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Abstract - English

In this project, information theory, graph theory, as well as the omega complexity
is presented in order to analyse dependencies in EEG signals. An analysis of the
omega complexity is performed, and a generalised omega complexity is introduced
to combat some of the presented deficiencies. The methods are tested on coupled
Rössler systems and multivariate autoregressive processes as these have proven to be
comparable with EEG signals in their behaviour. Initially an EEG data set obtained
from a subject exposed to a high and low SNR environment is analysed, although
no significant changes between the two are found. Next, the presented methods
are applied to an iEEG data set on a subject with epilepsy, resulting in significant
changes between dependencies in the EEG signals prior to a seizure and during a
seizure. Hence the methods introduced are to some degree able to capture changes
in dependencies in EEG signals.

Abstract - Dansk

I dette projekt præsenteres informationsteori, grafteori samt omegakompleksitet
med henblik på at udføre en analyse af afhængigheder i EEG signaler. Der udføres
en analyse af omegakompleksiteten, og der introduceres en generaliseret udgave af
omegakompleksitet for at forbedre nogle af de præsenterede mangler. Metoderne
testes på koblede Rösslersystemer og multivariate autoregressive processer, da disse
har vist sig i nogen grad at have EEG-lignende opførsel. Først analyseres et EEG-
datasæt, der er indsamlet fra en person udsat for et høj- og lav-SNR-miljø, dog
observeres der ingen signifikante ændringer mellem de to. Herefter anvendes de
introducerede metoder på et iEEG-datasæt fra en person med epilepsi, hvilket viser
signifikante ændringer i afhængigheder i EEG-signalerne før og under et anfald.
Dermed er metoderne i nogen grad i stand til at fange ændringer i afhængigheder i
EEG-signaler.

iii



Preface

This project is written in the period 01/09/22 to 02/05/23 by the group MAT-
TEK10 4.105b attending fourth semester of the Master’s program of Mathematical
Engineering at Aalborg University.

The results throughout the project are calculated using Python v3.10.7 with the
packages Numpy v1.23.5, Scipy v1.9.3, Pandas v1.5.2 and scikit-learn v1.1.3. The
figures were generated using matplotlib v3.6.2. In addition, Matlab 2023b utilizing
the ITS package v2.1 Faes [2019] was used.

The group would like to thank Christophe Biscio, Jan Østergaard and Payam
Baboukani for supervision throughout the process of writing this project.

Secondly the group would like to thank the other two MATTEK10 groups for
more or less productive discussions throughout the year, as well as way too hot group
rooms with hazardously low levels of oxygen concentration.

Accompanying scripts to the project can be found attached to the project as
scripts.zip.

—————————————– —————————————–
Alexander Djupnes Fuglkjær Frederik Appel Vardinghus-Nielsen

—————————————–
Magnus Berg Ladefoged

iv



Contents

1 Problem Analysis 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Electroencephalogram . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Listening Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 General Dependency Analyses of EEG Signals . . . . . . . . . . . . . 3
1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Hilbert Transform 5
2.1 Analytic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Instantaneous Phase and -Amplitude . . . . . . . . . . . . . . . . . . 7

3 Circular Distributions 11
3.1 Circular Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . 12

4 Spectra of Hermitian Matrices 14

5 Information Theory 18
5.1 Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Generalisations of Mutual Information . . . . . . . . . . . . . . . . . 25

6 Estimation of Entropy and Total Correlation 37
6.1 Differential Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Differential Total Correlation . . . . . . . . . . . . . . . . . . . . . . 39

7 Omega Complexity 43

v



CONTENTS

7.1 Analysis and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Improving the OC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Graph Theory 63
8.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.3 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4 Combined Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Simulated signals 70
9.1 The Rössler System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.2 Coupled Rössler Systems . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.4 Multivariate Autoregressive Process . . . . . . . . . . . . . . . . . . . 73

10 Simulated Signals and Results 77
10.1 Simulated Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.2 Dependency Measures and Signal Representations . . . . . . . . . . . 77
10.3 Clustering Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.5 Discussion of Simulated Results . . . . . . . . . . . . . . . . . . . . . 87

11 Analysis Considerations 91
11.1 Choice of Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.2 Dependency Measures and Signal Representations . . . . . . . . . . . 93
11.3 Significance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.4 Clustering Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.5 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

12 Results from EEGs and iEEGs 98
12.1 SNR Data Set Results . . . . . . . . . . . . . . . . . . . . . . . . . . 98
12.2 Seizure Data Set Results . . . . . . . . . . . . . . . . . . . . . . . . . 102

13 Discussion 108
13.1 SNR Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
13.2 Seizure Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

vi



CONTENTS MATTEK10 grp 4.105b

14 Conclusion 112
14.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendices 118

A Phase Shifted Sine Waves 120

B Rössler Transfer Entropy Results 121

C Clustering MVAR TE Results 131

D EEG Results 133

vii



1 | Problem Analysis

1.1 Introduction

Hearing loss is a growing problem worldwide. In 2023 more than 5% of people
suffer from a disabling hearing loss, characterised as a hearing loss of more than
35dB, and it is estimated that by 2050 this will effect more than 10% [World Health
Organization, 2023]. To improve the hearing of people suffering from hearing loss, an
option could be a hearing aid [University of California San Fransisco, 2023]. One of
the worlds leading manufacturers of hearing aids have deployed hearing aids which
introduce technology based upon electroencephalography signals [Santurette et al.,
2020]. They have also claimed that the BrainHearing™ [Oticon, 2023] technology of
their hearing aids causes a decrease in a term coined listening effort [Nielsen and Ng,
2022]. In [Baboukani et al., 2022], it is stated that listening effort can be examined
in various ways, but that estimating listening effort through electroencephalography
measurements has gained popularity.

1.2 Electroencephalogram

Electroencephalography (EEG) is a non-intrusive measurement of the brain’s activity
[Biasiucci et al., 2019]. It is carried out by placing a cap on the subject, in which a
number of electrodes is placed. These electrodes then monitor the voltage potentials
that arise as a result of the neurons firing in the brain. As the electrodes are
not placed directly on the brain, the problem of volume conduction arises. This
means that all electrodes to some degree capture a mix of potentials from all over
the brain. Because of this EEGs unfortunately have very poor spatial resolution.
Furthermore EEGs are often contaminated by a number artifacts, for example muscle
movements [Muthukumaraswamy, 2013], sweat, eye movements, and more [Britton
et al., 2016] . However, EEGs have a very high temporal resolution, which allows for
detection of rapid changes in the activity of the subject’s brain.

To get an understanding of how the electrodes are placed on the scalp of the
subject, the placements of the electrodes for a 64 electrode EEG measurement are
shown in Figure 1.1.
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CHAPTER 1. PROBLEM ANALYSIS
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Figure 1.1: EEG electrode placement.

1.2.1 EEG signals

The output of an EEG measurement is a series of signals, with the number of signals
determined by the number of electrodes used. An example of a subset of EEG signals
is seen in Figure 1.2. EEG signals have been divided into specific bands in the
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Figure 1.2: Example of five seconds of an EEG from 15 electrodes.

frequency domain namely the delta, theta, alpha, beta, and gamma bands [Ameera
et al., 2018]. These frequency bands allow a more specific analysis of the EEG signals
[Baboukani et al., 2022] and the bands can be seen in Table 1.1.
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1.3. LISTENING EFFORT MATTEK10 grp 4.105b

Band Freq.

Delta 1 − 4Hz
Theta 4 − 8Hz
Alpha 8 − 13Hz
Beta 13 − 30Hz
Gamma > 30Hz

Table 1.1: Named frequency bands of EEG signals.

1.3 Listening Effort

Listening effort can be defined as “the mental exertion required to attend to, and
understand, an auditory message” [Miles et al., 2017]. Listening effort has become a
major topic of research in the auditory field as it has been shown that high listening
effort is linked to mental and physical fatigue, and can in part have consequences on
social and work life [Nielsen and Ng, 2022]. It is therefore a very important research
topic for manufacturers of hearing aids, as these seek to reduce listening effort among
those using their devices.

Studies have shown that it is not only intelligibility which is affected by listening
effort but that high listening effort can have a negative impact on language processing
and even on memory [Peele, 2017].

Information about listening effort can be obtained by a questionnaire where the
subjects lists their perceived listening effort on some set scale, but this can introduce
numerous errors. It has also been shown that the mentality of the participants can
have a great impact on the results of such tests, which complicates variable control
McGarrigle et al. [2014]. Another way of obtaining information about listening effort
could be through EEG signals.

In Baboukani et al. [2022] it is stated that there are a number of signal processing
tools, for example quantification of statistical dependencies, that can be applied to
EEG signals to find correlates of listening effort and multiple studies have shown
a potential of EEG signals to capture changes that occur when a subject listens to
a source which is more difficult to listen to, for example with low SNR [Ala et al.,
2022].

1.4 General Dependency Analyses of EEG Signals

The task of examining changes in EEG signals of a subject under different conditions
is not only applicable in auditory research. For example in Mensen et al. [2017]
differentiation analysis is used to quantify neurophysiological differentiation through
EEG signals based on a subject watching pictures of different personal importance.
In Kramer et al. [2008] the authors examined changes in EEG signals of a subject
before and during an epileptic seizure and found a decrease in connectivity of the

3



CHAPTER 1. PROBLEM ANALYSIS

brain immediately before and during seizure. Hence the task of monitoring changes
in EEG signals through dependency analyses is a relevant topic not only in terms of
listening effort but as a tool for explaining neural activity.

Different mathematical tools have been used in order to quantify changes in EEG
signals. In [Wackermann, 1996] an approach to analysing EEG signals called the
omega complexity was introduced. The results in the paper showed that the omega
complexity could reflect physiological states of the human brain. In [Baboukani et al.,
2022] this tool was used to conclude that phase synchrony in EEG signals change
under low and high SNR conditions when a noise reduction scheme is activated. In
[Xefteris et al., 2022] graph theory in conjunction with mutual information was used
to analyse both local and global features of EEG signal which where then used for
recognition of emotions in the subject.

1.5 Problem Statement

Based on the problem analysis, a relevant contribution to the research regarding
listening effort, could be to examine dependencies of EEG signals in a more general
framework. To this end it seems fitting to explore the possibility of using information
theory in conjunction with the omega complexity to quantify said dependencies.
Furthermore it is hypothesized that relevant information about listening effort is
contained within a subset of the EEG signals and hence graph theory with a data
driven approach for selecting subsets of electrodes for analysis is explored.

These considerations in combination lead to the following problem statement:
How can information theory, graph theory and the omega complexity be used to

analyse the activity of the human brain under different conditions through quantifica-
tion of dependencies in EEG signals?

4



2 | The Hilbert Transform

This chapter introduces the concept of an analytic signal, showcases some of its
properties and relates it to the Hilbert transform. The chapter is based upon Liu
[2012], Marple [1999] and Kschischang [2015].

2.1 Analytic Signal

A real-valued signal sr(t) has a symmetric Fourier magnitude spectrum and hence
contains negative frequencies. The signal can, however, be converted to an analytic
signal sa(t) which has no negative frequency components.

Definition 2.1 (Analytic Signal)
A signal with no negative frequency components is called an analytic signal.

In the following section, a method for obtaining an analytical representation of a
real valued signal will be presented.

2.2 The Hilbert Transform

The analytic representation of a real-valued signal can be related to the real signal
through the Hilbert transform, which relies on the Cauchy Principal Value.

Definition 2.2 (Cauchy Principal Value (CPV))
Let f : R → R be a function which has a singularity at either b ∈ R or at ±∞.
Consider the integral ∫ c

a
f(x) dx,

where a < b < c and a, c ∈ (−∞; ∞). The CPV, denoted P{·}, for a singularity
at b is defined as

P
{∫ c

a
f(x) dx

}
= lim

ϵ→0+

[∫ b−ϵ

a
f(x) dx+

∫ c

b+ϵ
f(x) dx

]
, for a < b < c,

5



CHAPTER 2. THE HILBERT TRANSFORM

provided that the limit exists. For a singularity at ±∞, the CPV is defined as

P
{∫ ∞

−∞
f(x) dx

}
= lim

ϵ→∞

∫ ϵ

−ϵ
f(x) dx,

provided that the limit exists.

The CPV seeks to assign a value to an improper integral which otherwise would
not converge toward a finite value.

Example 2.3 (Cauchy Principal Value)
Consider the function f(x) = 1/x with a singularity at x = 0 and the integral

∫ ∞

−∞

1
x

dx,

which is not defined. Now consider the CPV

P
{∫ ∞

−∞
f(x) dx

}
= lim

ϵ→0

(∫ −ϵ

−1/ϵ

1
x

dx+
∫ 1/ϵ

ϵ

1
x

dx
)

= ln(ϵ) − ln(1/ϵ) + ln(1/ϵ) − ln(ϵ)
= 0,

which converges toward zero because of the symmetric integration around x = 0.

The Hilbert transform utilises the CPV in order to assign a value to a convolution
involving a function with a singularity.

Definition 2.4 (The Hilbert Transform)
Let u(t) be a continuous-time real-valued function. The continuous Hilbert trans-
form of u(t) is defined as

H(u)(t) = 1
π
P

{∫ ∞

−∞

u(τ)
t− τ

dτ
}

= 1
πt

∗ u(t),

provided that the integral exists as a CPV.
Let u(n) be a discrete-time real-valued function. The discrete Hilbert transform

of u(n) is defined as

H(u)(n) =


2
π

∑
k odd

u(k)]
n− k

, for n even

2
π

∑
k even

u(k)
n− k

, for n odd
.

6
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The Hilbert transform is in the next section related to the the Fourier transform.

2.2.1 Relation to the Fourier Transform

The Hilbert transform is related to the Fourier transform through

F(H(u))(ω) = −i sign(ω)F(u)(ω),

where F(u)(t) is the Fourier transform of u(t). The Hilbert transform is furthermore
an anti-involution – that is

H(H(u))(t) = −u(t) ⇔ H−1 = −H.

The connection between an analytic representation of a signal and the Hilbert
transform of said signal is demonstrated by letting the Fourier transform of a
function u(t) fulfill the properties of an analytic signal such that

F(u)(ω) =


2F(u)(ω), for ω > 0
F(u)(ω), for ω = 0
0, for ω < 0

= F(u)(ω) + sign(ω)F(u)(ω)

which preserves the power of F(u)(ω). By inverse Fourier transforming:

F−1{F(u)(ω)} = F−1{F(u)(ω) + sign(ω)F(u)(ω)}
= F−1{F(u)(ω)} + F−1{sign(ω)} ∗ F−1{F(u)(ω)}

= u(t) + i

πt
∗ u(t)

= u(t) + iH(u)(t).

This shows the relationship between an analytic representation and the Hilbert
transform.

This relationship is illustrated in Figure 2.1 showing the real signal

sr(t) = (1 + sin(ω12πt)) sin(ω22πt), (2.1)

where ω1 = 1 and ω2 = 10 along with the Hilbert transform si(t) = H(sr)(t). Figure
2.2 shows the effect of applying the Fourier transform on sr(t) and sa(t) = sr(t)+isi(t).

2.3 Instantaneous Phase and -Amplitude

Rewriting the analytic signal into polar representation allows further analysis of the
signal:

sa(t) = sm(t)(cos(ϕ(t)) + i sin(ϕ(t))) (2.2)
= sm(t)eiϕ(t).

7
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Figure 2.1: Real signal sr along with its
Hilbert transform si.
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Figure 2.2: Magnitude spectra of the real
signal sr(t) and analytic signal sa(t).

The instantaneous amplitude and instantaneous phase of a signal can be defined
based upon the polar representation in Equation (2.2).

Definition 2.5 (Instantaneous Amplitude and Phase)
Let sa(t) = sr(t) + isi(t) = sm(t)eiϕs(t) be an analytic signal. Then

sm(t) = |sa(t)|

is called the instantaneous amplitude of sa(t) and

sϕ(t) = arg(sa(t))

is called the instantaneous phase of sa(t).

The instantaneous amplitude can be utilised to construct an envelope based upon
the analytic representation. Since |sa(t)| = |sr(t) + si(t)| ≥ |sr(t)| it follows that
|sa(t)| and −|sa(t)| are upper and lower bounds, respectively, of sr(t) – this particular
envelope will from here on be referred to as the instantaneous amplitude. This and
instantaneous phase of the signal in Equation (2.1) can be seen in Figure 2.3.
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Figure 2.3: Real signal in Equation (2.1) along with instantaneous amplitude and
phase from the analytic representation.

2.3.1 Noisy Instantaneous Amplitude and Instantaneous
Phase

The Hilbert transform performs a phase shift of a signal and since it is an integral
transform it is linear. This causes the Hilbert transform to preserve noise in the
signal:

H(u+ ε)(t) = H(u)(t) + H(ε)(t)

This causes the analytic representation sa(t) of sr(t) = u(t) + ε(t) to be noisy:

sa(t) = u(t) + ε(t) + i(H(u)(t) + H(ε)(t))
= ua(t) + εa(t)
= um(t)eiuϕ(t) + εm(t)eiεϕ(t).

This entails that the instantaneous amplitude and instantaneous phase of a noisy
signal are noisy too. In Figure 2.4 is seen the signal in Equation (2.1) with added
noise ϵ ∼ N (0, 0.005). It is clearly seen how noise affects the instantaneous envelope
and phase – when the noise free signal has low instantaneous amplitude compared to
the noise, the noise dominates the analytic signal and the envelope and instantaneous
phase appear as noise.

9
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Figure 2.4: Real signal in Equation (2.1) with added noise. The instantaneous
envelope and phase are influenced by noise.
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3 | Circular Distributions

The phase information about a signal expressed in radians is inherently supported
only on the interval [0; 2π) (equal to any translated real interval of length 2π) with no
distinction between the ends of the chosen interval – that is, the interval is considered
circular and can be visualised as the unit circle with values expressed as radians. It is
therefore fitting to model phase information of a signal as a stochastic variable with
a circular distribution and the accompanying tools for analysis of such distributions.
This chapter is based upon NCSS [2023] and Fisher and Lee [1983].

Definition 3.1 (Circular Distribution)
A probability distribution of a stochastic variable whose sample space represents
angles is called a circular distribution.

The nature of circular distributions requires a different approach to calculating
moments and similarity measures.

Definition 3.2 (Circular Expected Value and Circular Variance)
Let Φ be a circularly distributed stochastic variable assuming values in [0; 2π) and
with probability density function ρ(ϕ). The circular expected value (CEV), µΦ of
Φ is then defined as

µΦ = arg
(
E[eiΦ]

)
= arg

(∫ 2π

0
ρ(ϕ)eiϕ dϕ

)
,

and the circular variance (CV) σΦ as

σΦ = 1 −
∣∣∣∣∫ 2π

0
ρ(ϕ)eiϕ dϕ

∣∣∣∣.

Notice, that the CEV in Definition 3.2 applies the function f(ϕ) = eiϕ before
applying the expected value operator and the angle operator. This agrees with the
characteristic of the distribution of Φ where the endpoints are interpreted as next
to each other while it compromises some of the properties of expected values, for
example linearity, non-degeneracy and multiplicativity in case of independence. The

11



CHAPTER 3. CIRCULAR DISTRIBUTIONS

CV quantifies the dispersion of direction by comparing length of the complex numbers
eiϕ weighted with ρ(ϕ) with the maximum length 1. The variance is therefore limited
to the interval [0; 1]. The sample circular mean ϕ and variance σΦ of a sequence
{ϕk}N

k=1 of samples drawn from a circular distribution can be calculated as

ϕ = arg
(

N∑
k=1

eiϕk

)
and σΦ = 1 − 1

N

∣∣∣∣∣
N∑

k=1
eiϕk

∣∣∣∣∣.

3.1 Circular Correlation Coefficient

In order to quantify correlation between two circularly distributed variables a circular
correlation coefficient (CCC) is defined.

Definition 3.3 (Circular Correlation Coefficient (CCC))
Let Φ and Θ be circular stochastic variables. Let f(ϕ,θ) be their joint probability
distribution, 0 ≤ ϕ < 2π, 0 ≤ θ < 2π and µΦ and µΘ be the expected values of
Φ and Θ, respectively. The circular correlation coefficient ρc of Φ and Θ is then
defined as

ρc(Φ,Θ) = E[sin(Φ − µΦ) sin(Θ − µΘ)]√
E[sin2(Φ − µΦ)]E[sin2(Θ − µΘ)]

.

Theorem 3.4 (Properties of the CCC)
The CCC has the following properties:

• it does not depend on the zero direction used as reference,
• it is symmetric, that is ρc(Φ,Θ) = ρc(Θ,Φ),
• −1 ≤ ρc ≤ 1,
• if Φ and Θ are independent, then ρc(Θ,Φ) = 0,
• if Φ and Θ have full support, then ρc(Φ,Θ) = ±1 if and only if

Φ = ±Θ + γ mod 2π

for some constant γ ∈ [0, 2π).

The proof of Theorem 3.4 has been omitted.
For sample sequences {ϕk}N

k=1 and {θk}N
k=1 from Φ and Θ, respectively, the sample

CCC, ρc, is calculated as

ρc =
∑N

i=1 sin
(
ϕi − ϕ

)
sin
(
θi − θ

)
√∑N

j=1 sin2(ϕj − ϕ)∑N
k=1 sin2(θk − θ)

.
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Figure 3.1: PCC between instantaneous
phase of phase- and frequency shifted
sines.

Figure 3.2: CCC between instantaneous
phase of phase- and frequency shifted
sines.

