
Master’s Thesis

A Neural Network Approach for Gas
Leakage Detection in Fluid Power
Accumulators of Wind Turbines

MCE4-1029
Denis Bartz Rafaeli Neto

Aalborg University
Department of Energy Technology

June 2, 2023

Copyright © Aalborg University 2023

LATEXwas used for typesetting this document using VS Code LaTeX Workshop extension. Figures were

created using diagram.io and plots using Matlab or matplotlib Python library. Simulink was used for

all simulations and TensorFlow/Keras for neural network development.

Title:
A Neural Network Approach for Gas Leakage Detection in Fluid
Power Accumulators of Wind Turbines

Semester: 10th
Semester theme: Master’s Thesis in Mechatronic Control Engineering
Project period: 01.02.2023 to 01.06.2023
ECTS: 30
Supervisor: Henrik C. Pedersen
Project group: MCE4-1029

Denis Bartz Rafaeli Neto

SYNOPSIS:

This thesis proposes a neural network-based approach for

gas leakage detection in accumulators of offshore wind tur-

bines, aiming to improve maintenance strategies and min-

imize downtime. The research begins with the develop-

ment and validation of an accurate accumulator model us-

ing data that captures various operational scenarios. The

model is validated using experimental data from the Hy-

draulics Laboratory at AAU. Subsequently, a Fully Convo-

lutional Network (FCN) model is developed for gas leak-

age detection. It is designed to classify a group of input

signals and determine the corresponding gas pre-charge

pressure. The FCN model is trained using time series data

and evaluated for its performance. The study explores the

impact of input variables, sliding window size, hyperpa-

rameters, and sensor utilization on the performance of the

neural network. Experimental results show that incorpo-

rating oil pressure, along with oil and ambient temperature

signals in the neural network model achieves an accuracy

of 95% when classifying the pre-charge pressure. Adding

thermocouples to the accumulator’s surface significantly

enhances the neural network performance, reaching 100%

accuracy.

Pages, total: 50
Appendix: 2
Supplements: 0

By accepting the request from the fellow student who uploads the study group’s project report in

Digital Exam System, you confirm that all group members have participated in the project work,

and thereby all members are collectively liable for the contents of the report. Furthermore, all group

members confirm that the report does not include plagiarism.

PREFACE

Developed by the MCE4-1029 group, the presented thesis focus on finding a new solution
for gas leakage detection in piston accumulators using neural networks. The achieved re-
sults are specific for the used case scenarios, serving as proof of concept and base for future
development.

Reader’s Guide

Citation style was chosen after the IEEE standards. The sources used in this report are listed
in page 51. They are numbered in order of appearance in the text, marked within square
brackets, e.g. [1]. The reference applied before the period of a sentence is attributed to only
that sentence. When used after a period, it is attributed to the section before.

Matrices and vectors are denoted bold, e.g. ϕ1, M.

A list of abbreviations is shown in page vii.

Aalborg University, June 2, 2023

Denis Bartz Rafaeli Neto
<dneto21@student.aau.dk>

SUMMARY

Having a good maintenance strategy is of paramount importance for the future development
of Offshore Wind Turbine (OWT). Pitch system’s accumulators are critical components that
pose challenges in fault detection. To address this issue, this thesis proposes a neural network-
based approach for gas leakage detection in accumulators of offshore wind turbines.

The first step involves developing and validating an accurate accumulator model. Data is
generated by varying the gas pre-charge pressure, load flow intensity, and oil and ambient
temperature to capture different operational scenarios. The model’s accuracy is evaluated
by comparing simulated and experimental data, with a reasonably good estimation of piston
position and some discrepancies in wall temperatures.

Subsequently, a Fully Convolutional Network (FCN) model is developed for gas leakage de-
tection. The FCN model is designed to classify a group of input signals and determine the
corresponding gas pre-charge pressure. It is trained using time series data and evaluated for
its performance.

The FCN model demonstrates good performance in classifying gas pre-charge pressure. The
choice of input variables and the size of the sliding window significantly affect the model’s
performance, with a window size of 3906 samples achieving a balance between accuracy and
training time.

Optimizing hyperparameters, such as the number and size of filters, is crucial for improving
model performance. By considering only three available sensors (oil pressure, oil temperature,
and ambient temperature), the model achieves 95% accuracy and a loss of 0.1634. Further
improvements are observed by including the temperature of the accumulator surface, reaching
100% accuracy and a loss of 0.0085 when three thermocouples are included.

Overall, the experiments demonstrate the potential of neural networks for predicting gas pre-
charge pressure in wind turbines. Careful selection of input variables, optimization of hy-
perparameters, and consideration of data characteristics are essential for achieving optimal
performance. The incorporation of additional sensor data improves model accuracy, high-
lighting the effectiveness of the neural network approach with a limited number of sensors.

Aalborg University CONTENTS

CONTENTS

1 Introduction 1

2 Problem Analysis 2
2.1 System and Fault Definition . 2

2.1.1 Accumulators . 3
2.1.2 Pre-charge Pressure . 3

2.1.3 Gas Leakage . 4

2.2 Maintenance Methods . 4
2.3 Fault Detection and Diagnosis . 5

2.3.1 Classical FDD Methods . 6
2.3.2 Neural Network FDD Methods . 7

2.4 Methodology . 8

2.5 Problem Statement . 8
2.6 Limitations . 9

3 Accumulator Model 10
3.1 System Input/Output . 10

3.2 Oil Model . 11
3.3 Mechanical Model . 11
3.4 Gas Model . 12

3.4.1 Gas Pressure . 12
3.4.2 Gas Temperature . 13

3.5 Thermal Model . 14
3.5.1 The Gas End Cap . 15

3.5.2 The Piston . 15
3.5.3 The Wall . 15

3.6 Model Validation . 17
3.6.1 Load Model Validation . 18
3.6.2 Thermal Model Comparison . 18

3.6.3 Accumulator Model Validation . 19
3.7 Data Generation for Neural Network . 23

4 Neural Network Model 26
4.1 Design of Neural Networks . 26

4.1.1 Semi-physical Modeling . 26

4.1.2 Design Procedure . 27

4.1.3 Understanding the Data . 27

4.1.4 Neural Network for Time Series . 28
4.2 The Model . 30

4.2.1 Promising NN Architectures . 30

4.2.2 Classification using FCN . 31

4.3 The Training Process . 34

MCE4-1029 v

Aalborg University CONTENTS

4.3.1 Model Initialization . 34
4.3.2 Forward Propagation . 34

4.3.3 Cost Function Calculation . 35
4.3.4 Backpropagation . 36

4.3.5 Updating Parameters . 37
4.4 Data Preprocessing . 38

4.4.1 Sliding Window . 38

4.4.2 Robust Scaler . 39
4.4.3 One-Hot Encoding . 40

5 Experimentation and Results 41
5.1 Experiment Setup . 41

5.1.1 Tests Description . 41
5.1.2 Training Description . 42

5.1.3 Analysis Limitations . 42

5.2 Training Results . 43

5.3 Test Validation Results . 45
5.3.1 Sliding Window Size . 45

5.3.2 Minimum Sensor Utilization . 46
5.3.3 Fixed vs Varied Oil and Ambient Temperature 46

5.3.4 Chosen Hyperparameters vs Original . 47

6 Conclusion 48

7 Future Work 50

A Neural Network Review 55
A.1 Basic Definitions . 55
A.2 Hyperparameter Definitions . 57

B Neural Network Architectures 58
B.1 Convolutional Neural Network . 58

MCE4-1029 vi

Aalborg University NOMENCLATURE

NOMENCLATURE

Abbreviations

CNN Convolutional Neural Network

DL Deep Learning

FDD Fault Detection and Diagnosis

FNN Fully Convolutional Networks

LCOE Levelized Cost of Energy

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi Layer Perceptrons

NN Neural Network

OWT Offshore Wind Turbine

ResNet Residual Network

SAEKF State Augmented Extended Kalman Filter

TSC Time-Series Classification

TSR Time-Series Regression

MCE4-1029 vii

Aalborg University 1 INTRODUCTION

1 INTRODUCTION

Offshore wind turbine (OWT) sites are subject to unpredictable and erratic wind load varia-
tions. While the increased loading cycle are beneficial for increasing power output, they also
can cause turbine components to fatigue and wear out more quickly. Moreover, being situ-
ated in the ocean makes OWTs highly susceptible to corrosion and erosion, which leads to a
necessity of continuous and frequent maintenance of the system.[1]

The Levelized Cost of Energy (LCOE) of OWT is still considerably higher compared to onshore
wind turbines, and one factor contributing to this is the high maintenance costs [2]. According
to Ren et al. [1], the operation and maintenance costs for wind turbines represent about 23%
of the total investment for offshore and 5% for onshore. Hence, having a good maintenance
strategy is of paramount importance for the future development of OWT.

Offshore installations present numerous maintenance challenges, which highlights the impor-
tance of these operations. For instance, accessibility is compromised by the distance from
the port and the increased risk of inclement weather. The longer it takes to reach the site,
the more turbine downtime, thus increasing revenue losses and decreasing potential energy
production. [1, 2]

Pitch system faults are one of the main causes of turbine downtime. These correspond to
about 13% of all failures in OWT [3]. This system is responsible for adjusting the output
power by changing the blade pitch angle. It uses the aerodynamics of the blade to slow
down or speed up the turbine’s rotation. Above all, it is part of the safety system in case of
emergency, serving as a rotational brake.

In order to increase safety, each blade is designed with an independent pitch system. These
can be hydraulic or electrical systems. The former utilizes pumps, valves, accumulators and
cylinders to rotate the blade, and the latter uses batteries and electrical motors. A comparison
of the reliability of these two systems is provided by Walgern et al. [4], and results show
that both have similar failure rates, but varying according to power output and manufacturer.
Fluid power pitch systems will be the focus of this thesis, as they are commonly used on
offshore turbines and are preferred over electrical systems [2].

It is shown in [2, 3, 5] how faults are distributed in fluid power pitch systems. Accumulators
account for about 10.5% of all pitch system failures, making it the third most common failure.
In the two main pitch operations — normal operation and emergency shutdown — different
accumulators are utilized. During normal operation accumulators are used to support the
pump actuation and improve the supply system. For emergency situations accumulators are
used as hydraulic energy storage, supplying power to the pitch system so that it can brake
and stop the turbine if necessary.

The importance of accumulators in the reliability of OWT is clear. The next section provides
a more in-depth review of accumulator failures and troubleshooting strategies.

MCE4-1029 1 of 59

Aalborg University 2 PROBLEM ANALYSIS

2 PROBLEM ANALYSIS

This chapter aims to provide a clear understanding of accumulator failures and how to mea-
sure and troubleshoot them. A review of relevant fault detection methods is made, including
both classical and neural networks-based methods. Furthermore, a detailed description of
the problem statement is presented, along with a discussion of the limitations encountered
throughout the course of this thesis.

2.1 System and Fault Definition

As stated in the chapter 1, accumulators are utilized in pitch systems for both normal and
emergency operations. Liniger [5] provided a comprehensive hydraulic diagram and system
description. However, for the purpose of this thesis, a simplified version from [6] is presented
in figure 1, depicting an accumulator that functions for both operations.

Figure 1: Hydraulic schematics of a fluid power pitch system from Liniger et al. [6]

There is one pitch system for each blade, with independent supply circuit located in the
stationary Nacelle. The actuation circuit, connected to the blade, is situated within the rotation
hub. To control the blade pitch angle during normal operation, the actuation circuit is enabled
by the proportional valve. In the event of emergency, the safety valve opens, linking the
accumulator to both cylinder chambers, which extend the cylinder and position the blade at
a 90°angle to the wind. [6]

MCE4-1029 2 of 59

Aalborg University 2 PROBLEM ANALYSIS

2.1.1 Accumulators

As mentioned before, accumulators serve as energy storage devices that collect liquid under
pressure and release it as needed. A spring, weight, or compressed gas is used to counter-
balance the fluid pressure within a given pressure range. Gas accumulators are preferred for
wind turbines due to their reliability, efficiency, and ability to withstand extreme environmen-
tal conditions. For the purposes of this thesis, piston accumulators will be considered.

Piston accumulators provide flexibility in terms of mounting position and size, with a higher
power density, better overall performance, and greater robustness against extreme temper-
atures. They also have lower seal permeability, making them a better choice for hydraulic
systems that use oil or special fluids. A significant advantage of piston accumulators is that
their seals wear slowly, making maintenance and intervention easier to manage. [7]

The main parts of the piston accumulator are shown in figure 2.

Figure 2: Piston accumulator internal parts.

In this type of accumulator, gas and oil are separated by a piston, a movable part that is
in constant contact with the inner wall of the accumulator. A seal must be placed here to
maintain a clear separation between the fluids. In addition, the end caps are threaded and all
have O-rings to prevent external leakage. In the figure 2, the seals are represented by black
squares.

2.1.2 Pre-charge Pressure

The gas pre-charge pressure is an important parameter for this type of accumulator, as it
directly affects the energy storage capacity. The correct way to pre-charge the accumulator is
when the fluid chamber is empty, i.e. the system is stopped and no fluid is being supplied.
This can happen during installation or maintenance procedures. A dry and inert gas such
nitrogen is filled into the accumulator and the pressure is measured, thereby the pre-charge
pressure is acquired. By knowing the gas pressure and temperature, and accumulator volume,
it is possible to calculate the initial amount of gas contained in the accumulator. Later it can
be compared in a condition monitoring system to detect gas leakage. These calculations are
going to be discussed further in section 3.4. [2, 6, 7]

MCE4-1029 3 of 59

Aalborg University 2 PROBLEM ANALYSIS

Of course, setting up the correct pre-charge pressure is crucial. Excessive pre-charge pressure
could cause the piston to hit the oil side end cap, thereby decreasing the accumulator’s output
power and ultimately damaging the piston or the seals. Furthermore, if this pressure is higher
than the maximum pressure of the fluid system, no more fluid can be admitted into the
accumulator. On the other hand, when there is an insufficient pre-charge pressure, the piston
may hit the end cap of the gas side and damage may also occur. [6, 7]

Measuring the pre-charge pressure is a common way to know the amount of gas in the accu-
mulator, however, when in OWT normal operation, the gas pressure and temperature sensors
are omitted due to safety and costs reasons. A way around the situation would be measuring
the piston position, because it gives the current gas chamber volume information and in com-
bination with the oil pressure, the amount of gas could be calculated. Nevertheless, adding
piston position sensors would also increase the risk of failures. [6, 8]

2.1.3 Gas Leakage

Leakage generally comes from small breaches in the seals, caused by improper installation,
wear over time, fluid contamination or damage due to external circumstances. It is defined as
the escape of fluid or gas from a container. There are two main types of leakage: fluid leakage
into the gas chamber or gas leakage. [7]

• When fluid leaks to the gas chamber the available space for the gas decreases. As the
amount of gas remains the same the pressure rises.

• When gas is leaking into the fluid chamber or the external environment, the accumulator
pre-charge pressure decreases, i.e., the charging capacity decreases. Thus, the amount of
gas decreases, but the pressure is maintained, resulting in a decrease in volume. Finally,
gas leakage is associated with a loss of gas mass.

According to [2], the primary mode of failure for accumulators is gas leakage. Due to the
gas’s low viscosity, gas leakage through sealing cracks is facilitated. Moreover, slow seal wear
also makes it challenging to detect leaks, as it develops over a long period of time. This is
significant when modeling the accumulator behavior because the simulation time frame may
not be long enough to account for system changes such as drop in pre-charge pressure or
reduction in gas mass. [8] Therefore, for this thesis, leakage will not be modeled.

2.2 Maintenance Methods

Proactive maintenance is preferred over corrective maintenance as it is done before the actual
failure and, therefore, the turbine downtime is minimized. The goal is to prevent minor
faults from turning into major failures. Preventive, predictive and condition-based are types
of proactive maintenance. [1]

• Preventive refers to schedule maintenance that could be planed based on parameters
such as weather data, component age and energy production plan.

