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Chapter 1

Introduction

The threat of malware attacks is increasing year by year. The number of cyber attacks went up
by 38% in 2022 compared to the year before [1]. The amount of malware has been increasing by
between 80 million and 150 million samples per year since since 2015 [54]. Costs associated with
cyber crime is expected to hit over $10 trillion annually by 2025, up from $6 trillion in 2021 and $3
trillion in 2015 [36]. The cost associated with ransomware alone is expected to reach $265 billion by
2031 [39]. The most direct consequence when a company gets hit by ransomware is the financial loss
associated with being unable to operate their business normally for the period of the ransomware
attack, as well as the costs associated with restoring the systems and getting back up and running
normally again. Data may also be lost, and in the worst cases, a ransomware attack may even cost
lives by hitting medical equipment [52]. To combat this trend, security researchers need ways to
analyze new malware families in an automated manner, instead of relying solely on manually cre-
ating signatures to detect malware [38].

Malware can be analyzed statically, where the binary code is investigated without actually ex-
ecuting the code. This usually involves reverse engineering the file to find out what the malware
is actually doing. As opposed to static analysis, dynamic malware analysis work by executing the
sample and observing its behavior. Dynamic analysis can be performed in analysis environments,
such as virtual machines, sandboxes, emulators, hypervisor type-1 and bare-metal systems. On-
line sandboxes and dynamic analysis services exist, where users can upload a file that will then
be analyzed and an analysis report will be generated based on what the file did while under anal-
ysis. Examples of online dynamic malware analysis sandboxes include commercial options such
as any.run [14] and JoeSandbox [47], as well as online instances of open-source sandboxes such as
Cuckoo [35] and Cape [23]. Submitting file samples to these online sandboxes under the free tier,
will make the analysis report for the file publicly available for anyone to see. Therefore, thousands
(and for some sites millions) of public reports exist, where a lot of time and resources have been
spent on analyzing malware (and benign) samples. The public analysis reports contain valuable
information about malware behavior, but the data may not be utilized to its full extend, since it can
be lost in the huge amounts of data (ie. not a lot of people reach the analysis reports on page 898).

1



1.1. Initial Problem Statement 2

This project aims to investigate whether public analysis reports from multiple online sandboxes
can be collected in an automated manner, and be used to make a data set that can by used by other
researchers for future studies.
Once the malware analysis reports have been gathered, the goal is to see if it is possible to find any
interesting patterns in the data.

1.1 Initial Problem Statement

To help scope the project, an initial problem statement is formulated as follows:

How can public malware analysis reports be collected from multiple online sandboxes in an automated way,
and how can this data be used to find interesting patterns?

To further help guide the problem analysis, the following subquestions are formulated:

• How is malware defined, and how can it be classified?

• How can malware by analyzed?

• How can malware evade analysis?

• Which online public malware sandboxes exist, and how can their public data be utilized?

• What is the state of existing malware data sets?

A problem analysis based on the questions above, will be carried out in chapter 2.

1.2 Main Contributions

The first contribution of this work is to turn the public reports from two open-source public dy-
namic malware analysis sandboxes into a data set that can be used for further research. This is
accomplished by crawling Cuckoo [35] and Cape Sandbox [23], and parsing the data into an easy to
use format, like JSON. The data set can be updated by running the crawler again at a later point in
time, to ensure the data set can be updated as needed.

The other contribution is to use the gathered data set to analyze the differences in malware
evasion behavior across Cuckoo and Cape for the same malware samples. The purpose of this is
to investigate whether Cuckoo is more often evaded by malware, which may lead to incomplete
results due to the malware not exhibiting its true malicious intent.
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1.3 Limitations

A limitation of this study is that it only compares data from two sandboxes (Cuckoo and Cape), and
that it does not have ground-truth labels [84] for the gathered data. This means that we can not be
sure that a given malware sample did not manage to evade both Cuckoo and Cape sandbox. Also,
the data was gathered over a limited period of time, which may impact the results. This limitation
can be mitigated by running the study again at a later point in time and possibly over a longer time
period, to gather more data leading to more robust results.

1.4 Outline

The rest of the report is structured as follows. First, a problem analysis will be carried out in chapter
2 to analyze the existing literature and come up with a problem statement based on this. chapter
3 will then discuss the methodology and design of the project, as to which methods exist to solve
the problem identified in chapter 2, including which choices were made and why. Chapter 4 will
go over the actual Implementation of the solution based on chapter 3. The results will be presented
in chapter 5 and discussed in chapter 6. Finally, the project will be concluded in chapter 7.



Chapter 2

Problem Analysis

In this chapter a problem analysis will be performed based on the initial problem statement and
questions in section 1.1. First, in section 2.1 a definition of malware will be presented, along with
different ways to classify malware. Then in section 2.2 dynamic malware analysis and the different
analysis setups will be discussed. Section 2.3 will discuss the issue of malware evasion and how anti
evasion techniques are required to analyze evading malware in a dynamic analysis environment
like a sandbox. In section 2.4 online public malware sandboxes are discussed, both in terms of
previous studies using data from them as well as which specific sandboxes exist. Data privacy in
online malware sandboxes is also discussed in section 2.4. Existing malware data sets are reviewed
in section 2.5 along with the common pitfalls regarding data set quality. Based on the problem
analysis, the chapter ends with a problem statement in section 2.6.

2.1 Malware Definition and Classification

In this section malware will be defined, and common ways of classifying malware will be presented.
The challenges with malware labelling will also be discussed.

To work with malware and malware analysis, we first need a common understanding of what
malware is. In this project the definition from Or-Meir et al. [60] will be used. Other ways of
defining malware exist, but the definition by Or-Meir et al. was chosen due to it being from a recent
state of the art survey about dynamic malware analysis. Or-Meir et al. reviewed prior definitions
and found that they had too much focus on the malware developers’ intentions, which may not be
possible to know. Therefore, they come up with the following definition, which will be used in this
project:

“Malware is code running on a computerized system whose presence or behavior the
system administrators are unaware of; were the system administrators aware of the code
and its behavior, they would not permit it to run.

Malware compromises the confidentiality, integrity or the availability of the system
by exploiting existing vulnerabilities in a system or by creating new ones.”[60]

4



2.1. Malware Definition and Classification 5

Figure 2.1: Common ways to classify malware (as suggested by Or-Meir et al.[60]

Figure 2.1 shows common ways to classify malware as presented by Or-Meir et al., which is by
type, behavior or privilege. A type of malware will have some associated behaviors. A worm for
instance works by Spreading and Denying service, whereas a cryptominer works by Stealing com-
puting resources [60]. Malware is usually only categorized as a single type (e.g. Virus, Ransomware,
Cryptominer), but it can be associated with multiple behaviors. Therefore, categorizing by behavior
is more flexible, since any combination of behavior is possible. Defining the behaviors and type
a malware can have is a work in progress, since new behaviors and types may arise as the threat
landscape is evolving (e.g. the types Ransomware and Cryptominer as well as the behavior Stealing
computing resources are fairly recent additions to the taxonomy). Conversely, some behaviors (such
as Annoying the user) may become less common over time, and may end up disappearing entirely
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[60].

Figure 2.2: Protection rings illustrating the different layers of privilege in an operating system (inspired by Reid & Caelli
[69]).

Classifying a malware by privilege lets us know what protection ring the malware operates un-
der. Figure 2.2 (inspired by inspired by Reid & Caelli [69]) shows the different protection rings in
an operating system according to the level of privilege. Ring 3 (user mode) is the least privileged
mode and is where most applications run. Some operating systems, including Windows, do not
utilize Ring 1 and Ring 2. Ring 0 (kernel mode) is responsible for handling system resources and
have direct access to the CPU and physical devices attached to the computer. This mode is reserved
for the operating system kernel, as well as device drivers (since they need access to the hardware).
A malware running in kernel mode is called a rootkit, and can be very difficult to get rid of and de-
tect, since it has direct privileged control of everything happening in the system, and can therefore
hide and manifest itself very well. Even more privileges can be obtained if the malware gain access
to a Type 1 Hypervisor (even though this is not a real protection ring, it is sometimes referred to
as Ring -1 due to having more privileges than Ring 0). This will allow it to control the guest Vir-
tual Machines (VMs) running on the host, and take away root access from the installed operating
systems. Malware operating at this level is called a virtual machine-based rootkit (VMBR). Finally,
infecting the hardware directly, usually in the form of a malicious firmware update, will gain the
attacker the most privileges. Malware running at the hardware level can be referred to as a Ring -3
rootkit. Similar to Ring -1, Ring -3 is not a real protection ring, but it can be a useful abstraction



2.1. Malware Definition and Classification 7

when thinking about the different levels of privileges malware can have [60].
Any behavior can be paired with any protection ring. A malware may for instance work by Stealing
information in either user mode, kernel mode (rootkit) or at the hypervisor or hardware level [60].
Most malware run in user mode, since developing and deploying rootkits is complex and often un-
necessary, unless the attacker is an advanced persistent threat (APT) or highly skilled cybercriminals
targeting corporations [77].

2.1.1 Malware Labelling

Antivirus vendors label malware automatically based on static and dynamic features and signa-
tures. However, they don’t use the same taxonomy, which make it hard to compare labels between
different vendors. A malware may for instance be labelled by its type/class (virus, worm, etc.) or
the malware family it belongs to (WannaCry, Petya, etc.). It may also be labelled by file properties
(e.g. whether its packed or not, or the specific packer used like Themida). Additionally, it may be
labelled according to its behavior (Stealing information, Denying service, etc.). It can also simply be
labelled as malicious or benign [75].

Looking at a random sample on VirusTotal [85] shows an example of the many different ways
antivirus vendors label a sample. Some for instance label this sample as "Win32:Malware-gen", "Un-
safe" or "Malicious". One vendor labels it according to file properties, e.g. "AI:Packer.2C6AB60816".
Others label it according to behavior, e.g. "Trojan.DownLoader19.10684", "Trojan.Injector-.vl!c",
while others label it according to the malware family they think it belongs to, e.g. "Gen:Variant.-
Zusy.353316", "Trojan.Win32.Bandok", "Backdoor.Bandock.A". This shows that for the same malware
sample, a lot of different labels are generated, based on different (often closed) taxonomies, mak-
ing it hard to use for research purposes. Ways to standardize the taxonomy have been proposed
previously, for instance with the Malware Attribute Enumeration and Characterization (MAEC) by
Mitre [53]. This has had a low adoption rate though, and requires frequent updating due to having
a fixed set of tags. Another way to extract labels or tags is to use a tool like AVClass2 [75]. The
tool work by taking reports, for example from VirusTotal as input. Based on these reports, it will
extract relevant tags according to behavior, class, file properties and family. It works by taking
the input labels (e.g. "Trojan.DownLoader19.10684", "Backdoor.Bandock.A", "Win32:Malware-gen")
and extracting each individual token from them (eg. "trojan", "downloader", "backdoor", "bandock",
"win"). It will then run these tokens against a set of tagging rules to obtain a set of standardized
tags (e.g. "win" becomes "windows", generic tokens like "trojan" are removed). If a token has no
tagging rule it is kept as is. Finally, the tags are expanded based on the taxonomy (e.g. "bandock"
becomes "FAM:bandock", "windows" becomes "FILE:os:windows"). Based on the expanded tags,
AVClass2 is able to output a list of labels with confidence scores based on how many vendors la-
belled the sample as such. AVClass2 work by having a default taxonomy (that can be customized),
but supports unknown tags as well. This make it useful even for new malware families that it have
not encountered yet [75]. At the time of writing, the AVClass2 tool has 396 stars on Github [16],
436 citations on the paper from 2016 about the original version of the tool (AVClass) [74] and 55
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citations on the paper from 2020 about the current version of the tool (AVClass2) [75].