3.1.1 Comparison to the Pearson Correlation Coefficient

The Pearson correlation coefficient (PCC) is a well-known method of quantifying
correlation between stochastic variables based upon their expected values and vari-
ances. To visualise the difference between the PCC and the CCC a set of signals
{skl(t)}k,l∈N , N = {1, . . . , 100} are generated according to

skl(t) = sin
(

2πt
(

1 + 0.3k
100

)
+ 2π l

100

)
,

such that {skl}k,l∈N consists of sine functions with frequencies in the interval [1; 1.3] Hz
and phase shifts in the interval [0; 2π]. The instantaneous phases from Definition 2.5
of these signals are correlated through the PCC and CCC to the instantaneous phase
of a benchmark signal sb(t) = sin(2πt) for t ∈ [0; 60]. The results can be seen in
Figures 3.1 and 3.2. It is clear that the CCC is not as sensitive to phase shifts as the
PCC, as evident by the difference in variability along the phase shift axis.
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4 | Spectra of Hermitian Matrices

This chapter presents results regarding changes in the spectra of Hermitian matrices
caused by changes in the entries of the matrices. The results become relevant in the
analysis of the omega complexity in Chapter 7. This chapter is based upon Serre
[2010].

Theorem 4.1 (Weyl’s Inequalities)
Let A = B+C and B,C ∈ Rn×n be Hermitian matrices with respective eigenvalues
λi(A), λi(B) and λi(C), for i ∈ {1, . . . , n}, which are ordered according to

λ1(A) ≥ · · · ≥ λn(A),
λ1(B) ≥ · · · ≥ λn(B),
λ1(C) ≥ · · · ≥ λn(C).

Then

λk(A) ≤ λi(B) + λj(C) for i+ j = k + 1,
λk(A) ≥ λi(B) + λj(C) for i+ j = k + n.

Theorem 4.1 establishes an ordered relationship between the eigenvalues of two
Hermitian matrices and their sum showing how the spectrum of A = B + C is
dependent on the spectra of B and C.

Definition 4.2 (Spectral Radius)
The spectral radius β(·) of a matrix A ∈ Rn×n with eigenvalues λ1(A), . . . , λn(A)
is defined as

β(A) = max(|λ1(A)|, . . . , |λn(A)|).

Spectral radius is used in the following inequalities in order to establish bounds
on the changes of spectra of Hermitian matrices.

14
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Corollary 4.3 (Change of the Spectrum of a Hermitian Matrix)
Let A, B and C and their eigenvalues be defined as in Theorem 4.1. Then

|λi(A) − λi(B)| ≤ β(C) for i ∈ {1, . . . , n}.

Corollary 4.3 states that the change of the spectrum of a Hermitian matrix B
when a matrix C is added to it is bounded by the spectral radius of C. The change
in eigenvalues is therefore bounded.

Lemma 4.4
Let ∥·∥ be a sub-multiplicative matrix norm on Rn×n and A ∈ Rn×n. Then

β(A) ≤ ∥A∥.

Proof: Let λ = max({λ1(A), . . . , λn(A)}) and x ∈ Rn\{0} the corresponding eigen-
vector to λ. Define X = [x| · · · |x] ∈ Rn×n as a matrix consisting of copies of x such
that

AX = λX.

It then follows by the sub-multiplicativity of ∥·∥ that

|λ|∥X∥ = ∥λX∥ = ∥AX∥ ≤ ∥A∥∥X∥ ⇒ |λ| ≤ ∥A∥.

■

Corollary 4.4 shows that the spectral radius is bounded by an arbitrary sub-
multiplicative matrix norm which facilitates the following corollary.

Corollary 4.5
Let A, B and C and their eigenvalues be defined as in Theorem 4.1. Then

|λi(A) − λi(B)| ≤ ∥C∥ for i ∈ {1, . . . , n},

where ∥·∥ is a sub-multiplicative norm.

Proof: The proof follows from Corollary 4.3 and Lemma 4.4.
■

Corollary 4.5 establishes that the difference between eigenvalues of the Hermitian
matrix A = B + C and B are bounded by a norm of C.

The remainder of this chapter proves a linear relationship between the maximum
eigenvalue of a certain type of matrix and changes of the entries of this matrix, which
will be relevant in examining the omega complexity in Chapter 7.

15
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Lemma 4.6 (Matrix Determinant Lemma)
Let A ∈ Rn×n and u, v ∈ Rn. Then

det(A+ uvT ) = det(A) + vT adj(A)u,

where adj(A) is the adjugate of A.

Proof: Firstly, the case where A = I is proved. Consider[
I 0
vT 1

] [
I + uvT u

0 1

] [
I 0

−vT 1

]
=
[
I u
0 1 + vTu

]
.

Since all matrices on the LHS are square, it follows that the determinant of them
is multiplicative. Furthermore, since the first and third matrix on the LHS are
triangular, and the diagonals consist solely of ones, their determinants are 1. Finally,
since the matrix on the RHS is triangular it follows that the eigenvalues are found
on the diagonal. As the determinant is the product of all eigenvalues and all but one
entry on the diagonal of the matrix on the RHS are 1, it follows that

det
([
I u
0 1 + vTu

])
= 1 + vTu.

Thus
det(I + uvT ) = 1 + vTu.

The general case is then achieved by using the above and the multiplicativity of the
determinant such that

det(A+ uvT ) = det(A) det(I + (A−1u)vT )
= det(A)(1 + vT (A−1u)).

Furthermore since adj(A)A = det(A)I it follows that

det(A)
(
1 + vT (A−1u)

)
= det(A) + vT adj(A)u.

■

Lemma 4.6 provides a possibly simpler way to calculate determinants of certain
matrices. This is used in the following theorem.

Theorem 4.7 (Linearity of Eigenvalues)
Let A ∈ Rn×n be on the form

A =


k µ · · · µ

µ
. . . . . . ...

... . . . µ
µ · · · µ k

 , µ ∈ [0; k], k > 0.
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Then A has two eigenvalues λ1 and λ2 of multiplicity 1 and n − 1, respectively,
which are given by

λ1 = k + µ(n− 1)
λ2 = k − µ.

Proof: The matrix A can be written as I(k − µ) + µeT e where e = [1, . . . , 1].
Hence finding its eigenvalues amounts to solving det(I(k − µ− λ) + µeT e) = 0. By
Lemma 4.6:

det
(
I(k − µ− λ) + µeT e

)
= det(I(k − µ− λ)) + µe adj(I(k − µ− λ))eT .

The equation to be solved is then

det(I(k − µ− λ) + µe adj(I(k − µ− λ))eT ) = 0.

Observe then since adj(A) = det(A)A−1 that

adj(I(k − µ− λ)) =


(k − µ− λ)n−1 0 · · · 0

0 . . . . . . ...
... . . . 0
0 · · · 0 (k − µ− λ)n−1

 ,

which yields

0 = det(I(k − µ− λ)) + µe adj(I(k − µ− λ))eT

= (k − µ− λ)n + µ
n∑

i=1
(k − µ− λ)n−1

= (k − µ− λ)n + µn(k − µ− λ)n−1

= (k − µ− λ)n−1(µn+ (k − µ− λ)),

implying that
λ = k − µ ∨ λ = k + µ(n− 1).

■

Hence for a matrix as specified in Theorem 4.7, there is a linear relationship between
changes in the off-diagonal entries and the eigenvalues.

17



5 | Information Theory

In this chapter concepts from information theory are introduced with the purpose
quantifying similarity between multiple signals. This chapter is based upon Cover
and Thomas [2016], and Rosas et al. [2019].

5.1 Shannon Entropy

Consider a discrete stochastic variable X with sample space S of cardinality |S|.
To uniquely specify the outcome of such a variable requires log2(|S|) bits. Given
knowledge about the distribution of X, the average number of bits required to
specify the outcome, called the Shannon entropy, can be calculated. The Shannon
entropy quantifies the uncertainty about the outcome of a stochastic variable given
its distribution and lays the foundation for more advanced information theoretic
concepts. For the remainder of the project log refers to log2 unless otherwise specified.

Definition 5.1 (Shannon Entropy)
Let X be a discrete stochastic variable with sample space S. The entropy of X is

H(X) = −
∑
x∈S

p(x) log(p(x)),

where p(x) is the probability mass function of X.

Since for all x ∈ (0,1], log(x) ≤ 0 and by convention 0 log(0) ≜ 0, it follows that
the Shannon entropy is non-negative. The Shannon entropy will in the remainder of
the project be referred to as entropy.

Note that H(X) ≤ log(|S|) with equality achieved only in the case of a uniformly
distributed X – that is, the uniform distribution maximises entropy for a discrete
variable with a certain sample space. Hence a concept of distance to uniformity is
introduced.

Definition 5.2 (Negentropy)
Let X be a discrete stochastic variable with sample space S. The negentropy of X
is

N(X) = log(|S|) −H(X).

18
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Negentropy in some sense quantifies how far X is from being uniformly distributed,
and how much information about X is revealed through its distribution. Notice that
the maximal entropy of X can be expressed as:

log(|S|) = N(X) +H(X)

A natural way to extend the concepts of entropy and negentropy is to consider
the uncertainty about the outcome of multiple stochastic variables.

Definition 5.3 (Joint Entropy)
Let X1, . . . , Xn be discrete stochastic variables with sample spaces S1, . . . ,Sn,
respectively. The joint entropy of X1, . . . , Xn is

H(X1, . . . , Xn) = −
∑

x1∈S1,...,xn∈Sn

p(x1, . . . , xn) log(p(x1, . . . , xn)),

Definition 5.4 (Joint Negentropy)
Let X1, . . . , Xn be discrete stochastic variables with sample spaces S1, . . . ,Sn,
respectively. The joint negentropy of X1, . . . , Xn is

N(X1, . . . , Xn) =
n∑

k=1
log(|Sk|) −H(X1, . . . , Xn).

As with the entropy and negentropy in Definitions 5.1 and 5.2, the following can
be obtained directly from Definition 5.3:

n∑
k=1

log(|Sk|) = N(X1, . . . , Xn) +H(X1, . . . , Xn).

Now consider that knowledge of the outcome of one stochastic variable can decrease
the uncertainty about the outcome of another. This leads to the definition of
conditional entropy.

Definition 5.5 (Conditional Entropy)
Let X,Y be discrete stochastic variables with sample spaces S and T , respectively.
The conditional entropy of X given Y is

H(X|Y ) = −
∑

x∈S,y∈T
p(x, y) log

(
p(x, y)
p(y)

)
.
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Note that H(X|Y ) can be interpreted as the remaining uncertainty about X
given knowledge about Y . Furthermore note that the uncertainty about X cannot
increase with knowledge of Y . Joint and conditional entropy are related through the
following theorem.

Theorem 5.6 (Chain Rule of Entropy)
Let X and Y be discrete stochastic variables with sample spaces S and T , respect-
ively, then

H(X,Y ) = H(X) +H(Y |X).

Proof: By Definition 5.3,

H(X,Y ) = −
∑

x∈S,y∈T
p(x,y) log(p(x,y))

= −
∑

x∈S,y∈T
p(x,y) log(p(x)p(y|x))

= −
∑

x∈S,y∈T
p(x,y) log(p(x)) −

∑
x∈S,y∈T

p(x,y) log(p(y|x))

= −
∑
x∈S

p(x) log(p(x)) −
∑

x∈S,y∈T
p(x,y) log(p(y|x))

= H(X) +H(Y |X)

■

By use of Theorem 5.6 the following corollaries showing bounds for entropies are
established.

Corollary 5.7 (Bound of Joint Entropy)
Let X,Y be discrete stochastic variables. Then

H(X, Y ) ≤ H(X) +H(Y ).

Proof: This follows directly from the fact that H(Y ) ≥ H(Y |X).
■

Corollary 5.8 (Entropy of Function of Variable)
Let X be a discrete stochastic variable with sample space S and f be a deterministic
function defined on S. Then

H(X) ≥ H(f(X)).
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Proof: Since H(f(X)|X) = 0 and
H(X, f(X)) = H(X) +H(f(X)|X) = H(f(X)) +H(X|f(X))

it follows that
H(X, f(X)) = H(X) = H(f(X)) +H(X|f(X)) ⇒ H(X) ≥ H(f(X))

■

Corrollary 5.8 shows that a deterministic function can only maintain or decrease the
entropy and therefore the uncertainty of a variable.

5.1.1 Differential Entropy

Up until this point only discrete variables have been discussed. Definitions analogous
to Definitions 5.1 and 5.2 for continuous stochastic variables are here introduced.

Definition 5.9 (Differential Entropy and Negentropy)
Let X be a continuous stochastic variable with sample space S and probability
density function p. The differential entropy of X is

Hd(X) = −
∫

S
p(x) log(p(x)) dx,

Definition 5.10 (Differential Negentropy)
Let X be a continuous stochastic variable with sample space S and probability
density function p. The differential negentropy of X is

Nd(X) = Hd,σ −Hd(X),

where Hd,σ is the entropy of a Gaussian stochastic variable with variance equal to
the variance σ2 of X.

Notice that differential negentropy compares the entropy of a stochastic variable
to that of the Gaussian distribution which maximises the entropy under a variance
constraint.

Definitions 5.3 and 5.5 are equivalent for continuous stochastic variables with
sums over sample spaces replaced with integrals over sample spaces. Theorem 5.6
and Corollary 5.7 are likewise equivalent for continuous stochastic variables.

Differential entropy is, in contrast to Shannon entropy, not non-negative and
in fact has no lower bound. Consider a Gaussian distribution, where the variance
approaches 0. The differential entropy of this diverges toward −∞.

From this point on, all information theoretic quantities are introduced in both
the discrete and differential versions. The differential versions are denoted with a
subscripted d.
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5.2 Kullback-Leibler Divergence

Consider the need to describe similarity of one or more distributions non-parametrically.
Definition 5.11 provides a method for doing this.

Definition 5.11 (Kullback-Leibler (KL) Divergence)
Given two probability distributions p, q over a sample space S, the discrete Kullback-
Leibler divergence from q to p is

D(p||q) =
∑
x∈S

p(x) log
(
p(x)
q(x)

)
,

while the differential Kullback-Leibler divergence from q to p is

Dd(p||q) =
∫

S
p(x) log

(
p(x)
q(x)

)
dx.

In Definition 5.11 the conventions 0 log
(

0
a

)
≜ 0, 0 log

(
0
0

)
≜ 0 and a log

(
a
0

)
≜ ∞

are used. It should be noted that the KL divergence is not a distance, as it is
obviously not symmetric and it does not satisfy the triangle inequality. It can
however be interpreted as the non-similarity between two distributions.

Observe that the negentropy in Definition 5.2 is actually the KL divergence from
the discrete uniform distribution q to a discrete distribution p. Definition 5.10 is
similarly the KL divergence from a Gaussian distribution with variance σ2 to a
continuous distribution p with variance σ2.

A drawback of using the KL divergence as a measure of non-similarity is that

∃x|p(x) ̸= 0, q(x) = 0 ⇒ D(p||q) = ∞.

5.3 Mutual Information

Mutual information is a special case of KL divergence which quantifies dependency
between two stochastic variables.

Definition 5.12 (Mutual Information (MI))
Let X and Y be stochastic variables with joint probability distribution p(x, y),
marginal probability distributions p(x) and p(y) and sample spaces S and T ,
respectively. The mutual information between discrete X and Y is

I(X;Y ) =
∑

x∈S,y∈T
p(x, y) log

(
p(x, y)
p(x)p(y)

)
= D(p(x, y)||p(x)p(y)),
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and the differential mutual information between continuous X and Y is

Id(X;Y ) =
∫

S

∫
T
p(x, y) log

(
p(x, y)
p(x)p(y)

)
dx = Dd(p(x, y)||p(x)p(y)).

Notice that the MI is symmetric and can be interpreted as the reduction of
uncertainty of X given knowledge of Y and vice versa, as the following corollary
shows.

Corollary 5.13
Let X and Y be discrete stochastic variables with sample spaces S and T , respect-
ively, then

I(X;Y ) = H(X) −H(X|Y ) = H(Y ) −H(Y |X).

Proof: By Definition 5.12

I(X;Y ) =
∑

x∈S,y∈T
p(x, y) log

(
p(x, y)
p(x)p(y)

)

=
∑

x∈S,y∈T
p(x, y) log

(
p(x|y)
p(x)

)

= −
∑

x∈S,y∈T
p(x, y) log(p(x)) +

∑
x∈S,y∈T

p(x, y) log(p(x|y))

= −
∑
x∈S

p(x) log(p(x)) −

−
∑

x∈S,y∈T
p(x, y) log(p(x|y))


= H(X) −H(X|Y )

The second part of the proof follows trivially from symmetry.
■

Corollary 5.14 (Bounds of Mutual Information)
Let X and Y be discrete stochastic variables with sample spaces S and T , respect-
ively. Then

0 ≤ I(X;Y ) ≤ log(min(|S|, |T |)).

Proof: Since I(X;Y ) = H(X) −H(X|Y ) = H(Y ) −H(Y |X) it follows that

I(X;Y ) ≤ H(X) ≤ log(|S|) ∧ I(X;Y ) ≤ H(Y ) ≤ log(|T |),

which implies that

I(X;Y ) ≤ log(min(|S|, |T |)),
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with equality achieved if and only if X and Y both are deterministically determined
from the other and both variables are uniformly distributed on the same sample
space.

The lower bound is reached when X and Y are independent such that H(X|Y ) =
H(X) and H(Y |X) = H(Y ).

■

Notice that the differential MI can be rewritten such that Id(X;Y ) = Hd(X) +
Hd(Y ) −Hd(X, Y ), which shows that differential MI is not upper bounded – if X
and Y can be deterministically determined from one another, the joint entropy
will be −∞ resulting in Id(X;Y ) = ∞. This in turn means that the differential
self-information Id(X;X) = ∞ in contrast to the discrete where I(X;X) = H(X).

A conditional version of mutual information can be defined from conditional
entropy.

Definition 5.15 (Conditional Mutual Information (CMI))
Let X, Y and Z be stochastic variables. The conditional mutual information (CMI)
between discrete X, Y and Z is

I(X;Y |Z) = H(X|Z) −H(X|Y, Z).

The conditional mutual information between continuous X, Y and Z is analogously
defined with H replaced with Hd.

5.3.1 Transfer Entropy

This section is based upon Schreiber [2000] and Baboukani et al. [2020]. When treating
time varying variables it may become relevant to describe how much information the
past of one of these variables contains about the future of another variable. To this
end transfer entropy which relies upon CMI is introduced.

Definition 5.16 (Transfer Entropy (TE))
Let X = (X1, X2, . . . , XN) and Y = (Y1, Y2, . . . , YN) be stationary stochastic
processes and denoted source variable and target variable, respectively. Then the
Transfer entropy from Y to X is

TY →X(n) = I(Xn;Y1, . . . , Yn−1|X1, . . . , Xn−1).

TE can rewritten into an expression of entropies:

TY →X(n) = H(Xn|X1, . . . , Xn−1) −H(Xn|Y1, . . . , Yn−1, X1, . . . , Xn−1).
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The transfer entropy from the variable Y to X is thus the reduction in uncertainty
of X that the inclusion of the past of Y can provide in addition to the reduction
which the past of X provides.

The transfer entropy suffers from the fact that information could stem from
multiple other sources than just from Y to X, for example a third process Z through
which information from Y to X can be conveyed.

Definition 5.17 (Conditional Transfer Entropy (CTE))
Let X = (X1, X2, . . . , XN),Y = (Y1, Y2, . . . , YN) and Z = (Z1, Z2, . . . ZN) be
stationary stochastic processes. Then the conditional transfer entropy from Y to
X conditioned on Z is

TY →X|Z(n) = I(Xn;Y1, . . . ,Yn−1|X1, . . . ,Xn−1, Z1, . . . , Zn−1).

CTE can be rewritten into an expression of entropies:

TY →X|Z(n) = H(Xn|X1, . . . , Xn−1, Z1, . . . , Zn−1)
−H(Xn|Y1, . . . , Yn−1, X1, . . . , Xn−1, Z1, . . . , Zn−1).

5.4 Generalisations of Mutual Information

While MI expresses reduction in uncertainty of a variable given information about
another and therefore dependency between these two variables it fails to specify a
generalisation of this to more than two variables. This section treats the problem of
quantifying dependency between more than two variables in an information theoretic
framework.

5.4.1 Redundancy and Synergy

Quantification of dependencies between more than two variables conventionally relies
upon a classification of information into unique, redundant and synergistic. In
Williams and Beer [2010] an analysis of the partial information partitions of three
stochastic variables into redundant and synergistic information is performed seeking
to characterise partial information combinations for three variables. It is further
noted in Williams and Beer [2010] that unique information can be described as a
combination of redundancy and synergy. This characterisation will not be expanded
in its full length here but is summarised as follows:

• Stochastic variables which partially or entirely provide the same information
about the outcome of some stochastic variable are characterised as redundant
and the redundancy is the amount of information that they share about that
variable.
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• Stochastic variables which in conjunction provide information which neither
provide individually about the outcome of some stochastic variable are charac-
terised as synergistic and the synergy is the additional amount of information
provided about that variable.

In Sections 5.4.2, 5.4.3 and 5.4.4 generalisations of MI which seek to characterise
and capture the dependency between more than two discrete stochastic variables
are presented. In order to determine how well these generalisations quantify the
amount of synergy and/or redundancy in a collection of stochastic variables, an
average redundancy and an average synergy in certain subsets of a set of stochastic
variables are defined.

Definition 5.18 (Average Redundancy and Synergy)
Consider a set of discrete stochastic variables X1, . . . , Xn. The average pairwise
redundancy of X1, . . . , Xn is

Ir(X1, . . . , Xn) = 1
n2 − n

n∑
i=1

∑
j ̸=i

I(Xi;Xj),

and the average synergy at the n’th level of X1, . . . , Xn is

Is,n(X1, . . . , Xn) = 1
n2 − n

n∑
i=1

∑
j ̸=i

I(Xi;Xj|{X1, . . . , Xn}\{Xj, Xi}).

For continuous stochastic variables I is replaced by Id.

