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Abstract 

 

The present study examines the land cover changes in Hanoi, Vietnam, focusing on two distinct time 

periods: 2000 to 2022 and 2010 to 2022. To conduct this analysis, three satellite images from different 

periods were acquired: Landsat 7 (ETM+) in 2000, Landsat 5 (TM) in 2010, and Landsat 9 (OLI-

2/TIRS-2) in 2022. The methodology employed a Supervised Classification approach utilising the 

Maximum Likelihood Classifier (MLC) and ArcGIS Pro Software. 

The MLC algorithm produced land cover maps with overall accuracy rates of 79, 84, and 84 per cent, 

respectively. The land cover classes were categorised into four distinct classes: water, built-up land, 

green areas, and barren land. The findings indicate an expansion of built-up areas by approximately 

24 square kilometres from 2000 to 2010, followed by a further increment of approximately 54 square 

kilometres from 2010 to 2022. In contrast, the green areas exhibited an opposite trend, experiencing 

a reduction in extent of nearly 56 square kilometres in the first study period and around 10 square 

kilometres in the second period. 

These results suggest that the majority of urban expansion occurred during the period from 2010 to 

2022, indicating a notable trend in Hanoi's urban development. 
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1. Introduction 

At the end of the 20th century, it has been an enormous urbanization acceleration in Asia, increasing 

over a billion people the population in its cities from 1980 to 2010 (ADB and IDB, 2014), estimated 

a rise of another billion people by 2030 (ADB and IDB, 2014). Asian urban population increased 

from 31.5 per cent in 1990 to 42.2 per cent in 2010, the highest percentage increase globally (UN-

Habitat, 2012). According to the Asian Development Bank, the level of urbanization in Asia was over 

40 per cent in 2018 (United Nations, 2018a), and the projection for 2050 will be up to 60 per cent 

(ADB and IDB, 2014). 

Vietnam did not start significantly increasing its urban population until 1986 when the Doi Moi 

(which means renovation in Thai) policy was adopted (Phuc, 2013). This reform promoted 

socioeconomic development and integration with the global economy (Luan et al., 2000). 

Collectivization was abandoned, returning to self-managed family farms, recognizing households as 

the basic unit of agricultural production with more rights and security of tenure over their owned land 

(Kien and Heo, 2008). This policy also stopped price controls and encouraged privatization, removing 

restrictions on the market and trade-related activities, allowing to develop of foreign investment and 

fostering trade connections with the rest of the world (Kien and Heo, 2008). After the Do Moi policy 

promoted industrialization and urbanization, quick changes in the national economic structure 

occurred (Phuc, 2013).  

Weber and Puissant (2003) define urbanization as modifications in a region's territorial and 

socioeconomic progress, including land cover transformation or land use classification. In terms of 

physical expansion, housing construction, water surface, vegetation coverage, and infrastructure 

conditions such as roads and streets are the elements that change when increasing urbanization, being 

critical factors for monitoring the development of a city (Duan and Shibayama, 2009). During the 

urban transition, agricultural lands and green spaces typically decrease due to their conversion into 

residential areas, increasing the housing and road density (Duan and Shibayama, 2009). This 

conversion in Vietnam was heavily concentrated on two megacities, Hanoi and Ho Chi Minh City 

(Labbé, 2010), and other medium-sized cities such as Da Nang, Hue, and Dong Nai at a lower scale 

(Phuc, 2013). 

To achieve the urban development intended with this reform, converting agricultural land into built-

up areas was necessary since there was little available land (Phuc, 2013). Shifting to an urban society 

through rural-urban migration, physical expansion of the urban areas, and new cities in rural areas 

(Labbé, 2010). 

The urban population in Vietnam increased from 23.7 per cent in 1999 to 29.6 per cent in 2009 (The 

Central Census Steering Committee, 2010). Between 1990 and 2018, Vietnam doubled its urban 

population (United Nations, 2018a), and the UN predicted that by 2050 its population will be up to 

60 per cent  (United Nations, 2018a).  

In Vietnam, between 2002 and 2021, GDP per capita increased 3.6 times and is projected to grow to 

6.3 per cent in 2023 (The World Bank, 2023). The poverty rate declined from 14 in 2010 to 3.8 per 

cent in 2020 (The World Bank, 2023). The agriculture sector has contributed to economic growth and 
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guaranteed food security growing from 2.5 to 3.5 per cent per year over the last three decades (The 

World Bank, 2023). 

Having knowledge about growing patterns can guide planners, policymakers, and others involved in 

the development process to create equal and environmentally low-impact urban spaces, ensuring more 

sustainable development of the cities (UN-Habitat, 2012). Monitoring land use/land cover (LULC) 

changes through the years is a helpful tool to obtain insight into these urban growth trends and the 

progress in the field of remote sensing (RS) and technologies connected to that has enabled the 

acquisition of valuable spatiotemporal information regarding that topic (Manandhar et al., 2009).  

 

1.1 Literature Review 

Many researchers have focused on LULC changes, which are gaining recognition as a primary cause 

of environmental changes that impact most regions of the world (Manandhar et al., 2009). A way to 

study the patterns in urbanization is by mapping LULC changes by combining RS and Geographic 

Information Systems (GIS). However, the terms land use and land cover are sometimes 

interchangeable since they do not refer to the same concepts (Lillesand et al., 2015). The term land 

cover refers to the different types of features present on the surface of the Earth, such as lakes, trees 

and grass being ordinarily able to be directly mapped from remote sensing images (Lillesand et al., 

2015). However, the term land use refers to how humans use land, for example, urban and agriculture 

(Congalton and Green, 2019). Nevertheless, knowledge of both can be helpful for land planning and 

land management activities (Lillesand et al., 2015).  

In the field of planning and land management, several image classification techniques and algorithms 

have been adopted (Gao and Mas, 2008). One of them is the pixel-based classification technique that 

classifies the image based on every single pixel (Dean and Smith, 2003), being able to use supervised, 

unsupervised and hybrid methods (Enderle et al., 2005). Another method is the object-oriented image 

classification, which classifies the image by segments, including clusters of pixels with similar 

spectral characteristics such as segment size, shape, and texture, instead of the individual 

characteristics of each pixel (Maclean et al., 2013).  

Shandas et al. (2017) used RS and GIS to examine the pattern of urban growth in a study case in 

Doha, Qatar, from 1987 to 2013. They used satellite images acquired from Landsat 4 and 5 TM, 

Landsat 7 ETM+, and Landsat 8 OLI using a hybrid classification method to detect the land cover of 

the images. They selected four categories: urban, vegetation, bare soil, and water, for the 

classification. However, with this method, the percentages of the different accuracies obtained from 

the confusion matrix were not as high as in other papers that will be mentioned later in this chapter. 

For example, the producer's accuracy of the urban class and the user's accuracy of the bare soil class 

was lower than 70 per cent. However, according to them, this is due to the use of similar materials in 

the construction of rooftops and pavements as those present in the bare soil class, accepting this low 

level of accuracy owing to the unavailability of other relevant data to enhance the outcomes, as well 

as the lack of previous studies (Shandas et al., 2017). Additionally, they computed the growth rate 

based on the land cover classifications to analyze the spatiotemporal expansion of urban areas. They 

performed a comparative analysis by combining data from various time intervals within the study 

period using mathematical techniques. In conclusion, they state that physical growth can be visualized 
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by analyzing satellite images using ArcGis 10.2. software. However, additional research is needed to 

comprehend the urban growth's consequences on social, economic, and environmental factors 

(Shandas et al., 2017). 

Another case study that focuses on investigating the potential of Landsat imagery for assessing the 

LU/LC changes from 1996 to 2017 is the one carried out by Kumar et al. (2020) in Haridwar Region, 

India. They applied the Maximum Likelihood Classifier (MLC) method to classify the satellite 

images into seven classes: orchards, vegetation, agricultural land, rangeland, urban land, water 

bodies, and watershed. As a result, they obtained overall accuracies of over 80 per cent. Based on the 

classification obtained from the satellite images, the percentages of changes in the land cover classes 

and the rate of changes were calculated. They concluded that the outcome of their study was helpful 

in LU/LC monitoring, decision making and urban planning (Kumar et al., 2020).  

