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Danish Abstract
Dette speciale præsenterer ikke-adaptiv gruppetestning, som er problematikken
hvori man sammenlægger prøver og tester disse samtidigt. Dette gøres med
henblik på at minimere antallet af tests, givet n genstande, hvoraf d er positive,
hvor man desledes bestemmer de d genstande af interesse.

Specialet introducerer den nødvendige baggrundsviden indenfor residueringste-
ori for at kunne bestemme egenskaber ved matricer over den boolske semiring.
Specifikt betragtes d-disjunkte matricer, hvor fællesmængden af støtten af d
vilkårlige rækker ikke indeholder støtten af nogen anden række.

Disjunkte matricer giver anledning til effektiv dekodning ved implementeringen
af ikke-adaptiv gruppetestning, og derfor præsenterer vi også diverse konstruk-
tioner af og grænser for disse matricer.
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Chapter 1. Introduction

1 | Introduction
Group testing was first introduced during the Second World War by Robert
Dorfman as a means to lessen the amount of tests required to detect syphilis
in draftees, where instead of testing the blood of each draftee, the samples
were pooled into single tests and tested simultaneously [1]. Group testing sees
a wide array of use within screening for diseases, quality control in production
lines, data forensics, one-way hash functions, computer diagnosis, machine
learning, and many more [2].

In the following thesis we consider the case of noiseless non-adaptive group
testing where all tests of the testing scheme must be conducted independently
of one another, and we consider d-disjunct matrices, which are Boolean n ˆ k
matrices which, when given n items, where at most d are infected, will be
guaranteed at determining these infected using k tests. Non-adaptive group
testing is very similar to compressive sensing, but rather than classical vector
space multiplication and addition we replace it with Boolean _ and ^ operators
[3].

The thesis begins by considering residuation theory, where we consider par-
tially ordered sets and residuated mappings between these. The main purpose
of the chapter is to show that a mapping between complete lattices is a resid-
uated mapping if and only if it has certain homomorphic properties. Lastly
in this chapter, we consider Boolean semimodules and show that these are
Boolean algebras, and consider the residuated mappings between such semi-
modules.

Lastly, we formalise the notion of non-adaptive group testing and see how this
problem can be solved using the previously developed theory of d-disjunct ma-
trices and discuss some common problems within the field. We then consider
bounds on the size of n ˆ k d-disjunct matrices by showcasing equivalency
between a variety of objects, namely cover-free families, disjunct systems,
superimposed codes, and coverings of order-interval hypergraphs. We also
showcase a variety of constructions and combinatorial objects which lead to
incidence matrices which has the d-disjunctness property, and consider some
of the largest n ˆ k 2-disjunct matrices for low values of k. The thesis ends
by considering a recent project in which they developed and implemented a
batch sequencing technique for DNA samples in an explorative article.
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Chapter 2. Residuation Theory

2 | Residuation Theory
In the following chapter we introduce residuation theory. The main intent
of the chapter is to develop the theory of residuated mappings in relation
to its later shown applicability within group testing, and as such we do not
provide many general examples of this otherwise rich and interesting theory,
and instead refer the reader to [4, 5], on which the chapter is also based. The
theory is instead exemplified in later chapters in the context of group testing.

2.1 Ordered Sets and Order-Preserving Maps
If a binary relation R on a set E is reflexive, transitive, and anti-symmetric
we say that the relation R is an ordering on E, and pE,Rq is an ordered set.
If no confusion can arise, E can be referred to as an ordered set, and we will
often choose to denote the ordering by ď, rather than R. Furthermore, we say
that E is totally ordered, or forms a chain, if for any x, y P E, then x ď y or
y ď x.

Additionally, any two elements x, y of the ordered set E are comparable if
x ď y or y ď x, denoted x ∦ y. Similarly, if neither x ď y or y ď x, then x and
y are incomparable, denoted x ∥ y. For a non-empty subset F of an ordered
set E, we say that F is totally unordered if all elements of F are pairwise
incomparable, which is equivalent to the restriction to F of ď is equality.
Lastly, we say that x is covered by y, denoted x ă y if x ă y, and there exists
no z P E such that x ă z ă y.

For a given relation R of E we denote its dual as RJ, where xRJy if and only
if yRx, where it is clear, that if R is an ordering, then so is RJ. We will denote
the dual of E by E˚ “ pE,RJq. We denote the dual of ď as ě, and similarly
the dual of ă is ą, where ă implies x ď y and x ‰ y.

Based on the previous comment, that for any order R on a set E, we have
that RJ is also an order on E, which provides a principle of duality. This
principle states, that to any theorem concerning an ordered set E, we have a
corresponding theorem on E˚, which is obtained by replacing any statement
with ď, explicitly or implicitly, by its dual.

As an example of the application of the principle of duality consider an ordered
set pE,ďq. A top element of E is then some x P E such that y ď x for all
y P E, which is unique by the anti-symmetry. Similarly, a bottom element is
an element z P E such that z ď y for all y P E, which is then unique, when it
exists, by the principle of duality. If an ordered set contains both a top and a
bottom element it is said to be bounded. We denote the top element of a set E
as 1E, and a bottom element as 0E, and omit the subscript when no confusion
is bound to arise.
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2.1. Ordered Sets and Order-Preserving Maps

Given an ordering we can visually represent this as a Hasse diagram, or rep-
resent the converse ordering with a dual Hasse diagram. We represent the
relation x ă y by an increasing line segment from x to y, as seen in figure 2.1,
or the dual Hasse diagram, which is obtained by flipping the Hasse diagram
upside down.

y

x

Ð

Ð

(a) Hasse diagram. Dual

x

y

Ð

Ð

(b) Dual Hasse diagram.

Figure 2.1: Hasse diagram and dual Hasse diagram of the relation x ă y.

We now define up-sets and down-sets from which much of the structure of a
partially ordered set will be considered.

Definition 2.1. Let pE,ďq be an ordered set. A down-set of E is a
non-empty subset D Ď E such that if x P D, and y ď x, then y P D.
Furthermore, any down-set of the form

xÓ
“ ty P E | y ď xu

is a principal down-set. Dually, an up-set of E is a non-empty subset
U Ď E such that if x P U , and y ě x, then y P U . Furthermore, any up-set
of the form

xÒ
“ ty P E | y ě xu

is a principal up-set.

Definition 2.2. Let pA,ď1q and pB,ď2q be ordered sets. Then a mapping
f : A Ñ B such that

x ď1 y ñ fpxq ď2 fpyq

for any x, y P A is called isotone. Similarly, if

x ď1 y ñ fpxq ě2 fpyq

for any x, y P A, then f is called antitone.

In the following result we characterise isotone mappings, but first fix a notation
for the pre-image of a mapping. For two ordered sets A,B and a mapping
f : A Ñ B, then for any non-empty subset R of B, we denote the pre-image
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Chapter 2. Residuation Theory

of R under f as the subset of A, given by

fÐ
pRq “ tx P A | fpxq P Ru

Theorem 2.3. Let pA,ď1q, pB,ď2q be ordered sets, and f : A Ñ B be any
mapping. Then the statements

i. f is isotone;

ii. The pre-image of every principal down-set of B under f is either
empty, or is a down-set of A;

iii. The pre-image of every principal up-set of B under f is either empty,
or is an up-set of A;

are equivalent.

Proof. i. ñ ii. Consider x P B such that fÐpxÓq is non-empty, and if y P

fÐpxÓq, and z ď y, we have that fpzq ď fpyq ď x, so z P fÐpxÓq.

ii. ñ i. We have that y P fÐpfpyqÓq as fpyq ď fpyq. Thus, if x ď y then
x P fÐpfpyqÓq, so fpxq ď fpyq.

i. ñ iii. Let x P B such that fÐpxÒq is non-empty. Now, if y P fÐpxÒq, and
z ě y, then fpzq ě fpyq ě x, so z P fÐpxÒq.

iii. ñ i. We have that y P fÐpfpyqÒq as fpyq ě fpyq. Thus, if x ě y then
x P fÐpfpyqÒq, so fpxq ě fpyq. ■

Now, consider the following diagram of ordered sets and mappings

A C

B

Ð

Ñ
f

Ð

Ñ
g

Ð

Ñ

h

We are then interested in knowing when there exists an isotone mapping
h : B Ñ C such that h ˝ f ě g, or h ˝ f ď g. In the following results we
omit subscripts for the different orderings, as it will be clear from the context.

Theorem 2.4. Let A,B,C be ordered sets with mappings f : A Ñ B and
g : A Ñ C. Then if there exists isotone h : B Ñ C, then

i. h ˝ f ě g;

ii. fÐpxÓq Ď gÐphpxqÓq for all x P B;

are equivalent statements.
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2.1. Ordered Sets and Order-Preserving Maps

Proof. i. ñ ii. Assume that fÐpxÓq is non-empty, so for any y P fÐpxÓq then
fpyq ď x, and by the isotonicity of h we have gpyq ď ph ˝ fqpyq ď hpxq, so
y P gÐphpxqÓq.

ii. ñ i. For any y P A we note y P fÐpfpyqÓq Ď gÐphpfpyqqÓq, so gpyq ď

hpfpyqq. ■

We now consider the reversed problem of theorem 2.4, which is considering
when there exists h : C Ñ B such that f ˝ h ď g, or f ˝ h ě g, as in the
following diagram.

A C

B

Ð

Ñ g

Ð

Ñ h
Ð

Ñ

f

Theorem 2.5. Let A,B,C be ordered sets with mappings f : B Ñ A and
g : A Ñ C. Then

i. There exists h : C Ñ B such that f ˝ h ď g;

ii. fÐpgpxqÓq is non-empty for all x P B;

are equivalent statements.