MCE4-1029 4 of 59

Aalborg University 2 PROBLEM ANALYSIS

• Condition-based uses state and deterioration information of components to prevent
major failures. Sensors provide data for condition monitoring systems, health diagnosis
and fault analysis systems.

• Predictive is a more advanced approach that utilizes of condition-based methods com-
bined with virtual models to predict when the failure will happen. This method, al-
though more complex, effectively reduces turbine downtime.

While preventive maintenance can be beneficial, it can become costly when not optimized
and made efficient. Condition-based and predictive maintenance methods are valuable in
minimizing maintenance costs and increasing wind turbine reliability. However, the addition
of sensors to these systems can increase complexity and cost, as well as the risk of sensor
failures. [1] Condition monitoring in conjunction with planned maintenance are key to reduce
costs with operation of a OWT [5].

2.3 Fault Detection and Diagnosis

Fault detection and diagnosis (FDD) methods are often used as part of maintenance strategies
to identify and address problems in a timely manner, before they escalate into more significant
issues. FDD is a high-level process that consists of four steps. The first step is to detect the
fault in the system, followed by diagnosing the cause of the fault. Once these are done, the
next step is to evaluate the impact of the fault and finally the fault is addressed. [9]

Several types of FDD classification and framework exist, including model-based, signal-based,
and data-based methods. A comprehensive analysis of these classifications can be found in [9,
10]. The selection of an appropriate FDD method depends on several considerations, such as
the complexity of the system, available data, the type and severity of the faults, the available
computational resources, and desired level of accuracy and robustness. To provide a better
context for the methods presented in the next section, a simplified FDD classification diagram
is shown in figure 3a. The neural network methods are also commonly divided regarding the
learning approach, as shown in figure 3b.

(a) Common FDD classification. (b) Common NN methods.

Figure 3: Classification showing some of the most common FDD and NN methods.

MCE4-1029 5 of 59

Aalborg University 2 PROBLEM ANALYSIS

Classical FDD methods, which are addressed in section 2.3.1, have been widely developed
and extensively researched, although there are limited publications on gas leakage detection
on accumulators [2]. These methods include signal processing techniques, statistical methods,
and model-based approaches. Signal processing techniques analyze system-generated signals
and identify abnormalities or changes that could indicate a fault. Statistical methods rely
on statistical models to analyze data and detect anomalies. Model-based approaches utilize
mathematical models to simulate system behavior under various operating conditions and
identify faults based on deviations from expected behavior. [10]

Neural networks (NN) have emerged as a promising approach in FDD due to their ability
to effectively handle complex and nonlinear systems. Their advantages include parallel data
processing, generalization capability, and ease of implementation [11]. NNs can be trained to
detect and classify faults in real-time by learning from data generated by the system. They are
commonly employed in tasks such as regression, classification, and clustering, which involve
quantitative output, discrete classification, and automatic categorization based on similarities,
respectively [12]. The section 2.3.2 presents previous works in the field of FDD using NN and
serves as a foundation for the testing of various neural network approaches in this thesis.

2.3.1 Classical FDD Methods

A comprehensive research was made by Asmussen, Liniger, and Pedersen [2] on gas leakage
detection methods in pitch systems. Most approaches mentioned are only effective during
charge or discharge periods, not during continuous operation. However, from this study,
two methods are capable of continuous operation: the first is a signal-based leakage detec-
tion method that utilizes multiresolution signal decomposition based on wavelets, while the
second method is a State Augmented Extended Kalman Filter (SAEKF) approach.

The proposed signal-based gas leakage detection method in [6] use multiresolution signal
decomposition based on wavelets. Detail coefficient 9 of the supply pressure signal was found
to be sensitive to gas leakage faults. The method was able to isolate several levels of pre-
charge pressure during nominal operating conditions of a wind turbine, and was also shown
to be robust in a multi-fault environment. The experimental results showed good correlation
to the simulations and indicated that the method was effective.

The paper [8] proposes a State Augmented Extended Kalman Filter (SAEKF) based approach
for gas leakage detection by estimating the pre-charge pressure of a hydraulic piston accu-
mulator using temperature measurements on the accumulator surface as inputs. The SAEKF
model estimates the number of moles of nitrogen gas in the accumulator, which is used to
determine the pre-charge pressure. The estimation was associated with an offset up to 10%,
which can be attributed to uncertainties in heat transfer coefficients and model assumptions.
Despite the offsets, the SAEKF was shown to be suitable for detecting changes in the pre-
charge pressure over time.

MCE4-1029 6 of 59

Aalborg University 2 PROBLEM ANALYSIS

2.3.2 Neural Network FDD Methods

From Asmussen, Liniger, and Pedersen [2] review, only one gas leakage detection method was
based in neural networks, so further research was made within this topic. Not many articles
were found in gas leakage detection in accumulators, however FDD using neural networks
has been shown good results for similar applications.

Jin et al. [13] presents a fault detection and identification scheme for diagnosing piston seal
wear and subsequent internal leakage in hydraulic cylinders. The proposed method uses
wavelet transform as a feature extractor to transform the raw oil pressure data into a feature
vector consisting of wavelet packet subband energy, energy entropy, energy variance, and
root mean square of the wavelet detailed coefficient d4. This feature vector feeds into the
wavelet neural network serving as a pattern recognizer for automatically classifying the fault
patterns. The study demonstrates that the proposed scheme is capable of effectively detecting
and classifying the piston seal wear with excellent accuracy.

Chen et al. [14] proposes a deep learning (DL) based method to detect and classify wind tur-
bine imbalance faults caused by ice accretion. The method combines long short-term memory
(LSTM) with an attention mechanism to improve the learning ability and convergence rate. It
uses voltage and current signals, as well as wind speed and torque. The simulation results
show that the proposed method is feasible for wind turbine blade imbalance detection, with
the highest accuracy of 100

Kopbayev et al. [15] presents a neural network model to detect gas leakage in natural gas
storage facility. The interesting part in this study is that it transforms the acquired signals
into images, which later are used in the model. The feature extraction is made by the pre-
trained convolutional neural network (CNN) GoogLeNet, and classification is achieved by a
bidirectional LSTM layer network. The proposed model demonstrated promising results for
early and accurate leak detection without requiring fine-tuning of layer configuration and
other training parameters.

Specifically for wind turbines, in a more general review, Helbing and Ritter [16] discusses
the use of neural networks for fault detection and classification. Studies have shown that
neural networks are capable of detecting early stage incipient faults in various components of
turbines. Unsupervised deep learning methods using historical production data have shown
better performance than shallow multi-layer neural networks. However, supervised deep
learning approaches are more effective for fault diagnosis, although obtaining labeled data
for training is challenging due to issues such as label accuracy and class imbalance.

CNNs and LSTM networks are fundamental components of more complex neural network
architectures and both have been extensively studied in various application domains. As
mentioned previously, they have shown promising potential as alternatives to classical FDD
methods. A detailed exploration of these and others NN methods employed in this thesis is
provided in chapter 4.

MCE4-1029 7 of 59

Aalborg University 2 PROBLEM ANALYSIS

2.4 Methodology

The approach for solving the leakage detection problem is described below. The steps required
to carry out this thesis are: state-of-art analysis, accumulator model, data generation, neural
network model, documentation of results and discussion.

State-of-art Analysis Before delving into the modeling process, it is crucial to gather knowl-
edge from established and proven methods. As previously mentioned, the use of neural
networks to detect accumulator faults are not extensively researched. Therefore, this step
aims to gather insights from various scenarios and sources of information.

Accumulator Model At first an accumulator model will be developed, based on the research
conducted by Liniger et al. [6] and Asmussen et al. [8]. This model is important to provide
flexibility in changing parameters and conditions that would otherwise be difficult with ex-
perimental setup. It serves as a useful testing and experimentation tool for the neural network
methods used in this thesis. Once the model has been validated using experimental data from
the laboratory, multiple data frames will be generated, incorporating variations in pre-charge
pressure and load.

Neural Network Model After reviewing basic concepts of machine learning and neural net-
works, the work starts by setting up the required software and testing basic models as a way
of practicing and understanding the methods. The state-of-art analysis is useful as founda-
tion on the development of the methods chosen. Several methods may be tested against the
generated data from the accumulator model, however only some of the most interesting ones
are going to be presented in this thesis.

Discussion Among the results discussed are: the validation of the accumulator model and
potential improvements, a comparison of the tested neural network methods and recommen-
dations for their deployment. The report will be written as the previous steps progress, and
it will also cover general improvements and outline future work.

2.5 Problem Statement

Considering the possibility of identifying gas leakage through monitoring the pre-charge
pressure, and taking into account the existing pre-charge estimation methods outlined in
section 2.3.1, as well as the neural network methods presented in section 2.3.2, the primary
objective of this thesis is to tackle the following problem statement:

"How can a neural network be developed and utilized to assist in the investigation of gas leakage from
fluid power accumulators of wind turbines?"

MCE4-1029 8 of 59

Aalborg University 2 PROBLEM ANALYSIS

2.6 Limitations

Some limitations emerged during the development of this thesis and are better explained
below.

• Only the accumulator is considered, the rest of the pitch system and wind turbine are
simplified as a "load" signal.

• Sensors cannot be added to the system, therefore the goal is to develop the neural net-
work with fewer variables and scale up as needed.

• Due to time constraints, the neural network model is not applied in real hardware.

• The amount experimental data provided by the laboratory is not enough to train the
neural network, therefore it is only used for accumulator model validation.

• Hardware used for training the neural network is a personal computer with an Intel®
Core™ i7-8750H CPU and Nvidia GTX 1050 Ti GPU.

• Due to familiarity, the neural network will be programmed using TensorFlow/Keras and
other python libraries.

MCE4-1029 9 of 59

Aalborg University 3 ACCUMULATOR MODEL

3 ACCUMULATOR MODEL

The works of Liniger et al. [6] and Asmussen et al. [8] are the foundation for the model
presented in this section. In order to simulate the accumulator real-life behavior, several
equations are taken into account. A mechanical model estimates the piston position using
Newton’s second law of motion. For the gas pressure and temperature, an equation of state
and a balance of energy are utilized. Finally, the oil pressure is derived from the continuity
flow equation. Some important considerations taken are:

1. As mentioned in section 2.1.3, the gas leakage is not explicitly modeled, hence it is
considered that the amount of gas is constant (mg = constant) during simulation time.

2. The gas pressure and temperature distribution are uniform throughout the chamber.
3. Oil pressure and temperature are uniform throughout the hoses and the accumulator oil

chamber.
4. The accumulator dimensions, the flow reference direction are based on figure 4.

Figure 4: Piston accumulator diagram for model and simulation.

3.1 System Input/Output

As can be seen in figure 4 the system input flow, qp, is being supplied by a fixed-displacement
pump. For simplification purpose the pitch system load is represented by an output flow qlo.
The difference between both is the flow entering or leaving the accumulator oil chamber.

qa = qp − qlo (1)

The accumulator flow qa is positive when charging and negative when discharging. The pump
is activated if the oil pressure drops below a lower limit po,min, and is deactivated when it rises
above an upper limit po,max. The accumulator hence works within this threshold.

MCE4-1029 10 of 59

Aalborg University 3 ACCUMULATOR MODEL

The load flow in this thesis is modeled based on the work of Liniger et al. [6] and load
profiles provided by the AAU laboratory. The mentioned work simulates a controlled pitch
system connected to FAST (Fatigue, Aerodynamics, Structures and Turbulence). This program
allows different configurations of wind speed, turbulence and ambient temperature, which
can be used for simulation with Matlab/Simulink. Due to the wind stochastic nature, the
load variations on the pitch system are also random. Therefore, for this thesis, the load is
generated by a combination of stochastic signals and band-limited white noise. The load
validation is presented in section 3.6. Base pitch system parameters are provided in table 1.

Table 1: Base parameters for the pitch system simulation.

Notation Description Value Unit

qp Pump flow 20 (L/min)
qlo Load flow ≈ 0→ 20 (L/min)
qa Accumulator flow - (L/min)
po,max Oil pressure upper limit 190 (bar)
po,min Oil pressure lower limit 165 (bar)

3.2 Oil Model

As the system input is the pump flow, it is necessary to know the oil pressure, po, which is
considered uniform along the hoses and the whole accumulator oil chamber. The continuity
flow equation (2) is applied.

Qin −Qout =
dV
dt

+
V
β

dp
dt

(2)

The change in oil pressure ṗo is acquired using equation (3), which later is used in the accu-
mulator mechanical model [8].

ṗo = (qa − V̇o) ·
β

Vo,0 + Vo
(3)

Where V̇o is the time derivative of the oil volume, Vo,0 is initial oil volume, Vo is the current oil
volume, and β is the oil Bulk Modulus.

3.3 Mechanical Model

The piston is included in the model so that the volume change of both gas and oil chambers
take into account the piston dynamics. This is achieved by using Newton’s second law of
motion [8]:

ẍpmp = (po − pg)Ap − Ff ric (4)

Again, po is the oil pressure and pg is the gas pressure, xp is the piston position, Ap is the
piston area, mp is the piston mass. The friction Ff ric is modeled as in equation (5) [8].

Ff ric = B f ric ẋp + C f ricsign(ẋp) (5)

MCE4-1029 11 of 59

Aalborg University 3 ACCUMULATOR MODEL

Where B f ric is the viscous friction and C f ric is the Coulomb friction. The constants used in this
model are presented in table 2.

Table 2: Accumulator mechanical model parameters [8, 17].

Notation Description Value Unit

Ap Piston area 2.54× 10−2 (m2)

lp Piston length 0.11 (m)

mp Piston mass 3.97 (kg)
B Viscous friction coefficient 5× 103 (N·s

m

)
C Coulomb friction coefficient 2× 103 (N)

Va,0 Non-displaceable accumulator volume 1.4× 10−3 (m3)

la Accumulator length 0.983 (m)

With the piston position determined, and considering the accumulator dimensions shown in
figure 4, it becomes straightforward to calculate the volumes of the oil and gas chambers:

Vo = xp · Ap (6)

Vg = Va −Vo −Vpiston + Va,0 (7)

Where the accumulator volume Va is defined as equation (8).

Va = la · Ap = 25 L (8)

3.4 Gas Model

Pre-charge pressure, as mentioned in section 2.1.2, can be used to estimate the quantity of
gas present in the accumulator, i.e., the mass of the gas. Given that leakage, for this thesis, is
defined as a loss of gas mass, by monitoring the gas pressure along with the gas temperature,
it is possible to determine whether leakage has occurred.

3.4.1 Gas Pressure

When pressure changes in the accumulator, the resulting gas force on the piston behaves non-
linearly, the gas stiffness increases with the pressure [18]. As the gas used is nitrogen, it is
common to assume that it is an ideal gas and adiabatic, however in applications where steel
accumulator are used, the gas behavior is best described by the Benedict-Webb-Rubin (BWR)
gas state equation (9) [6, 8].

pg =
RTg

υg
+

B0RTg − A0 −
C0

T2
g

υ2
g

+
bRTg − a

υ3
g

+
aα

υ6
g
+

c

(
1 +

γ

υ2
g

)
e
−

γ

υ2
g

υ3
gT2

g
(9)

Where υg is specific molar volume, mg is the gas mass, and A0, B0, C0, a, b, c, α, γ and R are the
gas constants for nitrogen that are shown in table 3.

MCE4-1029 12 of 59

Aalborg University 3 ACCUMULATOR MODEL

Table 3: Accumulator gas model parameters [8].

Notation Description Value Unit

R Gas constant 8.31 (N)

A0 BWR constant 0.11 (−)
B0 BWR constant 4.07× 10−5 (−)
C0 BWR constant 816.58 (−)
a BWR constant 2.54× 10−6 (−)
b BWR constant 2.33× 10−9 (−)
c BWR constant 7.38× 10−2 (−)
α BWR constant 1.27× 10−13 (−)
γ BWR constant 5.3× 10−9 (−)

The gas specific molar volume υg is calculated by equation (10).