In some cases, satellite images are supported by ancillary data for a better understanding of urban 

growth patterns, as in the case of the paper written by Nong et al. (2015), where they used population 

data to analyze the relationship between population changes and urban spatial growth. They map land 

cover changes in Hanoi city and its surroundings using multi-temporal stacks of Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images from 1993 to 2010 by applying 

Support Vector Machine (SVM) classifier. Four classes: agriculture, built-up, forest, and water, 

together with three change classes from agriculture to built-up between three time periods, were 

created for the study. They analyze the relation of changes in built-up land and the distance from the 

centre of Hanoi by creating buffer zones of five-kilometre intervals, showing that the significant urban 

expansion happened between 10 and 25 kilometres from the city centre. In addition, they also show 

that the most significant increase in population density happened in the peri-urban and rural areas in 

a 10-kilometre radius around the city centre. The user, producer, overall accuracies, and the kappa 

coefficient obtained from the confusion matrix were over 90 per cent. However, they found some 

limitations in using Landsat data, lacking the opportunity for a more detailed mapping, which could 

give a better understanding of urban pattern analysis (Nong et al., 2015). For example, it was 

impossible to differentiate between agricultural and green vegetation expansion or between industrial 

and residential areas (Nong et al., 2015). Furthermore, their study only monitored changes until 2010, 

so they call for the need for further research to evaluate how the policy objectives outlined in the 

master plan for Hanoi, which has planned a horizon of 30 years and a projection for 50 years, are 

impacting urban growth patterns and its potential consequences more accurately (Nong et al., 2015).  

Mauro (2020) mapped the urban transformation in Hanoi city and its surroundings using Landsat 

Imagery from 1989 to 2019. However, MLC was employed in this study in contrast to the previous 

case study by Nong et al. (2015), where SVM classification was used. Seven classes were established: 

water, vegetated areas, bare soil, cultivated areas, irregular built-up areas, urban areas, and industrial 

areas. To analyze the rural-urban conversion, a GIS-based buffer analysis was applied, like the 

approach used in the study by Nong et al. (2015), which involves the creation of two circles from the 

city centre with a radio of 10 and 20 kilometres. Classification maps were created for each image, 

which were later compared. The overall, user and producer accuracies and the kappa coefficient 

obtained from the confusion matrices were over 80 per cent, except for the user and producer 

accuracies of the industrial and commercial classes, which were the less common classes. In addition, 

for a better understanding of urban dynamics, some spatial indexes such as the rate of urban 

expansion, landscape metrics and the landscape expansion index were calculated. Mauro (2020) 
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found that Hanoi has experienced impressive growth within the examined timeframe, and its 

surrounding areas are no longer as exclusively rural as they used to be. According to this study, the 

extension of cultivated areas decreased by 16 per cent between 1989 and 2019. Additionally, rural 

areas are more fragmented and irregular compared to 1989. On the other hand, urban areas, irregularly 

built-up areas, and industrial or commercial zones have increased by 20 per cent since 1989 (Mauro, 

2020). 

Duan and Shibayama (2009) also focus on the urban spatial growth of Hanoi based on RS and GIS. 

Additional ancillary road and house density data supplemented Landsat images to analyze the urban 

growth pattern. Moreover, statistical data such as the population of Hanoi were considered, and 

indices such as the Normalized Difference Vegetation Index (NDVI) and Water Index (WI) were 

calculated. According to Duan and Shibayama (2009), these index maps provided an effective way 

for detecting the urban growth of the city, as the reduction in numbers and size of water bodies could 

be visualized, which is a common phenomenon of urbanization process (Duan and Shibayama, 2009). 

These maps also allowed the visualization of urbanized areas, their expansion directions, and the 

decrease or disappearance of greenery and water bodies (Duan & Shibayama, 2009). The supervised 

MLC method was used to classify land cover in the four Landsat images chosen for the case study. 

Defining five land cover classes: water, vegetation, built-up, fallow and sand. They quantified the 

land cover changes by associated change matrices telling how much a class has been changed into 

another. Nevertheless, the accuracy assessment for the results was not presented in this paper. 

According to the literature review findings, supervised classification methods have been extensively 

employed in land use and land cover mapping. However, the accuracy of these methods varies based 

on various factors, including the landscape complexity of the study area, the choice of remote sensing 

data, and the image processing and classification techniques utilized (Lu and Weng, 2007). 

 

1.2 Problem Statement   

The rapid urbanization in Hanoi is leading to an increasing loss of agricultural land, causing concern 

not only for the food security of the inhabitants but also among peri-urban farmers who are worried 

about their livelihoods (Pham et al., 2015). In addition, housing issues have become increasingly 

critical due to many factors, including population pressure, rising housing demands, limited land 

resources, and difficulties in planning and managing urban residential areas (Luan, 2014). 

Furthermore, the lack of schools, hospitals, water and electricity and the congested traffic is part of 

the consequences of the rapid increase in the population (Phuong et al., 2021). Moreover, critical 

environmental problems also emerged from the fast physical growth of the cities, existing a 

remarkable connection between growth patterns and ecological consequences (Dunlap and 

Jorgenson, 2012).  

For all these reasons, monitoring land cover changes is an important task to perform as it can help 

understand the dynamics and spatial patterns of urban expansion (Makido and Ferwati, 2017). 

Moreover, knowing how, when, and where urbanization occurs enables planners and policymakers 

to evaluate the impact of new policies and make appropriate modifications to foster sustainable 

growth and reduce potential environmental, social, and economic issues (Nong et al., 2015).  
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1.3 Research Objective and Research Questions 

Based on the problem statement, this thesis aims to explore the suitability of free open-access Landsat 

satellite data and ArcGIS Pro software to monitor and analyze land cover changes, especially in built-

up and vegetated areas in Hanoi, Vietnam. First, land cover classification maps will be created using 

Landsat imagery from 2000, 2010, and 2022 and a supervised classification method. Subsequently, 

land cover change maps will be generated based on these classification maps, enabling visual 

observation of the changes between land cover classes within two distinct time periods: 2000 to 2010 

and 2010 to 2022. Moreover, the areas of the different land cover classes and the land cover changes 

will be quantified to analyze these changes. 

 

To accomplish the stated objectives, the following research questions should be addressed: 

1. Is Landsat data suitable to classify land cover in Hanoi using Maximum Likelihood 

Classifier? 

a. How does MLC perform in monitoring land cover using Landsat spectral bands?  

b. How does the Normalized Difference Vegetation Index perform in monitoring land 

cover by establishing the corresponding thresholds for the different classes? 

2. Are the land cover classifications suitable to detect land cover changes in Hanoi? 
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2. Study area, Data Collection and Software 
 

2.1   Hanoi Overview and the Study Area 

Hanoi, the capital of Vietnam, is located in the centre of the Red River Delta region at a longitude of 

106 degrees East and latitude of 21 degrees North, being the second largest city in the country after 

Ho Chi Minh City (Word Population Review, 2023). The current population is 5.25 million, having 

experienced a population growth of 3.67 per cent from the previous year (Word Population Review, 

2023). The administrative boundaries of Hanoi province were modified several times through the 

twentieth century (Labbé, 2021). In 2008, Hanoi experienced a considerable expansion by including 

the neighbouring area of Ha Tay and some districts from the neighbouring province of Vinh Phuc 

and Hoa Binh (Labbé, 2021), triggering not only an incrementation in Hanoi's extension from 900 to 

3328.9 square kilometres (Word Population Review, 2023) but also doubling its population  (Labbé, 

2021).   

The population density in Hanoi was 2.031 persons per square kilometre in 2011, rising to 2.480 in 

2021 (GSO, n.d.) These statistics present challenges in terms of providing accessible recreational 

spaces and green areas within the city, as well as highlighting the unequal distribution of such 

amenities (Labbé, 2010). The largest parks are primarily located in the periphery, making them hardly 

accessible from the inner city due to the poor public transport connections (Labbé, 2021). By 2010, 

Hanoi had less than 1.5 square meters of park space per person (Boudreau and Geertman, 2015). 

Moreover, the area dedicated to green spaces per habitant in 2011 was 11.2 square meters per capita, 

which is relatively low compared to the Asian average of 39 square meters (EIU, 2011). In 2021, the 

authorities gave more importance to the role of public spaces and green areas by establishing new 

planning policies which oblige developers to include 3 to 4 square meters per capita of parks and 

green areas to be able to obtain permission to build (Labbé, 2021). 

The expansion of urban development has had a notable impact on the transportation infrastructure 

(Labbé, 2021). While the number of cars and motorcycles in the capital has experienced a substantial 

increase, the public transport system has failed to keep pace with this growth (Labbé, 2021). This is 

partly due to the Doi Moi reform, which reduced the budget allocated to state-owned companies 

responsible for public transport development (JICA, 2007). However, the government later shifted its 

focus towards prioritizing public transportation by approving the "Hanoi Master Plan 2030 and Vision 

to 2050" in 2011, where eight metro lines, with a total length of about 318 kilometres (Liou et al., 

2021), three monorail lines and nine express bus routes were planned to build (Labbé, 2021). 

Unfortunately, it did not go as expected since only two of the metro lines started in 2021, being several 

years behind schedule, and only one line of the express bus route was operational in 2021 (Labbé, 

2021).  

The rapid urbanization and consequent loss of agricultural land in Hanoi and its peripheries make it 

difficult for the government to deal with the rural-urban conversion (Luan, 2014). To address this 

issue and reallocate the population from the overpopulated city centre, the government established an 

urban development model called 'New Urban Areas' (NUA) in 1990 (Luan, 2014). However, these 
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NUA lacked social infrastructure and connection to the city centre, converting these areas into 

'sleeping' towns with a low rate of habitats in 2014 (Luan, 2014). Moreover, the stipulated 

requirement of allocating 30 to 50 per cent for affordable housing was not achieved (Nong et al., 

2015). 

