer used in figure 6.1 for load compensation had poles chosen at P = [60 50]T , which
gives a cutoff frequency of 50 rad/s between τ̂l(t)

iq(t)
. When the encoder was used for feedback, this gave

an appropriate response, however when estimated signals from PLLs was used for feedback, too much
noise was introduced into the system, making it oscillate as seen in figure 4.23. Thus an additional
PLL filter with ωc = 25 rad/s was added to remove this. An alternative approach would be to decrease
the cutoff frequency of the load observer to remove the PLL on the output, making the load observer
attenuate more noise.

The Kalman filter was difficult to tune as both noise covariances were unknown. The chosen tuning
method was to experimentally determine the virtual sensor’s noise covariance R, and afterwards tune
the process noise covariance Q using a weighting method. Tuning the weights was done by iterative
increasing and decreasing them until the Kalman filter gave an acceptable response. However, an
alternative approach could be investigating the possibilities of systematic sweeps or a searching strategy
such as binary search.
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6.1.1 Performance Evaluation

To gain insight into the differences between the two estimation structures, both the of the structures
are tested under the same conditions, such that a fair comparison may be made.

Load Step of 5 Nm at 450 RPM

The first comparison that is analysed is the estimation structures respective performance during a 5
Nm load step at 10% rated speed. The results for the test is shown in figure 6.3. This shows the
transient performance when a load is applied and removed.

Figure 6.3. Load Step at 10% rated speed. Comparison between estimation
structure 1: PLL + Load Observer, and estimation structure 2: Kalman Filter.

The transient speed response for estimation structure 1 shows oscillating behaviour, both when load
is applied and removed. Estimation structure 2 does not include this oscillating behaviour. When
the load step is applied, estimation structure 1 has a speed drop to around 340 RPM, whereas
for estimation structure 2 it is around 350 RPM. Estimation structure 2 has therefore removed the
oscillating behaviour with less speed drop.

The load estimation for structure 1 also shows oscillating behaviour and overshoot in its transient
response. Estimation structure 2 includes a little overshoot, but has also more noise in the load
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estimation, however this seems to give a better load compensation. The speed estimation error of
structure 1 comes from a delay between the measure and estimated speed. The speed estimation error
for structure 2 is not as much delayed, but it does not estimate the measurements peaks as well as
estimation structure 1, resulting in a slightly larger estimation error at approximately 1 and 3 seconds.

The position error of the two structures are very similar. The oscillating behaviour in structure 1 can
be seen, but a position error within 8 degrees is deemed acceptable.

Load Step of 5 Nm at 3000 RPM

The two structures are then compared at 3000 RPM with a 5 Nm load step to investigate how the
speed affects the estimation. The results for the higher speeds is in figure 6.4.

Figure 6.4. Comparison between encoder, Q-SMO + PLL structure and Q-
SMO + Kalman Filter structure at 3000 RPM.

At higher speeds the transient response of structure 1 and 2 is similar to low speed. The speed drop for
both is as the same for 10% rated, however at this speed, the speed drop is less significant in relation
to the reference. Similarly, the load estimation for both structure 1 and 2 has the same dynamics as
for the low speed region, with structure 2 having the fastest response with most noise. The peaks of
the speed estimation errors have increased slightly, however not enough to have significant influence.
The position error for both structures has slightly more oscillations, this may be because of increased
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chattering from the Q-SMO, which is most significant in structure 1, however estimation error is still
deemed acceptable.

Ramp Response Test

To test the estimation structures response to a moving reference, the system is ramped from 450 RPM
to 550 RPM, with a slope of 2000 RPM/s. The ramp responses are compared, where the encoder,
structure 1, and structure 2 is used as feedback, with the results shown in figure 6.5.
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Figure 6.5. Speed ramp comparison between encoder, Q-SMO + PLL
structure and Q-SMO + Kalman Filter structure.

When the encoder is used as feedback, the control structure follows the reference well, with no overshoot
and small delays, giving a settling time of approximately 0.1 seconds. Estimation structure 1 has an
overshoot of 30 RPM with oscillations resulting in a longer settling time of approximately 0.7 seconds.
Estimation structure 2 has a very slight overshoot, with a settling time of approximately 0.3 seconds,
and is closer to the encoder position compared to structure 1.