υg =
Vg

nN2

[
m3

mol

]
(10)

Here nN2 is the number of moles of nitrogen, which is another measure for gas leakage.
As mentioned in section 2.1.3, the gas leakage is not explicitly modeled, so it assumed that
nN2 is constant. In order to determine this value, calculations are made prior to running
the simulation, and after the initial conditions have been set. Since gas filling occurs only
when the accumulator is completely discharged of fluid, the initial gas volume Vg,0 is known.
By measuring the gas pre-charge pressure and the gas temperature, in combination with
equation (9), the gas specific volume can be found. This equation’s input are now pg and Tg

and the output is υg. Equation (10) allows for isolation of nN2, which finally determines the
initial number of moles. The initial gas mass can be calculated by equation (11).

mg = nN2 ·MN2 (11)

3.4.2 Gas Temperature

Due to the lack of sensors, it is challenging to gather data on the gas temperature of accumu-
lators in OWT. This might be as a result of complexity or cost savings from IO signal modules.
Either way, this thesis utilizes two method of estimating gas temperature and a comparison is
made in section 3.6.

Method 1: A simpler way of calculating the gas temperature is done in Liniger et al. [6],
which uses Otis and Pourmovahed [19] energy balance deduction in conjunction with an ap-
proximated thermal time constant τ made by Rotthäuser [20]. Assuming the gas temperature
to be uniform across the accumulator chamber, the time derivative of the gas temperature is
expressed by equation (12).

Ṫg =
Ta − Tg

τ
−

υ̇gTg

cN2MN2

(
∂pg

∂Tg

)
(12)

MCE4-1029 13 of 59

Aalborg University 3 ACCUMULATOR MODEL

The approximated τ is calculated by equation (13).

τ ≈ 0.3 · 10−5 · ppc ·V0.33
a + 86.2 ·V0.49

a (13)

Where ppc is the gas pre-charge pressure and Va the accumulator total volume.

Method 2: It has been demonstrated in the work of Asmussen et al. [8] that accumulator
surface temperature measurement yields an accurate gas temperature estimation. It utilizes
the energy balance deduction from Pourmovahed and Otis [21] to determine the change in
temperature, which is presented in equation (14).

Ṫg = − Q̇s

cN2MN2nN2
−

υ̇gTg

cN2MN2

(
∂pg

∂Tg

)
(14)

The total heat flow from the gas to all of its interacting elements is represented here by Q̇s.
By using this method, it is necessary to create a model of the accumulator’s thermal behavior
that incorporates the heat exchange between the accumulator elements. This thermal model
is shown in section 3.5.

For both methods, the time derivative of the gas specific molar volume is found by equa-
tion (15), and the partial derivative of gas pressure with respect of gas temperature by equa-
tion (16).

υ̇g =
V̇g

nN2
= − V̇o

nN2
= −

ẋp · Ap

nN2
(15)

∂pg

∂Tg
=

R
υg

+

(
2C0

T3
g

)
+ RB0

υ2
g

+
bR
υ3

g
−

2c

(
γ

υ2
g + 1

)
e

−γ

υ2
g

T3
g υ3

g
(16)

3.5 Thermal Model

The main goal of this model is to find the heat flow from the gas to its interfacing elements
and later find the gas temperature with equation (14). The elements are: the gas end cap,
the piston and the accumulator wall, which is divided in 8 parts with equal dimensions. The
accumulator and its elements are depicted in figure 5.

Figure 5: Accumulator elements for thermal model.

MCE4-1029 14 of 59

Aalborg University 3 ACCUMULATOR MODEL

The oil end cap is always in contact with the oil, so it is considered that both are in temperature
equilibrium (Toe = To). The equations shown in this section are from Asmussen et al. [8]. The
total heat flow from the gas to its interfacing elements is expressed by equation (17).

Q̇s =

(
8

∑
i=1

Q̇[i]
gw

)
+ Q̇gp + Q̇ge (17)

Where Q̇gw is the heat flow from the gas to the wall, Q̇ge is the heat flow to the end cap and
Q̇gp is to the piston, which are elaborated in the following subsections. Ambient, end cap, gas
and oil are denoted by a, e, g, o respectively.

3.5.1 The Gas End Cap

The general heat flux equation can be used to determine the gas side end cap temperature Te.
The end cap exchanges heat with the gas and the surrounding ambient, therefore their heat
flow are included in the equation.

Ṫe =
Q̇ge + Q̇ae

mecsteel
(18)

Where me is the end cap mass and csteel the specific hear capacity for steel. The convective
heat transfer from the end cap to the gas and to the ambient are:

Q̇ge = αg Aeg
(
Tg − Te

)
(19)

Q̇ae = αa Aea (Ta − Te) (20)

Here, αg and αa are the convective heat transfer coefficients and Aeg and Aea are the surface
area of contact between the respective elements.

3.5.2 The Piston

The piston is treated similarly to the end cap, but now the elements in contact are the gas and
the oil. The heat transfer to the wall element is considered negligible. The equations are:

Ṫp =
Q̇gp + Q̇op

mpcsteel
(21)

Q̇gp = αg Apg
(
Tg − Tp

)
(22)

Q̇op = αo Ap
(
To − Tp

)
(23)

3.5.3 The Wall

Similar procedures are applied to the wall elements, however, in this case, it is necessary to
consider not only the convection between the wall elements and the gas, oil, and ambient, but
also the heat conduction between the wall elements. The total wall heat flow is expressed in
equation (24). The index i denotes each wall element (imax = 8).

Ṫ[i]
w = Ṫ[i]

convective + Ṫ[i]
conductive (24)

MCE4-1029 15 of 59

Aalborg University 3 ACCUMULATOR MODEL

Convective As previously stated, the convective heat transfer from each wall element to the
surroundings must be considered. It is important to note that the heat exchange from the
accumulator wall and the piston is disregarded, since it is significantly smaller.

Ṫ[i]
convective =

Q̇[i]
aw + Q̇[i]

ow + Q̇[i]
gw

ρsteelcsteel(r2
os − r2

is)πdx
(25)

The thickness of the wall element is now taken into account, ros and ris are the accumulator’s
inner and outer surface radius. Here dx is introduced, which is the length of one wall element.
ρsteel is the density of steel. The convective heat flows are expressed by:

Q̇[i]
ow = αo Aow

(
To − Ṫ[i]

w

)
ξ
[i]
o (26)

Q̇[i]
gw = αg Agw

(
Tg − Ṫ[i]

w

)
ξ
[i]
g (27)

Q̇[i]
aw = αa Aaw

(
Ta − Ṫ[i]

w

)
(28)

As the piston is moving back and forth, the heat flow for given wall element varies. At certain
times, the wall comes into contact with the gas, while at other times it is in contact with the
oil. To account for this dynamic behavior, two terms are introduced: ξo and ξg. These terms
represent the ratio of contact with the oil and gas, respectively, for each wall element. For the
oil the ratio is defined as equation (29), and for the gas, equation (30):

ξ
[i]
o =

1 for xp > idx

xp − (i− 1)dx

dx
for idx ≤ xp ≤ idx

0 for xp < idx

(29)

ξ
[i]
g =

0 for xp + lp > idx

1−
xp − lp + idx

dx
for (i− 1)dx ≤ xp + lp ≤ idx

1 for xp + lp < idx

(30)

Where lp is the length of the piston.

Conductive The conductive heat flow for each wall element is considered solely in the axial
direction, and a uniform temperature distribution is assumed within the element. The total
heat flow is derived from the Fourier’s law of heat conduction, where the heat flow is pro-
portional to the surface area and the thermal conductivity λsteel . Therefore, after a series of
deductions, it is finally defined as:

Ṫ[i]
conductive =

λsteel

ρsteel · csteel

(
T[i−1]

w − 2T[i]
w + T[i+1]

w

d2
x

)
(31)

It is important to note that there is a slight variation in the equation for the first and last
wall elements. Specifically, when calculating the temperature change caused by conduction
in the first wall element, the term T[i−1]

w is replaced with the temperature of the oil side end
cap To. Similarly, for the last element, the term T[i+1]

w is replaced with Te, which denotes the
temperature of the gas side end cap.

MCE4-1029 16 of 59

Aalborg University 3 ACCUMULATOR MODEL

The equations are then:

Ṫ1
conductive =

λsteel

ρsteel · csteel

(
To − 2T1

w + T2
w

d2
x

)
(32)

Ṫ8
conductive =

λsteel

ρsteel · csteel

(
T7

w − 2T8
w + Te

d2
x

)
(33)

The constants used in the thermal model are presented in table 4.

Table 4: Parameter values used in the thermal model [8].

Notation Description Value Unit

MN2 Molar mass of nitrogen 2.8× 10−2
(

kg
mol

)
cN2 Specific heat capacity of nitrogen 1040

(
J

kg·K

)
me End-cap mass 28.45 (kg)

csteel Specific heat capacity of steel 490
(

J
kg·K

)
ρsteel Density of steel 7800

(
kg
m3

)
λsteel Density of steel 58

(W
m·K
)

αa Heat transfer coefficient (air to steel) 35
(W

m2·K
)

αo Heat transfer coefficient (oil to steel) 140
(W

m2·K
)

αg Heat transfer coefficient (gas to steel) 65
(W

m2·K
)

Aeg Area between end-cap and gas 2.54× 10−2 (m2)

Aea Area between end-cap and air 9.18× 10−2 (m2)

Apg Area between piston and gas 2.71× 10−2 (m2)

ris Inner radius of accumulator 9× 10−2 (m)

ros Outer radius of accumulator 11× 10−2 (m)

n Number of wall elements 8 (−)
dx Length of wall element 0.123 (m)

1 αa, αo, and αg are tuning parameters that were found during the model vali-
dation.

3.6 Model Validation

Validating the model is important to ensure that the accumulator system is accurately rep-
resented. A more accurate model means that the neural network can be trained using sim-
ulation data, and it will still perform greatly in the real system. This not only saves time
but also reduces costs associated with implementing the neural network-based FDD method.
The validation process includes assessing the load model, comparing the two thermal models
discussed in section 3.4.2, and evaluating the overall system behavior by comparing it with
experimental data.

MCE4-1029 17 of 59

Aalborg University 3 ACCUMULATOR MODEL

3.6.1 Load Model Validation

As mentioned in section 3.1, the load flow qlo, which is a model’s input, is generated during
simulation. Load profiles based on real pitch system data were provided by the laboratory.
In order to validate the load generation, a visual comparison is made. The achieved load
stochastic behavior is presented in figure 6.

0 50 100 150 200 250 300 350 400 450 500

0

10

20

30

40

50

F
lo

w
 [
L
/m

in
]

Simulated Load Validation

Experimental

0 50 100 150 200 250 300 350 400 450 500

Time [s]

0

10

20

30

40

50

F
lo

w
 [
L
/m

in
]

Simulation

Figure 6: Simulated and experimental load.

While the simulation model may not be an exact match, it effectively captures the load behav-
ior observed in the experimental data. The model successfully replicates the stochastic nature
of the load, including high peaks that can reach up to 40 L/min. However, in order to enhance
the time performance of the simulation, certain high-frequency components were suppressed.
Overall, the simulation model provides a satisfactory representation of the load based on the
experimental data.

3.6.2 Thermal Model Comparison

Two thermal models have been presented in section 3.4.2 and 3.5. The first model is simpler
and quicker to implement, relying on rough estimations of the thermal time constant τ. The
second model, while more precise, requires the installation of 8 thermocouple sensors on the
surface of the accumulator. In figure 7, a comparison is shown between the estimated gas
temperature obtained from both thermal models.

Thermal model 2 provides a more detailed understanding of the temperature distribution
within the accumulator. Since the oil and gas exhibit different heat transfer coefficients, the
temperature measured on the accumulator surface will change as the piston moves. Hence,
this method offers a smart alternative to measuring the piston position. Additionally, obtain-
ing more temperature signals is beneficial for training the neural network as it allows for a
more accurate representation of the real system by incorporating additional input variables.

MCE4-1029 18 of 59

Aalborg University 3 ACCUMULATOR MODEL

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

T
e

m
p

e
ra

tu
re

 [
°C

]

Gas Temperature (T
g

)

Thermal Model 1

Thermal Model 2

0 50 100 150 200 250 300 350 400 450 500

Time [s]

0

10

20

30

40

F
lo

w
 [

L
/m

in
]

Simulated Load

Figure 7: Accumulator thermal model comparison using gas pre-charge pressure of 130 bar.
The first method uses the thermal time constant τ, and the second utilizes 8 surface tempera-
ture measurement to estimate the gas temperature.

Although both methods exhibit a similar overall trend, the first model has a faster response
compared to the second model. After the first charging stage, the gas temperature goes up to
similar value, about 50°C and start decreasing as the load cycle continues. The first method
then settles in a permanent condition faster than the second method. The behavior of the
models is influenced by the chosen values of τ, αa, αo, and αg, and further tuning could
enhance and approximate the result.

3.6.3 Accumulator Model Validation

A test bench, as shown in figure 8, resembling the hydraulic components and circuit of the
presented model is available in the Hydraulics Laboratory at Aalborg University. For vali-
dation purposes, the system is equipped with various sensors, including thermocouples for
measuring wall and end cap temperatures, piston position, supply pressure, and supply and
load flow. The data used for this validation was collected by students of the 8th semester
and provided by the professor Jesper Liniger from the department of Energy Technology. It
includes temperature measurements from all eight wall elements, with additional measure-
ments at the bottom of elements 6 and 8. It also contains a range of pre-charge pressures and
different load conditions.

For the model validation, a specific dataset consisting of a pre-charge pressure of 175 bar, zero
load flow, and a constant supply pressure of 195 bar was chosen. This dataset is unique within
the provided data as it represents a scenario with zero load and a measurement duration of
1000 seconds.

MCE4-1029 19 of 59

Aalborg University 3 ACCUMULATOR MODEL

Figure 8: Test bench available in the laboratory [8].

To initiate the validation process, the initial conditions of the model need to be set as closely
as possible to the conditions present during the collection of experimental data. The chosen
values for this validation were based on the report [17] authored by the students who con-
ducted the experiments. It should be noted that while the provided data is valuable, certain
conditions were unknown due to incomplete documentation of the tests or limitations of the
experimental system. For instance, supply pressure has an offset value hard-coded, and load
flow is affected by internal leakage in the valve, leading to non-zero flow when closed [17].
The initial conditions of the model are set according to table 5.

Table 5: Model initial condition for validation.

Parameter Description Value Unit

ppc Gas pre-charge pressure 175 (bar)
Ta Ambient temperature 22.5 (°C)
To Oil temperature 40.5 (°C)
xp0 Piston position 0 (m)

Tw0 Wall temperature 22.5 (°C)
Tge Gas side end cap temperature 22.5 (°C)

After setting the initial conditions, several calculations are performed. The initial oil and gas
chamber volume are found to be Vo0 = 0 and Vg0 = 23.6 liters, respectively. The initial specific
molar volume of the gas is found using the BWR equation (9), followed by the calculation of
the number of nitrogen moles, nN2 = 163.6 moles, that will remain constant during simulation.
Gas mass is also calculated for verification purposes, mg = 4.6 kilos.

MCE4-1029 20 of 59

Aalborg University 3 ACCUMULATOR MODEL

Piston Position In order to verify the piston position, the measured supply pressure po is
fed into the mechanical model (section 3.3), and the estimated piston position is recorded.
The chosen gas thermal model is the method 2 (section 3.5), which utilizes the temperature
of the eight elements to determine the gas temperature. The results are shown in figure 9.
The piston position value from both simulation and experimental data is plot, as well as
the residual, which represents the difference between them. The bottom graph shows the
experimental oil pressure. It can be observed that the piston position residual remains within
the range of ±5 millimeter, with a noticeable offset at the steady-state regime.

0 100 200 300 400 500 600 700 800 900 1000
0.04

0.05

0.06

0.07

0.08

P
o

s
it
io

n
 [

m
]

Piston Position

sim

exp

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

-0.01

-0.005

0

0.005

0.01

P
o

s
it
io

n
 [

m
]

Piston Position Residual

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

180

185

190

195

200

P
re

s
s
u

re
 [

b
a

r]

Oil Pressure

Figure 9: Simulated and experimental piston position with constant pressure supply, zero
load flow and gas pre-charge pressure of 175 bar.

