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ABSTRACT IN ENGLISH

The Vickers hardness and the indentation induced densified and plastic flow volumes

were determined in simple silicate glasses by atomic force microscopy by measuring

before and after annealing at 0.9× Tg for two hours.

It was found that the densified volume decreases linearly with the measured

bulk modulus, and the plastic flow volume with the silica molar fraction (becoming

zero close to 80%) of the glass. Hardness was related to the elastic properties, in

particular the shear modulus, but it was not possible to develop an improved model

for hardness prediction given the discovered relations to the deformation volumes.

The relative contribution of densification to plastic flow was attempted to be

related to measures of the free volume, such as Poisson’s ratio and the helium solubil-

ity. However there is no clear relationship with these properties, instead the results

being described accurately by the ratio of the resistances described above.

For some glasses the loads for crack initiation were measured and the residual

stresses at these loads estimated from the extrapolated plastic flow volumes. The

estimated stresses range from 110− 470MPa (±70MPa,) and thus it does not seem

a single stress for crack initiation exists, even in simple silicates.
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ABSTRACT IN DANISH

Vickers h̊ardhedstallet, den indentations-inducerede højdensitets og plastisk defor-

mations volumen i silikatglas er blevet kvantificeret med atomic force mikroskopi ved

at m̊ale før og efter varmebehandling ved 0.9× Tg i to timer.

Resultaterne viser at volumenet med høj densitet bliver mindre i lige propor-

tioner med glassets kompressibilitetsmodul, og det plastic deformerede volumen med

mol fraktionen af SiO2, og bliver nul omkring en mol fraktionen p̊a80%. H̊ardheden

kunne relateres til de elastiske egenskaber, især forskydningsmodulet, men det var

ikke muligt at fremstille en forbedret model til at forudsige h̊ardheden af glas udfra

de fundne relationer til de irreversible deformerede volumener.

Det blev forsøgt at relatere den relative mængde af høj densitets til plastisk de-

formation til det frie volumen, f.eks. igennem Poissons tal og helium opløseligheden.

Det var ikke muligt at finde nogen klar sammenhæng med disse parametre, men

forholdet imellem de ovennævnte modstande til permanent deformation beskrev re-

sultaterne godt.

For nogle af de producerede glasprøver blev modstanden mod fraktur m̊alt og

den residuale mekaniske spænding estimeret med ekstrapolation fra de m̊alte plastiske

deformations volumener. De estimerede residuale spændinger ligger imellem 110−
470MPa (±70MPa,) og derfor lader der ikke til at være en enkelt spænding ved den

m̊alte nødvendige kraft til at initiere fraktur i silikatglas.
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1. INTRODUCTION

It has been more than sixty years since Taylor startlingly reported a permanent

microindentation impression in glass [1]. Since then, hardness testing of glasses has

proven an easy method of evaluating the surface strength [2,3] (i.e. ”scratchability”,)

crack resistance [4–9], fracture toughness [10–17], and with newer nanoindentation

equipment even elastic properties [18–27]. However, despite the immense amount

of papers written in the field, the processes occurring during indentation of glasses

are still poorly understood. In metals and crystals, there is no doubt that volume

conservative plastic shear deformation occurs by breaking and reformation of low-

energy bonds [28]. The theoretical framework used to describe this, the Burger’s

dislocation vector, at first glance seems inapplicable to glasses as they lack a periodic

structure, although some authors argue that there is no fundamental difference [28].

Despite the controversy, it is known that some form of plastic deformation does

indeed occur, along with a deformation unique to glasses, a non-volume conservative

densification [28]. Indeed, for amorphous silica there seems to be little or no plastic

flow, only densification [29].

Given this state of affairs, and the inherent spread of indentation data, it is

not surprising that sixty years of research have led to relatively little predictive

power of indentation related properties. Determination of elastic properties from

nanoindentation is usually done by the Oliver-Pharr method [18,19], which goes to

great lengths to minimise the plastic deformation, nevertheless pile-up due to plastic

flow is a significant problem [22]. The indentation fracture toughness is so named

because the fracture toughness values obtained by indentation do not correspond

well with those determined by other methods. The crack resistance is an attempt of

quantification of the susceptibility of glasses to surface cracking, which is the cause

of the actual strength of glasses being some fifty times lower than the theoretical

value [30–32]. Indentation cracking is thought by Tomozawa and Gross [8] to be

caused by stress mismatch with origin in a fictive temperature induced change of

mechanical properties during indentation (including a dilation of normal glasses,)

1
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while Kato et al. [33] find the densificative contribution at the load for crack initi-

ation is paramount. As for the most important property measured by indentation,

the hardness itself, the most successful attempt at linking the hardness to other

mechanical properties - and through them composition - was arguably by Yamane

& Mackenzie [34]. Notably they argued the hardness as being the total resistance

of each deformation mechanism; elastic, plastic, and densification. Despite having

very little data on the relative contributions of the various deformation mechanisms,

this semi-empirical model accurately describes hardness of a wide range of glasses,

and immediately led to the development of some of the highest hardness glasses

measured at the time [35].

This thesis will attempt to shed light onto the compositional dependence of

the plastic and densificative deformation mechanisms in glass, and illustrate the

importance of understanding these properties for predicting indentation derived pa-

rameters such as hardness and the load for crack initiation.



2. REVIEW OF STATE OF THE ART

2.1 Hardness Testing

A wide variety of testing methods and scales of hardness have been employed

in the industry to quantify this rather intuitive, yet elusive property of materials.

The very first implementation was due to Brinell [36] whom assessed the hardness

of steel by placing a hardened steel ball between two plates, squeezing them together

in a vice, then measuring the size of the resulting dent. The modern version applies

a hardened steel ball with normal force to a material, i.e. microindentation with

a Brinell indenter. Many other indenter geometries exist, for example: Vickers,

Berkovich, Knoop, and Rockwell, each with their own hardness scale, as the values

do not agree well [36].

The Vickers indentation method will be used extensively in this work, which is

why this is taken as the basis for further description. This indenter is a square-based

pyramid with an angle, θ, of 136◦ between opposite pyramid faces and is usually

made of diamond. The hardness in a microindentation test is usually evaluated as

the force over the projected surface area of the indent, which for a Vickers indenter

is:

HV =
2P sin θ

L2
ci

= 1.8544
P

L2
ci

(2.1)

where HV is the Vickers hardness, P the load, and Lci the indentation diagonal.

The hardness determined from equation 2.2 (or the likes of it) is sometimes referred

to as the Meyer hardness. This is due to the hardness usually not being constant

with load and indentation size, an effect dubbed the indentation size effect (ISE.)

Generally a decrease of hardness with size is found, which can be fitted reasonably

well by the empirical Meyer’s law.

P = CM · LnM
ci (2.2)

where both CM and nM are fitting parameters.

The origin of hardness is still under debate, and has been interpreted in a

3
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variety of ways over the years, such as: As a yield strength measured under non-

uniform loading [19, 37], the energy required to create the indentation volume [38],

or a yield pressure for densification [39]. For this reason the origin of the ISE is a

popular research topic. The ISE occurs for crystalline materials [36], polymers [40],

ceramics [41, 42], and glasses [43]. Many plausible origins have been argued, and

odds are that most of them are at least qualitatively correct. For example, the

following material or measurement specific causes have all been proposed as possible

causes of the ISE: The presence of a surface film, surface roughness, surface energy,

composition variation, crystal anisotropy, fracture, rounding of the indenter tip,

misalignment of indenter and surface, friction, and loading conditions [40, 44, 45].

Others believe that the ISE is an inherent property of the material, arguing for

intrinsic effects like strain hardening and increased surface energy due to cracking

[40].

2.2 Composition Dependence of Hardness

Quite a few attempts [46] have been made at correlating the glass hardness to

structure before the seminal paper by Yamane and Mackenzie [34] in the seventies,

but the latter is the first major contribution. They broke down the hardness into

a variety of resistances caused by the three deformation mechanisms known to oc-

cur; elastic, plastic, and densification. Semi-empirically they derived a reasonable

expression for each based on the elastic constants,

RE ∝ K (2.3)

RP ∝ αG (2.4)

RD ∝
√
αGK (2.5)

RT = (RERPRD)1/3 =
√
αGK (2.6)
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where RE, RP , RD and RT are the respective elastic, plastic, densificative and total

resistances, and α, K and G the average bond strength, bulk and shear modulus.

The total resistance is taken as the geometrical mean, and fitted to the calculated

value to the hardness of amorphous silica. The final equation is:

HV = CY M ·RT = CY M ·
√
αGK (2.7)

HV being the Vickers Hardness and CY M the proportionatility constant determined

empirically from the hardness of amorphous silica in the Yamane & MacKenzie

model. As the elastic properties can be fairly accurately calculated from composition

[47–49], this equation can predict hardness from scratch, and indeed accurately so

across a wide variety of glass forming systems, as seen in figure 2.2.1 [34].

Figure 2.2.1: Calculated values of Vickers Hardness, HV , with appli-
cation of equation 2.7 plotted agaist the experimental values for some
non-silicate glasses.

A newer approach based on hardness theories of metals and crystals is that of
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Calleja et al. [37]. For metals it is empirically found [50] that,

HV

σy

∼= 3 (2.8)

where σy is the yield strength of the metal. This was later theoretically confirmed

under the assumption of an expanding spherical cavity in an elastic-plastic material

[51] giving,
H

σy

=
2

3

[
1 + ln

(
E

3(1− 2ν)σy

)]
(2.9)

where E is the Young’s modulus and ν Poisson’s ratio, which is the ratio of strain

in the tranverse direction to the strain in the direction of applied force in a linear

tension or compression experiment. Standard values of these elastic constants for

metals give approximately the relationship in equation 2.8. A similar empirical

relation exists for glassy polymers, given as,

HV

σy

∼= 1.9 (2.10)

However using an unmodified equation 2.9 yields very poor correlation to results

for inorganic glasses and glassy polymers. Replacing the factor 2/3 by an empirical

constant c, found to be around 1/2 gives a reasonable fit [37].

Another related approach takes the maximum in the internal pressure, the

change in internal energy during isothermal volume change, as a measure of yield

strength of a material [37]. The internal pressure Pi is defined as,

Pi =

(
∂U

∂V

)
T

(2.11)

where U and V is the internal energy and volume, respectively. Simplifying the

problem to a one-dimensional extension in the elastic regime, Pi is simply the applied

stress relative to the strain by Hooke’s law,

Pi = E · ∆r

r0
(2.12)

where r0 is the equilibrium value of interparticle distance and ∆r the change due
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to strain. Of course there will be a limit to elastic response, and at some point

the lattice anharmonicity will set in, as illustrated in figure 2.2.2. This onset of

Figure 2.2.2: Schematic representation of the potential energy, U(r), and
the interparticle interactions force, f(r), vs. the interparticle distance, r.

lattice anharmonicity is basically a yield strength, as it also marks the maximum

of the interparticle interaction force at the maximum strain rm. What is needed to

assess rm is then an evaluation of this interparticle interaction force as a function

of interparticle separation. A Taylor series expansion of the potential energy as a

function of interparticle distance truncated after the fourth term coupled with the

use of the Grüneisen parameter used in thermal expansion theories can be used in

combination with equation 2.12 to yield,

Pm =

(
1

6γ
E

)
∼= A

(
1− 2ν

6(1 + ν)

)
E (2.13)

where Pm is the maximum internal pressure, γ is the Grüneisen parameter, and A

defined as,

A =
9

2 ln (1/Vf )
(2.14)

where Vf is the free volume fraction of the glass, and will be discussed further in

section 2.4. In practice the A variable is taken as constant due to the difficulty of

measuring the free volume of glasses [37].
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2.3 The Deformation Processes of Indentation

It is generally accepted that at least three processes occur during indentation:

Elasticity, densification, and plastic flow [29]. For now it will suffice to say that

densification involves a non-volume conservative flow, or collapse of the network

structure, during indentation. This has been found [52] to be the major process

occuring for glasses with open structures (low Poisson’s ratio.) A seemingly vol-

ume conservative plastic flow displacing matter to the surface however becomes

increasingly important in densely packed glassy structures (high Poisson’s ratio.)An

overview of these processes can be seen in figure 2.3.1 [53] and will be discussed

further in the following.

Figure 2.3.1: An overview of the processes occuring during sharp inden-
tation on glass.

