AALBORG UNIVERSITY
STUDENT REPORT

Title:
Applied Game Balancing Techniques: Development of Script-
able Object Table in Unity

Theme:
Master’s Thesis

Project Period:
Spring Semester 2023

Project Group:
Enlit Games 1

Participant(s):
Kristinn Bragi Gardarsson
Simonas Ceponis

Supervisor(s):
Olga Timc¢enko

Page Numbers: 29]

Date of Completion:
May 25, 2023

Copyright © 2023. This report and/or appended material may not be partly
or completely published or copied without prior written approval from the
authors. Neither may the contents be used for commercial purposes without

this written approval.

Aalborg University Copenhagen
Frederikskaj 12,

DK-2450 Copenhagen SV

Semester Coordinator: Stefania Serafin
Secretary: Christine Pedersen

Abstract:

This study presents an in-depth investigation into game
balancing practices among game designers, with a particular
focus on understanding the challenges faced and strategies
employed in the balancing process. The study evaluates our
tool Scriptable Object Table as a potential aid for designers
when balancing their game. As a step for developing the
tool, we made the game Web of Lies to understand the needs
for balancing games. Through a series of interviews, the
research reveals insightful feedback regarding its scalability,
integration, extendibility, user experience, and functionality.
The study’s findings underline the potential value of imple-
menting features that support designers by facilitating an
enhanced iteration process. We found that users put emphasis
on control of how they view the data, changing data quickly,
tracking the changes, and showing effect of the changes.
Despite certain limitations, the study provides a valuable
foundation for future research and tool development in the
domain of game balancing.

Applied Game Balancing Techniques: Development
of Scriptable Object Table 1n Unity

Kristinn Bragi Gardarsson
Aalborg University Copenhagen
kgardal8 @student.aau.dk

Abstract—This study presents an in-depth investigation into
game balancing practices among game designers, with a partic-
ular focus on understanding the challenges faced and strategies
employed in the balancing process. The study evaluates our
tool Scriptable Object Table as a potential aid for designers
when balancing their game. As a step for developing the tool,
we made the game Web of Lies to understand the needs for
balancing games. Through a series of interviews, the research
reveals insightful feedback regarding its scalability, integration,
extendibility, user experience, and functionality. The study’s
findings underline the potential value of implementing features
that support designers by facilitating an enhanced iteration
process. We found that users put emphasis on control of how
they view the data, changing data quickly, tracking the changes,
and showing effect of the changes. Despite certain limitations,
the study provides a valuable foundation for future research and
tool development in the domain of game balancing.

Index Terms—Game balance, game balancing, Unity, editor
tool, Scriptable Object

I. INTRODUCTION

Mastering the art of balancing can set a game apart from
the highly saturated collection of games in the industry. Game
balancing is the act of modifying the game to achieve desired
design goals. Well-balanced games are fair to the player,
leading to less frustrations and more enjoyable experiences
(Adams, 2014, pp. 324-358). This implies that balancing is
a strong factor in fun in games, which is one of the most
important milestones game designers must meet (Fullerton,
2014; [Schreiber, [2010). However, balancing a game is a
long and resource-intensive process. Game designers use a
variety of heuristic and mathematical approaches to theory-
based game balancing which will be analysed and discussed
Schreiber and Romero| (2021)).

In collaboration with |Get Media Savvy, a US-based collec-
tive advocating for media literacy, we worked on the game
Web of Lies a roguelite deckbuilder card game designed to
provide players with an engaging gaming experience imparting
essential media literacy skills, which have become increasingly
important with rise to the internet and novel information
technology. Rapid proliferation of fake news and the spread
of misinformation has become a significant global concern
(Del Vicario et al., 2016; |[Kubey, [1997; Mian and Khan,
2020), and many efforts to promote media literacy have been
underway (Dave et al., 2022} |Wardle et all [2017). As video
games are a popular and pervasive medium, they have emerged
as a promising tool for teaching the subject. Our contribution

Simonas Ceponis
Aalborg University Copenhagen
sceponl8 @student.aau.dk

to the project — that aligns with this study — was to make the
game fun, ultimately maximizing its impact by ensuring that
players are effectively challenged and engaged in the learning
process (Schreiber], [2010).

Initially, we set out to investigate balancing in roguelite
deckbuilders. However, due to scoping challenges and the
limited applicability of focusing on a single finished game, we
instead decided to create a generalized tool called Scriptable
Object Table (SOT) for balancing games in Unity (Unity
Technologies, 2023a), regardless of genre. This approach is
more scalable, offers broader applicability to the community,
and has greater potential to contribute to the advancement of
game balancing techniques within the industry. To guide the
design of the tool, it was built based on the balancing concepts
and common practices described in this study.

To that end, we put forth the research question:

How can we develop a game balancing tool that
streamlines the workflow for developers, allowing
them to easily iterate and incorporate balancing
principles in their projects?

This paper will examine the principles of game balance
in roguelite deckbuilder card games and describe the design
and development of a tool we developed that helps with the
balancing process of similar games.

II. GAME BALANCE THEORY

There are many different definitions of what game balance
is (Becker and Gorlichl 2020). In this paper, we treat game
balancing as a way to modify game values to achieve the
desired design goals of the game. To achieve game balance,
a variety of different approaches can be applied which have
different requirements and development costs (Schreiber and
Romerol, [2021)).

Before diving deep into the concepts, it is important to
clarify goals of balancing. [Schreiber and Romero| (2021) raise
a point that fairness, interesting player choices, and difficulty
are potential targets for balancing. |Sylvester| (2013) argues
that it is also important that the game balance reflects the
narrative and is accessible to the player from a user experience
perspective. When possible, balance should be achieved by
adjusting values without taking away from other aspects of
the game.

Fullerton| (2014) dives deeper into balancing the difficulty
of the game. Difficulty can be balanced for in multiple ways.
Roguelite games open up the possibility of dynamic balancing,
because the game naturally becomes easier every playthrough
due to increasing player skill and meta-progression.

Tyroller| (2019) states that the designer should decide what
the balancing goals should be for the game as a whole and
the separate game objects.

A. General Concepts of Game Balance

It is important to clarify game balance terms before diving
deep into the different methods for balancing a game. Doing
so, we facilitate a shared understanding and provide a foun-
dation of the basic concepts for a more effective discussion
on the balancing approaches. Furthermore, it enhances our
comprehension of the requirements and challenges faced by
designers that focus on balancing.

a) Systems and Rules: |Schell| (2008) writes that the rules
of the game make the game.

Sylvester| (2013)) defines a game design as a system of rules
that drive the behavior of the game. Therefore the job of a
game designer is to create these systems of rules in a way
that achieves the design goals of the game.

Schreiber and Romero| (2021) define systems as described
in the standard dictionary definition: "a set of interacting or
interdependent parts that form a complex whole."

In this paper, we will use systems and rules to describe how
the game works and how the different elements of the game
interact with each other.

As games consist of multiple systems working together, a
game can be balanced by changing how the various game
systems interact with each other.

Fullerton| (2014) proposes that splitting systems into smaller
subsystems is worthwhile to make the game easier to balance
as a whole. It is also important to try to reduce the connections
between different systems as a change to a system can change
the balance of all other connected systems.

b) Resources: |Schreiber and Romero| (2021) define re-
sources as values that can be exchanged for different values.
The flow of resources, their availability and versatility in
comparison to other resources is what defines their relative
value. Examples of resources include time, currency, lives,
game objects, experience points and so on.

c) Anchors: An important step in balancing a game with
many variables is the anchor. Schreiber and Romero| (2021)
define the anchor as an in-game resource that is directly related
to every other resource in the game. This direct relationship
allows the anchor to be used as a way to assess the value
of each resource in the game, whether it is health points,
time, score or any other resource that exists in the game.
Furthermore, a comparative anchor is a unit that can be used
as a default unit that other variations of units can be compared
against to ensure that all units are balanced with each other.

d) Curves: According to Schreiber and Romero| (2021)
curves (functions) show the relationship between different
game resources. The shape of the curve defines the progression

of the game by showing how the increase in one resource
affects other resources. For example, a curve could be an attack
vs coin curve showing how much attack can be done using a
given amount of coins.

Fullerton| (2014) recommends that designers keep such data
in spreadsheets and develop them together with the technical
part of the team. Spreadsheets are stressed as both a good
starting point and a way to fine-tune the game balance in the
latter stages of development.

It is worth mentioning that while curves are used to keep
relationships between resources balanced, it is common for
designers to edit values of specific game objects for the sake
of keeping the game interesting or for narrative purposes,
even though those changes might work against achieving a
perfect game balance. Millard| (2022)) argues that imbalance
if used well can make a game better. He argues that single-
player games specifically can use this to make the player feel
powerful. Imbalance can also be used to encourage player
to play in a way that is more fun and discourage boring
strategies. |Credits| (2013) states that imbalance should be
carefully considered and designed in order to be effective.

