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Abstract

This thesis delves into the evolving realm of renewable energy, exploring the potential of

leveraging portfolio optimization models traditionally utilized in financial markets, with a key

emphasis on the Dynamic Conditional Correlation GARCH (DCC GARCH) model in conjunc-

tion with the time-tested Mean Variance Optimization (MVO) method. Amid a global transition

towards green energy, and spurred by projections of renewable and nuclear technologies con-

tributing over 50% of global electricity production by 2030, the study investigates the efficacy

of geographical portfolio diversification within the renewable energy sector, specifically across

Denmark, Finland, Italy, Belgium, and Germany. The thesis concludes that the implementation

of a DCC GARCH based Mean Variance Optimization does in fact yield higher value for the

respective portfolios than the simple equally weighted method of portfolio diversification. It

does however also suggest that more complex methods of calculating portfolio risk than simply

the portfolio variance would be required to more adequately account for the risk/reward pro-

file of each portfolio, especially with more extreme price scenarios occurring in the electricity

markets.
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1 Introduction

In today’s world where the effects of global warming are become more apparent every year

with more extreme heat waves, forest fires, flash floods, hurricanes and many more weather

phenomenon, the case for increased production of renewable energy becomes better and better.

At the current rate, the World Economic Forum expects that by 2030 over 50% of the worlds

electricity production will be from renewable technology and nuclear technology. The WEF

cites a collection of 47 peer reviewed research papers investigating the possibilities for countries

to completely switch to renewable energy by 2050 and how that could keep the planet below

the 1.5°global warming target set by the Paris agreement. (WEF, 2022 (b))

This significant increase in global renewable energy capacity also opens up doors for many

companies to facilitate this transition to green energy. A relatively new standard of contracts

within the renewable sector is the Power Purchase Agreement (PPA) which is an agreement

that can be between a producer and consumer or as is often the case, between a producer and

a Balance Responsible Party (BRP) who then makes another PPA with a consumer. This can

often make it easier on the producer as they only need to focus on producing while the BRP

takes care of delivering the physical electricity to the end consumer or sells it off on the Day-

Ahead electricity exchange.(Next-Kraftwerke, n.d. (b))

These PPA contracts also allow large corporations that want to live up to certain climate

standards, where companies such as Google have signed multiple long term PPA contracts in

order to meet their climate neutrality goals. This allows them at the same time to secure and fix

their cost of electricity by the amount contracted. (McKinsey, 2018)

This thesis looks at how a BRP can diversify it’s portfolio geographically by using known

portfolio optimization methods from the more common financial markets. The countries used

for the optimization will be Denmark, Finland, Italy, Belgium and Germany, they were chosen

based on a correlation study made by Eurostat (2023), however the choice of countries was

also limited by access to data through Centrica Energy Trading’s database. The methods used

will be a combination of volatility modelling by the use of a Dynamic Conditional Correlation

GARCH (DCC GARCH) proposed by Engle in 1982 in combination with the well known Mean

Variance Optimization (MVO) method introduced and popularized by Markowitz in 1952.

The DCC GARCH model will be used to forecast for three different time horizons within

a year and the resulting covariance matrixes will be used for the Mean Variance Optimization.

That will result in different portfolio weights of the five respective countries with each country

having its own volume weighted average price (VWAP) and the portfolio its own VWAP based
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on the combination of weights. These portfolios will be compared against a portfolio optimized

on the sample covariance of each training period as well as a portfolio diversified equally with

each country having a 20% weights, referred to in this thesis as the naive equally weighted

portfolio.

These different portfolios will then be compared against each other and their respective per-

formance will predominantly be observed by the portfolios VWAP as it reflects the average

price for each MW produced, where the higher the VWAP, the better. Each portfolios vari-

ance will also be used as a metric for their respective risk, making the VWAP more relative to

portfolio risk.
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2 Introduction to the Power Markets

This chapter serves as a foundational introduction to power markets, enabling readers to

better understand the various concepts explored throughout this thesis. Although many of the

financial derivatives available to market participants resemble those used in the broader equity

markets, there are subtle differences.

The European Power Market is a vast and intricate system involving many countries, each

with their own electricity production and consumption. At present, 19 countries in Europe,

which account for 85% of the region’s total electricity consumption, participate in the Multi-

Regional Coupling (MRC). The MRC facilitates the seamless flow of electricity between par-

ticipating countries, as long as transmission capacity is available. The MRC’s primary goal is to

maximize social welfare across all member countries by importing power where prices are high

and exporting power from countries with lower prices. Consequently, this results in smaller

price differences between member nations (Next Kraftwerke, n.d. (a))

In the power market, there are several types of market participants, each with distinct roles

and responsibilities. These participants include utilities, independent power producers (IPPs),

large energy consumers, and energy traders. Utilities are companies responsible for generating,

transmitting, and distributing electricity to end-users, such as households and businesses. IPPs

are non-utility entities that generate and sell electricity to utilities, grid operators, or large energy

consumers. Large energy consumers include industrial and commercial facilities that consume

significant amounts of electricity and may engage directly in the power market to manage their

electricity costs and hedge against price volatility. Energy traders are specialized market partic-

ipants that buy and sell electricity and other energy-related financial products, such as futures,

options, and swaps. They play a crucial role in managing price risks, providing liquidity, and

promoting price discovery in the power market. (EIA, n.d.)

To ensure that supply and demand discrepancies in the power market do not escalate, Bal-

ance Responsible Parties (BRPs) are employed. BRPs trade electricity through various meth-

ods, including forward contracts, futures contracts, Over the Counter (OTC) trades, Day-Ahead

Auctions, and the Intra-Day market. Among these, the Day-Ahead and Intra-Day markets are

particularly significant.

The Day-Ahead Auction helps maintain adequate balance within each country’s power grid

for the following day, preventing excessive or insufficient power that could lead to unstable

grid conditions, such as flickering lights or blackouts. In the auction, BRPs submit market

orders indicating the amount of electricity they wish to buy and sell and the desired price. The
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auction is blind, ensuring that no one knows who is buying or selling, thereby maintaining a

level playing field. Once the auction concludes, an algorithm matches all buy and sell bids to

determine an equilibrium price for each hour of the day. This is the market-setting price at

which BRPs buy or sell their electricity. (Energifakta Norge, 2022)

The Intra-Day market opens daily, allowing for the sale or purchase of electricity to balance

discrepancies between expected and actual production in each price area. The concept of a

balanced power grid is essential, and all market participants recognize its importance. BRPs

can only profit from a position in balancing by helping the grid. For example, if the system is

short and requires more power, it must upregulate and activate more expensive power reserves

than the Day-Ahead price. Consequently, market participants must hold a long position in that

market to profit, which also aids the system if they can direct power from one area to the one in

need. (Energifakta Norge, 2022)

The forward and futures markets cater more to longer-term hedging or speculation of fi-

nancial derivatives related to electricity production. Market participants can trade in various

forward products, such as baseload products (a product that represents a fixed amount of MW

per hour, every hour for the specified period) over a month, quarter, half-year, etc. Many par-

ticipants use these products to hedge production or consumption, similar to how equities are

hedged for risk. (Energifakta Norge, 2022)

4
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3 Problem Formulation

As described in the introduction, in the current geopolitical climate where much focus and

resources are being put to use in increasing the production capacity of renewable energy tech-

nologies like wind mills, photovoltaic panels and hydroelectric reserves it has introduced a

phenomenon called price cannibalisation. This phenomenon can lead to depressed electricity

prices during times of high renewable penetration which in turn reduces revenue of electricity

producers.

3.1 Research question

Can the use of financial forecasting models be effective in constructing diversified renewable

energy portfolios that aim to minimize production variance of wind parks, and does the resulting

optimisation result in higher financial value than a naive equally weighted portfolio?

The aim of this thesis is to investigate the effects of geographical diversification within the

renewable electricity markets as the the effects of price cannibalisation become more prevalent

within the industry and require risk and diversification methods to reduce exposure during times

of negative prices. The methods used have been extrapolated from methods that are widely

accepted within the broader financial markets and the efficacy will be tested within the energy

markets. The focus will be on geographical diversification of wind based renewable assets and

how it can be utilized to increase value of a portfolio consistent of exclusively wind assets.