Low Speed Limitations Test

One of the problems with sensorless drives is the estimation in low speeds. While this thesis does not
include startup, a test was still performed to see the estimation in low speed. The speed is therefore
started at 450 RPM and dropped to 100 RPM. This is tested using both estimation structures, and
the results are shown in figure 6.6.
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Figure 6.6. Results of low speed limiation test.
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The results show that the speed estimation from structure 1, include more noise which begins to affect
the system, causing oscillation with a peak to peak magnitude of approximately 40 RPM. This aligns
with theory, that the lower the speed the worse the estimation algorithm becomes [Schroedl, 1996].
The speed estimation from structure 2, also results in oscillations, however they are lower in magnitude
with a peak to peak of approximately 10 RPM. Structure 2 could potentially go lower in speed, however
this was not further tested.

Inverter Voltage Compensation

The inverter voltage compensation, has not been greatly explored in the thesis, and the principle is
explained in appendix C. The voltage compensation only works on the observer structures. Therefore
a test was conducted where the compensation was turned on and off, under a load step to evaluate the
voltage compensations influence. With the results shown in figure 6.7.
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Figure 6.7. Inverter voltage compensation test with a load step of 5 Nm.

The tests show that the inverter voltage compensation have little to no impact on both structures,
where structure 1 has a slight difference in the load step. Thus both estimation structures are robust
enough to handle the voltage error from the inverter, as they are not greatly affected in this speed and
current range.

6.2 Conclusion

The purpose of this thesis was to design a sensorless drive with phased locked loops for position and
speed filtering. Then investigate how a Kalman filter could be introduced to improve the processing
of these signals and improve the system’s load transient response. There are two structures that this
thesis has investigated. Estimation structure 1 consists of 2 PLL’s for position and speed filtering,
and an added load observer with an extra PLL to estimate the load torque for load compensation.
Estimation structure 2, uses a position PLL for position filtering and a Kalman filter for speed and
load torque estimation. In both estimation structures, a Q-SMO was designed to estimate the position
based on back-EMF. Estimation structure 1 and estimation structure 2 can be seen in figures 6.1
and 6.2 respectively.
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The two structures’ load responses were compared at 450 RPM, where it could be seen that structure
1 had oscillations resulting in a settling time of 0.7s and an error of ∆ωr = 110 RPM. For structure
2 it could be seen that it has a settling time of 0.3 s with an error of ∆ωr = 100 RPM, with no
oscillations. This was then tested at 3000 RPM, where the same trends could be seen. The two
structures were also compared during a ramp response, where it could be seen that again structure
1 contained oscillations giving it an overshoot of 30 RPM and a settling time of 0.7s. Structure 2
was better at following the reference with only a small overshoot of under 5 RPM with no oscillations
giving it a lower settling time of 0.3. When both systems were tested at low speed at 100 RPM it could
be seen that both structures began to oscillate because of noise, however, structure 2’s oscillations was
significantly smaller in magnitude than structure 1’s oscillations. The inverter voltage compensation
has been used throughout the thesis, its influence was investigated and it could be concluded that both
structures were robust enough so that this compensation was not needed and could be removed.

From this is can be concluded that estimation structure 2 improves the load transient response of the
system, and is better at following a speed reference, as it will not contain oscillations at medium to
high speeds. It is therefore a viable alternative to the PLL approach if the mechanical parameters are
available. Furthermore, the Kalman filter can also estimate the load torque, where the PLL approach
will need an additional observer structure.

6.3 Continued Development

If the development of this project is to be continued, there are some areas that can be reexamined.
One of the areas is the position PLL. The PLL has currently a fixed bandwidth, and one option is
to create an adaptive filter that will change its bandwidth with transient dynamics, all while having
a lower bandwidth in steady state. Another approach could be to further increase the bandwidth to
see if the performance changes in the Kalman filter. Furthermore, instead of using the position from
the PLL for reference frame transformations, another option could be to use the estimate from the
Kalman filter.

The parameters of the system were found experimentally, meaning that there is a possibility for them to
contain some error. It could be interesting to analyse the estimation structures’ sensitivity to changes
in model parameters, to see what the maximum tolerance of parameters is.

The Q-SMO is a first order observer, in the results it was seen that it still had some chattering, which
became worse in the higher speeds. This performance could perhaps be improved by investigating if
it could be replaced with a higher order SMO, which can reduce chattering significantly while still
driving the sliding variable to zero. [Shtessel et al., 2014]
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Reference Frame
Transformations A

This appendix presents different reference frame transformations, which are used for the modelling of
the system. It should be noted that for the dq-frame transformations, a rotor position is necessary.

The reference frame transformation for the abc-frame to the dq-frame is known as Clarks-Parks
transformation, shown in equation (A.5). The inverse Clark-Park transformation is used when going
from the dq to the abc-frame shown in equation (A.6).