It is also important to consider the extremes of the curves
and have extra logic to handle what happens when these
extreme values are reached.

e) Granularity: Granularity refers to the proximity of
one number to another (Schreiber and Romero, 2021). When
numbers are too high, they become meaningless to the player
or make it harder to make calculations and reason about their
value. If the numbers are too small, they limit the designer’s
choices when it comes to balancing the game. General game
design and balancing decisions can be done to address these
issues by adjusting the granularity of the numbers present in
the game.

f) Possibility Space: Possibility space defines how many
different states of the game can be reached by the player. It can
be expanded by adding more complexity to the game. In mod-
ern games, the possibility space is so vast that it mainly used
as a theoretical term to make conversation about the topic of
game balance easier. It is important to understand that a bigger
possibility space allows for greater replayability (Schreiber and
Romero, 2021)). Possibility space can be expanded in different
ways, of which not all could be considered desirable for the
design of a given game.

g) Determinism: According to |Schreiber and Romero
(2021)), determinism is used to define the different actions
the player can take in the game. A deterministic action will
always have the same outcome if the state of the game is
the same. If an action is non-deterministic, the same action
can have different outcomes even if the game state is identical
every time. The presence or lack of determinism in the actions
defines how the game can be balanced. Game mechanics can
be made to be non-deterministic to expand the possibility
space at the cost of player control.

h) Randomness: |[Engelstein| (2018)) defines the terms
input randomness and output randomness. Input randomness
is defined as randomness that modifies game state prior to

player action. For instance, in Settlers of Catan (Klaus Teuber]
a), the player throws a dice dictating what resources they have
to work with before they decide their action that turn. Output
randomness happens after player action, such as critical hit
systems in turn-based games where there is a certain chance
to deal double damage after the player picks their move.
Generally, input randomness is said to be more desirable
because it supports strategy. However, there are cases where
output randomness can be useful to encourage risk assessment.
Additionally, output randomness can be used to reflect the
random nature of actions happening outside of player control,
such as units following player orders being successful or not.

Randomness is particularly important for roguelite games,
as they are defined by random content generation during
runtime of the game (Brown, 2020). Random generation adds
variety in the gameplay and thus extends the replayability of
the game. Randomness also forces the player to learn how
the game mechanics work instead of relying on memorization
of optimal plays. Randomness can also be employed to turn
the game into a more casual experience that is less reliant on
player skill. Randomness also adds to the impact of rewards
given to the player. Therefore, randomness was an essential
consideration for balancing our game Web of Lies.

i) Probabilities: Probabilities naturally follow when ran-
domness is designed in games. For games with outcome
randomness, developers can tweak the chances to make the
game more balanced (Schreiber] [2010). There are dependent
and independent probabilities. Dependent probabilities change
based on the game state, while independent probabilities are
completely random. Human psychology dictates that we are
naturally really bad at statistics (Schreiber, [2010), as we often
develop superstitions with probabilities, such as when we are
on a hot streak, we believe that some external factors are
influencing the streak. As game designers, we can use this
by adapting the probabilities to make it more likely to get
a good roll, making the player feel more engaged. This can
therefore help with balancing the game by reducing moments
of disengagement.

Exposing probabilities can also give players more autonomy
over their decisions, making their risk assessments fairer.
On the contrary, developers can implement hidden dependent
probabilities, such as in Slay the Spire (Mega Crit Games)),
where the probability of rare cards appearing increases every
time the player has not seen one when collecting rewards.
This can be useful for avoiding runs (play-throughs) where
they never get any good cards, but it should be advised to
not abuse this, as the player might feel the game is unfair if
they start noticing this. Making a game "feel” more random
can also cater to a more casual player base (Schreiber, [2010).
Catan: Junior (Klaus Teuber, [b) removes one die from the
die roll, normalizing the probability curve, making it so that
each number has an equal chance of being thrown. This is
more suitable for kids, since it reduces the cognitive demand
on the player as they do not have to recognize some numbers
appearing more frequently such as in the original game with
two dice.

Jj) Dominant Strategies: When the player is presented
with choices where a single move is always obviously the most
optimal choice, the game’s balance is tainted by a dominant
strategy. Generally, this should be avoided at all costs, as it
reduces fun in the game (Adams)| [2014). The player should be
able to make meaningful choices that fit their playing style.
Furthermore, having multiple viable strategies improves the
game’s replayability, engagement, and strategic depth.

k) Transitivity: Game mechanics can be described as
transitive based on the relationships between game elements. A
transitive relationship involves the direct comparison between
game elements, such that if A is stronger than B, and B is
stronger than C, A must be stronger than C. This can lead to a
dominant strategy, as players will always prefer the strongest
option. Therefore, applying a higher cost appropriately to the
stronger option is essential to balance transitive mechanics and
avoid dominant strategies (Adams}, 2014). Another alternative
is to establish intransitive relationships. In this case, strength
of a given game element is contextual, meaning that a given
object is stronger than another object in a given situation, while
being weaker than it in a different situation. The most common
example of an intransitive game is Rock, Paper, Scissors.
Changing the type of relationship between different elements
does not change the possibility space, but its does have
an effect on how interesting the choices between them are.
Intransitive relationships make the choices more interesting by
challenging the player to think more (Schreiber and Romero),
2021). They can also be used to avoid dominant strategies,
since the player must adapt to the different situations (Adams|
2014). Understanding of the difference between transitive and
intransitive relationships is crucial in the decision-making
when it comes to balancing game mechanics.

1) Information: Information on the state of the game can
be given to or hidden from the player to change the possibility
space of the game. Furthermore, the player can be given the
choice to uncover more information on the state of the game
for a cost. This allows for more interesting choices for the
player in which they have to balance knowledge with resources
(Schreiber and Romerol, [2021)).

According to Brown| (2020), the amount of information
directly affects the player’s ability to plan ahead. He warns
that too much information can lead the player to paralysis
of analysis. Leaving some information hidden is a good way
to force the player to adapt and make interesting choices
throughout the gameplay time.

m) Solvability: According to |Schreiber and Romero
(2021)), a game is solvable if it is possible to find the optimal
action for the player to take at any given moment in the game.
Furthermore, solvability is split into:

 Trivial solvability - It is easy for the human mind to find
the optimal action.

o Theoretical solvability - the player has all the information
required to find the optimal solution, but its impossible
due to time constraints or the size of the possibility space.

o Computational solvability - It is only possible to find the
optimal action to take by simulating the game over and

over until the optimal strategy is found.

When games are only theoretically solvable, the designer
cannot achieve perfect game balance. In these cases, the de-
signer can resort to educated guesses combined with playtest-
ing and metrics to find the right balance.

n) Feedback Loops: According to|Schreiber and Romero
(2021) feedback loops are game mechanics in which an action
is modified by it being used. Positive/amplifying feedback
loops add to the power of the action every time it is used.
Negative/dampening feedback loops reduce the power of the
action every time it is used. Feedback loops can be used to
control the progression of the game. While in most cases
positive feedback loops are avoided to keep the game in
balance, sometimes they are employed to quickly finish the
game after it is clear that victory is inevitable for a player.
Negative feedback loops are used to stabilize by ensuring that
actions become less powerful when being used repeatedly.
This keeps the game interesting as the player has to reconsider
their choices every time they take an action. [Fullerton| (2014)
calls such mechanics reinforcing relationships. The task in
balancing feedback loops is to keep the game balanced without
making it stagnate.

B. The Four Approaches to Game Balancing

In the following sections, we will dive deeper into game
balance using intuition, mathematical modelling, playtesting,
and data.

1) Intuition Approach: The initial game balance is set
by the designer based on a rough estimate for what will
be a good value. While these values are very likely to be
changed later, they can sometimes be enough to get a general
feel of the game down before moving on to other methods
of balancing. Designer experience dictates how balanced the
game will become using this method. [Fullerton| (2014) writes
that balancing a game is as much about gut instinct as it
is about mathematics. It is a process that is practiced and
improved on over time.

There are cases where manipulating values or relationships
between resources is not the optimal solution. This is where
the intuition based approach shines. A designer can add or
completely remove features and rules present in the game to
balance the game as a whole.

a) Estimation Techniques: |Felder| (2015) proposes sev-
eral techniques for estimating different game values and costs.
The Fermi Solution (Von Baeyer, [2001) suggests that multiple
estimations can arrive at a more accurate average estimation
than a single experts guess. [Felder| (2015) suggests that this
technique can also be applied to estimation of important
game design values. Furthermore, estimation of multiple in-
terconnected values should arrive at a roughly balanced final
resulting value.

2) Mathematical Approach: Since every game has num-
bers, using mathematics to balance a game is a natural fit.
There are many tools for analysing and then balancing games
using mathematics. Sometimes, the game can be balanced
if all elements of the game can be attributed with a value

through cost curves and probability analysis. Additionally,
having found the curves that define the game balance allows
the designers to add content to the game in the future without
disrupting the game balance too much or requiring exten-
sive playtesting. Most of the time, mathematical balancing
cannot be used without additional supporting techniques as
occasionally there are game elements that cannot realistically
be put into formulas. [Tyroller| (2019) suggests not to put too
much development effort into mathematical balancing espe-
cially in cases where complex game mechanics are prevalent.
Furthermore, mathematical analysis cannot take into account
the psychological part of what makes games feel balanced.
Nonetheless, the mathematical approach can be used to get
the game ready for playtesting (Schreiber and Romerol 2021)).

3) Playtesting Approach: Intuition and mathematics can
only get the game balance so far. As games are experienced
subjectively, playtesting is essential to capture how balanced
the game feels for its target audience. |Schell| (2008) defines
playtesting as the act of getting players to play the game and
see if the design of the game facilitates the expected experience
for the player. [Brown| (2019) defines playtesting and player
data analysis as essential steps in verifying the balance of the
game. Furthermore, complex games that offer an abundance
of actions or abilities run a higher risk of potential exploits.
For example, when fighting Father Gascoigne in Bloodborne
(FromSoftware) the player can exploit positioning of the boss
by moving below a staircase where the boss is unable to
hit them, making a game that has a reputation for being
extremely challenging a breeze. These exploits are mostly
found through rigorous playtesting (Adams, 2014), however,
Al automation is a promising cheaper alternative (Zarembo)
2019). It is worth noting, that playtesting, while essential,
can be a rather expensive process. |Sylvester| (2013)) writes
"Real understanding of a game’s balance can never come from
watching one or two tests, much playing the game yourself.
It comes from absorbing many different players’ experiences
and combining them into an integrated mental model of how
the game is working.” It is therefore important to maximise
the benefit from testing on users by balancing the game as
much as possible using intuition and mathematical modelling
prior to extensive playtesting.