2.3.1 Elasticity

Although released upon unloading, the elastic response during indentation

cannot be disregarded, indeed it is paramount to any proper understanding of the

hardness concept. This is emphasised by the empirically found correlation that hard-

ness is roughly proportional to the elastic properties of the glass, namely Young’s

modulus and shear modulus [54]. Indeed, the search for very hard materials is often
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undertaken through the shear modulus, as it can be predicted from first principles,

while hardness in itself is poorly understood [54]. As seen in figure 2.3.2 [25] the

Figure 2.3.2: A typical glass nanoindentation load-displacement curve.
The work of elastic (Welast) and plastic deformation (Wplast) corresponds
to the respective integrals.

elastic work during nanoindentation constitutes a major fraction of the total, for

amorphous silica around 70% [55], given credence to the above relation. Also evi-

dent is that the penetration depth during loading is very different from that seen

after unloading. This is mainly caused by surface deflection, i.e. a sinking-in of the

surface outside the surface region in actual contact with the indenter, and the prob-

lem has been adequately solved theoretically [18,19]. Generally elastic shrinkage of

the diagonal is neglectable, but for some glasses, e.g. amorphous silica, this gives

rise to some error.

2.3.2 Densification

Densification in silicates occurs through a reduction in Si-O-Si bond angles,

as measured by Raman spectroscopy in the center of a Vickers indentation [52].

This densified region can be relaxed by annealing far below the glass transition

temperature (e.g. 0.9 × Tg (K)) with activation energies reported as 35-55kJ/mol

for amorphous silica [56,57], and thus comparable to that of densification induced by

hydrostatic pressure [58]. The degree of shear induced under otherwise hydrostatic
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conditions has qualitively been linked to greatly increased degree of densification.

New evidence suggests that under good hydrostaticity a maximum densification is

reached at pressures above 20GPa for a soda-lime-silicate glass, the density slightly

higher than that of crystallised quartz [39]. Thus one might imagine the process

as a collapse of the open structure into the free volume as compared to the crystal

structure.

Most of the quantative data of densification in glass was made by Yoshida

et al. [52, 59], including silicates, sodium borates, oxy-nitride, and bulk metallic

glasses by measuring the volume of indents and pile-up before and after annealing.

The influence of time and temperature of this annealing process to recover the

densified volume has previously been researched by the same authors, and found to

be saturated for 0.9 × Tg (K) for 2 hours, while no evidence of viscous flow being

evident [60]. Kato et al. [9, 61] also report quantative data for boro-silicate glasses,

however including only the depth recovery, not the volume. Yoshida et al. [52] find

a monotonic decrease of the determined volume recovery ratio with Poisson’s ratio,

as seen in figure 2.3.3.

Figure 2.3.3: The volume recovery of densification, VR, as a function of
Poisson’s ratio, ν, for a variety of silicates, silica, oxy-nitride, and a bulk
metallic glass. The data can be found in appendix B. Error bars indicate
±1 standard deviation. The line is a guide for the eyes.

It is recognised that the Poisson’s ratio is closely related to the compactness
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of structure of a material. By definition a Poisson’s ratio of zero means the material

is perfectly compressible; compression or expansion in one direction does not elicit

a response in the other. This is closely related to the presence of voids in the

material, which can either expand in the direction of strain, or the material can be

compressed into. Cork and sponges are generally the materials which are close to this

ideal. On the other hand a value of one half corresponds to ideal incompressibility,

i.e. perfect conservation of volume under strain. This is generally approximately

true for liquids and very compact solids. Figure 2.3.4 [62] shows the evolution of

Poisson’s ratio for a variety of inorganic glasses, plotted with the maximum relative

density change under high pressure treatment, emphasising it as a measure of the

degree of structural openness.

Figure 2.3.4: The maximum density change, ∆ρ/ρ0, under high hydro-
static pressure treatment (up to 25GPa) as a function of Poisson’s ratio,
ν, for some inorganic glasses. The trend of ionic volume fraction, Cg,
and network dimensionality is also illustrated. Error bars indicate ±1
standard deviation. The line is a guide for the eyes.

The ionic volume fraction, Cg seen in figure 2.3.4 is the ratio of molar volume

of the constituent ions to molar volume of a material. A related measure is the
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space ratio, VSR, defined as the remaining volume, or mathematically,

VSR = 1− Cg = 1− ρ

M

4π

3

∑
i

(niri) (2.15)

where ρ and M are the density and molar weight of the glass, while n and r are the

moles and radius of the ith constituent ion. Using only the composition, density,

coordination numbers (e.g. from Sun’s table [63],) and ionic radii equation (e.g. from

Shannon’s table [64]) 2.15 can give an estimate of the openness, or free volume, of

the glass structure. Indeed, the empirical determination of Poisson’s ratio of glasses

from the the ionic volume fraction has been suggested. Yoshida et al. [59] have

subsequently found a relationship between ionic volume fraction and the volume

recovery ratio for silicates, but no clear relation for sodium borates, as seen in figure

2.3.5. The authors [59] argue that the mechanism of densification is fundamentally

Figure 2.3.5: Volume ratio of recovery, VR, as a function of ionic volume
fraction, Cg, for silicate and sodium borate glasses.

different from silicates - the aforementioned narrowing of bond angles - while for

sodium borates there is little change in bond angle, however a significant change in

ring statistics is found. As for the volume recovery ratio trend across the sodium

borate series, showing a distinct maximum near the maximum of four-coordinated



13

boron at a molar modifier fraction of one third [65], it is thought that irreversible

shear flow can occur by two different mechanisms: Slipping between three-membered

planar boroxol rings (predominant at modifier fractions lower than one third,) and

redistribution of non-bonding oxygen (present only above modifier fractions of about

one third.)

2.3.3 Plastic Flow

It was Marsh [31] that convincingly brought attention to the numerous theo-

retical discrepancies between experiment and the assumption of perfect brittleness

- i.e. non-plasticity - of glass. Especially using sharp indentation of a relatively soft

material significant ridges, or pile-up, along the edges of the indent are evidence of

plastic flow. First, let us inspect figure 2.3.6 [29] and see how this pile-up region

actually looks for a sharp indentation of glass. Given the distribution of pile-up at

Figure 2.3.6: Scanning Electron Micrograph of a plate glass indent made
with 70◦ pyramid.

the indentation edges, decreasing towards the corners, the driving force is likely the

large shear stresses occuring at these locations during loading. The same is found

for metals and crystals, where the mechanism is established to be slipping along

dislocation lines in the crystalline lattice [66]. Indeed for many crystals it is found

that the hardness shows excellent correlation with the bond modulus, taken as the

energy gap (i.e. bond strength) divided by the dislocation volume [67,68]. However,

given the lack of periodicity in amorphous solids and as a result also dislocation

lines, despite the superficial similarities most researchers do not want to invoke this

explanation. An exception is the work by Gilman on metallic glasses, who does not
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hesitate to argue for moving dislocations in glasses nucleating at weaknesses in the

network; for metallic glasses perhaps a region with low packing density [28]. A yield

stress is thought to be associated with the creation of a locally expanded structure

which spreads in the shear plane, with concurrent dilation of the structure facili-

tating slip. In regards to oxide glasses Peter [29] also envisions slipping between

planes in the structure, but instead thinks of modifier rich regions as the likely place

of origin. This interpretation is fueled by the increasing importance of plastic flow

with higher modifier content in silicates.

Such a slipping between dislocation planes agrees with another important

finding; that the flow in glasses is accompanied by formation of regularly spaced

shear bands. These have been evidenced by serration in nano-indentation load-

displacement curves of bulk metallic glasses [69–71] and microscopic imaging tech-

niques [71–73], a representative example shown in figure 2.3.7.

Figure 2.3.7: Scanning Electron Microscopy photomicrographs of
Berkovich nanoindents made with 1000mN applied load at 1mN/s load-
ing rate on a soda-lime-silica glass. Black and white hollow arrows in-
dicate the shear bands inside and around the nanoindentation cavity,
respectively: (a) lower magnification (times 4.5K) view and (b) higher
magnification (times 13K) view of (a).

The previously mentioned theories both intrinsically assume that actual shear

flow in glasses at room temperature is neglectable due to the extremely large vis-

cosity. Yet it is known that glasses exhibit a large viscosity drop at large stress or

strain-rate levels, this is known as shear-thinning [53,74,75]. Moreover the generally

accepted mechanism of shear-thinning is an orientation of the liquid structure under

stress, thus reducing the resistance to deformation. Molecular dynamics simulation

has found exactly this kind of a layered structure of a glass melt under shear by par-



15

allel plates, and the results agree very well with experiments for soda-lime-silicate

and rubidium-silicate glasses [76].

2.4 Free Volume of Glass

The free volume of a glass can be defined in many ways. A very simple

one is as the additional volume present in the glassy structure as compared to the

corresponding crystal, and is a direct consequence of the structural entropy present

in glasses. With this definition the free volume can be calculated as,

Vf =
Vg − Vc

Vg

= 1− ρg

ρc

(2.16)

where V is volume, and subscribts f , g, and c indicate free, glass, and crystal, respec-

tively. The rightmost expression of equation 2.16 is derived by taking the masses

of the glass and corresponding crystal as the same, since their compositions are

identical. Using this equation on amorphous silica (ρg = 2.2g/cm3) and cristobalite

crystal (ρc = 2.32g/cm3) gives a free volume fraction of approximately 5%. This is

however an extreme example, and the density of most glasses will be approximately

1% less than that of the corresponding crystal, giving a relative free volume of the

same magnitude. The major problem with equation 2.16 is that very rarely will

there be a crystal corresponding to a given glass composition, which is why the free

volume has for a long time been a quantity known to exist, but ill-quantified.

The free volume has been utilised in many theories attempting to describe the

property of glasses, most notably the glass transition phenomenon [77–79], but has

fallen out of favour, first to the residual entropy theory by Adam & Gibbs [80, 81],

then the energy landscape theory by Goldstein [82–85].

As mentioned previously, the free volume is invoked in the maximum internal

pressure model of the compositional dependence of hardness, and currently a free

volume model of the densification process of silicate glasses is favoured [59, 62], yet

based only on indirect measures of the free volume: Poisson’s ratio and the theo-

retically derived atomic packing density defined in equation 2.15. For this reason,

it is very much of practical interest to know whether these parameters truly reflect
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the free volume of a glass, and as such if the free volume can be invoked as an

explanation of the results.

One method that is thought to give a more direct measure of the free volume

in glasses is that of physical solubility of gases [86]. In the theory developed by

Doremus [87,88], the physical solubility of glasses is due to two effects, the interac-

tion between solute gas and the glassy matrix, and the free volume of the structure.

From equilibrium thermodynamics and assuming that the gas retains all degrees of

freedom when dissolved, the following is derived,

ln

(
Cd

Catm

)
=

(
Ei − PV̂m

RT

)
+ lnVf (2.17)

where Cd is the concentration of gas dissolved in the glass, and Catm that of the

surrounding atmosphere (equal to the molecular density,) Ei is the potential energy

of the gas-matrix interaction, P the pressure, V̂m the partial molar volume of the

solute gas, and Vf the partial free volume as experienced by the given gas. The ratio

of concentration of gas dissolved in the glass to that of the surrounding atmosphere

is termed the Ostwald solubility, and is used to eliminate an artifical temperature

dependence of solubility due to the ideal gas law. It is seen from equation 2.17 that

studying the temperature dependence of the Ostwald solubility can separate gas-

matrix interaction from the free volume. In general however, both Ei (the interaction

energy) and V̂m (the volume change of glass upon solution) are very small, and the

gas solubility will be almost temperature independent across a large temperature

range [89]. The validity of this measure of free volume was checked by the solubility

of various gasses in amorphous silica. It was found that for inert gas atoms and

molecules with diameters below 0.3nm not only are the Ostwald solubilities similar,

but so is also the relative free volume of Vf = 3%, while the values for larger

gas atoms or molecules drop rapidly [87–93]. This indicates a pore size (or rather

interstitial size) of about 0.3nm. Results on crystalline tridymite (ρc = 2.28g/cm3)

gives a very similar value, while that of cristobalite (ρc = 2.32g/cm3) is about two-

thirds, casting doubt on the reliance of equation 2.16 to assess the free volume in

practice [87,94].
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As for the compositional variation of gas solubility it is found that generally it

decreases approximately linearly with modifier fraction in silicates. For binary alkali

silicates the helium solubilities are similar within experimental error for sodium,

potassium, rubidium, and cesium containing glasses, excepting the phase-separated

sodium silicate glasses with soda contents above approximately 25mol%, as seen in

figure 2.4.1 [86]. It is also seen that the helium solubility is higher for the soda-lime-

silica glasses, indicating either a change in gas-matrix interaction, or a higher free

volume.

Figure 2.4.1: (a) The helium solubility in homogenous alkali silicate
glasses. (b) The helium solubility of sodium silicate glasses, which are
homogenous up to approximately 25mol% soda content.