The transformation from the abc-frame to the αβ-frame is known as Clarks transformation, shown in
equation (A.1) and the inverse Clarks transformation to go from the αβ back to the abc-frame is shown
in equation (A.2).

The reference frame transformation from the αβ-frame to the dq is known as Parks transformation,
shown in equation (A.3), and the inverse Parks transformation to go from the dq back to the αβ is
equation (A.4).fαfβ

f0

 = 2/3

 1 −1/2 −1/2

0
√
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Model Transformations B
This appendix will describe the three-phase model and from it derive a mathematical model for the
dq and αβ reference frames.

B.1 Electrical Model: abc-frame

The thesis investigates a mathematical model for the system using different reference frame
transformations. The general abc model can be written in matrix form as equation (B.1). This
includes the stator resistance and the flux linkage. The definition of flux linkage can be written as
equation (B.2). [Mathworks, 2022; Beser, 2021]vavb

vc
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The abc model can then be written as equation (B.3), which includes the resistance, peak flux linkage
and inductance. The inductance’s definition are found in equations (B.22) and (B.23). This includes
self- and mutual inductance.
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This model can be written compactly as in equation (B.4). This is under the assumption that the
inductance is not a time function. The derivative of the peak flux linkage can be defined as the
back-EMF, eabc, where the definition is in equation (B.5).

vabc = Rs · iabc + L · i̇abc + λ̇m,abc︸ ︷︷ ︸
eabc

(B.4)

eabc = ωe · λm,abc (B.5)

B.2 The Direct-Quadrature Frame Model

The abc model is the general model that represents the actual system, however the dq model is the
model that is used as the basis for control.
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B.2.1 The Three phase model to the dq model

In appendix A there are listed different reference frame transformations. To go from abc model to the
dq, the Clark-Parks transform is used. The Clark-Parks transform is denoted as KCP and the Inverse
transform is KCP

−1, this gives the two definitions as seen in equations (B.6) and (B.7).

fdq0 = KCP · fabc (B.6)

fabc = KCP
−1 · fdq0 (B.7)

The first step to obtain a model in the dq frame is to apply this transformation to equation (B.1) as
seen in equation (B.8).

KCP · vabc = KCP ·Rs · iabc +KCP · λ̇abc (B.8)

Each of the terms that contain the Parks transform is then investigated individually. Equation (B.9)
only contains the abc vector and can easily be converted. The matrix Rs in equation (B.10) does not
include any time-varying elements and therefore it will not affect the transformation.

KCP · vabc = KCP ·KCP
−1 · vdq0 = vdq0 (B.9)

KCP ·Rs · iabc = KCP ·Rs ·KCP
−1 · idq0 = Rs · idq0 (B.10)

KCP · λ̇abc = KCP · d

dt
(KCP

−1λdq0) (B.11)

However the equation (B.11) is a time derivative, and since the inverse Clark-Parks matrix is a function
of θe(t) its derivative requires the use of the product rule.

KCP · d

dt
(KCP

−1λdq0) = KCP

(
d

dt
(KCP

−1) · λdq0 +KCP
−1 · d

dt
(λdq0)

)
(B.12)

This can be rewritten to equation (B.13), and inserting the condition that KCP ·KCP
−1 = 1 it can be

simplified as seen below.

KCP · d

dt
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−1λdq0) =KCP · d

dt
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−1) · λdq0 +KCP ·KCP
−1 · d

dt
(λdq0) (B.13)

=KCP · d

dt
(KCP

−1) · λdq0 +
d

dt
(λdq0) (B.14)

The derivative of the transformation matrix is shown in equation (B.15). Here it is defined that ω = θ̇

which is why ω is included after the derivation.

d

dt
(KCP

−1) =
d

dt

 cos(θe) −sin(θe) 1

cos(θe − 2/3π) −sin(θe − 2/3π) 1

cos(θe + 2/3π) −sin(θe + 2/3π) 1

 (B.15)

=ω ·

 −sin(θe) −cos(θe) 0

−sin(θe − 2/3π) −cos(θe − 2/3π) 0

−sin(θe + 2/3π) −cos(θe + 2/3π) 0

 (B.16)
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This result is then multiplied with the original Parks transform, and gives the following results as
equation (B.17).

KCP · d

dt
(KCP

−1) = ω ·

0 −1 0

1 0 0

0 0 0

 (B.17)

This is then inserted into the equation and the result is shown in equation (B.18).