Takeaways

The purpose of this section was to gain an understanding of what malware is, and how the different
kinds of malware are usually classified according to type, behavior or privilege as shown in figure
2.1. We then moved on to discuss how these different ways of classifying malware can be a challenge
when trying to label malware samples, since different antivirus vendors have different ways of clas-
sifying and naming the malware. A tool like AVClass2 [75] can be used to help labelling malware,
by taking for example a VirusTotal report for a malware sample with labels from multiple antivirus
vendors, and then providing a standardized output of labels. The benefit of this is that the labels
are based on a confidence vote according to how many antivirus vendors labelled the malware with
this tag, and due to the open taxonomy the labels can be easily compared across samples.
Now that we understand what malware is, we can move on to investigate how it can be analyzed,
which will be discussed in section 2.2.

2.2 Dynamic Malware Analysis

In this section dynamic malware analysis will be investigated, along with the different ways to per-
form dynamic malware analysis.

Dynamic malware analysis means that the malware is executed in an analysis environment (such
as a sandbox or an emulator), and its behavior is then observed for instance by monitoring which
system calls it performs. This is opposed to static analysis, which relies on investigating the com-
piled binary code, without executing it [38].
A downside of relying only on static analysis for malware analysis is that the source code of the
malware is often not publicly available, which means that the binary has to be reverse engineered
to understand what it is doing. This is a complex task and becomes even harder if the malware
is packed (which is elaborated on in section 2.3). The malware may also rely on non-static values
such as the current system date and time, complicating the static analysis further. In addition to
this, malware authors can mislead the static analysis on purpose by using various obfuscation tech-
niques [38]. Dynamic malware analysis is immune to these effects, due to actually executing the
malware sample (causing it to unpack itself as discussed in section 2.3) and observing its behavior,
instead of relying solely on analyzing its binary code [60].
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Figure 2.3: Simplified example of a Windows API call sequence (inspired by Monnappa [57]).

Malware executed in user mode can not interact directly with the hardware in a system, but
instead needs to go through system calls (functions exported by other system processes) by either
calling them directly or through an API. In Windows, different levels of system APIs exist. The
Windows API is at the highest level, remains stable between releases and is well documented [57].
The Windows API usually calls the Windows Native API, which is not stable between releases and
is not documented (at least not officially) since it is meant to be called internally by the Windows
operating system itself. The Windows Native API performs a system call, which acts as the actual
gateway between user and kernel mode [38, 57]. A simplified example of the Windows API call
sequence is shown in figure 2.3 (inspired by Monnappa [57]). The figure shows an application ex-
ecuted in user mode, that wants to write a file to disk. It first calls the WriteFile() function in the
kernel32.dll, which is part of the Windows API level. The WriteFile() function in kernel32.dll then
calls the NtWriteFile() function in the ntdll.dll, that is part of the Windows Native API level. The
NtWriteFile() function in the ntdll.dll then performs a syscall in the System call level, which then
calls the actual NtWriteFile() function in the ntoskrnl.exe (kernel executable). A malicious actor may
not follow the usual call sequence (show in figure 2.3), but may instead call the Windows Native
Api or perform a system call directly [57].
Since malware executed in user mode needs to either call the Windows API or Windows Native API,
or invoke a system call to interact with and perform actions in the infected system, most dynamic
analysis tools work by monitoring and recording the the calls performed by the malware while it
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is executed. By analyzing the parameters passed to these functions, it is possible to group similar
calls and help the analyst in understanding what actions the malware has performed [38].

A dynamic malware analysis framework consists of the following components: The malware
sample, the hardware and operating system, and the analysis tool used [60]. There are different im-
plementation strategies of a dynamic malware analysis system. This involves the choice of whether
to run the analysis component in user or kernel mode, as well as whether to perform the analysis in
an emulator, VM, on bare metal or in a type 1 hypervisor. Additionally, it should be decided what
level of internet access the malware should have (if any) [38].

Figure 2.4: Cape sandbox architecture [21].

A common way to analyze malware dynamically is to use a sandbox. A sandbox may consist of
a VM in which the malware is executed in an isolated environment, as well as a host that gathers
the results and generates a report after the analysis is done. For the host to be able to see what the
malware is doing inside the guest VM, a component can be deployed inside the guest VM that then
reports back to the host via a virtual network. This is how both Cuckoo Sandbox and Cape Sandbox
work [33, 25], as illustrated in figure 2.4
Another setup for dynamic malware analysis sandboxes is to use Virtual Machine Introspection
(VMI). In this case there is no analysis component inside the guest VM itself, but rather a kernel
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driver is usually deployed to the guest kernel. This driver can then by queried from outside the
guest VM to get information on how the malware is affecting the system [60]. An example of a
sandbox using the VMI setup is Drakvuf [51].

Takeaways

In this section the concept of dynamic malware analysis was presented, along with the benefits it
has over static analysis. Different dynamic malware analysis setups were discussed, including the
setup sandboxes like Cuckoo and Cape use.

2.3 Malware Evasion

In this section, malware evasion techniques deployed by malware authors to avoid analysis will be
investigated. Anti malware evasion techniques used by sandboxes to counteract dynamic malware
evasion will also be discussed.

Malware evasion techniques and anti evasion techniques is an ongoing battle between malware
authors and malware analysts. Malware creators do not like to have their malware analyzed, since
the malware rely on not being detected to carry out its job. If the malware is detected, it will usually
be removed from the infected system, before it is able to perform its malicious actions. Therefore,
malware authors employ different techniques for evading analysis [38]. An example of malware
evasion is using a packer to obfuscate or encrypt the malware binary, making it harder to detect
with static signatures, since the binary will look different when encrypted, even though the code is
actually the same when unpacked. This is mostly a problem when analyzing the binary statically,
since it should unpack it itself before running as usual when being executed in a dynamic analysis
environment [38].
A commonly used technique to detect when a malware sample has finished its unpacking routine,
is to enforce a “write xor execute” policy. This is done in three steps. First, the memory pages of
the analyzed binary are marked as executable and read-only. This makes it possible to know when
the binary begins to unpack itself, since it will then try to write to a memory page, resulting in a
page fault that can then be caught by the analysis component. The page permissions will then be
changed to read-/write-only, allowing the binary to continue the unpacking process. Once done
unpacking, the malware will try to execute the unpacked binary. Doing so will result in another
page fault (since the page permissions were changed to read-/write only). This indicates to the
analyzing program that the malware has finished unpacking, and also gives the entrypoint for the
unpacked binary. This technique will work even if a binary is packed recursively using different
packer algorithms [38].

Malware evasion techniques can be broadly categorized into two main categories as suggested
by Afianian et al. [3], manual dynamic analysis evasion (anti-debugging) and automated dynamic
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analysis evasion (anti-sandbox). Since this project is about automated dynamic malware analysis us-
ing sandboxes, this category was explored further. The automated category consists of the following
subcategories:

• Detection-Dependent

– Fingerprinting

– Reverse Turing Test

– Targeted

• Detection-Independent

– Stalling

– Trigger-based

– Fileless (AVT) attacks

[3]

The detection-dependent techniques mean that the malware tries to identify the environment
it is running in and changes its behavior based on this detection. The three types of detection-
dependent techniques, are explained below.

Fingerprinting is a common evasion technique used by malware to detect that is running in
an analysis environment, and then change its behavior accordingly to avoid revealing its malicious
behavior. Fingerprinting works by the malware looking for specific artifacts (such as files, drivers,
registry keys, hardware, installed applications) or other signs of being in a virtualized environment
such as detecting hooks used by the analysis system [3]. The malware can also check the CPU per-
formance counters, to check if extra CPU cycles have been spent, indicating that the malware might
be under analysis [38]. Anti malware evasion techniques should be used by sandboxes to counteract
fingerprinting. One way of doing this is by maintaining shadow copies of the state of for example
the memory page protection settings or the EFLAGS register (that is commonly used to set the trap
flag to hook into the malware’s behavior while analyzing it). By maintaining shadow versions of im-
portant settings and registers, the malware analysis environment can return the values the malware
expects, and thereby conceal the true values of said settings or registers, so that the malware can
not use these to determine that it is currently under analysis [38]. A similar technique can be used
for the Windows APIs, so if the malware for instance makes a call to the Windows API to return
information about the CPU, username of the system or similar values that can be used to fingerprint
the environment, the analysis system should return a random value the first time a specific value
is queried, and then store the value so the same value can be returned again on subsequent calls [19].

The Reverse Turing Test technique is used by malware to detect human user input, such as
mouse movement, clicks and keyboard strokes. If no input is detected at all, the malware assumes
that it is not in a real system, since on a real system a human user would eventually interact with
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the mouse or keyboard. Even if the analysis environment simulate human input, such as mouse
movement, it is often still possible for malware to detect that it is not caused by a real user, for
example by looking at the speed at which the mouse pointer moves [3].

The Targeted evasion technique is similar to fingerprinting in the sense that it tries to detect a
specific environment. However, as opposed to fingerprinting where the intent is to detect and evade
an analysis environment, the intent of targeted attacks is to detect a specific target and only execute
the malicious behavior if that target is present. The first known malware to use this technique is
Stuxnet, that spread like a worm but stayed dormant until a specific industrial control system was
reached [3].

The detection-independent techniques are not dependent on the malware detecting the envi-
ronment it is running in, since these type of evasion techniques will be employed by the malware
no matter what environment it is running in. The 3 types of detection-independent techniques are
explained below.

The Stalling technique tries to exploit the fact that automated analysis is usually limited by
time (eg. the analysis stops after 5 minutes). To exploit this fact, some malware authors made their
malware sleep for a long period of time to avoid analysis. Sandbox developers mitigated this by
skipping these long periods of sleep, however, this resulted in malware developers finding more
advanced stalling techniques, such as checking if execution has been accelerated by sleep skipping.
Another form of stalling is to perform operations that take a long period of time, such as writing
huge amounts of random data to memory, or encrypt a payload with a weak encryption key and
then brute-force it while executing. These active forms of stalling has the benefit that the malware
never actually sleeps, making it harder to detect that it is doing something irrelevant to stall the
time. Furthermore, the analysis system may run out of resources (such as memory) while perform-
ing these stalling operations, which may make the analysis system unresponsive [3].