Gas Temperature In order to evaluate the thermal model, the wall temperatures of elements
1, 6 and 8 are compared. The results are presented in figure 10. The top graph displays the
piston position and dashed lines indicating the wall elements. In this particular test, the piston
is positioned within the first element. The bottom three graphs shows a comparison between
the experimental and simulated temperatures. For both wall element 6 and 8, both the top
and bottom temperatures are shown.

Observing the bottom graphs, it becomes apparent that the accumulator top and bottom tem-
peratures are not equal, indicating natural convective heat transfer within the fluid. This
observation contradicts the assumption of uniform temperature distribution. However, the
simulated temperature resides between the top and bottom temperatures, serving as an inter-
mediate temperature that provides a reasonable approximation.

MCE4-1029 21 of 59

Aalborg University 3 ACCUMULATOR MODEL

Figure 10: Simulated and experimental wall temperature with constant pressure supply, zero
load flow and gas pre-charge pressure of 175 bar.

Deviations can be observed in wall element 1, which can be attributed to inaccurate assump-
tions regarding the uniform distribution and constant temperature of the oil, as well as the
assumption that the oil end cap has the same temperature as the oil, which is 40.5°C. These
deviations suggest that the high temperature of the oil may affect the temperature of the ac-
cumulator wall differently than what is observed in the experimental measurements. Another
possible reason for the deviations could be inaccurate documentation of the experimental
tests, as it is unclear which tests were conducted accurately or if any errors were made during
the measurements.

Overall, the model can be considered validated with minor deviations. The simulated and ex-
perimental piston position showed reasonable agreement, and, although some discrepancies,
the thermal model showed reasonable approximation. To further enhance the accuracy of the
model, fine-tuning and refinement, along with more comprehensive and detailed experimen-
tal data, would be beneficial in practical applications.

MCE4-1029 22 of 59

Aalborg University 3 ACCUMULATOR MODEL

3.7 Data Generation for Neural Network

After understanding the limitations of the model, the next step is to generate data for training
the NN. Here, no experimental data is used, which means that po is estimated as described in
section 3.2 and the load is automatically generated as explained in section 3.1. The system now
simulates the behavior of pitch system when working in normal operation. The simulation
data is then saved in a .mat file using a sampling rate of 12.5 Hz.

A simulation time of 3000 seconds is selected, offering a significant timeframe for data ma-
nipulation and preprocessing before training. The simulation process is performed across
five gas pre-charge pressure levels, four ambient temperature levels, and four oil temperature
levels. Furthermore, the load generator seed is altered, and the process is repeated five ad-
ditional times while maintaining constant initial conditions. The total number of simulations
therefore is 400. This approach ensures a diverse and comprehensive dataset for training and
evaluation. The variations and their respective parameter is condensed in table 6.

Table 6: Variation parameter levels.

Parameter Variation List

load seed 23342, 23343, 23344, 23345, 23348
ppc 70, 90, 110, 130, 150 bar
Ta 18, 22, 26, 30 ° C
To 20.5, 30.5, 40.5, 50.5 ° C

To provide a visual representation of the generated data and aid in its comprehension, several
graphs are presented below. In figure 11, the supply and load flow as well as the accumulator
flow throughout the entire operation cycle is presented.

0 100 200 300 400 500 600
-30

-20

-10

0

10

20

30

F
lo

w
 [

L
/m

in
]

System Flow

q
p

q
a

0 100 200 300 400 500 600

Time [s]

-10

0

10

20

30

40

F
lo

w
 [

L
/m

in
]

q
lo

Figure 11: System flow at a pre-charge pressure of 130 bar. The load is automatically gener-
ated. The flow is considered positive when entering the accumulator.

MCE4-1029 23 of 59

Aalborg University 3 ACCUMULATOR MODEL

By observing this figure, the flow behavior resulting from the activation and deactivation cycle
of the fixed-displacement can be perceived. The constant flow rate of 20 L/min is activated
whenever the oil pressure falls below 165 bar and deactivated when it rises to 190 bar. The
gas pre-charge pressure is set to 130 bar.

With the model, it is also possible to know the gas and oil pressure, volume, and temperature,
which behavior during normal operation is depicted in figure 12. It is noteworthy that the
gas temperature reaches a stable state close to the ambient temperature after approximately
400 to 500 seconds. Thus, the system remains in a steady-state condition for a duration of
approximately 2500 seconds.

0 100 200 300 400 500 600

Time [s]

140

150

160

170

180

190

200

P
re

s
s
u

re
 [

b
a

r]

Accumulator Pressures

p
g

p
o

0 100 200 300 400 500 600

Time [s]

0

5

10

15

20

25

V
o

lu
m

e
 [

L
]

Accumulator Volumes

V
g

V
o

0 100 200 300 400 500 600

Time [s]

20

30

40

50

T
e

m
p

e
ra

tu
re

 [
°C

]

Temperature

T
g

T
o

T
ambient

Figure 12: System pressure, volume and temperature at 130 pre-charge pressure.

In the figure, it is possible to observe pressure drops below the 165 bar limit, which aligns
with the findings in [6]. These drops typically happen when there are sudden load changes,
and the accumulator lacks sufficient charge to compensate for them. Moreover, the delay in
pump activation intensify this process. During periods of high pitch activity, this behavior
could lead to incorrect shutdowns, as the pump is deactivated and the accumulator fails to
adequately support the load.

MCE4-1029 24 of 59

Aalborg University 3 ACCUMULATOR MODEL

The figure 13 provides a comparison between the pressure drops of all five levels of gas pre-
charge pressure. It is evident that as the gas pre-charge pressure decreases, the magnitude of
the pressure drop becomes more pronounced.

Figure 13: Pressure drop comparison for all five pre-charge levels.

In addition to the information shown previously, all the eight wall temperatures are provided.
The figure 14 shows a comparison between the 8th wall element temperature for the five gas
pre-charge pressures.

Figure 14: Eight wall element temperature comparison.

The distinct separation between these observed data behaviors suggests a promising oppor-
tunity for successful neural network training. In the next chapter 4, the methodology of
constructing an effective neural network is presented, as well the methods utilized to capture
and analyze these patterns. Furthermore, the results of the neural network training will be
presented and discussed in chapter 5.

MCE4-1029 25 of 59

Aalborg University 4 NEURAL NETWORK MODEL

4 NEURAL NETWORK MODEL

This chapter provides details on modeling of a neural network for gas leakage detection.
The modeling process is described in section 4.1 and includes the important characteristics
of NNs and how to treat the generated data. The specific neural network architectures used
in this study are presented and thoroughly discussed in section 4.2. Subsequently, the train-
ing and validation procedures are described in section 4.3. The results obtained from these
trained models are presented and analyzed in the following chapter 5. Before delving into
the following sections, it is important to provide a clear understanding of key definitions and
terminology commonly used in the field of machine learning. A comprehensive overview of
these concepts can be found in appendix A.

4.1 Design of Neural Networks

4.1.1 Semi-physical Modeling

NNs offer exceptional capabilities in modeling nonlinear systems due to their property of
parsimonious approximation. This means they provide accurate results with minimal param-
eters. Compared to conventional methods like polynomial approximation, NNs demonstrate
a linear increase, instead of exponential, in the number of variables as parameters grow. This
efficiency is particularly advantageous for models with numerous parameters, allowing NN
to achieve comparable accuracy using fewer parameters or input data. This attribute becomes
even more valuable in models involving more than two inputs. [22]

NNs are often classified as black-box models because they can learn complex relationships
between inputs and outputs without explicit knowledge of the underlying phenomena. In
contrast, knowledge-based models, also known as white-box models, incorporate theoretical
knowledge to predict and explain a phenomenon. These models are mathematical represen-
tations based on fundamental equations from relevant fields like physics or chemistry. They
offer transparency by explicitly representing the underlying principles and relationships, pro-
viding interpretability and insights into the decision-making process. [22]

Semi-physical models, or grey-box models, are a balance between black-box and white-box
modeling approaches. They combine empirical data with domain knowledge or theoretical
understanding. Including measurement data offers an advantage as the knowledge-based
model may not capture all phenomena accurately. And by utilizing a knowledge-model, the
semi-physical model typically requires less experimental data to reliably estimate its parame-
ters compared to a black-box model. [22]

The design of a semi-physical neural model typically involves three steps: [22]

• Step 1: Construction of a discrete-time knowledge-based model.
• Step 2: Training the NN model using the results obtained from the knowledge-based

model to determine appropriate initial parameter values.

MCE4-1029 26 of 59

Aalborg University 4 NEURAL NETWORK MODEL

• Step 3: Training the NN model using experimental data to improve its performance and
accuracy for real-world applications.

The type of modeling pursued in this thesis is now evident. The utilization of accumulator
model developed in Matlab as the foundation for training the NN signifies a grey-modeling
approach. However, as stated in section 2.6, the available experimental data is limited and
will not be utilized for additional training and testing of the NN model.

4.1.2 Design Procedure

The process of working with data and designing neural networks consists of multiple steps,
which, based on [22, 23], are outlined below.

1. Define and Prepare Problem: This step focuses on understanding the problem, identi-
fying relevant inputs, and gathering all the necessary data for training and testing. It
involves identifying the questions the data should answer.

2. Summarize and Understand Data: Here, the collected data is analyzed and summarized
to gain insights and identify trends. Descriptive statistics and visualizations can be used
to assist in the investigation.

3. Process and Prepare Data: In this step, the data is processed and manipulated to make
it suitable for analysis. Tasks such as cleaning the data, selecting relevant features, and
transforming the data are performed.

4. Evaluate Algorithms: Neural network algorithms are evaluated to find the best ones
that can effectively exploit the data structure. The complexity of the model, including
the number of hidden neurons, and the parameters to minimize the cost function are
determined. Evaluating the generalization ability of the network is also performed.

5. Improve Results: Features and models are selected and optimized to enhance the ac-
curacy and performance of the predictions. This step involves parameter tuning for
individual algorithms and ensemble techniques for combining multiple models.

While not all tasks within these steps may be utilized in this study, they provide a base
framework for further development. The ultimate goal is to create a model that can accurately
predict unseen data. Once achieved, the model can be deployed in a production environment.
The following subsections aim to clarify the type of data that the neural network is handling,
serving as an introduction and establishing the basis for the chosen methods in this study.

4.1.3 Understanding the Data

The data generated by the accumulator model comprises signals that exhibit changes in value
over time. These sequences of data points, indexed by time, are commonly referred to as time
series data. Mathematically, a univariate time series X can be defined as an ordered collection
of T pairs consisting of measurements x and timestamps t. [24]

X = {(x1, t1), (x2, t2), . . . , (xT, tT)} (34)

MCE4-1029 27 of 59

Aalborg University 4 NEURAL NETWORK MODEL

Therefore, each of the signals provided by the accumulator simulation, such as po, Tw, qlo, and
so on, corresponds to a distinct univariate time series X, also known as features in the data
series. According to the definition available in [25], the combination of M distinct univariate
time series X is called multivariate time series, and can be expressed as:

X =
[

X1, X2, . . . , XM
]

(35)

Consequently, in the case of this thesis, the concatenation of all features X in the generated
data produces the final multivariate vector X, as shown below.

X =
[
qp, qlo, qac, pg, Tg, Vg, po, Vo, xp, dxp, Ta, Tge, Tw1, . . . , Tw8

]
(36)

As previously mentioned, the primary objective of NN is to estimate the pre-charge pressure
based on the available measurement signals. During the data generation process, the actual
pre-charge pressure is known and recorded as the correct output of the NN, denoted as Y.
This output is also commonly referred to as the ground truth value.

Y = 70, 90, 110, 130 or 150 bar (37)

In this context, a dataset D is defined as a collection of N different pairs (X, Y) [25], where
N represents the number of simulations conducted. As discussed in section 3.7, these sim-
ulations vary in terms of load cycle, oil and ambient temperature, and pre-charge pressure.
Therefore, the dataset D consists of input signals X and their corresponding ground truth
outputs Y.

D = {(X1, Y1), (X2, Y2), . . . , (XN , YN)} (38)

The dataset D is used for training and evaluating the neural network’s performance and
effectiveness in estimating the pre-charge pressure. The importance of dataset diversity allows
the neural network to learn and generalize from different scenarios, enhancing its ability to
handle various simulation conditions.

4.1.4 Neural Network for Time Series

NNs have brought about significant advancements in computer vision and natural language
processing. Particularly in the area of image recognition and machine translation, respectively.
It is important to highlight that these applications share the characteristic of dealing with
sequential data, similar to time series data. The community of NN for time-series problems
are much smaller, but with valuable research developed. [25]

There are two approaches to address the pre-charge estimation problem: treating it as a re-
gression problem or as a classification problem. Classification and regression are supervised
learning tasks that aim to establish the relationship between a target variable and a set of
time series data. The main difference between Time-Series Regression (TSR) and Time-Series
Classification (TSC) lies in their prediction outcomes. TSC predicts the probability of an item
belonging to a specific class, while TSR focuses on estimating a continuous value. Examples
of TSC include detecting anomalies in sensor data and recognizing human activities, while
examples of TSR include predicting stock prices and forecasting energy consumption. [22, 24]

MCE4-1029 28 of 59

Aalborg University 4 NEURAL NETWORK MODEL

Several popular architectures are commonly used to address these types of problems, includ-
ing Multi-Layer Perceptrons (MLP), Fully Convolutional Networks (FCN), Long Short-Term
Memory (LSTM), and Residual Networks (ResNet). These architectures have been extensively
studied and applied in the field of time series analysis and classification [24–30]. While most
of these methods are typically applied for classification tasks, they can also be adapted for
regression problems by making simple modifications to the output layer and selecting an
appropriate loss function. [24]

In multi-class classification tasks, the output layer of a neural network often incorporates the
SoftMax activation function, which is shown in appendix A. This activation function ensures
that the probabilities for all classes sum up to 100% for a given input. By mapping the outputs
of the preceding layer to the range of 0-1, it provides the probabilities of an example belonging
to each class. In such cases, a cross-entropy loss function is commonly used during training.
For regression problems, the output layer typically employs a linear activation function like
ReLU or a non-linear activation function with a single value output such as sigmoid. Training
for regression tasks often involves the mean square error or mean absolute error loss function
[22, 24]. The training process and the mechanisms of cost functions will be further discussed
in section 4.3.

As the adaptability of NNs for regression problems is a quite trivial task, for this thesis, only
classification architectures are considered. It can be said that if the time series data transitions
from one class to another, it is likely that gas leakage has occurred. The figure 15 shows a
general approach on how to treat the time series data in a classification problem.

Figure 15: Time series neural network framework [25].

The input to the neural network consists of a multivariate time series, which includes signals
such as po, Tw, Ta, and To. The neural network performs non-linear transformations on this
data to classify it into the correct class based on the ground truth Y. The output of the
neural network is a probability distribution across all classes. For example, if the output
indicates a 60% probability for the pre-charge pressure to belong to the class "110 bar," it can
be represented as a vector:

ŷ = [0.1, 0.1, 0.6, 0.1, 0.1]

Further explanation is provided below. Some methods mentioned in this section is presented
in the next section 4.2. The training process is described in depth in section 4.3. The data
preprocessing techniques applied are discussed in section 4.4.

MCE4-1029 29 of 59

Aalborg University 4 NEURAL NETWORK MODEL

4.2 The Model

This section provides an overview of the chosen neural network architecture for gas leakage
detection. The work of Wang, Yan, and Oates [26] introduced three deep learning models,
namely MLP, FCN, and ResNet, which served as strong baselines for TSC problems. Build-
ing upon this, Fawaz et al. [25] conducted an extensive study involving these three models
along with six others, evaluating their performance on 85 univariate and 12 multivariate TSC
datasets from the UCR repository [27]. These studies have served as a foundation and guided
the selection of an appropriate method for this thesis, narrowing down the search for an
effective approach.