2.5 Load for Crack Initiation

The load for crack initiation as measured by indentation is a rather new field of

research, with only a few research groups providing significant contributions. Here

we will focus on the theories proposed by three groups: Sehgal & Ito [6, 95], Gross

& Tomozawa [7, 8], and Kato et al. [9, 33, 61]. The concept sounds intuitively sim-

ple; the load at which cracks are formed during indentation. However, things get

complicated because there exist a variety of crack types [8], a time dependence on

their emergence, a strong influence of atmosphere [8], surface condition [96], and

temperature [97]. Generally the first type of crack to emerge is the edge crack seen

in figure 2.5.1b along the faces of the indent. However, in the method developed
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by Wada et al. [98] and employed by Kato et al. [9, 61] only the number of radial

cracks (see figure 2.5.1a [8]) emerging from corners of a Vickers indentation are con-

sidered, and a crack resistance (CR) defined as the load where the average number

of radial cracks per indentation is two, i.e. half of the maximum possible. Gross

and Tomozawa [7, 8] expand on this definition, taking also the conical cracks (see

figure 2.5.1c [8]) - commonly found for anomalous glasses - connecting corners into

account; one conical corner in a quadrant equalling one crack. The data is plotted

Figure 2.5.1: Cracking behaviour of representative glasses under a 1kg
force load with a Vickers indenter. (a) 60% SiO2 20% Al2O3 20% CaO;
(b) 80% SiO2 10% Al2O3 10% CaO; (c) 100% SiO2.

as number of cracks against applied load, and generally takes on a sigmoidal shape

as illustrated by figure 2.5.2 [33]. Gross and Tomozawa [7, 8] utilise a sigmoidal fit

to this plot in order to predict the CR.

The three groups have taken widely different approaches in an attempt to

explain the large differences seen in CR values of different glass compositions.

2.5.1 Brittleness

For ceramics the macroscopic fracture behaviour is commonly assessed through

the fracture toughness, KIc. Basically the fracture toughness is a measure of the

materials resistance to brittle fracture in the presence of a crack. However, in glasses

the fracture toughness fall in a rather narrow range and apparently has little effect

on crack initiation, and as such crack resistance [11, 95]. Lawn & Marshall [99]

realised that all materials seem to show deformation in small scale loading, and
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Figure 2.5.2: The number of radial cracks initiated in a Vickers indent
divided by four plotted against the indenter load, P .The crack resistance,
CR, is the load for which on average half the corners contain a crack.

fracture on larger scale. They proposed a normalisation of these two characteristic

dimensions as a measure of brittleness.

B =
H

KIc

(2.18)

where B is the brittleness. Several methods have been proposed to evaluate fracture

toughness, and hence brittleness, from the length of radial cracks formed in an

indentation measurement at high load [11, 99, 100], but generally do not agree well

with those measured by e.g. the single edge notched beam method, said to give

self-consistent values close to the intrinsic ones [10].

The brittleness, as seen in equation 2.18, is basically the ratio of resistance

to microscopic deformation - through elasticity, densification, and plastic flow - and

resistance to macroscopic failure in the presence of a crack [11]. It is found that

low brittleness, i.e. low hardness and high fracture toughness, yields high resistance

to crack initiation in a wide variety of glasses, as seen in figure 2.5.3 [6]. However,
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Figure 2.5.3: The load for crack initiation, CR, as a function of brittleness
of variety of glasses containing very different amounts of the following
components: SiO2-Al2O3-Na2O-K2O-CaO-MgO-B2O3.

Kato et al. [33] finds brittleness to be only weakly correlated to CR, especially when

the molar fraction of boron changes across compositions.

2.5.2 Elastic-plastic Stress Mismatch

Gross and Tomozawa argue for a fictive temperature increase during indenta-

tion [101], which change the mechanical properties [8], ultimately leading to fracture

due to stress mismatch. In their trail of reasoning it is implicit that also the den-

sity of normal glass decreases on indentation, as the measured fictive temperature

increases. This agrees with the results by IR reflection measurements on indented

glasses by Koike & Tomozawa [102], but is directly contradictory to the theory of

densification of glass during indentation as discussed in section 2.3.2. Gross and

Tomozawa do find a relation between the minimum load dependence of hardness, or

the ISE, with the load for crack initiation [103]. This is more along the route which

Kato et al. works.



21

2.5.3 Plastically Induced Stress

In simple silicates very generally the crack resistance tends to decrease with

modifier fraction, as observed by 1kgf crack-free indentations being possible in water-

free amorphous silica in inert atmosphere [7]. This caused Kato et al. [33] to try

and correlate the crack resistance to the plastic deformation volume. This was eval-

uated indirectly by the depth recovery of crack-free Vickers indent when annealed

at 0.9× Tg (K) for two hours; the same procedure as used by Yoshida et al. [57] to

measure the densified volume under an indent. Establishing first that the fracture

toughness and brittleness indeed does not adequately describe the results, they find

approximately linear relationship between crack resistance and recovery of indenta-

tion depth. They conclude that densification is probably the determining property

for the large differences in crack resistance found in glasses, but there must also be

other factors involved to describe the data.

Later work expanded on the idea of densification being a major influence,

arguing that only the plastically deformed volume induces stress into the glass, this

residual stress being the origin of crack formation. They attempted to calculate

the residual stress by a cavity model based on that of Lawn et al. [104], who also

assumed plastic deformation as the origin of residual stress, however the difference

being that these authors did not take densification into account. The residual stress

according to Lawn et al. [104] is calculated as,

σrs = K
∆Vpz

Vpz

(2.19)

where σrs is the residual stress, ∆Vpz the change in plastic zone volume (taken as the

post-annealing volume,) and Vpz the volume of the plastic zone. Of course this raises

the question: What is the size of the plastic zone? Yoffe [105] assumed that the

plastic zone is hemispherically shaped with a diameter of the indentation diagonal,

Vpz =
1

16
· 4

3
π · L3

ci = 0.262L3
ci (2.20)

Note that the assumptions of hemispherical shape of the plastic zone is generally

accepted in the literature, as seen in theory [51,106], modelling [107], and experiment
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[108]. This implies that the size most likely does scale with the cube of the diagonal,

and any error will only be relative. The relationship found by Kato et al. [33] and

the calculated residual stress is shown in figure 2.5.4.

Figure 2.5.4: Crack resistance, CR, as a function of residual stress, σrs,
under a 100gf Vickers indentation in a variety of commercial silica-based
glasses as calculated by equation 2.19.

These results are basically just a different representation of the crack resistance

vs. recovery of indentation depth ones, and other parameters still seem to have an

effect on the crack resistance. However, framing the problem in this manner, it is

emphasised that the residual stress initiates cracking, or more precisely, the residual

stress at the load for crack initiation initiates cracking. It becomes apparent that

if there exists a load dependence of densification, like the hardness ISE, this will

influence the relationship shown in figure 2.5.4, as these estimated residual stresses

are at 100gf. Indeed, such a relationship might explain the results of Gross & To-

mozawa [103], finding a maximum in crack resistance in compositions exhibiting a

low degree of ISE. That the hardness ISE is probably at least in part related to a

change in the relative contribution of the deformation processes was indicated by

Chakraborty et al. [109]. They measured the nanoindentation hardness as a func-

tion of load and loading rate on a soda-lime-silica glass. Increasing the loading rate

increased the plastic deformation energy up to a certain maximum, and this maxi-
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mum was then linked to the increase of nanoindentation hardness with loading rate.

Kato et al. [61] therefore undertook a study of the load dependence of densification

(figure 2.5.5), and the estimated residual stress, with three of the glasses previously

examined, choosing ones with widely varying crack resistances.

Figure 2.5.5: The recovery of indentation depth, RID, as a function of
Vickers indenter load, P , for a variety of commercial silica-based glasses.

It is found that there is indeed a load dependence of densification with decreas-

ing densification with decreasing load, as was previously reported by Ji et al. [39].

But why is this so? There is not yet a clear answer, but some related research

is of interest. Rouxel et al. [53] find that glass hydrostatically densified at 25GPa

exhibits more pile-up upon Vickers indentation as compared to normal density sam-

ples. There is even significant pile-up in densified amorphous silica (ρ = 2.674g/mL,)

which has not been observed under any other circumstances for this glass. Since

indentation is a dynamic process, one might envision that increasing the load cor-

responds to snuggly forcing the indenter into an indentation previously done at a

lower load. However the glass beneath the indent is no longer that of the pristine

surface, but densified, the depth of the densified zone being significant larger than

that of the indent, proven by refractive index measurements [110]. As per the previ-

ously mentioned results on hydrostatically densified glass, one would suspect a larger

contribution of plastic flow, and hence a decreasing densificative contribution with

load. This view is supported by the fact that the pile-up region is indeed densified,
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i.e. the material is first densified, then plastically flows to the surface. The analogy

does however fail in one major aspect; judging from the high activation energy, shear

flow probably occurs in the initial stages of indentation when the shear stress is the

highest.

The load dependence of estimated residual stress found by Kato et al. [61] is

shown in figure 2.5.6. We learn from figure 2.5.6 that the estimated residual stress

Figure 2.5.6: The estimated residual stress, ρrs, as a function of applied
Vickers indenter load, P , for three commercial silica-based glasses. The
crack resistances of the glasses are CR(C) = 1200gf, CR(D) = 150gf, and
CR(G) = 30gf.

varies logarithmically with applied load, and that it seems similar for each of the

three compositions (around 1.7-1.9GPa) at their respective loads for crack initiation.

Despite the scarcity of data, Kato et al. [61] took this as evidende for the existence

of an universal yield stress for radial crack formation in silicates, at least within

experimental error.



3. PROBLEM STATEMENT

The problems to be solved in this Master Thesis can be summarised as:

1. How does densification and plastic flow in silicate glasses under sharp inden-

tation quantitatively depend on composition and load?

2. What kind of model with predictive power can explain the above dependence?

3. What is the compositional dependence of the crack resistance, and how can it

be predicted?

3.1 Problem 1: Quantification of Densification and Plastic

Flow

The previous work on compositional dependence was reviewed in section 2.3.2,

most of the work performed by Yoshida et al. [52,59] and Kato et al. [9,61]. However

it has been very difficult to derive a compositional relationship; the strongest being

that with Poisson’s ratio shown in figure 2.3.3, which does not work for sodium

borates. This relation with Poisson’s ratio for silicates was interpreted as densifica-

tion occuring by a collapse of the structure into the free volume, where free volume

increases with lower Poisson’s ratio. Yet, there is little evidence for this theory, as

many other factors than merely the free volume varies with composition. The com-

positions tested so far have been a rather broad selection, encompassing a variety

of silicate, borate, oxy-nitride, and bulk metallic glasses. Certainly this has been

helpful in qualitatively evaluating the densification process; however for quantifica-

tion using simple and systematically varying compositions is a must given that the

mechanism is unclear.

As for the load dependence of these processes there exists very little useful

quantitative data, only three compositions measured by Kato et. al [61], two by

Ji et al. [39] with only a total of five loads tested, and one by Yoshida et al. [111].

The data by Kato [61] has better resolution, but measures only the depth recovery,

25
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which cannot accurately predict the volume recovery [59]. Therefore, as fundamen-

tal a question as how the densified and plastic flow volume quantitatively varies

with indentation load is barely answered, and the compositional dependence wholly

unknown.

3.2 Problem 2: Modelling the Densified and Plastic Flow

Volume

It has been shown through the work of Yamane & MacKenzie [34] that a more

quantitative understanding of the processes occuring during indentation is an ap-

proach to predicting the hardness of glass from composition alone. Such prediction

is an extremely powerful tool for development of new materials, and indeed the de-

velopment of the hardest glasses known at the time was a direct result of their work.

However as quantitative measurements were practically non-existant at the time, it

is wholly unknown whether the relations (equation 2.3 to 2.6) derived for the resis-

tance of each individual deformation mechanism reflect any kind of scientific truth,

or the total resistance related to hardness alone has some merit. Even the derivation

of this total resistance from the individual ones seems suspect, as it is taken as the

geometrical mean, while surely some combination of serial and parallel connections

would be more grounded in theory. Also, the presence of the average bond strength

seems difficult to understand given what else is known of the processes. During

densification bonds are not broken, so why should the average bond strength have

any effect on the densified volume? Perhaps the average bond strength captures

some truth about the difference in indentation behaviour of different glass-forming

families, yet the meaning within the silicate system seems unclear.