According to |Schelll (2008), preparing questions ahead of
time is important to get the most value out of the playtest. In
order to improve the balance of the game, questions should
be asked addressing balance concerns based on what the
balancing effort is focusing on.

4) Metrics Approach: Once the game is live, player actions
can be tracked using analytics solutions to assess player
behavior and game balance. Data can show which items are
not being used, which levels are too difficult, which classes are
underpowered and so on. Other types of design issues are still
found best through playtesting, but when it comes to adjusting
numbers, statistical data provides the most accurate answer.

Of course, physical games are not well suited for this
approach as they would require the players to self-report
their game experiences, which is rare outside of competitive

games like chess. Furthermore, the metrics approach has costs
associated with setup and maintenance of the analytics system

different objects in the game. In Unity (Unity Technologies)
[2023a)), such values are often stored in Scriptable Objects

used for gathering and storing data (Schreiber and Romero}

(Unity Technologies|, [2018).

2021)).
III. WEB OF LIES

In collaboration with |Get Media Savvy| and |[Perednyte et al.|
(2023), we co-developed Web of Lies, which we used as
a foundational project for further developing of Scriptable
Object Table (SOT). Having a real-world project gave valuable
context and exposed potential requirements that we may have
overlooked had we developed the tool devoid of the real-world
setting.

Web of Lies is a roguelite deckbuilder game set in a
medieval fantasy setting. The player takes the role of a spy
that was sent by the king to discredit the rebellion. The player
does so by spreading disinformation among the population.
Disinformation is spread through cards that can be played on
a grid of pawns. An outline of the planned design of the full
game can be found in Appendix [C]

Fig. 1. Web of Lies.

We define roguelite games as games that are structured in
the form of multiple runs and have a meta-progression element
that persists between those runs. The genre borrows elements
from the roguelike genre, but tries to achieve a less punishing
player experience. A single run is a player journey from start
to either completing the game or failing to do so. Each run
makes the following run easier through the development of
player skill and meta-progression. The player is expected to
play many runs until they are capable of winning the game.

Our experience developing Web of Lies together with the
analysis of game balance theory showed us that there is a
need for tools to make balancing games faster and easier to
do.

IV. STATE OF THE ART

Researching game balance and developing Web of Lies gave
us a better understanding on how this process of balancing is
done. It is clear now, that regardless of the approach taken,
a common occurrence when balancing games is the input
and modification of a large amount of values that relate to

Traditionally, game designers rely on sheets to input re-
lationships and tweak numbers to balance their games. An
issue with this approach is the lack of integration with the
development environment, leading to increased iteration times.
In this section, we will investigate various solutions that make
help the user to work with Scriptable Objects in Unity.

A. Sheet Codes

Sheet Codes (Final, 2022) is a tool that compiles values
in a single table view. This allows for organization and swift

editing of the different values in a way that creates a good
overview of a big amount of game objects.

It does have the limitation of requiring the user to create
Scriptable Objects from scratch using the tool. This might not
be suitable for projects that have started development before
the tool is employed.

B. Scriptable Object Editor
Scriptable Object Editor 2022) adds a new editor

window which focuses on Scriptable Objects. It makes it easier
to find the different Scriptable Objects and edit them in a
similar fashion to the inspector window. A nice feature it adds
is to create new Scriptable Object instances from the same
window.

However, this tool does not provide an overview of the
various Scriptable Object instances in a single view, which
makes it hard to compare them. Comparing various objects is
a core part of balancing a game.

C. Bona Data Editor
Bona Data Editor (Fyrvalll [2022) is a tool that makes editing

different Scriptable Object types at the same time possible.
It needs a programmer to tag variables in the code with a
special attribute, which clutters the code and requires extra
work from the programmer. It also lacks the feature of showing
the different values in a single table for better overview and
comparison of different objects.

D. CSV Serialize

CSV Serialize (VisualWorks), 2019)) is a tool which moves
data stored in the CSV format to Scriptable Objects. This
is useful when the designer prefers adjusting values in tools
like Microsoft Excel (Microsoft Corporation), [2023)) or Google
Sheets (Google LLC| [2023). It does have the limitation of not
exporting values back to the CSV format after they were edited
in the Unity editor.

V. SCRIPTABLE OBJECT TABLE

We propose Scriptable Object Table (SOT), a plugin for
Unity designed and created by us to ease the balancing effort
for game developers. It adds an editor window to Unity which
allows the designers to edit all instances of a given Scriptable
Object in a single window. This allows for fast and easy
comparison as well as editing of different Scriptable Object
instances that already exist in the project.

A. Design

The Scriptable Object Table allows the developer to select
the Scriptable Object they want to edit with a built-in selection
window (Figure [2)).

Select ScriptableObject

NRNRDD D

Nor

DR DDD

NG

& @ F & & & & &
QFSS@OSR Q.
Fig. 2. Selection of the Scriptable Object.

Once the Scriptable Object is selected, all instances of the
same type are shown in the table (Figure [3).

Fig. 3. Scriptable Object instances listed in a table.

Where possible, values are made editable using different
input fields depending on the type of variable. There are also
cases where the values are not editable. Then the value is
rendered as a label instead of an editable field. Sometimes
it is by design of the underlying Scriptable Object, where the
developer coding the Scriptable Object wanted to limit editing
in the editor. There are also cases where displaying the value
in a single cell would compromise the table layout. Therefore,
nested classes, arrays and lists were not made editable in the
SOT.

In some cases, these read-only values comprise a big part
of the Scriptable Object (Figure). To remove the clutter, we
added a toggle which enables hiding such values. We also
implemented a feature, where the user can click on the read-
only value to be taken to the Scriptable Object in the inspector
view, which in turn might allow them to edit the value.

There might also be values that cannot be displayed at
all due to unforeseen reasons. To address such cases, we
have added a warning that appears whenever such errors are
encountered to provide the user with feedback.

Usually, such plugins are installed as packages in the Unity

Editor (Unity Technologies), [2023a) using Git (Torvalds| [2023)

Fig. 4. Not editable instances rendered as labels using the ToString() function.

repository links. This requires the user to utilize Git, which can
complicate the plugin installation process for inexperienced
developers. To avoid this, we packaged the plugin as a Unity
asset and uploaded it to the Unity Asset Store. This allows
the user to install the package by just pressing a couple
buttons and does not require them to have Git installed on their
development machine. Additionally, publishing on the Unity
Asset store makes the plugin easier to find as the user can
search for the tool on the official Unity Asset Store website.

B. Iterative Approach

We followed an iterative approach when developing the tool.

i Each time we made changes, the tool was shown to several
@i developers, who gave feedback on the tool.

Initially, every second column was colored a different shade

Bl of grey. Testers found that coloring every second row was more

useful.
The font size was initially made bigger to allow for better

At readability. It was reverted to default font size after testers
mentioned that they would prefer to see more values in the
@ table at once.

C. Implementation

a) Scriptable Object Selection: When working with
Scriptable Objects, developers create custom Scriptable Ob-
jects for their needs. To enable working with custom Scriptable
Objects, we added an Object Field to allow the user to select
the type of Scriptable Object they want to edit. The Object
Field is a built-in UI element that comes with UI Toolkit,
a package for working with the User Interface in the Unity
engine (Unity Technologies) [2023a). It was important to limit
the type of object to be selected to Scriptable Objects. We
save the selected value the editor is closed in case the user
closes the SOT window and wants to come back to the same
Scriptable Object they were editing before.

b) Grid Layout: The UI Toolkit does not come with
support for a grid layout by default. We therefore created our
own implementation for positioning Ul elements in a grid.

First, we calculate the width of every column, based on how
much space the cells will require to be shown. In most cases,
we use the string length to determine the width of the cell.
There are special cases such as the color field. Cells which
allow editing of a color value are sized solely according to
the name of the color variable, which is used for the label in
the header row of the column.

Once all of the column widths are found, they are applied to
every cell in the column to ensure that all values are aligned.

In addition to this, styling of the input fields has to be adjusted
so that the values are aligned properly.

margin: 1lpx;
padding: 0;

border-width: 1lpx;

To separate the cells more clearly, the right border is colored
grey.

border-right-color: grey;

c) Supporting Different Types: In the Unity Editor (Unity
Technologies, [2023a)), different types of variables are edited
using different input fields. We check the type of each variable
found inside the given Scriptable Object and dynamically
provide a fitting input field for it.

if (MakeVisualElementForValue (field.
GetValue (scriptableObjectInstance)
) is Label)

invalidFieldsRemoved.Remove (field)

I

}
}

return invalidFieldsRemoved;

if (value.GetType () == typeof (UnityEngine.Color
) || value.GetType () == typeof (UnityEngine
.Color32))

visualElement = new ColorField();
((ColorField)visualElement) .
SetValueWithoutNotify (value);
}
if (value.GetType ()
Vector?))

== typeof (UnityEngine.

{
visualElement = new Vector2Field();
((Vector2Field)visualElement) .
SetValueWithoutNotify (value);

Removing the columns reduces the width of the Scroll View
content. This should force the Scroll View to automatically
resize, however there is currently a bug in the Unity Editor
(Unity Technologies|, |2023a)), which prevents it from happen-
ing. To force the size of the Scroll View to update, we resize
the window slightly. Not enough for the user to notice, but
enough to force an update of the Scroll View.

var new_len = new StyleLength (UnityEngine.
UIElements.Length.Percent (scale_swap °?
99.9f 100f));
ScrollView scroll view =
ScrollView> () ;
scroll_view.style.width = new_len;
scroll_view.style.height = new_len;
scale_swap = !scale_swap;

rootVisualElement .Q<

Variables that refer to Transforms, GameObjects and similar
types are made to not accept references to scene objects as
Scriptable Objects should not have references to instances of
objects found in the scene.