Proof. i. ñ ii. We have hpxq P fÐpgpxqÓq for all x P C as fphpxqq ď gpxq.

ii. ñ i. Define h : C Ñ B by relating each x P C with a hpxq P fÐpgpxqÓq. ■

Corollary 2.6. Let A,B be ordered sets with isotone mapping f : A Ñ B.
Then

i. There exists h : B Ñ A such that h ˝ f ď idB;

ii. fÐpxÓq is a down-set of A for all x P B;

are equivalent statements.

Proof. Follows by applying theorem 2.5 on the diagram

B B

A

Ð

Ñ idB

Ð

Ñ

f

as theorem 2.3 ensures that the down-sets are non-empty. ■

6



Chapter 2. Residuation Theory

2.2 Residuated Mappings
We now turn our eyes to residuated mappings, which are of our main concern
in this chapter. We first consider quasi-residuated mappings.

Definition 2.7. An isotone mapping f : A Ñ B which satisfies i. or ii. of
corollary 2.6 is said to be quasi-residuated.

Proposition 2.8. A mapping f : A Ñ B is quasi-residuated if and only if
it is isotone and fÐpyÓq is non-empty for all y P B.

Proof. Follows immediately by theorem 2.5. ■

We now characterise the mappings, from which the results of theorem 2.3 are
more strict, in the sense that the pre-image of any principal down-set also
yields a principal down-set.

Theorem 2.9. Let A,B be ordered sets and f : A Ñ B. Then

i. f is isotone and there exists an isotone mapping h : B Ñ A such that
h ˝ f ě idA and f ˝ h ď idB;

ii. fÐpxÓq is a principal down-set of A for all x P B;

are equivalent statements.

Proof. i. ñ ii. By theorem 2.4 we have fÐpxÓq Ď hpxqÓ for all x P B. Further-
more, we have for y P hpxqÓ that y ď hpxq, so fpyq ď fphpxqq ď idBpxq “ x,
so y P fÐpxÓq by corollary 2.6, so fÐpxÓq “ hpxqÓ.

ii. ñ i. For any x P B there exists a unique y P A such that fÐpxÓq “ yÓ.
Thus, we construct h : B Ñ A by defining hpxq “ y, so fÐpxÓq “ hpxqÓ, so
fphpxqq ď x for any x P B. Lastly, we have hpfpzqq ě z for any z P A as
z P fÐpfpzqÓq “ hpfpzqqÓ. ■

Definition 2.10. A mapping f : A Ñ B which satisfies i. or ii. of theorem
2.9 is a residuated mapping.

The following result shows uniqueness of the h given in theorem 2.9.

Proposition 2.11. Let f : A Ñ B be residuated. Then the isotone map-
ping h : B Ñ A such that h ˝ f ě idA and f ˝ h ď idB is unique.

Proof. Assume that h, h˚ : B Ñ A both satisfies the given properties. Then

h “ idA ˝ h ď ph˚
˝ fq ˝ h “ h˚

˝ pf ˝ hq ď h˚
˝ idB “ h˚

7



2.2. Residuated Mappings

and similarly

h “ h ˝ idB ě h ˝ pf ˝ h˚
q “ ph ˝ fq ˝ h˚

ě idA ˝ h˚
“ h˚

proving that h “ h˚. ■

Definition 2.12. Let f : A Ñ B be a residuated mapping. Then the
unique h given by theorem 2.9 is called the residual of f , and denoted f`.

The following proposition provides a necessary and sufficient condition for a
mapping to be residuated.

Proposition 2.13. A mapping f : A Ñ B is residuated if and only if
tx P A | fpxq ď yu is non-empty and admits a greatest element for all
y P B. Furthermore, when the residual of f exists, then

f`
pyq “ maxtx P A | fpxq ď yu

for all y P B

Proof. Follows by the proof of theorem 2.9. ■

We have the following important property of residuated mappings, which will
see much use.

Proposition 2.14. Let f : A Ñ B be a residuated mapping. Then

i. f ˝ f` ˝ f “ f ;

ii. f` ˝ f ˝ f` “ f`.

Proof. i. Since f` ˝ f ě idA and f ˝ f` ď idB, and by the isotonocity of f ,
we have f ˝ f` ˝ f ě f ˝ idA “ f and f ˝ f` ˝ f ď idB ˝ f “ f .

ii. Follows analogously to the proof of i. ■

Theorem 2.15. Let f : A Ñ B be a residuated mapping. Then

i. f` ˝ f “ idA;

ii. f is injective;

iii. f` is surjective;

iv. For any set C, and mappings g, h : C Ñ A, then f˝g “ f˝h ñ g “ h;

are equivalent statements. Similarly,

v. f ˝ f` “ idB;
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Chapter 2. Residuation Theory

vi. f is surjective;

vii. f` is injective;

viii. For any set C, and mappings g, h : C Ñ A, then g˝f “ h˝f ñ g “ h;

are equivalent statements.

Proof. i. ñ iii. Follows immediately.

iii. ñ i. For any x P A there exists y P B such that f`pyq “ x, so

x “ f`
pyq “ pf`

˝ f ˝ f`
qpyq “ pf`

˝ fqpf`
pyqq “ pf`

˝ fqpxq

by proposition 2.14.

i. ñ ii. We have that fpxq “ fpyq implies x “ f`pfpxqq “ f`pfpyqq “ y.

ii. ñ iv. If f ˝ g “ f ˝ h then fpgpxqq “ fphpxqq for any x P C, and the result
then follows by the injectivity of f .

iv. ñ i. As f ˝ f` ˝ f “ f “ f ˝ idA then f` ˝ f “ idA.

The equivalencies between v. to viii. are proved analogously. ■

Theorem 2.16. Let A,B,C be ordered sets, and let f : A Ñ B, g : B Ñ C
be residuated mappings. Then g ˝ f is residuated with residual pg ˝ fq` “

f` ˝ g`.

Proof. As f and g are residuated, we have

pf`
˝ g`

q ˝ pg ˝ fq ě f`
˝ idB ˝ f “ f`

˝ f ě idA

and

pg ˝ fq ˝ pf`
˝ g`

q ď g ˝ idB ˝ g`
“ g ˝ g`

ď idC

Lastly, as composing isotone functions yields isotone functions, we have that
g ˝ f and f` ˝ g` are isotone, and by the uniqueness of residuals we must have
that pg ˝ fq` “ f` ˝ g`. ■

Proposition 2.17. Let A be an ordered set and f : A Ñ A be a residuated
mapping. Then

i. For any p, n P N then fp “ fp`n if and only if pf`qp “ pf`qp`n;

ii. f ď idA if and only if f` ě idA;

iii. f ě idA if and only if f` ď idA.

9



2.3. Closure Mappings

Proof. i. By theorem 2.16 we have by induction that the residual of fp is
pf`qp, and the result then follows by uniqueness of residuals.

ii. If f ď idA then applying f` and by its isotonicity, and by it being the
residual of f , we have idA ď f ˝f` ď f`, with the converse argument following
analogously.

iii. Follows analogously to ii. ■

Definition 2.18. Let A,B be ordered sets. If there exists an isotone
bijection f : A Ñ B such that f´1 is isotone, then A and B are order-
isomorphic.

We note that two ordered sets pA,ď1q, pB,ď2q are order-isomorphic if and only
if there exists a surjective isotone mapping f : A Ñ B.

Definition 2.19. An ordered semigroup is a semigroup S on which there
exists an ordering ď such that if y ď z for y, z P S, then xy ď xz and
yx ď zx for any x P S.

Definition 2.20. Two ordered semigroups A,B are isomorphic if and only
if there exists a semigroup homomorphism f : A Ñ B which is also an order
isomorphism. Similarly, A,B are anti-isomorphic if and only if there exists
a semigroup homomorphism which is a dual order isomorphism.

Theorem 2.21. Let E be an ordered set, and let RespEq denote the set of
residuated mappings f : E Ñ E, and let Res`

pEq denote the set of resid-
uals of RespEq. Then RespEq and RespE`q are anti-isomorphic ordered
semigroups.

Proof. By theorem 2.16 we have that composing residuated mappings yields
new residuated mappings, and thus both RespEq and Res`

pEq are semigroups.
Furthermore, these are ordered under the ordering f ď g if and only if fpxq ď

gpxq for all x P E since any residuated map is also isotone.

Now consider the mapping p`q : RespEq Ñ Res`
pEq such that f ÞÑ f`. This

is well-defined as residuals are unique, and since f ď g if and only if g` ď f`

we have that p`q is an anti-isomorphism. ■

2.3 Closure Mappings
We now consider closure mappings, and their relation to residuated mappings.

10



Chapter 2. Residuation Theory

Definition 2.22. An isotone mapping f : A Ñ A such that f “ f˝f ě idA

is a closure mapping. Similarly, if f satisfies f “ f ˝ f ď idA, then f is a
dual closure mapping.

Theorem 2.23. Let A be an ordered set, and f : A Ñ A. Then

i. f is a dual closure mapping;

ii. fÐpxÓq “ fÐpfpxqÓq for all x P A;

are equivalent statements.

Proof. i. ñ ii. As fpxq ď fpxq and fpxq ď x for all x P A we have
fÐpfpxqÓq Ď fÐpxÓq. Conversely, if y P fÐpxÓq then fpyq ď x, but as f “ f˝f ,
and as f is isotone we have fpyq ď fpxq so y P fÐpfpxqÓq.

ii. ñ i. As x P fÐpxÓq “ fÐpfpxqÓq “ fÐpfpfpxqqÓq for all x P A, so both
fpxq ď x and fpxq ď pf ˝ fqpxq, so f ď idA and f ď f ˝ f . Furthermore, f is
also isotone as y ď x implies fpyq ď y ď x, which yields fpyq ď fpxq. Lastly,
as f ď idA we also have f ˝ f ď f , so f ˝ f “ f . ■

Theorem 2.24. Let A be an ordered set. Then f : A Ñ A is a closure
mapping if and only if there exists an ordered set B and a residuated map-
ping g : A Ñ B satisfying f “ g` ˝ g.