KCP · d

dt
(KCP

−1) +
d

dt
(λdq0) = ω ·

0 −1 0

1 0 0

0 0 0

 · λdq0 + λ̇dq0 (B.18)

As all the terms for the dq model have been found they can be inserted into equation (B.8) giving
equation (B.19). To simplify it more the last term can be defined as the back-EMF, thus the machine
model in the dq reference frame can be represented with equation (B.20).

vdq0 = Rs · idq0 + λ̇dq0 + ω ·

0 −1 0

1 0 0

0 0 0

 · λdq0 (B.19)

vdq0 = Rs · idq0 + λ̇dq0 + edq0 (B.20)

B.2.2 The Three Phase Flux Linkage to The dq Flux Linkage

The model was just found from abc to dq, but this did not include the flux linkage. This subsection
will go through the steps of transforming the three-phase flux linkages into an equivalent dq reference
frame. The first step is to fully define the flux linkage see equation (B.21). The flux and inductance
definitions are shown in equations (B.22) to (B.24).λa

λb

λc

 =

Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc


iaib
ic

+

λm,a

λm,b

λm,c

 (B.21)

Laa

Lbb

Lcc

 =

 Ls + LM · cos(2 · θ)
Ls + LM · cos(2 · (θ − 2π

3 )

Ls + LM · cos(2 · (θ + 2π
3 )

 (B.22)

Lab

Lba

Lca

 =

Lac

Lbc

Lcb

 =

 −Ms − LM · cos(2 · θ + π
6 )

−Ms − LM · cos(2 · (θ + π
6 − 2π

3 )

−Ms − LM · cos(2 · (θ + π
6 + 2π

3 )

 (B.23)

λm,abc =

λm,a

λm,b

λm,c

 =

 λm cos(θ)

λm cos(θ − 2π
3 )

λm cos(θ + 2π
3 )

 (B.24)
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The general form of the flux linkage can be written in the compact form as equation (B.25)

λabc = L · iabc + λm,abc (B.25)

Then the Clark-Parks transformation is applied, which gives equation (B.26)

KCP · λabc = KCP · L · iabc +KCP · λm,abc (B.26)

Taking each segment in the equation individually will give the following equations (B.27), (B.28),
(B.30) and (B.31)

KCP · λabc = KCP ·KCP
−1 · λdq0 = λdq0 (B.27)

KCP · L · iabc = KCP · L ·KCP
−1 · idq0 (B.28)

KCP · L ·KCP
−1 =

Ls +Ms +
3
2LM 0 0

0 Ls +Ms − 3
2LM 0

0 0 Ls − 2 ·Ms

 = Ldq0 (B.29)

KCP · L · iabc = Ldq0 · idq0 (B.30)

KCP · λm,abc =

λm

0

0

 (B.31)

Combining all of the segments gives the form of equation (B.32).

λdq0 = Ldq0 · idq0 +

λm

0

0

 (B.32)

This can be rewritten, with the inductance defined as equation (B.33).

Ld = Ls +Ms +
3

2
LM (B.33)

Lq = Ls +Ms −
3

2
LM (B.34)

L0 = Ls − 2 ·Ms (B.35)

This results in the final form of equation (B.36). This is the equation for flux linkage that is used in
the dq reference frame.

λdq0 =

Ld 0 0

0 Lq 0

0 0 L0

 ·

idiq
i0

+

λm

0

0

 (B.36)

B.3 The Alpha-Beta Reference Frame Model

For estimation purposes, an αβ model is required, thus in this section, the dq-model is transformed
into a αβ model.
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B.3.1 The DQ Model to The Alpha Beta Model

This section covers the transformation from the dq- to αβ reference frame. The dq model can be
written as equation (B.37).

vdq = Rs · idq + λ̇dq + edq (B.37)

edq =

[
ed(t)

eq(t)

]
=

[
−ωe(t) · λq(t)

ωe(t) · λd(t)

]
(B.38)

To achieve the transformation from dq to αβ there are three mathematical definitions that are used,
written in equations (B.39) to (B.41).

fdq = fd + j · fq (B.39)

fαβ = fdq · ejθ (B.40)

ej·θ = cos(θ) + j · sin(θ) (B.41)

The dq model can be described as equation (B.42), and using the definition of equation (B.39) it can
be summarised to equation (B.43). Then the definition of equation (B.40) is used on equation (B.43)
which gives equation (B.44).

vdq = vd + j · vq =
(
Rs · id +

d

dt
λd − ω · λd

)
+ j ·

(
Rs · iq +

d

dt
λq + ω · λq

)
(B.42)

vdq = Rs · idq + λ̇dq + j · ω · λdq (B.43)

vαβ = Rs · idq · ejθ + λ̇dq · ejθ + j · ω · λ̇dq · ejθ (B.44)

Similarly, as for the dq model, the terms are individually found. The first two terms are found with
equations (B.45) and (B.46).