Moreover, from the work of Kato et al. [9,33,61] it seems that the plastic flow

volume, and its load dependence, might just be key to understanding another key

glass property, the crack resistance. Modelling the quantitative measurements of

various compositions would be necessary to see if it can be related to the results

of crack resistance measurements. These measurements might also shed light on

another indentation related problem, the generally found increase of hardness with

decreasing load, dubbed the indentation size effect (or ISE.) The change in relative
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contribution of the processes occurring during indentation most likely has an effect

on the ISE [109], although other effects are also known to contribute.

3.3 Problem 3: Compositional Dependence of Crack Resis-

tance

Two promising models have been proposed to quantify crack resistance with-

out actually performing the time consuming experiements needed: The brittleness

concept by Lawn & Marshall [99], and later used for glasses by Sehgal & Ito [6] gives

good correlation across a wide variety of compositions, however the data by Kato

et al. [33] is not well described by this approach. Another problem is that since the

compositional dependence of fracture toughness is unknown, this approach cannot

be used to predict which compositions will have low brittleness, and as such high

crack resistance. However the estimated residual stress approach by Kato et al. [33]

is through the plastic flow volume, which is why this route thus reduces more or

less to Problem 1 - the lack of data. Although these measurements of densificative

and plastic flow contributions to indentation are even more time consuming than

measurements of crack resistance - especially if the load dependence is to be de-

termined - the possibility of prediction from composition seems within reach. But

first a question of great importance must be answered about the method suggested

by Kato et al. [61]: Is there a single stress value for radial crack nucleation in sili-

cate glasses under given conditions? If this turns out not to be the case, there is a

strong need for evaluating the actual stress distribution around the indentation in

order to proceed further, and answering this question is therefore the primary goal

of Problem 3.

3.4 Glass Composition Selection

Selection of the compositions to be studied is of paramount importance in

solving the above problems. To reduce the number of variables and maximise the

usefulness of the results rather simple compositions with practical importance are

preferable, why our attention is turned to the ternary soda-lime-silicate system.

As the amount of plastic flow is suspected to increase with the modifier fraction
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present in the glass, this is an important factor that must be varied. It was chosen

to focus on a series of soda-lime-silica (SLS) glasses based on 3SiO2·Na2O where

calcia is systematically added until reaching a composition of 3SiO2·Na2O·CaO. This

systematically changes not only the modifier fraction but also the elastic properties

greatly through addition of calcia. As hardness is know to vary approximately

linearly with elastic constants such as Young’s modulus and shear modulus, these

compositions are thought to be simple, practical, and contain a large variation in

the properties of interest.

Another factor that is thought to influence densification behaviour is the free

volume, why a series of glasses with the same modifier fraction yet thought to

have highly varying free volumes will be made. From a base composition of 75SiO2

15Na2O 10CaO the modifiers were substituted to potassium and barium respectively,

in all four possible combinations. As the sizes of the modifiers vary widely, it is

thought that the free volume of the glasses will show large variation in this modifier

substituted (MS) series of glasses.



4. EXPERIMENTAL

4.1 Glass Making

The compositions used in this work are listed in table 4.1.1, and the reagents

used were all carbonates (except silicon dioxide) of reagent grade from Sigma-

Aldrich. The glasses in the SLS series except 80SiO2 have linearly varying molar

fractions of soda, lime, and silica with modifier fraction. This is because 80SiO2

was added later on account of its low brittleness [95], as a glass with high crack

resistance was wanted to get more reliable data for the residual stress at the load

for crack initiation evaluation discussed in section 6.5.

For the soda lime silicate (SLS) series and the KBa composition the appropri-

ate masses for a 25g batch of each reagent was weighed on a Chyo JL-180 (precise

to 0.1mg) electric scale. Then melted in a platinum crucible (100%) at 1575◦C for

two hours in an electrically heated furnace, cast, crushed, and re-melted for another

hour at 1575◦C to ensure a homogenous glass. At this point the glass was cast into

approximately 50 × 20 × 10mm bars in a brass mold on an electrically heated plate,

and immediately tranferred to another electric furnace to be annealed for two hours

at the glass transition temperature (Tg) indicated in the literature for the respective

Table 4.1.1: The molar compositions and their acronyms as used through-
out this work. The first six glasses are the soda lime silicate (SLS) series,
the next four the modifier substituted (MS) series.

Series Acronym SiO2 Na2O CaO K2O BaO

SLS

80SiO2 80 15 5 - -
75SiO2 75 25 - - -
71SiO2 71.4 23.8 4.8 - -
68SiO2 68.2 22.7 9.1 - -
65SiO2 65.2 21.7 13.0 - -
60SiO2 60 20 20 - -

MS

KBa 75 - - 15 10
NaBa 75 15 - - 10
KCa 75 - 10 15 -
NaCa 75 15 10 - -

29
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composition. If this literature Tg turned out to be more than 10◦C from that mea-

sured later, then the glass would be re-annealed at this temperature for two hours

prior to use.

The modifier substituted (MS) series (excepting the KBa composition) were

made as 500g batches, with raw materials weighed on a Mettler Toledo PG500Z-S

scale. The melt was charged during 1hr in a platinum-rhodium (90:10) crucible

while heating to 1575◦C. In place of crushing and re-melting, the melt was stirred

after half an hour and one hour with a platinum-rhodium (90:10) rod, homogenised

for two hours, and finally cast into approximately 200 × 60 × 10mm slabs in a

carbon mold to be immediately annealed at Tg. Other conditions were the same as

for the SLS series.

4.2 Glass Transition Temperature

The glass transition temperatures (Tg) of the glasses were measured by thermal

mechanical analysis (TMA) in a Seiko Instruments Inc. TMA/SS6000 on rods of

approximate dimensions 2 × 2 × 10mm. The instruments recorded the length of

the sample as a function of temperature, and Tg was determined by the intersect of

two straight lines, one from the approximately linear segment below Tg, the other

from the maximum slope in the glass transition range. This method was estimated

to be accurate to within 5◦C. If the glass transition temperature measured here

was significantly different from the annealing temperature employed immediately

following casting of the given composition the annealing would be redone at the

measured temperature and Tg remeasured. Results are shown in section 5.1.

4.3 Density Determination

An approximately 1g piece was cut from a central portion of the bulk glasses

and used for density measurement by the Archimedes’ method, and aluminium

oxide rods with known density (ρAl2O3 = 3.986g/cm3) used as a standard. A high

precision Shimadzu AUW120D (d = 0.01mg) scale was used, calling for a somewhat

elaborate procedure to account for delicate factors like baseline drift and buoyancy

in air. A computer program would use the average of 30 seconds of data without
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the sample loaded onto the scale as zero, then subtract this from the average of 30

seconds of data with the sample loaded. This process would be repeated three times

for each sample in air, then the sample immersed in toluene by a stainless steel

frame suspended from the scale, the temperature measured, and the above process

repeated.

The air buoyuancy corrected mass of the sample would be determined as per,

mtrue = mair ·
1− ρair/ρsample

1− ρair/ρsteel

(4.1)

where mtrue and mair are the buoyuancy corrected and measured masses, and ρ

the density of the subscripted material. Equation 4.1 has its roots in stainless steel

(ρsteel = 8g/cm3) being used as the internal standard within the scale. The equation

is not very sensitive to the exact sample density used, and a rough estimate of

ρglass = 2.5g/cm3 was used for the glasses, and the above mentioned known density of

alumina for this standard. The density is then determined by Archimedes’ Principle

as,

ρsample = ρTol. ·
mtrue

mtrue −mTol.

(4.2)

where ρTol. is the density of toluene calculated from temperature [112] and mTol.

is the sample mass as measured when immersed in toluene. With this method a

standard deviation less than 10−3g/cm3 could be achieved, however the calculated

density of the alumina standard (ρAl2O3 = 3.994g/cm3 ±9 · 10−4g/cm3) agrees with

the literature value (ρAl2O3 = 3.986g/cm3) only to the second decimal, or 10−2g/cm3.

The results are shown in section 5.2.

4.4 Determination of Elastic Moduli

An approximately 10 × 10 × 5mm sample was cut from the bulk sample and

progressively dry-polished on silicon nitride paper to a mirror-finish on both faces,

as was an amorphous silica standard. The thickness was measured by a digital mi-

crometer, and the coplanarity in all samples was better than a slope of 0.1 degrees.

The transverse and longitudinal sound wave velocities were then measured by a

Textronix TDS1012B two-channel digital storage oscilloscope equipped with a JSR
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Ultrasonics pulser/receiver. Operational frequencies of the transverse and longitu-

dinal piezoelectric transducers were 5MHz and 10MHz, and high and low pass filters

of 2.5-7.5Mhz and 7.5-15MHz were employed for the respective transducers. Having

selected a clearly distinguished peak (often the largest,) the temporal displacement

of each echo was measured and sound velocity calculated as,

v =
2L

∆t
(4.3)

where v is the velocity of sound, L the sample thickness, and ∆t peak separation in

time.

Poisson’s ratio was then calculated by the classical relations [52,113],

ν =
1− 2(vT/vL)2

2− 2(vT/vL)2
(4.4)

and the Young’s modulus by,

E = v2
L · ρ ·

(1 + ν2)(1− 2ν)

1− ν
(4.5)

where ν is the Poisson’s ratio, E the Young’s modulus, and vT and vL the respective

transverse and longitudinal sound velocities.

The two other major elastic moduli, the bulk and shear modulus, can be

calculated by the following well known relations [5],

K =
E

3(1− 2ν)
(4.6)

and,

G =
E

2(1 + ν)
(4.7)

Where K and G are the bulk and shear modulus, respectively.

The Poisson’s ratio and Young’s modulus of the amorphous silica standard

(ρ = 2.20g/cm3) is found to be 0.169 ± 0.005 and 73GPa ± 1GPa, in excellent

agreement with that measured by Yoshida et al. [52] also by the velocity of sound.

The results are shown in section 5.3.
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4.5 Vickers Hardness

Hardness was determined by the use of a Vickers diamond indenter mounted on

an Akashi MVK-H2 Hardness Testing Machine. The samples used were the same as

for the measurements of Poisson’s ratio and Young’s modulus in the previous section,

i.e. the samples were coplanar and polished to a mirror finish. The samples were

stored under vacuum and cleaned in ethanol immediately prior to testing. Hardness

was determined at 25gf with a hold time of 15 seconds under ambient conditions

with at least ten repeated indentations for the SLS series, and five for the MS series.

None of the indents showed signs of radial, lateral, or median cracking. In lieu

of the standard optical determination of diagonal length this was determined from

the Atomic Force Microscopy (AFM) micrographs measured in the following section

(and the conditions described in detail there.) For the 71SiO2 composition at 50gf

the validity of the diagonal length as measured by AFM was tested by also measuring

the diagonal by optical microscopy. It was found that the hardness as determined

by AFM (4.25±0.06GPa) versus that by light microscopy (4.1±0.2GPa) exhibited

less spread and had similar mean values within experimental error. The data is

presented in section 5.4.

4.6 Compositional Dependence of Densification

The indented samples from the previous section would be stored under vac-

uum for no longer than one day, then the surface cleaned in ethanol and subjected

to Atomic Force Microscopy (AFM) measurement. The instrument employed was a

SPA400 from Seiko Instruments Inc. fitted with a VeeCo silicon nitride cantilever

with a 60nm gold back-coated 0.7-0.9µm tip. An area of approximately 30x30µm

would be scanned in contact mode at a resolution of 512x512 pixels and data col-

lected via the NanoNavi software supplied by the manufacturer.

Data analysis was performed with a Scanning Prope Image Processor (SPIP)

software by Image Metrology. Initially the base plane would be corrected by fitting

to a third order polynomium on the entire area, thereafter repeated only on the area

containing the indent and pile-up area. This procedure was necessary to achieve a

symmetrical representation of the indent. As per the comparison of optical and
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AFM measured diagonal distances in section 4.5, it is believed that this procedure

yields a truthful image of the indented area.

Diagonal distances was measured as the peak distance between the pile-up

areas, and the average of both diagonals is reported here. Face distances are taken

through the middle of the opposite faces and through the center of the indent,

and measured as the separation at the level of the base plane. Again, the average

of both are reported here. The depth was measured via a by depth histogramic

representation of the data, i.e. the frequency of points of the measured surface as a

function of depth. The depth was taken as the height from the lowest data point (the

absolute bottom of the indent) and the deepest onset of the strongest increase in

frequency (the base plane.) The indent volume is determined by the same procedure,

only the difference in void volume is measured instead. Unfortunately the pile-up

volume is intrinsically a rather arbitrary quantity. It was measured as the volume

difference between the highest onset of frequency (the base plane) and the highest

data point (the absolute top of pile-up.) However the highest onset of frequency

is not well-defined exactly because of the presence of pile-up. Care was taken to

ensure a similar shape and area of the pile-up region measured in the micrograph

for indents made at the same load.