Proof. Suppose that f : A Ñ A is a closure mapping, and let F be the equiv-
alence relation xFy if and only if fpxq “ fpyq. Now define the relation ď on
A{F such that rxs ď rys if and only if fpxq ď fpyq, which is an ordering since
ď is an ordering. Furthermore, let 6 : A Ñ A{F denote the quotient mapping,
which is isotone, as

x ď y ñ fpxq ď fpyq ô rxs ď rys

We then have for any x P A that fpxq P rxs as fpxq “ fpfpxqq. Furthermore,
fpxq is the greatest element of rxs, since if not, there would exist y P rxs such
that y ą fpxq, but by the isotonicity of f we have fpyq ą fpfpxqq “ fpxq, but
fpyq “ fpxq as y, x P rxs.

We then define the mapping hpxq : A{F Ñ A such that hprxsq “ fpxq, which
is well-defined by the previous arguments. It then follows, that both

ph ˝ 6qpxq “ hp6pxqq “ hprxsq “ fpxq ě x

p6 ˝ hqprxsq “ 6pfpxqq “ rfpxqs “ rxs

and as such, 6 is a residuated mapping, with residual h “ 6`, and f “ 6` ˝ 6.

11



2.4. Semilattices and Lattices

For the converse, suppose g : A Ñ B is residuated, so g` ˝ g ě idA. Lastly, as
g “ g ˝ g` ˝ g, we have g` ˝ g “ pg` ˝ gq ˝ pg` ˝ gq, so g` ˝ g : A Ñ A is a closure
mapping. ■

Theorem 2.25. Let A be an ordered set and f : A Ñ A a residuated
mapping. Then

i. f is a closure mapping;

ii. f` is a dual closure mapping;

iii. f “ f` ˝ f ;

iv. f` “ f ˝ f`;

are equivalent statements. Similarly,

v. f is a dual closure mapping;

vi. f` is a closure mapping;

vii. f “ f ˝ f`;

viii. f` “ f` ˝ f ;

are equivalent statements.

Proof. i. ô ii. Follows by proposition 2.17.

i. ñ iii. Holds, as f` ˝ f “ f` ˝ f ˝ f ě idA ˝ f “ f and f “ f ˝ f` ˝ f ě

idA ˝ f` ˝ f “ f` ˝ f yields f “ f ˝ f`.

iii. ñ iv. By proposition 2.14 we have f ˝ f` “ f` ˝ f ˝ f` “ f`.

iv. ñ ii. Proposition 2.14 yields f` ˝ f` “ f ˝ f` ˝ f ˝ f` “ f ˝ f` “ f`, and
f` “ f ˝ f` ď idA. ■

2.4 Semilattices and Lattices

In the following we consider an ordered set E and for x P E we let ιx : xÓ ãÑ E
denote the canonical injection of the given principal down-set, which is then
isotone by definition.

Theorem 2.26. Let E be an ordered set. Then

i. for any x P E then ιx : x
Ó ãÑ E is residuated;

ii. the intersection of any two principal down-sets of E is a principal
down-set of E;

are equivalent statements.

12



Chapter 2. Residuation Theory

Proof. By proposition 2.13 we have that ιx is residuated if and only if there
exists some α “ maxtz P xÓ | z “ ιxpzq ď yu, which is equivalent to the
existence of some αÓ “ xÓ X yÓ. ■

Definition 2.27. An ordered set E which satisfies i. or ii. of theorem 2.26
is said to be an ^-semilattice, and we let x ^ y denote the element α such
that xÓ X yÓ “ αÓ.

Note that x ^ y is to be read as the meet of x and y, and E is then read
as a meet semilattice. An example of a ^-semilattice is the natural numbers
ordered under divisibility, where m ^ n “ hcftm,nu.

The following result shows how any ^-semilattice can be characterised in a
purely algebraic way, or how any commutative idempotent semigroup can be
seen as a ^-semilattice.

Theorem 2.28. A set E can be given the structure of a ^-semilattice if
and only if it can be equipped with a binary operation px, yq Ñ x△ y which
is associative, commutative and idempotent.

Proof. The right implication follows trivially, and we now consider the con-
verse. Assume that E is an abelian idempotent semigroup under the binary
operation px, yq Ñ x△ y. Now define the relation R on E such that

xRy ô x△ y “ x

which is an ordering due to the following arguments. Firstly, x △ x “ x so
xRx, and similarly if xRy and yRx then

x “ x△ y “ y △ x “ y

and lastly as xRy and yRz then

x “ x△ y “ x△ py △ zq “ px△ yq △ z “ x△ z

so xRz, and thus we write ď if instead of R. Furthermore, consider x, y P E
so

x△ y “ x△ x△ y “ x△ y △ x

so x △ y ď x, and switching the roles of x and y we obtain x △ y ď y, so
x △ y P xÓ X yÓ, implying that the intersection of any principal down-sets is
non-empty. Lastly, we have

z P xÓ
X yÓ

ñ z ď x, z ď y

ñ z “ z △ x, z “ z △ z △ y

ñ z “ z △ y “ z △ x△ y

ñ z ď x△ y

13
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proving that x△ is the maximal element of xÓ X yÓ, so E is a ^-semilattice
where x ^ y “ x△ y. ■

Definition 2.29. Let E be an ordered set and F Ď E be non-empty. Then
x P E is a lower of bound of F if and only if x ď y for any y P F , and x is
the greatest lower bound of F if z ď x for all lower bounds z of F , denoted
x “ inf F . Similarly, if x ě y for any y P F it is said to be an upper bound
of F , and the least upper bound of F if z ě x for all upper bounds z of F ,
denoted y “ supF .

We now provide a short characterisation of the dual notions of a ^-semilattice,
which is a _-semilattice, read as a join semilattice. By the dual of theorem
2.26 then the intersection of any principal up-sets results in a principal up-set,
so we denote x_ y as the element β such that xÒ X yÒ “ βÒ. There is of course
also a dual result to theorem 2.28 with respect to _-semilattices, where the
proof uses the relation xSy if and only if x△ y “ y.

Definition 2.30. An ordered set that is both a ^-semilattice and a _-
semilattice is called a lattice.

Proposition 2.31. Let E be a semilattice, and let F “ tx1, . . . , xnu be a
finite non-empty subset of E. Then

i. if E is a ^-semilattice, then inf F “ x1 ^ . . . ^ xn;

ii. if E is a _-semilattice, then supF “ x1 _ . . . _ xn.

Proof. Follows as inftx1, x2u “ x1 ^ x2 and suptx1, x2u “ x1 _ x2. ■

Definition 2.32. Let E,F be _-semilattices. Then f : E Ñ F is a _-
morphism if fpx _ yq “ fpxq _ fpyq for any x, y P E, with a ^-morphism
defined dually. If f is both a _-morphism and a ^-morphism, it is a lattice
morphism. Furthermore, f : E Ñ F is said to be a complete _-morphism
if for every family pxαqαPI of elements in E such that

Ž

I xα exists in E,
then

Ž

I fpxαq exists in F and

f

˜

ł

I

xα

¸

“
ł

I

fpxαq

with a complete ^-morphism being defined dually.

Theorem 2.33. Let E,F be _-semilattices, and let f : E Ñ F be residu-
ated. Then f is a complete _-morphism.

14



Chapter 2. Residuation Theory

Proof. Consider a family of elements pxαqαPI in E such that x “
Ž

I xα is an
element of E. We then have fpxq ě fpxαq for any α P I. Now suppose there
exists y P F such that y ě fpxαq for any α P I. Then

f`
pyq ě f`

pfpxαqq ě xα ñ f`
pyq ě

ł

I

xα “ x

ñ y ě fpf`
pyqq ě fpxq

and so
Ž

I fpxαq exists and equals fpxq. ■

Definition 2.34. Lattices E,F are isomorphic if they are isomorphic as
ordered sets.

Theorem 2.35. Lattices E,F are isomorphic if and only if there exists a
bijection f : E Ñ F which is a _-morphism.

Proof. Assume first that E » L, so there exists a residuated bijection, which
by theorem 2.33 is a _-morphism. For the converse relation assume there exists
a bijection f : E Ñ F which is a _-morphism. We then have for x, y P E, that

x ď y ô y “ x _ y ô fpyq “ fpx _ yq “ fpxq _ fpyq ô fpxq ď fpyq

proving the claim. ■

From proposition 2.31 we saw that for any ^-semilattice that the infimum
exists for any finite subset, and we now extend this notion to infinite subsets.

Definition 2.36. A ^-semilattice E is ^-complete if for any subset A “

txα | α P Iu then A has an infimum in E, denoted infE A or
Ź

I xα. We
define a _-complete lattice dually. A lattice that is both ^-complete and
_-complete is a complete lattice.

We immediately derive the following result.

Proposition 2.37. Every complete lattice has a top and a bottom element.

Proof. The top element is supL L and the bottom element is infL L, which
exists by definition. ■

Similarly to theorem 2.28 we can also characterise lattices by the following
result.

Theorem 2.38. A set E can be given the structure of a lattice if and
only if it can be equipped with two binary operations px, yq Ñ x △ y and
px, yq Ñ x ▽ y such that pE,△q and pE,▽q are abelian semigroups, and
for any x, y P E then x△ px▽ yq “ x “ x▽ px△ yq.

15
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Proof. Suppose that E is a lattice, so there exists two binary operations sat-
isfying the conditions, specifically px, yq Ñ x ^ y and px, yq Ñ x _ y, and for
any x, y P E we have x ď x _ y, so x ^ px _ yq “ x, and similarly x ^ y ď x,
so x _ px ^ yq “ x.