5
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4 Literature Review

4.1 Electricity price cannibalisation

The need for hedging renewable energy production is just as important for renewable energy

portfolio optimisation as hedging of the more common equity based assets such as stocks and

bonds. There are many types of risks that need to be accounted for by energy producers as well

as the off-takers of the energy, which in many cases are intermediaries who then deliver the

power to the end consumer.

One of the most common risks for energy producers is revenue risk or merchant risk which

refers to the uncertainty of revenue received for the power produced. An example would be

the revenue risk of a wind mill owner that only receives revenue for the actual power pro-

duced by the wind mill, which is dependent on the amount of wind blowing at each point in

time. This type of renewable energy production is called intermittent energy production as it

is dependent on external variables such as wind speed and wind direction. For solar parks the

dependent variable would be cloud cover and solar radiation determining how much electricity

can be produced by the solar panels. However with the current increase in renewable energy

investments the general price level of energy during windy and sunny days has decreased due

to the increased capacity of these renewable energy sources as the cost of producing renewable

energy is less than conventional carbon based energy that rely on input costs such as oil, gas

or coal in order to produce energy. This means that renewable power producers get less rev-

enue per MW produced than only a few years ago and therefore their initial profit expectations

might be significantly higher than the realised profit. This phenomenon is referred to as price

cannibalisation and has been observed on both sides of the Atlantic Ocean. (McKinsey, 2018)

Prol, Steininger and Zilberman (2020) observed a clear cannibalisation effect of electricity

prices in California between 2013 and 2017 with increasing capacity of solar and wind produc-

tion. They did observe that the increase in wind production had a negative impact on the value

factor of both wind and solar generation while an increase in solar production had a negative

effect on the value factor of solar but an increase in the value factor of wind power. The reason

for this inverse effect of solar penetration on wind value factor is that solar penetration is at

its peak around noon which has a steeper downwards effect on electricity prices and a spike

upwards when solar penetration tapers off and wind generation picks up in the evening. The

absolute cannibalisation effect is the strongest in high wind and high solar scenarios with low

consumption.

6
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De Lagarde and Lantz (2018) Observed a price cannibalisation effect in the German elec-

tricity market and conclude that the increase in wind production does lead to longer and more

frequent periods of low prices. They also observed that with the increased capacity of renew-

able production in the German grid there was more volatility during periods of high prices and

low renewable production due to the merit-order effect. It is also important to note that in the

German market there are many consumers that have solar panels on their roofs which leads to

a double effect of solar production on electricity prices. This is because consumers with solar

panels do not need to rely on the power grid to supply them with electricity when the sun is

shining, or at least to a lesser degree, decreasing the demand load on the grid on top of the

increase in renewable production in the grid.

Clò, Cataldi and Zoppoli (2015) investigated the effects of increased renewable production

in the Italian market and found results similar to the two above mentioned papers. They ob-

served a direct correlation between level of renewable production and price level as well as a

relationship between renewable production and price volatility, similar to De Lagarde and Lantz

(2018).

4.2 Risk associated with renewable production and hedging

As the previous sub-chapter explained, there is a significant negative correlation between

renewable production and the price level of electricity. This is an issue for future and current

investments in renewable energy as the decrease in electricity prices might outpace the decrease

in building costs of renewable power plants, such as wind mill parks or solar parks. This has

and will continue to decrease the expected profits of investments in renewable energy without

proper diversification across energy technologies and geographical locations.

In addition to the effects of price cannibalisation, there are other risks that need to be eval-

uated, Mack (2014) lists a few that include but are not limited to: Credit Risk, Liquidity Risk,

Market Risk, Operational Risk and Political Risk. These risk factors are very similar to the com-

mon risk factors when discussing equity based portfolio risk. In order to lessen or minimize the

risk associated with an investment, hedging is usually required.

Hedging refers to the act of investing in an asset that has a non-perfect positive or a negative

correlation to a main investment in order to reduce risks associated with the main investment. In

most cases, if a hedge is utilized in order to lower possible risk, the possible returns are usually

also reduced as the investment and the hedged asset do not have a perfect positive correlation.

This means that when the investment increases in value, the hedge most often decreases in

7



Jón Frı́mann Jónsson
20183670

value, if the hedge is performed properly. It is important to note that hedging does not always

refer to offsetting a certain financial position with the opposite hedge. It can also refer to the

act of minimizing of a specific attribute of a financial position, such as minimizing the volatility

of a portfolio or minimizing the correlation of a portfolio. The hedging of these two attributes

does not necessarily require a ”long-short” approach like many portfolio optimisation methods

suggest. (Mack, 2014)

Many electricity producers are also exposed to the cost of input materials such as coal or

gas in order to produce power. During late 2021 and all of 2022, the cost of electricity rose

exponentially with the increased cost of gas and oil due to the war in Ukraine, resulting in

increased price levels as well as increased volatility for those producers that depended on gas

in order to produce electricity (WEF, 2022a). This also spilled over into the general electricity

market with the forward markets pricing some longer term contracts drastically higher than ever

experienced before. This price risk can be very important to hedge for producers of conventional

carbon based electricity in order to prevent large decreases in profitability or even result in

losses.(Mack, 2014)

This type of input price risk can be mitigated by entering into long forward contracts on

the required input if the owner of the production unit suspects an increase in the the price of

the input in the future. This type of hedging is not required when discussing renewable energy

production as the input cost is considered zero as the input is either wind, solar or hydro. (Mack,

2014)

For renewable energy producers, volumetric risk, the risk of not producing the expected

amount of electricity which was sold in the market on the Day-Ahead Auction, be it more or

less than expected can result in unwanted outcomes. An example could be that a supplier sold

a baseload profile of 10MW per hour for the following day but on the day they only produce

8MW per hour. This means that they have sold too much power on the Day-Ahead Auction and

need to purchase the difference in the Intra-Day market. Depending on the market conditions

on the day, it can more or less expensive for the producer to live up to its obligation of delivering

10MW of electricity per hour. The opposite can also happen with the producer producing more

than expected and having to sell it off in the Intra-Day market. (Mack, 2014)

Masala, Micocci and Rizk (2022) observe the effects of using weather derivatives to hedge

against volumetric risk and found a significant increase in the worst value of a renewable port-

folio that was properly hedged against volumetric risk. They did see a small decrease in the

Earnings at Risk while implementing a hedge but it was deemed less significant than the abso-

lute increase in the value of the portfolio in a worst-case scenario.
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4.3 Volatility of Energy Prices

Electricity price volatility is an issue that needs to be properly addressed due to is impact

on renewable investment decisions, risk management of renewable portfolios and the adoption

of renewable energy sources. Weron (2014) conducted a comprehensive review of different

methods of forecasting electricity prices. In the review, Weron (2014) highlights some of the

main drivers of price volatility, with the more impactful drivers include demand fluctuations,

production plant outages, changes in fuel prices for traditional carbon based production and

interventions by regulatory authorities. Weron (2014) emphasizes the need for accurate elec-

tricity price forecasting for market participants, such as producers, consumers, and traders for

effective risk management. The author also identified numerous forecasting methods that have

been used in order to address the specific challenges presented by the unique characteristics

of electricity markets, such as high volatility, mean-reversion and extreme values. The fore-

casting techniques include statistical models, such as autoregressive integrated moving average

(ARIMA) models, as well as machine learning approaches and hybrid models that combine

multiple methodologies.

Fanone, Gamba, and Prokopczuk (2013) observed the existence of negative electricity prices

during Day-Ahead auctions which were attributed to elevated levels of renewable energy pen-

etration while the flexibility of conventional power plants is limited. Negative prices occur

when supply exceeds demand during a certain period which leads to producers paying con-

sumers to absorb excess power in the system. This scenario is most common in markets where

a significant portion of it’s electricity generation is wind and solar based, as these sources are

characterized by volatility and intermittency. The authors find that negative prices are more

likely to occur during periods of low demand and high renewable energy generation, leading

to increased volatility in electricity prices as deviations in the renewable production can not

be offset instantly by carbon based production due to ramping and igniting of those plants.

This finding underscores the need for market participants to develop effective risk management

strategies and forecasting tools that can account for the inherent volatility and unique features

of electricity markets, especially as renewable energy sources continue to grow in importance.