To recover the densified volume the procedure used by Yoshida et al. [52]

schematically shown in figure 4.6.1 was employed. Immediately after AFM mea-

surement the sample would be wrapped in aluminium foil to reduce accumulation

of dust, with only a single layer covering the indented surface. This was put in an

electric furnace with a thermocouple placed a few millimeters above the middle of

the indented surface, as the central region would contain the indents. The furnace

was preheated to the annealing temperature (Ta = 0.9 × Tg (K)) and temperature

adjusted after putting in the sample. Ta would be reached within 5-10 minutes,

and annealing then proceed at this temperature for two hours as per the method

employed by Yoshida et al. [52,57,59,60,111] and Kato et al. [9,33,61]. The samples

were cooled in the furnace to room temperature at a rate of approximately 1◦C per

minute.

Post-annealing AFM measurements were performed analogues to the previous
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Figure 4.6.1: The method employed in this work for quantification of the
densified volume. The annealing conditions employed were 0.9 × Tg (K)
for 2 hours.

ones, using the same cantilever and settings. When determining the pile-up volume

care was taken to ensure that the pile-up area was similar or slightly larger than that

prior to annealing. The surface tends to get somewhat dirty when annealed, and

dirt on the surface iwas excluded from measurements of pile-up volume by marking

the area to be excluded in the software. If dirt was present in the actual indent,

the data point would be discarded. For the SLS series between 10 and 12 good

data points were achieved for a given composition and load, while for the MS series,

due to the large span of loads measured, only three to five usable data points were

obtained at each load.
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The volume recovery ratio, VR, is defined as the densified volume relative to

the initial indentation volume, and determined as,

VR =
(V −

i − V −
a ) + (V +

a − V +
i )

V −
i

=
Vd

V −
i

(4.8)

where superscript + and - indicate above or below the surface level, and subscript

i and a initally measured and after annealing respectively, as visualised in figure

4.6.1. Vd is the densified volume, and is related to the plastic flow volume, Vp, as,

Vp = V −
i − Vd (4.9)

This definition might seem slightly odd, as the pile-up area before annealing is not

involved. This is because the presence edge cracks, present in some compositions at

loads in excess of 50gf, will tend to increase V +
i dramatically, while the difference

in pile-up volumes as measured before and after annealing (V +
a − V +

i ) is within

experimental error. The pile-up volume before annealing is generally small and error

prone, why this minor error is deemed acceptable given that it enables comparison

with the data by Yoshida et al. [52]. Also, this definition works well with the VR of

equation 4.8, as the corresponding plastic flow ratio will be the remainder to 100%.

The ratio of indentation depth recovery (RID) is determined simply by,

RID =
Da

Di

(4.10)

Di being the initial depth and Da that after annealing. In the same manner the

recovery of indentation face distance (RIF) is measured,

RIF =
Lsa

Lsi

(4.11)

Lsi and Lsa being the initial and post-annealing average face distances.
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4.7 Determination of Crack Resistance

Samples from the MS series of approxiate size 25mm × 30mm and a thickness

of 1.1-1.2mm and coplanarity better than 0.1 degrees were lapped with an aluminum

oxide slurry, then finished with a cerium oxide to obtain a mirror finish on both

sides. These samples were then stored in controlled atmosphere for at least 24

hours at a relative humidity of 30% and a temperature of 25◦C before testing. The

humidity and temperature was chosen to mimic real world conditions, while keeping

the influence of atmospheric conditions constant.

Indentations were made on a Matsuzawa MxT50 High Quality Digital Hard-

ness Tester equipped with a Vickers Diamond indenter placed within the glove box.

First a prelimary test was performed with a few indents to find the approximate

range in which the number of radial cracks would vary from zero to four. The

actual measurement would then be performed with 20 indents at each of seven or

eight loads and a 15 second dwell time. The indents were all made in the central

region of the sample on the grounds of possible edge defects and poor polishing.

Also, they were spaced approximately 200µm apart as to avoid the influence of

indentation induced residual stress of other indents. The number of radial cracks

would be counted exactly 15 seconds after the start of unloading, however little time

dependence on the crack initiation was observed.

As for the 80SiO2 composition, the measurement was done outside of controlled

atmosphere (at 26◦C and a relative humidy between 50% and 60%.) The indentation

setup was the same as used for the hardness measurements, which unfortunately does

not yield as good a resolution in load. Other variables were identical to the other

crack resistance measurements.

4.8 Helium Solubility in Glass

The glass was processed in an indentical manner as in the previous section,

then placed in a helium atmosphere under atmospheric pressure at elevated tem-

peratures until saturation reached; time and temperature given below. Extraction

was performed by cutting the saturated sample into cubes with approximate weight

0.15-0.16g, and melted at 1100◦C under high vacuum conditions (around 2 · 10−7
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Torr) for 30 minutes, while the extracted helium was measured continuously by

quadropole mass spectroscopy. A single data points consists of the average of five

cubes cut at regular spacings spanning the width of the sample. Another data point

would be measured by the same method, but by cutting at the opposite side of the

sample, as shown in figure 4.8.1.

Figure 4.8.1: The extraction of cubes for helium solubility determination
of the originally saturated sample. The thickness of the samples was
between 1.08mm and 1.22mm.

Preliminary experiments were carried out to determine a temperature at which

the time for saturation was within reasonable limits for a standard soda-lime-silicate

composition, and found to be so at 0.9 × Tg (K) and three hours. The tempera-

ture was chosen as a fraction of Tg since it was believed that the relative effect of

temperature of the compositions would be approximately the same. A single data

point was obtained at 18 hours of saturation for the MS compositions, as well as

two points at three hours, to make sure that saturation had indeed been reached.



5. RESULTS

5.1 Glass Transition Temperature

The results are shown in figure 5.1.1 and tabulated in table 5.4.1 along with

other properties of the glasses. As it can be seen in figure 5.1.1 Tg increases approx-

Figure 5.1.1: (a) The glass transition temperature, Tg, of the SLS series
plotted against modifier fraction, i.e. the molar fraction of modifying
oxides. (b) That of the MS series. The experimental error is ±5◦C.

imately linearly with modifier fraction in the SLS series, excepting 80SiO2, while

the data for the MS glasses are scrambled.

5.2 Density Determination

The results are shown in figure 5.2.1 and table 5.4.1. Again, an approximately

linear relationship with modifier fraction is seen for the SLS series, with no obvious

correlations for the MS glasses.

5.3 Elastic Properties

The results are shown in figures 5.3.1 and 5.3.2 and tabulated in table 5.4.1 It

is seen that, excepting the 80SiO2 composition, E and v vary approximately linearly

with modifier fraction in the SLS series. For the MS series, a relationship is seen

where the relative contribution to Young’s modulus of each component decreases
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Figure 5.2.1: (a) Density, ρ, of the SLS series plotted against modifier
fraction, i.e. the molar fraction of modifying oxides. (b) Density of the
MS series. The maximum experimental error is ±0.001g/mL.

Figure 5.3.1: (a) Young’s modulus, E, and Poisson’s ratio, ν, of the
SLS series plotted against modifier fraction, i.e. the molar fraction of
modifying oxides. (b) Those of the MS series. Error bars indicate ±1
standard deviation.

as Ca >Ba >Na >K (the order of the field strength,) while there is no simple

relationship for the Poisson’s ratio. In figure 5.3.2 it is seen that also K and G vary

approximately linearly with modifier fraction for the SLS series. This is a direct

consequence of the relationship witnessed in figure 5.3.1, due to the relationship

between elastic moduli, as seen in equations 4.6 and 4.7 used to calculate these

values. Again, the relationship for the MS compositions is slightly more complicated,

but follow the trend of E fairly well, with K being more sensitive to ν than is G.
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Figure 5.3.2: (a) Bulk modulus, K, and shear modulus, G, of the SLS
series plotted against modifier fraction, i.e. the molar fraction of modify-
ing oxides. (a) Those of the MS series. Error bars indicate ±1 standard
deviation.

5.4 Vickers Hardness Determination

Results of the Vickers hardness determination can be seen in figure 5.4.1 and

are summarised in table 5.4.1 along with results from the previous sections. The

Figure 5.4.1: (a) Vickers hardness, HV , of the SLS series plotted against
modifier fraction, i.e. the molar fraction of modifying oxides. (a) That
of the MS series. Error bars indicate ±1 standard deviation.

linear relationship seen here for the SLS series is not as smooth as that for the

previous data, even considering the larger standard deviation. However, the trend

for both the SLS and MS glasses is similar to that of the Young’s or shear modulus..
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Table 5.4.1: Glass transition temperature, Tg, density, ρ, Poisson’s ratio,
ν, Young’s modulus, E, bulk modulus, K, shear modulus, G, and finally
Vickers hardness, HV determined at 25gf for the compositions examined
in this work. The error given is the maximum standard deviation among
the mean values found in the table.
Composition Tg [◦C] ρ [g/cm3] ν E [GPa] K [GPa] G [GPa] HV [GPa]
80SiO2 541 2.412 0.21 68 39 28 5.4
75SiO2 490 2.435 0.23 59 37 24 3.7
71SiO2 513 2.480 0.24 65 41 26 4.4
68SiO2 533 2.524 0.25 69 45 28 4.5
65SiO2 545 2.572 0.25 72 48 29 5.1
60SiO2 558 2.637 0.26 78 53 31 5.2
KBa 568 2.445 0.25 52 34 21 4.4
NaBa 454 2.461 0.25 59 40 23 4.2
KCa 630 2.468 0.23 63 39 25 4.4
NaCa 568 2.484 0.22 71 43 29 5.2
Error ±5 ±0.001 ±0.01 ±1 ±1 ±1 ±0.1

5.5 Volume Recovery of Densification at Constant Load

The compositional variation of the densified and plastic flow volumes are shown

in figure 5.5.1, and the relative recovery ratios, VR, RID, and RIF are shown in

figure 5.5.2, and found in tabulated form in table 5.5.1.

Figure 5.5.1: (a) Densified (Vd) and plastic flow volume (Vp) of the SLS
series plotted against modifier fraction, i.e. the molar fraction of modify-
ing oxides. (b) Those of the MS series. Error bars indicate ±1 standard
deviation.

For the SLS series the densified and plastic flow volumes seem to have an
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Figure 5.5.2: (a) The volume ratio of recovery, VR, ratio of indentation
depth recovery, RID, and ratio of indentation face recovery, RIF , of the
SLS series plotted against modifier fraction, i.e. the molar fraction of
modifying oxides. (b) Those of the MS series. Error bars indicate ±1
standard deviation.

approximate monotonical dependence on modifier fraction, densified volume de-

creasing and plastic flow volume increasing. The relative recovery ratios, VR, RID,

and RIF are also approximately linear. In the MS series no obvious tendencies

are observed. The correlation between these measures of densificative recovery is

examined in figure 5.5.3, where VR is taken as the abscissa, as this is thought to be

the most reliable measure of recovery, having the greatest span of values and lowest

relative standard deviation, and is immune to any change in the distribution of the

densificatied volume with composition. As can be seen, both RID and RIF are well

described by a linear fit to the measured volume recovery, however only the RID

has an intercept close to origo, and thus differing from VR by a constant factor. The

non-zero intercept of the RIF data may be caused by difficulty in measuring the

exact minimum face-to-face distance post-annealing, when the indent is no longer

clearly defined. Any skewing of the measured cross-section will cause the measured

distance to be larger, and thus the RIF smaller than the true value. Whatever the

reason, it is believed that the VR and RID are the better descriptors of recovery of

densification, and the RIF will therefore not be discussed in this work.
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Figure 5.5.3: The ratio of indentation depth recovery, RID, and ratio
of indentation face recovery, RIF , plotted against the volume ratio of
recovery, VR. The lines are obtained by linear regression. Error bars
indicate ±1 standard deviation.

5.6 Hardness and Densification with Variable Load

The results from 5gf to 200gf are shown in figures 5.6.1 and 5.6.2, and the entire

data range is tabulated in table 5.6.1. Within experimental error the hardness seems

to decrease continously with load, apparently reaching a relative constant value

around 100gf. This magnitude of the hardness ISE is in the order of: NaCa>80SiO2

>KBa>KCa>NaBa. Most of the compositions exhibit the classical exponential-like

decrease of hardness with load within experimental error, yet the NaBa composition

seems to have too low a hardness at the lowest loads.

As for the recovery ratios there generally seems to be a discrepancy at 5gf.

Although accompanied by a large experimental error, generally the values lie below

that which is expected from the trend in the data, an increase with lower load.

