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Abstract:

The advent of the internet brings a plethora
of advantages; however, it also provides a
breeding ground for illegal activities, encom-
passing the trade of malicious software, sensi-
tive data, and other illicit merchandise. Cur-
rent research mainly investigates products on
darknet markets or interactivity between ac-
tors on the forums. However, little attention is
devoted to the realm of digital commodities
found within illicit clear web forums. This thesis
aims to address this by employing a custom-
built web scraper to collect data from a suite
of illicit clear web forums. Subsequently, large
language models are fine-tuned to conduct
natural language processing tasks aimed at
extracting information concerning prices and
predominant product categories. The result-
ing dataset reveals that illicit digital products
spanning various categories sell for 25$ on av-
eragewith prices occasionally plunging as low
as 0.5$. Additionally, users of the forums gen-
erally request products 5$ cheaper than what
they are available for. Lastly, the thread topics
encountered on the investigated forums pre-
dominantly revolve around the sale of com-
promised accounts as well as various services,
including account-banning services, botnet
services and web hosting services.

The content of this report is freely available, but publication (with reference) may only be pursued in agree-
ment with the author.
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1
Introduction

The internet has become an integral part of our lives and has opened up numerous
opportunities for businesses, researchers, and consumers alike. However, the vastness
of the web also provides a platform for illegal activities, including the sale of malware,
database breaches, and other illicit products. The clear web, or the area of the internet
that common web browsers and search engines can easily access consists of public web-
sites indexed in search engines and accessed by millions of people worldwide every day.[1]

This differs from the dark web and deep web, which are not indexed by search engines
and, in the former case, require special permissions or software to access, commonly to
mask the user’s identity.[2]

Despite the anonymity the dark web provides, certain illicit forums still choose to
offer their services on the clear web for their extended accessibility. These forums engage
in illegal activities, such as selling ransomware, that can breach the security of systems
and the privacy of users.[3],[4],[5] The easy access the clear web provides allows these
illegal platforms to thrive and target a wide range of users to help perpetuate their
illegal undertakings. At its peak, a single illicit forum may contain listings selling access
to up to 1.5 million compromised computers (bots) and more than 80 million stolen
account access credentials.[6] With the average price of a bot being around US $16[7]

and the average price of a compromised account being US $23[8] forums like these can
accumulate up to US $1.86 Billion in revenue.

The information found on these felonious forums has always been a significant con-
tributing factor in disrupting cyber-criminal operations and is hence, a topic of great
interest for law enforcement and researchers alike.[9] Specifically, the information these
markets comprise - product listings, pricing, and available vendors can help researchers
better understand how these markets operate on an economic scale. These forums,
however, often have a brief lifespan, typically lasting from 1 to 3 years[10], before being
rendered inaccessible as a result of law enforcement agencies infiltrating and confiscating
them. Consequently, the task of analysing such forums remains a continuous process.
Concurrently monitoring these forums represents a valuable strategy for researchers and
law enforcement agencies to detect active malware, exposed databases, and other poten-
tially harmful services. This, in turn, can help mitigate the impact of these products on
consumers.

Despite the extensive research on the contents and ramifications of illicit forums and
marketplaces on the dark web[11],[12],[13],[14], little attention has been directed towards
digital products found on the forums operating on the clear web. This project seeks
to narrow this scope by performing a targeted analysis of hacking, cracking, and leak-
related clear web forums, with the aim of providing an up-to-date assessment of prices
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for exposed databases, malware, cracked software and other similar products. By doing
so, this study aims to offer a more nuanced understanding of the scope and nature of
criminal activities on the clear web specifically related to these topics. The main research
question this thesis aims to answer is, therefore:

What is the scope and nature of digital products related to hacking,
cracking, and information-leaking for illicit forums operating on
the clear web?

To efficaciously answer this question, it is broken down into the following three sub-
research-questions:

1. How can a web scraper be developed to extract data from illicit clear web forums?

2. How can Natural Language Processing (NLP) techniques be applied to extract in-
formation from text data?

3. What are the common characteristics of products and services on these forums,
and how do they vary across different forums?

To answer these questions, firstly, web scraping techniques are applied to gather and
analyse data from clear web illicit forums. The scraping process involves building a web
crawler to extract data from the unlawful forums and store it in a structured format
for analysis. To create the web crawler, modern Python packages for web scraping and
HTML parsing are used, ensuring high performance without the need for specialised
hardware.