4.4 Multivariate GARCH models in energy markets

Multivariate GARCH models have become increasingly popular in energy market research

due to their ability to capture the dynamic nature of volatility and the relationships between

multiple time series. Song, F., Cui, J. and Yu, Y. (2022) observe the dynamic volatility spillover
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effects between solar generation and wind generation in order to construct an optimal portfolio

with weights in both wind and solar generation. The authors use a DCC GARCH model in

order to capture the time varying correlation between the two technologies and the risk comple-

mentarities in order to minimize the risk of power generation.

Efimova, O. and Serletis, A. (2014) apply a periodic GARCH-M model to improve the

understanding of wholesale electricity price volatility. In the study the authors break down the

price risk into two components, its pure price component and its skeweness price component.

The papers result indicate the the growth rate of electricity prices behave differently to those

of financial rates with past positive shocks having a more significant impact on volatility than

past negative shocks of the same size. This research highlights the importance of understanding

price volatility for large consumers and producers of electricity in order to properly hedge their

exposure.

The use of multivariate GARCH models in energy markets contributes to a better under-

standing of the complex interactions between different energy commodities and financial as-

sets. These models help market participants, such as investors, traders, and policy-makers,

make more informed decisions by providing a deeper understanding of the sources of risk and

the potential for diversification. Additionally, multivariate GARCH models can be used to an-

alyze the impact of renewable energy sources on energy markets, as they can account for the

unique characteristics of renewable energy generation, such as variability, intermittency and

complementarity of different renewable sources.

10
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5 Methodology

In this chapter, an introduction to the methodology for implementing a Dynamic Conditional

Correlation (DCC) GARCH model, a multivariate extension of the univariate GARCH model, to

analyze the time-varying correlations and volatilities in renewable energy production. The DCC

GARCH model, proposed by Engle (2002), allows for capturing of the dynamic relationship

between wind production in different countries, which is crucial for understanding the potential

benefits of geographical portfolio diversification and risk management in the energy sector. This

methodology follows a similar structure to that of Song, F., Cui, J. and Yu, Y. (2022) in order to

keep in line with previously accepted methodology. All model estimations and data processing

will be conducted in R and the code will be attached in an external file.

Before estimating the DCC GARCH model, a series of preliminary tests will be performed,

including tests for stationarity of the data set, to ensure that the data is suitable for the analy-

sis. The Phillips Perron will be used to check for the presence of unit roots in the time series

data. If needed, appropriate transformations will be applied, such as differencing, to achieve

stationarity.

After the data has been confirmed to be suitable for the analysis, either as is or after some

transformation, the dataset will be split up into three different training sets where each training

set includes the previous testing set and therefore is a rolling training set. The testing set will

always be fixed at a length of one year from the end of the respective training set. From the

training sets different mean models will be estimated on the data as the DCC GARCH model

needs a mean model with a variance to have been estimated as the DCC GARCH is estimated

on the variance of the mean model. The mean models will be a version of an Autoregressive

(AR) or Autoregressive Moving Average (ARMA) process depending on what attributes the

data shows. As renewable energy production usually shows signs of seasonality, a variation

of the ARMA process called Seasonal Autoregressive Integrated Moving Average (SARIMA)

could be used. Seasonality in the data will be confirmed before estimating the model in order

for the appropriate model type to be estimated.

Once the mean model process has been chosen, it will be fitted to all 5 sets of production

data and the appropriate lag structures will be decided by using information criteria such as

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). After fitting the

mean models, the standardized residuals are calculated by dividing the raw residuals by their

estimated conditional standard deviations. These standardized residuals will be used as inputs

for the DCC GARCH model.

11
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In order to assess the performance of the DCC GARCH model, a naive mean portfolio with

20% weights in each country will be made as well as portfolios based on the different sample

covariances for the different periods. This will allow for a comparison of a very basic hedging

strategy with the equally weighted portfolio as well as a more complex sample covariance port-

folio. This will provide grounds for an analysis of the different methods within the renewable

energy sector and lead to a discussion of the different methods.

Finally, the results from the DCC GARCH model will be used to construct a Mean Variance

Portfolio (MVP) for the renewable production portfolio. The MVP aims to minimize the overall

portfolio variance profile by selecting the optimal combination of assets based on their dynamic

conditional covariance. This portfolio will be periodically adjusted based on the DCC GARCH

variance forecast in order to better adjust the weights of the portfolio dynamically.

The following subsections will describe each step in the methodology in further detail in

order for the reader to get a better understanding of the underlying theory.

5.1 Autoregressive Moving Average Model

The Autoregressive Moving Average (ARMA) Model is a combination of two components:

the autoregressive (AR) and moving average (MA) models. It is used in time series analysis to

model stationary data that do not exhibit trends or cyclical patterns, such as seasonality. The

AR component accounts for the persistence of the series, while the MA component captures the

random noise present in the data. An ARMA(1,1) model would be as follows

rt = φ0 +φ1rt−1 + εt +θ1εt−1, εt ∼WN(0,σ2) (1)

Where:

rt : Return at time t.

φ0: The constant term.

φ1: The autoregressive (AR) coefficient of order 1.

rt−1: The return at time t −1.

θ1: The moving average (MA) coefficient of order 1.

εt : The error term at time t.

εt−1: The error term at time t-1.

The data set will first be linearly differenced in order to remove any trend it exhibits and if

it still is non stationary it will either be linearly differenced again or quadratically differenced if

12
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it shows signs of seasonality. These transformations would mean that an ARIMA or SARIMA

model would not be necessary, therefore the ARMA model will be used in order to calibrate the

optimal mean model for the GARCH process. (Tsay, 2010)

5.2 The GARCH Model

As this thesis will be incorporating a variation of the GARCH model in it’s multivariate

form, a brief introduction to the Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) model is deemed necessary in order for the reader to better understand the mechanics

and purpose of the model.

The GARCH model is a generalization of the ARCH model, which is a model used for

modelling volatility and was first introduced by Engle in 1982. One of the main purposes of

the ARCH is to model a time series’ volatility over time and capture the time dependency of

the volatility. This model is often used for capturing volatility clustering and allows for the

conditional variance to be adjusted over time as a function of residual errors of a mean process.

(Engle, 1982)

The GARCH model introduces a moving average component in addition to the autoregres-

sive component in the ARCH model. Specifically, it introduces a lag term for the variance

which allows for the conditional variance to change over time based on previous changes in

conditional variances. This model can be considered more accurate in predicting a time series’

variance when there can be observed longer term persistence in variance.

A simple GARCH(1,1) model is as follows:

rt = µt + εt , εt = vt

√
σ2

t vt ∼ N(0,1)

σ
2
t = α0 +α1ε

2
t−1 +β1σ

2
t−1
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Where:

rt : Observed time series value at time t

µ : Constant mean of the time series

εt : Error term at time t

vt : shock in the variance at time t

σ
2
t : Variance of the time series at time t

α1 : ARCH parameter

β1 : GARCH parameter

ε
2
t−1 : Squared error term at lag one (represents shocks in volatility)

σ
2
t−1 : Variance at lag one (represents persistence in volatility)

5.3 DCC - GARCH Model

The Dynamic Conditional Correlation (DCC) GARCH model, developed by Engle (2002),

is an extension of the multivariate GARCH model designed to estimate time-varying conditional

correlations between multiple time series. The DCC GARCH model is particularly useful for

modeling and forecasting correlations in multivariate financial time series data, such as stock re-

turns, exchange rates, and commodity prices. By capturing the dynamic nature of correlations,

the DCC GARCH model provides valuable insights into the relationships between different

assets and can be used for portfolio optimization, risk management, and other financial applica-

tions. In this thesis it will be used as a basis for a mean variance portfolio optimisation problem

which will use the DCC model output and build a portfolio of five different wind parks in five

different countries with the aim of minimizing the variance between the parks and therefore the

internal variance of the portfolio.

Bauwens, Laurent and Rombouts (2006) explain the process in the following way: ”xt{t =

1,2, ...T} is a stochastic vector process of financial returns with Nx1 dimension and mean vector

µt , given the information set It−1:

xt |It1 = µt + εt , (2)

where the residuals of the process are modelled as:

εt = H1/2
t zt (3)
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and H1/2
t is and NxN positive definite matrix such that Ht is the conditional covariance matrix

of xt , and zt and Nx1 i.i.d. random vector, with centered and scaled first 2 moments:

E[zt ] = 0,

Var[zt ] = IN , (4)

with IN denoting the identity matrix of order N. The conditional covariance matrix Ht of xt may

be defined as”:

Var(xt |It−1) =Vart−1(xt) =Vart−1(εt)

= H1/2
t Vart−1(zt)(H

1/2
t )′

= Ht (5)

For the purpose of the Dynamic Conditional Correlation model, the covariance matrix Ht

can be decomposed into:

Ht = DtRtDt (6)

where Dt is a diagonal matrix of conditional covariances Dt = diag(
√

h11,t , ...,
√

hnn,t) and Rt

is a time varying conditional correlation matrix. (Engle, 2002)

In this thesis the mean vector from equation (2) is estimated with an ARMA estimation

process.