Trigger-based techniques, also commonly referred to as ”logic bombs“ is a way for malware
to stay unnoticed until a certain event triggers them. Logic bombs can be both time based (ie.
the malware will only execute once the system reaches a specific time/date), or the trigger can be
network-based, such as waiting for a command from a Command and Control (C&C) server. The
command from the C&C server can even contain the encryption key to unpack the malware. Other
events, such as the user pressing a given number of keys, can also be used to trigger the malware.
For this reason, malware sandboxes should also emulate user input (such as keyboard presses and
mouse movement/clicks) [38, 3].

Fileless Malware is a technique where an exploit in the operating system or browser is used to
inject the malware payload directly into the memory of the victim system, without the use of a file.
The analysis evasion in this technique lay in the fact that fileless malware is often not exposed to
dynamic analysis, since most sandboxes involve submitting a file to analyze [3].
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Programs have been developed to show how malware can succeed in evading an analysis en-
vironment, such as anticuckoo [9] that is able to utilize the fingerprinting technique to detect the
hooks used by Cuckoo. Pafish [61] is another application that can detect whether it is under analysis
by using both fingerprinting and reverse turing tests (such as mouse movement). Al-Khaser [4] is
similar to Pafish but check for even more evasion techniques.

Takeaways

Different malware evasion techniques as well as anti malware evasion techniques were discussed in
this section. A framework for classifying malware evasion behavior in automated dynamic analysis
environments by Afianian et al. [3] were presented. It is crucial for a malware analysis sandbox
to implement anti malware evasion strategies, to trick the evading malware to run and exhibit its
true malicious behavior even while under analysis. If the malware manages to detect and evade the
analysis environment, it will not show its true malicious intents, which would lead to misleading
results in the analysis report generated by the sandbox. Programs like anticukoo [9], Pafish [61]
and Al-Khaser [4] can be useful to test whether an analysis environment (such as a sandbox) is
detectable by some of the techniques commonly used by malware to evade analysis.

2.4 Online Public Malware Sandboxes

In this section, studies that has used data from online public malware sandboxes will be investi-
gated. Furthermore, open source and commercial public online sandboxes will be discussed. Finally,
the privacy of the data present in online malware sandboxes will be looked into.

Only a few studies have investigated the data collected by public malware dynamic analysis
sandboxes. The work by Graziano et al. [41], shows how the data generated by public malware
sandboxes can be used for analyzing the malware development process done by malware authors.
In the experiment they used samples collected from the Anubis sandbox [13] from 2006 to 2013.
Based on the premises that the sample must have been submitted to the sandbox before being ob-
served in a real system, and that it had to be manually submitted by an individual user, the data set
was reduced to only include relevant samples.
The initial data set of around 32 million samples, was filtered down to around 520,000 by only
looking at the samples submitted by individual users, and removing samples that were part of a
previous batch submission. The samples were then filtered further by first checking whether they
were known by Symantec, and then Virustotal. This process reduced the data set to around 214,000.
Finally, non-executable files and packed binaries were removed from the data set. The authors state
that even though most of the features would work on packed binaries as well, they decided to re-
move the packed binaries to make it easier to verify and double check their results. This resulted in
a final data set of 121,856 samples submitted by 68,250 distinct IP addresses.
The samples were then clustered based on similarities in the identified features. Based on the clus-
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tering of similar malware samples, and by looking at the compile and submission time of similar
samples, the authors were able to identify timelines of development of a particular malware sample.

Interestingly, the study [41] showed that multiple targeted malware attacks (including Stuxnet)
were submitted to the sandbox months (some even years) before being used for an attack and ob-
served in the wild. This indicates that the authors of the different malware samples used the public
sandbox to develop and test their samples (for example while implementing evasion techniques),
a long time before releasing the malware into the wild. Had researchers been aware of this, they
would have had better time to analyze and come up with defensive strategies for these particular
malware families.

2.4.1 Existing Online Public Malware Sandboxes

Cuckoo Sandbox was investigated, due to it being open-source and well known within the academic
community. The newest version of Cuckoo Sandbox (2.07) was released in June 2019, and it has not
been actively maintained since [31]. In spite of this, Cuckoo still seems to be widely used by the
research community. This is likely a problem due to the malware evasion techniques constantly
evolving (as discussed in section 2.3), which make the results generated by Cuckoo at risk of being
partially invalid if some malware samples manages to evade the sandbox.
Cape sandbox [25] is another open source sandbox that is originally forked from Cuckoo and adds
(among other features) anti-evasion techniques to the sandbox. Additionally, it is still actively main-
tained (at the time of writing) [25].

A Google Scholar search for "cuckoo sandbox malware analysis" for papers published from 2020
onwards, returns 1180 results (as of 28/03-2023). A similar search for "cape sandbox malware anal-
ysis" returns 64 results. This is an indication that Cuckoo is still widely preferred by researchers.
Looking at how many samples have been submitted to the public online version of Cuckoo [35]
over a 24 hour period (22/03-2023 14:40 - 23/03-2023 14:40), the number is around 3660, whereas
for Cape [23] that same number is 360, meaning that the online instance of Cuckoo had 10x as many
samples submitted for analysis in the time period than Cape. This further points to Cuckoo still
being the preferred sandbox of choice for many researchers. A possible explanation for this is that
the online version of Cape requires a user account to be activated by the website admin, before it is
possible to upload samples to the sandbox.

Public online sandboxes generate a lot of publicly available malware behavioral data in the
form of reports, but the data is not in a format that is easily available to perform further analysis
on, since the analyst has to look through or download reports for each sample manually. Therefore,
a lot of potentially valuable data and insight from these reports may not be utilized to its full extend.
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Commercial Online Public Malware Sandboxes

Commercial public sandboxes such as JoeSandbox [47], any.run [14], tria.ge [81], Intezer Analyze
[46] and Hybrid Analysis [44] were also considered, however, they all had terms of service (ToS)
stating that all data published on their websites are copyrighted and may not be published by others.
A study by Nappa et al. used data from commercial sandboxes, but had to anonymize the data and
the sandbox to avoid violating any ToS [59]. Anonymizing the data from commercial sandboxes
were also considered for this study, to be able to compare reports from more sandboxes. Especially
reports from JoeSandbox could have been interesting to include in this project, since they offer
bare-metal dynamic analysis of malware, which make the analysis environment close to impossible
to detect and thereby evade by malware. However, including data from commercial sandboxes
would compromise the reproducibility of the study (since the data and sandbox would have to be
anonymized), and it was therefore chosen to stick with open source sandboxes (e.g. Cuckoo and
Cape).

2.4.2 Online Public Malware Sandbox Data Privacy

Weathersby did a recent study [86] on an online public malware analysis service to check whether
benign PDF files uploaded to the service contained Personally Identifiable Information (PII). For
example, one could imagine that a user receives a PDF file that supposedly comes from their doctor
(e.g. blood sample results), or a letter from a lawyer stating that they need to go to court. The
user wants to make sure that the PDF file is benign and does not contain any malware. The file
is therefore uploaded to an online public malware analysis service to analyze it. The result of
the analysis may show that the file is benign. However, since the analysis report (including the
PDF file) is now publicly available at the malware analysis service, the user may unknowingly
have shared personal information about themselves such as their name, Social Security Number,
address, phone number, or other information like that they have to go court at a specific date. The
study by Weathersby [86] found that 81% of the analyzed files contained some sort of PII, however,
the majority of this information was in the form of the author name in the PDF metadata. It was
therefore concluded that the impact of the presence of PII in online malware sandboxes is limited,
since only a small percentage of the analyzed samples contained sensitive information beyond the
authors’ names [86].

Takeaways

There is not a lot of studies that have used the behavioral reports generated by public malware
sandboxes in their analysis. This may be due to the cumbersome process involved with download-
ing a large amount of reports, and then transforming those reports into a data set that can be used
for malware analysis. Graziano et al. [41] showed one way of using data from a public malware
sandbox to detect patterns in the malware development process of malware authors. Regarding
malware sandboxes, it was found that Cuckoo Sandbox still seem to be widely used by researchers,
even though it has not been actively maintained since 2019, which may be a problem in terms of
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Name Year Published Size Behavioral Features
EMBER2018 [8] 2018 1,000,000 No
MOTIF [48] 2022 3,095 No
Malrec [76] 2018 66,301 Yes
Mal-API-2019 [27] 2019 7,107 Yes
RanSAP [42] 2022 12 Yes
Behavioural Reports of Multi-Stage Malware [26] 2023 8,087 Yes
Avast-CTU Public CAPE Dataset [18] 2022 48,976 Yes
A Quest for Best [56] 2019 273 Yes

Table 2.1: Recently published malware data sets.

malware evasion. An actively maintained fork of Cuckoo Sandbox that introduces anti evasion
techniques is Cape Sandbox. Investigating whether Cuckoo Sandbox is evaded more often than
Cape Sandbox could be interesting, to see whether researchers should move on to use Cape instead
of Cuckoo to minimize the amount of malware samples getting evaded in their analysis. Finally,
a study by Weathersby [86] investigated whether PII is present in benign files uploaded to online
malware sandboxes and found that the presence of sensitive personal information is limited, and
mainly consists of the file authors’ names.

2.5 Malware Data Sets

In this section the state of existing malware data sets will be investigated.

Data sets are essential for malware analysts to develop mitigations for new malware threats.
Especially in terms of training and evaluating machine learning algorithms against malware. There
is a lack of public malware data sets containing behavioral features [84, 7, 52, 80, 55]. Malware data
sets should be kept up to date with new samples to stay relevant [87, 55, 82, 49]. Recent/updated
data sets are essential for the research community to be able to keep up with the quick pace of
malware development [52].

Table 2.1 shows recently published malware data sets, that were found as part of reviewing
the existing literature. Out of the data sets, Ember is by far the biggest with 1 million samples
in total. The Ember data set is based on extracting static features from Portable Executable (PE)
files. The authors of Ember also published source code that makes it easy for others to add new
samples to the data set, thereby making sure it can be updated to stay relevant [8]. MOTIF is made
by manually labelling around 3000 malware samples with ground truth labels based on reports
from large security vendors, and would therefore be very time consuming to update and add new
samples to (especially at a large scale). Malrec, Mal-API-2019, Behavioral Reports of Multi-Stage
Malware, Avast-CTU Public CAPE Dataset and A Quest for Best [76, 27, 26, 18, 56] requires setting
up a sandbox locally to execute samples and add new data based on the analysis performed which
can also be very time consuming. RanSAP [42] is focused on Ransomware specifically and involves
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setting up a type 1 hypervisor with an unpublished function, which makes it unfeasible for other
researchers to do. To summarize, most of the recently published malware data sets containing
behavioral features are either small or time and resource demanding to keep up to date.