The average redundancy and synergy can be rewritten into expressions of entrop-
ies:

Ir(X1, . . . , Xn) = 1
n

n∑
i=1

H(Xi) − 1
n− 1

∑
j ̸=i

H(Xi|Xj)


Is,n(X1, . . . , Xn) = 1
n

[
1

n− 1

n∑
i=1

∑
j ̸=i

H(Xi|{X1, . . . , Xn}\{Xj, Xi})

−
n∑

k=1
H(Xk|X1, . . . , Xk−1, Xk+1, . . . , Xn)

]
.

The quantities in Definition 5.18 are interpreted as follows:

• Average redundancy is the average reduction in uncertainty between distinct
pairs in the set when one of the variables in the pair is given. It is thus the
average redundancy of all pairs consisting of two different variables from the
set.

• Average synergy is the average additional reduction in uncertainty in any
variable when given all n− 1 other variables compared to when given any n− 2
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other variables. It is thus the average additional reduction in uncertainty of a
subset containing n− 1 of the variables when adding the n’th variable.

Two types of sets of stochastic variables are introduced and used as examples of
redundant and synergistic relations.

Definition 5.19 (n-bit Copy and XOR)
Let X1, . . . , Xn be discrete stochastic variables.

• If X1 is Bernoulli distributed with parameter p = 1/2 and X1 = . . . = Xn

then the set X1, . . . ,Xn is said to be an n-bit copy. Any one variable is
deterministically determined given any one other variable.

• If X1, . . . , Xn−1 are i.i.d. Bernoulli variables with parameter p = 1/2 and
Xn = ∑n

k=1 Xk (mod 2), then the set X1, . . . , Xn is said to be an n-bit XOR.
Any one variable is only reduced in uncertainty given all other variables and
is then deterministically determined.

The n-bit copy and n-bit XOR contain redundant and synergistic dependency,
respectively.

Below two sets of Bernoulli variables which depending on a parameter η can
express a varying degree of redundancy or synergy, respectively, are presented.

Definition 5.20 (Discrete Partial n-bit Copy and XOR)
Let X1, . . . ,Xn be a set of Bernoulli variables.

• If the probability mass function p of X1, . . . , Xn is given by

p(x1, . . . ,xn) =

(1 + (n− 2)η/2)/n for x1 = . . . = xn

(1 − η)/n for xi ̸= xj,∀i,j ∈ {1, . . . ,n}

with η ∈ [0; 1], then X1, . . . , Xn is called a partial n-bit copy.

• If X1, . . . , Xn−1 are i.i.d. with parameter p = 1/2 and Xn is distributed with
parameter p given by

p = 1
2 + η

2(−1)r+1,

where η ∈ [0; 1] and r = ∑k
i=1 Xi (mod 2) then X1, . . . , Xn is called a partial

n-bit XOR.

The stochastic variables in Definition 5.20 allow analysis of variables which
gradually change from being independent to either redundant or synergistic.
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In Figures 5.1 and 5.2 the average redundancies and synergies from Definition 5.18
can be seen for simulated examples of partial 3-bit copies and XORs from Defini-
tion 5.20. In Figure 5.3 the difference between average redundancy and synergy for
the same simulations is shown.

Figure 5.1: Average pairwise redundancy
and third level synergy of a partial 3-bit
copy for η ∈ [0; 1].

Figure 5.2: Average pairwise redundancy
and third level synergy of a partial 3-bit
XOR for η ∈ [0; 1].

Figure 5.3: Difference between average pairwise redundancy and third level synergy
of a partial 3-bit copy and XOR, respectively.

The generalisations of MI to more than two variables presented in the following
sections are compared to the average redundancy and synergy to evaluate how well
they detect these different types of dependency.

5.4.2 Interaction Information

Interaction information is a generalisation of MI to more than two variables.
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Definition 5.21 (Interaction Information)
Let V = {X1, . . . , Xn} be a set of stochastic variables which have joint probability
distribution p(x1, . . . , xn). The interaction information between discrete X1, . . . , Xn

is

Iinter(X1; . . . ;Xn) =
∑

T ⊆V
(−1)|T |−1H(T ).

For continuous stochastic variables H is replaced by Hd.

Interaction information can in contrast to MI assume negative values. It is
immediately clear that Iinter(X) = H(X) and Iinter(X1;X2) = I(X1;X2). For three
variables it less clear how to interpret the interaction information.

Definition 5.22
Let X1, X2 and X3 be discrete stochastic variables. If Iinter(X1;X2;X3) > 0 the
variables are said to have a redundant relationship, while if Iinter(X1;X2;X3) < 0
the variables are said to have a synergistic relationship.

In Example 5.23 is shown interaction information for specific sets of stochastic
variables.

Example 5.23 (Three Variable Interaction Information)
Consider a set V of three discrete stochastic variables X1, X2 and X3. Their
interaction information is then given by

Iinter(X1;X2;X3) =
∑

T ⊆V
(−1)|T |−1H(T )

=H(X1) +H(X2) +H(X3)
− (H(X1,X2) +H(X1,X3) +H(X2,X3))
+H(X1,X2,X3).

Redundant relationship
Consider a 3-bit copy. Then H(X1) = H(X1,X2) = H(X1,X2,X3) and it follows
that

Iinter(X1;X2;X3) = 1 + 1 + 1
− (1 + 1 + 1)
+ 1

= 1.

The variables contribute the same information and are therefore redundant.

29



CHAPTER 5. INFORMATION THEORY

Synergistic relationship
Consider a 3-bit XOR. Then H(X1,X2,X3) = 2 and it follows that

Iinter(X1;X2;X3) = 1 + 1 + 1
− (2 + 2 + 2)
+ 2

= − 1.

The variables exhibit synergistic relationship since none of them are reduced in
uncertainty from knowledge of a single of the other two variables but they are
deterministically determined from knowledge of the other two.

While interaction information from Definition 5.22 has a defined interpretation for
three variables this does not generalise to more than three variables. It is sometimes
interpreted as the information shared by all included variables which is not shared
by any subset of these variables Williams and Beer [2010].

5.4.3 Total and Dual Total Correlation

Total correlation (TC) and dual total correlation (DTC) are non-negative generalisa-
tions of MI.

Definition 5.24 (Total Correlation (TC))
Let X1, . . . , Xn be stochastic variables with joint probability distribution
p(x1, . . . , xn) and marginal probability distributions p(x1), . . . , p(xn). The total
correlation of discrete X1, . . . , Xn is

C(X1, . . . , Xn) = D

(
p (x1, . . . , xn) ||

n∏
k=1

p(xk)
)
,

where D(·||·) is the KL divergence. The differential total correlation Cd between
continuous X1, . . . , Xn is defined analogously by switching D with Dd.

TC is as such the difference as quantified by the KL divergence between the
joint probability density and the product of the marginals similar to MI. From
the properties of the KL divergence it follows that TC is non-negative and is
minimised when X1, . . . ,Xn are independent such that the joint probability function
of X1, . . . , Xn equals the product of the marginals.
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Corollary 5.25
Let X1, . . . , Xn be stochastic variables. If X1, . . . , Xn are discrete, then

0 ≤ C(X1, . . . , Xn) ≤
n∑

k=1
H(Xk).

If X1, . . . , Xn are continuous, then

0 ≤ Cd(X1, . . . , Xn).

Proof: Total correlation for discrete variables is rewritten to be expressed as en-
tropies:

C(X1, . . . , Xn) = D

(
p(x1, . . . , xn)||

n∏
k=1

p(xk)
)

=
∑

x1∈S1,...,xn∈Sn

p(x1, . . . , xn) log
(
p(x1, . . . , xn)∏n

k=1 p(xk)

)

=
∑

x1∈S1,...,xn∈Sn

p(x1, . . . , xn)
(

log (p(x1, . . . , xn)) − log
(

n∏
k=1

p(xk)
))

= −H(X1, . . . , Xn) −
∑

x1∈S1,...,xn∈Sn

p(x1, . . . , xn)
n∑

k=1
log(p(xk))

=
n∑

k=1
H(Xk) −H(X1, . . . , Xn). (5.1)

Both bounds are established through the fact that H(X1, . . . , Xn) ≤ ∑n
k=1 H(Xk),

H(X1, . . . , Xn) ≥ 0 and H(Xk) ≥ 0 for k ∈ {1, . . . , n}. If X1, . . . , Xn are continuous,
then Equation (5.1) is still valid with differential entropy. From the fact that∑n

k=1 Hd(Xk) ≥ Hd(X1, . . . , Xn) it from the continuous version of Corollary 5.7 it
follows that Cd(X1, . . . , Xn) ≥ 0. The lack of upper bound is seen if Hd(Xk) is finite
for k ∈ {1, . . . , n} and Hd(X1, . . . , Xn) = −∞. Then Cd(X1, . . . ,Xn) = ∞.

■

Definition 5.26 (Dual Total Correlation (DTC))
Let X1, . . . , Xn be stochastic variables. The dual total correlation of discrete
X1, . . . , Xn is

B(X1, . . . , Xn) = H(X1, . . . , Xn) −
n∑

k=1
Rk(X1, . . . , Xn),

where
Rk(X1, . . . , Xn) = H(Xk|X1, . . . , Xk−1,Xk+1, . . . , Xn).

The differential dual total correlation of continuous X1, . . . , Xn is defined analog-
ously by switching H with Hd.
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The term Rk(X1, . . . , Xn) in Definition 5.26 is referred to as the residual entropy of
Xk and quantifies how much information can only be obtained from observing Xk.
The differential version of Rk is denoted Rk,d.

Corollary 5.27
Let X1, . . . , Xn be stochastic variables. If X1, . . . , Xn are discrete, then

0 ≤ B(X1, . . . , Xn) ≤ H(X1, . . . , Xn).

If X1, . . . , Xn are continuous, then

0 ≤ Bd(X1, . . . , Xn).

Proof: Since joint entropy is related to conditional entropy through the chain rule
in Theorem 5.6:

H(X1, . . . , Xn) =
n∑

k=1
H(Xk|Xk−1, . . . , X1),

it follows that

H(X1, . . . , Xn) ≥
n∑

k=1
H(Xk|X1, . . . , Xk−1, Xk+1, . . . , Xn) = Rk, (5.2)

which together with the fact that H(Xk|X1, . . . , Xk−1, Xk+1, . . . , Xn) ≥ 0 for k ∈
{1, . . . , n} proves both the upper and lower bound for discrete variables. If X1, . . . , Xn

are continuous, Equation (5.2) is still valid with differential entropy. From Equa-
tion (5.2) it follows that Bd(X1, . . . , Xn) ≥ 0. The lack of upper bound is seen
if Hd(X1, . . . , Xn) is finite and ∃k ∈ {1, . . . , n}(Rk,d(X1, . . . , Xn) = −∞). Then
Bd(X1, . . . , Xn) = ∞.

■

5.4.4 O-information

In Rosas et al. [2019] a generalisation of MI to more than two variables is presented,
namely information about organisational structure (O-information). It relies upon
the TC and DTC.

Definition 5.28 (O-information)
Let X1, . . . , Xn be stochastic variables. The O-information of discrete X1, . . . , Xn

is defined as

O(X1, . . . , Xn) = C(X1, . . . , Xn) −B(X1, . . . , Xn).

The differential O-information of continuous X1, . . . , Xn is defined analogously by
switching B and C with Bd and Cd, respectively.
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The O-information is the difference between the TC and DTC and can be rewritten
into a simpler sum of entropies:

O =C(X1, . . . , Xn) −B(X1, . . . , Xn)

= (n− 2)H(X1, . . . , Xn) +
n∑

j=1
(H(Xj) −H(X1, . . . , Xj−1, Xj+1, . . . , Xn)) .

Two interesting properties of the O-information are that O(X1, X2) = 0 and
O(X1, X2, X3) = Iinter(X1;X2;X3). This means that the synergy and redundancy
between only two variables are equal and the interaction information coincides with
the O-information for three variables.

Corollary 5.29
Let X1, X2 and X3 be discrete stochastic variables. Then

O(X1) = 0,
O(X1, X2) = 0,

O(X1, X2, X3) = Iinter(X1;X2;X3).
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Proof:

O-information of one variable:
O(X1) =C(X1) −B(X1)

=H(X1) −H(X1) − (H(X1) −H(X1))
= 0

O-information of two variables:
O(X1, X2) =C(X1, X2) −D(X1, X2)

=H(X1) +H(X2) −H(X1, X2)
− (H(X1, X2) −H(X1|X2) −H(X2|X1))

= 2H(X1, X2) − 2H(X1, X2)
= 0.

O-information of three variables:
O(X1, X2, X3) =C(X1, X2, X3) −D(X1, X2, X3)

=H(X1) +H(X2) +H(X3) −H(X1, X2, X3) − (H(X1, X2, X3)
−H(X1|X2, X3) −H(X2|X1, X3) −H(X3|X1, X2))

=H(X1) +H(X2) +H(X3)
−H(X1, X2)
− (H(X1, X2, X3) −H(X1|X2, X3) −H(X2|X1, X3))

=H(X1) +H(X2) +H(X3)
− (H(X1, X2) +H(X2, X3))
+H(X2|X1, X3)

=H(X1) +H(X2) +H(X3)
− (H(X1, X2) +H(X1, X3)) +H(X2, X3)
+H(X1, X2, X3)

= Iinter(X1;X2;X3).

■

The proof of Corollary 5.29 is analogous for continuous stochastic variables.
The interpretation of the O-information is established through the following

definition.

Definition 5.30
If O(X1, . . . , Xn) > 0 then X1, . . . , Xn are said to be redundancy dominated, while
if O(X1, . . . , Xn) < 0 then X1, . . . , Xn are said to be synergy dominated.

Definition 5.30 gives an interpretation of the relationship between a set of
stochastic variables based upon the O-information which generalises to more than
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three variables in contrast to Definition 5.22. Notice however that Definition 5.30
only concerns whether a system is more redundant or synergistic – if both TC and
DTC are positive but equal it results in O = 0, which is not to be interpreted as a
sign of absence of dependency.

5.4.5 Examples

In this section previously presented methods of quantifying dependency between
more than two variables are tested on 2-, 3- and 4-bit copies and XORs as defined in
Definition 5.19. The methods include

• average redundancy (Ir),
• average synergy (Is,n),
• interaction information (Iinter),
• total correlation (C),
• dual total correlation (B), and
• O-information (O).

The results from applying the above listed methods for quantifying multivariate
dependency on different sets of stochastic variables can be seen in Table 5.1. The
first column for example shows the results of applying the average redundancy in
Definition 5.18 on 2-, 3- and 4-bit copies and XORs. The table, although based upon
specific examples, allows a superficial comparison between the presented methods.

Ir Is,n Iinter C B O
2-bit copy 1 1 1 1 1 0
2-bit XOR 1 1 1 1 1 0
3-bit copy 1 0 1 2 1 1
3-bit XOR 0 1 -1 1 2 -1
4-bit copy 1 0 1 3 1 2
4-bit XOR 0 1 1 1 3 -2

Table 5.1: Multivariate methods for quantifying dependency applied to 2-, 3-, and
4-bit copies and XORs.

The following observations can be made from Table 5.1:

• None of the methods can distinguish between a 2-bit copy and 2-bit XOR since
redundancy and synergy for two variables are equivalent.

• As a consequence of Definition 5.18, the average pairwise redundancy and
average synergy at the n’th level can not distinguish between n-bit copies or
XORs of varying n.

• Interaction information can not not distinguish between a 4-bit copy and XOR.
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• TC and DTC successfully distinguish redundancy and synergy for more than
two variables in the case of n-bit copies and XORs, although to a different
degree than the average quantities.

• O-information successfully determines the dominant type of dependency present
in the tested sets of variables.

Notice furthermore that O-information as earlier mentioned is only meant to specify
whether a system is dominantly synergistic or redundant. A set of six stochastic
variables of which three constitute a 3-bit copy while the remaining three constitute
a 3-bit XOR independent of the 3-bit copy has an O-information of 0.

The TC and DTC of simulated partial 3-bit copies and XORs from Definition 5.20,
for η ∈ [0; 1] respectively can be seen in Figures 5.4 and 5.5 while Figure 5.6 shows
the resulting O-information. Plots are similar to those in Figures 5.1, 5.2 and 5.3,
which shows that TC, DTC and O-information succeed in capturing redundancy and
synergy in agreement with the quantities in Definition 5.18.
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Figure 5.4: TC and DTC of partial 3-bit
copy for η ∈ [0; 1].
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Figure 5.5: TC and DTC of partial 3-bit
XOR for η ∈ [0; 1].
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Figure 5.6: O-information of partial 3-bit copy and XOR for η ∈ [0; 1].
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6 | Estimation of Entropy and Total
Correlation

This chapter presents methods for estimating differential entropy and differential
total correlation. The chapter is based upon Gao et al. [2015].

6.1 Differential Entropy

Entropy, whether discrete or continuous, can be estimated through binning. For
discrete variables, the bins can be determined from the nature of the data, while
it is a free parameter for continuous distributions, which decides upon the step
size of a quantisation of the continuous variable. In order to avoid the problem of
determining a binning method for continuous variables and the artifacts of using a
binning method, a non-parametric estimator of entropy for continuous variables can
be used.

Definition 6.1 (k-Nearest Neighbour (kNN) Entropy Estimator)
Let X1, . . . , Xd be stochastic variables and x = {x(i)}N

i=1 be N i.i.d. samples of
X1, . . . , Xd such that x(i)

j is the i’th sample of Xj. The kNN entropy estimator of
X1, . . . , Xd is defined as

Ĥ ′
kNN,k(x) = − 1

N

N∑
i=1

log
(
p̂k

(
x(i)

))
where

p̂k

(
x(i)

)
= k

N − 1
Γ(d/2 + 1)

πd/2 rk

(
x(i)

)−d
,

and rk

(
x(i)

)
is the Euclidean distance to the k’th nearest neighbour of x(i).

The estimator in Definition 6.1 seeks to estimate the entropy of multiple stochastic
variables directly by using a k-nearest neighbor estimate of density.
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Definition 6.2 (Unbiased kNN Entropy Estimator)
Let X1, . . . , Xd be stochastic variables and x = {x(i)}N

i=1 be N i.i.d. samples of
X1, . . . , Xd such that x(i)

j is the i’th sample of Xj. The unbiased kNN entropy
estimator of X1, . . . , Xd is defined as

ĤkNN,k(x) = Ĥ ′
kNN,k(x) − ψ(k) − log(k),

where ψ(k) = d
dk

ln(Γ(k)) is the digamma function and

Γ(z) =
∫ ∞

0
tz−1e−t dz,

is the gamma function.

The correction terms in Definition 6.2 makes the estimate ĤkNN,k asymptotically
unbiased.

Theorem 6.3 (Asymptotical Unbiasedness of ĤkNN,k)
If X1, . . . , Xd are absolutely continuous stochastic variables and x = {x(i)}N

i=1 are
N i.i.d. samples of X1, . . . , Xd, then

lim
N→∞

E
[
ĤkNN,k(x)

]
= H(X1, . . . , Xd).

The proof of Theorem 6.3 has been omitted.
In Kraskov et al. [2004] an estimator inspired by the kNN estimator referred to

as the KSG estimator of entropy is introduced. This estimator was in Khan et al.
[2007] shown to produce good result across various noisy signals of short length and
with varying types of dependencies.

Definition 6.4 (KSG Entropy Estimator)
Let X1, . . . , Xd be stochastic variables and x = {x(i)}N

i=1 be N i.i.d. samples of
X1, . . . , Xd such that x(i)

j is the i’th sample of Xj. The KSG entropy estimator of
X1, . . . , Xd is defined as

ĤKSG,k(x) = ψ(N) − ψ(k) + d

N

N∑
i=1

log(ϵk(xi)),

where ϵk(xi) is twice the max-norm distance to the k’th nearest neighbour of x(i).
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6.2 Differential Total Correlation

Since total correlation can be decomposed into an expression of entropies as seen in
the proof of Corollary 5.25, the estimators in Section 6.1 can be used for estimation
of total correlation.

Definition 6.5 (kNN Total Correlation Estimator)
Let X1, . . . , Xd be stochastic variables and x = {x(i)}N

i=1 be N i.i.d. samples of
X1, . . . , Xd such that x(i)

j is the i’th sample of Xj. The kNN total correlation
estimator of X1, . . . , Xd is defined as

Ĉ ′
kNN,k(x) = 1

N

N∑
i=1

log
 p̂k

(
x(i)

)
p̂k

(
x(i)

1

)
· · · p̂k

(
x(i)

d

)
,

where
p̂k

(
x(i)

)
= k

N − 1
Γ(d/2 + 1)

πd/2 rk

(
x(i)

)−d
,

and rk

(
x(i)

)
is the Euclidean distance to the k’th nearest neighbour of x(i).

The estimator in Definition 6.5 is like the kNN entropy estimator biased and can
be corrected by an offset.

Definition 6.6 (Unbiased kNN Total Correlation Estimator)
Let X1, . . . , Xd be stochastic variables and x = {x(i)}N

i=1 be N i.i.d. samples
of X1, . . . , Xd such that x(i)

j is the i’th sample of Xj. The unbiased kNN total
correlation estimator of X1, . . . , Xd is defined as

ĈkNN,k(x) = Ĉ ′
kNN,k(x) − (d− 1)(ψ(k) − log(k)).

The kNN estimate of total correlation in Definition 6.6 is also asymptotically
unbiased.

Theorem 6.7 (Asymptotical Unbiasedness of ĈkNN,k)
If X1, . . . , Xd are absolutely continuous stochastic variables and x = {x(i)}N

i=1 are
i.i.d. samples of X, then

lim
N→∞

E
[
ĈkNN,k(x)

]
= C(X1, . . . , Xd).
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The proof of Theorem 6.7 has been omitted.
The KSG entropy estimator can furthermore be used for an estimate of total

correlation.