Looking past the 5gf data though, there seems to be an approximately linear decrease
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Table 5.5.1: The densified volume, Vd, plastic flow volume, Vp, volume
ratio of recovery, VR, ratio of inentation depth recovery, RID, ratio of
indentation face recovery, RIF , and Vickers hardness, HV , at 25gf of the
compositions examined in this work. The error given is the maximum
standard deviation among the mean values found in the table.

Composition Vd [µ m3] Vp [µ m3] VR RID RIF HV [GPa]
80SiO2 5.1 0.1 97% 50% 46% 5.4
75SiO2 7.1 1.6 81% 36% 39% 3.7
71SiO2 4.1 1.8 69% 31% 38% 4.4
68SiO2 4.3 3.2 57% 29% 20% 4.5
65SiO2 2.8 4.8 36% 18% 9% 5.1
60SiO2 1.9 5.7 25% 11% 5% 5.2
KBa 4.9 1.3 79% 35% 37% 4.4
NaBa 4.5 0.8 85% 37% 40% 4.2
KCa 5.4 0.9 85% 44% 45% 4.4
NaCa 4.3 1.7 72% 31% 33% 5.2
Error ±0.6 ±0.4 ±7% ±5% ±4% ±0.1

of the recovery ratios with load for all but the barium containing compositions. For

the KBa composition, there seems to be no load dependence of densification, while

the trend is very complicated for the NaBa one. Indeed, for the latter the recovery

ratios, VR and RID, do not correspond well to each other. It is thought that high

reactivity with water is the origin of this effect. For the indentations at 5 and 10gf

two pile-up peaks were found at different distances from the indentation center. This

could well be indicative of a softening of the uppermost surface layer by reaction

with water vapor in the atmosphere. It was also observed that the KBa composition

tarnished rapidly when exposed to atmospheric conditions. Due to these facts, and

the few data points available for the KBa composition, the results of both barium

containing compositions and all the data taken at 5gf are considered unreliable and

will not be discussed.
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Figure 5.6.1: Vickers hardness, HV , as a function of load for the MS series
and 80SiO2 composition. Error bars indicate ±1 standard deviation.

Figure 5.6.2: (a) The volume ratio of recovery, VR, and (b) ratio of
indentation depth recovery, RID, as a function of load, P , for the MS
series and 80SiO2 composition. Error bars indicate ±1 standard deviation.
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5.7 Determination of Crack Resistance

The explicit purpose of the crack resistance measurements was to evaluate

the hypothesis of a single value of residual stress at the load for crack initiation

in silicate glasses. For this reason, only the NaCa, KCa, and 80SiO2 compositions

were measured, as the densification data at variable load for the barium containing

compositions are thought to be unreliable, as discussed further in section 6.5.

The results where fitted sigmoidally with the Boltzmann function,

Crad =
Ci − Cf

1 + exp [w(P − CR)]
+ Cf (5.1)

where Crad is the number of radial cracks divided by four, subscript i and f are

initial and final values (inital guesses 0 and 1,) and w is a constant approximately

equal to the width of the high slope region. The results fitted with the Boltzmann

function can be seen in figure 5.7.1, while the data and calculated CR is tabulated

in table 5.7.1.

Figure 5.7.1: Number of radial cracks divided by four as a function of
Vickers indentation load, P , for (a) the NaCa and KCa, and (b) 80SiO2

compositions. Error bars indicate ±1 standard deviation.

5.8 Helium Solubility

As the helium solubility is only measured at one temperature for each glass

within a rather narrow range, the results will be interpreted in terms of the free

volume model proposed by Doremus [87, 88] assuming that there is no change in
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Table 5.6.1: Densified volume, Vd, plastic flow volume, Vp, volume ratio
of recovery, VR, ratio of indentation depth recovery, RID, and Vickers
hardness, HV , as measured by AFM on the MS and 80SiO2 compositions
at various loads. The error is given as the maximum standard deviation
among the compositions at a given load.

Load [gf] Vd [µ m3] Vp [µ m3] VR RID HV [GPa]

KBa

5 0.37 0.04 79% 34% 4.5
10 1.2 0.34 78% 30% 4.4
25 4.9 1.3 79% 35% 4.3
50 14.1 3.8 79% 32% 4.2

NaBa

5 0.40 0.00 101% 46% 4.1
10 1.2 0.09 92% 52% 4.1
25 4.5 0.8 85% 37% 4.2
50 13.3 2.7 85% 37% 3.9
100 39 7 85% 35% 3.9
200 106 17 86% 31% 3.9
300 183 38 83% 20% 3.9

KCa

5 0.40 0.07 84% 44% 4.7
10 1.2 0.16 88% 48% 4.7
25 5.4 0.9 85% 44% 4.4
50 14.5 3.6 80% 37% 4.3
100 38 14 73% 30% 4.3

NaCa

5 0.39 0.09 81% 36% 5.6
10 1.2 0.26 82% 35% 5.5
25 4.3 1.7 72% 31% 5.2
50 12.3 5.2 70% 31% 5.0
100 28 20 58% 24% 5.0

80SiO2

10 1.13 -0.01 101% 58% 6.1
25 5.1 0.2 0.97% 50% 5.2
50 16.3 0.3 98% 46% 5.0
100 47 3.2 94% 41% 4.6
200 130 12 92% 35% 4.4

Error

5 ±0.05 ±0.05 ±13% ±6% ±0.5
10 ±0.1 ±0.06 ±5% ±4% ±0.2
25 ±0.3 ±0.4 ±7% ±2% ±0.1
50 ±0.9 ±0.7 ±4% ±3% ±0.1
100 ±3 ±2 ±5% ±4% ±0.1
200 ±3 ±5 ±4% ±2% ±0.1
300 ±8 ±8 ±4% ±1% ±0.1
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Table 5.7.1: Mean number of radial cracks, the standard deviation at
each load, and the crack resistance, CR, as determined by equation 5.1
for the NaCa, KCa, and 80SiO2 glasses. The CR error is given as the
interval of data points between which it is determined to lie.

NaCa KCa 80SiO2

Load [gf] Cracks Error Cracks Error Cracks Error
25 0.0 0.0 - - - -
50 0.0 0.0 0.8 1.0 - -
75 0.4 0.6 0.8 1.1 - -
100 1.1 1.2 2.5 1.2 - -
115 - - 2.2 1.2 - -
125 2.5 1.1 1.7 1.3 - -
135 - - 3.0 1.2 - -
150 2.8 0.6 3.0 1.2 - -
175 - - 3.1 1.0 - -
200 3.6 0.6 - - 0.0 0.0
300 - - - - 0.3 0.7
500 - - - - 0.8 1.0
1000 - - - - 2.5 1.4
2000 - - - - 4.0 0.0

CR [gf] 112 100-125 97 75-100 736 500-1000

volume of the glass upon gas penetration and no interaction between the matrix

and helium gas. Under these assumptions equation 2.17 becomes,(
Cd

Catm

)
= Vf (5.2)

The Ostwald helium solubilities measured on the glasses (equal to the free

volume fraction per equation 5.2,) the saturation temperatures, and the other pro-

posed measures of free volume of the glassy network (Poisson’s ratio and the space

ratio as calculated by equation 2.15) are given in table 5.8.1. As seen in table 5.8.1

in the helium solubility results section the Ostwald solubilities are the same within

experimental error for both the 3 hour and 18 hour results, maybe with a slight

increase in solubility for NaBa composition. For this reason all the measured values

for a single composition will be averaged.
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Table 5.8.1: The measured Ostwald helium solubilities, Cd/Catm, mea-
sured at the saturation temperature, Tsat., along with other proposed
measures of free volume; Poisson’s ratio, ν, and space ratio, VSR, for the
MS series

Composition Tsat. [◦C] Cd/Catm (3hr) Cd/Catm (18hr) ν VSR

KBa 456 0.10% 0.10% 0.25 47.1%
NaBa 381 0.06% 0.08% 0.25 56.2%
KCa 540 0.16% 0.15% 0.23 46.4%
NaCa 484 0.14% 0.14% 0.22 50.1%
Error ±5 ±0.01% ±0.01% ±0.01 -



6. DISCUSSION

6.1 Glass Properties

The Tg, density, and mechanical properties given in sections 5.1, 5.2, 5.3, and

5.4 were found to have approximately linear dependency on modifier fraction for the

SLS series (excluding the 80SiO2 composition,) but having no obvious correlation

either with composition nor other properties for the MS series (having the same

modifier fraction.) This was expected, as these properties (except hardness) as a first

approximation can all be predicted from appropriately weighted linear combination

of the fraction that each oxide constitutes in the glass [47–49, 114], although more

complex models exist, e.g. for prediction of glass density [115]. As hardness shows

correlations to elastic properties like Young’s modulus [28], or thermal properties

like Tg [37], or the softening point [46], it is not surprising that this also property

varies approximately linearly in for most of the SLS series.

For exactly the same reasons, no major correlations were expected nor found

in the MS series. Although the alkaline and alkaline earth modifying ions respec-

tively are chemically similar, their effect on glass properties are quite different in

magnitude. This series serves as an important check to any model serving to predict

hardness or densification from other properties, as it breaks the strong correlations

between the properties as found in the SLS series.

6.2 Comparison of Hardness Models

In this section the two models presented in the literature review attempting

to account for the compositional variation of hardness, and the general correlation

with elastic moduli, will be discussed in relation to the results obtained in section

5.4 and literature data for a variety of silicates (exact compositions and properties

given in appendix B.)

51
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6.2.1 Correlation with Elastic Moduli

As have been mentioned before, hardness is roughly proportional to the elastic

moduli, with the best correlation found for the shear modulus, as seen in figure 6.2.1.

As it can be seen, the correlation is very strong in silicates, and any model to explain

Figure 6.2.1: The measured values of shear modulus, G, against the mea-
sured Vickers Hardness, HV , for a variety of silicate based glasses. The
coefficient of determination is R2 = 0.748 with intercept forced through
origo.

hardness is expected to include the elastic properties somehow.

6.2.2 The Maximum Internal Pressure Model

As the free volume of a glass is difficult to evaluate, the A term in equation

6.1 will be approximated as a constant as was also done by the original authors [37].

It was seen in section 2.4 that the free volume of silicates varies between some 1%

to around 3% for pure silica, giving 0.98 < A < 1.28, which is why it is taken as
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a constant of unity, and some error for high silica glasses accepted. Equation 2.11

then becomes,

Pm =
1− 2ν

6(1 + ν)
E (6.1)

This equation is plotted against the measured values of hardness in figure 6.2.2.

Considering that there are no empirical fitting parameters involved, and that the

Figure 6.2.2: The calculated maximum internal pressure, Pm, (equation
6.1) using measured elastic properties against the measured values of
Vickers hardness, HV of a variety of silicate based glasses. The coefficient
of determination is R2 = 0.386 with intercept forced through origo.

maximum internal pressure of amorphous silica is expected to be underestimated

by almost 25%, the fit is quite good with R2 = 0.386, but fades in comparison to

that with shear modulus shown in figure 6.2.1.
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6.2.3 The Yamane & MacKenzie Model

First the proportionality constant between Vickers hardness and the total resis-

tance, CY M in equation 2.7, is determined from empirical values of elastic constants

and hardness of amorphous silica. Yamane & MacKenzie [34] utiliseHV = 6.38GPa,

G = 31GPa, K = 35GPa, and of course an α of unity (as per the calculation shown

in appendix A,) ultimately yielding CY M = 0.19. Vickers hardness is then calculated

as,

HV = 0.19
√
αGK (6.2)

It is not the aim of this work to evaluate the error introduced from the method of

calculating elastic properties from composition, why the measured values are used

in this calculation. As seen in figure 6.2.3 the calculated values are slightly overes-

timated, but generally correspond well to the measured ones with R2 = 0.774. This

is excellent agreement considering the inherent error involved in hardness measure-

ment often said to be around 10%, not to mention possible systematic deviations,

however the model only does slightly better than the empirical correlation to shear

modulus in figure 6.2.1. A plot of the residuals relative to the measured hardness is

shown in figure 6.2.4, where it can be seen that the maximum error is below 20%,

and that the data by Sanditov et al. [37] seems to be overestimated, quite possibly

due to a higher testing load (not given in the paper) and the indentation size effect.

Although not shown, the data by Kato et al. [9, 33] is not described well by

the model, and is generally significantly overestimated. These compositions are the

only ones to contain boron and alumina - elements excluded in the compositions

used to develop the Yamane & MacKenzie model [34]. These elements change their

coordination number depending on the amount of modifiying ions present, and thus

the calculated average bond strength could well be thought to contain some error.

But even if the data by Kato et al. [9, 33] is included, the fit is significantly better

than the maximum internal pressure model.