The study area includes Hanoi and its surrounding districts within a radius of around 20 kilometres. 

This extension was chosen based on previous studies, such as the one from Nong et al. (2015), where 

they showed that the most remarkable urban expansion happened around this extension. This area 

includes 15 districts: Ba Dinh, Cau Giay, Dong Anh, Dong Da, Gia Lam, Ha Dong, Hai Ba Trung, 

Hoai Duc, Hoan Kiem, Hoang Mai, Long Bien, Tay Ho, Thanh Tri, Thanh Xuan, Tu Liem. The study 

area covers an extension of 747.85 square kilometres (Figure 1). 

 

 

Figure 1. Study Area and its location. 

 

 

2.2   Data Collection  
 

2.2.1  Satellite Imagery 

The urban growth analysis of the study area has been carried out by selecting three images acquired 

from Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 5 Thematic Mapper (TM), and 

Landsat-9 Operational Land Imager sensor/Thermal Infrared Sensor (OLI-2/TIRS-2) on 04 

November 2000, 08 November 2010 and on 19 December 2022, respectively. All Landsat data were 

obtained from the United States Geological Survey (USGS) through the Earth Explorer platform 
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(https://earthexplorer.usgs.gov/), which became freely available in 2008 (Zhu et al., 2019). Acquiring 

images at around the same time of the year was essential because seasonal variations can alter the 

appearance of land use features, such as in crop fields leading to potential inaccuracies in the results 

(Paul, 2008). Therefore, the images are from the autumn crop season because it is usually the only 

period with available data without cloud coverage (Mauro, 2020). All the data were acquired from 

Landsat Collection 2 processing Level-2 (L2) with a cloud cover level of less than 2 per cent (Table 

1). In processing Level-2, there are Surface Reflectance (SR) and Surface Temperature (ST) scene-

based products, which are specified in each image (USGS, 2020). Landsat 4-7 Collection 2 SR 

science products are created from a software named Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) version 3.4.0, which applies the atmospheric correction to Landsat 4-

5 TM and Landsat 7 ETM+ Level 1 (L1) data (USGS, 2020). In the case of Landsat 8-9 OLI/TIRS 

USGS, a different software called Land Surface Reflectance Code (LaSRC) is used for atmospheric 

correction (Zanter, 2021). The products with SR are already corrected and ready to be used (USGS, 

2020). 

 

Table 1. The satellite image database. 

Satellite Sensor Processing 

Level 

Date of 

Acquisition 

Spatial 

resolution 

Cloud 

coverage 

(%) 

WRS Path 

(P)/Row 

(R) 

UTM 

Zone/Datum 

 

Landsat 7 

 

 

Enhanced Thematic Mapper 

(ETM+) 

 

2 

 

04/11/2000 

 

30m 

 

0 

 

127/045 

 

48N/WGS84 

Landsat 5 

 

Thematic Mapper (TM) 2 08/11/2010 30m 1 127/045 48N/WGS84 

Landsat 9 Operational Land Imager 

sensor/Thermal Infrared 

Sensor (OLI-2/TIRS-2) 

 

2 19/12/2022 30m 0 127/045 48N/WGS84 

 

 

The image from 2000 was acquired by Landsat 7, launched in April 1999, carrying the Enhanced 

Thematic Mapper Plus sensor (USGS, n.d.-c). Landsat 7 includes eight spectral bands with different 

spatial resolutions varying between 15, 30 and 60 meters (Table 2) (USGS, n.d.-c). 

  

 Table 2. Spectral features of Landsat-7 bands (USGS, n.d.-c). 

 

Landsat 7 

 

 

Wavelength (micrometres) 

 

Resolution (meters) 

 

Band 1- Blue 

 

0.45 - 0.52 

 

30 

Band 2 - Green 0.52 - 0.60 30 
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Band 3 - Red 0.63 - 0.69 30 

Band 4 - Near Infrared (NIR) 0.77 - 0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55 - 1.75 30 

Band 6 - Thermal 10.40 - 12.50 60 (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.09 - 2.35 30 

Band 8 - Panchromatic 0.52 - 0.90 15 

 

 

However, due to a permanent failure in the Scan Line corrector (SLC) of the Landsat 7 (ETM+) in 

June 2003 (USGS, n.d.-c), the images acquired from this date had data gaps of around 22 per cent of 

the normal scene area (Storey and Barsi, 2005) (Figure 2). To be able to use the images acquired from 

Landsat 7 after 2003, the option Fix Landsat 7 Scanline Errors from the Landsat toolbox in ArcGIS 

(freely downloaded from LandsatToolbox for ArcGIS 10.1 - Overview) can be used to fix the data 

gap, applying the correction for every single band (Subha, 2020).  

 

 

 

Figure 2. Landsat 7 ETM+ image acquired after the SLC failure. The image on the left is the composite band (1 - 8 

except band 6) from the entire data set downloaded from https://earthexplorer.usgs.gov/, and the image on the right is 

the study area.  

 

 

The image from 2010 was acquired by Landsat-5, which was launched on March 1984 and was 

operated until June 2013, carrying the Multispectral Scanner (MSS) and the TM sensors (USGS, n.d.-

a). Unfortunately, the MSS sensor with four spectral bands stopped taking images from 1999 until 

2011 (USGS, n.d.-a). Hence, for the image captured in 2010, only the TM sensor with seven spectral 

bands is available. (Table 3) (USGS, n.d.-a). 

https://www.arcgis.com/home/item.html?id=a60b0120a79f45ae990bb85f4d12edee
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Table 3. Spectral features of Landsat 5 bands (USGS, n.d.-a). 

 

Landsat 5 

 

 

Wavelength (micrometres) 

 

Resolution (meters) 

 

Band 1- Blue 

 

0.45 - 0.52 

 

30 

Band 2 - Green 0.52 - 0.60 30 

Band 3 - Red 0.63 - 0.69 30 

Band 4 - Near Infrared (NIR) 0.77 - 0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55 - 1.75 30 

Band 6 - Thermal 10.40 - 12.50 120 

Band 7 - Shortwave Infrared (SWIR) 2 2.09 - 2.35 30 

   

 

The image from 2022 was acquired by Landsat-9, which was launched on September 2021 and carried 

two instruments which are the Operational Land Imager 2 (OLI-2) and the Thermal Infrared Sensor 

2 (TIRS-2) (USGS, n.d.-b). The satellite data set includes eleven bands (Table 4). 

 

Table 4.  Spectral features of Landsat 9 bands (USGS, n.d.-c). 

 

Landsat 9 

 

 

Wavelength (micrometres) 

 

Resolution (meters) 

 

Band 1- Coastal aerosol 

 

0.43 - 0.45 

 

30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - Shortwave Infrared (SWIR) 1 1.57 - 1.65 30 

Band 7 - Shortwave Infrared (SWIR) 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS)1 10.6 - 11.19 100 

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 

 

 

Apart from Landsat imagery, data from the administrative areas were necessary to delineate the study 

area. This data was freely available from the Database of Global Administrative Areas 
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(http://www.gadm.org/country), a database created in 2009 that provides vector data from all 

countries at various administrative levels. 

 

2.2.2  Ancillary Data  

Several studies, such as the ones performed by Akar and Güngör (2015) or Manandhar et al. (2009), 

acknowledged that the incorporation of some ancillary data, such as the normalized difference 

vegetation index (NDVI), can improve the LULC classification accuracy. There are other indices for 

stressing vegetation areas on remote sensing images (Bhandari et al., 2012), such as Enhanced 

Vegetation Index (EVI), Perpendicular Vegetation Index (PVI), or Ration Vegetation Index (RVI) 

(Kshetri, 2018). However, the NDVI is the most commonly used to determine the presence of healthy 

green vegetation (Manandhar et al., 2009).  

This index is based on how plants reflect specific electromagnetic spectrum ranges (Kshetri, 2018). 

For example, healthy vegetation is green to the human eye because its chlorophyll pigment reflects 

green spectrum and absorbs the red one (Kshetri, 2018). In contrast, an unhealthy plant reflects the 

red spectrum and absorbs the green one (Kshetri, 2018). This numerical indicator for vegetation 

greenness is delivered as a single-band product based on the difference between the red and the near-

infrared bands (Kshetri, 2018) calculated by the following formula: 

                                                         NDVI = (NIR - Red) / (NIR + Red)                                                      Equation 1                       

NDVI values vary from -1 to +1, wherein generally negative values represent water bodies, very low 

values (up to 0.1) indicate bare soil areas, moderate values represent grassland (0.2 to 0.3), and high 

values represent dense vegetation or tropical rainforest (Bhandari et al., 2012). 