5.4 Phillips Perron Test

The Phillips-Perron (PP) test is a widely used method to test for stationarity in a time series

data. A time series is said to be stationary if its statistical properties, such as mean, variance, and

autocovariance, do not change over time. There is however, an important distinction to be made

between a time series that is weak-stationary and a time series that is strictly-stationary. Time

series is considered strictly-stationary when the joint distribution of (rt1, ...rt1+k) is identical to

that of (rt1+t , ...rt1k+t ) for all t where k is an arbitrary positive integer and (t1, ...., tk) is a collection

of k positive integers. In other words, the joint distribution does not change under time shift. A

time series is considered weak-stationary where the mean of rt and the covariance between rt

and rt−m are time invariant, where m is an arbitrary integer. (Tsay, 2010)

Testing for stationarity is important because many time series models assume that the un-
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derlying data is stationary in order to be predictable as it exhibits the trait of mean reversion as

well as the constant mean and covariance described above. Mean reversion refers to the process

where a time series’ mean and variance always revert to the conditional mean and conditional

variance given enough time. If the data is non-stationary, it may need to be transformed before

being used in such models.

The Phillips-Perron test can be seen as a sophisticated evolution of the Dickey-Fuller test,

a well-established method for assessing stationarity. The inherent challenge this test aims to

address is the potential problem of autocorrelation and heteroskedasticity within the error term

of the Dickey-Fuller test, which might lead to distorted results.

The essence of the Phillips-Perron test is captured in this model:

∆Yt = ρYt−1 + εt (7)

Where ∆Yt = Yt −Yt−1 signifies the first difference in the time series Y , ρ represents the

coefficient to be estimated, and εt is the error term. The null hypothesis (H0) and alternative

hypothesis (H1) in this context are:

H0 : ρ = 0 (The time series possesses a unit root, indicating non-stationarity)

H1 : ρ ̸= 0 (The time series exhibits stationarity)

Calculating the test statistic starts with the estimation of the coefficient ρ using the ordinary

least squares (OLS) regression. Subsequently, determining the test statistic is as follows:

Z(ρ) =
(ρ̂ −0)
SE(ρ̂)

(8)

In this equation, ρ̂ is the OLS estimate of ρ , and SE(ρ̂) is the standard error of ρ̂ . According

to the null hypothesis, the test statistic Z(ρ) complies with a non-standard distribution, known

as the Dickey-Fuller distribution.

However, a challenge arises if the error term εt showcases autocorrelation or heteroskedas-

ticity. These characteristics can skew the test statistic. The Phillips-Perron test resolves this by

modifying the test statistic:
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Z(ρ)PP =
(ρ̂ −0)
SE(ρ̂)PP

(9)

In this scenario, SE(ρ̂)PP is the Phillips-Perron adjusted standard error. This adjustment

incorporates non-parametric corrections for the OLS standard error, which account for the au-

tocorrelation and heteroskedasticity of the error term.

The execution of the test involves comparing the calculated Z(ρ)PP statistic with critical val-

ues derived from the Dickey-Fuller distribution. If the absolute value of the test statistic exceeds

the critical value at a designated significance level, we reject the null hypothesis, concluding that

the time series is stationary. (Phillips, P.C.B. and Perron, P., 1988)

5.5 Ljung-Box Test

An statistical method for testing for autocorrelation in a set of time series data is the Ljung-

Box Test (LB test). The LB test, created by Ljung and Box in 1978, is a modification of the

Box-Pierce test, another statistical Q test, and offers a finite-sample correction.

The Ljung-Box test typically posits the following hypotheses:

H0 : The autocorrelations are all zero

H1 : At least one autocorrelation is non-zero

The test statistic, used to assess these hypotheses, is given by:

Q = n(n+2)
h

∑
k=1

pk
2

n− k
(10)

In this equation, n represents the sample size, pk denotes the autocorrelation at lag k. The

test statistic follows a chi-squared (χ2) distribution with h degrees of freedom.

The LB test will be utilized in the analysis to determine whether the models estimated

exhibit autocorrelation in their residuals. If the residuals show signs of autocorrelation, it could

mean that the models do not adequately capture the correlation within the data and might need

to be re-estimated with different lags. A lag value of 10 will be used in the test for the models

during the different time periods and this decision is based on Tsay (2010) where they observed

that simulation studies suggested that the number of lags be roughly calculated as the log() of

the number of observations. For the three different periods the log(n)≈ 10 therefore it was kept
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constant for all models. (Ljung, G.M. and Box, G.E.P., 1978)

5.6 ARCH-LM Test

The Autoregressive Conditional Heteroskedasticity Lagrange Multiplier test (ARCH-LM

test) is a statistical test for volatility clustering within a time series and is used to detect if the

variance of a series changes over time and was developed by Engle in 1982. The test takes the

residuals of a mean model and tests the squared residuals of the model for ARCH effects, where

the null hypothesis is that there are no ARCH effects present in the squared residuals and the

alternative hypothesis is that there are some ARCH effects. The following regression is used

for the test:

ε
2
t = α0 +α1ε

2
t−1 + ...+αpε

2
t−p + et (11)

Where et is a White noise error term. The above mentioned hypothesis is then written as fol-

lows:

H0 : α1 = ...= αp = 0

H1 : α1 = ...= αp ̸= 0

In order to test the null hypothesis the Lagrange Multiplier test is used, it is where the ”LM”

part of the ARCH-LM name comes from and the multiplier test is defined as follows:

LM = (T − p)R2
χ

2(p) (12)

Under the null hypothesis we have no ARCH effects present while under the alternative at

least one of the parameters is different from 0. If the alternative hypothesis cannot be rejected it

would indicate that a models such as the ARCH or GARCH would be required to appropriately

account for and model the time varying conditional variance. (Engle, 1982)

5.7 Mean Variance Portfolio

The Mean Variance Portfolio theory is a popular popular portfolio optimization method

where it is assumed that investors have perfect information and make decisions based on that
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to construct a portfolio with the best risk/reward profile, where the best portfolio for a given

risk level gets plotted and is known as the efficient frontier. This theory was developed by

Harry Markowitz in the early 1950s and has been used in finance ever since. The optimization

is usually computed using quadratic programming where the goal is to minimize the portfolio

variance with a given expected return. The most commonly used version of this optimization is

defined as follows:

Minimize:
1
2

wT
Σw

Subject to: wT
µ = µp

wT 1 = 1

Where:

w denotes the weights vector.

Σ is the covariance matrix of asset returns.

µ is the growth rate vector.

µp is the target portfolio growth rate.

1 is a vector of ones.

This quadratic programming problem will be used on the covariance matrix’s estimated by

the DCC GARCH forecasts as well as the different Sample Covariance matrix’s.

When it comes to electricity markets and the attributes of physical electricity production,

the theory is not quite as useful as there is no certain risk and reward with renewable production

except for the uncertainty of what price will be paid for the electricity produced. The theory also

assumes a target portfolio return which in the case of a renewable energy portfolio would be the

growth rate of the portfolio, which is not necessarily a parameter to be optimized on, unless the

purpose of the portfolio optimization is production growth. This makes the minimum variance

portfolio appealing as it can be calibrated to minimize the variance of electricity production

within a portfolio giving it the highest chance of receiving most value for the electricity as

the overall production profile should stay more consistent and therefore have more production

during higher priced period than if it was not diversified. This is due to the negative correlation

between renewable electricity production and electricity prices, explained earlier in this thesis.

(Markowitz, 1952)
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5.8 Out-of-Sample forecasting

This project will make use of the Out-of-Sample(OOS) forecasting method for estimating

and subsequently testing forecasting models. OOS and also enables evaluation of forecasting

studies with a time series dataset.