Rs · idq · ejθ = Rs · iαβ (B.45)

j · ω · λdq · ejθ = j · ω · λαβ (B.46)

The last term is a derivative, and because it is a combined function, the product rule is needed. Each
step to solve the derivative is shown, starting from equation (B.47).

d

dt
λdq · ejθ =

d

dt
(λαβ · e−jθ) · ejθ (B.47)

=
d

dt
λαβ · e−jθ + λαβ · d

dt
(e−jθ) · ejθ (B.48)

=λ̇αβ · e0 + λαβ · d

dt
(e−jθ) · ejθ (B.49)

=λ̇αβ + λαβ · j · θ̇ · e−jθ · ejθ (B.50)

=λ̇αβ + λαβ · j · ω (B.51)

The results from equations (B.45), (B.46) and (B.51) can be inserted and further solved, with the
results shown in equation (B.53), which is the equivalent machine model in the αβ reference frame.

vαβ = Rs · iαβ + λ̇αβ + λαβ · j · ω − λαβ · j · ω (B.52)

vαβ = Rs · iαβ + λ̇αβ (B.53)
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B.3.2 The DQ Flux linkage to The Alpha Beta Flux linkage

The model has been constructed in the dq reference frame and been transformed into the αβ frame,
but the flux linkage has not been investigated. To go from dq to αβ there are three definitions that are
useful, see equations (B.39) to (B.41). First, equation (B.39) is used, and its definitions are inserted
which gives equation (B.54). Then equation (B.40) is used which gives equation (B.55)

λdq = λd + j · λq = Ld · id + λm + j · Lq · iq (B.54)

λαβ = λdq · ej·θ = (Ld · id + λm + j · Lq · iq) · ej·θ (B.55)

In this motor, the two inductances Ld and Lq are equal and are therefore denoted as Ls. This
means the equation can be rearranged into equation (B.56). Then use equation (B.39) which give
equation (B.57). Then taking equation (B.57) and using definition of equation (B.40), the result
becomes equation (B.58).

λαβ = (Ls · (id + j · iq) + λm) · ej·θ (B.56)

λαβ = (Ls · idq + λm) · ej·θ (B.57)

λαβ = Ls · iαβ + λm · ej·θ (B.58)

The Back-EMF in The Alpha Beta Reference Frame

The flux linkage has been defined for the αβ reference frame, The back-EMF will be contained within
its derivative. Taking the derivative of the flux linkage will result in equation (B.59) which gives
two terms where one of these is the back-EMF, defined as eαβ . Then using the equation (B.41), the
back-EMF can be rearranged to equation (B.60).

eαβ =
d

dt
λαβ =

d

dt

(
Ls · iαβ + λm · ej·θ

)
⇒ Ls · ˙iαβ + θ̇ · j · λm · ej·θ︸ ︷︷ ︸

eαβ

(B.59)

eαβ =θ̇ · j · λm · ej·θ ⇒ j · ω · λm · cos(θ) + j2ω · λm · sin(θ) (B.60)

Then solving equation (B.60), will give equation (B.61) and then following definition written in
equation (B.39), the back-EMF can be written into α as equation (B.62) and β as equation (B.63).

eαβ =− ω · λm · sin(θ) + j · ω · λm · cos(θ) (B.61)

eα =− ω · λm · sin(θ) (B.62)

eβ =ω · λm · cos(θ) (B.63)

These are the equations that describe the back-EMF in the αβ frame.
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Inverter C
This appendix will go through the inverter topology, the inverter control modulation technique, and
the inverter compensation.

C.1 Voltage Source Inverter

The inverter that is used for this thesis is a voltage source inverter (VSI) from Danfoss [2023] with the
typology seen in figure C.1.

a b c
+
- C

Figure C.1. 3-phase inverter circuit.

The VSI inverter has three legs with six switches, and each is controllable via a logic signal. If both
switches on a leg are controlled at the same time, a short circuit is applied, and therefore only one
switch on each leg is controlled, i.e. switch 1 and 2 are never on at the same time. In the VSI there are
eight possible states when the transistors on each leg is controlled together, and two of these give no
output voltage. The possible states and the output voltage are shown in table C.1 with the amplitude
and angle, and are important for modulations techniques. [Toft and Aldous, 2022; H.Rashid, 2014]