Definition 6.8 (KSG Total Correlation Estimator)
Let X1, . . . , Xd be stochastic variables and x = {x(i)}N

i=1 be N i.i.d. samples of
X1, . . . , Xd such that x(i)

j is the i’th sample of Xj. The KSG total correlation
estimator of X1, . . . , Xd is defined as

ĈKSG,k(x) = (d− 1)ψ(N) + ψ(k) − d− 1
k

− 1
N

N∑
i=1

d∑
j=1

ψ(nxj
(i)),

where nxj
(i) is the number of points in xj at a distance from x(i)

j less than or equal
to the max-norm distance from x(i)

j to the k’th-nearest neighbour of x(i) in x.

The estimators presented above work when the dependency between variables is
weak or the number of samples is very large [Gao et al., 2015]. The following theorem
shows that the performance of the estimators are influenced by the dimension d, the
number of samples N and the magnitude of the true total correlation C(X1, . . . , Xd).

Theorem 6.9 (Convergence Rate of Bias of kNN C(x) Estimator)
Let p(x) be any absolutely continuous d-dimensional probability distribution, k ≥ 1
and ϵ > 0. Then in order for |ĈkNN,k(x) −C(X1, . . . , Xd)| ≤ ϵ, where x = {x(i)}N

i=1
are N i.i.d. samples of X1, . . . , Xd, the inequality N ≥ C exp

(
C(x)−ϵ

d−1

)
+ 1, where

C is a constant which scales with O
(

1
d

)
, must be satisfied.
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Proof: Consider the following rearrangement:

ĈkNN,k = 1
N

N∑
i=1

log
(

p̂(x(i))
p̂k(x(i)

1 )p̂k(x(i)
2 ) · · · p̂k(x(i)

k )

)
− (d− 1)γk

= 1
N

N∑
i=1

log
 k

N−1
Γ(d/2+1)

πd/2 rk(x(i))−d∏d
j=1

k
N−1

Γ(1/2+1)
π1/2 rk(x(i)

j )−1

− (d− 1)γk

= 1
N

N∑
i=1

 log
(

k

N − 1

)
+ log

(
Γ(d/2 + 1)

πd/2

)
+ log

(
rk(x(i))−d

)

−
d∑

j=1

 log
(

k

N − 1

)
+ log

(
Γ(1/2 + 1)

π1/2

)

+ log
(

Γ(1/2 + 1)
π1/2

)
− log

(
rk(x(i)

j )
)− (d− 1)γk

= 1
N

N log
(

k

N − 1

)
+N log

(
Γ(d/2 + 1)

πd/2

)
−

N∑
i=1

d log
(
rk(x(i))

)

−Nd log
(

k

N − 1

)
−Nd log

(
Γ(1/2 + 1)

π1/2

)
+

N∑
m=1

d∑
j=1

rk(x(m)
j )


− (d− 1)γk

= log
(

k

N − 1

)
+ log

(
Γ(d/2 + 1)

πd/2

)
− d

N

N∑
i=1

log
(
rk(x(i))

)

− d log
(

k

N − 1

)
− d log

(
Γ(1/2 + 1)

π1/2

)
+ 1
N

N∑
m=1

d∑
j=1

log
(
rk(x(m)

j )
)

− (d− 1)γk

= (d− 1) log
(
N − 1
k

)
+ log

(
Γ(d/2 + 1)

(Γ(1/2 + 1))d

)

+ 1
N

N∑
i=1

d∑
j=1

log
(
rk(x(i)

j )
)

− d

N

N∑
i=1

log
(
rk(x(i))

)
− (d− 1)γk. (6.1)

Using the fact that
rk(x(i)) ≥ rk(x(i)

j ),

the following inequality can be established:

1
N

N∑
i=1

d∑
j=1

log
(
rk(x(i)

j )
)

− d

N

N∑
i=1

log
(
rk(x(i))

)
≤ 0, (6.2)

where equality is achieved when rk(x(i)) = rk(x(i)
j ) for all j ∈ {1, . . . , d}. Utilising

41



CHAPTER 6. ESTIMATION OF ENTROPY AND TOTAL CORRELATION

Equation (6.2) with Equation (6.1):

(d− 1) log
(
N − 1
k

)
+ log

(
Γ(d/2 + 1)

(Γ(1/2 + 1))d

)

+ 1
N

N∑
i=1

d∑
j=1

log
(
rk(x(i)

j )
)

− d

N

N∑
i=1

log
(
rk(x(i))

)
− (d− 1)γk

≤ (d− 1) log
(
N − 1
k

)
+ log

(
Γ(d/2 + 1)

(Γ(1/2 + 1))d

)
− (d− 1)γk

Observing that ψ(k) − log(k) is a monotonously decreasing function Gao et al. [2015]
and setting k = 1 results in

(d− 1) log
(
N − 1
k

)
+ log

(
Γ(d/2 + 1)

(Γ(1/2) + 1)d

)
− (d− 1)(ψ(k) − log(k))

≤ (d− 1) log(N − 1) + log
(

Γ(d/2 + 1)
(Γ(1/2) + 1)d

)
− (d− 1)(ψ(1) − log(1)). (6.3)

Secondly, using a bound of Γ found in Gao et al. [2015]:

log
(

Γ(d/2 + 1)
Γ(1/2 + 1)d

)
= log(Γ(d/2 + 1)) − d log(Γ(1/2 + 1))

< log
√

2π
(
d/2 + 1/2

e

)d/2+1/2
− d log

(
π1/2 + 1

)
(for large d)

= O(d log(d)).

Using the above inequality in Equation (6.3) yields

ĈkNN,k(x) ≤ (d− 1) log
(
N − 1
k

)
+O(d log(d))

≤ (d− 1) log(N − 1) +O(d log(d)).

Enforcing that
∣∣∣ĈkNN,k(x) − C(x)

∣∣∣ ≤ ϵ, then

N ≥ C exp
(
C(x) − ϵ

d− 1

)
+ 1,

where C is a constant that scales like O(1
d
) [Gao et al., 2015]. ■

Theorem 6.9 shows that the rate of convergence of the kNN total correlation estimator
toward the true total correlation is dependent on the number of samples N , the
dimension d and the magnitude of C(X1, . . . , Xd). The number of samples needed
for a good estimate might therefore grow large. A similar result for IKSG,k(x) is
found in Gao et al. [2015].
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7 | Omega Complexity

Omega complexity (OC) was introduced in Wackermann [1996] as a method of
quantifying dependency between EEG signals and it has since been used extensively
for this purpose [Zhao et al., 2022; Gaál et al., 2010; Irisawa et al., 2006; Starn et al.,
2000; Toth et al., 2009]. In this chapter some properties of the OC are examined
and related to the problem of quantifying dependency between EEG signals.

Before defining the OC, the terms dependency function and dependency matrix
are introduced, as the OC relies upon these.

Definition 7.1 (Dependency Function)
Let X and Y be stochastic variable. A dependency function is a function ρ(X, Y ) ∈
R, which quantifies how dependent X and Y are on each other. It must satisfy
that higher dependency between X and Y results in a higher absolute value of ρ
and furthermore that

• ρ(X, Y ) = ρ(Y,X),

• |ρ| ∈ [0; 1],

• X and Y are independent ⇒ ρ = 0, and

• X and Y are deterministically determined from each other ⇒ |ρ| = 1.

If more than two variables are treated, their pairwise dependencies can be
organised in a matrix.

Definition 7.2 (Dependency Matrix)
Given a set S = {Sk}n

k=1 of stochastic variables and a dependency function ρ, the
matrix Cρ,S ∈ Rn×n whose entries are described by

cρ,S
ij = ρ(Si, Sj) for i, j ∈ {1, . . . , n},

is called the dependency matrix of S with respect to ρ. The set

Cn
ρ,S = {Cρ,S ∈ Rn×n | cρ,S

ij = ρ(Si, Sj), i, j ∈ {1, . . . , n}},

where ρ is any dependency function and S = {Sk}n
k=1 is any set of n stochastic

variables, is referred to as the set of dependency matrices of dimension n.
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The dependency matrices are all real and symmetric but not necessarily positive
semi-definite and it is difficult to describe properties of them, since the characteristics
of S and ρ can vary greatly. Notice, that Cn

ρ,S contains all correlation matrices of
dimension n.

In Wackermann [1996] the OC was introduced. This project will present a version
of OC modified from the one presented in Wackermann [1996] such that it has range
[0; 1] and a high OC is interpreted as high dependency and vice versa – this version is
also found in Baboukani et al. [2018]. The results found in this chapter are therefore
specific to the version of the OC presented below, however preliminary tests indicate
that some of the results may be true for the OC in Wackermann [1996] with small
modifications.

Definition 7.3 (Omega Complexity)
Let S = {Sk}n

k=1 be a set of stochastic variables, ρ a dependency function and Cρ,S

the dependency matrix. The omega complexity of S with respect to ρ is defined as

Ω(ρ;S) = 1 +
∑n

k=1 λk log
(
λk

)
log(n) , where λk = |λk|∑n

m=1 |λm|
,

and {λk}n
k=1 are the eigenvalues of Cρ,S.

Notice, that the eigenvalues of Cρ,S are real, since Cρ,S is Hermitian. The choice
of ρ furthermore influences whether Cρ,S is positive semi-definite.

7.1 Analysis and Examples

This section seeks to uncover some of the properties of the OC through analysis and
examples.

Theorem 7.4 (Properties of Omega Complexity)
The omega complexity

a) has range [0; 1],

b) is maximised when rank(Cρ,S) = 1 such that {λk}n
k=1 = {1, 0, . . . , 0},

c) is minimised when Cρ,S is the identity matrix such that {λk}n
k=1 =

{1/n, . . . , 1/n}, and

d) is invariant to scaling of S if ρ is invariant to scaling of S.
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Proof:

a) Observe that since the absolute value of the n eigenvalues are ℓ1-normalised,∑n
k=1 λk log

(
λk

)
is analogous to the negative entropy of these. The entropy of

a discrete stochastic variable with n possible events has range [0; log(n)] and
this is normalised by log(n).

b) If rank(Cρ,S) = 1 then null(Cρ,S) = n − 1 which results in an eigenvalue of
0 with multiplicity n − 1 and therefore only one non-zero eigenvalue. This
eigenvalue is then normalised through λ1 = |λ1|/

∑n
m=1 |λm| = 1.

c) Since a uniform distribution of the eigenvalues minimises the OC, the minimum
is achieved with {|λk|}n

k=1 = {1/n, . . . , 1/n}. As Cρ,S is a real, symmetric
matrix the spectral theorem states that Cρ,S is diagonalisable. Hence a decom-
position exists such that

Cρ,S = PDP−1,

where D is a diagonal matrix with the eigenvalues of Cρ,S on the diagonal.
Assume that Cρ,S has one eigenvalue of 1 with multiplicity n such that the
decomposition can be rewritten as

Cρ,S = PIP−1,

which implies that
Cρ,SCρ,S = PIP−1PIP−1 = I.

That is, Cρ,S is an involutory matrix. Since all symmetric involutory matrices
are orthogonal and the diagonal of Cρ,S consists only of ones it follows that
Cρ,S = I.

d) If ρ is scale invariant such that

ρ(asi, asj) = ρ(si, sj)

for any a ∈ R\0, then the OC is trivially scale invariant.

■

Notice that while properties b) and c) concern the maximisation and minimisation of
the OC, respectively, only c) specifies a unique correlation matrix which achieves this
while the only requirement for maximisation is that all columns in the correlation
matrix should be linearly dependent. This suggests that the OC might confound the
dependency of two different sets of signals as the same.

The OC varies as a function of the covariance between two Bernoulli variables,
as is shown in Example 7.5.
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Example 7.5 (Covarying Bernoulli Variables)
Consider two stochastic variables X = X1, X2 with covariance ξ which can be
normalised to a Pearson correlation coefficient ρp ∈ [−1; 1]. The dependency matrix
Cρp,X is then given as

Cρp,X =
[

1 ρp

ρp 1

]
.

The eigenvalues of Cρ,X are then given as the roots of the characteristic polynomial
of Cρ,X :

det
([

1 − λ ρp

ρp 1 − λ

])
= 0 =⇒ λ = 1 ± ρp

The OC is therefore

Ω(ρp;X) = 1 +
(1 + ρp

2

)
log

(1 + ρp

2

)
+
(1 − ρp

2

)
log

(1 − ρp

2

)
, (7.1)

where 0 log(0) ≜ 0. Differentiating the OC with respect to ρp:

d
dρp

Ω(ρp;X) = 1
2 log

(
1 + ρp

1 − ρp

)
=


< 0, for ρp < 0
0, for ρp = 0
> 0, for ρp > 0

(7.2)

d2

dρ2
p

Ω(ρp;X) = 1
2 + 2ρp

+ 1
2 − 2ρp

≥ 0, for ρp ∈ [−1; 1] (7.3)

From Equations (7.1), (7.2) and (7.3) it can be observed that the OC of a 2 × 2
matrix is convex and symmetric in ρp around ρp = 0. This results in the OC being
unable to discern ρp from −ρp. That is, negative correlation of X1 and X2. The
Ω(ρp;X) as a function of ρp can be seen in Figure 7.1. Notice the convexity and
symmetry of the OC.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
p
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OC of covarying Bernoulli variables

( p; sr)

Figure 7.1: Omega complexity of two Bernoulli variables as a function of their
correlation.
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Example 7.5 shows that the OC does not distinguish between positive and negative
covariance between two variables. This is an example of property b) in Theorem 7.4
which only specifies that the OC is maximised for dependency matrices with linearly
dependent columns. In Corollary 7.6 a specific type of matrix is shown to maximise
the OC even though it does not consist entirely of ones.

Corollary 7.6
Any matrix Cρ,S of the form

cρ,S
ij =

 1, for (i+ j) mod 2 = 0
−1, for (i+ j) mod 2 = 1

will result in Ω(ρ;S) = 1.

Proof: Observe that all odd columns of Cρ,S are equal and the same is true for all
even columns of Cρ,S. From the fact that odd columns are of the form[

1 −1 · · ·
]T

and all even columns are of the form[
−1 1 · · ·

]T
it is seen that they are linearly dependent of each other with scalar −1. Thus all
columns are linearly dependent, Cρ,S has rank 1 and it then follows from Theorem 7.4
that Ω(ρ;S) = 1.

■

The following subsections seek to uncover the behaviour of the OC when treating

• variables with synergistic and redundant dependencies which are contained in
more than two variables,

• matrices Cρ,S which can be any matrix from the set {C ∈ Rn×n||cij| ≤ 1, cii =
1}, and

• specific subsets of Cn
ρ,S in Definition 7.2 which arise from specific sets S and

dependency functions ρ.

7.1.1 OC of Redundant and Synergistic Variables

The OC is unsuited for detecting redundancy and synergy between more than two
variables.
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Proposition 7.7 (OC of Redundant and Synergistic Variables)
The omega complexity of a set of stochastic variables S does not vary with the
amount of synergistic or redundant dependency found in more than two variables
of S at a time.

Proof: Let S = {Xk}n
k=1 and T = {Yk}n

k=1 be sets of stochastic variables, where

I(Xi;Xj) = I(Yi;Yj), i, j ∈ {1, . . . , n},

and

∃i, j ∈ {1, . . . , n}∃S ⊆ S : I(Xi;Xj) ̸= I(Xi;Xj|S\{Xi,Xj}), i ̸= j (7.4)
∀i, j ∈ {1, . . . , n}∀T ⊆ T : I(Yi;Yj) = I(Yi;Yj|T \{Yi,Yj}), i ̸= j.

The sets S and T as such have equal pairwise redundancies from Equation 16 while
S contains some synergistic or redundant dependency not found in pairwise relations.
This is not the case for T . Recall that MI captures any and all dependency between
two variables. Assume now for contradiction that Ω(I;S) varies with the amount of
synergy or redundancy in S and that CI,S and CI,T are constructed with MI such
that

cI,S
ij = I(Xi;Xj),
cI,T

ij = I(Yi;Yj).

Then CI,S = CI,T implying Ω(I;S) = Ω(I;T ) even though S ̸= T . Therefore Ω(I;S)
does not vary with the amount of synergy in S.

■

The existence of sets S and T satisfying Equation (7.4) is demonstrated by letting S be
an n-bit XOR or copy and T be n independent Bernoulli variables. Proposition 7.7
shows that the OC does not capture any synergistic dependency or redundancy
between more than two variables stemming from the fact that it relies upon bivariate
dependency functions which only capture pairwise interaction between variables.
Other methods for conditioning on other variables exits – for example partial and
conditional correlation Baba et al. [2004].

7.1.2 Simulated S and CS

Prediction of the OC of a set of more than two signals is difficult for various reasons:

• A lack of analytic descriptions of the signals prohibits further analysis.

• If an analytic description is available, the optimisation problem of the OC
using analytic descriptions of the signals quickly grows inhibitively complex
due to the eigendecomposition of Cρ,S in Definition 7.3.
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• As the number of variables grows large it becomes increasingly difficult to
intuitively predict how the OC is affected by changes to the variables.

Motivated by the above difficulties this section relies on simulations of sets S of
variables and dependency matrices Cρ,S to uncover properties of the OC.

The set Cn
ρ,S in Definition 7.2 includes all dependency matrices Cρ,S obtainable

under the conditions in Definition 7.3. This set is however difficult to analyse because
of a lack of understanding of the characteristics of the matrices which it contains.
The initial analysis therefore treats an easier to handle superset of Cn

ρ,S.

Definition 7.8 (Superset of Dependency Matrices)
The set

Cn =
{
C ∈ Rn×n | |cij| ≤ 1, cii = 1, cij = cji, i, j ∈ {1, . . . , n}

}
,

which is a superset of dependency matrices as defined in Definition 7.2 of dimension
n, is referred to as the superset of dependency matrices.

Notice, that it might be difficult to discern whether Cn
ρ,S for specific ρ and S is a

true subset of Cn.
If a finite dimension n of Cn is chosen, it is feasible to sample the possible

combinations of the entries in C ∈ Cn and thereby the possible OCs arising from
these. This is done for 3 × 3 matrices – that is C3 is examined by varying the
off-diagonal entries in C ∈ C3 through the interval [−1; 1]. The OC then becomes
dependent on three variables, i.e. the number of off-diagonal entries which can be
independently varied, since C is symmetric. This is difficult to plot and therefore a
three-dimensional plot is instead made where one off-diagonal entry is held constant
at λ ∈ [−1; 1] while the other off-diagonal entries are swept through [−1; 1] such that
the matrices are described by

C =

1 λ µ
λ 1 κ
µ κ 1

 for κ, µ ∈ [−1; 1]. (7.5)

The OC is then seen as a function of two off-diagonal entries κ and µ, and λ can
afterwards be varied. In Figure 7.2 the OC for matrices C described in Equation (7.5)
are plotted with λ ∈ {−1,−1

2 , 0,
1
2 , 1}. From Figure 7.2 it can be seen that the OC

is not convex in neither µ nor κ and is not consistently monotonically increasing in
neither |µ| nor |κ|. This is counter-productive, as an increase in absolute values of
dependency should be expected to increase total dependency as quantified by the
OC.

The fact that the OC is neither convex nor monotonically increasing in absolute
dependency is problematic for the interpretation of the OC, since this causes the OC
to confound different matrices and to not reflect an absolute increase in dependency
as an increase in OC.
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(a) λ = −1

(b) λ = −1/2 (c) λ = 0

(d) λ = 1/2 (e) λ = 1

Figure 7.2: OC of the matrix C described in Equation 7.5 for different λ with
κ, µ ∈ [−1; 1] with step size of 1/50.
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Consider the matrices constructed according to

C =


1 η · · · η

η
. . . . . . ...

... . . . η
η · · · η 1

 , η ∈ [−1; 1], (7.6)

where off-diagonal entries are then gradually and simultaneously increased from
-1 to 1. The OC of matrices constructed as in Equation (7.6) and for dimensions
n ∈ {3, 4, 5, 6} can be seen in Figure 7.3.

Figure 7.3: OC of C as given in Equation (7.6) with dimensions n = {3, 4, 5, 6} and
η ∈ [−1; 1].

A number of observations from Figure 7.3 can be done:

• The minima in the graphs coincide with the minimum in Theorem 7.4.

• There is a local maximum with a location estimated at η = −1/(n− 1).

• For n > 4 there is furthermore a local maximum at η = −1.

• There is one non-trivial local minimum for η < 0.

• The OC is in general not monotonically increasing in the sum of the absolute
value of off-diagonal entries. An increase may even result in a lower OC, which
is counter-intuitive.

• The OC is not a convex function on Cn.
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Non-monotonicity and non-convexity are problematic since they compromise the
ability of the OC to quantify dependency in a meaningful way. Sets of variables
with higher absolute correlation than others might results in a lower OC and several
different configurations of correlations may result in the same OC. Notice however
that the simulations above treat matrices in Cn which are not necessarily contained
in Cn

ρ,S on which the OC might be more well-behaved.
The set Cn includes covariance matrices which arise from common choices of ρ such

as covariance, Pearson correlation coefficient and circular correlation coefficient, which
are positive semi-definite and therefore a convex set. 3d plots of the same simulations
as in Figure 7.2 but restricted to {C ∈ Cn |C ≥ 0} are seen in Figure 7.4. From
these figures it seems that the OC is convex in µ and κ on the set {C ∈ Cn |C ≥ 0}
for a constant λ. This can also be seen in Figure 7.5 which is analogous to Figure 7.3
but with only the cases where C ≥ 0 are shown.

Instead of simulating a dependency matrix C directly, the following sections will
examine the behaviour of the OC when applied on simulated and real variables.