Now, consider the converse and suppose E has two binary operations △,▽
satisfying the conditions. We then obtain both

x▽ x “ x▽ px△ px▽ xqq “ x

x△ x “ x△ px▽ px△ xqq “ x

so by theorem 2.28 we have that can be seen as a semilattice under both △
and ▽. Lastly, we show that x△ y “ x if and only if x▽ y “ y. Now,

x△ y “ x ñ y “ px△ yq ▽ y “ x▽ y

x▽ y “ y ñ x “ x△ px▽ yq “ x△ y

proving that E is a lattice under the ordering

x ď y ô x△ y “ x ô x▽ y “ y

■

Theorem 2.39. Let E be a complete lattice, and f : E Ñ E be isotone.
Then f has a fixed point.

Proof. As L is complete we have that 0 P fpxqÓ, and there exists α “

supL fpxqÓ, and for any x P fpxqÓ then x ď α, so x ď fpxq ď fpαq, so
α ď fpαq, and fpαq ď fpfpαqq, so fpαq P fpxqÓ, so fpαq ď α which finally
implies fpαq “ α. ■

We know give the central theorem of this chapter which entirely characterises
residuated mappings between complete lattices.

Theorem 2.40. Let E,F be complete lattices, and let f : E Ñ F . Then f
is residuated if and only if it is a complete _-morphism and fp0Eq “ 0F .

Proof. Assume that f is residuated, so by theorem 2.33 we have that it is a
complete _-morphism. Furthermore, if fpxq “ 0F , then x ě 0E, so fpxq “

0F ě fp0Eq, so fp0Eq “ 0F since we would otherwise obtain a contradiction.

Now let f be a complete _-morphism such that fp0Eq “ 0F , and fix x P F
and consider fÐpxÓq. Then α “ sup fÐpxÓq exists since E is complete. Now,
consider any y P E such that y ď α ô y _ α “ α, so by _-completeness of f
we obtain

fpαq “ fpy _ αq “ fpyq _ fpαq ô fpyq ď fpαq

so fpyq ď fpαq ď x, so y P fÐpxÓq implying that αÓ “ fÐpxÓq, so f is
residuated by theorem 2.9. ■
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Chapter 2. Residuation Theory

2.5 Boolean Semimodules
In the following section we seek to introduce a specific Boolean algebra, and
their residuated mappings, which will be of great use when considering group
testing. We could have continued this section in the same vein as the previous,
introducing distributivity and complementation in the abstract case, but re-
frain from doing so, and only introduce the definitions necessary for our scope.
For a general reference on Boolean algebras see [4, 5].

The section is based on [6, 7], and we begin by considering the binary Boolean
semiring.

Definition 2.41. B2 “ pt0, 1u,`, ¨q denotes the Boolean semiring, with
addition and multiplication defined by x ` y “ maxtx, yu and xy “

mintx, yu under the natural ordering 0 ď 1.

An equivalent way to define the ordering of B2 is

x ď y ô x ` y “ y

for any x, y P B2. We also define a negation mapping by

x :

#

B2 ÝÑ B2
0 ÞÝÑ 1
1 ÞÝÑ 0

Note that x is an involution, and also satisfies De Morgan’s laws, summarised
by the following result.

Proposition 2.42.

x ` y “ x y, xy “ x ` y (2.1)

for any x, y P B2.

Proof. Follows by direct calculations. ■

Note that any totally ordered semiring S with universal lower and upper
bounds, with addition and multiplication defined by x ` y “ maxtx, yu and
x ¨ y “ mintx, yu can be represented as a Boolean algebra of subsets of S, by
mapping any element x P S to xÓ [8].

In the following we consider semimodules over B2 and let Bn
2 denote the set of

n-tuples over B2, which will shown is our Boolean algebra of interest.

Proposition 2.43. Bn
2 is a semimodule over B2 under component-wise

addition and component-wise scalar multiplication from B2.
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Proof. All axioms of Bn
2 being a semimodule are inherited from the properties

of B2 being a commutative semiring [8]. ■

We then define multiplication over Bn
2 as component-wise multiplication over

B2, and also naturally extend the ordering ď on B2 to Bn
2 as in (2.1). Lastly,

we also extend our negation mapping onto Bn
2 by component-wise negation.

This then lets us view Bn
2 as a complete lattice.

Theorem 2.44. pBn
2 ,_,^q is a complete lattice for

x _ y “ x ` y

x ^ y “ x ¨ y

where ` is component-wise addition and ¨ is component-wise multiplica-
tion, both over B2.

Proof. The results follows by theorem 2.38 where △ “ ^ and ▽ “ _. Fur-
thermore, Bn

2 is complete since it is finite, with the supremum of a subset being
the join over all elements of the set, and the infimum being the meet over all
elements of the set. ■

Specifically, Bn
2 is known as a Boolean algebra, that is, a complemented dis-

tributive lattice in the sense that _ and ^ distributes over each other, and for
every element x P Bn

2 there exists y P Bn
2 such that x _ y “ 1 and x ^ y “ 0,

namely y “ x [4, 5].

We now take well-known conventions of coding theory, and naturally impose
these over Bn

2 .

Definition 2.45. The map

δ :

"

Bn
2 ˆ Bn

2 ÝÑ N
px, yq ÞÝÑ |ti P t1, . . . , nu | xi ‰ yiu|

is the Hamming distance, and

w :

"

Bn
2 ÝÑ N
x ÞÝÑ δpx, 0q

is the Hamming weight.

Note however that δ is not translation invariant as in the case of Fq-linear
codes, but it does satisfy the following property.

Proposition 2.46. δpx, yq “ wpx ` yq ´ wpx ¨ yq for any x, y P Bn
2 .
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Proof. We have that

xi ‰ yi ñ xi ` yi “ 1 and xi ¨ yi “ 0

0 “ xi “ yi ñ xi ` yi “ 0 and xi ¨ yi “ 0

1 “ xi “ yi ñ xi ` yi “ 1 and xi ¨ yi “ 1

which proves the claim. ■

In the following we introduce the notion of d-disjunctness, and show how this
is equivalent to the matrix being injective when restricted to the Hamming
ball of radius d centered on the zero element.

Definition 2.47. Let d P N and x P Bn
2 . Then

Bδpx, dq “ tz P Bn
2 | δpx, zq ď du

is the Hamming ball of radius d centered in x.

Definition 2.48. Let H be an n ˆ k matrix over B2, and d P N.

i. H is d-Rev if for any x P Bδp0, dq and y P Bn
2 such that xH “ yH,

then x “ y.

ii. H is d-disjunct if for any t ď d and any set T “ tx1, . . . , xtu of rows
of H, then for any row x R T we have x ę y1 ` . . . ` yt.

Note that we have defined d-disjunct in the transposed case, compared to
most other literature which considers supersets of columns rather than rows.
An equivalent way of stating d-disjunctness of a matrix is that for any d ` 1
rows, with one of these rows being designated, is that there always exists one
column with a 1 in the designated row, and 0s in the remaining d rows [9].

Theorem 2.49. H is d-Rev if and only if it is d-disjunct.

Proof. Assume, that H is d-Rev, and consider a sequence hi1 , . . . , hit of t ď d
rows of H. There then exists x P Bδp0, tq Ď Bδp0, dq such that xH “

řt
j“1 hij .

Consider l P rnszti1, . . . , itu, and define y “ el ` x, where el is the vector with
1 in the l’th position, and 0 elsewhere. Now, assume for contradiction, that
hl ď

řt
j hij , or equivalently,

řt
j hij “ hl `

řt
j hij . We then obtain

yH “ pel ` xqH “ elH ` xH “ hl `

t
ÿ

j“1

hij “

t
ÿ

j“1

hij “ xH

which implies that x “ y as H is d-Rev, which is a contradiction as x ‰ y.

Now, assume that H is d-disjunct, and consider x P Bδp0, dq and y P Bn
2

such that xH “ yH, and finally assume for contradiction that x ‰ y. We
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may without loss of generality assume that there exists i P supppyq such that
i R supppxq, since if not, then y P Bδp0, dq, and the roles of x and y could then
be interchanged. By the d-disjunct property of H we then have both hi ę xH
and hi ď yH “ xH, which contradicts our assumption of x ‰ y. ■

In the following we characterise residuated mappings from Bn
2 to Bk

2.

Theorem 2.50. A mapping f : Bn
2 Ñ Bk

2 is residuated if and only if fpxq “

xH for all x P Bn
2 , where H P Bnˆk

2 .

Proof. Follows directly by theorem 2.40. ■

Note that as there only exists one basis for Bn
2 we view the canonical repre-

sentation of H with respect to the natural ordering of the basis vectors.

Theorem 2.51. Let f : Bn
2 Ñ Bk

2 be a residuated mapping represented by
the matrix H. Then the residual f` : Bk

2 Ñ Bn
2 is given by f`pyq “ yHJ.

Proof. By theorem 2.9 we prove that f` is isotone, and satisfies f` ˝ f ě idA

and f ˝ f` ď idB. Firstly,

f`
pyqi “

ÿ

jďk

yjHij “
ź

jďk

yjH ij “
ź

jďk

´

H ij ` yj

¯

which then implies isotonicity of f`. Now, if y “ fpxq then yj “
ř

lďn xlHlj,
so

f`
pfpxqqi “

ź

jďk

´

H ij `
ÿ

lďn

xlHij

¯

ě
ź

jďk

´

H ij ` xiHij

¯

ě
ź

jďk

´

xiH ij ` xiHij

¯

“
ź

jďk

xi

´

H ij ` Hij

¯

“ xi

and similarly,

fpf`
pyqqj “

ÿ

iďn

f`
pyqiHij “

ÿ

iďn

´

ź

lďk

´

H ij ` yl

¯¯

Hij

ď
ÿ

iďn

´

H ij ` yj

¯

Hij

“
ÿ

iďn

yjHij

ď yj

finalising the proof. ■
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Chapter 2. Residuation Theory

Finally we give the following result regarding equivalent properties of these
residuated mappings, which will be pivotal when discussing group testing.