Secondly, NLP techniques such as Named Entity Recognition (NER) and Text
Classification (TC) are applied to extract relevant information in the textual data. This
will involve fine-tuning custom Large Language Models (LLMs) for each of the afore-
mentioned NLP techniques based on state-of-the-art pre-trained LLMs. Thirdly, the
collected data is analysed to provide a comprehensive overview of the products and ser-
vices on each of the investigated forums throughout the entirety of 2023. The insights
gained from this project, thereby, contribute to the field in the following ways:

• It generates a robust web crawler that effectively bypasses anti-scraping techniques
when scraping illicit clear web forums

• It implements an NLP pipeline to parse data scraped from clear web illicit forums
based on several state-of-the-art LLMs

• It provides a summarised quantitative analysis of four popular clear web hacking
forums with a focus on digital assets

The contributions above will provide valuable information to help identify and track
illegal activities and develop strategies to combat them. Additionally, the information
gathered in this project can be used to inform policies and regulations aimed at reducing
the scale of illegal activities on the clear web. To access the data and the developed
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scraper, interested parties can make a formal request to the final custodian of the data,
scraper source code and NLP pipeline: Aalborg University (AAU).

The following structure is adopted for the organisation of the thesis. Firstly, in
Chapter 2, a comprehensive review of background knowledge related to web scrap-
ing, data structure, natural language processing (NLP), and machine learning model
(LLM) development is presented. Secondly, Chapter 3 includes the research methods
employed for the development of the thesis. Chapter 4 provides an overview of the
current methods and approaches utilised in academia to analyse illicit forums. Next,
in Chapter 5, the system requirements for the developed scraper as well as the per-
formance requirements of the fine-tuned LLMs used for NLP information extraction,
are defined. Hereafter Chapter 6 covers the overall structure of the developed system
concerning the entire pipeline from scraping data to information extraction for analysis.
Following this, in Chapter 7, a comprehensive description of how the system was imple-
mented is described. Chapter 8 concerns the analysis of the extracted and processed
data, and in Chapter 9, a discussion takes place regarding the entire project and any
future extensions of the work. Finally, Chapter 10 provides a conclusion with a concise
overview of the results of the project.



2
Background

The purpose of this section is to provide an overview of the theoretical framework behind
creating the web crawler to scrape the illicit forums, as well as building an NLP pipeline
to process the scraped data. As stated in Chapter 1, this will include the use of modern
Python web scraping libraries, for efficiency and consistency. For the NLP pipeline,
this will include NLP techniques like NER and fine-tuning of LLMs. In Section 2.1 a
thorough background to web scraping will be granted, followed by Section 2.2, where an
overview of the underlying architecture used for storing and manipulating the scraped
data is given. Lastly, Section 2.3 provides all the necessary information needed to
comprehend the NLP techniques applied in this project.

2.1 Scraping Techniques
Various techniques exist when it comes to extracting data from a website, each with its
own advantages and caveats. In the following subsections, different approaches to web
scraping are discussed.

2.1.1 REST API’s
Representational State Transfer Application Programming Interfaces (REST APIs) are
offered by many websites to provide programmatic access to their data. These APIs allow
for a structured and efficient way of accessing data without the need for web scraping.
Instead, developers can directly request the specific data they need, saving time and
resources. An example of this could be Twitter’s API, which enables programmatic
access to Tweets on Twitter.[15] APIs function by sending Create, Read, Update and
Delete (CRUD) that are subsequently executed by the receiver.[16] Unfortunately, not
all sites offer REST APIs or don’t make them publicly available, especially forums
discussing illegal matters. Therefore two other methods are mainly used when scraping
data from a website: Static Web Scraping and Dynamic Web Scraping.
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2.1.2 Static Web Scraping
Static web scraping is typically used for websites where the data is not generated dynam-
ically using JavaScript, which most modern websites are. Static web scraping involves
parsing and extracting data from static HTML pages using libraries like BeautifulSoup,
which is a popular Python library that enables parsing of HTML and XML documents,
making it an ideal choice for web scraping. It offers a simple and elegant syntax that
allows you to navigate and search the HTML tree structure of a webpage.[17] This is as
simple as searching for a specific tag or class name as seen in Listing 2.1.