Having thus determined that the Yamame & MacKenzie model is indeed the

best predictor of indentation hardness then let us turn our attention to how well

the individual resistances relate to actual measured data of the densified and plastic



55

Figure 6.2.3: The calculated values of Vickers Hardness, HV , by the
Yamane & MacKenzie method (equation 6.2) using measured elastic
properties against the measured ones for a variety of silicate based
glasses. The coefficient of determination is R2 = 0.774 with intercept
forced through origo.

flow volumes.

6.3 Volume Recovery of Densification at Constant Load

6.3.1 Compositional Variation

In section 5.5 it was seen that the VR decreased linearly with modifier frac-

tion in the SLS series (from 97% to 25%), and remained relatively constant (VR =

80 ± 6%) for the MS glasses. This is an enormous change with relatively small

compositional changes for the SLS series, however the change in mechanical prop-

erties is modest, and comparable to that of the MS series. It seems that in silicates

a property closely related to the modifier fraction is paramount to explaining the
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Figure 6.2.4: Residuals relative to the measured value of Vickers hard-
ness, HV , as a function of Poisson’s ratio, ν, for the fit to the Yamane &
MacKenzie model.

relative contribution of densification.

As for the absolute volumes, a monotonical dependence on modifier fraction

is observed.

6.3.2 A Yamane & MacKenzie Approach

Densified and plastic volume are plotted against the RD in the Yamane &

MacKenzie model [34] in figure 6.3.1, Vickers hardness against RT (mathematically

equivalent to RD) in figure 6.3.2, and finally figure 6.3.3 examines the relationship

of both densified volume and hardness to RE. See appendix A for details of the

calculation and a table of the average bond strength values used in calculating RD

and RP . It is seen that the densified volume and hardness are described well by

the RD (equal to RT ) employed in this approach. However, the plastic flow volume
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Figure 6.3.1: (a) Densified volume, Vd, as a function of RD = (αGK)1/2

and (b) plastic flow volume, Vp, as a function of RP = αG. Error bars
indicate ±1 standard deviation.

Figure 6.3.2: Vickers hardness, HV , as a function of RT = (αGK)1/2. Error
bars indicate ±1 standard deviation.

shows very poor correlation with the RP used. Densified volume shows a strong

correlation with RE, and hardness less so. The applicability of the elastic resistance

RE = K will not be examined in this work, but there seems room for improvement
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Figure 6.3.3: (a) Densified volume, Vd, and (b) Vickers hardness, HV , as
a function of RE = K. Error bars indicate ±1 standard deviation.

in regards to the other two resistances; densificative and plastic flow.

6.3.3 New Proposed Resistances

As discussed briefly in the problem statement, the influence of average bond

strength on the resistances seems difficult to root in theory. Moreover, judging from

figure 6.3.3, there seems to be good agreement between the densified volume and

bulk modulus, and there seems no need to invoke this parameter. A non-linear fit

of the type KωG1−ω (where 0 ≤ ω ≤ 1) to the densified volume was performed to

elucidate if the 50/50 contribution of compression and shear assumed by Yamane &

MacKenzie is plausible or not, and it was found that ω = 0, meaning that the best

descriptor of the densified volume is the bulk modulus alone. It should be noted

that under a Vickers indenter approximately two-thirds of the stress distribution is

hydrostatic [50]. The fit of densified volume to the proposed RD = K is shown in

6.3.4.

As for the plastic flow volume, the strongest correlation seems to be that to

the modifier fraction, as was seen in figure 5.5.1. Clearly, the volume must decrease

with a resistance, which is why it is taken as RP = nSiO2 , that is the molar silica

fraction of the glass. This is also plotted in 6.3.4. The linear fit to this new RD and

RP is significantly better than that of the Yamane & MacKenzie model [34] (figure

6.3.1.)

As dealt with in the literature review, the modifying ions are thought to be
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Figure 6.3.4: (a) Densified volume, Vd, plotted as a function of RP = K
and (b) plastic flow volume, Vp, against RP = nSiO2. The lines are obtained
by linear regression on the SLS series. Error bars indicate ±1 standard
deviation.

the cause of slipping of different parts of the network during plastic flow. Peter [29]

previously reported a threshold modifier fraction for the manifestation of plastic flow

in silicate glasses during indentation. This hypothesis apparently agrees with the

results here; the threshold at 25gf occuring around 20% modifier content by moles.

6.3.4 Interpretation of Proposed Resistances

The new parameter found to best describe the densificative resistance is the

bulk modulus, a quantity firmly rooted in thermodynamics. It is the elastic resis-

tance to reduction of the volume by a factor 1/e under uniform compression, and

formally defined as,

K = −V ∂P
∂V

(6.3)

The densified volume under indentation is obviously not elastically compressed, but

has been stressed beyond some yield pressure [62], yet as elastic compression must

take place before this yield pressure, as a first approximation it is thought that K

does well to describe the total resistance to densification. K times Vd in theory

yields the work of densification, which is interesting as an energetic interpretation

of hardness has won favour since the advent of high-sensitivity load-displacement

indentation equipment [38, 116, 117]. Unfortunately, it is beyond the scope of this

work to evaluate whether there is a relation between this work of densification and
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the work of plastic deformation seen in figure 2.3.2.

As for the resistance to plastic flow it was realised that nSiO2 is proportional to

the average coordination number, Cav, in the simple silicates measured here. Using

RP = Cav allows for use of the plastic flow resistance also for other glass forming

families. A comparison of both the proposed RD = K and RP = Cav is shown with

sodium borates as measured by Yoshida et al. [59] in figure 6.3.5, where coordination

numbers of boron were calculated using the random-pair model of Gupta [118]. It is

observed that the resistances describe the densified and plastic flow volume of both

silicate and borate glasses well.

Figure 6.3.5: (a) The densified volume, Vd, plotted against RD = K and
(b) the plastic flow volume, Vp, plotted against RP = Cav for the SLS and
MS series measured under 25gf Vickers indentation in this work, and that
of sodium borates glasses by Yoshida et al. under identical conditions.
Error bars indicate ±1 standard deviation.

It is not thought that this dependence of average coordination number is a

general truth, as evidenced by metallic glasses having very large plastic flow volumes

[52], but it does open for speculation into whether or not an energetic interpretation

is possible. Perhaps it is the bond strength per volume of the glass forming network

that is paramount, where it should be noted that the single bond strength of silica

and boron is similar (εSi = 106kcal/mol versus εB = 119kcal/mol) [63]. Such an

interpretation would lend itself well to the theory of hardness in crystalline solids

proposed by Gilman [67, 68] briefly described in section 2.3.3, where hardness is

found to be proportional to the so-called bond modulus, a measure of bond energy

per dislocation volume.
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6.3.5 Volume Ratio of Recovery

6.3.5.1 Correlation with Poisson’s Ratio

The volume ratio of recovery, VR, is calculated as the ratio of densified volume

over total permanent deformation volume, as seen in equation 4.8. For this reason,

it is thought to be determined by ratio of plastic flow to densificative resistance,

and has previously been shown by Yoshida et al. [52] to decrease monotonically

with Poisson’s ratio in a variety of glasses, as was seen in figure 2.3.3. Thus the

relationship can be described as,

VR ∝
RP

RD

∝ 1

ν
(6.4)

To examine applicability of this relationship with Poisson’s ratio, the measured

data is plotted with that of Yoshida et al. [52] in figure 6.3.6. With the exception

of a few outliers, an almost linear relationship emerges for the silicate compositions

measured by Yoshida et al. [52], and indeed also for the SLS series, but their slopes

are very different. Because there is relatively little change in Poisson’s ratio across

the SLS series, yet a large difference in VR, the slope necessarily becomes very large.

Conversely, for the MS series there is relatively little change in VR, but rather large

differences in ν (as compared to the SLS series,) and these glasses do not have a

linear trend in the plot. The relation seems to capture some truth of the much more

varied compositions measured by Yoshida et al. [52], but does little in explaining

the large differences found in the simple silicates measured in this work.

6.3.5.2 Correlation with Free Volume by Helium Solubility

The relation found by Yoshida et al. [52] with Poisson’s ratio which was ex-

amined in the previous section is thought to be due to differences in free volume of

the glasses. For this reason a more direct measure of the free volume, namely the

helium solubility, was employed to see how this parameter correlates with Poisson’s

ratio and space ratio, and also if it has any explanatory power over the volume

recovery of densification. Poisson’s ratio and ionic volume fraction as a function of

the measured Ostwald solubility are shown in figure 6.3.7.

As low values of Poisson’s ratio means an open structure of the material, free
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Figure 6.3.6: The volume ratio of recovery, VR, as a function of inverse
Poisson’s ratio, 1/ν, of 25gf Vickers indents on the SLS and MS series of
this work, and 50gf indents on various silicates and a oxy-nitride glass,
10gf on amorphous silica, and finally 20gf on a bulk metallic glass mea-
sured by Yoshida et al. (data found in appendix B.) Error bars indicate
±1 standard deviation.

volume should be inversely related to it, which fits quite well with the data in figure

6.3.7a. Although the trend is not quite monotonic, these two measures of free volume

seem to be strongly correlated. However, this cannot be said for the space ratio show

in figure 6.3.7b. This should have a positive correlation with free volume, yet no

such thing is found. Moreover, comparing the space ratios in table 5.8.1 to that of

amorphous silica (Cav = 54.4% [52,86]) that of the NaBa composition (Cav = 56.2%)

is higher. It is indeed difficult to imagine a silicate glass with higher free volume

than pure amorphous silica [86], which is why the space ratio calculation of the free

volume is not thought to be accurate, as previously suspected by Doremus [87].

It was seen in figure 6.3.7 that the measured Ostwald solubility of helium
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Figure 6.3.7: (a) Poisson’s ratio, ν, and (b) space ratio, VSR, as a func-
tion of the measured Ostwald helium solubilities. Error bars indicate ±1
standard deviation. The error in space ratio is taken to be 1%.

decreased almost monotonically with Poisson’s ratio within the MS series. Given

that this is the case, equation 6.4 can be modified to become,

VR ∝
1

ν
∝ Cd

Catm

(6.5)

This implies that the relation with Poisson’s ratio is fundamentally caused by a

difference in free volume. If the helium solubility is a more correct measure of the

free volume than Poisson’s ratio, it would be expected that the VR values of the MS

series increase monotonically with the measured Ostwald solubilities. As seen in

figure 6.3.8, this is hardly the case. The NaBa and KCa compositions have similar

VR’s around 85%, yet very different Ostwald helium solubilities, while KCa and NaCa

have similar solubilities, but very different values of VR. Even accepting a possible

outlier, the slope should be positive, not negative. Clearly, there is no correlation

between the measured helium solubilities and volume recovery of densification.

6.3.5.3 Relative Resistances

If the ratio of resistances as in equation 6.4 - RD = K and RP = nSiO2 - is

plotted (figure 6.3.9,) the data points almost collapse onto a single line within the

standard deviation. This is as expected if the individual resistances describe the

measured deformation volumes well.
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Figure 6.3.8: The volume ratio of recovery, VR, plotted against the Ost-
wald helium solubility, Cd/Catm. Error bars indicate ±1 standard devia-
tion.

6.4 An Improved Hardness Model

It immediately seems that the success of the Yamane & MacKenzie model is

due to it capturing both the strong relation between hardness and shear modulus,

and also that of densified volume and bulk modulus. However, it seems to fail to

account very well for the plastic deformation, as seen in figure 6.3.1. The composi-

tions used to develop the model generally contain rather low amounts of modifying

ions, thought to correspond to high values of VR, as per figure 5.5.2. Although

the calculated hardness corresponds well to the measured one for a wide variety of

glasses (and modifier fractions) as was seen in figure 6.2.4, it is thought that there is

room for improvement given the much better fits obtained for densified and plastic

flow volumes to the new resistances.
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Figure 6.3.9: The volume ratio of recovery, VR, as a function of the ratio
of resistance to plastic flow (RP = nSiO2) and densification (RD = K) of
25gf Vickers indents on the SLS and MS series of this work, and 50gf
indents on various silicates and a oxy-nitride glass, 10gf on amorphous
silica, and finally 20gf on a bulk metallic glass measured by Yoshida et al.
(data found in appendix B.) Error bars indicate ±1 standard deviation.

Relating hardness to the resistances has been carried out through evaluation

of a total resistance proportional to hardness;

HV = CP ·RT (6.6)

where CP is a proportionality constant. Using the resistances, RD = K, and RP =

nSiO2 , found by measuring deformation volumes in section 6.3.3, and the assumption

of RE = K, a variety of combinations of the resistances have been attempted, such

as given in table 6.4.1.