Phase Shifted Sine Waves

Simulated sine waves provide a simple basis for analysis of the OC on periodic signals.
In Figure 7.6 is seen the OC Ω(ρp; s1, s2, s3) of three phase shifted sine waves which
are defined as

s1(t) = sin(t), (7.7)
s2(t) = sin(t+ ϕ2),
s3(t) = sin(t+ ϕ3),

where ϕ2, ϕ3 ∈ [−π,π) such that the phase shift of s1 is held constant while the other
two signals are phase shifted. The surface plot shows how the OC changes as a
function of ϕ2 and ϕ3.
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(a) λ = −1

(b) λ = −0.5 (c) λ = 0

(d) λ = 1/2 (e) λ = 1

Figure 7.4: OC of the matrix C described in Equation 7.5 for different µ and
λ, κ ∈ [−1; 1] with step size of 1/25 with only cases where C ≥ 0.

53



CHAPTER 7. OMEGA COMPLEXITY

Figure 7.5: OC of C as given in Equation (7.6) with dimensions n = {3, 4, 5, 6} and
η ∈ [−1; 1] with only cases where C ≥ 0 shown.

Figure 7.6: Ω(ρp; s1,s2,s3) with the signals described in Equation (7.7) as a function
of phase shifts ϕ2 and ϕ3 of s2 and s3, respectively.

Figure 7.6 shows that the OC has nine peaks which correspond to nine different
situations of correlation of either 1 or -1 between all three signals. These are the
exact situations where all columns are linearly dependent such that the rank of Cρp,S

is 1 in accordance with b) in Theorem 7.4 and Corollary 7.6.
Four cases of Cρp,S from three phase shifted sine waves are seen in Equations (7.8)-
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(7.11). See Appendix A for the equations. 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 , Ω(ρp;S1) = 0.369070 (7.8)

 1 −0.30899 −0.95105
−0.30899 1 −0.00006
−0.95105 −0.00006 1

 , Ω(ρp;S2) = 0.420613 (7.9)

 1 −0.30899 −0.80899
−0.30899 1 −0.30909
−0.80899 −0.30909 1

 , Ω(ρp;S3) = 0.388521 (7.10)

1 1 0
1 1 0
0 0 1

 , Ω(ρp;S4) = 0.420620 (7.11)

Notice that even though Equation (7.8) displays the highest average absolute correl-
ation between three signals (average of the absolute value of the off-diagonal entries)
it results in the lowest OC. The same can be said for Equation (7.10) in which the
OC is lower than the one in Equation (7.9). Finally, even though Equation (7.11)
has the lowest average absolute correlation between the three signals it results in the
highest OC. The main takeaway is that linear or near-linear dependency results in
a high OC while the absolute value of the entries in Cρ,S is less indicating of high
OC. This follows naturally from the OC being based upon eigendecomposition. If
this phenomenon is considered to be an indication of high dependency in a set of
variables, then the OC captures this well.

7.1.3 Dependency on Number of Variables

In Jia et al. [2018] it is noted that the OC is not invariant to the number of variables
treated. Notice that the OC is not constant in Figures 7.3 and 7.5 for constant η
and varying dimension n of C ∈ Rn×n which represents the number of variables
considered. This can furthermore be seen in Figure 7.7 which shows the OC of C as
given in Equation (7.6) and as a function of the number of variables ranging from 3
to 64 for η = 1/2.
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Figure 7.7: The OC as a function of dimension n of C from Equation (7.6) with
η = 1/2.

With the exception of the observation by Jia et al. [2018] the analyses of the OC
performed in Sections 7.1.1, 7.1.2 and 7.1.3 have as far as the authors of this project
are concerned not been performed as thoroughly before and will be used as offset for
the last part of the chapter where an modification of the OC is proposed.

7.2 Improving the OC

From the above analysis and examples of the OC it is clear that it has some
disadvantages which are present depending on the type of variables treated and the
dependency function used. The OC as defined in Definition 7.3 displays the following
problems:

Problem 1 It is unable to detect synergistic and redundant dependencies in more
than two variables. This is direct consequence of its restriction to
bivariate dependency functions.

Problem 2 It is not in general monotonically increasing in the absolute value of
the off-diagonal entries of Cρ,S leading to it confounding dependency
matrices with each other.

Problem 3 It has non-trivial local maxima and minima which are not easily
interpreted.

Problem 4 It is not invariant to the number of variables treated.

In this section a number of modifications to the OC in Definition 7.3 are presented
in order to rectify Problems 1, 3 and 4 making it useful in a larger subset of Cn and
therefore a more general setting.
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7.2.1 Problem 1: Limitation of Bivariate Dependency Func-
tions

The problem of the OC not detecting synergistic and redundant dependency between
more than two variables in a set of variables can be ignored, assuming that the
variables contain no such dependencies or that this type of dependency is irrelevant
for the problem at hand. If these solutions are inappropriate for a specific problem,
the OC can be modified by letting the dependency function ρ used for creating Cρ,S

be multi variate, thus making it possible to detect dependencies between more than
two variables.

This project presents a solution, reliant on the MI, for the case of three variables
which motivates solutions for more than three variables although this becomes
increasingly complex as the number of variables grows.

Proposition 7.9 (OC of Three Synergistic or Redundant Variables)
Let S = {X1, X2, X3} be a set of stochastic. An OC Ω(I;S), with dependency
matrix CI,S defined by

cS
ij = I(Xi;Xj|{X1, X2, X3}\{Xi, Xj}),

is dependent on the amount of synergy and redundancy in all three variables of S.

Proof: Assume that S contains synergistic or redundant dependencies such that

∃i, j ∈ {1, . . . , n} : I(Xi;Xj) ̸= I(Xi;Xj|{X1, X2, X3}\{Xi, Xj}). (7.12)

Since the entries of CI,S are defined exactly as the RHS in Equation (7.12), any
change in synergistic or redundant dependency in S implies a change in the entries
of CI,S. It follows the that OC is dependent on changes in redundant and synergistic
dependencies between all three variables in S.

■

Proposition 7.9 shows an example of how to extend the OC to detect synergy or
redundancy contained in more than two variables at a time, in this case three.
In order to modify the OC to detect this type of behaviour between more than
three variables the MI on the RHS in Equation (7.12) must condition on some
T ⊆ S\{Xi, Xk} where the choice of T can be varied.

Notice however that it in Jakobsen [2013] is shown that dependency matrices
based upon mutual information are not always positive semi-definite in contrast to
covariance matrices. Using mutual information therefore poses a problem in this
context as some of the unwanted properties of the OC are present when CI,S is not
positive semi-definite.

57



CHAPTER 7. OMEGA COMPLEXITY

7.2.2 Problems 2 and 3: Non-monotonicity and Non-trivial
Local Extrema

The problem of non-monotonicity of the OC as a function of the average absolute
value of the off-diagonal entries is an inherent problem stemming from the use of
eigenvalues as a quantifier of coherence. This problem will not be addressed further,
but it is noted that it seems to be confined to the matrices in Cn which are not
positive semi-definite.

The non-trivial maxima and the non-monotonicity when all off-diagonal entries in
Cρ,S are increased equally are however treated. They are confined to negative average
values of the off-diagonal entries and a straightforward fix is to use the absolute value
of ρ confining the entries of Cρ,S to [0; 1] such that negative and positive correlations
are confounded. Using a non-negative correlation function (MI for example) similarly
avoids the problem of non-monotonicity while not distinguishing between negative
and positive correlation.

Another simple method is to shift the entries of Cρ,S by 1 such that cρ,S
ij = ρ+ 1.

This causes two problems:

1. Complete negative dependency between all signals such that

cS
ij =

2 for i = j

0 for i ̸= j,

results in an OC of 0. If negative dependency is to be detectable, the OC
should reflect this through for example a negative value.

2. Independence between all signals such that

cS
ij =

2 for i = j

1 for i ̸= j,
(7.13)

results in an OC greater than 0. A natural expectation is for the OC to be 0
when no dependency is present.

The above problems can be partially solved by shifting the resulting OC (which lies
in the interval [0; 1]) to the interval [−1/2; 1/2] by subtracting 1/2. Since the OC
however is not a linear function from Cρ,S to Ω(ρ;S) as seen in Figures 7.3 and 7.2,
a set of independent signals with Cρ,S given as in Equation (7.13) will have Ω ̸= 0
when shifted by −1/2. This is seen in Figure 7.7.

7.2.3 Problem 4: Non-invariance to Number of Variables

The problem of non-invariance to number of variables is pronounced in Figure 7.7.
The OC can be modified to be invariant to the number of variables in the case, where
all off-diagonal entries are held constant. This becomes clearer in the next section.
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7.2.4 Generalised Omega Complexity

The solution to problems 1, 3 and 4 proposed in this project is two-pronged and is
seen below in a generalised definition of the OC.

Definition 7.10 (Generalised Omega Complexity)
Let S = {Sk}n

k=1 be a set of stochastic variables, ρ a dependency function which
satisfies either ρ ∈ [−1; 1] or ρ ∈ [0; 1] and Cρ,S the dependency matrix of S with
respect to ρ. The generalised omega complexity of S with respect to ρ is then
defined as

Ωgen(ρ;S) = max(λ1, . . . , λn) − 2
n− 1 − 1

where {λk}n
k=1 are the eigenvalues of Ĉρ,S defined by

ĉρ,S
ij = cρ,S

ij + 1.

The two main changes from Definition 7.3 to Definition 7.10 are the shift of the
entries in the dependency matrix Cρ,S and the use of the maximum eigenvalue of
the shifted dependency matrix Ĉρ,S instead of the entropy of the eigenvalues.

Theorem 7.11 (Properties of the Generalised Omega Complexity)
The generalised OC,

a) has range of [−1; 1] or [0; 1] for ρ ∈ [−1; 1] or ρ ∈ [0; 1], respectively,

b) is maximised when rank(Ĉρ,S) = 1 such that max(λ1, . . . , λn) = 2n,

c) is 0 when all variables in S are independent,

d) is minimised when either ĉρ,S
ij = 0 for i ̸= j and ρ ∈ [−1; 1] or when ĉρ,S

ij = 1
for i ̸= j and ρ ∈ [0; 1],

e) is scale invariant if ρ is scale invariant such that ρ(asi,asj) = ρ(si,sj), for any
a ∈ R\0,

f) is linear in equal changes in equal off-diagonal entries in Ĉρ,S, and

g) is independent of the cardinality of S if all off-diagonal entries are equal.

Proof:

a) Since tr(Ĉρ,S) = 2n and all entries are upper bounded by 2 the maximum
possible eigenvalue is 2n. This results in

Ωgen(ρ, S)(ρ;S) = 2n− 2
n− 1 − 1 = 1.
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If ρ ∈ [−1; 1] then the smallest possible largest eigenvalue is 2 given by
Corollary 4.5 when Ĉρ,S is diagonal resulting in

Ωgen(ρ;S) = 2 − 2
n− 1 − 1 = −1.

If ρ ∈ [0; 1] then the smallest possible largest eigenvalue is n+ 1 which follows
from Theorem 4.1 and the decomposition of Ĉρ,S into the identity and a matrix
consisting of only ones. This yields

Ωgen(ρ;S) = n− 1
n− 1 − 1 = 0.

b) If rank(Ĉρ,S) = 1 then null(Ĉρ,S) = n− 1 which results in an eigenvalue of 0
with multiplicity n − 1 and therefore only one non-zero eigenvalue which is
equal to tr(Ĉρ,S) = 2n.

c) If all variables in S are independent then ĉρ,S
ij = 1 for i ̸= j, which from

Theorem 4.7 results in a largest eigenvalue of n+ 1 yielding

Ωgen(ρ;S) = n− 1
n− 1 − 1 = 0.

d) For the case where ρ ∈ [0; 1] the proof is given by a) and c). When ρ ∈ [−1; 1]
the OC is minimised when all eigenvalues are equal. This is achieved when all
off-diagonal entries in Ĉρ,S are 0, such that the largest eigenvalues is 2, which
follows from the fact that tr(Ĉρ,S) = 2n. The OC is then (2−2)/(n−1)−1 = −1.

e) If ρ is scale invariant, then Ωgen(ρ;S) is trivially scale invariant.

f) Linearity of the eigenvalues of Ĉρ,S in equal changes in the off-diagonal entries
in Ĉρ,S follows from Theorem 4.7, and

g) Follows trivially from Theorem 4.7.

■

The generalised OC has additional properties which are not true for the OC and
these properties show that it is useful in a more general sense.

3d plots analogous to those in Figure 7.2 are seen in Figure 7.8.

60



7.2. IMPROVING THE OC MATTEK10 grp 4.105b

(a) µ = −1

(b) µ = −1/2 (c) µ = 0

(d) µ = 1/2 (e) µ = 1

Figure 7.8: Generalised OC of the matrix C described in Equation 7.5 for different λ
and µ, κ ∈ [−1; 1] with step size of 1/25.

Notice in Figure 7.8 that the generalised OC seems to be monotonic in κ and
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µ for constant λ and also convex in those arguments. This is the case even though
indefinite matrices are considered, which might allow use of for example MI as
dependency function without the problems of the OC.

The linearity of the OC in equal increases in equal off-diagonal entries and
invariance to the number of variables is furthermore seen in Figure 7.9.

Figure 7.9: Generalised OC of C as given in Equation (7.6) with dimensions n =
{3, 4, 5, 6} and η ∈ [−1; 1].

7.3 Summary

The analysis performed and examples given in this chapter established some properties
of the OC and uncovered a number of problems, which seem to be unaccounted for
in existing literature.

These problems where noteworthy in the subset Cn described in Definition 7.2
but some of them seem of limited influence in the subset of positive semi-definite
matrices.

A generalised omega complexity which allows for better distinction between
negative and positive dependencies and which behaves in a more consistent way as a
function of dependency between signals was presented. It is proposed to future users
of the omega complexity to consider if the generalised version in Definition 7.10 is
more suitable for their problem and furthermore to show caution and consider what
type of signals they are applying the mathematical tool to since the properties of
Ωgen(ρ, S) on Cn

ρ,S are not fully accounted for.
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This chapter serves as an introduction to notions regarding graph theory. It is
introduced as a method of analysing connectivity in larger networks, in this project
for EEG analysis. The chapter is based loosely on Diestel [2017], Bondy and Murty
[2008], and Bondy and Murty [1982].

8.1 Fundamentals

Informally, a graph is a mathematical object consisting of nodes connected by edges.
A simple graph with 3 nodes, and 1 undirected edge can be seen in Figure 8.1. The
terms directed and undirected edge will be elaborated upon later in the chapter.

Definition 8.1 (Graph and Incidence)
Let N be a set of nodes, E be a set of edges and P be set of pairs of nodes from N .
An incidence function is a map I : E → P such that ∀e ∈ E, ∃a,b ∈ N : I(e) = eab,
and eab denotes the pair a and b connected by an edge. Then G = (N,E, I) is
called a graph.

A

B C

Figure 8.1: An example of a graph.

Definition 8.2 (Node and Edge Set Funtions)
Let G = (N,E, I) be given. The node and edge set functions of G are

N (G) = N and E(G) = E,

respectively.
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Note that |N (G)| = |N | denotes the number of elements in the node set and
|E(G)| = |E| denotes the number of elements in the edge set.

Graph objects can be classified into two main groups namely directed and
undirected graphs.

Definition 8.3 (Directed and Undirected Graph)
Let G = (N,E, I) be a graph, with I : E → P . If P = N ×N then G is called a
directed graph. If P = {{a,b}|a,b ∈ N} then G is called an undirected graph.

Definition 8.4 (Weight Map)
Let G = (N,E, I) be a graph and I : E → P . A weight map of G is a map
WG : P → R+ such that

WG(x, y) =

 wxy, exy ∈ P

0, otherwise,

where wxy ≥ 0 is referred to as the weight of the edge exy.

This motivates talking about weighted and unweighted graphs.

Definition 8.5 (Weighted and Unweighted Graphs)
Let G = (N,E, I) be a graph and I : E → P be given. G is called unweighted if
wxy = 1 for all exy ∈ P , otherwise G is called weighted.

In order to formalise the weights, and draw connections to linear algebra, the
adjacency matrix is introduced.

Definition 8.6 (Adjacency Matrix)
Let G = (N,E, I) be a graph with weight map WG, and N = {n0, . . . , n|N |−1} be
given. The matrix A ∈ R|N |×|N | with entries

Aij = WG(ni,nj)

is called the adjacency matrix of G.

The above definitions are used as offset for more advanced tools for analysis of
graphs.

64



8.2. CLUSTERING MATTEK10 grp 4.105b

8.2 Clustering

Consider that certain subsets of nodes and edges can form groups with high internal
connectivity and lower connectivity between groups. Such groups can be described
through clusterings. This section will describe how to define them, and evaluate
them, and is based on Almerida et al. [2019] and Newman and Girvan [2003].

Definition 8.7 (Unions and Intersections of Graphs)
Let G = (N1, E1, I) and H = (N2, E2, I) be graphs. The union of G and H is
defined as

G ∪H = (N1 ∪N2, E1 ∪ E2, I),

and the intersection is defined as

G ∩H = (N1 ∩N2, E1 ∩ E2, I).

Definition 8.8 (Cluster and Clustering)
Let G = (N,E, I) be a graph and Ni ⊆ N such that N = ⋃n

i=1 Ni and Ni
⋂
Nj = ∅

for all i, j. Furthermore let

Ei = {e ∈ E|I(e) = eab, a, b ∈ Ni},

such that Ci = (Ni, Ei, I) is a graph. Then C = ⋃n
i=1 Ci is called a clustering, and

Ci is called a cluster.

Note that Definition 8.8 does not consider the performance of a clustering, and
it is hence not given that a clustering will reflect underlying communities in a
meaningful way.

8.2.1 Evaluations of Clusterings

In this section methods for evaluating whether or not a clustering reflects underlying
communities will be introduced.

Consider that one interesting property of a community is that a subset of the
nodes does not have a high degree of connectivity with nodes not in that community.

Definition 8.9 (Intercluster Weight Sum)
Let G = (N,E, I) be a graph with clustering C = ⋃n

i=1 Ci and corresponding
weight map WG. The intercluster weight sum of Ci is defined as

ICWS(i) =
∑

a∈N (Ci)

∑
b∈N\N (Ci)

WG(a, b) +WG(b, a), i = 1, . . . , n.
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In order to quantify the connectivity internally versus externally in a cluster,
cluster degree is introduced.

Definition 8.10 (Cluster and Non-Cluster Degree)
Let G = (N,E, I) be a graph with weight map WG and let C = ⋃n

i=1 Ci be a
clustering of G. The cluster degree of Ci is

CD(i) =
∑

a∈N (Ci)

∑
b∈N

WG(a, b) +
∑

a∈N\N (Ci)

∑
b∈N (Ci)

WG(a, b).

The non-cluster degree of Ci is

NCD(i) =
∑

a,b∈N\N (Ci)
WG(a, b).

Note that the cluster degree captures information about how much weight is
related to a cluster, while the non-cluster degree quantifies how much weight is not
associated with a given cluster.

A characteristic of a good clustering, is that the connectivity between clusters is
relatively low compared to the connectivity internally in the clusters.

Definition 8.11 (Conductance)
Let G = (N,E, I) be a graph with WG as a weight map. Furthermore let C =⋃n

i=1 Ci be a clustering of G. The conductance of cluster Ci is then

CON(i) =


0, for N (Ci) /∈ {∅,N} and ICWS(i) = 0
1, for N (Ci) ∈ {∅,N}

ICW S(i)
min{CD(i),NCD(i)} , otherwise.

Conductance is defined for a single cluster, and serves to balance the relationship
between weights related to the cluster and the weights not related to the cluster.

To evaluate the performance of a clustering, the conductance is generalized from
a single cluster to a clustering.

Definition 8.12 (Intercluster Conductance)
Let G = (N,E, I) be a graph with weight map WG. Furthermore let C = ⋃n

i=1 Ci

be a clustering of G.

ICC(C) = 1 − max
i∈{1,...,n}

(CON(i))

is called the intercluster conductance of the clustering C.
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Note that when constructing a good clustering it is not desirable for any cluster
to have high connectivity to any other set of clusters, and hence a clustering with
high intercluster conductance is desirable. A low intercluster conductance might
indicate a too fine clustering. Note that the intercluster conductance is not great
for distinguishing if a clustering is too coarse in comparison to any underlying
communities.

Definition 8.13 (Weight Sum and Intracluster Weight Sum)
Let G = (N,E, I) be a graph with weight map WG. Furthermore let C = ⋃n

i=1 Ci

be a clustering of G. Then

mG =
∑

a,b∈N

WG(a, b)

is called the weight sum of G, and

mI(i) =
∑

a,b∈N (Ci)
WG(a, b)

is called the intracluster weight sum of Ci.

While the weight sum aggregates all weights in the graph, the intracluster weight
sum quantifies the weight exclusively related to a specific cluster Ci. Based on the
weight sum and intracluster weight sum the coverage is defined.

Definition 8.14 (Clustering Coverage)
Let G = (N,E, I) be a graph with weight map WG. Furthermore let C = ⋃n

i=1 Ci

be a clustering of G. The coverage of C is then

COV(C) =
∑n

i=1 mI(i)
mG

.

Note that the coverage describes how much of much of the connectivity is contained
withing the clusters relative to the connectivity of the entire graph. A clustering
coverage close to 1 is desired, but does not take the internal connectivity of the
clustering into consideration.

Next the concept of modularity is introduced.

Definition 8.15 (Modularity)
Let G = (N,E, I) be a graph with weight map WG. Furthermore let C = ⋃n

i=1 Ci

be a clustering of G. The modularity of C is then

MOD(C) = COV(C) − 1
m2

G

n∑
i=1

(CD(i))2 .
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Notice that a high modularity implies a high cluster coverage, and a low cluster
degree. Hence modularity can be utilised to avoid too fine of a clustering. The
remaining part of this chapter will introduce an algorithm for designating clusters of
a graph.