Out-of-Sample forecast splits the data into two parts, where the first part is used for estimat-

ing a predictive model and the second part is used for testing the model. Since there is no data

available for the future, a part of data will be used for testing the developed model in order to

evaluate its effectiveness. Meaning that out of the available data, around 2/3 of the portion of

the data will be used to estimate a model while the rest will subsequently be used for testing.

This provides an opportunity to test a model on a sample that was not used on estimating it

therefore providing insight into how the model works with unknown data. In this project, the

first training period is from the 1st to the 17,517th observation, and subsequent testing periods

add 8760 observations one before it while the first testing period is from the 17,518th observa-

tions to the 26,278th period. The testing period will then be shifted by 8760 observations each

time. (Wooldridge, 2015)

5.9 Forecasting Evaluation

In order to determine which forecasting model is the most accurate of the ones tested the

volume weighted average price of portfolios constructed based on a minimum variance optimi-

sation with the different correlation forecasts as well as the sample covariance. The model with

the the highest volume weighted average price would be the most desirable as it gives more

tangible and financially relevant results.
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6 Data

This thesis aims to construct a portfolio of renewable production assets diversified geo-

graphically. The goal is to smooth out the portfolio’s overall production profile by minimizing

it’s variance and, consequently, achieve the highest volume-weighted average price possible.

The study uses historical production data from wind farms located in Denmark, Belgium,

Germany, Finland, and Italy, spanning from January 1, 2018, to December 31, 2022. This data

presents the most accurate depiction of renewable production as it comprises a time series of

actual hourly production instead of forecasts.

Country selection was influenced by a study conducted by Eurostat, examining correlation

between countries during heating and cooling days. Furthermore, access to production data

through Centrica Energy Trading’s actual physical asset portfolio limited the choice of coun-

tries. (Eurostat, 2023)

In addition to the physical production hourly values during the period, hourly spot prices will

be used to evaluate the constructed portfolio’s performance and discern potential modifications

to improve it.

The data from Germany and Belgium underwent transformation as it initially represented

quarter-hour intervals. To align with the hourly data from Finland, Denmark, and Italy, the four

quarterly values of each hour were averaged to yield the hourly value.

To ensure stationarity of the production data, which is a prerequisite for effectively esti-

mating the empirical model, the logarithmic function was applied and the difference was cal-

culated, yielding the Log(Return). Although termed as Log Return, it, in reality, signifies the

rate of growth of production. Stationary data boasts constant mean, variance, and lacks season-

ality and trend, facilitating more precise and straightforward forecasting. The computation of

Log(return) is as follows:

Log(growthratet) = Log(productiont)−Log(productiont−1) (13)

This calculation will be repeated from t = 1, ..., t = k.

Finally, the data for each country is split into distinct training and testing periods for model

estimation over different time periods. The initial training period starts from January 1, 2018,

and concludes on December 31, 2019, furnishing the model with two years of hourly data. The

corresponding testing period spans the following year.

As the testing progresses, the training period extends by one year, integrating the previous

testing period. The testing period, however, remains a constant duration of one year but moves
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forward in time. This pattern continues until the final training period, which runs from January

1, 2018, to December 31, 2021, with the final testing period from January 1, 2022, to December

31, 2022.
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7 Empirical Analysis

The objective of this analysis is to compare and evaluate the performance of three different

portfolio construction methods, specifically: (1) a Dynamic Conditional Correlation (DCC)

GARCH portfolio, (2) a portfolio based on sample covariances, and (3) an equally weighted

portfolio.

Modern portfolio theory suggests that the optimal allocation of assets within a portfolio de-

pends not only on the expected returns of individual assets, but also on the correlations between

these assets. Traditionally, correlations are assumed to be constant over time or are estimated

using a simple sample covariance matrix. As stated earlier the expected return of a renew-

able electricity producer is not the same as an expected return of an equity based asset such as

stocks. Due to this difference there will be a slight adjustment made to the minimum variance

optimization

In this analysis, we will construct portfolios based on these four methods and compare

their performances over the period from 2020 to 2023. The main criterion for comparison will

be the portfolio value, which reflects both the return and risk characteristics of the portfolio.

By comparing the portfolio values obtained by the different methods, the aim will be to gain

insights into the practical implications of the different portfolio construction methods and the

potential benefits of using advanced models such as DCC for portfolio allocation.

As explained in the methodology section, before doing any model estimation the data

needed to inspected and transformed in order for the data to be usable. The data for the five

countries came in one excel sheet that had to be split up into five different time series. The

different time series were then logged and differenced as they showed signs of seasonality and

trend which would make estimating and forecasting more cumbersome. Below is an example

of the raw data from Italy. It can be easily observed that there are signs of seasonality and trend

in the data.

After logging and taking the first difference of the raw production data, the data looks to

become stationary if plotted. Of course this was also confirmed by the use of Phillips-Perron

test for stationarity where each test gave a p-value of ¡= 0.01. From Figure 2 it can be observed

that the raw production data does indeed appear stationary.

After transforming each of the time series, they were then combined into a growth rate

matrix for the DCC GARCH estimation later in the analysis. Before the GARCH estimation

process, a mean model estimation for each time series was performed as the GARCH estimation

and specification will be based on the residuals of the mean models.
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Figure 1: Raw Italy Production Data; (Appendix)

Figure 2: Stationary Italy Production Data; (Appendix)

7.1 Mean model estimation

As the time series’ were logged and differenced and were indeed deemed stationary by

the Phillips-Perron test, there was no reason for a SARIMA model estimation as there was no

seasonality or trend in the stationary time series, the only attributes the data exhibited was mean

reversion and volatility clustering, which is ideal for model forecasting.
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After confirming the stationarity of the data, the partial autocorrelation function for all coun-

tries was plotted in order to understand how many AR parameters would be adequate for an AR

or ARIMA model estimated on the data. Below in Figure 3 is the PACF plot of Danish pro-

duction in the first training period, it can be observed that there is some correlation of residuals

from the first lag to the sixth but the seventh lag has almost none. All ACF and PACF figures

can be found in the Appendix. For the models that pass the LB test of autocorrelation, they will

then be compared by their respective Akaike Information Criterion (AIC) and the model with

the lowest AIC will be used as the respective country’s mean model.

Figure 3: PACF plot of Danish Production; (Appendix)

After estimating many different models with different ARIMA parameters for each country

in each training period, the following model specifications resulted in the least information loss

as implied by the AIC.

As can be seen in Table 1, many of the ARIMA model parameters stay consistent for two

out of the three different training periods indicating that the dynamics in the data do not change

significantly enough over the years to warrant different models. From these ARIMA models

the residuals were then extracted and tested for autocorrelation by the use of the Ljung Box

Test. If the residuals show signs of any significant correlation, it would indicate that the mean

models were not adequately fitted to the data and therefore would need to be re-estimated. As

confirmed with the Ljung Box Test, the residuals of the ARIMA models estimated did not show
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Model and Forecasting year AR (P) I (D) MA (Q)
DK Model 2020 12 0 2
DK Model 2021 10 0 0
DK Model 2022 10 0 0
FI Model 2020 10 0 1
FI Model 2021 10 0 1
FI Model 2022 14 0 4
IT Model 2020 7 0 1
IT Model 2021 8 0 1
IT Model 2022 8 0 1
BE Model 2020 15 0 0
BE Model 2021 15 0 0
BE Model 2022 15 0 0
DE Model 2020 15 0 0
DE Model 2021 15 0 0
DE Model 2022 20 0 0

Table 1: Different ARIMA Model Parameters

any signs of significant autocorrelation, meaning that the models were adequately fitted as all

tests resulted in a p-value above 0.05, therefore the residuals could be used for the GARCH

estimation.

The ARCH-LM test was also utilized to test the squared residuals of the ARIMA models

for Autoregressive Heteroskedasticity (volatility clustering) as if the residuals would not exhibit

any volatility clustering, an ARCH/ GARCH model would not be required to forecast the time

series. The ARCH-LM test confirmed what could be observed by the logged and differenced

production data above in Figure 2 that there is indeed volatility clustering with p-values of each

models squared residuals being well below 0.05 or 2.2e-16 to be specific, confirming that a

GARCH model could be adequate at forecasting the volatility of the time series’.