 

2.3  Software 
 

2.3.1   ArcGIS Pro version 3.0.0.  

ArcGIS Pro is a software provided by Esri (https://www.esri.com/en-us/arcgis/products/arcgis-

pro/overview), which has been used to achieve the study's objectives. 

 

2.3.2  Google Earth Pro 

Google Earth Pro is a software provided by Google that is accessible through the website 

https://earth.google.com or available for free download from Earth Versions – Google Earth. This 

software allows access to very high-resolution satellite data and enables to import GIS information. 

The very high-resolution images displayed in Google Earth Pro have been used as reference data for 

obtaining the training samples and performing the accuracy assessment. In this case study, the 

downloaded version was used, as it provides the necessary functionality for accessing historical 

imagery, which is not available in the online version.

http://www.gadm.org/country
https://earth.google.com/
https://www.google.com/earth/versions/
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3  Methodology 
 

3.1  Data Pre-processing 

An advantage of remote sensing data is the capability to carry out image processing that can enhance 

or modify the image (Gong and Liu, 2023). Usually, the raw data is not appropriate for direct 

processing (Gong and Liu, 2023). Therefore, preparation was needed before processing the images, 

such as band combination and clipping the images to the needed extension. However, other pre-

processing actions were not needed. For example, since the images collected from Earth Explorer 

were from Collection 2 Level-2, they were already atmospherically corrected surface reflectance 

images (SR). In addition, the cloud pre-processing was also unnecessary as the images were cloud-

free. Furthermore, the multiple bands used in the composite band have 30 meters resolution, so 

resampling was unnecessary.  

 

3.1.1  Bands Combination 

The Landsat raster data available from Earth Explorer are single-bands; therefore, the appropriate 

band combinations should be determined and stacked into a multi-band image (Gong and Liu, 2023). 

This operation was performed by a data management tool, Composite Bands, from ArcGIS Pro. For 

the Landsat 5 and Landsat 7 images, the SR visible bands 1-5 and band 7 were used to create the 

Composite Band raster. Band 6 (ST) is for thermal purposes, and band 8 (only existing in Landsat 7) 

is a panchromatic band. Both have been considered irrelevant to the study and, therefore, not included. 

The images are shown as a true colour composite using the red, green and blue bands (bands 3,2,1) 

(Table 5). 

For the Landsat 9 image, the SR visible bands 1-7 were used to create the Composite Band raster. 

The thermal, panchromatic and cirrus bands were not used as they were considered irrelevant to the 

study. The image is shown as a true colour composite using the red, green and blue bands (bands 

4,3,2). 

 

Table 5. Bands and RGB used in the different images. 

 

Data 

 

 

Composite 

 

RGB 

 

Landsat 7 ETM C2 L2 

 

1,2,3,4,5,7 

 

 

3,2,1 

 

Landsat 5 TM C2 L2 1,2,3,4,5,7 

 

3,2,1 

 

Landsat 9 OLI/TIRS C2 L2 1,2,3,4,5,6,7 4,3,2 
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3.1.2  Image Extraction 

The satellite image data acquired from Earth Explorer include a vast, unnecessary area for the 

research. To reduce the time-consuming and storage space, a new raster with a smaller extension 

matching the study area was created, excluding the information that falls beyond its limits. To perform 

that, a spatial analyst tool, Extract by Mask, was performed in ArcGIS Pro software, using the polygon 

of the study area as a mask data (Figure 6). 

     

a)                                                                             b) 

 

c) 

Figure 3. Clipped multi-band images of the study area: a) Landsat 7 ETM+ image from 2000; b) Landsat 5TM image 

from 2010; c) Landsat 9 OLI-2/TIRS-2 from 2022. 

 

3.2  Maximum Likelihood Classification 

As a supervised classification method, the Maximum Likelihood Classification algorithm trained the 

model to establish representative parameters for each land cover class using manually digitized 

training areas based on very high-resolution data (Lillesand et al., 2015). There is a multitude of very 
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high-resolution data available such as WordView-1 (0.5m), GeoEye-1 (0.5m), QuickBird (1m) and 

IKONOS (1m), among others (SIC, 2022). However, for this study, Google Earth data were used as 

reference data due to its availability at a very high resolution without any cost. Once the training 

samples are created, the algorithm will assign each pixel to the land cover class that looks most like 

it. The pixel, which is unlike any training area, will be categorized into an "unknown" class (Lillesand 

et al., 2015).  

The main objective of image classification is to automatically classify all pixels into surface feature 

categories. This is typically achieved by gathering pixels with similar spectral reflectance 

combinations, known as spectral patterns, that supposedly represent the different land cover classes 

without considering the surrounding pixels (Lillesand et al., 2015). 

To define the land cover classes, the classification system used by the United States Geological 

Survey (USGS) based on the Anderson system was used as a model (Anderson et al., 1983). This 

standard classification includes four different levels of information, depending on the degree of detail 

that can be obtained due to the sensor system and image resolution (Lillesand et al., 2015). Level I is 

for low to moderate-resolution satellite data such as Landsat Multispectral Scanner system (MSS) 

data, and level II is for small-scale and moderate-resolution satellite data such as Landsat TM data 

(Anderson et al., 1983). Both levels are generally for mapping information across the country, 

multiple or entire states (Lillesand et al., 2015) (Table 7). 

 

Table 6. USGS Land Use/Land Cover Classification System with Levels I and II of information for use with Remote 

Sensor Data (Anderson et al., 1983). 

 

Level 1 

 

 

Level II 

 

1 Urban or built-up land 

 

11 Residential  

12 Commercial and service  

13 Industrial  

14 Transportation, communications, and utilities  

15 Industrial and commercial complexes  

16 Mixed urban or built-up land  

17 Other urban or built-up land 

 

2 Agricultural land 21 Cropland and pasture  

22 Orchards, groves, vineyards, nurseries, and ornamental horticultural areas  

23 Confined feeding operations  

24 Other agricultural land 

 

3 Rangeland 31 Herbaceous rangeland  

32 Shrub and brush rangeland  

33 Mixed rangeland 

 

4 Forest land 41 Deciduous forest land  

42 Evergreen forest land  

43 Mixed forest land 

 

5 Water  51 Streams and canals  

52 Lakes  

53 Reservoirs  

54 Bays and estuaries 
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6 Wetland 61 Forested wetland  

62 Nonforested wetland 

 

7 Barren land 71 Dry salt flats  

72 Beaches  

73 Sandy areas other than beaches  

74 Bare exposed rock  

75 Strip mines, quarries, and gravel pits  

76 Transitional areas  

77 Mixed barren land 

 

8 Tundra 81 Shrub and brush tundra  

82 Herbaceous tundra  

83 Bare ground tundra  

84 Wet tundra  

85 Mixed tundra 

 

9 Perennial snow or ice 91 Perennial snowfields  

92 Glaciers 

 

 

 

 

Level III is suitable for a resolution of 1 to 5 meters, and level IV is even higher (Lillesand et al., 

2015). However, for both of these levels, ancillary data must be added to the imagery data to be able 

to classify at that precise level (Lillesand et al., 2015). An example of the detail of the classes in Level 

III is shown in the table below (Table 8). 

 

Table 7. Level III of information on USGS Land Use/Land Cover Classification System for Use with Remote Sensor 

Data (Anderson et al., 1983). 

 

Class name 

 

 

Class Description 

 

11 Residential 

 

111 Single-family 

112 Multifamily 

113 group quarters 

114 Residential hotels 

115 Mobile home parks 

116 Transient lodgings 

117 Others 

 

 

 

In this case study, level I is applied for the classification, as the sub-classes described in level II are 

too specific and irrelevant to the case (Table 9). 
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Table 8. Land cover classes delineated for the classification. 

 

Class name 

 

 

Class Description 

Water bodies Streams and canals, lakes, reservoirs and bays and estuaries 

Built-up land Residential, commercial, industrial, roads and transportation, communications and 

utilities 

Green areas Green areas, cropland and pasture 

Barren land Beaches, sandy areas, open fields without vegetation, exposed rocks, gravel pits, 

transitional areas 

 

 

3.2.1  Training Samples 

The first step in performing the supervised classification is creating the training samples, which 

consist of collecting the representative ground truth of the different land cover areas to create a 

numerical definition of the spectral attributes of each land cover class (Lillesand et al., 2015). To 

create the training samples, reference data and/or knowledge of the geographic area is needed 

(Lillesand et al., 2015). Reference data from Google Earth Pro has been used in this case study for 

being very high-resolution data and freely accessible. 

The quality of this process will define the accuracy of the classification, being of great importance 

the creation of representatives and complete training samples for all the required land cover classes 

(Lillesand et al., 2015). Through the training process, it will gather a set of statistics that define all 

spectral classes that each land cover class has (Lillesand et al., 2015).  

Training samples were created through Training Samples Manager from the Image Classification tool 

in ArcGIS Pro, drawing polygons manually over the areas of each land cover class using Google 

Earth Pro as reference data. To visualize reference data from the years 2000, 2010 and 2022 on 

Google Earth Pro, the time slider icon was used. In some cases, it was impossible to find an image 

for the specific period of study. For example, in the image below, the closest date available as 

reference data was February 2010, although this study required reference data from November 2010 

(Figure 4).  