8.3 Clustering Algorithm

As alluded to, an approach to detecting communities will be introduced. The Louvain
clustering algorithm has in this project been chosen as the the method for finding
clusters.

8.3.1 Louvain clustering Algorithm

This section will introduce the Louvain clustering algorithm, which based on the
modularity seeks to obtain a clustering representative of the underlying communities.

Algorithm 1 Louvain Clustering
Input G = (N,E, I), WG

Output C = ⋃n
i=1 Ci

1: Initialize:
2: each ui ∈ N is assigned an individual cluster Ci for i = 1, . . . , |N | − 1;
3: set MOD(C) = 0 and make a list C containing all Ci;
4: while one or more nodes change assigned cluster do
5: for ui ∈ N do ▷ Finds the best cluster Cj for each node ui

6: make CN a list of clusters with at least one node adjacent to ui;
7: for Cj ∈ CN do
8: test ui to Cj and calculate ∆MOD(C);
9: if ui ∈ N (Cj) yields ∆MOD(C) > 0 then

10: keep ui in Cj;
11: else keep ui in original cluster;
12: end if
13: end for
14: if C contains empty clusters, remove them;
15: end for
16: end while

As is clear from the algorithm, the approach is greedy and hence does not
necessarily find an optimal clustering with regard to the modularity. It should be
noted that the Louvain algorithm is dependent on the ordering of the nodes and
hence the algorithm is often implemented with a random starting point.
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8.4 Combined Clustering

The following steps are used in the creation of a combined clustering between two
data sets:

Algorithm 2 Combined Clustering
Input G0 = (N0, E0, I0), G1 = (N1, E1, I1)
Output Cr = ⋃n

k=0 C
r
k

1: Initialize:
2: C = {}
3: Apply Louvain to G0 and G1 resulting in C0 = ⋃n

i=0 C
0
i , and C1 = ⋃m

j=0 C
1
j

4: Let C0 be the clustering with most clusters such that n ≥ m
5: for k = range(0, n) do
6: l = argmax

l
{|N (C0

k

⋂
C1

l )|})) ▷ Finds the cluster with most shared nodes

7: Nr = N (C0
k ∩ C1

l )
8: Er = E(C0

k ∩ C1
l )

9: Append Cr
k = (Nr, Er, I) to C

10: end for
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9 | Simulated signals

Before testing tools for quantifying coherence in multivariate signals on real EEG
signals they are tested on more controlled simulated signals. Often used ways of
simulating signals mimicking the behaviour of EEG signals are the so called Rössler
system and the multivariate autoregressive model.

9.1 The Rössler System

Rössler systems are used in Baboukani et al. [2018] to simulate signals which are
then evaluated through phase similarity. In Subramaniyam and Hyttinen [2014] they
are also used for a preliminary analysis before analysing structural properties of
EEG signals. Before presenting the coupled system of individual Rössler systems,
the differential equations defining the single Rössler system are presented.

Definition 9.1 (Rössler System)
The Rössler system is the solution to the set of differential equations given by

dX
dt = −ωY − Z + σδ,

dY
dt = ωX + aY,

dZ
dt = b+ Z(X − c),

where X, Y and Z are dependent on the time variable t, the constants a, b, c, ω ∈ R
determine the behaviour of the solutions and δj ∼ N (0, 1) is Gaussian noise
weighted by the constant σ.

The Rössler system in Definition 9.1 consists of three coupled signals X, Y and
Z whose characteristics can be altered by changing the constants in the system. The
effect of changing these constants will not be treated in this project and only the
time series X is considered as output from the Rössler system.
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9.2 Coupled Rössler Systems

As the goal of the chapter is to simulate a signal which is similar in nature to EEG
signals more than one signal is needed. In this section a method of generalising
the Rössler system to a coupling of Rössler systems is introduced. A method of
generalising to n Rössler systems is defined below.

Definition 9.2 (Coupled Rössler Systems)
Let a system be described by

dXj

dt = −ωjYj − Zj +
∑

i ̸=j

ϵij(Xi −Xj)
+ σδj

dYj

dt = ωjXj + aYj

dZj

dt = b+ Zj(Xj − c),

where X, Y and Z are dependent on the time variable t, the constants a, b, c, ω ∈ R
determine the behaviour of the solutions, δj ∼ N (0, 1) is Gaussian noise weighted
by the constant σ, j ∈ {1, . . . , n}, n ∈ N and ϵ ∈ Rn×n is a matrix with coupling
coefficients ϵij ∈ R. This system is referred to as n coupled Rössler systems.

Recall that only the X time series is used as output from the Rössler systems,
which implies that n coupled Rössler systems as described in Definition 9.2 outputs
n time series. This project will use six coupled Rössler systems exclusively.

The main difference from Definition 9.1 to Definition 9.2 is the addition of the
term ∑

i ̸=j ϵij(Xi −Xj), which introduces the coupling between the six X equations.
This coupling is controlled through the coupling matrix ϵ whose entries in this project
are either 0 or a constant η. This determines the strength of the coupling between
the X terms.

The coupling of the time series Xj of n coupled Rössler systems can be visually
represented through a graph such that a node j represents Xj and an edge between
nodes j and k represents a coupling ϵjk > 0. In Figure 9.1 can be seen six examples
of graphical representations of the six coupled Rössler systems. These configurations
are for the remainder of the project referred to as the six cases of couplings for the
Rössler systems.

9.3 Simulation

The coupled Rössler systems in Definition 9.2 are solved numerically in Python and
this is for the rest of the project referred to as simulations of coupled Rössler systems.
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Figure 9.1: Visualisations of the six coupled Rössler systems used in the project
showing whether a coupling is present through edges between nodes 1, . . . , 6 which
represent Xj, j ∈ {1, . . . , 6}.
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The constant parameters which are used for all simulations of the coupled Rössler
systems throughout the project are as follows:

• a = 0.165, b = 0.2, c = 10.

• ω1 = 0.95, ω2 = 0.97, ω3 = 0.99, ω4 = 1.01, ω5 = 1.03, ω6 = 1.05.

• σ = 1.5.

The above parameters are found in or inspired by Pounder and Sauer [2009]. The
initial conditions Xj(0) = 1, Yj(0) = 1 and Zj(0) = 0 for j ∈ {1, . . . , 6} furthermore
supply the same basis for all simulations whereafter they deviate as a consequence of
the noise term.

The following parameters are furthermore used in the specification of the simula-
tions and will be specified when specific simulations are produced.

• T : the time period in which the simulations are run – unless otherwise stated,
this implies a time interval for the simulations such that t ∈ [0;T ].

• N : number of samples in the time period defined from T such that the sampling
frequency is N/T .

• Ndisc: discarded samples starting from t = 0 resulting in t ∈ [NdiscT/N ;T ].
This is to avoid the transient behaviour in the beginning of the simulations
and allows them to deviate from the initial conditions.

The simulations of the six cases of six coupled Rössler systems with couplings as
represented in Figure 9.1 for η = 0.1, T = 100, N = 1000 and Ndisc = 0 can be
seen in Figure 9.2. Notice the increased similarity between the time series as the
number of couplings increase (and η is held constant) and that the time series show
a period of transient behaviour in the beginning while they deviate from their initial
conditions. The samples in which the transient behaviour is found will be discarded
in simulation in the rest of the project.

9.4 Multivariate Autoregressive Process

In this section simulation of a specific multivariate autoregressive (MVAR) process is
briefly described. In Baboukani et al. [2020] an MVAR process is used for simulating
signals which have directed dependencies and AR-processes have previously been
used for EEG analysis in Atyabi et al. [2016]; Zhang et al. [2018a,b]

The MVAR model consists of multiple coupled autoregressive processes each
producing a time series.
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Figure 9.2: Simulations of coupled Rössler systems with η = 0.1, T = 100, N = 1000
and Ndisc = 0 for each of the six different cases illustrated in Figure 9.1.
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Definition 9.3 (Multivariate Autogregressive Process)
The MVAR process of order p with m channels is of the form

yi(n) = −
p∑

i=1
aikyi(n− k) −

m∑
j=1
j ̸=i

p∑
k=1

ajkyj(n− k) + ϵi(n).

where yi and ϵi are the output and a Gaussian noise input, respectively, for process
i.

As such, the output of each process is dependent on the previous values of any
number of the processes in the system. This causes directed spatial and temporal
couplings.

The MVAR model introduced in Baboukani et al. [2020] consists of five coupled
AR-processes of order 3. The dependencies and coefficients aik are as follows:

y1,n = 0.95
√

2y1,n−1 − 0.9125y1,n−2 + ϵ1,n

y2,n = 0.5y2
1,n−2 + ϵ2,n

y3,n = −0.4y1,n−3 + 0.4y2,n−1 + ϵ3,n

y4,n = −0.5y2
1,n−1 + 0.25

√
2y4,n−1 + ϵ4,n

y5,n = −0.25
√

2y4,n−1 + 0.25
√

2y5,n + ϵ5,n (9.1)

where ϵn = [ϵ1,n, . . . , ϵ5,n]T ∼ N (0, I), I ∈ Rn×n. A simulation of the model in
Equation (9.1) can be seen in Figure 9.3. The MVAR process can furthermore be
altered through

Ymixed = AY,

where Y ∈ R5×N is a matrix containing the MVAR process in Equation (9.1)
simulated for N samples, and

A =


1 − α α · · · α

α
. . . . . . ...

... . . . α
α · · · α 1 − α

 , α ∈ [0; 1/2]

is a mixing matrix which mixes the time series in Y depending on the mixing
coefficient α, with α = 0 resulting in no mixing α = 1/2 resulting in five identical
time series.

The MVAR model in Equation (9.1) is in conjunction with a mixing matrix in
this project used for simulating synthetic signals with directed dependencies.
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Figure 9.3: Plots of the MVAR process from Equation (9.1) simulated for n ∈
{0, . . . , 3000}.
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This chapter presents the results of applying tools from Chapters 2, 3, 5 and 7 on
simulated signals in order to evaluate whether the tools are able to detect changes in
dependency between signals with similar structures.

10.1 Simulated Signals

Two different models are used for simulating signals – the coupled Rössler systems
from Definition 9.2 and the MVAR process from Equation 9.1.

The nature and degree of the dependencies in the simulated signals can to some
degree be controlled, which allows for a better understanding of the tool applied.
The coupling configurations and coefficient of the coupled Rössler systems and the
mixing coefficient of the MVAR processes can be controlled and therefore used as
references for the tools applied.

The coupled Rössler systems are simulated according to the six cases presen-
ted in Figure 9.1. Each of these cases are simulated with coupling coefficient
η ∈ {0.02, 0.05, 0.1, 0.2, 0.3, 0.5} resulting in 36 different configurations. These config-
urations are simulated 200 times with T = 130, N = 7800 and Ndisc = 1800 resulting
in a sample rate of 60 samples per t and the signals therefore run for t ∈ [30; 130].

The MVAR processes are simulated with N = 3000 and α ∈ {0, 0.1225, 0.245,
0.3675, 0.49}, resulting in five different configurations. Each of these are simulated
200 times.

The simulated signals will be represented in three different ways: the real signal,
the instantaneous amplitude and the instantaneous phase as given through the
Hilbert transform from Definition 2.4. These are denoted sr, sa and sp respectively.
When TE is applied on the simulated signals it is only on sr.

10.2 Dependency Measures and Signal Represent-
ations

The tools listed below in conjunction with the listed representations are used for
quantifying dependencies in the simulated signals:
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• Generalised OC from Definition 7.10 with various bivariate dependency func-
tions:

– Sample Pearson correlation coefficient ρp of sr, sa and sp.
– Sample circular correlation coefficient from Equation 3.1 of ρc of sp.
– KSG estimate of mutual information ÎKSG,k from Definition 6.8 of sr, sa,

and sp.

• Total correlation estimated with the entropy estimate in Definition 6.2 with
k = 4 of sr, sa, and sp.

• Dual total correlation estimated with the entropy estimate in Definition 6.2
with k = 4 of sr, sa, and sp.

• O-information from Definition 5.28 and given by the above estimates of TC
and DTC of sr, sa, and sp.

• Transfer entropy from Definition 5.16 on sr estimated with the Bteknn function
from the ITS package in MATLAB which uses a kNN estimator. Here k = 4
and embedding delay with parameter M = 5 are used. As there is a difference
in the way the two signals are constructed, the time lag used varies. For the
MVAR processes a lag of L = 3 is used, since the signals at any given time
only depend on the samples at the last three time stamps. For the coupled
Rössler systems the time lag is L = 5.

For the remainder of the project, the above quantifiers of dependency are referred to
as dependency measures even though they are not measures in a mathematical sense.

The discussion of these choices can be found in Section 11.2.

10.3 Clustering Method

Using the TE results as weights a graph is constructed with the intention of using
the Louvain clustering algorithm to uncover the potential underlying communities
present in the MVAR process. The discussion of this method is done in Section 11.4.

The clustering of the MVAR data serves as a proof of concept before applying
the same method to EEG data, where the clustering will serve as a method of
dimensionality reduction.

10.4 Results

The results for coupled Rössler systems and MVAR processes are presented in
separate sections below. All dependency measures and signal representations with
the exception of TE are used in Sections 10.4.1 and 10.4.2. The results from TE are
presented in Section 10.4.3 and used for clustering in Section 10.4.4.
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10.4.1 Coupled Rössler Systems

The means of the combinations of dependency measures and signal representations
described in Section 10.2 of the simulated coupled Rössler systems are seen in
Figure 10.1. Each figure shows how the mean of a specific type of dependency
measure varies with the coupling coefficient η for a specific case of coupling.

The dual total correlation against the total correlation of the Rössler systems for
the six different cases and six different ηs can be seen in Figure 10.2.

10.4.2 MVAR Processes

The means of the combinations of dependency measures and the different repres-
entations described in Section 10.2 of the simulated MVAR processes are seen in
Figure 10.3. Each figure shows how the mean of a specific type of dependency
measure varies with the mixing coefficient α.

10.4.3 Transfer entropy

TE is used in two ways, both as a method to detect a change in information flow
when there is a change in dependency in the system, but also as weight for a directed
graph, which will be used for community detection.

Coupled Rössler Systems

Since there are six cases and six different ηs for each case there are numerous results
for the Rössler systems. The average over the TE results for all cases with η = 0.1
are shown in Figures 10.5-10.10 where the information flow from the i’th to the j’th
signal is visualised. All results can be seen in Appendix B and the figures in this
section are chosen as these most clearly show patterns in information flow.
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Figure 10.1: Means of OCs and O-information of Rössler systems coupled according
to the six cases in Figure 9.1 with varying η.
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Figure 10.2: Total correlation and dual total correlation for the six cases of coupling
of Rössler systems shown in Figure 9.1 for varying η.
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Figure 10.3: Means of OCs and O-information of MVAR processes as α increases.

Figure 10.4: Total correlation and dual total correlation for the MVAR processes for
varying α.
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Figure 10.5: Transfer entropy on case 1
and η = 0.1
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Figure 10.6: Transfer entropy on case 2
and η = 0.1
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Figure 10.7: Transfer entropy on case 3
and η = 0.1
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Figure 10.8: Transfer entropy on case 4
and η = 0.1
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Figure 10.9: Transfer entropy on case 5
and η = 0.1
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Figure 10.10: Transfer entropy on case 6
and η = 0.1
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MVAR processes

The average over TE on all simulations of MVAR processes are presented in Fig-
ures 10.11-10.15.
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Figure 10.11: MVAR Process α = 0.0
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Figure 10.12: MVAR α = 0.1225
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Figure 10.13: MVAR α = 0.245
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Figure 10.15: MVAR α = 0.49

10.4.4 Directed Graph Using Transfer Entropy

Figure 10.16 shows the graphs constructed considering signals as nodes and the TEs
as weights of directed edges. Darker color of edges indicates a higher transfer entropy
and different colors of nodes indicate different clusters. Note that for α = 0.1225 the
Louvain algorithm is able to distinguish two communities 10.16, whereas α = 0.3675
yields a single cluster. This is most likely due to the fact that all nodes are strongly
connected after mixing and hence no clear cut communities are present.

This method could in theory be applied to the TE results from the coupled
Rössler systems, but since no obvious ways of validating the output come to mind,
this will not be explored.

The remaining results can be found in Appendix C.
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Figure 10.16: Clusterings of MVAR with α = 0.1225 and α = 0.3675.

10.5 Discussion of Simulated Results

The main takeaways from the results presented in Section 10.4 are summarised in
this section.

10.5.1 Omega Complexities

Coupled Rössler Systems

In Figure 10.1 the leftmost plots show that the OC in general increases both as η
increases and as the number of couplings increases regardless of dependency function.
This is expected since each case of coupling increases the number of non-zero couplings
and η determines the strength of these couplings. The only exception to this is
for case 4, which shows decreasing Ω(ρp; sr), Ω(ρp; sp) and Ω(ρc; sp) from η = 0.05
to η = 0.1. This could be a consequence of the coupling between nodes 2 and 5
which is the only coupling between the cluster of nodes 1, 2 and 3 and the cluster of
nodes 4, 5 and 6 in Figure 9.1 causing irregular behaviour stemming from a weak
(η ∈ {0.1, 0.2}) coupling between two clusters. The behaviour of the coupled Rössler
systems as the number of couplings and the configuration of these change remains
to be examined in more detail. Several systems with the same number of couplings
but different configurations might show varying behaviour. This study will not be
conducted here.

The OC based upon the MI in general has smaller range across cases than the
OC based upon PCC and CCC. It is on average higher than the one based upon
PCC and CCC for cases 1 and 2 and the inverse is true for cases 3, 4, 5 and 6. It
in general fails to identify when signals are very similar. This can be seen from
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Figure 9.2which shows that it changes the least from case 1 to case 6 where it is
desirable that a large difference should be shown.

The OC based upon PCC of the instantaneous amplitude often has the largest
range from η = 0.01 to η = 0.5 and furthermore most often monotonically increases
in case number and η. Whether the increase in OC with respect to case number can
be attributed to the configuration of coupling or the number of couplings is not clear.
The characteristics of largest range and monotonic increase in case number and η
are evaluated to be desirable when the goal is to measure changes in dependencies
when the underlying characteristics of the system change.

Per definition the OC relies upon the dependency function and this must therefore
be chosen according to assumptions regarding the processed signals. Since the OC
based upon PCC and CCC reach values of almost 1, it seems that the dependencies
between coupled Rössler systems can be explained by them, when the coupling is
strong. Whether this is the case for low numbers and coefficients of coupling will not
be examined here.

The OC is in general deemed able to discriminate between the six cases of coupling
and and coupling degree η ∈ {0.01, 0.02, 0.1, 0.2, 0.3, 0.5} of coupled Rössler systems
from numerical solutions of them.

MVAR Processes

For the MVAR processes Ω(ρp; sr) or Ω(ρp, sp) produces the largest range of OC
as α varies and it is furthermore monotonically increasing in α for the analysed
points. The OC based upon MI again fails to identify the highly similar signals when
α = 0.49.

Notice that the graphs of the OC based upon MI are convex in the examined αs
in Figure 10.3. The other graphs are not convex but close to. This is in contrast to
the OCs of the Rössler systems for which most of them are concave in η with the
notable exception of those for case 4. Note however that α and η do not express the
same relationships for MVAR processes and Rössler systems, respectively, and the
comparison is thus not direct even though they both represent some type of direct
dependency.

10.5.2 TC, DTC and O-information

Coupled Rössler Systems

The O-information of the coupled Rössler systems in general increases in the six
cases and in η with the exception of case 4 in which the O-information does not
monotonically increase in the examined ηs shown in Figure 10.1. This is speculated
to once again be due to the nature of the coupling configuration in case 4. Recall
that the six cases have increasing number of couplings, and that it is speculated that
this causes an increase in OC.

88



10.5. DISCUSSION OF SIMULATED RESULTS MATTEK10 grp 4.105b

The O-information of sr in general produces the largest range of values when
η varies and furthermore most consistently increases in η, which suggests that this
method in this case reflects the behaviour of the coupled Rössler systems better than
the others examined.

As the O-information is positive in all cases shown and in general increases as η
increases, it indicates that the coupled Rössler systems are dominantly redundant
and that the redundancy of them increases in η.

In Figure 10.2 it is seen that increases in η become increasingly more influential on
TC and DTC from case 1 to 6. This makes sense as the number of non-zero couplings
increase and changing the coupling coefficient is therefore more influential. It is
furthermore clear that TC in general increases in η and DTC decreases, indicating
that the amount of synergy decreases and the redundancy increases.

MVAR Processes

The O-information of the MVAR processes is positive and increases in all examined
αs as can be seen in Figure 10.3. The O-information therefore indicates that the
MVAR processes are dominantly redundant and that the redundancy increases in α.

Figure 10.4 clearly shows that both TC and DTC increase in α but that TC
increases much faster than DTC resulting in an increasingly positive O-information.

Notice that the shape of the plots of O-information in Figure 10.3 is different
from the corresponding plots in Figure 10.1 showing a slightly different relationship
between O-information and α compared to O-information and η for MVAR processes
and coupled Rössler systems, respectively.

10.5.3 Transfer Entropy

Coupled Rössler systems

As can be seen from Figures 10.5-10.10 TE for the coupled Rössler systems shows
very varying results. This could stem from the fact that the coupled Rössler systems
are bi-directional as seen in Definition 9.2 and a symmetric coupling matrix ϵ is used,
and therefore TE is an unfitting tool to apply to the Rössler systems.