7.2 DCC GARCH Model

After estimating the mean models and extracting the residuals from them, univariate GARCH

models with an ARMA(0,0) mean were specified and combined into a multivariate GARCH

specification. First the GARCH models were constructed based on the PACF plots of each

country and used as a starting point for the number of ARCH parameters. They were then fitted

to the data and tested for autocorrelation of standardized residuals as well as heteroskedasticity.

All GARCH models reject the null hypothesis of the Ljung Box test indicating autocorrelation

in the standardized residuals. This does not necessarily mean that the models are not useful as

the GARCH model inherently accounts for autocorrelation with the lagged variance terms. All
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models except for the Germany model failed to reject the null hypothesis of the ARCH-LM test

during the first training period, indicating that they capture the significant volatility clustering

in the data. During the second and third training periods the Italy model also rejected the null

hypothesis of the ARCH-LM test no matter the specification, thus the specification that was

closest to not rejecting was chosen. The same was observed with the Finland specification dur-

ing the third period and the same process was used for it as Italy. Multiple attempts were made

to specify a GARCH model for Germany that would pass the ARCH-LM test but to no avail,

therefore the commonly used GARCH(1,1) was used for that country in all periods as all the

specifications resulted in the same p-value.

After the estimation and fit of the univariate GARCH models, a DCC GARCH(1,1) model

was estimated from multivariate specification of the univariate GARCH models and fit to the

data. From the output of the DCC(1,1) model all lagged parameters further from t than t − 1

were observed as insignificant with their p-values well above 0,05 indicating that though the

GARCH models appear to have captured most of the volatility clustering in the time series’, the

model itself can be deemed quite insignificant. Due to this insignificance of parameters it was

decided that a model with GARCH (1,1) specifications would also be constructed as the DCC

GARCH(1,1) model output resulted in all parameters being significant at the 0,05 level. These

models will then be compared against each other in order to observe if the insignificant model

that captures the volatility leads to higher value than a significant model that does not. Figures

for the six fitted DCC GARCH model outputs can be found in the Appendix (Figures 16-21)

The reason for the ARMA (0,0) specification in the GARCH specification is due to the fact

that the DCC GARCH will be fit to the already constructed residual matrix of the different

ARIMA models, therefore there is no need to include ARMA models with any lag parameters

in the univariate GARCH specification. This multivariate specification was then used for the

DCC (1,1) specification as the DCC is a multivariate model. After the DCC (1,1) model had

been specified it was then fit to the combined residual matrix of the ARIMA models. This was

done for all periods and below are figures showing how the dynamic conditional correlation

between Denmark production and Finland production changes over the different periods:
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(a) DK/FI Correlation between 2018-2019 (b) DK/FI Correlation between 2018-2020

(c) DK/FI Correlation between 2018-2021

Figure 4: Denmark/Finland Correlation Development

These Figures show that the correlation dynamics between the two countries fluctuate quite

a bit where in the period from 2018-2020 there is consistent negative correlation between the

countries but between 2020-2021 the dynamics change and the countries are mostly positively

correlated during that period. This change in the correlations would intuitively necessitate a

change in portfolio weights of the two countries. This is also reflected in the model forecasts

and minimum variance optimization, which will be elaborated on later in this chapter. Another

correlation pair that is interesting to look at is Denmark and Germany production as they exhibit

the opposite of the Denmark/Finland correlation being positively correlated in the first period

and then dynamically flipping between being positively and negatively correlated.
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(a) DK/DE Correlation between 2018-2019 (b) DK/DE Correlation between 2018-2020

(c) DK/DE Correlation between 2018-2021

Figure 5: Denmark/Germany Correlation Development

This change in the correlation structures of the different countries could indicate that a model

such as the DCC GARCH would be more optimal for portfolio optimization than a model that

assumes a fixed correlation structure over the whole period. All correlation Figures can be

found in the Appendix.

For the minimum variance optimization of the DCC GARCH models three forecasts are

made, the first forecast is one day ahead, the second is one month ahead and the third is one

year ahead. These forecasts are in hourly granularity which results in 24, 720 and 8760 corre-

lation and covariance matrix forecasts respectively. As these are very large numbers of matrix

forecasts the last days forecast of each is used as that is the end point of the forecast. From the

24 hourly matrix’s the 13th hour matrix is used for the minimum variance optimization. The

reason for the choice of the 13th hour forecast is that it is the hour during the day where the most

extreme prices most often occur, which is due to the highest level of photovoltaic production
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of the day and the highest level of consumption during the day. This combination can lead to

some interesting price dynamics in the electricity markets and was therefore deemed the most

significant hour of the day.

After the DCC GARCH forecasts were made from the different training periods, quadratic

programming was used in order to optimize the weights of each country for minimizing the

portfolio variance. This is the same procedure as Markowitz’ Mean Variance Portfolio Theory

(1952) popularized for equity based portfolios. The standard MVP assumes a target return of

the portfolio, which in this case would be a target growth rate of the different countries. As the

growth rate of each country is not a variable that has a target value which can be associated with

a higher return, the average growth rate for the training period is used as it reflects the average

over the period.

In order to stay coherent with common risk management and diversification practises there

are constraints on the lower and upper bound of the portfolio weights, these bounds are 10%

and 40% respectively. This is done in order to ensure a well diversified portfolio as it is possible

that a solution to the minimization problem would be significantly skewed to one country and

omit others.

With this information in mind the quadratic program is expressed as follows:

Minimize:
1
2

wT
Σw

Subject to: wT
µ = µp

wT 1 = 1

0.10 ≤ wi ≤ 0.40 for all i = 1, ..,5

Where:

w denotes the weights vector.

Σ is the covariance matrix of asset returns.

µ is the growth rate vector.

µp is the target portfolio growth rate.

1 is a vector of ones.

The constraint 0.10 ≤ wi ≤ 0.40 enforces that each weight should be between 10% and 40%.

The constraint is applied to all assets, with i ranging from 1 to 5 to denote each of the 5 assets.

This optimization was done for all three forecasts and for all three training periods and
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resulted in the following portfolio weights:

Forecast for 2020

Forecast Denmark Finland Italy Belgium Germany
1 day 13,44% 18,42% 28,10% 30,05% 10,00%

1 day* 10,68% 18,68% 30,92% 29,72% 10,00%
1 month 15,95% 12,21% 30,07% 31,77% 10,00%

1 month* 12,57% 10,00% 35,47% 31,97% 10,00%
1 year 15,88% 11,98% 30,32% 31,81% 10,00%

1 year* 16,08% 10,50% 31,24% 32,18% 10,00%

Table 2: DCC GARCH Portfolio Weights for 2020, * signifies the insignificant models

Forecast for 2021

Forecast Denmark Finland Italy Belgium Germany
1 day 23,16% 10,00% 31,18% 25,66% 10,00%

1 day* 29,75% 10,00% 34,28% 15,98% 10,00%
1 month 12,76% 12,59% 24,65% 40,00% 10,00%

1 month* 13,42% 10,00% 26,58% 40,00% 10,00%
1 year 12,51% 12,74% 24,28% 40,00% 10,00%

1 year* 13,28% 10,55% 26,17% 40,00% 10,00%

Table 3: DCC GARCH Portfolio Weights for 2021, * signifies the insignificant models

Forecast for 2022

Forecast Denmark Finland Italy Belgium Germany
1 day 24,93% 12,71% 24,13% 28,22% 10,00%

1 day* 25,84% 10,92% 22,69% 30,55% 10,00%
1 month 13,29% 20,99% 15,71% 40,00% 10,00%

1 month* 17,35% 16,67% 15,98% 40,00% 10,00%
1 year 10,00% 24,51% 15,49% 40,00% 10,00%

1 year* 18,81% 15,11% 16,08% 40,00% 10,00%

Table 4: DCC GARCH Portfolio Weights for 2022, * signifies the insignificant models

Looking at the three tables it is clear that for most countries the weights change based on the

forecast horizon ie. one day, one month or one year. One exception is Germany which is allo-

cated at the lower bound of 10% for all forecasts. This might indicate that the internal variance

31



Jón Frı́mann Jónsson
20183670

of the production is so high that it warrants the lowest allocation in all periods. Interestingly, the

insignificant models do not vary that much form the significant ones but it will be interesting to

see how they perform in comparison to the significant ones. The performance of these different

portfolios will be elaborated on once the sample covariance portfolio has been explained.