2.5.1 Malware Data Set Quality

In the survey on dynamic malware analysis by Omir et al. [60], the data sets used in the surveyed
studies are compared. The comparison shows that most of the studies used small data sets for
evaluating their findings. 14 out of 29 studies used data sets with under 100 samples in total
(malware and benign). The two biggest data sets used had around 115.000 and 25.000 samples
respectively (all malicious), whereas the data sets in the rest of the studies had less than 7000
samples. The authors state that ideally benign files should be included in the malware data sets
in a ratio close to reality, to make it possible to evaluate the false-positive rate in projects using
machine learning algorithms. They also state that most of the surveyed papers did not make their
source code open source, which they should do to enable the research community to benefit from
their findings [60]. Another survey on malware classification by Abusitta et al. [2] shows that 15
of the surveyed studies were not scalable due to using very small data sets. Smith et al. reviewed
existing open-source malware data sets used in machine learning, and found that there is a lack
of behavioral information (e.g. behavioral signatures) in the malware data sets used in machine
learning [80]. There is also of lack of recent behavioral data sets for ransomware analysis, even
though recent data sets are essential, since the quick development of the technology make old data
sets irrelevant (due to new threats continuously evolving) [52]. Missing up to date malware data
sets is also an issue for training machine learning classifiers used in Intrusion Detection Systems
(IDSs). Most of the IDSs are built on machine learning classifiers trained using data sets from 1999,
since no newer acceptable alternatives are publicly available [49].

Takeaways

In this section recent and previous malware data sets were investigated, and it was found that
most have the issues of being either small and/or very time consuming to keep up to date. Several
studies suggest that there is a lack of recent/updated public malware data sets containing behavioral
features for use in machine learning and malware analysis.

2.6 Problem Statement

How can the lack of recent malware data sets containing behavioral features be addressed, and how can it be
investigated whether the lack of updates to Cuckoo Sandbox is a problem?

Based on the problem analysis performed in this chapter, it was found that there is a lack of
updated malware data sets containing behavioral features. Many studies do not publish their data
sets, and the data sets that do get published are hard to add new malware samples to, to keep them
up to date. Therefore, the first aim of this project is to publish a malware data set with behavioral
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features, that can easily be updated to add data for new samples at a later point in time.

Another problem identified during the problem analysis, was that Cuckoo Sandbox still seem
to be the preferred sandbox within the academic community. This may be a problem, since it has
not been actively maintained since July 2019, and may therefore likely be evaded by malware more
often than a sandbox with anti evasion techniques in place that are actively updated. The second
aim of this project is therefore to investigate whether Cuckoo Sandbox is being evaded more often
than Cape Sandbox by comparing analysis reports for the same samples. The objective of this is
to investigate whether researchers should consider using another sandbox than Cuckoo when ana-
lyzing malware dynamically, to avoid their results being partially wrong due to malware evading
analysis.

To help guide the research, the project aims to answer the following research questions:

• RQ1: How can a behavioral malware data set be created, that can be used for future research?

• RQ2: How can a behavioral malware data set be continuously updated in an easy way?

• RQ3: How can it be investigated whether Cuckoo Sandbox is evaded more often by malware compared
to an actively maintained sandbox, such as Cape?



Chapter 3

Methodology and Design

This chapter discusses the methodology and design choices made to carry out this project. It will
start off more broadly, exploring the different possible ways to approach the work and answer the
research questions formulated in section 2.6. It will then get more specific into which approaches
was chosen, what design choices were made and why.

First, a problem analysis was conducted in chapter 2 to investigate the literature within the area
of dynamic malware analysis, and to find out what challenges could benefit from further analy-
sis. The problem analysis was done by reviewing existing literature based on the areas defined in
the initial problem statement in section 1.1. Google Scholar was linked with the Aalborg University
Library (AUB) and used to find literature [40]. Keywords such as ”dynamic malware analysis“, ”dy-
namic malware evasion” and ”online malware sandbox“ were used, and the literature was deemed
relevant based on its title, abstract and conclusion. The age of the publication was also considered,
as in some cases newer, updated work was available. The number of citations a paper had was
used as an indicator of the paper’s impact in the field (ie. papers that were cited more times, were
deemed more impactful and therefore prioritized higher). Several iterations of finding literature
was done, as an attempt to find the most relevant literature for this project. In some cases, papers
were also found by being mentioned in other papers (such as in a survey).

3.1 Lack of data sets

As mentioned in the problem statement (see section 2.6), there is a need for updated data sets con-
taining behavioral features within the malware research community. Because of this, many studies
produce their own data sets, but they are often quite small and do not always get published. When
a large data set do get published, like Malrec [76], it soon becomes obsolete due to the fast pace of
malware development. Therefore, one of the research aims of this study is to provide a large data
set, that can easily be updated when new data is needed. This is similar to what Ember [8] did for
static malware analysis. The authors provided a large data set (based on 1 million samples), as well
as the source code used to extract features from malware samples, enabling other researchers to add

20
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new data as needed.

To create a data set containing behavioral information of malware (and benign) samples, dif-
ferent approaches exist. One approach would be to generate the data yourself by executing and
analyzing the malware samples either in a local (private) sandbox (like Ijaz et al. [45]) or in a public
online sandbox, and then gather the results into a data set. This approach has the benefit that you
have full control over what data goes in to the data set, e.g. what malware samples are analyzed,
and if benign samples are analyzed as well (and if so, what the balance between malware/benign
samples should be). In the case of a local sandbox, we control what gets analyzed in the sandbox,
and can therefore be sure which samples are benign and which are not (provided that the samples
are labelled beforehand).
The downsides of this approach is that it requires a lot of time and resources. First of, the samples to
analyze would have to be selected and gathered from somewhere. Then the sandbox would have to
be set up and configured (if running it locally), which is not a trivial task and can be quite difficult
to get right. Making sure the sandbox is configured correctly with proper anti evasion techniques
can also be hard. Finally each sample would have to be ran and analyzed in the sandbox, before
processing the results. This would also mean that for other researchers to add new samples to the
data set, they would have to go through the same time consuming process. Using an online public
malware sandbox would get rid of some of this work, since the sandbox is already set up and usu-
ally configured with (at least some) anti evasion techniques. While using a public online sandbox,
we do not have full control over what gets uploaded and analyzed (since others can upload samples
to the sandbox as well), but we can still control what goes into the data set by only including the
samples we uploaded to the sandbox ourselves.

While it is possible to generate new malware behavioral data for a data set ourselves as men-
tioned above, another possibility is to use existing data. There are multiple ways of doing this. One
way is to download previously published data sets by other researchers and combine this into a
larger data set. The advantage of this approach would be that it is fairly easy to do, and does not
require much time or resources, since the hard work of gathering and processing the data has al-
ready been done by others. On the other hand, this approach would not really bring anything new
to the table, since the published data set would consist of a combination of other publicly available
data sets. Also, it would not be easy to keep up to date, since it would depend on other authors
publishing new data to include in the data set. Additionally, going with this approach would mean
less control regarding what the data set contains and the balance of different malware families as
well as benign samples.

Another approach of using existing malware behavioral data would be to find a way to utilize
the analysis reports that are generated and made publicly available by online malware sandboxes
like Cuckoo [35] and Cape Sandbox [25]. This approach would enable us to utilize the large amount
of public reports, where resources and time have already been spent on analyzing a lot of samples,
and turn those into a published data set to make it easier for the research community to use in their
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studies. Using a website’s API to download data would often be the preferred approach, since it is
often easier to get the data you want in a useable format, and at the same time you can be fairly
certain that you interact with the web server in the way intended by the developers. Many websites
also make use of API keys to monitor and limit the usage of their API, to make sure the server is
able to handle all the requests without getting overwhelmed. However, not all websites have APIs,
or want to expose them publicly, or they may not contain the information you need.
Another approach to obtain data for our own data set from a web site is by scraping it [88]. This
involves creating a small program, called a spider, that will then crawl the web site and extract the
needed information from it. The downside of this approach is that it can be slow, compared to
using an API, since additional data will often need to be downloaded, as the spider would interact
with the web server as if it was a real user browsing the web site. On the other hand APIs may be
rate limited, in which case using the API might actually be slower. Also, to extract the correct data,
a spider has to be written specifically for one particular website, since the structure of the data for
most web sites is unique. For instance to scrape elements from a website we might look for specific
HTML ids or classes, which may be something like "cuckoo.result.malware.1" for Cuckoo while for
the same data on Cape it could be something like "cape.result.malware23.1". The structure of the
data may also change at any point in time, which will result in breaking the spider until it has been
updated to handle the new structure [50]. The good thing is that scraping enables us to gather
exactly the data we need, as long as it is publicly available on the website. This means that if we are
able to find the data via a web browser, it should technically be possible to create a spider to extract
that data for us. There are a few caveats to this though, as protection mechanisms against web
crawlers exist, such as rate limiting and user agent checks. This will be elaborated on in chapter 4.

For this study I chose to use web scraping to gather data, since it enabled me to answer two of
my research questions (RQ1 and RQ2) defined in section 2.6 regarding creating and publishing a
large data set for further research that can easily be updated at a later point in time to include new
samples. As discussed above, none of the other solutions seemed viable for this, as they are hard
to keep up to date with new samples. Also, since a lot of resources have already been spent on
analyzing a lot of different malware samples in these sandboxes, it made sense to see if this existing
data could be utilized in a bigger context, and made more easily available for researchers needing
big data sets for their research experiments. Finally, I found it interesting to explore this way of
gathering data and the challenges and considerations that comes with it, which is elaborated upon
in chapter 4.

3.2 Cuckoo Sandbox Evasion

Another problem that was identified during the problem analysis is that it appears that Cuckoo
Sandbox is still being used a lot in behavioral analysis of malware samples even though it has not
been actively maintained since June 2019. This is very likely a problem since a lot of malware has
implemented evasion techniques, to make them able to evade analysis by sandboxes like Cuckoo.
Since the developers of malware come up with new evasion techniques in a continuous manner, the
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sandboxes used to analyze said malware need to implement and update anti evasion techniques
continuously to trick the malware into running even though it is being analyzed. If malware sam-
ples manage to evade the analysis environment successfully, the results obtained from the analysis
will only be partially valid, which put the entire research project at risk of leading to false con-
clusions. Due to the risk of incomplete results, researchers should be aware of how they use the
data set. Incomplete results (due to malware evasion) could lead to even more incomplete research
if other researchers blindly use and rely on the data set. Another aim of this research project is
therefore to investigate whether using an actively maintained open-source sandbox like Cape, leads
to more complete/correct results than using Cuckoo, due to better/more up to date handling of
malware evasion. In other words, the hypotheses is that malware may succeed in escaping Cuckoo
Sandbox more often than Cape Sandbox.