MVAR processes

The TE captures information flow present in the MVAR process as seen in Fig-
ures 10.11-10.15, most clearly seen in Figure 10.11. Notice that a large information
flow from nodes 4 to 2 is detected, and that this connection is not apparent in
Equations 9.1. Signals 2 and 4 however appear to be strongly negatively correlated
in Figure 9.3, thus the observed information flow from 4 to 2 could stem from this
correlation. Additionally, in Figure 10.15, which is the case with highest mixture,
most of the estimates are negative. This is obviously an error per Definition 5.16
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which might stem from a bias or estimation error. This indicates, that the estimator
of TE can yield counter intuitive results, when signals are very similar, as is the case
with the MVAR process in Figure 10.15, where the high mixture of α = 0.49 causes
the individual signals to be almost identical.
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In this chapter the considerations made before analysing EEG and intrusive EEG
signals are presented. This includes introduction and discussion of choice of data
sets, dependency measures, signal representations, analysis methods, significance
tests, and clustering method.

11.1 Choice of Data Sets

Two different data sets, described in detail below, are analysed:

• SNR data set: A data set collected from 22 different test subjects performing
two different tasks at two different levels of SNR.

• Seizure data set: A data set from a single epileptic subject with data obtained
before (pre-ictal) and during (ictal) a seizure.

11.1.1 SNR Data Set

The first data set used was published alongside Hjortkjær et al. [2020] and is
comprised of EEG measurements from 64 electrodes with a sampling frequency of
128 Hz, obtained from 22 healthy subjects aged 19-28. Each subject underwent a
1-back task and a 2-back task under an SNR level of 0 dB, denoted trial types 1 and
2, respectively. The subjects furthermore underwent the 1-back task and 2-back task
under an SNR of 10 dB, denoted trial types 3 and 4, respectively. All four trial types
were performed 10 times by each subject.

The following sections will compare results from trial type 1 with trial type 3 and
results from trial type 2 with 4.

The data set is used due to the assumption that the same task performed under
different SNR levels produce different EEG signals which could be detected through
analysis of the EEG signals.

Pre-processing

As the SNR is not pre-processed, this is done before analysing it. This is done to
ensure clean data without anomalies. Common anomalies in EEG signals can stem
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from muscle movement, faulty electrodes or noise in signals. The pre-processing in
this project is inspired by the pre-processing done by the authors of Hjortkjær et al.
[2020] and is performed using the EEGLAB package in MATLAB.

Firstly, each of the 40 trials are truncated to the length of the shortest trial, and
then all 64 signals are concatenated producing 64 signals in total for all 40 trials. This
is done in order to reduce computation time, and the signals are post pre-processing
split into separate signals. This affects the signals, as the concatenation results in
discontinuities at the concatenation points. When the signals are separated after
pre-processing, the last 256 samples of each signal are removed as they contained
artefacts from the pre-processing. Any signals from faulty electrodes found are
interpolated using spherical interpolation.

Afterwards, the signals are re-referenced to the average of all 64 signals. The
signals are filtered with a notch filter from 48Hz to 52Hz to filter out the constant
50Hz noise which stems from the AC current present in all signals. Then a low-
pass filter with cutoff frequency 1Hz and and high-pass filter with cutoff frequency
40Hz are applied. Subsequently independent component analysis (ICA) is used to
decompose the signals, and the components are then visually inspected to detect
anomalies. This is performed to remove components, which stem from muscle activity
or noise instead of brain activity. From 64 signals and components, 6.7 signals and
5.5 components are on average removed from the data set. The data sets of subjects
1, 2, 4, and 18 are rejected for various reasons – either too much noise, inexplainable
frequency anomalies or for requiring too much pre-processing.

Finally, 256 samples are removed in the beginning of each data set, as speech
onset in the experiments was after two seconds of data recording.

11.1.2 Epileptic Seizure Data

The second data set analysed is the epileptic seizure data set published alongside
Kramer et al. [2008]. The data set was recorded from a single subject at 400 Hz under
pre-ictal and ictal states. The recordings were made as an intrusive EEG (iEEG)
with 64 electrodes in a square grid and two in-depth electrode strips each with six
electrodes resulting a total of 76 electrodes. Eight repeats of each state were recorded
and each of these trials contains 10 seconds of data resulting in 4000 samples. The
data was by the authors of Kramer et al. [2008] reviewed by a neurophysiologist, and
no faulty electrodes were found. Before any analysis is done, every signal is band-pass
filtered with cutoff frequencies of 1 and 50Hz as was done in Kramer et al. [2008]. In
the following analysis the pre-ictal and ictal data sets will be sought discriminated.

The SNR data set is chosen for its relevance in relation to the problem statement
of the project and the seizure data set may support or oppose findings from the SNR
data set.

Use of other or additional data sets may provide additional insight into how the
dependencies in EEG signals may change under different stimuli of the subjects.
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11.2 Dependency Measures and Signal Represent-
ations

The EEG and iEEG signals are analysed according to the same combinations of
dependency measures and signals representations as specified in Section 10.2.

11.2.1 Dependency Measures

The dependency measures OC and O-information are chosen for their different
approaches to quantifying dependency in more than two variables as well as the
feasibility of computing them in a fitting time frame. The OC and O-information
have furthermore been used in literature with the OC being ubiquitous in analysis of
EEG signals. The OC relies upon an aggregation of bivariate dependency functions
while the O-information is non-bivariate.

The OC was analyzed in Chapter 7 and some advantages and disadvantages of
it were documented. A generalised OC was introduced in Definition 7.10, which
rectified some of these problems. For the reasons explained in Chapter 7 it was used
instead of the original OC.

The choice of dependency function in the OC is important as it dictates which
types of dependencies are registered as well as the difficulty of estimating the OC.
The dependency functions used in the OC are chosen for the following reasons:

• PCC: It is simple, widely used, and computationally cheap.

• CCC: It is simple, computationally cheap and evaluates two signals which differ
only in phase shifts to be more similar than the PCC does.

• MI: It captures more complex dependencies than linear coefficients such as
PCC and CCC, while being computationally more complex.

Other dependency functions which could be used, include but are not limited to
non-bivariate dependency functions allowing consideration of dependency between
more than two variables. Examples include partial correlation, conditional mutual
information, and interaction information.

O-information is by definition the difference between TC and DTC, which are
both generalisations of MI. As shown in Section 5.4 O-information characterises the
dependency in a set of variables as dominantly redundant or synergistic but provides
no information about the magnitude of either type. A more detailed approach could
be to utilise TC and DTC individually or introduce an O-information coefficient
which relates the O-information to the magnitude of TC and DTC as the magnitude
of the O-information is dependent on the variables treated.

All estimates of differential information theoretic quantities in the project are
done based upon either the asymptotically unbiased kNN estimator of entropy or
the KSG estimator of MI as documented in Chapter 6. The authors are aware of the
bias of the methods, but its effects will not be considered further in this project.
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11.2.2 Signal Representations

In addition to the real representation, the Hilbert transform, described in Chapter 2,
is applied to all signals in order to extract instantaneous amplitudes and phases
through the analytic representation of the signals. This is done to be able to assess the
amplitude and phase information separately, inspired by previous work concerning
phase synchrony and listening effort Baboukani et al. [2018]. It is furthermore
motivated by the assumption that different representations of a signals facilitate
easier extraction of relevant information.

Alternatively one could have examined other representations of the signals such
as the frequency information through either the Fourier or wavelet transform, or
envelopes constructed from alpha shapes.

11.3 Significance Tests

In order to test whether results from two different experiment setups are significantly
different, they are compared using Welch’s t-test first introduced in Welch [1947].
Definition 11.1 is based upon Sakai [2016].

Definition 11.1 (Welch’s t-test)
Let X and Y be Gaussian stochastic variables with mean and variance (µX , σX)
and (µY , σY ), respectively. Let furthermore {xk}ny

k=1 and {yk}ny

k=1 be nx and ny

i.i.d. samples of X and Y , respectively, and x and y their respective sample means.
Welch’s t-statistic is defined as

tw = x− y√
vx/nx + vy/ny

,

where vx = ∑n
j=1(xj − x)2/(n− 1). The p-value is then

p = P (|T | ≥ |tw|)|µX = µY ),

where T ∼ t(ϕ̂) and

ϕ̂ =
(
vx

nx

+ vy

ny

)2/(
(vx/nx)2

nx − 1 + (vy/ny)2

ny − 1

)
.

In this setup the null hypothesis is that the means of the results from two different
experimental setups are equal.

Welch’s t-test is chosen for various reasons:

• It is relatively simple.
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• It is assumed that the results are approximately normally distributed.

• It is assumed that the distribution of two sets of results being compared have
unequal variances or that it is at least not reasonable to make an assumption
of equal variances.

Instead of merely comparing means, the variances could be estimated, such that
likelihoods and posteriors could be used to characterise differences in results.

Since multiple t-tests are made, the results are subject to the problem of false
discovery rate in multiple comparisons [Benjamini and Hochberg, 1995].

Definition 11.2 (False Discovery Rate (FDR))
Consider simultaneous testing of multiple null-hypotheses of which some are true.
If V is the number of wrongly rejected null-hypotheses and R is the total number
of rejected null-hypotheses the false discovery rate is E[V/R].

It is desirable to lower the FDR in order to better reflect which null-hypotheses
should be rejected. In two cases treated in this project, multiple p-values are obtained
through multiple comparisons:

• When Welch’s t-test is applied to results obtained from multiple subjects, the
null-hypothesis is repeated for each subject.

• When Welch’s t-test is applied to results obtained from multiple clusters of the
same data set, the null-hypothesis is repeated for each cluster.

The Benjamini-Hochberg method is in this project used to bound the FDR [Benjamini
and Hochberg, 1995].

Definition 11.3 (Benjamini-Hochberg Method)
Consider testing m null-hypotheses Hi with corresponding p-values Pi and the
ordering of the p-values P(1) ≤ . . . ≤ P(m) with corresponding null-hypotheses H(i).
The Benjamini-Hochberg method with control rate q ∈ [0, 1] is defined as the
rejection of all H(i), i = 1, . . . , k, where

k = argmax
j

(
P(j) ≤ j

m
q
)
.

The Benjamini-Hochberg method is in Benjamini and Hochberg [1995] shown to
bound the FDR by q, and in this project q = 0.05 is used.

The Benjamini-Hochberg method is used for its ease of implementation and upper
bound of FDR at q. The choice of q = 0.05 is from convention, and the method is
implemented with the statsmodels package in Python. Other methods have not
been considered, but could be chosen depending on the desired control of the errors
of the hypothesis testing.
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11.4 Clustering Method

The data sets described in Sections 11.1.1 and 11.1.2 are first analysed by considering
all signals from all electrodes – that is 64 for the SNR data set and 76 for the seizure
data set. Subsequently, two different clusterings of electrodes in the SNR data set
and three different clusterings of electrodes in the seizure data set are analysed.

These clusterings are constructed with the Louvain clustering algorithm as
described in Section 8.3.1. The SNR data set is clustered with dependency matrices
from PCC and MI, while the seizure data set is clustered with dependency matrices
from PCC, MI and TE. TE was not used as a clustering method for the SNR data
set as the results varied to a degree that made them unfit for further analysis and
hence not suitable for clustering. The bivariate dependency functions PCC, MI and
TE used in conjunction with Louvain for clustering were chosen as a consequence of
their different ways of quantifying dependencies and due to time constraints. Notice
that the definition of TE requires stationarity of the signals treated. It is assumed
that the EEG and iEEG signals are stationary in small time periods which justifies
the use of TE with fitting time lags.

The clusterings are constructed with comparisons in mind. Thus a combined
clustering is produced for every pair of data type which are to be compared. This
is done according to the steps in Section 8.4 and the data sets are then analysed
according to their combined clustering.

The clusterings are denoted cP CC , cMI and cT E when constructed with PCC, MI
and TE, respectively, and the data set which is clustered is specified from context.
The individual clusters from each clustering method are referred to by the dependency
matrix upon which they are based and a color with which the specific cluster is
identified – for example cP CC,blue, which specifies the blue cluster from the clustering
made with the Pearson correlation coefficient. Clusterings obtained from the data set
of a specific subject are never used for other subjects than the one it was constructed
from.

The clusterings from PCC and MI are only analysed with OCs Ω(ρp; sr) and
Ω(I; sr), respectively, so as to retain consistency of the methods. The O-information
O(sr) is applied on all clusters. In contrast, the clusterings from TE are analysed
according to all combinations in Section 10.2 as TE has no direct equivalent in the
list of dependency measures and signal representations.

The Louvain clustering algorithm is chosen because of its generality in terms of
directed and undirected graphs as well as its ability to adjust the number of clusters to
increase the modularity of the clustering. Different bivariante dependency functions
will likely result in clusterings which differ not only in the cluster configurations
but also the number of clusters. The connection between the characteristics of the
bivariate dependency functions and the resulting clusterings in relation to these will
not be covered in detail here.

Two main considerations are made concerning the selection of nodes to analyse
based on the clusterings:
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1. Clusters of electrodes being compared must include the same nodes. This is
done in order to only consider nodes which are relevant in both representations
of the same community.

2. Clusterings of two different data sets which overlap at a large number of nodes
are deemed representative of the same underlying community.

It is assumed that the above method of clustering will facilitate comparisons of
electrodes which better capture specific differences when a subject undergoes different
conditions.

This project only considers clusters obtained from the Louvain algorithm, but
other clustering methods may uncover different clusters if applied to the dependency
matrices.

11.5 Analysis Method

The results are obtained through mostly data driven methods. The following methods
are not data driven:

• The pre-processing of the SNR data set which relies upon prior knowledge of
the nature of EEG signals and of which unwanted artefacts and noise types
can appear in such data sets.

• The filtering of the seizure data set, which is done in alignment with the source
with which the data was published.

• The discarding of samples in the beginning and ending of the recorded signals
which is motivated by the fact that speech onset in the SNR experiment was
two seconds after the start of the experiment and that artifacts from the
pre-processing are present in both ends.

The results from all dependency measures, the significance tests and the clusterings
will all be obtained independent of prior neurophysiological knowledge. This might
be a disadvantage in the sense that important insights from neurophysiology are
missed and some parts, for example the clusterings, might be made easier with prior
knowledge.
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12 | Results from EEGs and iEEGs

In this chapter results from analysis of EEG and iEEG signals are presented. The
analysis is done as specified in Chapter 11. These results will in chapter 13 be used
to evaluate whether significant differences between EGG signals obtained under
different conditions can be found by use of the dependency measures presented in
Chapters 2, 3, 5 and 7 in conjunction with different signals representations.

12.1 SNR Data Set Results

The OCs and the O-information of all trials for subject 3 are seen in Figure 12.1
and Figure 12.2, respectively. The patterns and main conclusions drawn from these
results are similar across all subjects and the plots of the remaining results can be
seen in Appendix D.

A black dashed line of gradient 1 with intersection in (0, 0) is shown in the figures.
If a data point is located on the line, it indicates equal values for the specific duplicate
of both trial types. If a point is located above, it indicates a larger value for the trial
type on the vertical axis and vice versa if the point is below. Thus, if the mean of
the values is centered near this diagonal line, it indicates that they are not different.

Figure 12.1: OCs of all duplicates of trial types 1 and 3 and trial types 2 and 4,
respectively, for subject 3.
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Figure 12.2: O-information of all duplicates of trial types 1 and 3 and trial types 2
and 4, respectively, for subject 3.

Welch’s t-test with Benjamini-Hochberg correction of the p-values across all 18
subjects for the comparison of trial types 1 and 3 and trial types 2 and 4 is performed.
None of the results across all subjects and all tools used for quantifying dependencies
were significant at a significance level of 5% after correction.

12.1.1 Clustered SNR Data Set

The combined clusterings cP CC and cMI of trial types 1 and 3 based upon PCC and
MI for both subject 3 and 7 are seen in Figures 12.3-12.6.

Figure 12.3: Combined clustering cP CC

for subject 3 and trial types 1 and 3.
Figure 12.4: Combined clustering cMI for
subject 3 and trial types 1 and 3.
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Figure 12.5: Combined clustering cP CC

for subject 7 and trial types 1 and 3 con-
structed with PCC.

Figure 12.6: Combined clustering cMI

for subject 7 and trial types 1 and 3 con-
structed with MI.

The results from applying Ω(ρp; sr) and Ω(I; sr) on the clusterings cP CC and cMI ,
respectively, on the data set from trial types 1 and 3 from subject 3 are seen in
Figures 12.7-12.10. Corresponding results for subject 7 are seen in Figures 12.11-12.14
with the clusterings cP CC an cMI based upon the data sets from trial types 1 and 3.

Figure 12.7: OCs Ω(ρp; sr) of the cluster-
ing cP CC for subject 3.

Figure 12.8: O-information O(sr) of the
clustering cP CC for subject 3.
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Figure 12.9: OCs Ω(I; sr) of the cluster-
ing cMI for subject 3.

Figure 12.10: O-information O(sr) of the
clustering cMI for subject 3.

Figure 12.11: OCs Ω(ρp; sr) of the clus-
tering cP CC for subject 7.

Figure 12.12: O-information O(sr) of the
clustering cP CC for subject 7.

Figure 12.13: OCs Ω(I; sr) of the clus-
tering cMI for subject 7.

Figure 12.14: O-information O(sr) of the
clustering cMI for subject 7.

Welch’s t-test with Benjamini-Hochberg correction across clusters yielded no
significant differences between trials types 1 and 3 at a 5% significance level.
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12.2 Seizure Data Set Results

The results from the seizure data set are seen in Figure 12.15 and 12.16.

Figure 12.15: Comparison of the OC of
the eight duplicates of the pre-ictal and
ictal data sets.

Figure 12.16: Comparison of the O-
information of the eight duplicates of the
pre-ictal and ictal data sets.

The results of Welch’s t-test used for comparing the means of the results from the
same dependency measure on pre-ictal and ictal data sets can be seen in Table 12.1.

Dep. measure p-value Sig. (5%)
Ω(ρp; sr) 4.15e-01
Ω(ρp; sa) 5.73e-02
Ω(ρp; sp) 5.21e-01
Ω(ρc; sp) 1.34e-02 ✓
Ω(I; sr) 2.83e-03 ✓
Ω(I; sa) 4.09e-03 ✓
Ω(I; sp) 4.08e-03 ✓
O(sr) 3.49e-08 ✓
O(sa) 7.07e-07 ✓
O(sp) 2.43e-02 ✓

Table 12.1: Dependency measures of the seizure dataset and their corresponding
p-values from Welch’s t-test comparing pre-ictal and ictal data sets.

12.2.1 Clustered Seizure Data Set

The combined clusterings cP CC , cMI and cT E on the seizure data set are seen in
Figures 12.17-12.19. The results from the seizure data set clustered with PCC and
MI are seen in Figures 12.20-12.23. The results from the seizure data set clustered
with TE are seen in Figures 12.24-12.33.
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Figure 12.17: Combined clustering cP CC .
Grey nodes are excluded nodes, i.e nodes
which do not belong to any combined
cluster.

Figure 12.18: Combined clustering cMI .
Grey nodes are excluded nodes, i.e nodes
which do not belong to any combined
cluster.

Figure 12.19: Combined clustering cT E. Grey nodes are excluded nodes, i.e nodes
which do not belong to any combined cluster.
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Figure 12.20: Omega complexities
Ω(ρp; sr) of the clusters based upon the
PCC matrix of sr.

Figure 12.21: O-information O(sr) of the
clusters based upon the PCC matrix of
sr.

Figure 12.22: Omega complexities
Ω(I; sr) of the clusters based upon the
MI correlation matrix of sr.

Figure 12.23: O-information O(sr) of the
clusters based upon the PCC matrix of
sr.

Figure 12.24: Omega complexity
Ω(ρp; sr) of the clusters in cT E.

Figure 12.25: Omega complexity
Ω(ρp; sa) of the clusters in cT E.
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Figure 12.26: Omega complexity
Ω(ρp; sp) of the clusters in cT E.

Figure 12.27: Omega complexity
Ω(ρc; sp) of the clusters in cT E.

Figure 12.28: Omega complexity Ω(I; sr)
of the clusters in cT E.

Figure 12.29: Omega complexity Ω(I; sa)
of the clusters in cT E.

Figure 12.30: Omega complexity Ω(I; sp) of the clusters in cT E.
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Figure 12.31: O-information O(sr) of the
clusters in cT E.

Figure 12.32: O-information O(sa) of the
clusters in cT E.

Figure 12.33: O-information O(sp) of the clusters in cT E.

The dependency measures, clustering methods, and corresponding p-values ob-
tained through Welch’s t-test corrected through the Benjamini-Hochberg method
are seen in Tables 12.2, 12.3 and 12.4 for cP CC , cMI and cT E, respectively.

Dep. measure Cluster p-value Sig. (5%)
Ω(ρp; sr) cP CC,red 1.80e-02 ✓
Ω(ρp; sr) cP CC,blue 6.50e-02
Ω(ρp; sr) cP CC,green 9.23e-01
Ω(ρp; sr) cP CC,purple 2.18e-05 ✓
O(sr) cP CC,red 1.45e-11 ✓
O(sr) cP CC,blue 1.08e-02 ✓
O(sr) cP CC,green 8.59e-02
O(sr) cP CC,purple 3.54e-01

Table 12.2: Dependency measures, clusters in cP CC and their corresponding p-values
from Welch’s t-test comparing pre-ictal and ictal data sets.
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Dep. measure Cluster p-value Sig. (5%)
Ω(I; sr) cMI,red 2.58e-03 ✓
Ω(I; sr) cMI,blue 3.27e-03 ✓
Ω(I; sr) cMI,green 2.19e-01
Ω(I; sr) cMI,purple 9.28e-01
Ω(I; sr) cMI,yellow 1.11e-04 ✓
O(sr) cMI,red 2.06e-12 ✓
O(sr) cMI,blue 7.32e-01
O(sr) cMI,green 5.99e-02
O(sr) cMI,purple 7.32e-01
O(sr) cMI,yellow 6.99e-02

Table 12.3: Dependency measures, clusters in cMI and their corresponding p-values
from Welch’s t-test comparing pre-ictal and ictal data sets.