State S1 S2 S3 S4 S5 S6 Voltage

v0 0 1 0 1 0 1 0
v1 1 0 0 1 0 1 2

3 · Vdc · ej0
v2 1 0 1 0 0 1 2

3 · Vdc · ej
π
3

v3 0 1 1 0 0 1 2
3 · Vdc · ej

2π
3

v4 0 1 1 0 1 0 2
3 · Vdc · ejπ

v5 0 1 0 1 1 0 2
3 · Vdc · ej

4π
3

v6 1 0 0 1 1 0 2
3 · Vdc · ej

5π
3

v7 1 0 1 0 1 0 0

Table C.1. Switching states for the three-phase VSI. [Toft and Aldous, 2022; H.Rashid, 2014].
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C.2 Space Vector Modulation

The modulation technique used in this thesis, is space vector modulation (SVM), since it was
already implemented on the setup, this section will explain the principle behind it and how an SVM
algorithm may be implemented. The SVM algorithm, takes in a reference space vector and generates
corresponding logic signals to the VSI, such that it may supply the PMSM with phase voltages that
are ideally equivalent to the reference space vector. Equation (C.1) illustrates how the SVM will try to
replicate the reference vector, however because of the inverters dynamics there will be a voltage drop,
giving an error. [H.Rashid, 2014]

v∗αβ = vαβ + verr (C.1)

Sector 1

Sector 6

Sector 2

Sector 3

Sector 5

Sector 4

Figure C.2. SVM polygon with reference vector.

The SVM algorithm is based on the VSI states from table C.1, these inverter states can be drawn as
a set of vectors in the space plane as seen in figure C.2. When the SVM algorithm is given a reference
vector it will then control the inverters state such that over a switching period, it will represent the
reference vector. [H.Rashid, 2014].
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Vector
Decomposition

Duty Cycle
Calculation

Sector
Detection

PWM Signal
Genaration VSI

(1)

(3)

(4)

(2)

SVM Algorithm

Figure C.3. Block diagram of SVM algorithm.

The structure of the SVM algorithm is illustrated in figure C.3. First, the reference vector is
decomposed into its magnitude |v∗αβ| and angle θ, hereafter the algorithm will determine what sector
the reference vector lies in, as well as the sector angle ϕinv. Then the algorithm will compute the
appropriate duty cycles D, and based on this information it will generate a switching sequence with
appropriate logic signal Spwm to the VSI’s transistors.

Vector Decomposition: The reference space vector can be decomposed using trigonometric
principles with equations (C.2) and (C.3). The four-quadrant inverse tangent function have been
chosen instead of the normal inverse tangent function, this is because it is important to know precisely
in which sector the reference vector lies.

|v∗αβ| =
√

(v∗α)
2 + (v∗β)

2 (C.2) θ = atan2(v∗β, v
∗
α) (C.3)

Listing C.1, is a Matlab function of how the space vector could be decomposed, the if statement is
added to insure that θ is between 0 to 2π and not −π to π.

Listing C.1. Vector decomposition.

1 function [mag,theta] = VD(V)
2 mag = sqrt(V(1)^2+V(2)^2);
3 theta = atan2(V(2),V(1));
4 if 0 > theta
5 theta = 2*pi+theta;
6 end
7 end

Sector Determination: The six none null state vectors of the inverter in figure C.2 compose a
hexagon with an angle of 60o = π/3 between sectors. One method of determining which sector the
reference vector is in is by dividing the reference vector’s angle with π/3 and rounding down to the
nearest integer and adding 1 as in equation (C.4). The internal sector angle ϕinv can then be found
by removing π

3 for all previous sectors as seen in equation (C.5).
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ksector = 1 + ⌊ θ

π/3
⌋ (C.4) ϕinv = θ − (ksector − 1) · π

3
(C.5)

Duty Cycle Calculation: The principle behind SVM is to control the inverters states, such that over
a period, the sum of the inverters state vectors may be equal to the reference vectors. The modulation
index can be described with Equation (C.6), which is an expression of how modulated the signal is.
The modulation describes the difference in magnitude between the reference vector and the maximum
magnitude of the inverters space vectors. [Doan et al., 2021; H.Rashid, 2014]

M =

√
3 · |v∗αβ|
Vdc

(C.6)

From the modulation and the sector angle ϕinv, the duty cycles D = [D1 D2 D0]
T can be determined

with equations (C.7) to (C.9). Each duty cycle describes the percentage of time the inverter has to be
in each state to compose the reference vector. [H.Rashid, 2014]

D1 = M · sin(π
3
− ϕ) (C.7) D2 = M · sin(ϕ) (C.8) D0 = 1−D1 −D2 (C.9)