((ObjectField)visualElement) .allowSceneObjects
= false;

d) Unsupported Types: As discussed in the Design sec-
tion, certain types cannot be given an input field because of
size required to display them. In these cases, a label is used
to display the variable.

To make it easier to edit the value, we added functionality
which opens the Scriptable Object in the inspector view when
the label is clicked.

element .RegisterCallback<MouseUpEvent> ((evt)
=> { Selection.activeObject =
scriptableObjectData.

scriptableObjectInstance; });

To support hiding of the read-only values, we added a toggle
which hides the respective columns.

foreach (var field in fields)

{

if (hideReadOnlyFields)

e) Documentation: Documentation describing how the
tool should be set up used was also included together with
the tool. The documentation can be found in Appendix [B]

VI. METHODS

We conducted semi-structured interviews on experts to gain
an understanding of how game balancing is achieved with
our tool Scriptable Object Table (SOT) in the development
process, as this method allows collection of rich and detailed
data on game balancing with a good amount of flexibility
(Bjgrner, 2015)).

A. PFarticipants

We used purposive sampling to gather participants, as it
allows researchers to use their own expertise to select the right
participants (Bjgrner, 2015)). In this case, we were specifically
focusing on finding people with a strong background in game
balancing and experience with Scriptable Objects in Unity
(Unity Technologies, 2023a). To ensure they fit the basic
requirements we asked them of their experience during the
interviews. This gave us verification that we had the right
participants for this study.

7 participants were interviewed. 6 of the participants were
male and one was female. All participants resided in Denmark.
Experience in the games industry ranged from 2 to 15 years.
4 participants had experience with balancing games. 3 partic-
ipants had experience with developing Scriptable Objects and
developing tools in game engines for game designers.

B. Procedure

The interview was conducted remotely via video conferenc-
ing, with one person interviewing and another taking notes.
Note-taking was done to facilitate the interview and ensure
the answers were understood correctly. Furthermore, the note-
taker could pitch in with follow-up questions if needed.

To ensure a structured and effective interview, we made a
guide document (Appendix [A) consisting of key themes we
needed to address. The guide was open-ended, allowing us to
diverge and dig deeper into certain areas.

The participants were asked to use SOT before the interview
until they got a good sense of its utility. To assist them, we
provided documentation alongside the tool they could refer to
when learning the tool. In some cases, the participants did not
have time to use the tool, so we presented the tool during the
interview for them instead.

The interviews were recorded and transcribed for referenc-
ing and analysing the data.

1) Pilot Test: Before conducting the full-scale interviews,
we did a pilot tests on our co-developers. This ensured the
process was effective and efficient, and gave the interviewee
and note-taker practice, improving the overall quality of the
interviews.

C. Data Analysis

We did thematic analysis to find recurring themes within the
data. This method offered flexibility and the ability to analyse
the complexity of the data.

We used Miro (Inc.,|2023) to transform interview recordings
into flexible items we could move around and cluster together.
Because of the extra paraphrasing step of noting down in Miro,
we risked a loss of context. To avoid this, we made sure that
both researchers coded the interviews for intercoder reliability,
and agreed that each one would note down and describe all
sentences the participant said, removing the risk of selection
bias.

Both researchers analysed all the interview data without
consulting with each other. Only when both researchers were
completely done, then we had a meeting to discuss common
findings and any discrepancies within our analysis. Finally,
we made a graph and established relationships between the
themes, creating a framework for how SOT can be used for
balancing games.

VII. FINDINGS
A. Participant Understanding of Balancing

Interviewees gave a variety of definitions for what balancing
is. One common trend that arose was the idea that balancing
is very dependent on the game itself. Game feel, difficulty and
interesting choices were also mentioned as goals for balancing.
Social deduction and asymmetrical games were mentioned as
example of games that are difficult to balance.

All approaches mentioned in section [II-B| were mentioned
during interviews without being brought up by the researchers.
4 interviewees mentioned they employed the intuition ap-
proach when balancing games. 3 interviewees mentioned

playtesting as an integral part of balancing a game. The math-
ematical approach was mentioned by 3 participants, however
only one of them had used it in the past in some way. The
metrics approach was mentioned by 2 participants, either of
which had not employed it in their own games. The importance
of iteration was stressed by 4 interviewees.

1) Common Challenges When Balancing: Based on the
interviewees’ prior experiences with other tools, we found that
they shared some common challenges when balancing games.

a) Navigation in the Editor: Navigation was mentioned
as an issue by all 7 participants in different ways. 4 participants
mentioned the frustration of having to click a lot to navigate
between different windows inside the game editor to adjust
and compare values. 5 interviewees mentioned finding the
values that need adjustment in the project as a common issue.
Sometimes the value that should be adjusted is not clear from
the start according to some participants.

b) Getting an Overview: 4 participants said that it is hard
to get an overview of the data, when it is scattered across
the project. It often led to the development of special tools
for getting an overview or the change of project structure to
facilitate better overview.

c) Playstyles: 1 participant mentioned that different
player playstyles increase the amount of playtesting that needs
to be done to ensure a change in the balance is good for the
game.

B. Enhancing the Iteration Process

From our analysis of the responses, we observed four
themes around concepts closely linked to the iterative pro-
cess of game balancing. Scriptable Object Table (SOT) and
advanced tools for the domain of game balancing appear
to have high potential to empower game developers with a
more integrated, user-friendly, and robust iteration experience
by providing the ability to (1) control the view of in-game
data; (2) tweak data quickly within the engine; (3) track their
changes; and (4) visualize the impact of their changes. In the
following sections we will dive deeper into each of theme,
providing further details and how they relate to SOT.

1) Control of How They View the Data: Our findings
suggest we should help them in any way we can to view the
data in a controlled manner so they only see what they want
to see, reducing the mental effort required to parse the data
when doing balance adjustments.

a) The Tool Provides a Good Overview: All 7 inter-
viewees found that the tool made it easier for them to get
a comprehensive overview of the balancing elements in the
game project. They found it helpful to be able to see all the
data at once in a familiar spreadsheet-like manner. As one
user put it, using our tool "feels like being a game master in
D&D". They found it useful to have related information in
one place with all instances of the same type together, being
able to see how the game was interconnected. To improve this
aspect, some users suggested making the tool as extendable
as possible to allow for modification by developers. This can

enhance the overview aspect, with the ability to manipulate
data for a tailored experience, and special filtering rules.

b) Filtering: 6 interviewees found filtering to be a high
priority for the tool. Being able to choose what they see by
filtering out specific pieces of data and decluttering the inter-
face allows for more efficient work. This need was observed in
multiple points, with interviewees asking for the ability to hide
certain rows, use regex for filtering, and apply special filtering
rules. They also expressed the desire to filter data by specific
attributes or to show objects with certain characteristics.

c) Sorting: 5 interviewees wanted the ability to sort data
based on fields. Sorting can improve users’ understanding of
the balancing elements by enabling them to see minimum and
maximum values at a glance, and how the data is laid out.
Users suggested sorting by column headers, for instance — in
the case of roguelite deckbuilders — card rarity.

d) Categorization: 2 interviewees suggested categoriza-
tion to provide better visual distinctions through features,
which could provide an improved overview. Categorizing
the data could be done by splitting objects vertically based
on selected fields or coloring cells based on specifications
declared by the user.

e) Columns and Rows: 6 interviewees expressed a need
for having more control over rows and columns. They appreci-
ated the ability to hide read-only values, but wished for more
ways to hide irrelevant columns or rows of their own choosing.
Furthermore, they wanted to resize and rearrange rows by
dragging them around, customizing the view to their liking
and allow them to focus on the most relevant information. This
customization would help reduce horizontal scrolling, which
they felt strenuous in the current version of the tool.

f) Showing Multiple Types: 4 interviewees found it lim-
iting to only be able to view one type of object at a time.
This drawback prevented them from getting a holistic view of
multiple interconnected elements in the game. Features such
as tabs for showing different objects or allowing the display
of different types of objects simultaneously would greatly
improve this aspect.

g) Finding Used Scriptable Objects: 1 interviewee con-
templated whether it was possible to extract and show only
those Scriptable Objects that are in use in a project. This could
provide a truer picture of the game, as some objects might
be deprecated and viewing those could cause the designer
to accidentally balance their game by comparing the wrong
things. Identifying which objects are in use is a complex task,
but some interviewees suggested methods such as counting
references in a build to address this issue.

h) Save the Layout: 1 interviewee first tried using the
Unity search in project view before trying our tool. They said
they often use that workflow to filter through project assets
and found it useful to be able to save their search queries in
Unity. This suggests that the ability to save layouts in SOT can
prove useful by allowing users to quickly return to a familiar
setup.

i) Input Fields: 5 interviewees discussed specific features
of the input fields that are interacted with when using SOT.

They appreciated some of the features Unity provides such
as auto-highlighting and expressions. Some users suggested
improvements such as providing a popup editor window for
custom fields, seeing images in the table, adjustable markers,
and custom property drawers. Popups could be used to display
additional information that does not fit in a cell; mouse hover
could reveal images; and dropdowns could display additional
information. Showing all values could be more beneficial, even
if it compromises the aesthetic appeal of the layout. They
suggested expanding cells to display more complex data types
like arrays. One issue was found where Vector4 values did not
fit in the given cell.