7.3 Sample Covariance Portfolio

In order to observe how well the DCC GARCH portfolio performs in comparison to other

methods of establishing portfolio weights, a portfolio based on the sample covariance of the

different training periods is constructed. This portfolio has the same conditions as the DCC

GARCH portfolios where the lower and upper bounds are set for the portfolio weights. The

largest difference is that the sample covariance can not be forecasted as it is not a model and

therefore only one portfolio is constructed for each of the periods. The quadratic problem is the

same as for the DCC GARCH with the difference being the covariance matrix used here is the

sample covariance matrix while it was the forecasted covariance matrix for the DCC GARCH.

The resulting portfolio weights are listed in the table below:

Sample Covariance

Forecast Denmark Finland Italy Belgium Germany
2020 12,96% 24,60% 32,83% 10,84% 18,77%
2021 16,28% 19,90% 32,72% 10,56% 20,54%
2022 16,72% 20,11% 32,70% 10,00% 20,47%

Table 5: Sample Covariance Portfolio Weights

Interestingly the difference in weight allocations from the second to the third period is

marginal, indicating that the sample covariance does not display significant change with the

addition of 2020 in the sample mix.

7.4 Equally Weighted Portfolio

The third portfolio that was constructed for the DCC portfolio performance evaluation is

the naive equally weighted portfolio. It is naive in the sense that it does not do any analysis or

estimations and only weights the countries equally so the portfolio weight equals 100%. This

is not something that would be realistic in practice as risk and portfolio management can be

highly complex. Nevertheless it was chosen as a benchmark to evaluate if the more complicated
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methods of the DCC GARCH and sample covariance portfolios would pay dividends and result

in better value.

The portfolio weights are listed in the table below for coherence:

Equally Weighted

Forecast Denmark Finland Italy Belgium Germany
2020 20% 20% 20% 20% 20%
2021 20% 20% 20% 20% 20%
2022 20% 20% 20% 20% 20%

Table 6: Equally weighted portfolios

7.5 Portfolio Performance

Now that all the different portfolios have been estimated their financial value is required in

order to evaluate their effectiveness in providing the most value for the electricity produced.

The method of calculating each portfolios respective value will be the volume weighted aver-

age price of each portfolio. The volume weighted average price is calculated as the sum of

each hours production multiplied by the respective hours spot price, this is done for each hour

within a year where the sum of all hourly weighted prices are then divided by the total volume

produced within the respective year, this gives more weight to the prices where the production

is highest and gives a more accurate view the price within a given year. These volume weighted

average prices are then multiplied by the respective country weights estimated by the different

models resulting in the portfolio VWAP. As the portfolios were constructed using Mean Vari-

ance Optimisation, each portfolio’s internal variance is also calculated in order to present the

value with respect to its risk. Below are tables presenting the performance of each portfolio in

a given year:
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Portfolio Performance 2020

Portfolio VWAP Portfolio Variance
DCC day 29,27 EUR/MW 1,08%

DCC day* 29,69 EUR/MW 1,09%
DCC month 29,46 EUR/MW 1,12%

DCC month* 30,24 EUR/MW 1,17%
DCC year 29,49 EUR/MW 1,12%

DCC year* 29,60 EUR/MW 1,14%
Sample Covariance 29,21 EUR/MW 0,78%
Equally Weighted 27,73 EUR/MW 0,80%

Average 29,03 EUR/MW 0,98%

Table 7: Portfolio Performance in 2020, * signifies the insignificant models

Portfolio Performance 2021

Portfolio VWAP Portfolio Variance
DCC day 98,55 EUR/MW 0,88%

DCC day* 99,57 EUR/MW 0,93%
DCC month 95,74 EUR/MW 1,43%

DCC month* 97,03 EUR/MW 1,43%
DCC year 95,15 EUR/MW 1,43%

DCC year* 96,75 EUR/MW 1,43%
Sample Covariance 96,55 EUR/MW 0,56%
Equally Weighted 91,70 EUR/MW 0,72%

Average 95,54 EUR/MW 1,00%

Table 8: Portfolio Performance in 2021, * signifies the insignificant models

Portfolio Performance 2022

Portfolio VWAP Portfolio Variance
DCC day 201,93 EUR/MW 0,93%
DCC day* 201,93 EUR/MW 1,01%

DCC month 186,08 EUR/MW 1,46%
DCC month* 190,03 EUR/MW 1,42%

DCC year 182,87 EUR/MW 1,51%
DCC year* 191,45 EUR/MW 1,41%

Sample Covariance 202,83 EUR/MW 0,59%
Equally Weighted 190,50 EUR/MW 0,72%

Average 192,84 EUR/MW 1,04%

Table 9: Portfolio Performance 2022, * signifies the insignificant models
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By looking at the tables it can be seen that in all periods, a portfolio optimized on the DCC

GARCH forecasts brings the most value, which is reflected in the volume weighted average

price of the portfolios. Interestingly during the year 2020, six out of five portfolios delivered a

VWAP within half a euro of each other, indicating that when prices are more stable it might be

harder to squeeze out much extra value. It is however clear that during 2022 there is much value

to be created by establishing a portfolio with a non equal weights and that is where the Sample

Covariance portfolio comes out on top, significantly beating out five of the eight portfolios with

only the DCC GARCH 1 day portfolios delivering within one EUR/MW in value. Comparing

the insignificant models whose univariate GARCH models adequately captured most of the

volatility clustering effects to the significant models whose univariate GARCH models did not

capture the volatility clustering. It becomes clear that a model that more accurately captures

the volatility results in more value as the insignificant models beat the significant ones in every

instance except for the one day model in 2022 where they bring equal value.

In relation to portfolio performance, looking only at the volume weighted average price

does not always tell the whole story. It is also important to look at each portfolios variance as

it measures the risk of each portfolio and compare each portfolios variance like was done for

the VWAP. During the three periods the portfolio optimized on the sample covariance had the

lowest variance of all the portfolios estimated, meaning that it produced the most consistent

amount of electricity. It then becomes a trade off between nominal financial value of the DCC

portfolios and the production stability of the sample covariance portfolio as the DCC* 1 day and

1 month portfolios provided a higher VWAP than the Sample Covariance in 2020 and 2021.

As the tables above show, the portfolio which was based on minimizing the covariance from

the 13th hour of the last day from any of the DCC GARCH forecasting horizons produced

more value than the equally weighted portfolio in all three years. Comparing it to the equally

weighted portfolio it does indeed indicate that a more elaborate method of estimating portfolio

weights does provide additional value to a portfolio of renewable energy assets. The tables also

show that a DCC GARCH model based on a multivariate specification where most of the het-

eroskedasticity is captured, despite the DCC GARCH model itself being deemed insignificant,

outperforms a DCC GARCH model that does not capture the heteroskedastic properties of the

data but is significant.

When comparing the portfolios to each individual country’s volume weighted average price

for each period it is clear that the diversified portfolios do perform better than four out of the

five individual countries, with only Italy providing the highest average price in each period.

However, looking only at the average price of the portfolios and countries does not paint the
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whole picture as the standard deviation of prices for each country describe how wide of a span

the prices are on. Below is a table documenting the average price of each country as well as one

standard deviation of their price for each year.

Volume Weighted Average Prices and Standard Deviation

Denmark Finland Italy Belgium Germany
2020

VWAP 21,54 EUR 25,43 EUR 37,30 EUR 28,77 EUR 25,58 EUR
Std.Dev 17,44 EUR 21,11 EUR 14,53 EUR 16,54 EUR 17,21 EUR

2021
VWAP 87,93 EUR 67,65 EUR 127,59 EUR 90,06 EUR 85,26 EUR
Std.Dev 64,75 EUR 65,99 EUR 80,49 EUR 79,45 EUR 73,70 EUR

2022
VWAP 195,40 EUR 109,81 EUR 286,92 EUR 186,44 EUR 173,91 EUR
Std.Dev 145,41 EUR 132,37 EUR 132,28 EUR 134,66 EUR 141,60 EUR

Table 10: Average Prices and Standard Deviations

The table shows that for all of the countries that 68% (one standard deviation) of the time,

the received price of electricity is positive but once the price falls two standard deviations from

the mean, the price of electricity can become negative in all countries except Italy in 2022.

This shows how wide the spectrum of prices is and is important to take into consideration when

constructing renewable energy portfolios. The table also shows that it would be most profitable

to construct a portfolio that only includes Italy. That however, does not follow common practises

of risk management and diversification and as is commonly said with financial performance of

equities: past performance is not indicative of future performance.