Listing 2.1: Fetching and parsing HTML with BeautifulSoup
# Get raw html from a website
url = "www.google.com"
response = requests.get(url)
# Convert to BeautifulSoup object
soup = BeautifulSoup(response.text, "html.parser")
# Get the title of the page
title = soup("title")[0].text
# Get the first div with the class "pagination"
soup.find("div",{"class":"pagination"})
# Get all the divs with the class "pagination"
soup.find_all("div",{"class":"pagination"})

Using this technique, one can easily parse raw HTML to find specific parts of a web
page via CSS selectors, as seen in the last two lines of code. CSS selectors are generally
easier to use and more readable than XPath expressions, though XPath expressions tend
to be faster.[18]

2.1.2.1 Regular Expressions
To enhance the efficiency of data extraction from HTML pages, regular expressions
(regex) can be employed in addition to the CSS and XPath selection techniques men-
tioned earlier. Regex expressions are patterns that match to some predefined targets and
can be created utilising Python’s regex library. This approach is particularly advanta-
geous for websites with irregular or unorganised data formats, like forums. As depicted
in Listing 2.2, the process of extracting links from the raw HTML of a website becomes
remarkably simple with the use of regex.

Listing 2.2: Extracting links from HTML with regular expressions
import re
import requests
response = requests.get('https://www.example.com')
# Use regex to extract all the links starting with "http(s)://"
links = re.findall('href="(https?://.*?)"', response.text)
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The regular expression href="(https?://.*?)" is a commonly used pattern for
extracting URLs from HTML code and consists of three key elements. Firstly, the string
href=" matches the literal characters href=". This is due to the fact that URLs are
typically enclosed within an HTML anchor tag (<a>) with an href attribute. Secondly,
the pattern https?:// matches any string starting with either http:// or https://, where
the question mark after the s character makes it optional. This allows the expression
to handle both secure and insecure URLs. Finally, the .*? expression matches any
sequence of characters until the first occurrence of the closing quotation mark. This
ensures that the pattern matches the smallest possible string that includes the URL.
These expressions are used extensively in this thesis to extract as much data as possible
on the forums without having to manually define the CSS selector or XPath for every
string on the site.

2.1.3 Dynamic Web Scraping
In contrast to static web scraping, dynamic web scraping is a technique employed to
extract data from websites that do use JavaScript to generate content. This is often
conducted with libraries such as Selenium[19] or Nightmare.js[20] to automate browser
interactions and simulate user behaviour. By opening a browser window and program-
matically navigating to the target page, these tools can interact with the page and
extract data of interest. However, the use of dynamic web scraping tools introduces
additional complexity, as they not only need to parse the website but also interact
with its elements, leading to slower processing times. Additionally, since the website
must visually load for the tool to interact with it, dynamic web scraping requires more
computational resources.

Despite this, there are situations where dynamic web scraping is more suitable than
static web scraping. One example is when dealing with complex authentication mech-
anisms that require users to log in before accessing specific data or features. In such
cases, dynamic web scraping tools can automate the login process and extract data from
the website after authentication, unlike cookie-based authentication, which can be han-
dled by a combination of tools like the requests and BeautifulSoup Python packages.
Moreover, packages such as Selenium can be integrated with various other tools to over-
come challenges such as CAPTCHA verification,[21] thereby extending the functionality
and applicability of the web scraper.

A useful criterion for selecting between dynamic and static web scraping tools is to
consider whether the web page is server-side rendered or not. In cases where the website
is not server-side rendered, dynamic tools are often more appropriate for scraping data,
as much of the data is generated using JavaScript. Contrarily, if the website is server-
side rendered, the entire HTML document is returned upon request, making it easier
and faster to obtain and parse the document using local tools like BeautifulSoup.
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2.1.3.1 Selenium & Undetected Chromedriver
The framework utilised for creating the scraper in this thesis is based on the aforemen-
tioned Selenium toolkit. The underlying architecture of Selenium is based on the im-
plementation of web drivers, which serve as APIs for communication between Selenium
and web browsers. The web driver, when instantiated, enables Selenium to launch
a browser window, navigate to the intended webpage, and interact with its various ele-
ments programmatically.[19] Utilising Selenium, however, instantiates a set of JavaScript
variables that are easily recognised by bot detection systems. For instance strings such
as Selenium or WebDriver in any of the instantiated variables is an overt indicator.[22]

To surpass this limitation, a third-party module called undetected_chromedriver[23]

has been developed as an extension to the Selenium package. This instantiates a
Selenium driver with modified headers, closely resembling those of a regular user’s
browser, which as a result, mostly bypasses security measures such as CloudFlare and
hCAPTCHA.[23] By incorporating this package, the features of Selenium can be lever-
aged to extract data from illicit forums while limiting the risk of being barred from the
site.