Jj) Graphs: 2 interviewees suggested graphing capabili-
ties to give a better overview. Such functionality could en-
hance the tool’s overview capabilities, allowing for a quick
visual interpretation of data patterns, for instance by showing
distribution of costs in cards in a roguelite deckbuilder.

2) Changing Data Quickly: Our findings showed various
ways that a balancing tool such as the Scriptable Object Table
(SOT) can help game designers make quick changes to the
data.

a) Tweaking Data: 4 interviewees touched on how effec-
tive tweaking of data is key, given the intertwined nature of
game systems. There is a need for a system that helps design-
ers by alleviating pain of modifying data one by one with easy
access to the many tweakable parameters. 1 interviewee also
appreciated that clicking an input field automatically selects
the entire input, although that is a general Unity feature, it
further emphasizes the desire of unobtrusive workflow when
tweaking data to be more efficient.

b) Finding Data: 3 interviewees were particularly in-
terested in how SOT helped them simplify the process of
finding the appropriate data to adjust by experimenting with
the data. Experimentation is integral in developers’ balancing
workflows, as they often tweak multiple values until they
locate the one that impacts gameplay as intended, where SOT
can offer valuable support.

¢) Comparing Values: 4 interviewees found it nice to be
able to compare values side by side, since in practice they
are usually scattered around. By collecting these values and
making them editable in one place with the SOT, the scattered
nature of Unity’s inspector view can be counteracted. This
aids designers in the process of game balancing by providing
a quick way of modifying game objects in relation to each
other. Furthermore, seeing values next to each other makes
it possible to see minimum and maximum values at a glance
without searching all over the project.

d) Expressions: 2 interviewees said that the potential
introduction of "expressions’ would allow operations on values
and the inclusion of calculated values, thus expanding the
versatility of the SOT. For example, the user could type "*2"
to double the value in the field.

e) Multi-edit: 2 interviewees emphasized a need for
multi-editing, enabling developers to select and alter several
items concurrently. Coupled with multi-editing, expressions
can prove SOT to be an immensely powerful bulk editor.

f) Undo: 1 interviewee was concerned with the way undo
works in their version of SOT. They found that a clunky undo
system would do harm, as it risks losing changes by mistake.
It is thus vital that undo is intuitive for the user in SOT.

g) Showing Unity Types: 2 interviewees recognized that
a major benefit of SOT is that it can understand Unity types.
As an integrated tool in the engine, it can preserve type
recognition, displaying any unique properties such as custom
classes and images. For comparison, this context is lost when
exporting to external solutions such as spreadsheets.

h) Restrictions on Input: 1 interviewee desired input
restrictions within the SOT to maintain integrity of the data
and avoid mistakes that could break the game. They suggested
tooltips and data validation for unique fields, which can
enhance the user experience and prevent errors.

i) Jumping to Object from Scriptable Object Table to
Inspector View: 4 interviewees found the ability to jump from
the SOT to the inspector view useful, especially because of the
limitation of SOT to display complex data. However, the labels
that took the user to the Scriptable Objects could better signify
that they were interactive elements. For example, they could
change color on hover, like buttons do.

J) Runtime Tweaking: 1 interviewee was interested in
adjusting parameters during runtime. This would support their
ideal workflow of making rapid adjustments during testing ses-
sions, and providing this ability in SOT thus helps facilitating
an efficient iterative game development. This functionality is
already supported by Scriptable Objects.

k) Live Games: 1 interviewee suggested that the tool
might be more useful in live games, since then there is a
live playerbase and can make more meaningful changes based
on metrics and player feedback. Furthermore, in that context
the data would be set up in the same way across iterations,
meaning that SOT would show a more familiar setup.

3) Tracking the Changes: Our findings indicate that bal-
ancing tools can be used to help designers track their changes
when balancing games, as three interviewees expressed a
struggle to do so. In practice, the best designers make small
incremental changes and do thorough testing after each tweak.
This allows them to better understand their impact and isolate
issues more effectively. Interviewees stressed the value of
source control for being able to roll back changes. Many
designers find source control difficult to work with and our
tool can be improved with deeper integration, thus simplifying
the process.

4) Showing Effect of the Changes: Finally, when it
comes to enhancing the iteration process in game balance,
our findings show that balancing tools can help designers
see the effect of their changes. 2 interviewees were excited
about the prospect of integrating our tool with an analytics
system where changes and outcomes are recorded and linked.
This closely aligns with the metrics approach and would
bring additional depth to the balancing process, providing
quantitative measures of change impacts. Furthermore, they
imagined an Al-driven system that could monitor the analytics
data and suggest potential correlations between tweaks and

10

shifts in the game’s meta. The Al could even anticipate the
likely effects of changes before they are implemented, thereby
flagging possible significant shifts in the game dynamics and
alerting designers of unintended consequences. Such a system
could offer a safety net against extreme changes that might
throw the game out of balance, such as prematurely making
powerful abilities accessible.

C. Specific Feedback on the Scriptable Object Table Plugin

Some of the feedback provided by the interviewees was
focused specifically on the tool, rather than on the needs of
developers. This section will cover this feedback.

1) Tool Architecture:

a) Scalability: 3 interviewees pointed out that the tool
would become more useful as the game project grew in
size. 2 interviewees suggested that for smaller games, the
usefulness of the tool is limited and that its usefulness might
be outweighed by the effort required to install the tool. 1
interviewee said that the scale of the project did not make
the tool less useful. Some interviewees mentioned that the
tool would need additional features like paging, filtering and
search to support bigger projects and avoid overwhelming the
users.

b) Paging: Paging is a proposed feature that would split
the table into several pages. It was suggested by 1 interviewee
to address potential performance issues that would arise when
large amounts of data would be shown in bigger projects.

c) Integration Into Project: 6 interviewees pointed out
the importance of making the tool easy to integrate with
existing game projects. 3 interviewees pointed out the issue
of having to change the way the Scriptable Objects are setup
to avoid having unsupported types in them. 1 participant
stressed the importance of making this tool support other
game engines, potentially even making it engine agnostic.
1 interviewee pointed out that the tool is a more modular
approach than using data tables in Unreal Engine (Epic Games),
2023)), because it does not require the data references to be
setup in a specific file. Several interviewees found the ability
of referencing objects in the table to be a useful feature. 2
participants found it nice that no extra setup is needed to use
the tool (apart from installation).

d) Extensibility: 4 interviewees expressed the importance
of making the tool extendable by game developers. They
all gave examples of situations where custom data might
require different visualization in the table. 1 participant gave
an example of custom filtering options being programmable
as well.

2) UX Improvements:

a) Scriptable Object Selection: 6 participants pointed out
that it would be better to select from Scriptable Object types
rather than selecting an instance of a type to show in the table.

b) Missing Functionality from Inspector View: 3 par-
ticipants missed various features that are implemented in
the inspector. This included showing lists, nested values and
other supported types. Features provided by attributes (Unity
Technologies, 2023b)) in Unity were also missed.

c) Visual Appeal: 2 interviewees mentioned that better
visual appeal could improve the user experience. As an exam-
ple, custom icons for fields and thumbnails for images were
given.

d) Documentation and Learnability: 5 participants found
the tool to be self-explanatory. 1 interviewee gained a better
understanding of the tool after using the documentation. 2
participants did not read the documentation, which lead to
confusion when using the tool. The documentation was miss-
ing explanation for how objects are added to the table. It also
missed information on what Scriptable Objects and what types
are supported by the tool.

e) Tooltips: 1 participant expressed the need for better
tooltips. They said that they should be programmable to show
anything the user wants or use built-in unity attributes.

3) Opinions of the Tool: 6 participants had a positive
opinion of the tool. 3 participants expressed interest in using
the tool in the future. 1 participant did not think they could
use the tool. 2 participants said that the name of the tool
was fitting. 2 interviewees expressed excitement about further
development of the tool.

4) Alternative Solutions: Spreadsheets and custom editor
tools were identified as the main alternatives to using Script-
able Object Table. Both of these solutions were found to
be more time intensive to implement. Spreadsheet solutions
offered familiarity and a bigger feature set for analytics
and visualization. However, spreadsheet solutions lacked the
integration that built-in Unity solutions offer.

2 participants said that custom editor tools have even better
support for specific needs of the project at a cost of even
greater implementation time.

5) Other Uses: 3 participants expressed that the tool could
be used for more than just balancing. Bulk input of values
and getting to know a project were given as examples of other
uses. 1 participant thought that the tool is not useful for much
outside of balancing.

VIII. DISCUSSION
A. Validity and Reliability

During the interview process, discussions naturally emerged
about all four different approaches to game balancing, which
aligns with our prior research on the topic. However, it should
be noted that the interviewees lacked hands-on experience with
the mathematical and metrics approaches, although they under-
stood their importance. Unfortunately, due to time constraints
and our limited network, we were unable to interview design-
ers with experience in these approaches. For future studies,
it would be beneficial to focus on participants from larger
companies that are more likely to utilize these approaches for
game balance. In light of this, one of our interviewees had
experience working with designers who employed the math-
ematical and metrics approaches, providing us with valuable
insights that the designers themselves may not have had.

It is worth noting that there are numerous ways to balance
games, which can vary based on the specific game and the
designers involved. Therefore, we acknowledge that our study

11

may have missed certain insights that could have been obtained
by interviewing other designers. Although time constraints
prevented us from conducting further interviews, we believe
that conducting additional interviews after further project
development would provide valuable information.

Furthermore, it is worth addressing some potential biases
with our study. Firstly, since we personally knew some of the
participants more than others they may have been more skewed
to react positively in the interviews. However, the nature of
results are more objective indications of what worked and what
was missing in our tool, with little focus on whether they liked
our tool or not.