This section has showed that utilizing a diversification method that is more intricate than

the naive equally weighted portfolio does indeed result in higher financial value of a renew-

able energy portfolio consisting solely of wind producing assets. In this analysis, mean vari-

ance optimisation has been utilized to construct multiple portfolios based on Dynamic Con-

ditional GARCH forecasts and sample covaraince estimations. The DCC GARCH forecasts

estimate multiple covariance matrixes and those are then used for the mean variance optimiza-

tion through the use of quadratic programming. The same was done for the sample covari-

ances. Interestingly enough not all DCC GARCH portfolios beat the equally weighted portfo-

lio, specifically the statistically significant 1 month and 1 year portfolios in 2022 indicating that

complexity is not always better. However, the right level of complexity might be better than

none as both of the 1 day DCC portfolios and the sample covariance portfolio beat the equally
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weighted in all periods. This does indeed indicate that geographical diversification within an

renewable energy portfolio based on estimation methods more complex than the naive equally

weighted model does result in higher financial value of the portfolios.
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8 Discussion

As this thesis shows, the use of empirical models commonly used in finance can translate

well to the renewable energy market with the positive effects of diversification also present

in these markets, just like in the broader financial markets. There are however different risk

factors that need to be investigated as well such as the costs associated with producing more or

less electricity than expected when prices are very volatile and extreme. The latest example of

extreme prices took place on the 28th of May 2023 where for some hours around noon in most

countries in Western Europe, electricity prices were negative.(EPEX SPOT, 2023)

Most countries exhibited negative prices between the 12th and the 15th hour of the day

with prices reaching as low as -400C in the Netherlands, meaning that it costs 400C/MW for a

producer of electricity to supply the grid with electricity. This is very costly for any electricity

producer whether they are producing renewable electricity or not, now imagine if a wind park

or solar park produces more than expected during the Day-Ahead auction where they sold off

all the electricity they expected to produce, it would further increase their losses. Due to this

increased negative price risk it could be appropriate to estimate Value at Risk models alongside

the Mean Variance Portfolios in order to assess the tail risk when these significant price events

occur as they can have drastic implications on the profitability of establishing a portfolio of

renewable energy assets.

One of the limitations of this thesis is that it estimated the portfolios based on market wind

data, meaning that the data is an aggregate of many different wind parks all over the individual

countries, except for Germany where the data comes from wind parks located in the eastern

part of Germany. Due to this limitation it is hard to estimate the volumetric risk of any portfolio

(how much electricity is produced versus how much was forecasted). It could be beneficial for

future research if the volumetric risk was also profiled and therefore quantifiable as it could then

be used in a Value at Risk model, especially if there are clear patterns in the difference between

forecasted and actual production. This wou This would only be possible with wind park specific

data where both realized historical production and historical expected production was available.

Another limitation to the analysis is the fact that the GARCH models that passed the test

for autocorrelation of the residuals were insignificant when modelled with the DCC GARCH

process, therefore resulting in the model itself being insignificant. Due to that it was decided for

the purposes of the thesis to compare the financial performance of the insignificant models and

the significant ones. The difference in the superior financial performance of the insignificant

models over the significant ones does raise questions regarding the power of the significant
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models as the analysis does indicate that despite the DCC GARCH models being insignificant,

they still perform better due to their ability to better capture the volatility structure of the data

which in practice is more appealing than statistical significance.

Another expansion on this thesis could be the inclusion of photovoltaic assets in the portfolio

and how the volatility spillover and complementary of each technology affects the portfolio

weights in addition to a Value at Risk model, similar to the work of Song, F., Cui, J. and Yu,

Y. (2022) and Jurasz, J. et al. (2020) as there has been observed a relationship between the two

technologies. An interesting research area could be how the surface heating of the earth by the

sun can affect the amount of wind energy in a given geographical area and if that could lead

to higher volumetric risk within a portfolio that is concentrated in that area with both solar and

wind production. As this weather environment would lead to depressed prices in those periods

and therefore lead to lower revenue for the portfolio. (Libretexts, 2022)
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9 Conclusion

The purpose of this thesis was to investigate whether models commonly used in financial

markets for portfolio optimisation would be effective in creating value in the renewable en-

ergy markets. The Dynamic Conditional Correlation GARCH model was the main model of

focus where it forecasted dynamic conditional covariances between renewable production in

Denmark, Finland, Italy, Belgium and Germany for three different years. Those covariance

matrix’s were then used for the commonly used Mean Variance Optimisation process popular-

ized by Markowitz in 1952 and the portfolios constructed from the optimization were compared

to a naive equally weighted portfolio. The DCC portfolios were also compared against a less

complicated Mean Variance optimization with the Sample Covariance portfolios. A significant

difference between the value of a renewable energy portfolio and an more classic equity portfo-

lio is that for each stock in a portfolio there is one price, the market price at each given point in

time. For the renewable energy portfolio the value of the portfolio is usually calculated as the

spot price multiplied by the amount of energy produced divided by the sum of the production,

resulting in the volume weighted average price where more weight is given to prices where

production is higher, therefore being more important than the average price.

This thesis showed that the six estimated DCC GARCH portfolios provided more value

than the equally weighted portfolio in all instances except for the significant 1 month and 1 year

forecast portfolios in 2022, indicating that the portfolio optimization method indeed brings extra

value over the naive method of equal weights. It does that in periods of more stable electricity

prices and in periods where there is more price volatility. The DCC one day portfolios was the

superior of the DCC models as it outperformed the other two in two out of three years. However,

as mentioned in the discussion for further research it might be valuable to expand on this topic

by combining the DCC GARCH Mean Variance Optimisation with more risk centered models

such as Value at Risk in order to quantify tail risk due to extreme price events in the energy

markets.
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11 Appendix

Figure 6: Denmark Production

Figure 7: Denmark Stationary Production
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Figure 8: Finland Production

Figure 9: Finland Stationary Production
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Figure 10: Italy Production

Figure 11: Italy Stationary Production
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Figure 12: Belgium Production

Figure 13: Belgium Stationary Production
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Figure 14: Germany Production

Figure 15: Germany Stationary Production
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Figure 16: DCC Model Output for 2020

Figure 17: DCC Model Output for 2021
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Figure 18: DCC Model Output for 2022
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Figure 19: Insignificant DCC Model Output for 2020
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Figure 20: Insignificant DCC Model Output for 2021
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Figure 21: Insignificant DCC Model Output for 2022
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Figure 22: DK/FI Correlation from 2018-2019

Figure 23: DK/FI Correlation from 2018-2020
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Figure 24: DK/FI Correlation from 2018-2021

Figure 25: DK/DE Correlation from 2018-2019
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Figure 26: DK/DE Correlation from 2018-2020

Figure 27: DK/DE Correlation from 2018-2021
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Figure 28: DK/BE Correlation from 2018-2019

Figure 29: DK/BE Correlation from 2018-2020
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Figure 30: DK/BE Correlation from 2018-2021

Figure 31: DK/IT Correlation from 2018-2019
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Figure 32: DK/IT Correlation from 2018-2020

Figure 33: DK/IT Correlation from 2018-2021
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Figure 34: FI/BE Correlation from 2018-2019

Figure 35: FI/BE Correlation from 2018-2020

61



Jón Frı́mann Jónsson
20183670

Figure 36: FI/BE Correlation from 2018-2021

Figure 37: FI/IT Correlation from 2018-2019
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Figure 38: FI/IT Correlation from 2018-2020

Figure 39: FI/IT Correlation from 2018-2021
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Figure 40: FI/DE Correlation from 2018-2019

Figure 41: FI/DE Correlation from 2018-2020
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Figure 42: FI/DE Correlation from 2018-2021

Figure 43: IT/BE Correlation from 2018-2019
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Figure 44: IT/BE Correlation from 2018-2020

Figure 45: IT/BE Correlation from 2018-2021
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Figure 46: IT/DE Correlation from 2018-2019

Figure 47: IT/BE Correlation from 2018-2020
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Figure 48: IT/BE Correlation from 2018-2021

Figure 49: BE/DE Correlation from 2018-2019
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Figure 50: BE/DE Correlation from 2018-2020

Figure 51: BE/DE Correlation from 2018-2021
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