It is hard to find a measure that shows with certainty whether a malware sample managed to
escape analysis or not, but behavioral signatures can be used as an indicator. Behavioral signatures
are applied to the analysis results by both Cuckoo and Cape sandbox. These signatures help sim-
plify the analysis by identifying known behavioral patterns, such as network activity, file activity,
registry key activity or evasion behaviors. More specific signatures also exist, such as whether the
malware exhibits known behavior of ransomware, keyloggers, cryptominers, etc. In principle, more
signatures identified, should at least mean that more behavior/activity was identified from the sam-
ple [17]. So if one sandbox for example only reports 2 signatures, and the other sandbox reports
35 signatures for the exact same sample, it would indicate that the malware managed to escape the
first sandbox, at least partially. There is of course also the possibility that it manages to escape either
both sandboxes or neither, in which case it may be hard to conclude anything. Instead of simply
trying to evade analysis, there is also the possibility that some malware may trigger fake signatures
to confuse the malware analysis. So if the malware detects that it is in an analysis environment,
instead of sleeping, doing nothing or crashing the process (which would normally happen in mal-
ware evasion), it can change its behavior and perform other actions than its true malicious intent
to trick the analysis into thinking it is benign [17]. Though signatures are not a complete measure
of whether the malware managed to evade one or both sandboxes as discussed above, it should
give an indication as to whether there’s a pattern in one sandbox identifying more behaviors than
the other and thereby probably succeeding in analyzing evading malware more often. Therefore, I
chose to compare signatures between the two sandboxes, both on a general level and with specific
examples.

Another way to check how good a sandbox is at avoiding being detected (and thereby evaded)
by malware, is to use programs like Pafish [61], Al-Khaser [4] and anticuckoo [9] as discussed in
section 2.3. This will be done to give another indication of the sandboxes’ anti-evasion techniques.
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Figure 3.1: Overview of architecture.

3.3 Data Collection

The overall architecture of the data collection method is shown in figure 3.1. The open source python
scraping framework, Scrapy [72], was used to gather data from Cuckoo and Cape sandbox. Scrapy
was chosen as a tool due to it being an open source Python framework with a large community
and great documentation [71]. It is fairly easy to get started with, but at the same time very cus-
tomizable. Scrapy can be used both for making the requests to the website to get the unstructured
data, as well as (optionally) handling the parsing to structured data. Scrapy supports both built-in
and custom middleware, which makes it easy to handle things like scheduling, cookies, headers,
redirects, retrys etc..
Another common approach to scraping is to use the requests module for Python to handle the ac-
tual http requests to get the unstructured data from the web server and then use a parsing library
like Beautiful Soup to parse it. This approach would have meant additional work in the form of
handling scheduling of requests, download delays, retries, etc. manually, with no real benefit of
doing so. Scrapy can also be run with a state folder, which makes it possible for it to keep track of
which requests have already been made. This is handy if the crawling session gets interrupted for
whatever reason (server shuts down unexpectedly, an exception is raised etc.), since the session can
then easily be resumed without having to crawl the same pages twice. Since performance is already
very fast with Scrapy, and since I imposed a limit on the crawling rate myself to avoid overloading
the servers, there were no issues regarding performance either. Another programming language
could have been used as well, but since I was familiar with Python already, and provided it has a
very large active community with lots of documentation and examples, it made sense to stick with
that. Overall, while choosing another tool for scraping was certainly a possibility, I do not believe it
would have made a difference to the end results, since the gathered data would be the same.
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3.4 Publishing Data Set and Source Code

The data set gathered during this study will be published along with the source code used to gather
and process it. Both the "raw data" (e.g. the full Cuckoo reports in .json, and the HTML pages
from Cape), as well as the processed data containing the sample sha256 hash, the url the data was
obtained from (including the analysis task id), the date and time of when the analysis was com-
pleted as well as the behavioral signatures identified for the sample. This processed data set is a lot
smaller than the raw data set and therefore may be easier to work with. However, the downside is
of course that not all the data is present. This is why the raw data is published as well. In terms
of the data from Cuckoo this can be used directly, since it is already in .json format, whereas for
Cape the HTML will have to be processed first (as discussed in chapter 4). If researchers want to
use the reports for machine learning, an approach like the one presented by Darshan et al. [37] can
be used, where the Cuckoo json reports are converted to a machine learning friendly format. Utility
scripts are published as part of this project as well to help with processing the raw data. This way,
if features that are not in the processed data set is needed, it can be added by modifying the source
code of the scripts to include it, and processing the data again. This can be done without having to
crawl the websites again, as long as the needed data is in the published raw data.

To add new data in the form of new analysis reports to the data set, the spiders can be run again
at a later point in time. A list of already crawled pages will be published. This list can be used with
the Scrapy crawler to only crawl analysis reports for new malware samples that it has not scraped
data for already. This is elaborated upon in chapter 4.

3.5 Summary

In this chapter the methodology and design of this project was discussed. This was done by first
discussing the problems identified in the problem analysis and which approaches exist to solve
them. For answering RQ1 and RQ2 in this project I chose to create a data set based on existing mal-
ware behavior reports from online public malware sandboxes obtained by web scraping, since this
allows the data set to be easily updated in the future by running the scraper again when needed. To
answer RQ3, the amount of behavioral signatures identified by Cuckoo and Cape sandbox respec-
tively will be compared, to see if Cape consistently identify more signatures, which would indicate
that Cuckoo is evaded more often.



Chapter 4

Implementation

In this chapter the implementation of the solution proposed in chapter 3 will be presented. First,
the code made for collecting data for the data set will be discussed, then I will talk about the ethical
considerations to keep in mind when implementing a scraper, and finally the scripts used to analyze
the results will be presented.

The full source code made during the implementation can be downloaded at: https://github.
com/Villefrance/malware-web-scraper

The data was collected by scraping publicly available behavioral malware analysis reports from
two open-source online malware analysis sandboxes, Cuckoo and Cape sandbox.

The scraping was done by writing spiders for each website, to handle the differences in which
data is structured on the two sites. For Cuckoo it was possible to download the full analysis report
as .json, whereas for Cape this required an active user account, which I did not succeed in obtaining
for this study. I tried to create a user to get access to this feature as well as their API, but was met
with the message that the admin needs to activate new user accounts manually. Looking at their
Github repo reveals that the way to ask for user account activation is to ping them on Twitter [20]. I
did this, but did not receive a response, nor get my account activated (as of this writing). Looking at
previous comments from other users, it seems that they used to respond fairly quickly and activate
peoples accounts within a couple of days, but have since stopped responding to such requests (at
least for the time being). This left me with the option of scraping the publicly available HTML data
instead, and parse the relevant information to .json. Therefore, the data from Cuckoo contains more
information, since it was possible to download the full analysis reports directly as .json.

The crawler was run on a Virtual Machine (VM) in the research cloud environment at Aalborg
University, Claaudia [29]. This had the benefit of being able to run the crawler from a research
network. Additionally, the VM had 32 vCPU cores and 256GB RAM, which was especially useful
during the post-processing and analysis of the gathered data.
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4.1 Scraping Cuckoo

To be able to scrape Cuckoo [35], a few things had to be kept in mind. First, to even get a response
from the server, the user-agent needed to be set to something looking like a real browser. In this
project the user agent was set to "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36", which resembles the most recent version of
the Google Chrome browser on Windows at the time of writing. The user agent was chosen due to
being the most common at the time of writing [58].

4.1.1 Cuckoo Analysis Report Structure

Figure 4.1: Cuckoo recent analysis page.

To scrape the data we need from Cuckoo [35], we first need to figure out how the data is presented
and structured on the website. The "Recent" tab in the menu bar leads to /analysis, and shows
recently completed analysis tasks. Figure 4.1 shows the analysis task ids to the left, and it looks
like they are incremental, since the bottom task has the lowest id (4068382) and the most recently
completed task has the highest id (4068421). Some ids are skipped, for example it goes from id
4068383 to 4068388, which could be due to the analysis’ for the ids in between not being done yet
or they may have failed to run at all. Still, the general pattern is that the id increases for each new
analysis task. Clicking on a specific analysis task, reveals that the url structure includes the analysis
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id: /analysis/4068408/summary

The following subsections will discuss how behavioral malware data was scraped from Cuckoo
Sandbox [35]. An overview of the data flow can be seen in figure 4.2.

Figure 4.2: Cuckoo data flow.

4.1.2 Cuckoo Start Spider

Since the ids seem to be increasing for each new analysis task and the analysis id is included in
the url (as discussed in the previous sub-section), it should be possible to fetch the id from the
most recently completed task (which we suppose is the largest id, ie. the max id), and use this as a
starting point when fetching the analysis reports from Cuckoo. The max id can then be decreased
by 1 at a time to get previous analysis tasks.
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Figure 4.3: Cuckoo recent analysis page JavaScript code.

By investigating the HTML source code for the /analysis page, we can see that the analysis ids
are not directly present in the HTML. Instead the data (including the ids) is loaded via JavaScript
(as seen in figure 4.3). By default, Scrapy will just fetch the HTML page at the url provided by us,
and parse that. However, in this case we need it to actually render the JavaScript and wait for the
ids to load.
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Figure 4.4: cuckoo_start spider to fetch the max analysis id.

To render the JavaScript and wait for the analysis ids to load, the python plugin Playwright [64]
is used. Playwright has an integration with Scrapy [73] which makes it possible to integrate directly
into Scrapys workflow.
Figure 4.4 shows the source code for the CuckooStartSpider, that was made to fetch the max analysis
id from the recent analysis page (/analysis), and write it to a text file. On line 14 in the figure, we see
that the Playwright PageMethod "wait_for_selector" is used, which means that Playwright should
render the website in a browser, until the css selector we specified is present on the page. To find
the relevant element to wait for, the browser dev tools were used to inspect the page when fully
loaded as shown in figure 4.5.
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Figure 4.5: Cuckoo recent analysis page, using dev tools to find selector.

The element we want is the first analysis id in the table, as this represent the most recent analysis
(which has the highest id). This can be grabbed with the following selector "table#recent tbody tr
td strong". First, we specify that we’re looking for a table with the id "recent", then we’re just going
through the nested structure as shown in figure 4.5, until we reach the "strong" element, which
contains the actual id that we want to extract. Once the element appears on the page (ie. when the
JavaScript has finished rendering), the page is then passed to the parse function.

The parse function (lines 18-20 in figure 4.4) extracts the most recent analysis id by using the
selector identified in figure 4.5, and writes it to a file called "max_id_cuckoo.txt" for use as a starting
point by the CuckooSpider, which will be elaborated upon in section 4.1.3.
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4.1.3 Cuckoo Spider

Figure 4.6: Cuckoo export analysis page.