Secondly, 2 of our interviewees did not have a chance to
actually use the tool, and their input was based primarily
on their understanding and perceptions of it, rather than
practical experience. This could affect the validity of their
feedback compared to those who had direct interaction with
the tool. Therefore, future work could seek to ensure that all
participants have a hands-on experience with the tool to collect
more uniformly valid and practical input.

B. Web of Lies

Developing Web of Lies allowed us to get the perspective
of a designer that balances games. Doing this allowed us to
find and experience natural use cases for the tool, which is
impossible to gain from the interviews alone. Of course, the
ideal scenario would have been to work in a team of more
experienced developers, but that was out of our reach. We
will be continuing to use the tool as we develop the game
further as we have found it very useful for both balancing and
as a bulk editor. We hope that we get further insights as we
get closer to the final release of the game.

C. Future Work

There is a good potential for future works with our tool
for balancing games. We propose an "in-the-wild" approach,
in close collaboration with developers as they use the tool to
develop their game in a natural environment (Rogers| 2011)).
By implementing changes that incorporate the key elements
from the results of the interviews, we can investigate the use-
fulness of the tool before and after updating it, and therefore
get an even better understanding of developer’ workflows with
the tool. With this approach we can try to verify our findings,
exercising the reliability of our findings.

1) Further Development of Scriptable Object Table:

a) Fixes: Some of the issues identified during the testing
are clearly bugs that should be fixed before developing further
features. The cell width for showing Vector4 values should be
increased so the whole value fits. Scriptable object selection
should be fixed so that the user has to choose between types
rather than instances of Scriptable Objects. This would make
the tool less confusing for first-time users as well as making
Scriptable Object types easier to find in bigger game projects.
Undo functionality should be improved. Currently, the undo
feature treats a single key press as an action, which means that
to undo a change of a string value, the undo action must be

done once per character. It should be replaced with undoing
the whole change of an input field at a time. As the tool would
go on to support multi-editing features, those actions should be
undone at once as well. These fixes offer a lot for an estimated
relatively short implementation time.

b) New Features: After some discussion, we have iden-
tified the next features that we think should be implemented
and tested next, based on development costs and usefulness to
the users.

It is clear that the users need good control over the data
they see to work most effectively. Sorting would be easy to
implement, while being very useful in certain cases. Sup-
porting multiple windows at the same time would allow to
modify and compare different types of Scriptable Objects,
which seems to be a common need when balancing games.
Filtering the data could be implemented with relative ease and
it would be a powerful feature as it would allow the user to
control which objects they see in the table, especially useful
for bigger game projects. Choosing whether to hide or show
specific columns is another feature that is quick to implement,
that would give even more control. Limiting which columns
are shown would allow the user to reduce the visual clutter
while editing. Together with multiple windows, it would allow
for very good overview of many different variables across a
game project. Multi-edit is the next feature, which would speed
up the bulk editing process. More support for built-in engine
features like showing different types and support for attributes
would be very beneficial to make the tool more flexible with
different projects and reduce the effort needed to modify the
table itself.

c) Considerations for Future Development: Multiple de-
sign considerations arose during the development and inter-
view processes. It is now clear that the fact that the tool adapts
to the project is very important. It reduces the time for starting
to use the tool. It also means that the tool is flexible, which
would encourage users to use the tool for multiple different
projects. This is a very important selling point as a lot of the
alternative tools we looked at seemed to require effort to start
working with.

Extensibility is a clear need going forward to ensure the
teams that work with the tool can adapt it to their needs with
ease. In addition to this, the code of the project should be
very well documented to ensure programmers can figure out
how to modify the tool fast. If adapting the tool is too hard,
teams could drop it altogether to develop their own solutions,
spending valuable development time on tools. Additionally,
referencing the results of this study could help guide the
developers in extending the tool.

2) Application of Al for Balancing Games: Al is being
applied for balancing for level generation (Shu et al.l |2021]),
in-game Al actors (Pfau et al., 2020) and dynamic difficulty
adjustment (Xue et al., 2017). We find that there are oppor-
tunities for applying novel machine learning algorithms for
assisting in the workflows for game balancing. We see how
Al could be used to analyse the changes made by the designer
and give them feedback or warnings of some other effects of

12

a given change to balance. The Al could use data collected
from live games to make such judgements. Additionally, Al
could potentially allow for dynamic generation of overview
windows, based on what the designer wants to adjust.

3) Applied Balancing Theory: While our interviews re-
vealed that few designers discussed balancing theory in depth,
they did cover all four balancing approaches. We find that a
need exists to further emphasize the importance of applying
in-depth balancing theory on games. For future work, we
propose expanding our tool’s features to include more bal-
ancing elements by integrating the balancing methods that we
researched, such as including cost curves and central values.
This theory-based approach could facilitate a more grounded
approach to game balancing, potentially improving the overall
efficacy and efficiency of the process.

CONCLUSION

This study explored game balancing practices among game
designers, identifying the range of strategies used and common
challenges faced in the process. We developed a game Web of
Lies to better understand the needs for balancing; and we made
a tool Scriptable Object Table (SOT) to assist in the process.
Through a series of interviews, we dived deeper into balancing
with our tool SOT. Based on the interviews, we did a critical
examination of SOT as a potential tool to streamline the game
balancing process, providing a nuanced understanding of its
strengths and potential areas for improvement with regards to
balancing.

Returning to our primary research question:

How can we develop a game balancing tool that
streamlines the workflow for developers, allowing
them to easily iterate and incorporate balancing
principles in their projects?

Our findings provide clarity for a path forward. The insights
indicate the potential value of such a tool for balancing,
like improved control of how they view the data, changing
data quickly, tracking the changes, and showing effect of the
changes. Furthermore, we explored ideas such as the impor-
tance of overview and iterations, integration with analytics
tools, improved version control, and future potential of Al
in balancing. These features, in conjunction with usability im-
provements, could significantly streamline the game balancing
process and assist game developers in creating more balanced
and engaging gaming experiences.

In conclusion, this study not only broadens our understand-
ing of game balancing practices and the obstacles designers
encounter, but it also provides a roadmap for the develop-
ment of more refined and effective game balancing tools. By
building on these findings, we can revolutionize the game
development process, facilitating a more intuitive, dynamic,
and effective balancing workflow integrated with the developer
environment.

REFERENCES

Adams, E. Fundamentals of game design. Pearson Education,
2014.

Agent40. Scriptable object editor, 2022.
https://assetstore.unity.com/packages/tools/utilities/
scriptable-object-editor-235840.

Becker, A. and Gorlich, D. What is game balancing?-an
examination of concepts. ParadigmPlus, 1(1):22-41, 2020.

Bjgrner, T., editor. Qualitative Methods for Consumer Re-
search. Hans Reitzels Forlag, Copenhagen, 2015.

Brown, M. How games get balanced, 2019. URL https://www.
youtube.com/watch?v=WXQzdXPTb2A.

Brown, M. The two types of random in game design, 2020.
URL https://youtu.be/dwISb-wRLicl

Credits, E. Perfect imbalance - why unbalanced design
creates balanced play - extra credits, 2013. URL https:
/[www.youtube.com/watch?v=e310SVZF77w.

Dave, N. N., Sparks, M. A., and Farouk, S. S. An introduction
and guide to becoming a social media savvy nephrologist,
2022.

Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A.,
Caldarelli, G., Stanley, H. E., and Quattrociocchi, W. The
spreading of misinformation online. Proceedings of the
national academy of Sciences, 113(3):554-559, 2016.

Engelstein, G. Ludology: Gametek classic

input output randomness, 2018.
https://www.dicetower.com/game-podcast/ludology/
gametek-classic- 183-input-output-randomness.

Epic Games. Unreal engine 5. [Game Engine], 2023. URL
https://www.unrealengine.com/en-US. Accessed May. 19,
2023.

Felder, Design 101: Balancing games, 2015.
URL https://www.gamedeveloper.com/design/
design- 101-balancing-games.

Final, F. Sheet codes, 2022. URL https://assetstore.unity.com/
packages/tools/visual-scripting/sheet-codes- 157729,

FromSoftware. Bloodborne. https://www.playstation.com/
en-dk/games/bloodborne/. Accessed: 2023-05-24.

Fullerton, T. Game design workshop: a playcentric approach
to creating innovative games. CRC press, 2014.

Fyrvall, B. Bona data editor, 2022. URL https://github.com/
bonahona/BonaDataEditor.

Get Media Savvy. Get Media Savvy: About.
getmediasavvy.org/about/. Accessed: 2023-03-06.

Google LLC. Google sheets, 2023. URL https://www.google.
com/sheets/about/.

Inc., R. Miro, 2023. URL https://miro.com/.

Klaus Teuber. The Settlers of Catan (English third
edition 1997) | Board Game Version | BoardGameGeek.
https://boardgamegeek.com/boardgameversion/24859/
english-third-edition-1997, a. Accessed: 2023-05-23.

Klaus Teuber. Catan: Junior | BoardGameGeek. |https:
/fboardgamegeek.com/boardgame/125921/catan-junior, b.
Accessed: 2023-05-23.

Kubey, R. W. Media literacy in the information age: Current

URL

183
URL

D.

https://

13

perspectives. 1997.

Mega Crit Games. Slay The Spire. https://store.steampowered.
com/app/646570/Slay_the_Spire/. Accessed: 2023-05-23.
Mian, A. and Khan, S. Coronavirus: the spread of misinfor-

mation. BMC medicine, 18:1-2, 2020.

Microsoft Corporation. Microsoft excel. Retrieved from https:
/loffice.microsoft.com/excel, 2023.