By far the best of these models is the square root of the three resistances
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Table 6.4.1: The models attempted to predict the total resistance, RT ,
which should be proportional to hardness.

Connection Total resistance, RT

Parallel 1/RD + 1/RP

Serial RE +RD +RP

Serial-parallel RE/RD +RE/RP

Weighted contribution Rω
DR

1−ω
P

Geometrical mean (RERDRP )1/3

Square root
√
RERDRP

multiplied, giving RT =
√
nSiO2K

2, which resembles that of Yamane & MacKenzie

[34] (RT =
√
αGK.). The proportionality constant in equation 6.6 is found by linear

regression, and the new model then becomes,

HV = CP ·RT = 7.42 ·
√
RERDRP (6.7)

This relation has a coefficient of determination is R2 = 0.482 and is plotted in

figure 6.4.1.

It can be seen in figure 6.4.1 that the hardnesses of a few compositions are

underpredicted rather severely. This is examined further in the plot of relative

residuals in figure 6.4.2, where an apparent systematic error with Poisson’s ratio is

seen.

Despite having excellent correlation between the resistances and measured

deformation volumes the new model performs poorly both in regards to the Yamane

& MacKenzie model [34], and the empirical correlation to shear modulus. Two

possible reasons are considered: Possibly the assumed elastic resistance of RE =

K is incorrect, and effects the total resistance appreciably. In this case further

studies with load-displacement indentation equipment and measurement of the work

of elastic deformation may yield the true elastic resistance. On the other hand, the

hypothesis that deformation volumes determine hardness might be incorrect, in

which case it is thought that an energy-based approach could provide a route to

better prediction of hardness from composition.
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Figure 6.4.1: Calculated Vickers hardness, HV , using the new model
(equation 6.7) plotted against the measured values for a variety of silicate-
based glasses.

6.5 Crack Resistance and Load Dependence of Densification

As mentioned in the results section only the data for KCa, NaCa, and the

80SiO2 compositions will be discussed. The volume recovery ratio data that will be

used are replotted in figure 6.5.1 for clarity.

The residual stress at the load for crack initiation will be calculated from

equation 2.19. Kato et al. calculates the change in plastic flow volume as the post-

annealing volume of the indentation, approximated by the post-annealing depth and

assuming a pyramidal shape,

∆Vpz,d =
1

3
· S ·Da =

1

6
L2

ci ·Da (6.8)

where ∆Vpz,d is the plastic deformation volume as determined by depth, and S
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Figure 6.4.2: Residuals relative to the measured value of Vickers hard-
ness, HV , as a function of Poisson’s ratio, ν, for the fit to the new model.
The coefficient of determination is R2 = 0.482 with the intercept forced
through origo.

the projected area of the Vickers indentation. A more accurate method would

be to merely use the plastic flow volume, Vp, as determined directly by AFM as

the change in plastic zone volume. It turns out that the volumes, and hence the

calculated residual stresses by using equations 2.19, 2.20, and 6.8 or ∆Vpz = Vp are

very different. Although containing larger error, and not enabling comparison with

previous data, it is thought to be more correct to use the plastic flow volumes to

calculate the residual stress at the load for crack initiation. Lawn et al. [104] and

Kato et al. [33,61] both attempt to estimate this quantity indirectly, but in this work

it is measured exactly, given only that the densified volume is completely recovered

in the method employed, as proven previously by Yoshida et al. [57].

Kato et al. [33] argue that the residual stress increases logarithmically with
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Figure 6.5.1: The volume ratio of recovery, VR, as a function of inden-
tation load, P , of the NaCa, KCa, and 80SiO2 compositions. Error bars
indicate ±1 standard deviation.

load. Despite the relatively few data points (Kato et al. tested six loads spanning

from 5gf to 200gf [33]) and error involved this seems reasonable judging from figure

6.5.2a. The data is fitted as,

σrs = a logP + b (6.9)

where a is the slope and b the intercept. This logarithmic fit is shown in figure

6.5.2b. Regression parameters and calculated residual stresses at the load for crack

initiation determined in section 5.7, σCR, can be found in table 6.5.1.

As seen in table 6.5.1, the calculated values of the residual stress at the load

for crack initiation, σCR, fall in the range of 110MPa to 470MPa, a rather large

relative difference, even considering the considerable error involved.
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Figure 6.5.2: Calculated residual stress, σrs, by using the plastic flow
volume, Vp.

Table 6.5.1: Regression parameters from application of equation 6.9, the
measured crack resistance, CR, and the predicted residual stress at the
load for crack initiation, σCR. Errors are given as the standard deviations
of the data.

Composition Slope, A Intercept, B R2 CR [gf] σCR [MPa]
KCa 130± 20 −40± 30 0.838 97± 22 220± 50
NaCa 230± 30 −10± 40 0.874 112± 13 470± 70
80SiO2 60± 10 −70± 20 0.567 736± 264 110± 40

The scale of the values calculated are approximately a factor of 5 smaller than

those calculated by Kato et al. [33, 61] using the post-annealing indentation depth

and equation 6.8. If this method is employed values in the range of 1.3GPa to

1.7GPa (±0.1GPa) are found, which are rather close to those of 1.7GPa to 1.9GPa

given by these authors, yet not similar enough to conclude a single value with

this method either. The results presented in this section challenges the hypothesis

stated by Kato et al. [33] that the residual stress at the load for crack initiation is a

constant within the silicate system. Given this state of affair, it seems necessary to

undertake further studies into the meaning of these residual stress values, e.g. the

compositional variation or evaluation of the stress distribution.



7. CONCLUSION & PROSPECTS

It was shown that the method of measuring indentation and pile-up volumes before

and after annealing at 0.9×Tg (K) can accurately determine the densified and plas-

tic flow volumes occuring under sharp indentation of glass. The densified volume

decreases linearly with the bulk modulus, the elastic resistance to isotropic compres-

sion, both in silicates and sodium borates. The plastic flow volume however has no

relation to elastic properties, instead being determined by the modifier fraction in

the silicate composition, and is insensitive to the specific modifying ions within the

sodium, potassium, calcium, and barium containing compositions tested. For in-

dentations made at 25gf the threshold modifier fraction for the emergence of plastic

flow is close to 20% by moles. It is possible that the plastic flow volume is related

to the average coordination number of the glass forming species, as the data for sil-

icates and borates appear very similar in this interpretation. The hypothesis of free

volume determining the relative densification magnitude by Yoshida et al. [52, 62]

was disproven, instead the ratio of the above mentioned densificative and plastic

flow resistances can explain these results.

Despite the success in explaining the compositional dependence of the densified

and plastic flow volumes, it has not been possible to develop an improved model

for prediction on hardness based on these relations. It is thought that hardness is

determined mainly from the elastic properties, as most of the work of indentation

occurs as elastic deformation, and that also the densificative part of the permanent

deformation depends strongly on the bulk modulus. To accurately predict hardness

from composition it will be necessary to investigate the elastic deformation in detail.

It was concluded that a single stress for crack initiation for silicate glasses

does not exist. The values found span from 110-470MPa (±70MPa,) however given

the limited amount of data it is not known what extent of spread can be expected.

More research is needed to find the origin of this difference, which could originate

in actual differences in intrinsic strength or the stress distribution under the indent.

Some predictions can be made given the results obtained for the compositional

71
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dependence of densification and plastic flow. In the brittleness proposed by Lawn &

Marshall [99] the ratio of hardness to fracture toughness determines when fracture

occurs, yet Kato et al. [9, 33, 61] instead concludes that the plastic flow induced

residual stress is paramount. These requirements - low hardness and plastic flow

- transcribe into low elastic constants and high glass former content as per the

results in this work. Indeed the most crack resistant glasses developed so far fit

these criteria. These are based on amorphous silica (which is highly crack resistant

under moisture-free conditions [7].) Small amounts of modifiers which reduce elastic

properties are added (up to around 20%, the threshold for emergence of plastic flow

mentioned above,) and in some cases with alumina to negate their depolymerising

effect [8, 95].
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APPENDIX A

Average Bond Strength

A.1 Calculation

The average bond strength is calculated as:

α =

∑
(niciεi)

εSi

∑
(nici)

(A.1)

where α is the relative bond strength relative to amorphous silica, n, c, and ε

respectively the molar fraction, coordination number, and single bond strength to

oxygen of the subscripted cation. The single bond strengths are calculated from the

dissociation energy of oxides as,

ε =
Edis.

c
(A.2)

where Edis. is the dissociation energy. Yamane & MacKenzie [34] used the dissoci-

ation energies published by Sun & Huggins [114], while this work utilises the newer

values given by Morinaga et al. [49] and the coordination numbers given by Sun [63].

The calculated values are given in table A.1.1.

Table A.1.1: The average bond strength relative to amorphous silica, α,
of the compositions used in this work.

Series Composition α

SLS

80SiO2 0.678
75SiO2 0.594
71SiO2 0.585
68SiO2 0.577
65SiO2 0.570
60SiO2 0.556

MS

KBa 0.576
NaBa 0.640
KCa 0.595
NaCa 0.663
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APPENDIX B

Literature Data

B.1 Vickers Hardness and Densification

The primary data source for comparison is that by Yoshida et al. [52] having

measured the elastic properties, Vickers hardness, and volume recovery of densifica-

tion by the same method used in this work on simple silicates, an oxy-nitride glass,

and a bulk metallic glass. Another important contributor is the work of Kato et

al. [9, 33] giving also elastic properties, Vickers hardness, and the ratio of indenta-

tion depth recovery, though not the volumes, again by the same method. The data

concerning densification is shown in table B.1.1, and that related to elastic prop-

erties and Vickers hardness in B.1.2. Some additional data by Sanditov et al. [37]

has been used in the modelling of Vickers hardness alone, which are not duplicated

here.
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Table B.1.1: Glass transition temperature, Tg, densified volume, Vd, plas-
tic flow volume, Vp, volume ratio of recovery, VR, and ratio of indentation
depth recovery, RID, from Yoshida et al. measured identically to the
method used in this work. The RID data by Kato et al. given is for a
Knoop indenter. Experimental error is given as the maximum among the
series of glasses measured. ∗The second largest error in Vp. The largest
error is for amorphous silica at 70%.
Composition Tg [◦C] Vd [µm3] Vp [µm3] VR RID Ref
10CaO 15Na2O 75SiO2 568 10.81 5.72 65% 34% [52]
20CaO 15Na2O 65SiO2 594 7.47 10.56 41% 22% [52]
10CaO 6MgO 13Na2O 71SiO2 562 10.28 6.46 61% 32% [52]
100SiO2 1100 0.95 0.08 92% 45% [52]
10MgO 15Na2O 75SiO2 542 13.57 3.71 79% 31% [52]
20MgO 15Na2O 65SiO2 588 10.36 4.26 71% 38% [52]
5CaO 5MgO 15Na2O 75SiO2 543 11.17 4.47 71% 32% [52]
10CaO 10MgO 15Na2O 65SiO2 560 8.08 8.61 48% 30% [52]
1.2Y 1.6Mg 41S 3.0Al 14O 1.5N 863 2.96 7.28 29% 19% [52]
40Pd 40Ni 20P 317 0.40 8.39 5% 2% [52]
Error ±5 ±5% ±23%∗ ±4% ±5% [52]
80SiO2 20Na2O 483 - - - - [9]
75SiO2 5B2O3 20Na2O 522 - - - 28% [9]
70SiO2 10B2O3 20Na2O 553 - - - 25% [9]
60SiO2 20B2O3 20Na2O 571 - - - 13% [9]
50SiO2 30B2O3 20Na2O 554 - - - 21% [9]
40SiO2 40B2O3 20Na2O 527 - - - 27% [9]
80SiO2 5B2O3 15Na2O 549 - - - 32% [9]
80SiO2 10B2O3 10Na2O 598 - - - 34% [9]
70SiO2 10B2O3 10Al2O3 709 - - - 39% [9]
67.5SiO2 12.5B2O3 10Al2O3 692 - - - 42% [9]
65SiO2 15B2O3 10Al2O3 676 - - - 42% [9]
70SiO2 20B2O3 5K2O 500 - - - 32% [33]
75SiO2 10B2O3 5Na2O 570 - - - 34% [33]
70SiO2 10Al2O3 10B2O3 710 - - - 34% [33]
70SiO2 10Na2O 10CaO 540 - - - 24% [33]
70SiO2 10Na2O 5SrO 520 - - - 18% [33]
70SiO2 5SrO 5K2O 630 - - - 16% [33]
60SiO2 25PbO 5B2O3 470 - - - 4% [33]
70SiO2 15Al2O3 10Li2O 710 - - - 38% [33]
Error ±2 - - - ±3% [9,33]
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