Cuckoo allows exporting analysis reports to JSON directly under the url /analysis/<id>/export. The
export analysis page contains a form (as seen in figure 4.6), where the user can select which files
they want to download. In this case we are only interested in the reports, so we deselect everything
else and press the download button. Using the browser dev tools network tab, we can see that
pressing the download button triggers a POST call to the same endpoint (/analysis/<id>/export),
with the form data containing a variable called csrfmiddlewaretoken, as well as one called dirs.
csrfmiddlewaretoken is used by the Django framework that Cuckoo’s web interface is built on to
protect against Cross Site Request Forgery (CSRF) [30].
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To download the JSON-report from Cuckoo, two requests were needed per analysis task (see
figures A.4 & A.5 in Appendix A). This is due to the way the site handles CSRF protection, by
generating and setting a csrfmiddleware token both in a cookie and as a hidden element in the form
that is submitted to get the actual file from the server [30]. Therefore, the first request to the server
will be a GET request that is used for two things. First, to check if an analysis task with the given
id exist (if not, the server will return 404 and no more requests will be made by the crawler for
that id). If the analysis task does exist, we will save the session and csrfmiddleware cookies, and
also set the csrfmiddleware token as part of the form data. This data is then used in addition to the
specification of which files we want to download from the server, in the form of setting the “dirs”
variable to “reports”. This call will return a .zip file containing the reports.json file that contains the
full analysis report in JSON.

4.1.4 Unzip Cuckoo reports and convert to single .json file

The script unzip_cuckoo_reports.py (see figure A.1 in Appendix A) was made to unzip the re-
ports.json files from the .zip files generated by the CuckooSpider. The output from running the
script will be one .json file for each analysis task, named after the analysis id (ie. 3999517.json).
The script convert_cuckoo_json_to_single_file.py (see figures A.2 & A.3 in Appendix A) takes the
analysis reports .json files (outputted by the unzip_cuckoo_reports.py script), and extracts the fol-
lowing information from each report, and saves it to a single json file (with one analysis task per
line):

sha256 sha256 hash of the analyzed file
(ie. 12013662c71da69de977c04cd7021f13a70cf7bed4ca6c82acbc100464d4b0ef)

sha1 sha1 hash of the analyzed file
(ie. 292559e94f1c04b7d0c65d4a01bbbc5dc1ff6f21)

md5 md5 hash of the analyzed file
(ie. eec5c6c219535fba3a0492ea8118b397)

analysis_url The url from which the analysis report was scraped, including the analysis id
(ie. https://cuckoo.cert.ee/analysis/3793297/)

completed_at Date and time when the analysis was completed (ie. 2022-12-26 09:50:49)

signatures List of behavioral signatures triggered by the analyzed sample (ie. port_scan, net-
work_cnc_http).

convert_cuckoo_json_to_single_file.py will skip analysis reports based on urls from Cuckoo, so
only the reports based on analyzing file samples are kept.
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4.2 Scraping Cape

Figure 4.7: Cape data flow.

The following subsection will discuss how behavioral malware data was scraped from Cape Sand-
box [23]. An overview of the data flow can be seen in figure 4.7.

Similarly to scraping Cuckoo, the user-agent needed to be set to something that looks like a
browser to be able to get a response from the server.

The Cape max id was fetched (by the cape_start spider, see figure A.6 in Appendix A) from the
recent analysis page (capesand-box.com/analysis), and written to a text file called max_id_cape.txt
(similarly to Cuckoo). The max id file was then used by the cape spider (see figures A.7 & A.8 in
Appendix A) as a starting point, and the analysis ids were decreased by 1 at a time to get previous
analysis tasks. Cape does not offer exporting of analysis reports in .json without being logged in to
the server as previously discussed in chapter 3. Therefore, the HTML pages were scraped instead
to get data from Cape. The parse method extracted md5, sha1, sha256, analysis_url, completed_at
and signatures to a .json with one line per analysis task. Besides the parsed data that was saved as
.json, the source in the form of the HTML file for each analysis task was also saved and included in
the data set. This enables extracting other data present in the HTML page without having to request
the pages of the already gathered analysis tasks from the server again. A spider called cape_local
(see figure A.9 & A.10 in Appendix A) was made to parse the local HTML files. It works similarly
to the cape spider, but with the HTML files being locally stored and without the download delays
discussed in section 4.3.

4.3 Ethical Considerations

Several precautions were taken to ensure that the websites scraped were impacted as little as pos-
sible by the scraping. A download delay was introduced using Scrapy’s AutoThrottle middleware
[15], to make sure the sites were not getting bombarded with requests, which in the worst case
might have brought them down (similarly to a DDoS attack). The minimum download delay was
set to 2 seconds, and the concurrent threads for each domain was to 1. This means that the crawler
would never send more than 1 requests every 2 seconds to the same domain/sandbox. Furthermore,
the AutoThrottle middleware would increase the download delay automatically based on how long
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the server took to respond to each request (latency) [15]. At one point, the Cuckoo website took 11
seconds to respond to a request, and the following requests were therefore delayed by 11 seconds
between each, since the AutoThrottlle algorithm calculates the delay as:

latency_from_previous_response/concurrent_threads_for_the_domain

[15] The download delay on the following requests are then calculated as an average between the
previous download delay and the target download delay, so the delay is gradually decreased when
the server starts responding with a status code of 200 in a normal latency again [15].

Additionally, CAPE sandbox has some rate limiting in place (using Cloudflare). This means, that
performing too many requests too fast to the server would result in a response with the http status
code of 429 Too Many Requests. Neither the AutoThrottle middleware or the Retry middleware built
in to Scrapy would honor these 429 status codes by slowing down. Therefore, a custom middleware
called TooManyRequestsRetryMiddleware was implemented to handle this (see figure A.11 in
Appendix A). Essentially, since this middleware replaces the existing Retry middleware, it first
checks if the status code of the response was 429. If yes, it tries to fetch the value in the “retry-
after” header. This is sent by the server to indicate when the client can start sending requests again
without hitting the rate limit [70]. If no “retry-after” header is found, it will instead use a default
delay of 60 seconds. This value was chosen since I never encountered a "retry-after" value over
60 seconds, suggesting that the rate limits in place may be implemented as a number of requests
allowed per minute.

Regarding the Cuckoo crawler that requires two requests (a GET and a POST) for each analysis,
the second (POST) request will only be made if the first (GET) request does not return 404 Not
Found. This prevents unnecessarily making additional requests to the server when not needed
thereby minimizing the load created.

Saving the CAPE analysis tasks HTML source locally was also done (as mentioned above) to be
able to add additionally data to the .json output, without having to bother the web server unneces-
sarily by downloading the same page twice.

4.4 Analyzing Results

To help analyze the results, several python scripts were made.

4.4.1 remove_duplicates.py

A script was made to find samples with more than one analysis report from the same sandbox (see
figures A.12, A.13 & A.14 in Appendix A). This was done by looking for each sample’s sha256 hash,
and count the amounts of reports based on that hash. If there were more than one report, the newest
report was kept and the older ones discarded. The resulting .json file (without duplicate reports)
were written to a new file and used for further analysis.
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4.4.2 check_same_hash.py

This script takes two .json files as input, one with Cuckoo reports, and one with Cape reports
(see figure A.22 in Appendix A). It then finds the samples that have an analysis report from both
sandboxes, by looking for its sha256 hash.

4.4.3 calculate_results_matching_hashes.py & calculate_results_single_sandbox.py

These scripts calculates some of the numbers (eg. average amount of signatures, different signa-
tures) used in the results table in chapter 5 (see figures A.15, A.16, A.17 & A.18 in Appendix A).

4.4.4 check_evasion_signature_from_repos.py

This script was used to generate the data used in table 5.3 (see figures A.19, A.20 & A.21 in Appendix
A). It filters the total amount of signatures down to those starting with given prefixes (ie. "antivm",
"antisandbox"), and then counts how many times each of those signatures were present in analysis
reports from Cuckoo and Cape respectively.

4.4.5 find_signature_only_in_one_sandbox.py

This script was made to find samples where a given signature was only present in either Cuckoo
analysis reports or the Cape analysis report (see figure A.23 in Appendix A). This was used to com-
pare reports and investigate some of the differences found in table 5.3.

4.5 Summary

In this chapter the implementation of scraping Cuckoo and Cape sandbox to gather analysis reports
for a data set was presented. Ethical considerations related to web scraping were also discussed,
and finally the scripts made for analyzing the results were presented.



Chapter 5

Results

In this chapter the results of the project are presented in relation to the three research questions
formulated in section 2.6.

To help answer RQ1 (How can a behavioral malware data set be created, that can be used for
future research?), a data set consisting of malware analysis reports from the online public sandboxes
Cuckoo [35] and Cape [23] have been gathered by scraping the sites as discussed in chapter 4.
The full data set created in this project can be downloaded from: https://nextcloud.ntp-event.
dk:8443/s/LtttWPzk6TzeKtw
To answer RQ2 (How can a behavioral malware data set be continuously updated in an easy way?)
the source code for the spiders has been published, along with the state files, so that new reports
can be added to the data set by crawling the sandboxes again.
The source code made as part of this project, can be downloaded at: https://github.com/Villefrance/
malware-web-scraper

Sandbox Total reports File reports Unique samples Avg. signatures Different signatures
Cuckoo [35] 537,951 516,193 273,603 2.81 271
Cape [23] 29,784 29,784 29,426 17.28 319

Table 5.1: Results for all analysis reports gathered by scraping Cuckoo [35] and Cape [23].

Table 5.1 shows the results for the full data set consisting of malware analysis reports from
Cuckoo [35] and Cape sandbox [23]. As the column Total reports shows, the amount of analysis
reports gathered from Cuckoo was over 500,000 more than from Cape. This was due to Cape not
having more reports available on their site at the time of writing. Cuckoo allows analysis of urls in-
stead of file samples [83]. The column File reports only include the analysis reports that were based
on analyzing file samples, which filtered the amount of Cuckoo reports from 537,951 to 516,193.
Cape does not offer url analysis, and therefore all the reports were based on analyzing files, and
the number of reports were therefore unchanged. Some samples were analyzed multiple times in
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the same sandbox, which resulted in multiple analysis reports for the same file hash. The Unique
samples column only counts each sample once. The column Avg. signatures shows a significant
difference between the average amount of signatures per analysis report in Cuckoo and Cape. The
Different signatures column shows the amount of different signatures present throughout the re-
ports for each sandbox. This is based on looking through all unique analysis reports and counting
each signature found once (ie. the signature antivirus_virustotal may be present in a lot of reports,
but is only counted once here to find out how many different signatures is represented in the re-
ports for each sandbox). Cuckoo has 449 different signatures available in total (when considering
the ’windows’ and ’network’ folder) in their Git repo [32], out of which 271 different signatures
were found in the unique Cuckoo reports. Cape has 465 signatures available in their Git repo [22],
out of which 319 were identified in the unique Cape reports.