PWM Signal Generation: With the duty cycles and sector number known, switching signals to the
transistors of the inverter can be generated, such that it may supply the PMSM with the corresponding
voltages. However since the reference vector is controlled via a FOC strategy, it will rotate in a circle,
meaning its components v∗α and v∗β will be sinusoidal signals. To avoid undesired harmonics in the
generated signals and switching losses, a switching strategy is needed. A common switching strategy
is to use sequencing, where over one switching period, the inverter is switched the minimum amount of
times, and only one leg is switched each time. A possible sequencing strategy can be seen in table C.2,
where 1 denotes the upper transistor of a leg being on and 0 the upper transistor being off. It can be
seen that in the beginning, middle, and end the inverter will be in a zero state, and otherwise, it will
switch between the two state vectors that makes up a sector, such that over a switching period the
VSI will give the PMSM the correct average space vector. [H.Rashid, 2014; Doan et al., 2021]

Sector Segment 1 2 3 4 5 6 7 8

1 Vector State v0
000

v1
100

v2
110

v7
111

v7
111

v2
110

v1
100

v0
000

2 Vector State v0
000

v3
010

v2
110

v7
111

v7
111

v2
110

v3
010

v0
000

3 Vector State v0
000

v3
010

v4
011

v7
111

v7
111

v4
011

v3
010

v0
000

4 Vector State v0
000

v5
001

v4
011

v7
111

v7
111

v4
011

v5
001

v0
000

5 Vector State v0
000

v5
001

v6
101

v7
111

v7
111

v6
101

v5
001

v0
000

6 Vector State v0
000

v1
100

v6
101

v7
111

v7
111

v6
101

v1
100

v0
000

Table C.2. Switching segments for all SVM sectors. [H.Rashid, 2014; Toft and Aldous, 2022]
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From table C.2 the SVM algorithm now knows what the state sequence should be depending on the
sector, however the algorithm still needs to calculate how long the VSI has to be in each state, and at
what time the VSI needs to switched to another state. Table C.3 is a table of how the SVM algorithm
can calculate the ON duration of the upper transistors, such that it follows the switching sequence, no
matter what sector the reference vector lies in.

Sector Upper (S1,S3,S5)

1
S1 = D1 +D2 +D0/2
S3 = D2 +D0/2
S5 = D0/2

4
S1 = D0/2
S3 = D1 +D0/2
S5 = D1 +D2 +D0/2

2
S1 = D1 +D0/2
S3 = D1 +D2 +D0/2
S5 = D0/2

5
S1 = D2 +D0/2
S3 = D0/2
S5 = D1 +D2 +D0/2

3
S1 = D0/2
S3 = D1 +D2 +D0/2
S5 = D2 +D0/2

6
S1 = D1 +D2 +D0/2
S3 = D0/2
S5 = D1 +D0/2

Table C.3. Switching time calculation for each sector in percentage. [Doan et al., 2021; Toft and Aldous,
2022].

With known ON-times for the upper transistors, the time at when the switch should occur can be
compared with a center-aligned counter to generate the correct logic signals, such that the inverter is
in the desired states. The principle of this is illustrated with Figure C.4 for sector 1. The logic for the
lower transistors will have the opposite logic of the upper transistors, note that dead time should also
be implemented as to not damage the inverter.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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1

Figure C.4. Logic Signals for Upper Transistors in Sector 1, v∗αβ = 4 · ej∗30o ,
Vdc = 10.

In a digital system this could be implemented with the Matlab function as seen in listing C.2 which
will calculate the switching times based on the switching period.
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Listing C.2. PWM signal generation.

1 function [Ta, Tb, Tc] = transistors(D1,D2,D0,sect,Ts)
2 switch sect
3 case(1) % V0 V1 V2 V7 V7 V2 V1 V0
4 S1 = (D1 + D2 + D0/2);
5 S3 = (D2 + D0/2);
6 S5 = (D0/2);
7 case(2) % V0 V3 V2 V7 V7 V3 V1 V0
8 S1 = (D1 + D0/2);
9 S3 = (D1 + D2 + D0/2);

10 S5 = (D0/2);
11 case(3) % V0 V3 V4 V7 V7 V3 V4 V0
12 S1 = (D0/2);
13 S3 = (D1 + D2 + D0/2);
14 S5 = (D2 + D0/2);
15 case(4) % V0 V5 V4 V7 V7 V5 V4 V0
16 S1 = (D0/2);
17 S3 = (D1 + D0/2);
18 S5 = (D1 + D2 + D0/2);
19 case(5) % V0 V5 V6 V7 V7 V6 V4 V0
20 S1 = (D2 + D0/2);
21 S3 = (D0/2);
22 S5 = (D1 + D2 + D0/2);
23 case(6) % V0 V1 V6 V7 V7 V6 V1 V0
24 S1 = (D1 + D2 + D0/2);
25 S3 = (D0/2);
26 S5 = (D1 + D0/2);
27 end
28
29 Ta = (1-S1) * Ts/2;
30 Tb = (1-S3) * Ts/2;
31 Tc = (1-S5) * Ts/2;
32 % Ts can be replaced with a countervalue, example in a STM32 microchip
33 end