Theorem 2.52. [6] Let f : Bn
2 Ñ Bk

2 be a residuated mapping represented
by the n ˆ k-matrix H. Then

i. H is d-rev;

ii. f`pfpxqq “ x for all x P Bδp0, dq;

iii. Bδp0, dq Ď impf`q;

iv. Bδp1, dq Ď colpHq;

are equivalent statements.

Proof. i. ñ ii. Consider x P Bδp0, dq and suppose for contradiction that
f`pfpxqq ‰ x. Then fpf`pfpxqqq “ fpxq, but f`pfpxqq ‰ x contradicting H
being d-rev.

ii. ñ iii. Follows trivially.

iii. ñ ii. Consider x P Bδp0, dq, so there exists y P Bk
2 such that f`pyq “ x, so

fpxq “ fpf`pyqq, and finally f`pfpxqq “ f`pyq “ x.

ii. ñ i. Consider x P Bδp0, dq and y P Bn
2 such that fpxq “ fpyq, but assume

for contradiction that x ‰ y. Without loss of generality there then exists
i P supppyq such that i R supppxq. Letting ei denote the i’th standard basis
vector we see ei P Bδp0, dq and ei ď y, while ei ę x. Then

fpeiq “ hi ď fpyq “ fpxq

where hi denotes the i’th row of H. Finally

f`
pfpeiqq “ ei ď f`

pfpyqq “ f`
pfpxqq “ x

which contradicts ei ę x.

iii. ñ iv. We have Bδp1, dq “ Bδp0, dq, so

Bδp1, dq Ď impf`q “

!

yHJ

ˇ

ˇ

ˇ
y P Bk

2

)

“

!

HyJ

ˇ

ˇ

ˇ
y P Bk

2

)

“ colpHq

iv. ñ iii. Follows as

Bδp0, dq “ Bδp1, dq Ď colpHq “

!

yHJ

ˇ

ˇ

ˇ
y P Bk

2

)

“ impf`
q

finalising the proof. ■
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3 | Group Testing
Group testing is a method in which one aims to determine a subset of infected
or positive items out of a larger set of items, by testing multiple items at once.
This can be done sequentially, or adaptively, where one test is completed at a
time, and based on this result one can then infer what the optimal next test is
[9]. Secondly, one can consider non-adaptive group testing, in which all tests
are conducted simultaneously. In the following we consider only non-adaptive
group testing, and as such, when referring to group testing we imply the latter
of the methods.

Specifically, a d-disjunct nˆk matrix H, will represent a group testing scheme,
which allows the testing of n items using k tests, and if there is at most
d infected items the scheme will then be able to determine the infected items
correctly. The interpretation of H is that each column represents a test, specif-
ically, column j describes the j’th test, and if the i’th entry of the j’th column
is a 1, this implies that item i is included in the j’th test. The tests are then
carried out by computing y “ xH, where x P Bn

2 is unknown, and xi “ 1 if
item i is infected, and xi “ 0 if it is not. Lastly, one attempts to infer x given
y.

We now give the formal definition of a group testing scheme based on [4, 5] in
the context of residuated mappings, which we developed previously.

Definition 3.1. Let n, k, d P N. An pn, k, dq-group testing scheme is a
residuated mapping f : Bn

2 Ñ Bk
2, and a decoder g : Bk

2 Ñ Bn
2 such that

gpfpxqq “ x for all x P Bδp0, dq.

By the previously given residuation theory we can immediately state an entire
class of group testing schemes based on d-disjunct matrices.

Theorem 3.2. Let H be an n ˆ k d-disjunct matrix. Then the residuated
mapping f represented by H, and its residual f`, is a pn, k, dq-group testing
scheme.

Proof. The proof follows by theorem 2.52. ■

Obviously one is interested in maximising d and n, while minimising k, and
while also showcasing explicit constructions. These matters are considered in
the proceeding chapter, where we instead turn our attention briefly to noisy
group testing.

The following is based on [7]. Given a pn, k, dq-group testing scheme with
mappings f, f` and a resulting test y P Bk

2 the problem of error detection is
determining if there exists an x P Bn

2 such that fpxq “ y, that is, is there
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a distribution of the n items, that when tested under f actually culminates
in the resultant test. The following result provides a polynomial method to
determine this.

Proposition 3.3. Let f : Bn
2 Ñ Bk

2 be a residuated mapping. Then

y P impfq ô fpf`
pyqq “ y

Proof. Follows by proposition 2.14. ■

With respect to the error correction capabilities of a scheme we have seen that
if we consider residual mappings represented by d-disjunct matrices then f is
injective when restricted to Bδp0, dq. As such, we can consider the non-linear
code fpBδp0, dqq, and obtain error corrective capabilities by considering the
parameters of said code. The model will then be some distorted syndrome given
by y “ xH ‘ e, where e P Bk

2 represents some error with entries distributed by
Bernoullippq, and ‘ represents addition over F2.

Definition 3.4. Let f : Bn
2 Ñ Bk

2 be a residuated mapping represented by
a d-disjunct matrix. Then define the pn,M, d1q code Cf,d as

Cf,d :“ fpBδp0, dqq Ď Bk
2

where M “ |Bδp0, dq| “
řd

i“0

`

n
i

˘

. Furthermore, denote the distance enu-
merator of Cf,d

AδpCf,dq :“
ÿ

!

zδpx,yq

ˇ

ˇ

ˇ
x, y P Cf,d

)

“

k
ÿ

i“0

Aiz
i

where Ai “ |tpx, yq P Cf,d ˆ Cf,d | δpx, yq “ iu|.

The scripts used to verify d-disjunctness of any examples, or used to generate
Cf,d and distance enumerators can be found in Appendix A.

Example 3.5. Consider f : B7
2 Ñ B7

2 represented by H, where H is the
incidence matrix of the binary Fano plane, i.e.

H “

»

—

—

—

—

—

–

1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

which is then 2-disjunct. Thus, we can consider two different codes, namely
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C1 :“ Cf,1 “ fpBδp0, 1qq which is an p7, 8, 3q-code, where

AδpCf,1q “ 8 ` 14z3 ` 42z4

and C2 :“ Cf,2 “ fpBδp0, 2qq which is an p7, 29, 2q-code, where

AδpCf,1q “ 29 ` 294z2 ` 14z3 ` 420z4 ` 42z5 ` 42z6

Thus, using C1 one can identify one infected sample out of 7 samples
through 7 tests, while also correcting an erroneous test reliably, as it has
minimum distance 3. Similarly, C2 can identify two infected samples out
of 7 samples through 7 tests, but correcting flawed tests cannot be done
reliably, but can be optimised under a probabilistic approach.

There are also several other models to consider in the case of non-adaptive
noisy group testing, which we shall briefly mention here, with the first being an
additive noise model, which is where given an infection pattern x one receives
the syndrome y “ xH _ z where each entry of z is drawn independently from
Bernoullippq. Thus, a test can still be positive even if all the pooled in items in
the test are negative, however false-negatives are still not possible. In [2] they
showed given d infected and n times there exists k “ O

´

k logn
1´p

¯

such that the
average error probability tends to zero as n Ñ 8 for any fixed k.

An additional model to consider would be the case where the set of infected
are distributed according to some Bernoulli distribution where the probability
of an item being infected is t

n
for some t P N. This is a natural model to

consider as often in real life one will not know an upper bound on the number
of infected in the participating items, but be aware of some prevalence of the
population of which the items are sampled from. For any ε ą 0 they provide
in [10] an explicit construction of n ˆ k matrices, where k “ O

´

t log
2 n

log t

¯

, that
determines the set of infected with probability 1 ´ ε.

Lastly, we mention the dilution model as given in [10]. Our testing result
is then modelled under the binary asymmetric channel, or Z-channel, where
there is a probability that a positive item in a given test can become diluted
in the test. Thus, the received syndrome will be y “ ZpxqH, where the Z-
channel has probability p of mapping 1 to 0, and probability 1 of mapping 0 to
0. Given n items and d defectives [10] showed the existence of a testing matrix
using k “ O

´

d logn
p1´pq2

¯

tests, where the average error probability asymptotically
approaches zero.

Note that the above-mentioned models are considered independently, that is,
we assume that only one model is the reason of misidentification.
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4 | Bounds and Constructions
In the following chapter we consider some bounds on the parameters of n and
k for a d-disjunct nˆk matrix and look at equivalent objects. Furthermore, we
look at combinatorial objects which gives rise to d-disjunct matrices. We also
shortly consider a specific project in which they implemented combinatorial
batch testing of DNA for detection of pathogenic variants [11], and we describe
their construction in the setting of group testing given in this thesis. Lastly,
we consider some examples of the best known 2-disjunct n ˆ k matrices for
some small values of k, according to the OEIS [12, A286874].

4.1 Basic Bounds
We now consider some simple bounds for d-disjunct matrices. Let rpwq denote
the number of rows of weight w, and we call a subset of t1, 2, . . . , ku private if it
is contained in a unique row. If a row contains a private singleton subset then
the row is called isolated, which implies that there exists a column intersecting
only that row. We then have the following two lemmata.

Lemma 4.1. [9] Let H be a n ˆ k d-disjunct matrix. Then any row of
weight ď d is isolated, and

d
ÿ

w“1

rpwq ď k

Proof. Suppose for contradiction, that there exists a row Hj which is not
isolated, but with weight wj ď d. However, Hj is then contained in the union
of at most d row, contradicting the assumption of H being d-disjunct. ■

Let kpd, nq denote the minimum number of columns in a matrix with n row
which is d-disjunct, and similarly let npd, kq denote the maximum number of
rows in a matrix with k columns which is d-disjunct.

Lemma 4.2. [9] kpd, nq ě w ` kpd ´ 1, n ´ 1q, where w is the weight of
any row of the matrix.