To answer RQ3 (How can it be investigated whether Cuckoo Sandbox is evaded more often by
malware compared to an actively maintained sandbox, such as Cape?), the full data set was reduced
to only include reports for samples that were present in both the Cuckoo and Cape data. This was
done to make a more fair and direct comparison. The reduced data set was made by only including
the analysis reports concerning file samples (ie. Cuckoo url analysis reports were not included).
Furthermore, only one report for each sample (from each sandbox) were included. In case of mul-
tiple reports for the same sample hash, only the newest report was kept in the data set. Finally, the
sha256 sample hashes were compared between the two sandboxes’ data to find the file samples that
had an analysis report present in both the Cuckoo and the Cape data.

Sandbox
Matching sample

reports
Matching sample

avg. signatures
Cuckoo [35] 1,500 12.94
Cape [23] 1,500 17.22

Table 5.2: Subset of the full results, where both sandboxes have an analysis report for the same sample.

Table 5.2 shows the resulting numbers of the reduced data set. The column Matching sample
reports shows that 1500 file samples had an analysis report from both sandboxes. Based on these
1500 reports, the average number of signatures per report were 12.94 for Cuckoo as shown in column
Matching sample avg. signatures, which is a significant difference compared to the average of 2.81
seen in table 5.1. For Cape the average signatures for the matching samples reports were 17.22,
which is close to the average of 17.28 in table 5.1.

To help answer RQ3, I chose to look for signatures (based on Cuckoo and Cape’s signature repos
[32, 22]) where the filename of the signature started with antivm, which indicate behavior where
the malware tries to detect whether it is running in a virtualized environment, and antisandbox,
which indicate that the malware tries to detect whether it is running inside a sandbox [78]. These
signatures were chosen since they relate to malware’s evasion behavior when being analyzed in
sandboxes.
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Signature Cuckoo count Cape count
antivm_vbox_provname 1 3
antivm_vbox_window 1 1
antivm_vbox_keys 11 18
antivm_generic_bios 14 28
antivm_vmware_keys 3 3
antivm_vbox_files 4 7
antivm_generic_cpu 10 307
antivm_vbox_devices 1 1
antisandbox_mouse_hook 1 2
antivm_vmware_files 3 3
antisandbox_sleep 105 625
antivm_generic_disk 5 14
antisandbox_joe_anubis_files 1 1
antisandbox_unhook 21 18

Table 5.3: Evasion signatures in matching samples reports.

Tabel 5.3 shows the evasion related signature that were present at least once in analysis reports
from both Cuckoo and Cape. Generally, Cape identified the signatures more times, except some
cases where it identified the same amount as Cuckoo. Only the signature antisandbox_unhook
were identified more times in Cuckoo (21 times compared to Cape’s 18). There’s a few significant
differences between the amount of times a given signature was seen in one sandbox compared to
the other. For instance, the signature antivm_generic_cpu was seen in 10 Cuckoo reports compared
to 307 Cape reports (which is over 30 times as much). The signature antisandbox_sleep also has
quite a big difference with 105 Cuckoo reports against 625 Cape reports (around 6 times as much).
These differences are investigated in section 5.1.

5.1 Comparing Reports

In this section I will investigate the differences in the amount of times the signatures antivm_generic_cpu
and antisandbox_sleep were found in Cuckoo and Cape reports as seen in table 5.3.
While analyzing the results, I also stumbled upon another finding where the signature ransomware_extensions
was found 13 times at Cuckoo compared to 2 times at Cape. This is also discussed in this section.

5.1.1 antivm_generic_cpu

If we look at one of the samples (sha256: d0cc1ecb03997d41886914f7c78052b52d48c571067e016c8133-
afa158885350) where the signature antivm_generic_cpu is only present in the Cape analysis report,
we can see that Cuckoo has identified 7 signatures for the sample, whereas Cape has identified
30 signatures for the same sample (see figure B.1 in Appendix B). 5 of the 7 signatures found by
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Cuckoo relies on other services to identify the file as malicious (ie. VirusTotal, Irma, Suricata, Snort,
Yara). The two remaining Cuckoo signatures are raises_exception and applcation_raises_exception
which both indicate that the sample under analysis raised an unhandled exception and then crashed
the process [66]. For Cape, we can see that different evasion behaviors were detected, but it still
managed to identify the sample as using the CVE-2017-11882 Office exploit to exploit the equation
editor in Microsoft Office applications to download and execute an .exe file. It also shows that
private information from locally installed internet browsers and credentials from FTP clients were
harvested.

5.1.2 antisandbox_sleep

By comparing the antisandbox_sleep signature from Cuckoo [12] with the one from Cape [11], we
can see that Cuckoo triggers the signature when the total amount of seconds the sample tried to
sleep is 120 seconds or more, whereas for Cape the threshold is set to 250 seconds. We can also see
that both sandboxes base the signature on calls to the api NtDelayExection. Looking at how the two
sandboxes handle the sleep calls to NtDelayExecution in their respective monitors, we can see that
Cape is able to handle infinite sleep [43], whereas Cuckoo is not [28, 79].

5.1.3 ransomware_extensions

I looked at one of the samples (sha256: a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd2-
8f39e9430ea where the Cuckoo report has the signature ransomware_extensions and the Cape re-
port for the same sample does not (see figure B.2 in Appendix B). Looking at the full Cuckoo
analysis report for the sample (3890280.json) shows that the mark that triggered the signature was:
C:\Users\Administrator\AppData\Roaming \Mozilla\Firefox\Profiles\af61ph6j.default\parent.lock
(see figure B.3 in Appendix B). The file parent.lock appears in the Profile folder of Mozilla Fire-
fox. The file is used by the Mozilla Firefox browser to make sure only one running copy of the
application at a time can access a profile [65], and should therefore not be considered malicious or
associated with ransomware. The Cuckoo signature was triggered due to the file having the file
extension .lock [67], whereas the corresponding signature with the same name at Cape does not
trigger on the .lock extension [68].

5.2 Tests

5.2.1 Pafish

I uploaded Pafish [61] to Cuckoo [63] as another way to test the sandboxes’ anti-evasion behavior.
Pafish tries to detect whether it is running in a virtual environment by using some of the same
techniques that malware employs to evade analysis. When done analyzing, Pafish generates a
log file with the result, that can then be used to see with which methods (if any) it succeeded in
detecting the virtual machine. This is useful to get an indication as to which parameters malware
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may use to detect the sandbox and evade analysis. It was not possible for me to submit files to Cape,
since this required an active account (which I did not succeed in obtaining, as discussed in chapter
4). However, after uploading Pafish to Cuckoo, I used the sha256 hash to search for the sample on
Cape, and found that it had been uploaded by another user [62]. Comparing the Pafish log files
from Cuckoo (see figure B.4 in Appendix B) and Cape (see figure B.5 in Appendix B), showed that
Pafish detected Cuckoo on 11 parameters, compared to 3 parameters at Cape.

5.2.2 Al-Khaser

Al-Khaser [4] is an application that test different malware evasion techniques (similar to Pafish,
but using other techniques). I uploaded Al-Khaser to Cuckoo [6] and found a sample on Cape as
well [5], but as Al-Khaser did not produce a log file (like Pafish did), it was not possible to see the
resulting report as it was just shown in a CMD window (which I did not have access to, since I
was not able to interact directly VM during analysis, and no useful screenshots were taken by the
sandbox during analysis). However, it was still possible to compare the analysis reports generated
by Cuckoo and Cape. Cape detected 15 signatures for the sample, whereas Cuckoo detected 3.

5.2.3 anticuckoo.exe

The application anticuckoo [9] is able to detect Cuckoo’s usage of hooks into the certain Windows
functions. I uploaded anticuckoo to Cuckoo, and based on the screenshot from the analysis report
[10], we can see that the program succeeded in detecting several Cuckoo hooks. I tried to find an
upload of anticuckoo (both by file name and hash) on Cape, but did not succeed in doing so.

The results presented in this chapter, will be discussed in chapter 6, where the main findings
will also be highlighted.



Chapter 6

Discussion

In this chapter the results presented in chapter 5 will be discussed and interpreted. At the end of
the chapter, the main findings will be summarized and highlighted.

6.1 RQ1: How can a behavioral malware data set be created, that can be
used for future research?

This research question was answered by making a web scraper to scrape analysis reports from the
two open-source sandboxes, Cuckoo and Cape, and turn this into a data set that is published, so
it can be used by other researchers. The details of why scraping was chosen as a data gathering
approach is discussed in chapter 3, and the actual implementation of the solution is discussed in
chapter 4. Finally, the resulting data set is presented in chapter 5.

One could argue whether it is relevant to publish a data set containing a lot of analysis reports
from Cuckoo, when I at the same time argue that researchers should consider whether using Cuckoo
may be a problem in terms of malware evasion. I considered this, but came to the conclusion that
the data would still be useful as long as the potential problem of malware evasion is kept in mind.
For instance, it enables comparison with other sandboxes like Cape (or even commercial sandboxes)
to test whether the hypotheses still holds when tested on a larger scale. Even for the samples where
Cuckoo identify little (or no behavior) compared to Cape, it often classify the sample correctly as
malicious anyway, due to using data from external services such as VirusTotal [85]. This mean that
even if some (or all) behavior is missed by Cuckoo when analyzing a sample, it is at least still able
to show whether the sample is (likely) malicious or not. Therefore, analysis reports from Cuckoo
can still be useful, as long as this is kept in mind. Additionally, Cuckoo does have data for a lot of
samples that Cape does not (ie. Cuckoo had around 4 million reports at the time of writing, where
Cape only had about 30,000). A reason for this may be that Cuckoo is more well known within
the research community, but also that Cape requires a user to get activated by the website admin
to upload samples to the sandbox, which is not the case with Cuckoo (where everyone can upload
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samples anonymously). This is not a problem if Cape is set up and run locally, as the user then
has full control over the instance, but as discussed previously, setting up a sandbox like Cuckoo or
Cape locally can be a challenging and time consuming task and may not be feasible for everyone.
The data set is split up, so researchers can choose to use reports from only one of the sandboxes if
desired (either Cuckoo or Cape).

6.2 RQ2: How can a behavioral malware data set be continuously up-
dated in an easy way?

To answer this research question, the source code for the web scraper (discussed in chapter 4) has
been published (see chapter 5) along with the associated state folders, which contains files that
allows the scraper to know which analysis reports have already been crawled (as discussed in
section 3.3). This enables other researchers to re-run the software at a later point in time, to grab
new analysis reports from Cuckoo and Cape and add them to the data set in an easy way.

6.3 RQ3: How can it be investigated whether Cuckoo Sandbox is evaded
more often by malware compared to an actively maintained sandbox,
such as Cape?