Other studies that have demonstrated promising results include those by Pham [28], Xia,
Huang, and Wang [29], and Sainath et al. [30]. These studies employed a combination of
LSTM networks with CNN. Additionally, complex models like Inception-ResNet models, such
as InceptionV4 [31] and GoogLeNet [32], have shown excellent performance in various tasks
and offer potential for achieving high accuracy in gas leakage detection.

4.2.1 Promising NN Architectures

MPL is a basic and traditional deep learning model consisting of fully connected layers, mean-
ing that each activation function is connected to all the activation functions of the previous
and following layers. While they are easy to implement, MLPs are not well-suited for time
series data, as each timestamp has its own weight and the temporal information is lost. [24]

FCN is based on convolutional neural networks (CNNs), which is detailed in appendix B. It
is designed to keep the length of a time series unchanged throughout the convolutions. Dif-
ferently then CNN, it does not contain any local pooling layers, which prevents overfitting.
In addition, the last layer, witch generally is a fully connected layer, is replaced with a Global
Average Pooling (GAP) layer, which reduces the spatial dimensions and further greatly re-
duces the number of parameters in the NN. An advantage of this architecture is that a class
activation map (CAM) can be used to visualize the parts of the input data that have the most
significant impact on the training and performance of the NN. [24, 26]

ResNet is a deep architecture known for its depth. It consists of three residual blocks followed
by a Global Average Pooling (GAP) layer and a SoftMax classifier. Each residual block resem-
bles the FCN architecture. [24] ResNet models have demonstrated excellent performance on
TSC tasks and are a promising option for solving the gas leakage problem.

LSTM network is an improved version of Recurrent Neural Networks (RNN), developed to
solve the problem of vanishing gradients while remembering information for long periods of
time. It incorporates three gates, controlled by sigmoid activations, to decide which informa-
tion is added, kept, or discarded. This architecture is particularly well-suited for capturing
long-term dependencies and sequential patterns in time series data, making it a valuable tool
in this context. [33]

MCE4-1029 30 of 59

Aalborg University 4 NEURAL NETWORK MODEL

The studies mentioned at the beginning of this section have shown that MLPs do not perform
as reliably as other methods for TSC tasks, therefore they will not be considered for this thesis.
While ResNet has shown excellent performance, its implementation and understanding are
more complex, making it impractical within the given time constraints. Both FCN and LSTM
are relatively simple to implement and have demonstrated good performance in other TSC
applications. Both the FCN and LSTM models have shown good performance in various TSC
applications and are relatively simple to implement. However, in order to conduct an extensive
set of experiments using the provided dataset, this thesis focuses solely on the development
and testing of the FCN model.

4.2.2 Classification using FCN

The FCN model used in this study is inspired by the FCN model introduced by Wang, Yan,
and Oates [26] and incorporates modifications based on the Keras documentation [34]. As
mentioned in the previous section, the FCN is essentially a CNN, but without local pooling
after each convolution and with a GAP instead of fully connected layer. The SoftMax activa-
tion function is still applied for classification. The architecture of the FCN model designed for
TSC tasks is illustrated in 16.

Figure 16: FCN architecture for time series classification [25].

Input Layer The input layer receives the multivariate time series which then is passed
through three blocks of convolution. According to Wang, Yan, and Oates [26], the FCN is
designed to minimize the need for extensive data preprocessing. However, as shown is chap-
ter 5, the performance of the NN will be evaluated using different input data sizes. Moreover,
by omitting local pooling layers, the length of the time series remain unchanged during the
convolutional operations. [23]

Convolution Block The convolution block in the FCN architecture consists of three layers:
a convolutional layer, a batch normalization layer, and a ReLU activation layer. The convo-
lutional layer applies a sliding window (filter/kernel) over the time series to detect patterns
by computing the dot product between the filter weights and the input values. The batch
normalization layer is included to accelerate convergence and enhance generalization perfor-
mance. Finally, the ReLU activation layer introduces non-linearity to the output of the batch
normalization layer, allowing the network to learn complex relationships in the data. [23, 25]

MCE4-1029 31 of 59

Aalborg University 4 NEURAL NETWORK MODEL

The mathematical representation of this convolution block is shown below.

y = W ⊗ x + b (39)

s = BatchNorm(y) (40)

h = ReLU(s) (41)

Where ⊗ is the convolution operator. There are three hyperparameters that can be used to
configure the convolution filters: [23–25]

• The Filter Size defines the length of the filter. For example, setting it to ’3’ results in
applying a moving average with a sliding window of length ’3’ time stamps.

• The Stride determines the number of time stamps to move forward while performing
convolution.

• The Padding parameter is used to preserve the length of the input data when applying a
filter or sliding window. It involves adding zeros to the borders of the time series before
performing the convolution.

Average global pooling The GAP layer after the third convolutional block computes the av-
erage across the time dimension, resulting in a single value as the output. This average global
pooling operation reduces the dimensionality of the time series data and allows for capturing
the overall presence of important features. The Class Activation Map (CAM) technique can
be applied to identify the specific regions in the raw data that contribute to the predicted
labels. However, due to time constraints, the implementation of the CAM is not included in
this study. [23–25]

Output Layer The SoftMax layer, explained in section 4.1.4 and appendix A, produces the
final output of the model. This layer applies an activation function that transforms the input
into a vector of probabilities. The sum of these probabilities is always equal to 100%. Each
element in the vector corresponds to a specific class. For instance, considering the classes
defined in equation (37), if the output vector is ŷ = [0.93, 0.07, 0, 0, 0], it means that there is
a 93% probability that the input belongs to the "70 bar" class and a 7% probability that it
belongs to the "90 bar" class. It is important to note that, as the model does not approach the
gas pre-charge pressure as a regression problem, the output does not provide a single real
number representing the pressure value.

The hyperparameters used in the FCN model, as provided by Wang, Yan, and Oates [26],
include 128 filters of length 8 for the first convolutional layer, 256 filters of length 5 for the
second, and 128 filters of length 3 for the third. To maintain the original length of the time
series, the convolutions utilize a stride of 1 and zero padding.

During the development and testing of the FCN model, issues related to memory consumption
and crashes were encountered. It was observed that the provided hyperparameters resulted
in approximately 130,000 trainable parameters. This high parameter count may have posed
challenges in terms computational resources, especially considering the hardware limitations.
Nevertheless, the research paper does not mention how these hyperparameters were deter-
mined. Therefore, an alternative variation of the model is employed.

MCE4-1029 32 of 59

Aalborg University 4 NEURAL NETWORK MODEL

To address the complexity of training and deploying deep learning models, hyperparameter
tuning can be employed. The Keras documentation [34] suggests the use of KerasTuner [35],
a tool that automatically searches for optimal hyperparameters for a given dataset. The FCN
model discussed earlier can also be found in the Keras documentation. However, in their
approach, they used KerasTuner to explore different sets of hyperparameters. Through this
tool, they determined that using 64 filters with a kernel size of 3 for all three convolutional
layers was the optimal configuration.

Although the tuning process was not conducted for the dataset presented in this thesis, the
number of trainable parameters was reduced to approximately 30,000. Through experimenta-
tion, it was discovered that the new set of hyperparameters yielded improved performance,
resulting in a significantly faster training process.

Table 7 provides an example of the layers used in the FCN model, along with the correspond-
ing parameter counts. As shown in the "Input Shape" column, this example assumes 6 input
variables and a time step of 3906 samples. The "None" value in the table indicates that there
is no specific limitation on the quantity of input data, allowing for flexibility in the model’s
input size.

Table 7: Fully Convolutional Network output from compiling
the model in TensorFLow.

Layer Input Shape Parameters

Input Layer (None, 3906, 6) 0

Convolutional 1D (None, 3906, 64) 1216
Batch Normalization (None, 3906, 64) 256
ReLU (None, 3906, 64) 0

Convolutional 1D (None, 3906, 64) 12352
Batch Normalization (None, 3906, 64) 256
ReLU (None, 3906, 64) 0

Convolutional 1D (None, 3906, 64) 12352
Batch Normalization (None, 3906, 64) 256
ReLU (None, 3906, 64) 0

Global Average Pooling 1D (None, 64) 0
Dense (SoftMax) (None, 5) 325

1 Total params: 27,013
2 Trainable params: 26,629
3 Non-trainable params: 384

MCE4-1029 33 of 59

Aalborg University 4 NEURAL NETWORK MODEL

4.3 The Training Process

The two use cases of a newly created neural network model are: learning and prediction. Dur-
ing the learning phase, the model’s weights and biases are iteratively updated until the pre-
dicted output converges with the desired output. Both supervised and unsupervised training
methods are feasible, although only supervised learning will be implemented in this thesis,
since the ground truth value Y is known for all simulations.

Prior to initiating the training process, it is crucial to split the available dataset into three
subsets: training, validation, and testing sets. The training set, containing the majority of the
data, is employed to train the neural network. The validation set, a small portion of the data,
is employed during training to evaluate the model performance. Finally, the testing set is
used in the evaluation of the trained model, where the performance on new and unseen data
is measured. [23]

The most common algorithm responsible to perform the training is called backpropagation.
It calculates the gradient of the cost function with respect to the weights and biases of the
network, and uses this gradient to update the network’s parameters to minimize the cost
function. [22] The complete learning process is summarized in the figure 17 and will be
subject of discussion in this section. [23]

Figure 17: Backpropagation process for training the neural network.

4.3.1 Model Initialization

Model initialization is an essential step in training a neural network. The weights and biases
need to be initialized with some initial values before the training process starts. It is common
practice to initialize weights and biases with small random values that are close to zero. This
is because initializing all weights with the same value can lead to symmetry breaking, which
in turn reduces the capacity of the network. Also, initializing weights with large values can
cause saturation of the activation function, leading to a very slow learning process. [22]

4.3.2 Forward Propagation

This stage involves passing the input values through the neural network and computing the
corresponding output. It is named as such due to the sequential flow of computation from the
input layer to the output layer. The activation function of each neuron generates an output,
which serves as the input to the subsequent layer or the output of the final layer.

MCE4-1029 34 of 59

Aalborg University 4 NEURAL NETWORK MODEL

The predicted neuron output ŷ is found by, generally, equation (42). [22]

ŷ(x, w, b) = f

(
b +

m

∑
j=1

wj · xj

)
(42)

Where f is the activation function, xj are the input variables, wj are the weights and b is
the bias. The total number of input variables is represented by m, and j is the index in the
variables list.

4.3.3 Cost Function Calculation

The cost function Ci, which can also be referred to as the residual or loss function, provides
a way to evaluate how well the calculated output of a neural network matches the correct
known output for a specific training example i. In simpler terms, it measures the degree of
similarity between the predicted output ŷi and the actual output yi for that particular example.
Expressed in equation (43), the cost function C is the average of all loss function values across
all training examples n. [12]

C =
1
n

n

∑
i=1

Ci (43)

Loss functions are divided into two categories: regression losses and probabilistic losses. For
regression problems, a common way to calculate the loss is using the least square error method
presented in equation (44). [23]

Ci =
1
2
(yi − ŷi)

2 (44)

In classification tasks, cross-entropy techniques are employed. The binary cross-entropy is uti-
lized when predicting values between two classes, while the categorical cross-entropy, as defined
in equation (45), is used for multi-class classification problems. [33]

Ci =
K

∑
k=1

yi,k log (ŷi,k) (45)

Where K is the number of classes, yi,k is the true value for the i-th example and ŷi,k is the pre-
dicted probability for whether the i-th example belongs to the k-th class. When the predicted
output of the network closely matches the true output, the cost function approaches zero.
Therefore, minimizing the cost function is desired. The optimal value for weights and biases
provides a minimum cost function, thus, the training process is an optimization problem.

Generally the cost function is computed for both training and validation datasets on every
iteration. Their values can be plotted against the iteration step to assist in the performance
evaluation of the NN. Training usually stops when the validation error starts to increase after
an initial decrease, indicating overfitting of the model. Additionally, other loss functions,
such as accuracy, root mean squared error, can be employed during the training and later on
the testing of the NN. These are called Metrics, and provide additional performance measures
that are used to evaluate the model’s accuracy and effectiveness. It is important to note that
these metrics do not directly impact the parameter updating. [23, 34]

MCE4-1029 35 of 59

Aalborg University 4 NEURAL NETWORK MODEL

4.3.4 Backpropagation

The backpropagation method is divided into three parts: computation of partial derivatives,
computation of the optimization algorithm, and update of weight and biases. The following
equations and explanation are derived from [12, 23].

Backpropagation starts by computing the derivative of the cost function with respect to the
output of the last layer. This derivative is then propagated backwards through the network,
layer by layer, using the chain rule of differentiation. In this way, the derivative of the cost
function with respect to each weight and bias in the network can be obtained. Consider the
system presented in figure 18.

Figure 18: Forward pass of layer l.

The variables in bold represent the multiple neurons in the layer. For a layer l the input a[l−1]

comes from the previous layer l − 1 output. Then, it is multiplied by the weights W and
summed by bias b. The result z[l]i , called weighted input, is passed to the activation function
f . Note that, for the last layer L, a[L]

i is equivalent to ŷi. Therefore, the derivative of the
cost function C with respect to W and b are found using the chain rule. The subscript i is
suppressed for readability.

∂C
∂W [l]

=
∂C

∂z[l]
· ∂z[l]

∂W [l]
= δ[l] · a[l−1] (46)

∂C

∂b[l]
=

∂C
∂z[l]

· ∂z[l]

∂b[l]
= δ[l] (47)

Here, the variable δ[l] is introduced, which describes the sensitivity of the cost function toward
a change in the neuron’s weighted input z[l]. It also denotes a vector of errors associated with
layer l. The derivative of the weighted input z[l] in respect to the weight W [l] is proven to be
equal a[l−1] and the derivative in respect to the bias b[l] is proven to be equal 1 in [12].

Now, in order to find the value for the error δ[l], the following expression is used: [12, 23]

δ[l] = W [l+1] · δ[l+1] · f ′(z[l]) (48)

By knowing the quantities δ, the derivative of the cost function C in respect to the parameters
W and b are found. By using these derivatives, an optimization algorithm can update the
weights and biases to minimize the cost function and improve the network’s performance.
In the next subsection, further explanation is given on how such optimization algorithms are
employed.

MCE4-1029 36 of 59

Aalborg University 4 NEURAL NETWORK MODEL

4.3.5 Updating Parameters

There are various optimization algorithms available to train neural networks. The choice
depends on various factors, including the size of the data, the type of neural network, and
the desired accuracy. Examples of popular optimization algorithms include Gradient Descent,
Adam, and Stochastic Gradient Descent.

Gradient descent is an iterative method that is employed to update the model parameters
by following the direction of the steepest descent of the cost function. It takes big steps when
it is far away from the minimum, and short steps when close to it. The previous calculated
partial derivatives correspond to the slope of the cost function. The gradient decent equation
is shown below: [12]

W t+1 = W t − α · ∂C
∂W

(49)

The symbol t represents the index of the epoch iteration and α denotes the learning rate,
which regulates the size of the step taken in the optimization process. It is worth noting that
a large learning rate can hinder convergence of the algorithm, while a small one can result in
slow convergence. Additionally, computing all partial derivatives for the entire training set
can incur high computational costs. [12]

Adam (Adaptive Moment Estimation), proposed originally by Kingma and Ba [36], is widely
used and efficient stochastic optimization algorithm that incorporates momentum and adap-
tive learning rates. It is an adaptive method that adjust the learning rate for each parameter
automatically during training, which leads to faster convergence and better generalization
performance. It is particularly useful when dealing with large datasets and complex models.
The update equation described below are based on [33, 36]:

θt+1 = θt − α
m̂t√

v̂t + ε
(50)

Where θt are the parameters at iteration t, α is the learning rate, and ε is a small value added
for numerical stability. The variables m̂t and v̂t are the first and second bias-corrected moment
estimates of the gradients, and are calculated as following:

m̂t =
mt

1− βt
1

(51)

v̂t =
vt

1− βt
2

(52)

The bias correction is necessary because the moments are initialized as zero, which can cause
a bias towards zero in the early iterations. The first and second moment are:

mt =β1mt−1 + (1− β1)gt (53)

vt =β2vt−1 + (1− β2)g2
t (54)

Where gt is the gradient at time t. β1 and β2 are hyperparameters that control the exponential
decay rates of the moving averages of the gradient and the squared gradient, respectively. The
aforementioned hyperparameters typically are β1 = 0.9, β2 = 0.99, α = 0.001, and ε = 10−8.