 

Figure 4. Time slider to find historically imaginary.  
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These polygons have been drawn, preventing pixels near the borders between land cover types. In 

addition, they were delineated throughout the whole study area to increase the chance of being 

representative (Lillesand et al., 2015). The number of reference samples that have been created 

resulted in a total of between 275 and 300 for each image, with different samples for each land cover 

class (Figure 5). 

 
a)                                                                               b) 

 

Figure 5. Example of a built-up training sample: a) Reference data from Google Earth Pro, 2010; b) Landsat image 

2010.  

 

As a part of the training process, an evaluation of the quality within the samples of each class is 

performed (Lillesand et al., 2015). One approach for addressing this is visualizing the histograms for 

each training class in the different bands, which show the distribution of pixels of the individual 

classes. The desired outcome of the histogram analysis is to observe a Gaussian distribution or close 

to it, indicating a normal distribution in all the bands (Lillesand et al., 2015). The histograms are 

performed in ArcGIS Pro by creating a clipped raster for each land cover class. So for every composite 

image, four different clipped rasters were created. In doing so, only the training sample of that specific 

class is analyzed, performing a histogram for each band, as shown in the example below (Figure 6). 

 

 

Figure 6. Histograms for the training samples barren land for Landsat image 2010, showing the histograms of every 

band. 
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However, the histograms do not show the comparison between the different classes. To do that, a 

spectral separability plot can be performed (Lillesand et al., 2015). In this plot, the average pixel value 

from the training polygons of each class is shown, as well as the error bar that represents the standard 

deviation. The figure tells whether or not two different classes will be separable and which bands will 

be the most helpful. For example, the figure below, representing the spectral separability plot for the 

training samples from the Landsat image 2010, shows that all the classes look very similar in band 1, 

which means that this band is not going to be that helpful in separating the classes as, for example, 

could be band 4, as it is more spread in the values (Figure 7). 

 

 

Figure 7. Spectral separability plot for training samples of Landsat image 2010. Profile_1 represents water, profile_2 

built-up land, profile_3 green areas, and profile_4 barren land. 

 

Another approach for evaluating the quality of the training samples within each class is to examine 

the error matrix, which reveals the percentage of the training pixels that are correctly classified, 

providing insight into the accuracy of the classification process (Lillesand et al., 2015). The 

description of the error matrix will be elaborated upon in Chapter 3.5. This evaluation is conducted 

once the classification process is completed (Lillesand et al., 2015).  

 

3.3   Post-processing  

The outputs from the pixel-based classification need some post-classification operation before a 

further process. The classification outputs show some isolated misclassified pixels that differ from 

their neighbouring pixels, known as salt-and-pepper noise (Lillesand et al., 2015). This noise is due 

to similarities in the spectral responses of specific land cover classes (Lillesand et al., 2015). These 

misclassified pixels can be removed using the majority filter tool in ArcGIS Pro software to get a 

smoother image showing an outcome of the predominant classification, being the one supposedly 

correct. Using this tool, each pixel is replaced by the value of the majority of its neighbours, being 

able to choose between four or eight neighbours (Esri, n.d.-b). For this case study, eight neighbours 

and the majority option for the replacement threshold were chosen to perform the image post-

processing. 
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3.4  NDVI  

An NDVI was calculated for each multispectral image using ArcGIS Pro Software's raster functions. 

The red and near-infrared bands were used to obtain the single band dataset, following equation 1 

described in Chapter 2.2.2. To calculate the NDVI for the images from 2000 and 2010,  acquired from 

Landsat 7 and 5, respectively, the fourth band (near-infrared) and the third band (red) were used. In 

the case of the 2022 image obtained from Landsat 9, the fifth band (near-infrared) and the fourth band 

(red) were used. 

Defining the thresholds for each class was necessary to generate a cover classification map based on 

NDVI values. Therefore, the "classify" symbology was employed, categorizing the classes into water, 

non-vegetated and vegetated. To establish these thresholds, reference data were used to determine the 

values associated with each class. The corresponding reference data was obtained through the icon 

time slider in Google Earth Pro and subsequently imported into ArcGIS Pro. Georeferencing the 

imported image was performed by adding control points. To ensure accurate georeferencing, strategic 

points located along the borders of the study area were used as control points due to this delineation 

was also present in the image imported from Google Earth Pro. 

 

3.5  Accuracy Assessment 

The history of accuracy assessment for maps generated from spatial data is relatively short, beginning 

in 1976 when the first standard for the minimum level of accuracy assessment of LULC classification 

from remote sensor data was proposed by Anderson et al. (1983), estimated at least 85 per cent to be 

considered adequate. However, this threshold was established without any study demonstrating that 

this value was the most acceptable (Congalton and Green, 2019). After that, some studies proposed 

fundamental approaches for testing accuracy assessment, as by Hord and Brooner (1976) and Ginevan 

(1979). Finally, at the beginning of the 1980s, researchers such as Rosenfield et al. (1982), Congalton 

et al. (1983) and Aronoff (1985), among others, proposed more elaborated techniques, being from the 

end of the 1980s until today when the amount of research about it has highly increased, certifying 

that the perform of the accuracy assessment is necessary for all remote sensing mapping projects 

(Congalton and Green, 2019). 

According to Congalton (2001), presenting just the creation map as a final result is insufficient for a 

complete and valid classification map using spatial data. Instead, it is necessary to perform an 

accuracy assessment to know how well the classification has been performed and to increase the 

quality of the map information by interpreting the assessment (Congalton, 2001). In addition, it allows 

for comparing different methods quantitatively (Congalton, 2001). 

Congalton (1988) recommended a minimum of 50 samples per class for maps containing up to twelve 

classes and an area of fewer than one million acres; otherwise, more samples will be required. In 

general, the number of samples for each class should be adapted depending on how important the 

specific class is for the project, as well as being aware that the more versatile classes require more 

samples than the classes that show fewer variables as, for example, water (Congalton and Green, 

2019). For the sampling strategy, there are three options: stratified random, equalized random and 
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random (Esri, n.d.-a). With the random sampling strategy, the points will be randomly distributed 

through the image with no criteria, while with the stratified random sampling strategy, each class is 

assigned a number of points proportionately to its corresponding relative area (Esri, n.d.-a). In 

contrast, in the equalized stratified random sampling strategy, all the classes will have an equal 

number of points (Esri, n.d.-a). The accuracy assessment points in the case study were established 

through the Image Analyst Tool, 'Create Accuracy Assessment Points' in ArcGIS Pro, choosing 200 

random points and the stratified random sampling strategy. 

After creating the accuracy assessment points, the correct classification for each point was manually 

assigned by checking the reference data. To accomplish this, the shapefile containing the accuracy 

assessment points was exported to Google Earth Pro after being converted to a KML file (Figure 8). 

 

  

Figure 8. Accuracy assessment points. The points were generated in ArcGIS Pro and subsequently exported to Google 

Earth Pro for conducting the assessment with the reference data. 

 

The most common method used in the remote sensing community to assess accuracy is to compute 

the confusion or error matrix (Congalton and Green, 2019), which was calculated using the Image 

Analyst Tool, Compute Confusion Matrix in ArcGIS Pro. 

The confusion matrix is a square array where the number of rows and columns is the same as the 

number of classes that are being assessed, indicating the number of sample units assigned to a 

particular class (Congalton, 2001). The relationship between known reference data or ground truth 

data, represented in the columns, and the corresponding result of the classification, represented in the 

rows, is compared class by class (Congalton and Green, 2019). Through the confusion matrix is 

possible to know the commission and the omission errors. The commission error is the one that 

happens when an area is included in a class to which it does not belong, while an omission error is 

the one that happens when an area is excluded from the class to which it truly belongs (Congalton 
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and Green, 2019). In addition, several accuracies can be calculated from the confusion matrix: the 

overall, the user and the producer's accuracy. The overall accuracy is calculated by dividing the total 

number of correctly classified pixels, which are the ones located in the main diagonal, by the total 

number of reference pixels in the confusion matrix (Congalton and Green, 2019). According to 

Congalton and Green (2019), evaluating the different classes that intervene in the classification is 

necessary, as it is not enough only show the overall accuracy to represent the classification's accuracy. 

To evaluate the different classes, the producer and the user's accuracy must be shown (Congalton and 

Green, 2019). The producer's accuracy gives the producer an idea of the correct classification for each 

class by indicating the probability of a reference sample is correctly classified and being a measure 

of omission error (Congalton, 2001). This accuracy is calculated by dividing the number of correctly 

classified samples in each class, the value located on the main diagonal, by the total number of 

samples of that specific class, the value located in the column total (Congalton and Green, 2019). The 

user's accuracy indicates the measure of commission error by expressing the probability that a sample 

classified on the map represents that class on the ground (Story and Congalton, 1986). This is 

calculated by dividing the number of correctly classified samples in each class, the value located on 

the main diagonal, and the total number of samples used for the specific class, the value in the row 

total. 