It was hard to come up with a concluding answer for RQ3, since there is not a single measure or
value that shows that one sandbox is evaded more often than the other. However, to make a fair
comparison, I decided only to look at the reports from samples that had been analyzed by both
Cuckoo and Cape. This resulted in a subset of the full data set, consisting of 1500 samples (with an
analysis report from both Cuckoo and Cape) as shown in table 5.2. The amount of avg. signatures
shows that the analysis reports from Cape had 4.28 more signatures than Cuckoo on average. This
could indicate that Cape find more signatures than Cuckoo in general (possibly due to malware
evading Cuckoo more often), but it may also be due to Cuckoo analyzing more benign samples
(which result in a smaller amount of signatures).

The fact that Cape in general identified more evasion signatures as seen in table 5.3, further
indicates that Cuckoo is evaded more often.

The results regarding antivm_generic_cpu, suggests that the analyzed sample managed to evade
Cuckoo Sandbox but not Cape. Cape was able to identify the exploit used by the malware along
with a lot of its behavior, whereas the process crashed on Cuckoo, suggesting that it may have
detected the sandbox and therefore exited to hide its malicious behavior. Interestingly, the network
activity in the Cuckoo report shows no activity, but the Suricata and Snort rules raised detected a
(possibly malicious) .exe file download.
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The difference in the number of antisandbox_sleep signatures triggered by Cuckoo and Cape
was investigated by looking at the source code for the signature in each sandbox. This revealed
that the total amount of seconds the malware tried to sleep should be over 120 seconds for Cuckoo
to trigger the signature and over 250 seconds for Cape to do the same. This would suggest that
Cuckoo’s signature should be triggered more often, since the threshold is much lower. However,
since this was not the case, I had to dig deeper to find a possible explanation for the difference.
Both the signature from Cuckoo and Cape looks for the call NtDelayExecution to the Windows
native API, so to find out how they handle these calls, I looked at their respective monitors, since
they handle the hooking and monitoring part of the sandbox. The monitor for Cuckoo is called
Cuckoo Monitor [34], and Cape’s monitor is called Capemon [24]. Investing how the monitors
work, revealed that both sandboxes implement sleep skipping (to prevent malware from sleeping
for long periods of time when under analysis), however, Capemon also implemented functionality
for handling infinite sleep. The Cuckoo Monitor does not appear to have this functionality. A pos-
sible explanation of why Cape identified 6 times as many samples with sleep behavior compared to
Cuckoo, even though Cuckoo’s threshold is lower, could be due to the lack of handling of infinite
sleep in Cuckoo, which may result in malware successfully managing to evade the sandbox more
often.

Looking into the difference in the amount of the signature ransomware_extensions revealed that
Cuckoo trigger the signature on the file extension, whereas Cape does not. In the Cuckoo analysis
report for the analyzed sample, it looks like signature was triggered as a false positive, since the
file that triggered it was a benign file used by Mozilla Firefox to make sure only one instance of
the application is using a given profile at a time. This is an interesting finding, since it means that
a sandbox may not only fail to identify a malware’s behavior, it may also in some cases identify
benign behavior as malicious due to having false positives on some of its signatures.

Comparing the log files from Pafish between Cuckoo and Cape, revealed that Pafish detected
Cuckoo as a virtual environment on 9 parameters, whereas Cape was detected on 3 parameters.
This suggest that Cape is more robust against anti-analysis (evasion) techniques. However, it also
shows that it is still possible to detect Cape as well, and that there is still work to do by the devel-
opers to improve the anti-evasion techniques even further.

As I was not able to get the actual results from Al-Khaser, I compared the number of signatures
found by Cuckoo and Cape while analyzing the program instead. This showed that Cape identified
a lot more behavior than Cuckoo, suggesting that the program managed to evade (or at least hide
itself for) Cuckoo to a bigger extent.

anticuckoo.exe revealed that it is still possible to detect Cuckoo by the use of its hooks into the
Windows APIs. This is likely a problem, since it can be used by malware to detect that it is under
analysis. As it was not possible to obtain a similar result for Cape, we can not directly use this is
a comparison between the two. However, it does show another way for malware to detect Cuckoo,
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which mean more ways for malware to evade analysis in the sandbox.

6.4 Main findings

Based on the discussion of the results in this chapter, the main findings were:

• Scraping was used to gather a behavioral malware data set consisting of analysis reports from
Cuckoo and Cape sandbox. The resulting data set will be published for other researchers to
use.

• The published data set can be updated by running the scrapers again, along with the state
file to avoid collecting the same data from the servers twice. The source code for the scrapers,
along with the utility scripts used for unzipping the Cuckoo reports will be published as well.

• While it is hard to conclude that Cuckoo sandbox is evaded more often than Cape, there are
several indicators that this may be the case.

– The average amount of signatures is higher in Cape, suggesting that more malicious be-
havior is found on average, possibly due to Cuckoo being evaded more often by malware.

– Cape identified more evasion signatures, which further indicates that Cuckoo is evaded
more often.

– The comparison of reports between the sandboxes for the signatures antivm_generic_cpu
and antisandbox_sleep both suggest that Cuckoo was evaded more often than Cape.

– The tests with Pafish and Al-Khaser both showed that Cape was better at hiding itself
and detecting more anti-evasion behavior than Cuckoo.

– The anticuckoo.exe test showed that it is possible for malware to detect the presence of
Cuckoo via the hooks it makes into the Windows APIs, further suggesting that malware
may use this technique to evade the sandbox. It was not possible to find or upload this
sample to Cape, so a comparison between the two was not possible here.

• A false positive was found in a Cuckoo report based on the signature ransomware_extensions.
This could be interesting to investigate further to see if there are more cases of false positives,
and whether Cape has false positives as well.
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Conclusion

This project aimed to answer the following problem statement (as described in section 2.6):
How can the lack of recent malware data sets containing behavioral features be addressed, and
how can it be investigated whether the lack of updates to Cuckoo Sandbox is a problem?

The first part of the question concerning the lack of recent malware data sets containing be-
havioral features was addressed by creating spiders to crawl two online instances of open-source
sandboxes, Cuckoo and Cape. The data set is easily updated by running the crawlers again at a
later point in time to add analysis reports for new samples to the data set, without having to crawl
the already gathered reports again (thanks to a state file that keeps track of already seen requests).
I have made both the data set as well as the source code for the crawlers and utility scripts publicly
available for other researchers to use.

The second part of the problem statement regarding whether it is a problem that Cuckoo Sand-
box has not been updated since July 2019, was answered by comparing it to Cape sandbox in terms
of malware evasion behavior. While it was not possible to conclude for certain that Cuckoo sandbox
is evaded more often than Cape, several indications pointing in that direction were found, includ-
ing comparisons of the amount of signatures identified by each sandbox for the same samples, as
well as uploading different programs to the sandboxes that were able to report on the anti-evasion
behavior of the sandboxes. More research is needed to test this hypotheses on a larger scale, but
this project shows that Cuckoo was evaded in several cases, which in itself indicate a problem that
should be taken into account if using the sandbox for future research.

A signature triggered by Cuckoo (which was not triggered by Cape for the same sample), was
found to be a false positive. This should be investigated further in the future as to see whether this
is a general problem for Cuckoo, and whether it is occurring in a sandbox like Cape as well.

In this project the comparison between Cuckoo and Cape sandbox were done with the focus on
malware evasion behavior. In the future, it could also be interesting to compare the two sandboxes
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in general. For instance, whether one sandbox is better than the other for specific use cases, or
whether there is a pattern in what kind of malware is uploaded to which sandbox.

Labelling of the behavioral malware data set could also be useful to look into as future work,
for example by using a tool like AVClass2 with VirusTotal (as mentioned in section 2.1.1). This
would further strengthen the robustness of the data set, by providing standardized labels based on
multiple antivirus vendors.

My main contributions of this project consist of a large published data set containing behavioral
features that can be used for future research and easily updated with the published source code.
Additionally, a comparison between Cuckoo and Cape sandbox showed that Cuckoo is likely evaded
more often than Cape, although more research is needed to confirm this on a larger scale.
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Appendix: Implementation

A.1 Scraping

Figure A.1: unzip_cuckoo_reports.py: Utility script to unzip json reports from Cuckoo zip files.
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Figure A.2: convert_cuckoo_json_to_single_file.py: Utility script to convert json reports from Cuckoo to a single file (part
1).

Figure A.3: convert_cuckoo_json_to_single_file.py: Utility script to convert json reports from Cuckoo to a single file (part
2).
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Figure A.4: Cuckoo spider to fetch reports from cuckoo.cert.ee (part 1).

Figure A.5: Cuckoo spider to fetch reports from cuckoo.cert.ee (part 2).



A.1. Scraping 58

Figure A.6: cape_start spider to fetch the max analysis id.

Figure A.7: Cape spider to fetch reports from capesandbox.com (part 1).
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Figure A.8: Cape spider to fetch reports from capesandbox.com (part 2).

Figure A.9: Cape spider to parse locally stored HTML reports (part 1).
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Figure A.10: Cape spider to parse locally stored HTML reports (part 2).

Figure A.11: TooManyRequestsRetryMiddleware: Middleware to handle rate limiting gracefully on Cape.
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A.2 Analyzing Results

Figure A.12: remove_duplicates.py: Script to find samples with multiple analysis reports in the same sandbox (part 1).

Figure A.13: remove_duplicates.py: Script to find samples with multiple analysis reports in the same sandbox (part 2).
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Figure A.14: remove_duplicates.py: Script to find samples with multiple analysis reports in the same sandbox (part 3).

Figure A.15: calculate_results_matching_hashes.py: Script to calculate results used in matching hashes results table (part
1).
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Figure A.16: calculate_results_matching_hashes.py: Script to calculate results used in matching hashes results table (part
2).

Figure A.17: calculate_results_matching_hashes.py: Script to calculate results used in matching hashes results table (part
3).
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Figure A.18: calculate_results_single_sandbox.py: Script to calculate results used in full results table.

Figure A.19: check_evasion_signatures_from_repo.py: Script to find evasion signatures in reports from both sandboxes
(part 1).
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Figure A.20: check_evasion_signatures_from_repo.py: Script to find evasion signatures in reports from both sandboxes
(part 2).

Figure A.21: check_evasion_signatures_from_repo.py: Script to find evasion signatures in reports from both sandboxes
(part 3).
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Figure A.22: check_same_hash.py: Script to find samples where analysis reports are present in both sandboxes.
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Figure A.23: find_signature_only_in_one_sandbox.py: Script to find samples where a signature is only present in one
sandbox’s analysis report.



Appendix B

Appendix: Results

B.1 Comparing Reports

Figure B.1: Signatures found for sample d0cc1ecb03997d41886914f7c78052b52d48c571067e016c8133afa158885350 in
Cuckoo and Cape.
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Figure B.2: Signatures found for sample a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea in
Cuckoo and Cape.

Figure B.3: Snippet of the full analysis report for sample a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea
in Cuckoo, showing what file triggered the signature ransomware_extensions.
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B.2 Tests

Figure B.4: Pafish log from Cuckoo.

Figure B.5: Pafish log from Cape.
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