MCE4-1029 37 of 59

Aalborg University 4 NEURAL NETWORK MODEL

4.4 Data Preprocessing

Data preprocessing is an essential step in preparing the data for training the neural network
models. It involves transforming the raw data into a format that is suitable for the learning
algorithms and maximizing the model’s effectiveness. In section 4.1.3, where the initial analy-
sis of the data is presented, it is established that the time series data is considered as the NN’s
input X, while the corresponding gas pre-charge pressure serves as the output Y. This section
discusses the data preprocessing utilized to treat these inputs and output, which begins by
applying a sliding window technique for time series data, then scaling the input and output
with the Robust Scaler and One-Hot Encoder, respectively.

4.4.1 Sliding Window

As mentioned in section 3.7, the simulation data covers a time range of 3000 seconds. However,
it is important to note that this range may not be optimal for training certain types of NN
architectures. Long sequences of data can cause difficulties for NNs in capturing temporal
dependencies and patterns effectively. Furthermore, using long sequences as input can lead
to increased memory consumption and potential crashes during training.

Unlike traditional CNNs, which have limitations in retaining past data and may face chal-
lenges with large input vectors, the FCN method is well-suited for this particular application.
One of its advantages is that it does not alter the length of the time series during the con-
volution process, allowing for more effective modeling of temporal dependencies. [23, 33]
Although FCN is built specifically for TSC tasks, in order to assist in the challenge of captur-
ing temporal dependencies and patterns, a sliding window method is employed.

This technique is commonly used in prediction and forecasting problems [37–39], as it enables
the creation of labels based on the input data, thereby transforming it into a supervised learn-
ing problem. Similarly, CNNs make use of kernels or filters that also slide across the input
data to extract features and capture spatial information. [23, 33]

The sliding window process involves sliding a fixed-size window over the time series, extract-
ing subsets of data step by step to create input-output pairs. It reshapes the data by reducing
the input time range and increasing the number of examples. An illustration of this process is
presented in figure 19. This visual representation helps to illustrate how the sliding window
captures different subsets of the dataset as it moves along the time series.

It is crucial to carefully determine the window size and step size to capture relevant patterns
without excessive data overlap or information loss. In chapter 5, various window sizes are
tested to evaluate their impact on the performance of the NN. To ensure consistency and
remove the transient regime, the first 500 seconds of the dataset are excluded, resulting in a
dataset with 2500 seconds ×12.5 Hz = 31251 samples for each time series. The window sizes
used for the experiments are determined as outlined in table 8. The step sizes for sliding the
window are set to one-fifth of the window size.

MCE4-1029 38 of 59

Aalborg University 4 NEURAL NETWORK MODEL

Figure 19: Representation of the sliding window in the Tw8 time series.

Table 8: Window and step sizes used to train the neural
network.

Window Size Step Size
(seconds) (samples) (seconds) (samples)

2500/2 = 1250 s 15625 250 s 3125
2500/4 = 625 s 7812 125 s 1562
2500/8 = 312.5 s 3906 62.5 s 781
2500/16 = 156.25 s 1953 31.25 s 390

4.4.2 Robust Scaler

When preparing a dataset for machine learning, it is often necessary to standardize the data
to ensure consistent ranges and distributions. A scaler is often used to scale numerical input
features, making them comparable in terms of range and distribution. While the typical ap-
proach involves removing the mean and scaling to unit variance, this method can be sensitive
to outliers and yield suboptimal results. [23, 40]

One preprocessing technique that addresses these concerns is the Robust Scaler. It is a type
of input scaler that eliminates the median and scales the data based on the interquartile range
(IQR). The IQR represents the range between the 25th and 75th percentiles, which helps cap-
ture the central tendency and variability of the data while being less influenced by extreme
values. [40]

An example demonstrating the impact of scaling the temperature of the 8th wall element
using the Robust Scaler is depicted in figure 20. Similarly, other input features like po, qlo,
and others are also scaled using the same procedure. This ensures that all input variables are
adjusted to a consistent range, facilitating accurate analysis and modeling while diminishing
the change of exploding gradients.

MCE4-1029 39 of 59

Aalborg University 4 NEURAL NETWORK MODEL

Figure 20: Original and scaled sequences of data for Tw8.

4.4.3 One-Hot Encoding

In section 4.1.3 it was shown that the output variable Y of the neural network can take on one
of five values: 70, 90, 110, 130, or 150, which represent different gas pre-charge pressure levels.
Although these categories, also called labels, are numerical values, they cannot be treated as
such, because they are merely names or identifiers. Therefore, to make them compatible with
the NN layers, it is necessary to convert these labels into a suitable format.

One common method is to convert them into boolean values, which can represent binary
values (0 or 1) or probabilities (0-100%). Since the output layer of classification models utilizes
the SoftMax as activation function, the One-Hot Encoder technique is particularly useful and
required when dealing with multiple classes. [23]

The One-Hot Encoder transforms categorical labels into a vector representation. This ap-
proach involves creating a new dummy feature for each unique value in the categorical label
column. By doing so, the neural network model can effectively learn and predict categorical
outputs by treating them as separate binary classification problems. [23] For instance, the
vector representation for each gas pre-charge pressure level is as follows:

70 = [1, 0, 0, 0, 0]

90 = [0, 1, 0, 0, 0]

110 = [0, 0, 1, 0, 0]

130 = [0, 0, 0, 1, 0]

150 = [0, 0, 0, 0, 1]

MCE4-1029 40 of 59

Aalborg University 5 EXPERIMENTATION AND RESULTS

5 EXPERIMENTATION AND RESULTS

The current chapter presents the experimental approach and outcomes of the thesis. It pro-
vides a detailed description of the experimentation conducted and discusses the results ob-
tained from training the neural network model described in section 4.2. Various scenarios and
variations are explored to analyze the implications and significance of the findings.

5.1 Experiment Setup

As explained in section 4.4, the data preprocessing includes reshaping the input variables X
using a sliding window and scaling the variables to a smaller range using the Robust Scaler.
In addition, the true output Y is one-hot encoded in order to the SoftMax function to work.
The experimentation involves training the NN with different input shapes, determined by the
size of the sliding window (refer to table 8) and the number of input variables. Additionally,
variations are made in the variables Ta and To, testing both fixed and varied temperatures.

5.1.1 Tests Description

The tests are conducted as follows:

Test 1: Evaluate the performance of the NN using minimal input signals, such as only using
data from one sensor (e.g., po or Tw8).

Test 2: Utilize both po and Tw8 as input variables to assess the impact of the input shape
on network training. The input is represented as a three-dimensional matrix with shape
consisting of (1) number of examples or number of sequences, (2) time step range or number of
samples, and (3) number of input variables. For example, if input shape is equal (540, 3906, 2),
it means 540 sequences of 3906 timestamps, with 2 input variables (features). It is important
no remind that 3906 samples are equal to 3906/12.5 Hz = 312.5 seconds.

Test 3: The objective is to exclude the accumulator surface temperature, as it is not typically
available in wind turbines. Instead, the sensors po, Ta, and To that are already present are
utilized in this test.

Test 4: In an attempt to maximize performance, the input for this test includes both To and
Ta temperatures along with po and Tw8.

Test 5: To further enhance the performance of the neural networks, additional wall tem-
perature sensors are included. This means the system’s po, Tw1, Tw6, Tw8, Ta, and To, are
incorporated as input variables.

Test 6: Now some hyperparameters related to the FCN model are changed to match the
configuration of the original paper. This involves changing quantity of filters to (128,256,128)
instead of (60,60,60), and filter size to (8,5,3) instead of (3,3,3).

MCE4-1029 41 of 59

Aalborg University 5 EXPERIMENTATION AND RESULTS

5.1.2 Training Description

The chosen loss function for all the tested models is the categorical cross entropy, which
measures the average difference between the predicted output ŷ and the ground truth Y across
all classes. In addition, the categorical accuracy metric is used to evaluate the classification
performance, which calculates the frequency with which the predicted output matches the
ground truth.

The optimization algorithm used in training is "Adam". The models are trained for a limit of
500 epochs, however some models have converged earlier. The training is stopped utilizing
an EarlyStopping function, which is built-in in TensorFlow/Keras. This function automatically
stops training if the loss error remains unchanged for more than 20 epochs. Another function
utilized is the ReduceLROnPlateau which reduces the learning rate by a factor of 0.5 when the
validation loss is lower than 0.00001 for more than 10 epochs.

To address memory consumption issues and prevent model crashes, the batch size is adjusted
to 32. This means that the input data is fed to the NN in batches of 32 sequences. The
input sequences are shuffled before training. This introduces randomness in the input order,
meaning the NN will be trained with time sequences of unspecified order. An illustration of
the coding of these hyperparameters is shown in figure 21.

Figure 21: Illustration of the hyperparameters being setting up in the TensorFlow/Keras pro-
gram.

5.1.3 Analysis Limitations

The robustness of the neural network model to extreme variations in system states, sensor
noise, and outliers is not examined in this thesis. However, alternative approaches to testing
these cases can be considered. One approach is to generate additional simulation data with
specific variations in the input variables or to deploy the trained model in the same simulation
environment as the accumulator model. In this latter case, it is important to note that the
neural network requires a certain amount of time before it can start predicting the pre-charge
pressure, which corresponds to the size of the sliding window as specified in table 8.

MCE4-1029 42 of 59

Aalborg University 5 EXPERIMENTATION AND RESULTS

Each time a NN is trained from scratch, the resulting weights and biases will have different
values. This stochastic nature of the training means that the performance of the model can
vary without any specific pattern. Evaluating the performance of these NN algorithms ideally
involves conducting statistical analysis and comparing measures such as the t-score. Several
benchmarking methods for NN exist, as demonstrated in studies like [25, 26]. However, due to
time constraints, a comprehensive statistical analysis was not conducted in this thesis. Instead,
the average results of two to three training runs were considered, including metrics such as
accuracy and loss error, which are presented in table 9.

5.2 Training Results

In order to validate the NN model performance, both the loss and accuracy metrics are an-
alyzed for the validation and test sets. The validation set is used to monitor the training
progress and determine when the model has reached its optimal performance. The test set,
on the other hand, is used to evaluate the final performance of the trained model on unseen
data. It provides a measure of how well the model generalizes to new and unseen examples.

During the training process, the validation loss and accuracy values monitored and recorded
for each epoch. Plotting these values over time helps visualize the model’s learning progress.
It is also crucial to monitor the accuracy of the training dataset to detect overfitting, which oc-
curs when there is a notable difference between the accuracy obtained on the training dataset
and that on the validation/test dataset.

In the case of the test 5, which utilize a moving window of 3906 samples and 6 variables
(po, Tw1, Tw6, Tw8, Ta, To) as input, it exhibits the best performance among the tested models.
The training process of this model is depicted in figure 22, showcasing its accuracy over the
training epochs.

Figure 22: Accuracy of both training and validation datasets when utilizing 6 input variables
and a moving window if 3906 samples.

MCE4-1029 43 of 59

Aalborg University 5 EXPERIMENTATION AND RESULTS

Additionally, a confusion matrix, as in figure 23, can be generated to evaluate the model’s
performance in predicting each class. The confusion matrix shows the number of correct and
incorrect predictions for each class, allowing for a deeper understanding of which classes the
neural network is more likely to confuse or misclassify.

Figure 23: Confusion matrix when utilizing 6 input variables and a moving window if 3906
samples.

While the confusion matrix may not provide significant insights when the accuracy is at 100%,
it becomes valuable when the accuracy is slightly lower. For instance, with an accuracy of 82%
in the case of Test 2, which applies a sliding window of 15625 samples and 2 input variables
(po, Tw8), the confusion matrix, figure 24, offers valuable information.

Figure 24: Confusion matrix when utilizing 2 input variables and a moving window if 15625
samples.

MCE4-1029 44 of 59

Aalborg University 5 EXPERIMENTATION AND RESULTS

For the gas pre-charge pressure class "130 bar", the confusion matrix reveals that 47 examples
were correctly predicted, while 34 were mistakenly classified as "110 bar" and 15 as "150
bar". This information can be utilized to reevaluate the data preprocessing or data generation
approaches and focus on localized solutions to improve the model’s performance.

5.3 Test Validation Results

The experiments, described in section 5.1.1, and their corresponding outcomes are presented
in table 9. Additional analysis and interpretation are provided below.

Table 9: Performed tests and neural network performance.

Test Input
Ta,To

Test Epochs Training
No Size Variables Accuracy Loss Used Time

1 (540, 3906, 1) po Fixed 0.23 1.5871 51 1.8
1 (540,3906,1) Tw8 Fixed 0.89 0.2748 70 1.3
1 (8640, 3906, 1) po Varied 0.94 0.2200 85 27.0
1 (8640, 3906, 1) Tw8 Varied 0.50 1.2309 44 14.1
2 (1140,1953,2) po, Tw8 Fixed 0.93 0.1904 204 3.5
2 (540,3906,2) po, Tw8 Fixed 0.91 0.2889 64 1.2
2 (240,7812,2) po, Tw8 Fixed 0.56 1.3676 25 0.5
2 (90,15625,2) po, Tw8 Fixed 0.60 1.2356 42 0.7
2 (18240, 1953, 2) po, Tw8 Varied 0.90 0.2391 69 24.2
2 (8640, 3906, 2) po, Tw8 Varied 0.96 0.1644 98 31.1
2 (3840, 7812, 2) po, Tw8 Varied 0.92 0.3037 100 28.4
2 (1440, 15625, 2) po, Tw8 Varied 0.82 0.9149 43 8.9
3 (8640, 3906, 3) po, Ta, To Varied 0.95 0.1634 124 39.5
3 (1440, 15625, 3) po, Ta, To Varied 0.59 1.0448 53 11.4
4 (540,3906,4) po, Tw8, Ta, To Fixed 0.91 0.2867 60 1.1
4 (90,15625,4) po, Tw8, Ta, To Fixed 0.36 1.2768 42 42.3
4 (8640,3906,4) po, Tw8, Ta, To Varied 0.96 0.1209 101 33.8
4 (1440,15625,4) po, Tw8, Ta, To Varied 0.81 0.3719 121 25.7
5 (540,3906,6) po, Tw1, Tw6, Tw8, Ta, To Fixed 1.00 0.0008 83 1.8
5 (90, 15625, 6) po, Tw1, Tw6, Tw8, Ta, To Fixed 1.00 0.0014 474 8.0
5 (8640, 3906, 6) po, Tw1, Tw6, Tw8, Ta, To Varied 1.00 0.0085 106 35.0
5 (1440,15625,6) po, Tw1, Tw6, Tw8, Ta, To Varied 1.00 0.0167 187 40.6
6 (540, 3906, 4) po, Tw8, Ta, To Fixed 0.95 0.1490 260 17.5
6 (8640,3906,4) po, Tw8, Ta, To Varied 0.98 0.0973 60 70.4

1 Input Shape: (# of sequences, # of samples, # of variables)
2 Numbers in bold present more interesting results.

5.3.1 Sliding Window Size

The impact of the sliding window size on the performance of the neural network is evident
from Test 2. Different window sizes were investigated, namely 1953, 3906, 7812, and 15625
samples, which correspond to 156, 312, 625, and 1250 seconds of simulation, respectively.

MCE4-1029 45 of 59

Aalborg University 5 EXPERIMENTATION AND RESULTS

It was found that splitting the data with a window size of 3906 achieved the best performance.
This window size strikes a balance between high accuracy and low training time. Smaller
window sizes may yield higher accuracy, but they require more time to train, while larger
window sizes result in poorer accuracy. This finding holds true for both fixed and varied
values of Ta and To.