Another value estimated from the confusion matrix is the K statistics or Kappa coefficient, widely 

used in classification accuracy assessment (Foody, 2020). This coefficient is an indicator of the extent 

to which the percentage correct values of an error matrix can be attributed to "true" agreement versus 

"chance" agreement, and its value ranges between 0 and 1 (Lillesand et al., 2015). However, despite 

its widespread use, there are many concerns about its application in accuracy assessment to the extent 

of calling, unsuccessfully, to abandon its use (Foody, 2020). In fact, Olofsson et al. (2014) consider 

using the kappa coefficient as poor practice in accuracy assessment, which consists of the suggestions 

of Strahler et al. (2006), who discouraged its use due to its limited significance in accuracy 

assessment. Furthermore, Foody (2020) conducted a study demonstrating the unsuitability of the 

kappa coefficient to describe the accuracy and its comparison. Foody (2000) provided an example 

where a classification with an overall accuracy of 95% could have a kappa coefficient ranging from 

0.026 to 0.900, highlighting the lack of utility in determining assessment accuracy.  

 

3.6  Land Cover Change Detection 

Change detection was performed to identify, visualize and analyze land cover changes in the study 

area for two time periods. One analysis focused on land cover changes between 2000 and 2010, while 

the other examined changes between 2010 and 2022, with a calculation of the corresponding areas 

for these changes. This is performed with ArcGIS Pro, based on the three land cover classification 

images. Firstly, the images were converted from raster to polygon to be able to calculate the area of 

each of the classes. Subsequently, changes between the two years were calculated using the 'intersect' 

analysis tool from geoprocessing. Finally, in the attribute table of the resulting layer, two new fields 

were created: 'change' to identify the former and new cover types and 'area changes' to calculate the 

geometric difference between them.
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4  Results 

This section presents the outcomes of land cover analysis in Hanoi using the images from 2000, 2010 

and 2022. The MLC method was employed to classify the images into four classes: water, built-up 

land, green areas and barren land. These resulting maps and their respective accuracy assessments 

will be presented. The study also illustrates the NDVI results, defining the threshold to differentiate 

three classes: water, non-vegetated, and vegetated areas for the images from 2010 and 2022. 

Furthermore, the study presents the land cover changes for each class and quantifies these changes.  

 

4.1  Maximum Likelihood Classification and Accuracy Assessment 

A land cover analysis was conducted for Hanoi using the spectral bands of the Landsat images of 

2000, 2010 and 2022 and the MLC algorithm. The resulting land cover maps show four distinct 

classes: water, built-up land, green areas, and barren land (Figure 9). Through the visual examination 

and comparison of these maps, it becomes evident that changes in land cover can be observed from 

2000 to 2022. The substantial transformation observed in the built-up cover class over this period is 

particularly noteworthy. Furthermore, visual analysis reveals that these expansions predominantly 

occur within pre-existing built-up areas. 

 

       

a)                                                                                  b)                      
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c) 

Figure 9. Land cover maps of Hanoi using the MLC: a) 2000; b) 2010; c) 2022. 

 

 

For the previous land cover maps, the area for every class was calculated (Table 10). 

 

Table 9. Area coverage by square kilometres for the land cover classes in 2000, 2010 and 2022. 

Land cover class 2000 2010 2022 

 (Km2) (%)  (Km2) (%)  (Km2) (%) 

Water 74.32 9.94 64.94 8.68 59.16 7.91 

Built-up land 178.11 23.82 201.74 26.99 255.01 34.10 

Green areas 442.63 59.19 386.71 51.72 378.83 50.66 

Barren land 52.79 7.05 94.46 12.63 54.85 7.33 

 

An accuracy assessment was conducted for each of the land cover maps to examine how well the 

performance of the MLC algorithm was. The overall accuracy obtained using the MLC method was 

79, 84, and 84 per cent for the years 2000, 2010 and 2022, respectively. However, chapter 3.5 explains 

that examining each class's user and producer accuracies is crucial. The MLC method showed strong 

performance in mapping green areas, indicated by higher user's accuracy percentages of 92, 96 and 

90 for the three images. A high user's accuracy indicates a low commission error, meaning there is a 

high probability that pixels classified as green areas exist on the ground (Story and Congalton, 1986). 

However, the producer's accuracy in this class was slightly lower, at 73, 88 and 87 per cent, 

respectively. The producer's accuracy defines the possibility that this class's ground reference points 

were classified as correct (Story & Congalton, 1986). The performance of the MLC in mapping the 

water class showed more significant variability, as users' accuracies ranged from 61 to 82 per cent; 

however, the producer's accuracy for this class was 85 per or higher. The principal difficulty in 

accurately classifying this particular land cover category was the extensive presence of rice fields 
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within the study area, which resemble water surfaces, producing errors between these two classes. 

The user's accuracy in mapping built-up land was 79, 81, and 88 per cent for the three images, and 

the producer's accuracy was 90, 76 and 86 per cent. The performance of MLC in classifying barren 

land exhibited significant limitations, as the user's accuracy did not surpass 42% across all the images 

analyzed. Moreover, this class had high omission errors, showed by a low producer's accuracy. For 

example, the producer's accuracy in the barren land class is 67, 79 and 36 per cent for the three images. 

These low figures compared to the other producer's accuracy may be attributed to the limited number 

of training samples available for the barren land class compared to other classes. Notably, the image 

from 2010, which had more training samples for the barren class, resulted in the highest user's 

accuracy compared to the images from 2000 and 2022. Likewise, a larger quantity of training samples 

was employed for the green areas class in all the images, leading to the highest user's accuracy for 

that specific land cover category. The complete confusion matrices for the accuracy assessment of 

the land cover maps from the Landsat images 2000, 2010 and 2022 are presented below (Tables 11- 

13). 

 

Table 10. Accuracy assessment of land cover map 2000. 

Classified Reference data Total User's accuracy 

 Water Built-up land Green areas Barren land   

 

 

Water 

 

17 

 

0 

 

11 

 

0 

 

28 

 

61% 

Built-up 1 52 11 2 66 79% 

Green areas 1 5 85 1 89 92% 

Barren land 1 1 9 6 17 35% 

Total 20 58 113 9 200  

 

Producer's accuracy 85% 90% 73% 67%  

Overall accuracy       79%      

     Kappa                         0.66 

 

 

 

Table 11. Accuracy assessment of land cover map 2010. 

Classified Reference data Total User's accuracy 

 Water Built-up land Green areas Barren land   

 

 

Water 

 

14 

 

1 

 

1 

 

1 

 

17 

 

82% 

Built-up 0 44 9 1 54 81% 

Green areas 1 2 99 1 103 96% 

Barren land 1 11 3 11 26 42% 

Total 16 58 112 14 200  

Producer's accuracy 88% 76% 88% 79%  

Overall accuracy       84%      

     Kappa                         0.74 
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Table 12. Accuracy assessment of land cover map 2022. 

Classified Reference data Total User's accuracy 

 Water Built-up land Green areas Barren land   

 

 

Water 

 

12 

 

0 

 

4 

 

0 

 

16 

 

75% 

Built-up 2 60 2 4 68 88% 

Green areas 0 7 91 3 101 90% 

Barren land 0 3 8 4 15 27% 

Total 14 70 105 11 200  

Producer's accuracy 86% 86% 87% 36%  

Overall accuracy       84%      

     Kappa                         0.73 

 

 

 

4.2 NDVI  

According to Asrar et al. (1984), vegetation indices show better sensitivity than individual spectral 

bands for vegetation detection. This characteristic makes them highly valuable for enhancing 

classifications in thematic mapping (Asrar et al., 1984). Therefore, a map showing the NDVI values 

for each image was performed (Figure 10). The NDVI values range from - 0.125 to 0.487 for the 

2000 image, from -0.109 to 0.430 for 2010 and from -0.173 to 0.485 for 2022. Negative values 

represent water, while positive values indicate a transition from non-vegetated to vegetated areas. 

When observing the maps, it can be seen that the 2000 image contained more values approaching the 

higher range, representing vegetated areas (shown in green) than the other two images, particularly 

in the northern and western regions of the study area. However, the 2022 image displayed higher 

values in the eastern part of the study area relative to the other two images. Furthermore, the area 

representing medium values (indicated by orange) representing non-vegetated areas was found to 

have increased from 2000 to 2022.  

     

a)                                                                                          b)         



Ana Castellanos Álvarez                                                                                                         4. Results  

26 

 

 

c) 

Figure 10. NDVI values from the Landsat images: a) 2000; b) 2010; c) 2022. 