Proof. Suppose H is a d-disjunct matrix, and h is a row with weight w, and let
H 1 be the matrix resulting from removing h, and the w columns which intersect
the support of h. Now, assume for contradiction that H 1 is not pd´1q-disjunct.
There then exists a row h1

i contained in the union of d´1 rows in H 1, but then
h1
i must also be in the union of the same d´ 1 rows of H and the row h, which

would imply that H is not d-disjunct. ■
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We then obtain the following bound.

Theorem 4.3. [9]

kpd, nq ě min

#

ˆ

d ` 2

2

˙

, n

+

Proof. We prove the result by induction on n, where the base case of n “ 1
clearly holds. Let H be a n ˆ k d-disjunct matrix, and consider first the case
where H has a row of weight w ě d ` 1, so by lemma 4.2 and our induction
hypothesis we have

kpd, nq ě d ` 1 ` min

#

ˆ

d ` 1

2

˙

, n ´ 1

+

ě min

#

ˆ

d ` 2

2

˙

, n

+

and if H does not contain such a row, then by lemma 4.1 we have

kpd, nq ě

d
ÿ

w“1

rpwq “ n ě min

#

ˆ

d ` 2

2

˙

, n

+

■

From the previous results, we gather that if there are d infected out of our
n items, such that

`

d`2
2

˘

ě n then the minimum number of tests required is
k “ n.

Corollary 4.4. [9] kpd, nq “ n for
`

d`2
2

˘

ě n.

Proof. Clearly the n ˆ n identity matrix is d-disjunct, so kpd, nq ď n, and by
theorem 4.3 we have kpd, nq ě n. ■

In the following we provide a non-constructive probabilistic argument for a
bound on the number of tests required.

Theorem 4.5. [9] kpd, nq ď 3pd ` 1q ln
´

pd ` 1q
`

n
d`1

˘

¯

Proof. Let pHijq be a n ˆ k matrix with entries generated by a Bernoulli
distribution where P px “ 1q “ p. Now, for column i and rows j1, . . . , jd`1 the
probability that Hij1 “ 1 and Hij2 “ . . . “ Hijd`1

“ 0 will then be pp1 ´ pqd.
Furthermore, denoting E as the event of no such column i existing we have

P pEq “

´

1 ´ pp1 ´ pq
d
¯t

(4.1)
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Chapter 4. Bounds and Constructions

Note that (4.1) is minimised for p “ 1
d`1

, so under this choice of p the proba-
bility that P pEq will happen for any choice of j1, . . . , jd`1 is less than

pd ` 1q

ˆ

n

d ` 1

˙

˜

1 ´
1

d ` 1

ˆ

1 ´
1

d ` 1

˙d
¸k

as there are pd ` 1q
`

n
d`1

˘

ways of choosing d ` 1 rows, where one is designated
as j1, and the probability that E occurs to at least one column is less than the
sum of the probability of E occurring to all of them. Furthermore, we have
the following inequalities

1

2
ě

ˆ

1 ´
1

d ` 1

˙d

ą
1

3
, d ě 1

and

´ lnp1 ´ xq ě x, 1 ą x ě 0

which when combined yields

ln

˜

1 ´
1

d ` 1

ˆ

1 ´
1

d ` 1

˙d
¸

ă
´1

3pd ` 1q
(4.2)

which gives that the probability of E happening to every choice of j1, . . . , jd`1

is less than 1 if k ě 3pd ` 1q ln
´

pd ` 1q
`

n
d`1

˘

¯

. ■

Lastly, in [13] they state kpd, nq ě Ω
´

min
␣

d2 logd n, n
(

¯

by claiming that

n ´
d

2
ď

ˆ

k

r4k{d2s

˙

(4.3)

for any n ˆ k d-disjunct matrix H, but (4.3) is trivially false in the case of H
being any 2-disjunct matrix, where n ą 2, as (4.3) would then yield n´ 1 ď 1.

4.2 Equivalent Objects
In the following section we consider objects equivalent to d-disjunct matrices,
and from this derive some bounds on the parameters n and k. The following
on cover-free families, disjunct set systems, and coverings of order-interval
hypergraphs is based on [14].

Definition 4.6. A d-cover-free family pX,Fq is a set system such that for
any d blocks A1, . . . , Ad P F , and any other block B0 P F , then

B0 Ĺ

d
ď

j“1

Aj

29



4.2. Equivalent Objects

Clearly a d-cover-free family is equivalent to a d-disjunct matrix of size |F | ˆ

|X|. The incidence matrix of a d-cover-free family is also called a superimposed
d-code in some literature [15]. Furthermore, if the d-cover-free family is w-
uniform, that is, |F | “ w for any F P F we obtain a d-disjunct matrix where
each row has the same weight, or in the language of group testing, each test is
equally diluted.

Definition 4.7. An pi, jq-disjunct system pX,Bq is a set system such that,
for any P,Q Ď X with |P | ď i, |Q| ď j and P XQ “ ∅, there exists B P B
such that P Ď B and Q X B “ ∅.

For an pi, jq-disjunct system pX,Bq we shall denote it as pi, jq-DSpv, bq if |X| “

v and |B| “ b. Similarly, for a d-cover-free family pX,Fq we shall denote it as
d-CFFpk, nq, where |X| “ k and |F | “ n.

We remind that d-disjunctness is equivalent to the statement, that for any
d ` 1 rows, where one of them is designated, there exists a column with 1 in
the designated row, and 0 in the other d rows.

Theorem 4.8. There exists a d-CFFpk, nq if and only if there exists an
p1, dq-DSpn, kq.

Proof. Transposing the incidence matrix of the d-CFFpk, nq we obtain a ma-
trix, where for any d ` 1 columns, with a column designated, that is, d ` 1
distinct points of an incidence structure, with a point designated as P , there
exists a row with a 1 in that column, and 0 elsewhere. This is the same as
stating there exists a block B such that P P B, while the other d points are
not contained in B. These arguements also holds for the converse relation. ■

As such, disjunct systems and cover-free families are dual incidence structures,
and given the matrix of a cover-free family we can obtain a disjunct system by
transposing said matrix, or vice versa.

We now consider order-interval hypergraphs and their coverings.

Definition 4.9. Let Pn;l,u “ tY Ď rns | l ď |Y | ď uu, where 0 ă l ă u ă

n, be ordered by inclusion. Let Gn;l,u “ pP,Eq be the class of order-interval
hypergraphs, where P “ Pn;l,u, and the edges E are the maximal intervals,
that is,

E “
␣

I “ tC Ď rns | Y1 Ď C Ď Y2u
ˇ

ˇ |Y1| “ l, |Y2| “ u, Y1, Y2,Ď rns
(

A covering of a hypergraph is a subset of points S, such that each edge of the
hypergraph contains at least one point of S. This then leads to the following
equivalency.
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Theorem 4.10. There exists a covering of Gn;l,u of size b if and only if
there exists a pl, n ´ uq-DSpn, bq.

Proof. A set S is a covering of Gn;l,u if and only if for any Y1, Y2 Ď rns,
where Y1 Ă Y2, |Y1| “ l, |Y2| “ u there exists C P S satisfying Y1 Ď C Ď Y2.
This is equivalent to the statement that for any Y1, Y3 Ď rns, where |Y1| “ ℓ,
|Y3| “ n ´ u, and Y1 X Y3 “ ∅, there exists C P S such that Y1 Ď C and
Y3 X C “ ∅. ■

In [14] they showed that the problem of determining a upper bound on k
for cover-free families using an efficient algorithm is difficult. They begin by
defining

τpGn;l,uq “ mint|S| | S is a covering of Gn;l,uu

and then showing that the problem of deciding τpGn;l,uq ď m, with input Gn;l,u

and m, is NP-complete by reducing the problem to an edge covering problem.

We now provide some bounds for cover-free families, where the following lemma
will be necessary for the first bound [14].

Lemma 4.11. Let pX,Bq be a t-uniform set system, where |X| “ w. If
for any d blocks B1, . . . , Bd P B where

ˇ

ˇ

ˇ

Ťd
i“1Bi

ˇ

ˇ

ˇ
ă w and t ¨ d ě k, then

|B| ď
`

w´1
t

˘

Theorem 4.12. For a w-uniform d-CFFpk, nq, we have

n ď

ˆ

k

rw
d

s

˙

O

ˆ

w ´ 1

rw
d

s ´ 1

˙

Proof. Suppose pX,Fq is w-uniform d-CFFpk, nq, and for any block F P F
define

NtpF q “
␣

F Ď F
ˇ

ˇ |T | “ t, DF 1
‰ F, F 1

P F , T Ď F 1
(

where t “ rw
d

s. Now consider d blocks T1, . . . , Td P NtpF q, so |
Ťd

i“1 Ti| ď k´1,
and as rt ě k we have by lemma 4.11, that

|NtpF q| ď

ˆ

w ´ 1

t

˙

Thus, for each F P F there are at least
ˆ

w

t

˙

´

ˆ

w ´ 1

t

˙

“

ˆ

w ´ 1

t ´ 1

˙
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4.3. Kautz-Singleton Construction

subsets T Ă F , which are not contained in any F 1 P F , where F 1 ‰ F . From
this, we then have

|F |

ˆ

w ´ 1

t ´ 1

˙

ď

ˆ

k

t

˙

finalising the proof as t “ rw
d

s and |F | “ n. ■

In the language of d-disjunct matrices theorem 4.12 implies that if H is a nˆk
d-disjunct matrix, where rpwq “ n, then n is bounded as in the theorem. In
[16] they proved the following bound on cover-free families.

Theorem 4.13. [16] For a d-CFFpk, nq we have

n ď d `

¨

˝

k
Q

pk ´ dq
L`

d`1
2

˘

U

˛

‚

Based on Sperner’s theorem we can entirely determine the case for 1-cover-
free families, which is the case of 1-disjunct matrices. A Sperner family, or an
antichain of sets, is a family of sets such that none of the sets is a strict subset
of another.