Dep. measure cT E,red cT E,blue cT E,purple cT E,green

p-value Sig (5%) p-value Sig (5%) p-value Sig (5%) p-value Sig (5%)
Ω(ρp; sr) 1.52e-03 ✓ 1.52e-03 ✓ 5.62e-01 1.52e-03 ✓
Ω(ρp; sa) 4.65e-01 2.76e-01 4.65e-01 2.76e-01
Ω(ρp; sp) 5.73e-03 ✓ 7.57e-03 ✓ 7.61e-01 7.57e-03 ✓
Ω(ρc; sp) 1.56e-01 3.46e-02 ✓ 2.93e-01 2.93e-01
Ω(I; sr) 1.70e-07 ✓ 5.88e-01 5.88e-01 3.48e-01
Ω(I; sa) 3.16e-06 ✓ 9.34e-01 4.86e-01 7.41e-02
Ω(I; sp) 6.23e-06 ✓ 7.44e-01 6.02e-01 7.44e-01
O(sr) 2.15e-13 ✓ 1.42e-03 ✓ 9.69e-01 2.49e-01
O(sa) 5.19e-12 ✓ 9.68e-01 9.68e-01 4.28e-01
O(sp) 1.42e-08 ✓ 4.23e-01 7.67e-01 9.46e-01

Table 12.4: Dependency measures, clusters in cT E and their corresponding p-values
from Welch’s t-test comparing pre-ictal and ictal data sets.
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In this chapter the results presented in Chapter 12 are discussed.
All pairs of results which were compared through Welch’s t-test were assumed

to be approximately normally distributed. From visual inspection of the figures
in Chapter 12 this can not be confirmed nor rejected, but it seems reasonable to
believe that the distributions of the points in the scatter plots can be modelled with
a normal distribution on each axis.

13.1 SNR Data Set

The SNR data set was analysed to see if different levels of SNR for equal experiment
setups would be detectable with the different dependency measures and signal
representations from Section 10.2.

13.1.1 All Electrodes

The results from the analysis of signals from all electrodes of the SNR data set
provided by the dependency measures and signal representations from Section 10.2
resulted in no significant differences in means at a 5% significance level between trial
types 1 and 3 and trial types 2 and 4, respectively.

Multiple reasons as to why this is the case are possible:

• There is simply no significant change in activity in the brains of the subjects
from one trial type to another detectable through EEG signals. This is not
believed to be the case.

• Considering 64 electrodes with the omega complexity means a total of ∑64
i=1 i =

2080 bivariate dependencies. Thus any noteworthy changes of a small subset of
electrodes between two trial types might vanish in the overwhelming amount of
dependencies which do not change much. If this is the case, analysis of clusters
of electrodes might be a solution.

• In extension to the previous point, the omega complexities in Figure 12.1 are
all with the exception of Ω(ρp; sa) very low. It is assumed that most of the 2080
dependencies are very small since not all time series are assumed to be similar.
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As covered in Chapter 7 small entries in dependency matrices will in general
result in small omega complexities and a few high bivariate dependencies will
not cause a noteworthy change in omega complexity.

• The dependency measures and signal representations are unsuited for detecting
an eventual change in the EEG signals from one trial type to another.

• The pre-processing of the data set in some way decreased any significant change
from one trial type to another.

• The problem of volume conduction mentioned in Chapter 1 may affect the
dependency analysis of the EEG signals. The specific effect of this on the
dependency analysis is unknown but might worsen the results.

The O-information is in all cases positive indicating that the data set is dominantly
redundant.

13.1.2 Clustered Electrodes

The clusterings cP CC and cMI of trial types 1 and 3 for subjects 3 and 7 in the SNR
data set seen in Figures 12.3-12.6 resulted in a different number of clusters for each
bivariate dependency function used. The clusterings cP CC and cMI were analysed
with O(sr) and with Ω(ρp; sr) and Ω(I; sr), respectively.

The results from these clusterings produced no results with significant differences
in means between trials 1 and 3 at a 5% significance level. Multiple reasons as to
why this is the case are possible – the same points as touched upon in Section 13.1.1
apply as well as a few additional:

• The assumption that clusters of electrodes might provide more insight into
differences between trial types 1 and 3 might be erroneous.

• The clusterings are purely data driven and might not correspond to any
meaningful clustering in a neurophysiological sense. Parallels between these
clusterings and those made in neurophysiology might drawn.

• The method of choosing shared clusterings might cause survivorship bias. That
is, the assumption that the discriminating information is contained within the
overlap between clusters is incorrect, and the relevant information is instead
contained exactly in the excluded nodes.

Different results might have been obtained if a different clustering method had been
used.

13.1.3 Pre-processing

As stated before, the SNR dataset was not pre-processed which meant that the
authors of the project had to carry out the pre-processing. This was done with
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inspiration from the pre-processing carried out in Hjortkjær et al. [2020] and to the
best of the knowledge of the authors, but it should be stated that none of the authors
had any prior experience with processing of EEG data.

As a result it can not be denied that the pre-processing has had any influence
on the results and in extension the significance of the results. Hence based on the
current experiment the authors do not feel confident rejecting or accepting the null
hypotheses specified in Section 11.3 that there is no significant difference in OCs and
O-information between trial 1 and trial 3.

13.2 Seizure Data Set

The seizure data set was analysed in order to discern whether pre-ictal and ictal
states of the test person could be differentiated through iEEG signals.

13.2.1 All Electrodes

As seen in Figures 12.15 and 12.16 the results from the seizure data set showed a
significant difference between the results from multiple dependency measures and
signal representations confirmed by the p-values from Welch’s t-test in Table 12.1.
In particular Ω(ρc; sp) and all OCs based upon MI showed significant results along
with O-information of all representations. The results therefore suggest, that it is
possible to differentiate pre-ictal and ictal states through iEEG signals and these
dependency measures on all electrodes. Notice furthermore that all OCs based upon
MI and O(sp) from visual inspection seem to display different variances for pre-ictal
and ictal results, indicating that a potential differentiation can be made through
likelihoods and posteriors if these variances were estimated.

The data set contains signals from 76 electrodes which results in ∑76
i=1 i = 2926

bivariate dependencies. If some of the OCs can differentiate between pre-ictal and
ictal states through EEG signals with 76 electrodes, it indicates that there is a large
enough difference between the EEG signals to causes a noteworthy difference in these
bivariate dependencies.

Notice however that the OCs in Figure 12.15 are very small, and that it is assumed
that the large number of electrodes is the cause of particularly small OCs.

Since only the OCs based upon CCC and MI produce significant results, this
suggests that these dependency functions capture differences between dependencies
in the pre-ictal and ictal data sets better than PCC and that these are more suited for
analysis of this type of signals. It furthermore suggests that the differences between
pre-ictal and ictal data sets are more easily described through phase information or
non-linear dependencies.

The O-information is positive for both pre-ictal and ictal states, indicating
redundancy dominated data sets. The O-information is furthermore for sr and sa

significantly higher for pre-ictal states indicating stronger redundant dependencies.
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13.2.2 Clustered Data Set

The clusterings seen in Figures 12.17-12.19 are similar but not equal. The cluster
cred in the bottom of the electrode configurations in particular is almost repeated.
The overlap between clusters suggests noteworthy communities.

When examining results from the clusterings cP CC and cMI , multiple OCs and
O-information were significant as seen in Figures 12.20-12.23 and confirmed by
Tables 12.2 and 12.3. In particular the red clusters cP CC,red and cMI,red seem to
contain information relevant for discriminating pre-ictal and ictal states. This is clear
since both OCs and both O-information yield significant results. This observation is
consistent with the observations made in Kramer et al. [2008].

The p-values of Welch’s t-test of the results from applying all dependency measures
and signals representations on the clustering cT E are shown in Table 12.4. The OCs
Ω(ρp; sr) and Ω(ρp; sp) produce significant results in most clusters, that is in clusters
cT E,red, cT E,blue and cT E,green, suggesting that these best capture the differences
between pre-ictal and ictal states based upon the clustering cT E. It is furthermore
clear that all dependency measures except Ω(ρp; sa) and Ω(ρc; sp) applied on cluster
cT E,red produce significant results suggesting that cT E,red is suitable for differentiating
between pre-ictal and ictal states. The p-values for cT E,red are in addition particularly
small for Ω(I; sr), Ω(I; sa), Ω(I; sp), O(sr), O(sa) and O(sp).

In addition to the significant differences in mean values, some sets of results from
visual inspection show apparent differences in variances. This can in particular be
seen from O(sr) on cP CC,blue in Figure 12.21, Ω(ρp; sa) on cT E,purple in Figure 12.25
and Ω(I; sp) on cT E,red in Figure 12.30 and suggests that a potential differentiation
between pre-ictal and ictal can be made through likelihoods and posteriors if the
variances of the results were estimated.

Notice that all results based upon clustering can again be prone to survivorship
bias.

The pre-ictal and ictal states could be discriminated without clustering but the
clusterings cP CC,red, cMI,red and cT E,red facilitated a better discrimination between
the two states.

13.2.3 Relation to SNR

Based on the results from the seizure data set, it is clear that some of the combinations
of dependency measures and signal representations in Section 10.2 might be useful
for discrimination between pre-ictal and ictal states a of subject based upon iEEG
signals. This stimulates the hope that some of the dependency measures and
signal representations in conjunction with clustering of the electrodes can lead to a
discrimination between EEG signals collected during exposure to different stimuli,
for example various signal to noise ratios.
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Motivated by research suggesting that utilising analysis of dependencies in electroen-
cephalography (EEG) signals can be used for a deeper understanding of the activity
of the brain in different circumstances and with the goal of finding correlates in EEG
signals of listening effort a number of mathematical tools for describing multivariate
dependencies were established. This included a generalisation of the omega complex-
ity and information theoretic quantities. These were used in conjunction with graph
theory in a data driven approach seeking to find subsets of sensors in EEG signals
which more clearly show differences in activity of the brain.

The introduced tools were applied to simulated Rössler systems and multivariate
autoregressive processes, serving as an indication that the introduced methods could
be applicable for detecting dependencies in EEG data, since they produced different
results reflecting changes in coupling configurations and degrees.

Results from analysis of an EEG data set obtained from subjects performing
tasks at different levels of SNR showed no significant differences in the means of
results from comparable experiments.

Results from analysis of an intrusive EEG (iEEG) data set from pre-ictal and ictal
states of an epileptic person showed significant differences between multiple results
and with more pronounced significance after clustering. One cluster in particular
provided the basis for multiple significant results suggesting that certain subsets of
iEEG electrodes are better for registering differences between signals from pre-ictal
and ictal states.

The results obtained from simulated signals in conjunction with the results
obtained from real signals showed that the mathematical tools to some degree
capture different dependencies in different signals and that these might be useful for
quantifying dependencies in EEG signals.

This project has as such through mathematical analysis, examples and results from
simulated and real signals conducted an examination of how the omega complexity,
information theory and graph theory may be used to quantify dependencies in EEG
signals for analysis of the activity of the human brain, while also showing deficiencies
of the tools applied and motivating further work into both theoretical and practical
aspects of the process of analysing EEG signals.
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14.1 Future work

The following points could be considered for future work:

• Neurophysiological Perspective
The analysis of EEG signals could be aided with neurophysiological knowledge.
This could give directions for the methodology with knowledge of how the
nature of EGG signals might change under different conditions. Furthermore
the results regarding subsets of EEG electrodes could have been related to
sections of the brain derived from neurophysiological theory, which might be
relevant for an analysis seeking to quantify dependencies.

• Additional Data
Analysing additional data sets could aid the conclusions of the project. More
specifically it could help detailing if different changes in conditions result in
different changes of dependencies.

• Statistical Tests
The significance of the results relies solely on Welch’s t-test. Other statistical
tests could be made in order to examine whether the results contain any
additional meaningful insights regarding activity in the brain.
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A | Phase Shifted Sine Waves

The sets S1, . . . , S4 each consisting of three phase shifted sine waves and which are
used in Section 7.1.2 are defined as follows:

S1 =


s1,1(t) = sin(t),
s1,2(t) = sin(t+ 2π/3),
s1,3(t) = sin(t+ 4π/3)

 S2 =


s2,1(t) = sin(t),
s2,2(t) = sin(t+ 2π/3),
s2,3(t) = sin(t+ 4π/3)


S3 =


s3,1(t) = sin(t),
s3,2(t) = sin(t+ 2π/3),
s3,3(t) = sin(t+ 4π/3)

 S4 =


s4,1(t) = sin(t),
s4,2(t) = sin(t+ 2π/3),
s4,3(t) = sin(t+ 4π/3)


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B | Rössler Transfer Entropy Res-
ults

In this appendix, all transfer entropies of Rössler systems are shown.

1 2 3 4 5 6
Source

1

2

3

4

5

6

Ta
rg

et

TE on rossler case = 1,  = 0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure B.1: TE on Rössler Case 1, η =
0.02
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Figure B.2: TE on Rössler Case 1, η =
0.05
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Figure B.3: TE on Rössler Case 1, η = 0.1
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Figure B.4: TE on Rössler Case 1, η = 0.2
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Figure B.5: TE on Rössler Case 1, η = 0.3

1 2 3 4 5 6
Source

1

2

3

4

5

6

Ta
rg

et

TE on rossler case = 1,  = 0.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure B.6: TE on Rössler Case 1, η = 0.5
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Figure B.7: TE on Rössler Case 2, η =
0.02
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Figure B.8: TE on Rössler Case 2, η =
0.05
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Figure B.9: TE on Rössler Case 2, η = 0.1
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Figure B.10: TE on Rössler Case 2, η =
0.2
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Figure B.11: TE on Rössler Case 2, η =
0.3
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Figure B.12: TE on Rössler Case 1, η =
0.5
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Figure B.13: TE on Rössler Case 3, η =
0.02
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Figure B.14: TE on Rössler Case 3, η =
0.05
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Figure B.15: TE on Rössler Case 3, η =
0.1
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Figure B.16: TE on Rössler Case 3, η =
0.2
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Figure B.17: TE on Rössler Case 3, η =
0.3
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Figure B.18: TE on Rössler Case 1, η =
0.5
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Figure B.19: TE on Rössler Case 4, η =
0.02
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Figure B.20: TE on Rössler Case 4, η =
0.05
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Figure B.21: TE on Rössler Case 4, η =
0.1
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Figure B.22: TE on Rössler Case 4, η =
0.2
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Figure B.23: TE on Rössler Case 4, η =
0.3
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Figure B.24: TE on Rössler Case 4, η =
0.5
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Figure B.25: TE on Rössler Case 5, η =
0.02
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Figure B.26: TE on Rössler Case 5, η =
0.05
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Figure B.27: TE on Rössler Case 5, η =
0.1
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Figure B.28: TE on Rössler Case 5, η =
0.2
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Figure B.29: TE on Rössler Case 5, η =
0.3
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Figure B.30: TE on Rössler Case 5, η =
0.5
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Figure B.31: TE on Rössler Case 6, η =
0.02
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Figure B.32: TE on Rössler Case 6, η =
0.05
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Figure B.33: TE on Rössler Case 6, η =
0.1
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Figure B.34: TE on Rössler Case 6, η =
0.2
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Figure B.35: TE on Rössler Case 6, η =
0.3
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Figure B.36: TE on Rössler Case 6, η =
0.5
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C | Clustering MVAR TE Results

This appendix contains graphs for all αs in MVAR with edges colored by transfer
entropy and nodes colored by cluster found by the Louvain algorithm.
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Figure C.1: Clusterings with on MVAR
with α = 0.
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Figure C.2: Clusterings with on MVAR
with α = 0.1225.
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Figure C.3: Clusterings with on MVAR
with α = 0.245.
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Figure C.4: Clusterings with on MVAR
with α = 0.3657.
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Figure C.5: Clusterings with on MVAR with α = 0.49.
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D | EEG Results

This appendix contains all results of omega complexity and O-information for the 18
subjects analysed in Chapter 12.

Figure D.1: OCs of all repeats of trials 1
and 3 for person 3.

Figure D.2: OCs of all repeats of trial
type 2 and 4 for person 3.

Figure D.3: O-information of all repeats
of trial type 1 and 3 for person 3.

Figure D.4: O-information of all repeats
of trial type 2 and 4 for person 3.
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Figure D.5: OCs of all repeats of trials 1
and 3 for person 4.

Figure D.6: OCs of all repeats of trial
type 2 and 4 for person 4.

Figure D.7: O-information of all repeats
of trial type 1 and 3 for person 4.

Figure D.8: O-information of all repeats
of trial type 2 and 4 for person 4.

Figure D.9: OCs of all repeats of trials 1
and 3 for person 5.

Figure D.10: OCs of all repeats of trial
type 2 and 4 for person 5.
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Figure D.11: O-information of all repeats
of trial type 1 and 3 for person 5.

Figure D.12: O-information of all repeats
of trial type 2 and 4 for person 5.

Figure D.13: OCs of all repeats of trials 1
and 3 for person 6.

Figure D.14: OCs of all repeats of trial
type 2 and 4 for person 6.

Figure D.15: O-information of all repeats
of trial type 1 and 3 for person 6.

Figure D.16: O-information of all repeats
of trial type 2 and 4 for person 6.
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Figure D.17: OCs of all repeats of trials 1
and 3 for person 7.

Figure D.18: OCs of all repeats of trial
type 2 and 4 for person 7.

Figure D.19: O-information of all repeats
of trial type 1 and 3 for person 7.

Figure D.20: O-information of all repeats
of trial type 2 and 4 for person 7.

Figure D.21: OCs of all repeats of trials 1
and 3 for person 8.

Figure D.22: OCs of all repeats of trial
type 2 and 4 for person 8.
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Figure D.23: O-information of all repeats
of trial type 1 and 3 for person 8.

Figure D.24: O-information of all repeats
of trial type 2 and 4 for person 8.

Figure D.25: OCs of all repeats of trials 1
and 3 for person 9.

Figure D.26: OCs of all repeats of trial
type 2 and 4 for person 9.

Figure D.27: O-information of all repeats
of trial type 1 and 3 for person 9.

Figure D.28: O-information of all repeats
of trial type 2 and 4 for person 9.
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Figure D.29: OCs of all repeats of trials 1
and 3 for person 10.

Figure D.30: OCs of all repeats of trial
type 2 and 4 for person 10.

Figure D.31: O-information of all repeats
of trial type 1 and 3 for person 10.

Figure D.32: O-information of all repeats
of trial type 2 and 4 for person 10.

Figure D.33: OCs of all repeats of trials 1
and 3 for person 11.

Figure D.34: OCs of all repeats of trial
type 2 and 4 for person 11.
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Figure D.35: O-information of all repeats
of trial type 1 and 3 for person 11.

Figure D.36: O-information of all repeats
of trial type 2 and 4 for person 11.

Figure D.37: OCs of all repeats of trials 1
and 3 for person 12.

Figure D.38: OCs of all repeats of trial
type 2 and 4 for person 12.

Figure D.39: O-information of all repeats
of trial type 1 and 3 for person 12.

Figure D.40: O-information of all repeats
of trial type 2 and 4 for person 12.
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Figure D.41: OCs of all repeats of trials 1
and 3 for person 13.

Figure D.42: OCs of all repeats of trial
type 2 and 4 for person 13.

Figure D.43: O-information of all repeats
of trial type 1 and 3 for person 13.

Figure D.44: O-information of all repeats
of trial type 2 and 4 for person 13.

Figure D.45: OCs of all repeats of trials 1
and 3 for person 15.

Figure D.46: OCs of all repeats of trial
type 2 and 4 for person 15.
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Figure D.47: O-information of all repeats
of trial type 1 and 3 for person 15.

Figure D.48: O-information of all repeats
of trial type 2 and 4 for person 15.

Figure D.49: OCs of all repeats of trials 1
and 3 for person 16.

Figure D.50: OCs of all repeats of trial
type 2 and 4 for person 16.

Figure D.51: O-information of all repeats
of trial type 1 and 3 for person 16.

Figure D.52: O-information of all repeats
of trial type 2 and 4 for person 16.
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Figure D.53: OCs of all repeats of trials 1
and 3 for person 17.

Figure D.54: OCs of all repeats of trial
type 2 and 4 for person 17.

Figure D.55: O-information of all repeats
of trial type 1 and 3 for person 17.

Figure D.56: O-information of all repeats
of trial type 2 and 4 for person 17.

Figure D.57: OCs of all repeats of trials 1
and 3 for person 19.

Figure D.58: OCs of all repeats of trial
type 2 and 4 for person 19.
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Figure D.59: O-information of all repeats
of trial type 1 and 3 for person 19.

Figure D.60: O-information of all repeats
of trial type 2 and 4 for person 19.

Figure D.61: OCs of all repeats of trials 1
and 3 for person 20.

Figure D.62: OCs of all repeats of trial
type 2 and 4 for person 20.

Figure D.63: O-information of all repeats
of trial type 1 and 3 for person 20.

Figure D.64: O-information of all repeats
of trial type 2 and 4 for person 20.
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Figure D.65: OCs of all repeats of trials 1
and 3 for person 21.

Figure D.66: OCs of all repeats of trial
type 2 and 4 for person 21.

Figure D.67: O-information of all repeats
of trial type 1 and 3 for person 21.

Figure D.68: O-information of all repeats
of trial type 2 and 4 for person 21.

Figure D.69: OCs of all repeats of trials 1
and 3 for person 22.

Figure D.70: OCs of all repeats of trial
type 2 and 4 for person 22.
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Figure D.71: O-information of all repeats
of trial type 1 and 3 for person 22.

Figure D.72: O-information of all repeats
of trial type 2 and 4 for person 22.
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