With the SVM algorithm using a switching sequence to calculate the ON- and switch time for each
sector, it will be able to make the VSI replicate the reference vector no matter the angle and magnitude.
Meaning the PMSM may receive the correct signals from the controller. This is illustrated with
figure C.5, where a SVM algorithm was constructed and made to calculate the On time for each upper
transistor for the reference vector |vαβ| · ej·θ, where |vαβ| = 1 and theta is between 0 and 360 degrees.
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Figure C.5. Reference vector and duty cycles for upper transistor. Vdc = 10V
for illustration purposes.

C.3 Inverter Voltage Compensation

A compensation structure as described was already implemented on the test setup and has been
used in the thesis, thus this section will aim a clarifying the principle behind the inverter’s voltage
compensation.

vαβ = v∗αβ − verr (C.10) v̂αβ = v∗αβ − v̂err (C.11)

In the previous section, it was described that when the SVM algorithm makes the VSI replicate a
reference signal a voltage drop over the VSI will occur. This can be a problem for observer structures,
that are based on the PMSM model, as the input signal to these structures is often the reference
vector v∗αβ and not the real vector vαβ . It is therefore desired to replicate this voltage drop such a more
accurate input can be given to the observer structure as illustrated with equations (C.10) and (C.11)
and figure C.6.

VSI PMSM

VSI
Compensation

Observer
Structure

Figure C.6. Compensation principle.
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At low voltage and current, the voltage drop is not linear, however when increasing a threshold will
come, where the voltage drop will begin to behave in a linear fashion, as illustrated in figure C.7.

Non-Linear Region Linear Region

Figure C.7. An illustration showing the non-
linear and linear regions of an inverter.

Figure C.8. An illustration of the inverter
compensation experiment.

The magnitude of the voltage drop and its threshold can be found by sweeping different iαβ vectors and
recording the corresponding voltage commands in steady state as illustrated in figure C.8. Ohms law
can then be used to derive resistance at the swept points, this can be expanded using equation (C.10) to
give equation (C.12). The resistance at each point is then made up of the changing resistance Rerr which
describes the voltage drop and the resistance Rs for the PMSM, as described with equation (C.13).
This can be inserted into equation (C.12) to become equation (C.14).

v∗α
iα

=
vα
iα

+
verr,α
iα

= R (C.12)

R = Rs +Rerr (C.13)
vα
iα

+
verr,α
iα

= Rs +Rerr,α (C.14)

As the resistance for the PMSM is known meaning vα can be calculated, and equation (C.14) can be
reduced to equation (C.15), which is an expression of the voltage error. Note that the same can be
done for the β components.

verr,α
iα

= Rerr,α ⇒ verr,α = Rerr,α · iα (C.15)

This gives a voltage drop for every angle step, and interpolation can be used to estimate the voltage
drop v̂err between steps. Meaning it can be used to determine v̂αβ to give a more accurate input signal
to the observer structures.
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Discretazation Methods D
The models and controllers in this thesis are all created in the continuous time domain or the Laplace
domain, using state space models and transfer functions. However, to be implemented in a digital
system, the continuous models and controllers need to be discretized.

State space: A state space model in the continuous time domain can be written as seen in
equation (D.1).

ẋ(t) = A · x(t) +B · u(t) (D.1)

y(t) = C · x(t) (D.2)

To discretize the model the matrices need to be transformed into discrete equivalent, Ad, Bd, and
Cd. This can be done with equations (D.3) to (D.5) which uses Euler’s method to make a discrete
approximation based on the continuous dynamics and the sampling time Ts. [Gajic, 2003]

Ad = I + Ts ·A (D.3) Bd = B · Ts (D.4)
Cd = C (D.5)

This gives a discrete equivalent state space model in equations (D.6) and (D.7), where [k] denotes the
sample number.

x[k] = Ad · x[k−1] +Bd · u[k−1] (D.6)

y[k] = Cd · x[k] (D.7)

Laplace-Domain to Z-domain: Going from the Laplace domain to the discrete domain can be done
using the Forward Euler method, see equation (D.8). This means that every s in a transfer function
is replaced with the right-hand function. This gives the transfer function in the discrete domain.
[Franklin et al., 2015]

s ≈ z − 1

Ts
(D.8)
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