2.2 Data Storage
When a web scraper has extracted data from a website, it must subsequently be stored
for analysis. When storing the data, the choice of an appropriate data storage system
is crucial to ensure the efficiency and scalability of data processing. Relational and non-
relational databases are two primary paradigms used in the storage and management of
data. The relational data model uses tables to store data in a structured format with pre-
defined columns and rows. These tables can be interconnected through relationships, and
data can be queried via a Structured Query Language (SQL). In contrast, non-relational
databases (also known as NoSQL databases) do not rely on a fixed schema or structure
and use flexible data models such as documents, key-value pairs, and graphs to store and
manage data. With this design, they are better equipped to handle unstructured data,
providing greater scalability, performance, and fault tolerance than relational databases
in many use cases.[24] A visual representation of the differences between a relational and
non-relational database can be found in Figure 2.1.
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Figure 2.1: A visual representation of the difference between relational and non-
relational database schemas (Created in Figma.[25] Inspiration: [24])

When it comes to forum data, everything is interconnected with users creating
threads that contain replies which are subsequently written by users. To store this convo-
luted information efficiently, a non-relational database scheme is hence ideal. Moreover,
text is inherently unstructured, further incentivising the use of a non-relational database
paradigm. A thread entry in the dataset created for this thesis, therefore, looks similar
to the non-relational entry in Figure 2.1, simply with many more key-value pairs.

2.2.1 SurrealDB
Common non-relational databases, like Dgraph[26], provide this non-relational database
structure. However, this has some limitations in terms of query flexibility. SurrealDB[27]

was therefore chosen for its immense flexibility and ease of use. SurrealDB allows the use
of both an SQL-like and GraphQL-like querying language while seamlessly being able to
function as a graph database as well as a regular relational database. Data is stored as
Records (or vertices) that can be interconnected via edges. This then makes it possible to
retrieve documents from any depth from multiple tables within the database efficiently,
without the use of complex JOIN operations.[28] Apart from its features SurrealDB was
utilised as it functions at a quite high level of abstraction, meaning efforts could be
directed more towards the development of the web scraper and NLP pipeline.
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2.3 NLP & Machine Learning
Natural Language Processing (NLP) is a subfield of computer science and artificial
intelligence that deals with the interaction between computers and human languages.
In recent years it has become a prominent research topic due to the increasing amount
of text data available on the internet and the need for automated processing of this
data.[29] One of the primary challenges in NLP is the inherent complexity and variability
of human language, which makes it challenging to extract information and insights
from. Machine Learning (ML), a subfield of artificial intelligence, plays a crucial role in
NLP by providing algorithms and models that can learn from data and improve their
performance over time. By training models on large amounts of annotated text data,
algorithms can be developed that can perform a range of NLP tasks with high accuracy.
The following subsections outline a selection of approaches for processing and extracting
information from text data and present an overview of the pre-trained language models
(LLMs) utilised in this thesis.

2.3.1 Feature Extraction/Encoding
Machine learning algorithms cannot work with raw text directly. The text must therefore
be converted into numbers. Specifically, vectors of numbers. This process is called
feature encoding or feature extraction. Not only must the text be converted to numbers,
but it must also have a consistent length to be fed into the algorithms. A multitude
of options exists for feature extraction, starting from the simpler variants such as Bag
of Words, scaling up to the complex contextualised word embeddings used by state-of-
the-art LLMs such as BERT.[30] To provide context, the following subsections will first
introduce simpler encoders before covering the more complex encoding methods.

2.3.1.1 POS Tagging
Part-Of -Speech (POS) tagging is the process of assigning a grammatical tag to each
word in a sentence, indicating its part of speech (e.g., noun, verb, adjective, etc.). This
task is especially important in resolving the ambiguity of a word. For example, con-
sider the word bat. Without determining its syntactic category, its meaning remains
ambiguous. However, by examining the surrounding words, it is possible to ascertain
whether the word in its context refers to the mammal or the sports equipment.[31] This
type of inference can be achieved with software such as spaCy[32], a Python package
containing pre-trained high-performing models for POS tagging. In the context of this
thesis, this can be utilised to extract items being sold on the forums or things being
requested by looking for words tagged as nouns. The implementation of this will be
given in Section 7.4.1.
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2.3.1.2 Contextual Embeddings
Simple feature encodings often represent text by describing the occurrence of words
within a document. This involves two essential elements. Firstly, a predetermined
vocabulary consisting of known words, and secondly, a measure of the presence of these
known words within the document. This approach is termed a Bag Of Words (BoW) as
it disregards any information about the order or structure of words within the document.
The model is only concerned with whether known words occur in the document rather
than their specific location within the text. While this can be used for simpler tasks
such as document statistics or simple classification, it fails to properly grasp the rich
semantic relationships and dependencies that exist within the text.[33]