Millard, A. How "bad" balance can be a good thing, 2022.
URL https://www.youtube.com/watch?v=11WYmHz3hog.
Perednyté, D., Flig, K. E., Munk, S., and Timcenko, O.
Information Disorder: Raising Interest Through Games.

Unpublished, 2023.

Pfau, J., Liapis, A., Volkmar, G., Yannakakis, G. N., and
Malaka, R. Dungeons & replicants: automated game bal-
ancing via deep player behavior modeling. In 2020 IEEE
Conference on Games (CoG), pages 431-438. IEEE, 2020.

Rogers, Y. Interaction design gone wild: striving for wild
theory. interactions, 18(4):58-62, 2011.

Schell, J. The Art of Game Design: A book of lenses. CRC

press, 2008.

Schreiber, 1. Game balance concepts. https:
//gamebalanceconcepts.wordpress.com/2010/06/17/
hello-world/, 2010. Accessed: 2023-02-20.

Schreiber, I. and Romero, B. Game balance. CRC Press,

2021.

Shu, T., Liu, J., and Yannakakis, G. N. Experience-driven pcg
via reinforcement learning: A super mario bros study. In
2021 IEEE Conference on Games (CoG), pages 1-9. IEEE,
2021.

Sylvester, T. Designing games: A guide to engineering
experiences. " O’Reilly Media, Inc.", 2013.

Torvalds, L. Git, 2023. URL https://git-scm.com/. Accessed
May. 8, 2023.

Tyroller, J. Top 10 tips on how to balance your game, 2019.
URL https://www.youtube.com/watch?v=u09qIDbJvT8\

Unity Technologies. Scriptable objects, 2018. URL https:
//docs.unity3d.com/Manual/class-ScriptableObject.html.

Unity Technologies. Unity: 2022.2.15f1. [Game Engine],
2023a. URL https://www.unity.com. Accessed May. 8,
2023.

Unity Technologies. Attributes, 2023b. URL https://docs.
unity3d.com/Manual/Attributes.html.

VisualWorks. Csv serialize, 2019. URL https://assetstore.unity.
com/packages/tools/integration/csv-serialize- 135763,

Von Baeyer, H. C. The Fermi solution. Dover Publications,
Mineola, NY, January 2001.

Wardle, C. et al. Information disorder: Toward an interdisci-
plinary framework for research and policy making (2017).
2017.

Xue, S., Wu, M., Kolen, J., Aghdaie, N., and Zaman, K. A.
Dynamic difficulty adjustment for maximized engagement
in digital games. In Proceedings of the 26th International
Conference on World Wide Web Companion, pages 465—
471, 2017.

Zarembo, 1. Analysis of artificial intelligence applications for
automated testing of video games. In ENVIRONMENT.

https://assetstore.unity.com/packages/tools/utilities/scriptable-object-editor-235840
https://assetstore.unity.com/packages/tools/utilities/scriptable-object-editor-235840
https://www.youtube.com/watch?v=WXQzdXPTb2A
https://www.youtube.com/watch?v=WXQzdXPTb2A
https://youtu.be/dwI5b-wRLic
https://www.youtube.com/watch?v=e31OSVZF77w
https://www.youtube.com/watch?v=e31OSVZF77w
https://www.dicetower.com/game-podcast/ludology/gametek-classic-183-input-output-randomness
https://www.dicetower.com/game-podcast/ludology/gametek-classic-183-input-output-randomness
https://www.unrealengine.com/en-US
https://www.gamedeveloper.com/design/design-101-balancing-games
https://www.gamedeveloper.com/design/design-101-balancing-games
https://assetstore.unity.com/packages/tools/visual-scripting/sheet-codes-157729
https://assetstore.unity.com/packages/tools/visual-scripting/sheet-codes-157729
https://www.playstation.com/en-dk/games/bloodborne/
https://www.playstation.com/en-dk/games/bloodborne/
https://github.com/bonahona/BonaDataEditor
https://github.com/bonahona/BonaDataEditor
https://getmediasavvy.org/about/
https://getmediasavvy.org/about/
https://www.google.com/sheets/about/
https://www.google.com/sheets/about/
https://miro.com/
https://boardgamegeek.com/boardgameversion/24859/english-third-edition-1997
https://boardgamegeek.com/boardgameversion/24859/english-third-edition-1997
https://boardgamegeek.com/boardgame/125921/catan-junior
https://boardgamegeek.com/boardgame/125921/catan-junior
https://store.steampowered.com/app/646570/Slay_the_Spire/
https://store.steampowered.com/app/646570/Slay_the_Spire/
https://office.microsoft.com/excel
https://office.microsoft.com/excel
https://www.youtube.com/watch?v=l1WYmHz3hog
https://gamebalanceconcepts.wordpress.com/2010/06/17/hello-world/
https://gamebalanceconcepts.wordpress.com/2010/06/17/hello-world/
https://gamebalanceconcepts.wordpress.com/2010/06/17/hello-world/
https://git-scm.com/
https://www.youtube.com/watch?v=uo9qIDbJvT8
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://www.unity.com
https://docs.unity3d.com/Manual/Attributes.html
https://docs.unity3d.com/Manual/Attributes.html
https://assetstore.unity.com/packages/tools/integration/csv-serialize-135763
https://assetstore.unity.com/packages/tools/integration/csv-serialize-135763

TECHNOLOGIES. RESOURCES. Proceedings of the In-
ternational Scientific and Practical Conference, volume 2,
pages 170-174, 2019.

14

APPENDIX A
INTERVIEW GUIDE DOCUMENT

The following two pages contain the interview guide document we used when conducting the interviews.

15

Introduction

Greet the participant and introduce yourself
o Simonas interview
o Kristinn notes
Thank you for trying out our tool
Briefly describe the project and its goals
o Goals: make it easier for game designers to balance games by facilitating an
integrated environment
Explain purpose of interview and expected duration
o Purpose: gain a better understanding of how our tool can be used for balancing
games
o Expected duration: 20-30 minutes
Confirm that the participant has consented to participate and that the interview will be
recorded

Background and Experience

Ask the participant to provide a brief overview of their background in game
development, with a focus on their experience with game balancing
Inquire about their experience with Unity and Scriptable Objects

Game Balancing Approaches and Challenges

Ask the participant to describe their general approach to game balancing
o Could they give some examples?

What are the common challenges they face in the process
o Could they give some examples?

Using Scriptable Object Table (SOT) in Game
Balancing

What was their process when using the SOT?
What advantages do they see in the tool?
Could you compare SOT with alternative solutions?
o What drawback does SOT have in comparison?
Discuss any challenges they faced while using SOT
o how did they overcome them?
o What issues do they see with the tool?

16

SOT Features and Improvements

e Ask for suggestions on how to improve SOT to better support game balancing tasks
e Discuss any additional features they would like to see integrated with SOT that would

assist the balancing process

Conclusion

Summarize the key points from the interview
Ask if they had 3 main takeaways they would highlight from the interview, what would

they be
Ask if they have any additional comments or questions
Thank the participant for their time and valuable insights

17

APPENDIX B
SCRIPTABLE OBJECT TABLE DOCUMENTATION

The following page contains the documentation included with the Scriptable Object Table plugin.

18

Scriptable Object Table Documentation

SETUP

If you are not using assembly definitions, you don’t need to do anything. Skip to Usage section.

If you are using them in your project, you need to add an assembly definition file inside the the Scrip-
tableObjectTable folder which is located in the plugins folder after installation. Then reference the
assembly definitions that contain classes that are used in the scriptable objects in your project.

USAGE
You can find the Scriptable Object Table View under Enlit Games > Scriptable Object Table.

@ ScriptableObjectTable - SampleScene - Windows, Mac, Linux - Unity 2022.2.15 <DX11>

File Edit Assets GameObject Component Services Enlit Games Asset Store Tools Window Help

s~ & 0O Scriptable Object Table

= Hierarchy - (am Game

Next, you need to select the Scriptable Object which you want to edit together with other Scriptable
Objects of the same type.

The Truth 3 O] hea @ | Legendary

You can edit the values here and they will be changed on the actual Scriptable Object. Some more
complex values are not supported, like lists or nested Scriptable Objects.

You can also use the Hide read-only values toggle to hide values that cannot be edited in the table
view, like arrays or lists. You can still click on read-only values to see the scriptable object in the the
inspector view.

19

APPENDIX C
GAME DESIGN DOCUMENT

The following pages contain the full PDF for our game design document.
This document was written for the intended purpose of outlining the design for a full scaled game, so some of the described
mechanics or game structures may not be implemented in the prototype used for this project.

20

Web of Lies

Game Design Document
GMS x Enlit Games

Gossip in the community. Spymaster in the window.

Tip: use document outline for table of contents

Overview

The player takes the role of a spymaster hired by the king to dismantle a rebellion by
distributing different types of mis- & disinformation to people, spreading propaganda
among the populace. They must balance between giving them manipulative information,
and maintaining credibility within the community.

Genre: Singleplayer roguelite deck builder

21

Media Literacy Goal

The goal of this project is to give players an intuitive understanding of how mis- &
disinformation spreads. When most social platforms are engineered for people to
publicly ‘perform’ through likes, comments or shares, it's easy to understand why
emotional content travels so quickly and widely, even as we see an explosion in
fact-checking and debunking organizations. With an abundance of information, it can be
difficult to spend time fact-checking every source of information, to the point where a lot
of users lack skepticism. The game aims to showcase the manipulative power of widely
spread mis- & disinformation, when people take in information without questioning the
intent behind it or checking the legitimacy.