Theorem 4.14. (Sperner’s theorem) [17] Over a k-element set the largest
Sperner family S is the set consisting of all subsets of size

`

k
tk{2u

˘

.

Thus, the largest possible 1-disjunct matrix for fixed a value of k is the
`

k
tk{2u

˘

ˆk

matrix consisting of all distinct rows of weight tn{2u.

4.3 Kautz-Singleton Construction
In the following section we showcase the Kautz-Singleton construction based
on Reed-Solomon codes, where we for any d and large enough n ě d can
construct n ˆ k d-disjunct matrices, where k “ O

`

d2plogd nq2
˘

[13].

For distinct α1, . . . , αn P Fq we shall denote the rn, ksq Reed-Solomon code
over Fq as

RSpn, kq “

!

`

fpα1q, . . . , fpαnq
˘

ˇ

ˇ

ˇ
f P Fqrxsăk

)

The Kautz-Singleton construction then takes the generator matrix of an rn, ksq

Reed-Solomon code, and then replaces any entry with the corresponding basis
vector indexed by said element, and it finally transposes the resultant matrix.
Thus, if an entry is i P Fq then it is replaced with the vector with a 1 in the
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pn´ i`1q’th entry, and 0 elsewhere. We now provide a simple example of this
construction before analysing it.

Example 4.15 (Kautz-Singleton Construction).

Consider the r3, 1s3 Reed-Solomon code with generator matrix

G “

«

0 1 2
0 1 2
0 1 2

ff

The corresponding mappings are then

0 ÞÑ

«

0
0
1

ff

, 1 ÞÑ

«

0
1
0

ff

, 2 ÞÑ

«

1
0
0

ff

resulting in the Kautz-Singleton matrix
«

0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0

ff

We first provide the following sufficient condition for a matrix to be d-disjunct.

Lemma 4.16. [13] Let H be a n ˆ k matrix over B2 such that for some
integers amax ď wmin ď t, then every row has at least weight wmin, and
the product of any two distinct rows has at most weight amax. Then H is
Y

wmin´1
amax

]

-disjunct.

Proof. Denote d “

Y

pwminq´1

amax

]

, and let Hj denote the j’th row of H, and fix
some S Ď rns such that |S| ď d, and j R S. Now,∣∣∣∣∣∣supp `Hj

˘

z supp

˜

ÿ

iPS

Hj ¨ Hi

¸

∣∣∣∣∣∣ “

∣∣∣supp `Hj

˘

∣∣∣ ´

∣∣∣∣∣∣supp
˜

ÿ

iPS

Hj ¨ Hi

¸

∣∣∣∣∣∣
ě

∣∣∣supp `Hj

˘

∣∣∣ ´
ÿ

iPS

∣∣∣supp `Hj ¨ Hi

˘

∣∣∣
ě wmin ´ |S| ¨ amax

ě wmin ´ d ¨ amax

“ wmin ´
wmin ´ 1

amax

¨ amax

“ 1

finalising the claim of H being d-disjunct. ■
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Theorem 4.17. [13] For any integer d ě 1 and large enough n ě d there
exists a n ˆ k d-disjunct matrix, where k “ O

`

d2plogd nq2
˘

.

Proof. We shall use the Kautz-Singleton construction to show the existence
of such a matrix by choosing parameters that yields the sufficiency given by
lemma 4.16. Let H denote the resultant matrix from the Kautz-Singleton
construction from RSpq, tq code, which will then be a qt ˆ q2 matrix, where
each row has exactly weight q, so wmin “ q. We now determine an expression
for amax.

Partition the columns of H into blocks of size q and index the q2 columns by
pairs in rqs ˆ rqs, so Hℓ,pi,jq “ 1 if and only if the ℓ’th codeword of the Reed-
Solomon code satisfies the j’th entry being equal to j. Thus, the number of
columns where the ℓ1’th and ℓ2’th rows both has a 1 will be the number of
positions the corresponding codewords agree, but as the code is a RSpq, tq code
we have that no two rows agree in more than t ´ 1 entries, so amax “ t ´ 1.
Now, by lemma 4.16 we have that H is d-disjunct for

d “

Z

q ´ 1

t ´ 1

^

so we need to choose a RSpq, tq code which satisfies the above. As q “ Optdq

and n “ qt, then t “ logq n, which implies q “ Opd logd nq, and as k “ q2 we

finally obtain k “ O
´

d2 plogd nq
2
¯

. ■

The benefit of the Kautz-Singleton construction is the greatly explicit nature
of it, but in the case of d “ Oppolyplog nqq it is sub-optimal as shown in [18].
In [19] they showcased an explicit construction for k “ O

´

d plogd nq
2
¯

, which
is more efficient in the case of d “ Oppolyplog nqq.

In [18] they also showed in the regime of d “ Ωplog2 nq that the Kautz-Singleton
construction is optimal in both the noisy and noiseless case given appropriately
chosen parameters q and n.

4.4 Configurations
In the following we provide the definitions of configurations, or equivalently,
partial linear spaces, and prove that these incidence structures provides dis-
junct matrices. We also summarise some existence results for configurations.
The results are based on [20, 21] unless otherwise mentioned, and any proofs
omitted can be found in these.

Definition 4.18. A configuration pvr, bkq is a finite incidence structure
such that
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i. There are v points and b lines;

ii. Each line is incident with k points, and each point is incident with r
lines;

iii. Two distinct lines intersect each other at most once.

If v “ b, and thusly, r “ k, the configuration is symmetric and denoted just
by vk. In the context of group testing we are however not interested in the
symmetric case, as it will correspond to disjunct matrices where n “ k.

Theorem 4.19. [5] Let L “ pvr, bkq be a configuration, and consider m
distinct lines ℓ1, . . . , ℓm of L. Then, if m ď k ´ 1 and ℓ P L such that

ℓ Ď

k´1
ď

i“1

ℓi

then ℓ “ ℓj for some j satisfying 1 ď j ď m.

Proof. Suppose to the contrary that ℓ ‰ ℓi for i “ 1, . . . ,m, while m ď k ´ 1,
and ℓ Ď

Ťk´1
i“1 ℓi. However, as |ℓ X ℓi| ď 1 we have

k “ |ℓ| “

ˇ

ˇ

ˇ
ℓ X

m
ď

i“1

ℓi

ˇ

ˇ

ˇ
ď

m
ÿ

i“1

|ℓ X ℓi| ď m

this however implies k ă m ` 1, which is a contradiction. ■

We remind that the incidence matrix of incidence structures we consider the
rows to represent the lines, and the columns to represent the points. Theorem
4.19 then yields the following result.

Corollary 4.20. The incidence matrix of a pvr, bkq configuration is of size
b ˆ v and is pk ´ 1q-disjunct.

Thus, to construct good disjunct matrices we can consider the problem of
constructing configurations with large k, while also aiming to maximise b and
minimising v. We have the following necessary conditions for the existence of
a configuration, which showcases that the aforementioned goals are conflicting.

Lemma 4.21. Let pvr, bkq be a configuration. Then

i. v ď b and k ď r;

ii. vr “ bk;

iii. v ě rpk ´ 1q ` 1.
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The problem of determining the existence of configurations can be considered
by the existence problem of resolvable Steiner systems Sp2, k, vq, which are
2 ´ pn, k, 1q designs, where the blocks can be partitioned into set, which also
forms a partition of the original point set of the design.

Theorem 4.22. Let v be a multiple of k. If there exists a resolvable Steiner
system Sp2, k, vq then there exists a pvr, bkq configuration.

The case of k “ 3 is entirely determined by the sufficient conditions given in
4.21.

Theorem 4.23. There exists a configuration pvr, b3q if and only if v ě

2r ` 1 and vr “ 3b.

The case of k “ 4 is not yet solved, as the question of whether the necessary
conditions of lemma 4.21 are sufficient is still open, and no non-existence results
are known [22]. There is however an analogous result to theorem 4.23.

Theorem 4.24. If v ” 4 mod 12, v ě 3r ` 1 and vr “ 4b then there
exists a pvr, b4q configuration.

There are also further results for the existence of configurations for k “ 4 with
specific restrictions on the parameters, and similarly for k “ 5 there are even
fewer existence results. We quickly summarise some of these here.

i. If v ” 0 mod 12, v “ 3r ` 3 and vr “ 4b, then there exists pvr, b4q.

ii. For all 1 ď b
v

ď 15, except possibly b
v

“ 3 and v “ 38, then there exists
pvr, b4q, where r “ 4 b

v
, v ě 3r ` 1, vr “ 4b.

iii. For all v ě 20, v even and b “ 3v
2
, then there exists pv6, b4q.

iv. If v “ 4r ` 4, then there exists pvr, b5q, where vr “ 5b for all v ” 0
mod 20.

v. If v ” 5 mod 20, v ě 4r ` 1, vr “ 5b, and v ě 7865, then there exists
pvr, b5q.

There are also a variety of additional configurations with additional properties
one could consider, for example generalised polygons. These objects has well-
known restrictions on the parameters r and k [23].

As an example of this, if one considers a configuration pvr, bkq which is also a
generalised quadrangles then one must have pr ´ 1q

1
2 ď k ´ 1 ď pr ´ 1q

1
2 , and

v “ kppk ´ 1qpr ´ 1q ` 1q and b “ rppk ´ 1qpr ´ 1q ` 1q.
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Lastly, we consider an example of a configuration which yields a 2-disjunct
matrix.

Example 4.25. Consider the p124, 163q configuration with incidence ma-
trix

H “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 1
0 0 1 1 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

which is then 2-disjunct. Letting fpxq “ xH denote the corresponding
residuated mapping we then have the codes

C1 “ fpBδp0, 1qq, C2 “ fpBδp0, 2qq

with distance enumerators

AδpC1q “ 17 ` 32z3 ` 144z4 ` 96z6

and

AδpC2q “121 ` 354z2 ` 1116z3 ` 1800z4 ` 2322z5 ` 3084z6

` 2706z7 ` 2016z8 ` 870z9 ` 210z10 ` 42z12

Thus, using C1 we can identify one infected sample using 12 tests, while
correcting an erroneous test, while C2 can identify two infected samples,
but correcting flawed tests cannot be done reliably, but can be optimised
under a probalistic approach.