 

The following land cover maps for 2010 and 2022 were created based on the NDVI values (Figure 

11). These maps were classified into three categories: water, non-vegetated, and vegetated areas, 

which were established after manually inspecting the pixel values of the images and defining the 

thresholds for each land cover class. The research within this study showed that the NDVI values for 

water were from negative values up to 0.031, the non-vegetated areas were within the range between 

0.032 and 0.141, and the vegetated areas were above 0.142 up to the higher value of 0.43 in the case 

of the 2010 image. For the image 2022, the NDVI values for water ranged from negative values up 

to 0.029, the non-vegetated areas were within the range between 0.03 and 0.153, and the vegetated 

areas were above 0.154 up to the higher value of 0.485. 

 

        

a)                                                                                        b) 

Figure 11. NDVI-2022 with the thresholds for each class. 
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The accuracy assessment for the classification maps from 2010 and 2022 obtained from the NDVI 

values was performed. The overall accuracies obtained for the maps were 74 and 82 per cent for the 

2010 and 2022 images. The user's accuracy for the water class was 100 per cent for both images; 

however, the producer's accuracy for this class did not exceed 70 per cent. The classification of 

vegetated areas demonstrated higher accuracy than non-vegetated areas, which exhibited significant 

commission errors, indicated by a user's accuracy of 59 per cent for the 2010 image and 74 per cent 

for the 2022 image. The results for the vegetated areas accuracies were higher than 80 per cent, except 

for the producer's accuracy for the image 2010, which was 73 per cent. The complete confusion 

matrices are shown below (Tables 14 - 4.6). 

 

 

Table 13. Accuracy assessment of NDVI classification from Landsat 2010. 

 

Land cover class 

Reference data Total User's accuracy 

 Water Non-vegetated areas Vegetated areas    

 

 

Water 

 

13 

 

0 

 

0 

  

13 

 

100% 

Non-vegetated areas 5 52 31  88 59% 

Vegetated areas 3 13 83  99 84% 

Total 17 73 13  200  

Producer's accuracy 62% 80% 73%   

Overall accuracy       74%      

     Kappa                         0.54 

 

 

Table 14. Accuracy assessment of NDVI classification from Landsat 2022. 

 

Land cover class 

Reference data Total User's accuracy 

 Water Non-vegetated areas Vegetated areas    

 

 

Water 

 

15 

 

0 

 

0 

  

15 

 

100% 

Non-vegetated areas 5 67 18  90 74% 

Vegetated areas 2 12 82  96 85% 

Total 17 73 13  200  

Producer's accuracy 68% 85% 82%   

Overall accuracy       82%      

     Kappa                         0.68 
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The land cover classification maps derived from NDVI values and the MLC method were utilized to 

calculate the areas of the three classes, facilitating a comparison between the results obtained from 

both classifications (Table 16). The total area of the study region has an extension of 747.9 square 

kilometres. In the MLC classification, the non-vegetated areas are equivalent to the combined sum of 

built-up and barren land classes. Comparisons reveal variations in the area estimates obtained through 

the two classifications. With the NDVI classification, the non-vegetated class obtained a larger 

extension of 32.8 and 26.74 square kilometres in 2010 and 2022, respectively, compared to the areas 

obtained from the MLC classification. Moreover, the vegetated areas obtained through the NDVI 

classification were 16.26 and 21.43 square kilometres less in 2010 and 2022, respectively, compared 

to the results obtained through MLC. In the water class, the area obtained from the NDVI 

classification was 16.48 square kilometres lower in 2010 and 5.27 larger in 2022 compared to the 

figures obtained from the MLC classification. 

 

Table 15. Area results for 2010 and 2022 images were obtained from two NDVI and MLC classifications. 

 

Land cover classes 
2010 2022 

NDVI MLC NDVI MLC 

Km2 % Km2 % Km2 % Km2 % 

Water 48.52 6.49 64.94 8.68 53.67 7.18 59.16 7.91 

Non-vegetated areas 328.91 43.98 296.20* 39.61 336.68 45.02 309.86** 41.43 

Vegetated areas 370.42 49.53 386.71 51.71 357.50 47.80 378.83 50.66 

 

*296.20 =  201.74 (Built-up land) + 94.46 (Barren land) 

**309.86 = 255.01 (Built-up land) + 54.85 (Barren land) 

 

 

4.3  Post-processing  

The images obtained from the classification show some salt-and-pepper noise, which was reduced by 

performing the majority filter. An example of how it is seen in an image before and after performing 

the majority filter is shown below (Figure 12). 
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a) b) 

 

Figure 12. Post-classification smoothing: a) original classification; b) smoothed using majority filter. 

 

 

4.3  Land Cover Change Detection 

This section presents the outcomes derived from the analysis of land cover change. The classified 

land cover maps generated through the MLC method for Hanoi were employed to identify and extract 

the dynamic changes occurring in Hanoi between two time periods: 2000 and 2010 (Figure 4.5) and 

from 2010 to 2022 (Figure 13). 

 

 

Figure 13. Land cover changes map from 2000 - 2010. 
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Figure 14. Land cover changes map from 2010 - 2022. 

From 2000 to 2010, significant transformations in land cover were observed within the green areas. 

Approximately 13 per cent was converted into barren land, covering an extension of around 58 square 

kilometres. Moreover, 10 per cent of the total extension of the green areas was transformed into built-

up areas, covering an extension of around 44 square kilometres, which resulted in an increase of 22 

per cent in the built-up land. From 2010 to 2022, there was a decline in green area extension, resulting 

in the transformation into different land cover classes. Approximately 9 per cent was converted into 

barren land, covering an extension of around 34 square kilometres. Additionally, 10 per cent changed 

into built-up areas, covering an extension of 38 square kilometres, which resulted in an increase of 

around 15 per cent in the built-up land. It can also be seen that there was barren land converted into 

built-up areas, around 50 square kilometres, representing almost 20 per cent of the built-up extension 

(Figure 15). 

  

                                               a)                                                                                                   b) 

Figure 15.  Area chage a) 2000-2010; b) 2010-2022. 
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The table below expresses all the changes in the different land cover classes (Table 17). 

 

Table 16. Land cover change areas from 2000 to 2010 and 2010 to 2022. 

 

Land Cover Change 

 

Area change 2000-2010 (km2) 

 

 

Area change 2010-2022 (km2) 

 

Water - Water 

Water - Built-up land 

Water - Green areas 

Water - Barren land 

Built-up land - Water 

Built-up land - Built-up land 

Built-up land - Green areas 

Built-up land - Barren land 

Green areas - Water 

Green areas - Built-up land 

Green areas - Green areas 

Green areas - Barren land 

Barren land - Water 

Barren land - Built-up land 

Barren land - Green areas 

Barren land - Barren land 

 

46,77 

1,71 

18,92 

6,87 

1,14 

141,57 

19,70 

15,63 

13,20 

44,26 

326,82 

58,055 

3,78 

14,12 

20,97 

13,86 

 

45,11 

5,01 

12,01 

2,77 

0,41 

161,57 

32,88 

6,80 

10,76 

38,07 

303,68 

33,88 

2,83 

50,28 

29,96 

11,35 

 

 

To better visualize the expansion of built-up areas, two maps were generated. The light red 

symbolizes the built-up land extension with no changes during the period frame, and the red 

symbolizes the increased built-up areas (Figures 16 - 17). It can be seen that the expansion of built-

up land was more significant during the period between 2010 and 2022 than in the one between 2000 

and 2010. Furthermore, most modified areas were located close to the existing built-up areas.  

 

 

 



Ana Castellanos Álvarez                                                                                                         4. Results  

32 

 

 

 

     

Figure 16. Built-up changes from 2000 to 2010. 

 

 

 

Figure 17. Built-up changes from 2010 to 2022. 
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The areas of built-up and green cover classes were quantified for three years, enabling an evaluation 

of the magnitude of changes within these classes (Table 18).  

 

Table 17. Built-up and green areas. Built-up expansion and greenery reduction expressed in km2. 

 

Cover land 

 

 

2000 

 

2010 

 

2022 

 

2000-2010 

 

2010-2022 

 

Built-up land 

 

178.11 

 

201.74 

 

255.04 

 

+ 23.63 

 

+ 53,30 

 

Green areas 

 

442.63 386.71 378.83 - 55.92 - 7.88 
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5. Discussion 
 

5.1  Alternative Data for the Study 

For this study, the use of Sentinel-2 data was considered a possibility at first because of the higher 

spatial resolution compared to Landsat data, 10 and 30 meters, respectively, being possible to obtain 

higher accurate results according to some studies such as the one from Phiri et al. (2020). Since the 

Sentinel-2 mission was launched in 2015, the first image considered to use in the study was from this 

year, together with an image from 2017, 2019 and 2022 with a cloud cover of less than 5%, acquired 

freely from Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/ ). Unfortunately, the 

images from 2015 and 2017 were only available from level 1C, which means that the images are from 

Top-Of-Atmosphere (TOA) and are not atmospheric corrected yet. However, the software Sentinel 

Application Platform (SNAP) with the Sen2Cor plugin can be used for performing atmospheric 

correction (Rumora et al., 2020). SNAP software provided by the European Space Agency (ESA) can 

be freely downloaded from SNAP Download – STEP (esa. int) and is a tool for processing data 

products from several remote-sensing missions, including Sentinel-1, Sentinel-2 and Sentinel-3 

(ESA, n.d.). On the contrary, the images from 2019 and 2022 were available from level 2A, meaning 

that these images are from Bottom-Of-Atmosphere (BOA), being corrected reflectance products and 

ready to work with. Unfortunately, the use of SNAP software is beyond the capacity of this study. 