GMS Keywords

Mis-information When false information is shared, but no harm is meant
Dis-information When false information is knowingly shared to cause harm
Mal-information When genuine information is shared to cause harm, often by moving

information designed to stay private into the public sphere.

Information overload A situation in which you receive too much information at one time and
cannot think about it in a clear way

Rumor Information or a story that is passed from person to person but has not
been proven to be true

Propaganda Information, ideas or rumors deliberately spread widely to help or harm
a person, group, movement, institution or nation. It is often biased and
misleading, in order to promote an ideology or point of view

Spin To present news or information in a way that creates a favorable
impression

Credibility The quality or state of being credible; capacity to be believed or
believed in

Satire / Parody False or partially false information shared with the intent of being

entertaining or comedic. Might not be intended to cause harm but can
risk fooling people

False connection When the headlines, visuals or captions don’t support the actual
content. Though the actual content might have genuine information,
the headline or similar might result in false conclusions.

Misleading content Misleading use of information to frame an issue or individual. This
information is usually spread to harm the status of or manipulate the
public opinion about a specific target.

22

False context When genuine content is shared with false contextual information. The
use of genuine information is used to lower the guard of skeptics and
make the false information seem more believable.

Imposter content When genuine sources are impersonated. By utilizing people's trust in
an information outlet, like a trusted individual or news company, people
frame information as having been shared by them to reach a wider
audience or to make the false information seem genuine.

Manipulated content When genuine information or imagery is manipulated to deceive.
Withholding or slightly changing details of the information to change
the overall message.

Fabricated content New content that is 100% false, designed to deceive and do harm.

Informing Elements
Social media platforms:

e Twitter, Instagram, Discord, Reddit, Youtube, 4Chan Tik Tok & Facebook are
perfect environments to spread various unfiltered information. On these sites
information is presented at such a fast pace, there is no way to make sure the
information is correct.

Game Mechanics

Resources

Credibility (HP) - you gain or lose credibility depending on
the types of information you spread

Gold (Mana) - you have a certain amount available
each turn, which is used to play different cards

Deck of Cards different messages of mis- & disinformation
that you can pull from the deck while playing

Cards in hand single pieces of information that you spread or
single actions that you take to affect the

23

community

Rebellious spirit A measurement of the community or
community leaders’ intent to rebel. If their spirit
is fully reduced they get dissuaded from
rebelling

Information capacity | A single person in the community can only
handle sharing a limited amount of information
in a short time. If their capacity is reached they
get information overload and will retreat

Active mechanics

Rotation - rotating a Pawn(in either direction) to change its directional connection
so it now spreads information with a different neighboring Pawn.

Swapping - swaps the grid positions of two Pawns while maintaining their current
rotation. Can also be used to move a Pawn to an empty grid position.

Spread harmful information - starting a chain of harmful information from a single
Pawn, which then travels along each Pawn’s directional connection.

Shunning - when a Pawn gets shunned it is removed from the grid leaving its
previous space empty.

Inviting - if there is an empty space in the grid a new random Pawn can be invited
in to take up that space.

Collecting rumors - adding new cards to your deck

Changing Pawn attributes - add, remove or change which attributes are currently
in effect for the individual pawns

Passive mechanics

Grid - the board is a grid with set dimensions and amount of spaces. Each space
in the grid may be either empty or occupied by a single Pawn.

Deck re-shuffling - as cards are drawn from the deck and either played or
discarded, they are added to the discard pile. If there are not enough cards
remaining in the deck to draw a full hand of cards you draw the remaining cards
in the deck, then the discard is immediately re-shuffled into your deck, and you
draw the remaining amount up to a full hand of cards.

24

NPC attributes

Directional connection - an indication of what neighboring Pawn(s) a given Pawn
will spread information to.

Information capacity (pawn HP) - once hp drops to 0, the Pawn is overwhelmed
and cannot take in or spread any information for a turn.

Special abilities - some Pawns have abilities that use the Active mechanics to
hurt your credibility and reinforce the community.

Literacy (thorns) - if harmful information is spread through a literate Pawn it will
damage your credibility.

Suspicion (block) - a suspicious Pawn is harder to spread information through
and can’t be affected directly.

Community leader - If a community leader Pawn is present, then the community’s
rebellious spirit can only be lowered by spreading harmful information directly to
the community leader Pawn.

Card attributes

Cost - how much gold do you need to pay to play the card.

Board effect - which active mechanic action will the card let you perform (ie.
rotate a Pawn clockwise, or start a chain of harmful information).

Resource - a card may increase or decrease a specific resource (credibility etc.).

Gameplay Loop

Structure elements:

Run - a single playthrough of all the game’s stages, or until the player loses the
game.

Stage (week) - the game progression is split into several stages with a
community leader encounter at the end of each. Each stage consists of 7
encounters (days in a week based structure).

Encounter (day) - each day is a new encounter. An encounter is a single field of
Pawn with a rebellious spirit that you need to decrease. A given encounter may

25

have different challenge goals, indicating how you can lower the board’s
rebellious spirit.

Information gathering - after each encounter gets to gather information by adding
a new card to their deck. The available cards are randomly chosen from the total
pool of possible cards.

Visit - on specific days of the week special characters will visit after your
information gathering. Each guest offers a different service:

o Counter intelligence - remove cards from your deck

o Buy information - use gold to add more cards to your deck

o Special challenges - accept special challenges for the next encounter that
will either reward or punish you based on whether or not you succeed in
completing the challenge.

Turn - an encounter is played out as a sequence of turns. Each turn has several
stages:

o Draw - the player draws a full hand of cards. The deck is re-shuffled if
necessary.

o Play - the player gets to play cards until they run out of action points or
cards to play, or decides to end their turn. Playing a card happens in
steps:

m A card is selected

m A target (if needed) is selected

m Action points are paid equal to the card cost
m The card effect happens

m The card is discarded

m Any resource changes take effect

o Pawn actions - if any Pawns on the board have actions, then those actions
take effect.

o Restoration - any Pawns that were overloaded the previous turn are
restored.

26

Encounter

emaining Turns:
10

You spread information to Pawns (NPCs), and then they spread messages between
themselves based on the directions of their connections.

Information spreads in chains following the directional connection of each Pawn until it
reaches a boss, the edge of the grid, and empty grid space, or would be spread to a
Pawn that has already been part of the chain.

Game is played in turns, where the community tries to fight back against the spread of
mis-information.

Get new cards as you play. Use your coins to spread different types of mis- &
disinformation (cards) to change the positions and directional connections between the
pawns. And spread harmful information to damage the community’s rebellious spirit.

Run

The game is split into runs. Each run is an attempt to dismantle a rebellion by a new spy
sent by the king.

A new deck is built every run as the spy gathers more information/gossip about the
community.

The run starts with a basic deck of cards/messages gathered by the spy about the
community. After each encounter, the player gets to add 1 card, from a random
selection to their deck. The pool of available cards gradually becomes better/stronger.

During an encounter, the player goes through turns where the player chooses cards to
play, after which the Pawns on the board get a turn of their own. This continues back
and forth until the player either depletes the encounter's rebellious spirit(HP) and gets to
progress, or has their credibility depleted, in which case they lose the game.

27

Each encounter represents a day within the week that makes up each stage in the
game. On certain days of the week, different special guests will visit. At the end of each
week, a community leader will come by, serving as the boss for the final encounter of
that stage, and you have to dismantle their rebellious spirit in order to proceed to the
next stage.

Meta Progression

Storyworld

The game follows a medieval fantasy setting.

The king is struggling to keep the people united under him, and a rebellion is on the rise
out and about in the towns and cities of the kingdom.

You are a spymaster sent by the king to dismantle this rebellion. To accomplish this you
go undercover as a barkeep, listening in on rumors and spreading dis-information and
propaganda among the patrons, slowly breaking down the people’s rebellious spirit. As
the rebellious spirit of the people dwindles, community leaders will show up trying to
restore their resolve, and so you will need to break their spirit as well.

Art Direction

e Medieval setting
e Designs inspired by old filigree.

e Sound design is relaxed, but gets tenser if your credibility lowers. And different
tones are mixed in depending on the unity of the community you are currently
facing, and the cards you are playing.

28

e High-pitch jovial-like fiddle/violin music whenever pawns are outcasted or long
information chains are made.

e The tone should shift between optimistic and downtrodden depending on how
well the community is doing.

Mood Board

Tech Spec

PC, Steam.
There is potential for the game to be ported to mobile and consoles.

Because the game is a single-player experience, there is no need for servers or
databases.

The game would be developed in the Unity game engine.

29

	English title page
	Introduction
	Game Balance Theory
	General Concepts of Game Balance
	The Four Approaches to Game Balancing
	Intuition Approach
	Mathematical Approach
	Playtesting Approach
	Metrics Approach

	Web of Lies
	State of the Art
	Sheet Codes
	Scriptable Object Editor
	Bona Data Editor
	CSV Serialize

	Scriptable Object Table
	Design
	Iterative Approach
	Implementation

	Methods
	Participants
	Procedure
	Pilot Test

	Data Analysis

	Findings
	Participant Understanding of Balancing
	Common Challenges When Balancing

	Enhancing the Iteration Process
	Control of How They View the Data
	Changing Data Quickly
	Tracking the Changes
	Showing Effect of the Changes

	Specific Feedback on the Scriptable Object Table Plugin
	Tool Architecture
	UX Improvements
	Opinions of the Tool
	Alternative Solutions
	Other Uses

	Discussion
	Validity and Reliability
	Web of Lies
	Future Work
	Further Development of Scriptable Object Table
	Application of AI for Balancing Games
	Applied Balancing Theory

	Appendix A: Interview Guide Document
	Appendix B: Scriptable Object Table Documentation
	Appendix C: Game Design Document