4.5 Inversive Planes
In the following we showcase how inversive planes yields 1-disjunct matrices,
while also considering the minimum distance of the codes generated under their
residuated mappings. As such, these incidence structures may be beneficial to
use in the case of the set of infected items having low prevalence, while giving
a relatively high error-correction.
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Definition 4.26. [24] An inversive plane is a finite incidence structure
consisting of points and circles, such that

i. Any circle has points,

ii. A unique circle is incident with any given triple of points,

iii. If p1 P c1 and p2 R c1, then there exists a unique circle c2 ‰ c1 such
that p1 P c2 and p2 P c2,

iv. There exists 4 points which are not concircular.

Furthermore, the order of an inversive plane is an n P N such that

i. The number of points is n2 ` 1,

ii. The number of circles is npn2 ` 1q,

iii. Each circle is incident with n ` 1 points,

iv. Each point is incident with npn ` 1q circles,

v. Each circle is tangent to n2 ´ 1 other circles,

vi. Each circle is disjoint from npn ´ 1qpn ´ 2q{2 other circles.

and the inversive plane is then also a 3-pn2 ` 1, n ` 1, 1q-design [25], or a
Sp3, n2 ` 1, n ` 1q Steiner system.

As the incidence matrix of an inversive plane is 1-disjunct we can consider the
code consisting of the rows of said matrix, and the zero codeword.

Theorem 4.27. Let H be the incidence matrix of an inversive plane of
order n, and let f : Bnpn2`1q

2 Ñ Bn2`1
2 be the corresponding residuated map-

ping. Then the code fpBδp0, 1qq has minimum distance n ` 1.

Proof. Assume for contradiction that the minimum distance d of fpBδp0, 1qq

satisfies d ă n ` 1, and let c1, c2 P fpBδp0, 1qq such that d “ δpc1, c2q. Clearly
these are both non-zero and distinct, so | supppc1q X supppc2q| ď 2, as any
three points uniquely determines a circle in the inversive plane. Furthermore,
as |supppc1q X supppc2q| denotes the number of 0 entries shared by the two
codewords we have

n ` 1 ą d “ n2
` 1 ´ | supppc1q X supppc2q| ´ |supppc1q X supppc2q|

ě n2
´ 1 ´ |supppc1q X supppc2q|

which implies |supppc1qXsupppc2q| ě n2´n`1, but each codeword has a total
of n2 ´ n zeroes so |supppc1q X supppc2q| ď n2 ´ n, which is a contradiction,
so d ě n ` 1. Lastly, as any circle is incident with n ` 1 points we have
δp0, cq “ n ` 1 for any non-zero codeword c P fpBδp0, 1qq, so d “ n ` 1. ■
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Chapter 4. Bounds and Constructions

Thus, it can be beneficial to use the codes generated by incidence matrices of
inversive planes, as the high minimum distance implies that we will be able to
recover more test errors. The following example is based on [7].

Example 4.28. Consider the inversive plane of order 3 with incidence
matrix given by

H “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 1 1 1
1 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0 1 0
1 1 0 0 0 1 0 0 0 1
1 0 0 1 1 0 0 0 1 0
1 0 1 0 0 0 1 1 0 0
1 1 0 0 0 0 1 0 1 0
1 0 0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0 0 1
0 1 1 0 1 1 0 0 0 0
0 1 1 0 0 0 1 0 0 1
0 1 1 0 0 0 0 1 1 0
0 1 0 1 1 0 1 0 0 0
0 1 0 1 0 1 0 0 1 0
0 1 0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 0 1 1
0 1 0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 1 0 0
0 0 1 1 0 1 1 0 0 0
0 0 1 1 0 0 0 0 1 1
0 0 1 0 1 0 1 0 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 1 1 0 0 0 1
0 0 0 1 0 0 1 1 1 0
0 0 0 0 1 1 0 1 1 0
0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 1 1 0 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

which is then 1-disjunct. Then H can identify 1 infected sample out of 30
samples through 10 tests, but as the code C “ fpBδp0, 1qq, where fpxq “

xH, has minimum distance 4 we have that C, in addition to identifying
one infected sample, can recover one erroneous test.

4.6 2 -disjunct matrices
Consider the following table for the maximal number n of binary vectors of
length k, such that the union of any 2 distinct vectors does not contain any
other vector.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
npk, 2q 2 2 3 4 5 6 7 8 12 13 17 20 26 28 40 45

Table 4.1: Lower bounds of npk, 2q according to sequence A286874 on the OEIS.
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4.6. 2 -disjunct matrices

For the cases of k “ 3, 6, 7, 8, 9, 12, 13, 14 there exists configurations that gives
exactly the corresponding values in table 4.1 according to theorem 4.23, where
for any other values of k the configurations will result in 2-disjunct matrices
with smaller values of n. However, for k “ 15 consider the following matrix.

H “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 1 0 0 0 1 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 1 0 1 0 0 1 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0 1 0 0 0 0 1 0
1 0 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0 1 0 1 0
1 1 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 1 1
0 1 1 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 1 1 0 1 0 1 0 0 0 0 1 0 0
1 1 0 0 0 0 1 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 1 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 0 0 0
0 0 0 1 1 0 0 1 1 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 1 0 0 0 1
0 1 0 0 0 0 0 1 0 0 1 1 0 0 1
0 1 0 1 0 0 0 0 1 0 0 0 1 0 1
0 1 0 1 1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 1 1 1
0 0 1 0 0 1 1 0 0 1 0 0 0 1 0
1 0 0 0 1 1 0 0 0 1 1 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 1 0
0 1 0 1 0 0 1 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 1 1 0 0 1
0 1 0 1 0 0 0 0 1 0 0 0 1 0 1
0 1 0 1 1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 1 1 1
0 0 1 0 0 1 1 0 0 1 0 0 0 1 0
1 0 0 0 1 1 0 0 0 1 1 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

H is 2-disjunct and of size 42 ˆ 15, implying that np15, 2q ě 42 improving the
lower bound of np15, 2q ě 40 as given in table 4.1. However, H was obtained
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Chapter 4. Bounds and Constructions

through trial and error by appending random rows to the 40 ˆ 15 2-disjunct
matrix attaining the bound in table 4.1, and as such, the matrix H in itself
garners no insight.

4.7 PREDiSPOSED Project
In the following section we consider the methods for combinatorial batching
of DNA detection of pathogenic variants given in [11] and summarise their
methods in the language of group testing as discussed in this thesis.

In [26] they exemplify their concept through the following example. They
arrange 2304 individuals in a 48 ˆ 48 grid, where each test consists of the
samples of the people on the same row, or on the same column, resulting in 96
tests, each consisting of 48 samples.

We now generalise their construction. Let n2 be the number of items, then the
testing matrix Hn corresponding to the aforementioned scheme is the n2 ˆ 2n
block matrix given by

Hn “

»

–

A1 Inˆn
...

...
An Inˆn

fi

fl

where Ak is the n ˆ n matrix such that pAkqi,j “ 1 if j “ k, and 0 otherwise.

Proposition 4.29. Hn is 1-disjunct, but not 2-disjunct.

Proof. As all rows of Hn are distinct and has weight n, so Hn is 1-disjunct.
However, the sum of the k’th row and pk`n`1q’th row contains the pk`1q’th
row, so Hn is not 2-disjunct. ■

Compared to a 1-disjunct matrix constructed using Sperner’s Theorem this is
obviously far from effective, as given 2n tests we can test up to

`

2n
n

˘

items, or
equivalently we can test up to 1

2

ś2n´1
j“n`1 j times as many items given the same

number of tests as their scheme. However, a testing matrix from a Sperner
family obviously dilutes the samples heavily, which can have implications in
implementations.

Furthermore, the rows of the testing matrix having a large weight can imply
logistical issues in the form of generating enough samples of each item and
distributing these, compared to a testing matrix in which the rows have rela-
tively low weight. In their example of 2304 individuals, and to be able to test
at least as many using a Sperner family we would require 14 tests, which would
then let us test 3432 individuals. However, each test will then contain 1716
samples, for a total of 24024 samples, where they only require 4608 samples.
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Appendix A. Python Scripts

A | Python Scripts

A.1 d -disjunctness
1 import itertools
2 import numpy as np
3

4 def dDis(H,d):
5 for S in itertools.combinations(range(len(H)), d):
6 y=np.zeros(len(H),dtype=bool);
7 for i in range(d):
8 y=y|H[S[i]];
9 for j in (set(range(len(H)))-set(S)):

10 if (np.count_nonzero ((H[j]<y)|(H[j]==y))) ==
11 len(H[j]):
12 print("Row number", j, " is contained in the
13 union of rows",S)
14 return False
15 return True

A.2 Code Generator
1 import itertools
2 import numpy as np
3

4 def GenerateCode(H,d):
5 C = {}
6 C[0] = np.zeros(H.shape[1], dtype=bool)
7 j = 1
8 for S in itertools.combinations(range(len(H)), d):
9 y = np.zeros(len(H),dtype=bool)

10 for i in S:
11 y[i] = 1
12 C[j] = np.dot(y,H)
13 j = j + 1
14 return C

A.3 Distance Enumerator
1 import numpy as np
2

3 def DistanceEnumerator(C):
4 y = np.zeros(len(C[1]) +1)
5 for c1 in C.values ():
6 for c2 in C.values ():
7 i = sum ((1*c1|1*c2) - (1*c1&1*c2))
8 y[i] = y[i] + 1
9 return y
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