It is important to note that the hardware used for training may have influenced this result.
Furthermore, with a shorter window width, there are more sequences available for training
the data. This increased number of sequences can have an impact on the performance and
learning capabilities of the neural network.

5.3.2 Minimum Sensor Utilization

According to Test 1, utilizing the oil pressure signal po with a sliding window of 3906 samples
achieves an accuracy of 94% for predicting the gas pre-charge pressure. However, the loss
function value of 0.2200 indicates that this NN model may not be very robust and may not
generalize well to different data.

Test 3 shows that incorporating the oil and ambient temperature signals into the input of
the neural network improves the accuracy to 95% and reduces the loss to 0.1634. This is a
significant finding, as it confirms that no additional sensors need to be installed on the wind
turbine. The FCN model can accurately predict the pre-charge pressure by considering only
three available sensors.

In addition, the NN model performance can be further enhanced by including the temperature
of the accumulator surface into the NN input. Test 4 that adding a single thermocouple,
such as Tw8, leads to an accuracy increase to 96% and a decrease in loss to 0.1209. The
performance continues to improve when three thermocouples (Tw1, Tw6, Tw8) are included,
achieving a perfect accuracy of 100% with a loss of 0.0085. This is the lowest loss achieved for
the dataset where Ta and To are varied.

5.3.3 Fixed vs Varied Oil and Ambient Temperature

Upon analyzing all the tests conducted for both fixed and varied oil and ambient tempera-
ture, two conclusions can be drawn. First, when assuming fixed temperature, there are fewer
variations in the input data, making it easier for the NN to converge. Second, as a conse-
quence of filtering the input data, there is fewer data available for the training. The results
demonstrate varying performance across the tests, with no clear pattern emerging. The tests
that performed better can be attributed to the presence of fewer data variation, while the tests
that performed worse can be attributed to a lower amount of available data.

MCE4-1029 46 of 59

Aalborg University 5 EXPERIMENTATION AND RESULTS

5.3.4 Chosen Hyperparameters vs Original

The final test performed, Test 6, used the original hyperparameters from Wang, Yan, and Oates
[26], which consist of (128,256,128) filters of size (8,5,3). This test utilized a sliding window
of 3906 samples and included four input variables (po, Tw8, Ta, To), which is the same input
configuration as Test 4.

The original hyperparameters proved to be beneficial for the NN model, achieving higher
accuracy of 98%, compared to 96% in Test 4, and lower loss of 0.0973, compared to 0.1209.
However, it is worth noting that, as mentioned in section 4.2, using the original hyperparame-
ters resulted in issues with memory consumption and crashes. Test 6 took 70 minutes to train,
while Test 4 took 34 minutes. Although the alternative hyperparameters did not outperform
the original ones, they were sufficient for the purposes of this study, considering the context
and constraints.

MCE4-1029 47 of 59

Aalborg University 6 CONCLUSION

6 CONCLUSION

In order to ensure the reliable operation of offshore wind turbines, a robust maintenance
strategy is essential. In this thesis, pitch systems, specifically the role of accumulators in
the wind turbine downtime is discussed. Gas leakage in accumulators presents a significant
challenge, particularly due to limitations in sensor installation. To solve this issue, an approach
utilizing neural networks for gas leakage detection is proposed.

The first step was to develop and validate an accurate accumulator model. In order to capture
different operational scenarios, data was generated by varying the gas pre-charge pressure,
load flow intensity, and oil and ambient temperature. Subsequently, a fully connected neural
network (FCN) was developed, trained, and evaluated for gas leakage detection.

Accumulator Model Validation The validation process of the accumulator model provided
valuable insights into their accuracy and performance. The comparison of piston position
between the simulated and experimental data showed that the residual remained within an
acceptable range of ± 5mm, indicating a reasonably good estimation of the piston position.

The evaluation of wall temperatures in different elements revealed some discrepancies, par-
ticularly in wall element 1, which can be attributed to the assumptions made regarding the
distribution and constancy of oil temperature, as well as the assumption of the oil end cap
having the same temperature as the oil. It is also possible that inaccuracies in the documen-
tation of experimental tests may have contributed to these deviations. Overall, these findings
highlight the importance of careful consideration of model assumptions and the need for ac-
curate and well-documented experimental data for effective validation of accumulator system
models.

Neural Network Performance The developed FCN model, inspired by previous studies,
demonstrated good performance in the task of classifying gas pre-charge pressure. The choice
of input variables and the size of the sliding window significantly impact the performance of
the neural network model. It was found that a window size of 3906 samples achieved the best
balance between accuracy and training time.

The choice of hyperparameters, such as the number of filters and their sizes, plays a crucial
role in model performance. Fine-tuning these hyperparameters can lead to improved accuracy
and reduced loss. However, it is important to consider the trade-off between performance and
computational resources, as using larger filters and more filters can increase training time and
memory consumption.

In terms of sensor utilization, incorporating the oil and ambient temperature signals into the
input of the neural network improved the accuracy and reduced the loss. The model achieved
95% accuracy and a loss of 0.1634 by considering only three available sensors (oil pressure, oil
temperature, and ambient temperature). Adding the temperature of the accumulator surface
further enhanced the performance, reaching 100% accuracy and a loss of 0.0085 when three
thermocouples were included.

MCE4-1029 48 of 59

Aalborg University 6 CONCLUSION

Overall, the experiments demonstrate the potential of neural networks for predicting gas pre-
charge pressure in wind turbines. The results highlight the importance of carefully selecting
input variables, optimizing hyperparameters, and considering the specific characteristics of
the data to achieve the best possible performance. Incorporating additional sensor data, such
as oil and ambient temperature, improves the accuracy of the model. The neural network can
effectively predict the gas pre-charge pressure using a limited number of sensors.

MCE4-1029 49 of 59

Aalborg University 7 FUTURE WORK

7 FUTURE WORK

There are several potential opportunities for further research and development in the field
of gas leakage detection in accumulators using neural network-based method. The following
areas can be explored:

Expanded Data Generation: In order to capture a wider range of operational scenarios, future
work can involve generating model data using different pump and load flow, and different
oil and ambient temperatures. Additionally, incorporating sensor noise and disturbances can
further evaluate the robustness of the neural network and enhance its adaptability to real-
world conditions.

Residual Neural Network (ResNet): ResNet architectures have shown excellent performance
in various tasks such computer vision and TSC. Implementing a residual neural network
(ResNet) for gas leakage detection could be beneficial, especially when the performance of the
current fully connected network (FCN) using only one sensor is not great.

Wavelet Analysis and Pre-trained CNN: Wavelet analysis can be utilized to transform wavelet
signals into images, which can then be fed into a pre-trained convolutional neural network
(CNN), such as Inception. This approach can potentially improve the detection accuracy by
utilizing the power of pre-trained models and their ability to extract meaningful features from
complex data.

Class Activation Map (CAM): The integration of Class Activation Map (CAM) can provide
valuable insights into the regions of interest and contribute to interpretability of the neural
network model. By visualizing the important features and areas that contribute to the gas
leakage detection decision, CAM can aid in understanding the underlying patterns and fur-
ther improve the detection system.

MCE4-1029 50 of 59

Aalborg University BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Zhengru Ren et al. “Offshore wind turbine operations and maintenance: A state-of-
the-art review”. In: Renewable and Sustainable Energy Reviews 144 (2021), p. 110886. issn:
1364-0321. doi: https://doi.org/10.1016/j.rser.2021.110886. url: https://www.
sciencedirect.com/science/article/pii/S1364032121001805.

[2] Magnus F. Asmussen, Jesper Liniger, and Henrik C. Pedersen. “Fault Detection and
Diagnosis Methods for Fluid Power Pitch System Components—A Review”. In: Energies
14.5 (2021). issn: 1996-1073. doi: 10.3390/en14051305. url: https://www.mdpi.com/
1996-1073/14/5/1305.

[3] James Carroll, Alasdair McDonald, and David Mcmillan. “Failure rate, repair time and
unscheduled O&M cost analysis of offshore wind turbines”. In: Wind Energy 19 (Aug.
2015). doi: 10.1002/we.1887.

[4] Julia Walgern et al. “Reliability of electrical and hydraulic pitch systems in wind turbines
based on field-data analysis”. In: Energy Reports 9 (2023), pp. 3273–3281. issn: 2352-
4847. doi: https://doi.org/10.1016/j.egyr.2023.02.007. url: https://www.
sciencedirect.com/science/article/pii/S235248472300149X.

[5] Jesper Liniger. “Design of Reliable Fluid Power Pitch Systems for Wind Turbines”. En-
glish. PhD supervisor: Prof. Henrik C. Pedersen, Aalborg University Assistant PhD su-
pervisor: Assoc. Prof. Mohsen Soltani, Aalborg University. PhD thesis. 2018. doi: 10.
5278/VBN.PHD.ENG.00040.

[6] Jesper Liniger et al. “Signal-Based Gas Leakage Detection for Fluid Power Accumulators
in Wind Turbines”. In: Energies 10.3 (2017). issn: 1996-1073. doi: 10.3390/en10030331.
url: https://www.mdpi.com/1996-1073/10/3/331.

[7] Hydropneumatic Accumulators and Components. General Catalogue. Epe Italiana s.r.l. 2019.
url: https : / / www . epeitaliana . it / wp - content / uploads / 2020 / 06 / Catalogo -

Generale-EPE-2019.pdf.

[8] Magnus F. Asmussen et al. “Pre-Charge Pressure Estimation of a Hydraulic Accumula-
tor Using Surface Temperature Measurements”. In: Wind 2.4 (2022), pp. 784–800. issn:
2674-032X. doi: 10.3390/wind2040041. url: https://www.mdpi.com/2674-032X/2/4/41.

[9] Kamilla Heimar Andersen, Simon Pommerencke Melgaard, and Daniel Leiria. Working
document: Summary of Existing FDD Frameworks for Building Systems. English. Apr. 2023.

[10] Simon P. Melgaard et al. “Fault Detection and Diagnosis Encyclopedia for Building
Systems: A Systematic Review”. In: Energies 15.12 (2022). issn: 1996-1073. doi: 10.3390/
en15124366. url: https://www.mdpi.com/1996-1073/15/12/4366.

MCE4-1029 51 of 59

https://doi.org/https://doi.org/10.1016/j.rser.2021.110886
https://www.sciencedirect.com/science/article/pii/S1364032121001805
https://www.sciencedirect.com/science/article/pii/S1364032121001805
https://doi.org/10.3390/en14051305
https://www.mdpi.com/1996-1073/14/5/1305
https://www.mdpi.com/1996-1073/14/5/1305
https://doi.org/10.1002/we.1887
https://doi.org/https://doi.org/10.1016/j.egyr.2023.02.007
https://www.sciencedirect.com/science/article/pii/S235248472300149X
https://www.sciencedirect.com/science/article/pii/S235248472300149X
https://doi.org/10.5278/VBN.PHD.ENG.00040
https://doi.org/10.5278/VBN.PHD.ENG.00040
https://doi.org/10.3390/en10030331
https://www.mdpi.com/1996-1073/10/3/331
https://www.epeitaliana.it/wp-content/uploads/2020/06/Catalogo-Generale-EPE-2019.pdf
https://www.epeitaliana.it/wp-content/uploads/2020/06/Catalogo-Generale-EPE-2019.pdf
https://doi.org/10.3390/wind2040041
https://www.mdpi.com/2674-032X/2/4/41
https://doi.org/10.3390/en15124366
https://doi.org/10.3390/en15124366
https://www.mdpi.com/1996-1073/15/12/4366

Aalborg University BIBLIOGRAPHY

[11] Marcin Mrugalski. “Introduction”. In: Advanced Neural Network-Based Computational Schemes
for Robust Fault Diagnosis. Cham: Springer International Publishing, 2014, pp. 1–7. isbn:
978-3-319-01547-7. doi: 10.1007/978-3-319-01547-7_1. url: https://doi.org/10.
1007/978-3-319-01547-7_1.

[12] Stefan Kollmannsberger et al. Deep Learning in Computational Mechanics. An Introductory
Course. Cham: Springer International Publishing, 2021. isbn: 978-3-030-76587-3. doi: 10.
1007/978-3-030-76587-3. url: https://doi.org/10.1007/978-3-030-76587-3.

[13] Yao Jin et al. “Fault Diagnosis of Hydraulic Seal Wear and Internal Leakage Using
Wavelets and Wavelet Neural Network”. In: IEEE Transactions on Instrumentation and
Measurement 68.4 (2019), pp. 1026–1034. doi: 10.1109/TIM.2018.2863418.

[14] Jianjun Chen et al. “An Imbalance Fault Detection Algorithm for Variable-Speed Wind
Turbines: A Deep Learning Approach”. In: Energies 12.14 (2019). issn: 1996-1073. doi:
10.3390/en12142764. url: https://www.mdpi.com/1996-1073/12/14/2764.

[15] Alibek Kopbayev et al. “Gas leakage detection using spatial and temporal neural net-
work model”. In: Process Safety and Environmental Protection 160 (2022), pp. 968–975.
issn: 0957-5820. doi: https://doi.org/10.1016/j.psep.2022.03.002. url: https:
//www.sciencedirect.com/science/article/pii/S0957582022001999.

[16] Georg Helbing and Matthias Ritter. “Deep Learning for fault detection in wind tur-
bines”. In: Renewable and Sustainable Energy Reviews 98 (2018), pp. 189–198. issn: 1364-
0321. doi: https://doi.org/10.1016/j.rser.2018.09.012. url: https://www.
sciencedirect.com/science/article/pii/S1364032118306610.

[17] Lasse Bonde Hansen et al. Gas leakage detection for fluid power accumulator. Accumulator
fault detection using neural networks. Aalborg University, 8th Semester Report. 2022.

[18] Anders Hedegaard Hansen. Fluid Power Systems. A Lecture Note in Modelling, Analysis
and Control. Springer International Publishing, 2023. isbn: 978-3-031-15088-3. doi: 10.
1007/978-3-031-15089-0. url: https://doi.org/10.1007/978-3-031-15089-0.

[19] D. R. Otis and A. Pourmovahed. “An Algorithm for Computing Nonflow Gas Processes
in Gas Springs and Hydropneumatic Accumulators”. In: Journal of Dynamic Systems,
Measurement, and Control 107.1 (Mar. 1985), pp. 93–96. issn: 0022-0434. doi: 10.1115/
1 . 3140714. eprint: https : / / asmedigitalcollection . asme . org / dynamicsystems /

article-pdf/107/1/93/5492491/93_1.pdf. url: https://doi.org/10.1115/1.
3140714.

[20] Siegfried Rotthäuser. “Verfahren zur Berechnung und Untersuchung hydropneumatis-
cher Speicher”. Aachen, Techn. Hochsch., Diss., 1993. PhD thesis. Aachen, 1993, VII, 133
S. : Ill., graph. Darst. url: https://publications.rwth-aachen.de/record/75573.

MCE4-1029 52 of 59

https://doi.org/10.1007/978-3-319-01547-7_1
https://doi.org/10.1007/978-3-319-01547-7_1
https://doi.org/10.1007/978-3-319-01547-7_1
https://doi.org/10.1007/978-3-030-76587-3
https://doi.org/10.1007/978-3-030-76587-3
https://doi.org/10.1007/978-3-030-76587-3
https://doi.org/10.1109/TIM.2018.2863418
https://doi.org/10.3390/en12142764
https://www.mdpi.com/1996-1073/12/14/2764
https://doi.org/https://doi.org/10.1016/j.psep.2022.03.002
https://www.sciencedirect.com/science/article/pii/S0957582022001999
https://www.sciencedirect.com/science/article/pii/S0957582022001999
https://doi.org/https://doi.org/10.1016/j.rser.2018.09.012
https://www.sciencedirect.com/science/article/pii/S1364032118306610
https://www.sciencedirect.com/science/article/pii/S1364032118306610
https://doi.org/10.1007/978-3-031-15089-0
https://doi.org/10.1007/978-3-031-15089-0
https://doi.org/10.1007/978-3-031-15089-0
https://doi.org/10.1115/1.3140714
https://doi.org/10.1115/1.3140714
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/107/1/93/5492491/93_1.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/107/1/93/5492491/93_1.pdf
https://doi.org/10.1115/1.3140714
https://doi.org/10.1115/1.3140714
https://publications.rwth-aachen.de/record/75573

Aalborg University BIBLIOGRAPHY

[21] A. Pourmovahed and D. R. Otis. “An Experimental Thermal Time-Constant Correlation
for Hydraulic Accumulators”. In: Journal of Dynamic Systems, Measurement, and Control
112.1 (Mar. 1990), pp. 116–121. issn: 0022-0434. doi: 10.1115/1.2894128. eprint: https:
//asmedigitalcollection.asme.org/dynamicsystems/article- pdf/112/1/116/

5557217/116_1.pdf. url: https://doi.org/10.1115/1.2894128.