Attempts to convert the images from 2015 and 2017 from TOA to BOA  were unsuccessful. As a 

result, only images from 2019 and 2022 could be used, assuming the hypothesis that no noteworthy 

changes could be detected over the limited time frame. That is why the selection of images from 

Landsat imagery was chosen, being more flexible with the range of years for the study.  

 

5.2  Ancillary Data 

Examining the accuracy assessment of the land cover classification maps obtained from using the 

spectral bands of Landsat images reveals the potential for improved accuracy. As highlighted by 

Janssen et al. (1990), image classification based only on spectral observations is often not enough to 

obtain sufficiently accurate results, being helpful with the incorporation of additional geospatial data, 

such as the digital elevation model (DEM). This attempt was tried to enhance the accuracy of the 

classification. For that, DEM data was freely downloaded from EarthExplorer (usgs.gov). Three 

rasters were downloaded to cover the entire study area and mosaicked into a single image, followed 

by clipping to the study area extent. The DEM raster had an original cell size of 27.7 meters, which 

required resampling to match the 30-meter cell size of the Landsat images. Unfortunately, due to 

pixel mismatch between the digital elevation model (DEM) and Landsat raster data when they 

overlapped, it was not feasible to create a single raster dataset. Despite attempts to address this issue, 

a solution could not be found, resulting in excluding the DEM data from this study.  

 

https://scihub.copernicus.eu/dhus/
https://step.esa.int/main/download/snap-download/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Ana Castellanos Álvarez                                                                                                   5. Discussion  

35 

 

5.3  NDVI 

This study generated land cover maps based on NDVI values by manually examining pixel values 

and determining corresponding thresholds for each land cover class. The aim was to evaluate the 

accuracy of this approach to see how well it could classify land cover. However, the results obtained 

were inferior to those achieved through a supervised classification method except for the class water, 

which obtained a user's accuracy of 100 per cent; however, the producer's accuracy for this class was 

also inferior. For example, in vegetated areas for the 2010 image, the user's accuracy obtained from 

the supervised method was 96 per cent compared to 84 per cent obtained from the NDVI 

classification. In addition, in numerous instances, pixels representing vegetated areas had values close 

to zero, making it challenging to establish a suitable threshold. It was impossible to establish such a 

low threshold for the vegetated areas because, in this way, many non-vegetated areas would be 

defined erroneously as vegetated. Consequently, this fact led to reduced accuracy.  

The NDVI was utilized to assess the accuracy of generating classification maps by establishing 

thresholds for the different classes. However, since the results obtained from the 2010 and 2022 

images did not reach the desired accuracies, confirming that the classification was not significantly 

better than the one obtained by the supervised method, the classification with NDVI values for the 

2000 image was not performed.  

Many land cover classification studies include one or more vegetation index measures in their data to 

improve the identification of vegetation cover. For example, Manandhar et al. (2009) demonstrated 

that incorporating the NDVI value of the Landsat imagery into the post-classification correction made 

it possible to improve MLC maps significantly, and Akar and Gungor (2015) also used NDVI in the 

classification process to enhance classification accuracy. However, further research is required to 

comprehend how NDVI can improve the accuracy of MLC maps since this particular approach was 

not undertaken in the current study.  

 

5.4  Accuracy Assessment 

The accuracy assessment can be conducted using different sampling strategies (Esri, n.d.-a). The 

stratified random strategy is the one that was chosen for this study. However, the equalized stratified 

random was also attempted for the 2022 image to compare the results (Table 19) based on the 

recommendation of Congalton (1988), who suggested a minimum of 50 samples per class for 

assessing the accuracy of classification maps. As the chosen number of points for the assessment was 

200 and there were four classes, there was a guarantee of obtaining 50 samples per class. With this 

sampling strategy, the overall accuracy was lower (73 per cent) than the stratified random strategy 

(84 per cent). However, the user's accuracies were higher than in the stratified random strategy except 

for the user's accuracy for water, which was the same in both cases. The user's accuracy obtained 

from stratified random strategy was: water 75 per cent, built-up 88 per cent, green areas 90 per cent, 

and barren 27 per cent. Comparing the producer's accuracy, the values obtained with the stratified 

random strategy were 86 per cent for water, 86 per cent for built-up land, 87 per cent for green areas 

and 36 per cent for barren land.  
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Table 18. Accuracy assessment of land cover classification 2022, performing an equalized stratified random strategy. 

Classified Reference data Total User's accuracy 

 Water Built-up land Green areas Barren land   

 

 

Water 

 

41 

 

2 

 

6 

 

1 

 

50 

 

82% 

Built-up 1 45 3 1 50 90% 

Green areas 2 1 45 2 50 90% 

Barren land 2 13 21 14 50 28% 

Total 46 61 75 18 200  

Producer's accuracy 89% 74% 60% 78%  

Overall accuracy       73%      

     Kappa                         0.63 

 

 

Therefore, it can be seen that in these accuracies, there are significant differences, especially in the 

green areas and in the barren land. However, considering the statement by Congalton and Green 

(2019), who say that the number of samples per class should be adjusted based on the importance of 

the specific class for the project, there was considered more appropriate to employ the stratified 

random strategy. Nonetheless, it should be acknowledged that the results of the different accuracies 

can vary significantly depending on the selected strategy. 

Another noteworthy observation regarding the accuracy assessment is that the classes demonstrating 

higher accuracy are those that have been assigned a greater number of training samples. Therefore, 

to potentially improve these results, incorporating supplementary samples could be considered to 

enhance the classification accuracy outcomes. 

 

5.5  Land Cover Changes 

Examining the outcomes derived from the analysis of land cover changes during the two periods, it 

was not possible to determine the level of accuracy of these changes. These results were derived from 

the MLC maps, which showed low user's accuracies in the barren land class and user's accuracies 

inferior to 80 per cent in the water class in 2000 and 2022. Consequently, the reliability of changes 

involving these two classes was diminished. Furthermore, the land cover change from built-up land 

to green areas, comprising almost 20 square kilometres in 2000-2010 and around 33 square kilometres 

in 2010-2022, appears to be questionable.  

 

5.6  Supervised Classification Methods 

The study also considered the possibility of employing alternative classification methods to evaluate 

their potential for achieving improved land cover classification results. The original intention was to 

compare the performance of various supervised classification methods, including Random Forest and 
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Support Vector Machine (SVM), in addition to MLC. However, conducting these intended 

comparisons was not feasible due to time limitations. 
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6. Conclusion and Future Outlook 

The use of GIS and remote sensing techniques for land cover monitoring has been extensively 

demonstrated in many scholarly works, including Mauro, 2020, Shandas et al. (2017), Kumar et al. 

(2020), Nong et al. (2015) and Duan and Shibayama (2009), among numerous others. This approach 

has been established as a viable method. However, the exclusive reliance on spectral bands for 

mapping different land cover classes can be challenging, particularly in the case of certain classes, as 

could be seen in this case study, where the overall accuracy is around 80 per cent for the three images 

in the study and user and producer accuracies ranging from 73 to 90 per cent for most classes, Notably, 

the accuracy of the barren class produces unsatisfactory results. Based on these findings, it is deduced 

that incorporating additional data to the spectral bands could potentially enhance these outcomes. 

The application of NDVI classification as an approach for land cover classification, specifically in 

detecting class-specific thresholds, did not produce significant results, as observed from the accuracy 

assessment. Therefore, it is concluded that NDVI should be utilized as ancillary data for post-

classification enhancement rather than relying solely on it for classifying land cover classes. 

This study examined the land cover changes in Hanoi, using satellite data from 2000 to 2022. The 

results suggest that the urban areas in Hanoi have increased 24 square kilometres over the first ten 

years of study and 54 square kilometres in the next 12 years of study. The physical growth of Hanoi 

can be appreciated by analysing satellite images. Therefore the chosen method for detecting land 

cover changes proved to be suitable, as it enabled comprehensive visualization of changes across each 

land cover class and quantification of the spatial extent in square kilometres of transformations from 

one land cover category to another. 

For future outlook, it would be interesting to incorporate population census data as ancillary 

information to detect density growth and examine the expansion of built-up areas concerning 

population dynamics. Understanding the extent and density of population changes is crucial for 

effective urban planning. Integrating population census data would provide valuable insights into the 

spatial distribution of population growth, enabling a more comprehensive analysis of urban 

development patterns. 
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