[22] G. Dreyfus. Neural Networks. Methodology and Applications. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005. isbn: 978-3-540-28847-3. doi: 10.1007/3-540-28847-3. url:
https://doi.org/10.1007/3-540-28847-3.

[23] Hisham El-Amir and Mahmoud Hamdy. Deep Learning Pipeline. Building a Deep Learning
Model with TensorFlow. Berkeley, CA: Apress, 2020. isbn: 978-1-4842-5349-6. doi: 10 .
1007/978-1-4842-5349-6. url: https://doi.org/10.1007/978-1-4842-5349-6.

[24] Navid Mohammadi Foumani et al. Deep Learning for Time Series Classification and Extrinsic
Regression: A Current Survey. 2023. arXiv: 2302.02515 [cs.LG]. url: https://doi.org/
10.48550/arXiv.2302.02515.

[25] Hassan Ismail Fawaz et al. “Deep learning for time series classification: a review”. In:
Data Mining and Knowledge Discovery 33 (2019), pp. 917–963. issn: 1573-756X. doi: 10.
1007/s10618-019-00619-1. url: https://doi.org/10.1007/s10618-019-00619-1.

[26] Zhiguang Wang, Weizhong Yan, and Tim Oates. “Time series classification from scratch
with deep neural networks: A strong baseline”. In: 2017 International Joint Conference on
Neural Networks (IJCNN). 2017, pp. 1578–1585. doi: 10.1109/IJCNN.2017.7966039.

[27] Anthony Bagnall et al. The UEA & UCR Time Series Classification Repository. [Online;
accessed 18-May-2023]. 2023. url: https://www.timeseriesclassification.com.

[28] Tuan D Pham. “Time-frequency time-space LSTM for robust classification of physiolog-
ical signals”. In: Scientific Reports 11 (2021), pp. 2045–2322. doi: 10.1038/s41598-021-
86432-7. url: https://doi.org/10.1038/s41598-021-86432-7.

[29] Kun Xia, Jianguang Huang, and Hanyu Wang. “LSTM-CNN Architecture for Human
Activity Recognition”. In: IEEE Access 8 (2020), pp. 56855–56866. doi: 10.1109/ACCESS.
2020.2982225.

[30] Tara N. Sainath et al. “Convolutional, Long Short-Term Memory, fully connected Deep
Neural Networks”. In: 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2015, pp. 4580–4584. doi: 10.1109/ICASSP.2015.7178838.

[31] Christian Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual Connec-
tions on Learning. 2016. arXiv: 1602.07261 [cs.CV].

[32] Christian Szegedy et al. Going Deeper with Convolutions. 2014. arXiv: 1409.4842 [cs.CV].

[33] Ovidiu Calin. Deep Learning Architectures. A Mathematical Approach. Cham: Springer In-
ternational Publishing, 2020. isbn: 978-3-030-36721-3. doi: 10.1007/978-3-030-36721-3.
url: https://doi.org/10.1007/978-3-030-36721-3.

[34] François Chollet et al. Keras. https://keras.io. 2015.

MCE4-1029 53 of 59

https://doi.org/10.1115/1.2894128
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/112/1/116/5557217/116_1.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/112/1/116/5557217/116_1.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/112/1/116/5557217/116_1.pdf
https://doi.org/10.1115/1.2894128
https://doi.org/10.1007/3-540-28847-3
https://doi.org/10.1007/3-540-28847-3
https://doi.org/10.1007/978-1-4842-5349-6
https://doi.org/10.1007/978-1-4842-5349-6
https://doi.org/10.1007/978-1-4842-5349-6
https://arxiv.org/abs/2302.02515
https://doi.org/10.48550/arXiv.2302.02515
https://doi.org/10.48550/arXiv.2302.02515
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1109/IJCNN.2017.7966039
https://www.timeseriesclassification.com
https://doi.org/10.1038/s41598-021-86432-7
https://doi.org/10.1038/s41598-021-86432-7
https://doi.org/10.1038/s41598-021-86432-7
https://doi.org/10.1109/ACCESS.2020.2982225
https://doi.org/10.1109/ACCESS.2020.2982225
https://doi.org/10.1109/ICASSP.2015.7178838
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1409.4842
https://doi.org/10.1007/978-3-030-36721-3
https://doi.org/10.1007/978-3-030-36721-3
https://keras.io

Aalborg University BIBLIOGRAPHY

[35] Tom O’Malley et al. KerasTuner. https://github.com/keras-team/keras-tuner. 2019.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.
arXiv: 1412.6980 [cs.LG].

[37] HS Hota, Richa Handa, and Akhilesh Kumar Shrivas. “Time series data prediction using
sliding window based RBF neural network”. In: International Journal of Computational
Intelligence Research 13.5 (2017), pp. 1145–1156.

[38] Pedro M. Ferreira and AntÓnio E. Ruano. “Online Sliding-Window Methods for Process
Model Adaptation”. In: IEEE Transactions on Instrumentation and Measurement 58.9 (2009),
pp. 3012–3020. doi: 10.1109/TIM.2009.2016818.

[39] Hanan A. Saeed et al. “Online fault monitoring based on deep neural network & sliding
window technique”. In: Progress in Nuclear Energy 121 (2020), p. 103236. issn: 0149-
1970. doi: https://doi.org/10.1016/j.pnucene.2019.103236. url: https://www.
sciencedirect.com/science/article/pii/S0149197019303427.

[40] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

MCE4-1029 54 of 59

https://github.com/keras-team/keras-tuner
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TIM.2009.2016818
https://doi.org/https://doi.org/10.1016/j.pnucene.2019.103236
https://www.sciencedirect.com/science/article/pii/S0149197019303427
https://www.sciencedirect.com/science/article/pii/S0149197019303427

Aalborg University A NEURAL NETWORK REVIEW

A NEURAL NETWORK REVIEW

In order to support the methods presented in section 4, some used frequently terms in the field
of machine learning are defined below. The information contained in this section is derived
from Kollmannsberger et al. [12], Dreyfus [22], El-Amir and Hamdy [23], and Calin [33].

A.1 Basic Definitions

Machine Learning Machine learning is a subset of artificial intelligence that uses algorithms
and statistical models to learn and improve from experience, without being explicitly pro-
grammed. One important machine learning method is the so-called Neural Network, that is
going to be properly defined below. The term deep learning refers to a neural network which
are composed of several interconnected layers and involves the use of large datasets and com-
plex models.

Neuron A neuron is a nonlinear function that is parameterized and bounded. The input X
is called "variables" and the output value y is often referred as "prediction". A typical neuron
is presented in figure 25.

Figure 25: A neuron representation.

Neural Networks Neurons can be combined into complex networks, often built in layers.
The input layer, although called layer, is not a neuron, since it is not a function. Hidden
layers are nested abstract functions of the inputs. The output layer provides the final compu-
tation. Neural networks can be divided into two types: feedforward networks and recurrent
networks.

Feedforward Neural Networks The information goes from inputs to outputs. There is no
cyclic path. Some examples are: Multilayer Perceptrons (MLP), Convolutional Neural Net-
work (CNN) and Autoencoder.

Recurrent Neural Networks Likewise known as Feedback Neural Network. They contain
cyclic paths leading back to a starting neuron. However, this causes a neuron to be function of
itself, which is not possible, so in this case, time is explicitly taken into account, as a neuron
can be function of its previous values. This neural network therefore consists of nonlinear
discrete-time recurrent equations. Examples are: Long-short Term Memory (LSTM) and Gated
Recurrent Unit (GRU).

MCE4-1029 55 of 59

Aalborg University A NEURAL NETWORK REVIEW

Activation Function The neuron function f is called activation function. There are different
types of activation functions that are used depending on the problem being solved. Equations
and graph representation of these functions is presented in table 10.

To introduce non-linearity in the neural networks, generally a sigmoid (or logistic) function,
a hyperbolic tangent (tanh) function, or a Rectified Linear Unit (ReLU) function are used in
hidden layers. They are useful for logistic regression or classification algorithms, allowing the
modeling of complex relationships between inputs and outputs.

The SoftMax function is often used in output layers for multi-class classification. It is utilized
due to three key properties it possesses. Firstly, it ensures that the sum of probabilities is al-
ways equal to 1. Secondly, the function is differentiable, which is beneficial for gradient-based
optimization algorithms. Lastly, it is an extension of logistic regression to handle multinomial
cases. [25]

Table 10: Examples of activation functions.

Activation Function Graph Representation

S(x) =
1

1 + e−x

tanh(x) =
2

1 + e−2x − 1

ReLU(x) = max(0, x)

So f tMax(x) =
exi

∑ exi

Supervised Training The model is provided with both known input and the ground truth
output. The goal is to adjust the weights and biases so that the model can make accurate pre-
dictions. Classification and regression problems are examples that utilize supervised learning.

MCE4-1029 56 of 59

Aalborg University A NEURAL NETWORK REVIEW

Unsupervised Training The model is provided with an unlabeled dataset. The goal is to
finds hidden patterns in the input data without any prior knowledge of the output. Clustering
and dimensionality reduction are examples that utilize unsupervised learning.

Training Example A training example is a single input-output pair that is used to train
a machine learning model. It consists of an input, which is typically a vector of feature
values that describe some object or phenomenon, and an output, which is the label or value
associated with that object or phenomenon.

A.2 Hyperparameter Definitions

Hyperparameters are parameters whose values are set before training the model and cannot
be learned from the data. They have a significant impact on the performance of the model
and their selection requires experimentation. The selection of these hyperparameters is often
done using techniques such as grid search, random search, or Bayesian optimization. The
most common discussed hyperparameters are presented below.

Learning Rate Determines the step size taken during the optimization process of a machine
learning model. It determines the rate at which the weights of the model are updated with
respect to the loss gradient. A large learning rate can result in unstable training, while a small
learning rate can result in very slow convergence.

Batch Size Refers to the number of training examples utilized in one forward/backward
pass. The model will process the whole batch of training examples at once before updating
the weights. Larger batch sizes can lead to faster convergence but can also require more
memory resources. There are three types:

1. In full batch the entire training dataset is fed to the model in one iteration. This means
that the batch size is equal to the number of examples in the dataset.

2. For mini-batch a small subset of the training dataset is used in each iteration. The batch
size is typically chosen to be a power of 2, and is less than the total number of examples
in the dataset.

3. At last, the stochastic batch uses a single training example in each iteration. This means
that the batch size is equal to 1.

Epoch One epoch means one iteration over the training dataset. It is the complete pass
through, followed by the parameters update. Generally, the more epochs, the more times the
model will learn and update its parameters, but this can also lead to overfitting if not carefully
controlled.

MCE4-1029 57 of 59

Aalborg University B NEURAL NETWORK ARCHITECTURES

B NEURAL NETWORK ARCHITECTURES

As a way of providing a reference knowledge for this thesis, the most basic and common
neural network architectures are presented in this appendix. The information is derived from
Kollmannsberger et al. [12], Dreyfus [22], El-Amir and Hamdy [23], and Calin [33].

B.1 Convolutional Neural Network

CNN is a specialized type of neural network architecture commonly used for analyzing grid-
like or spatial data, such as images or time-series data with spatial structure. CNNs are
particularly effective at extracting meaningful features from input data through the use of
convolutional layers and pooling layers. A typical architecture for CNN is illustrated in fig-
ure 26. [23]

Figure 26: Simple CNN architecture utilized for image classification [23].

Convolutional Layers: The convolutional layers in a CNN apply a set of learnable filters
(kernels) to the input data, allowing the network to capture local patterns or features present
in the data. Each filter performs a convolution operation, which involves sliding the filter
over the input data and computing element-wise multiplications and summations to produce
feature maps.

Pooling Layers: Pooling layers are used to downsample the feature maps generated by con-
volutional layers, reducing their spatial dimensions while retaining important features. Com-
mon pooling operations include max pooling (selecting the maximum value within a region)
and average pooling (taking the average value within a region).

Activation Functions: CNNs employ activation functions, such as the rectified linear unit
(ReLU), to introduce non-linearity and enable the network to model complex relationships in
the data.

MCE4-1029 58 of 59

Aalborg University B NEURAL NETWORK ARCHITECTURES

Fully Connected Layers: After the convolutional and pooling layers, CNNs typically include
one or more fully connected layers. Each neuron in one layer is connected to every neuron
in the previous and the next layer. These layers perform high-level feature extraction and
transformation, allowing the network to learn more abstract representations of the input data.

The combination of convolutional and pooling layers in CNNs enables them to automatically
learn hierarchical representations of data, capturing both low-level and high-level features.
This makes CNNs highly effective in tasks like image classification, object detection, and
analyzing time-series data with spatial characteristics.

MCE4-1029 59 of 59

	Front page
	Synopsis
	Preface
	Summary
	Contents
	Nomenclature
	1 Introduction
	2 Problem Analysis
	2.1 System and Fault Definition
	2.1.1 Accumulators
	2.1.2 Pre-charge Pressure
	2.1.3 Gas Leakage

	2.2 Maintenance Methods
	2.3 Fault Detection and Diagnosis
	2.3.1 Classical FDD Methods
	2.3.2 Neural Network FDD Methods

	2.4 Methodology
	2.5 Problem Statement
	2.6 Limitations

	3 Accumulator Model
	3.1 System Input/Output
	3.2 Oil Model
	3.3 Mechanical Model
	3.4 Gas Model
	3.4.1 Gas Pressure
	3.4.2 Gas Temperature

	3.5 Thermal Model
	3.5.1 The Gas End Cap
	3.5.2 The Piston
	3.5.3 The Wall

	3.6 Model Validation
	3.6.1 Load Model Validation
	3.6.2 Thermal Model Comparison
	3.6.3 Accumulator Model Validation

	3.7 Data Generation for Neural Network

	4 Neural Network Model
	4.1 Design of Neural Networks
	4.1.1 Semi-physical Modeling
	4.1.2 Design Procedure
	4.1.3 Understanding the Data
	4.1.4 Neural Network for Time Series

	4.2 The Model
	4.2.1 Promising NN Architectures
	4.2.2 Classification using FCN

	4.3 The Training Process
	4.3.1 Model Initialization
	4.3.2 Forward Propagation
	4.3.3 Cost Function Calculation
	4.3.4 Backpropagation
	4.3.5 Updating Parameters

	4.4 Data Preprocessing
	4.4.1 Sliding Window
	4.4.2 Robust Scaler
	4.4.3 One-Hot Encoding

	5 Experimentation and Results
	5.1 Experiment Setup
	5.1.1 Tests Description
	5.1.2 Training Description
	5.1.3 Analysis Limitations

	5.2 Training Results
	5.3 Test Validation Results
	5.3.1 Sliding Window Size
	5.3.2 Minimum Sensor Utilization
	5.3.3 Fixed vs Varied Oil and Ambient Temperature
	5.3.4 Chosen Hyperparameters vs Original

	6 Conclusion
	7 Future Work
	Bibliography
	Appendix
	A Neural Network Review
	A.1 Basic Definitions
	A.2 Hyperparameter Definitions

	B Neural Network Architectures
	B.1 Convolutional Neural Network