To circumvent this Word Embeddings can be utilised. These function by initially
building a global vocabulary of unique words in the document. The similarity between
words is then learned by finding words that appear more frequently close to one another.
However, this also comes with a few caveats. Namely, when building the global vocabu-
lary, the meaning of words in different contexts is ignored. For instance, in the sentence
The bat flew over the baseball field while the child swung his bat at the pitch., only one
representation of Bat is learned.

This brings us to the more powerful approach of Contextual embeddings. Contextual
embeddings assign each word a representation based on the words around it, thereby
capturing the uses of words across varied contexts and encoding knowledge that trans-
fers across languages.[34] Take the word Bug for instance. Depending on the context,
this word can mean an Insect, a Coding Error or a Surveillance Device. By utilising
contextual embeddings, this word can be encoded according to its context into a feature
space as depicted in Figure 2.2.

Figure 2.2: Fictional contextualized embedding vector points and clusters for the word
Bug (Created in Figma.[25] Inspiration: [35])

With this approach, powerful LLMs that comprehend context much better can be
implemented and subsequently be fine-tuned for a large range of NLP-related tasks.
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2.3.2 Transformers & Attention
Many previous works employing contextual word embeddings have adopted architectures
such as Recurrent Neural Networks (RRNs) and Long Short Term Memory (LSTM)
architectures. However, these architectures are inherently sequential, prohibiting the
possibility of parallelisation, consequently inducing memory constraints during training.
The sequential nature of these architectures in terms of natural language processing also
means that for a given word in a sentence, they only try to encode context based on the
words preceding that word. As a result, a part of the context for the word is lost, as no
attention is given to the words following the word.[36]

To effectively surpass these constraints, researchers at Google[37] introduced the con-
cept of Attention in 2017.[36] The key concept behind attention is that given an input
sequence, it can attend to another sequence for context. Further improving this, the
concept of Self-attention emerged for the Transformer machine learning architecture,
allowing the transformer model to attend to different parts of the same input sequence
for context. In the context of text, given an input sentence, each word can look at every
other word for context, allowing the model to effectively comprehend the sentence.[36]

This invention led to a series of remarkably capable LLMs such as BERT.

2.3.2.1 BERT: Not Just a Sesame Street Character Anymore
Bidirectional Encoder Representations from Transformers), or BERT for short, is a
Machine Learning model based on transformers, likewise developed by Google, that has
gained a lot of popularity since its inception in 2018. BERT was trained to simply pay
attention to what is most important for understanding the context of words in a given
sentence. Given that it is bidirectional, this allows it to look at the whole context of
a sentence. For instance, in the sentence She left her left shoe at home, BERT can
grasp the semantics of the word left in both instances to correctly understand the first
occurrence of left as a verb, and the second as an adjective. Additionally, BERT was
trained on 3.3 Billion words,[30] making it exceptionally good at understanding context
in a wide spectrum of input sequences. This pre-trained version of BERT is available
via the transformers[38] Python package, granting easy access to fine-tuning this high-
performing LLM to tasks such as text prediction, text summarisation and many more.

To effectively employ BERT for the tasks in this thesis, the input to BERT has to
be tokenised via a word-based tokeniser. In practice, this entails the following 3 pre-
processing steps:

• The model requires a [CLS] token at the beginning of each sentence (ID 101) and
a [SEP] token at the end of each sentence (ID 102)

• The model’s input layer has a certain size, and hence the input should be formatted
to a specific length. This can be achieved by padding the tokenised text (adding
[PAD] tokens (ID 0) so the vectors always have the same length. The maximum
length allowed by the base BERT model is 512 tokens
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• An attention mask should be generated, consisting of a list of 0’s and 1’s that
indicate whether a given token, given by its ID, should be considered when learning
their contextual representation in the text

Visually this can be represented as illustrated in Figure 2.3.

Figure 2.3: Visual representation of the tokenisation of text for the BERT architecture
(Source: [39])

The figure clearly depicts, how a given input sentence such as I like cats, is converted
into a sequence of numbers, with each word or special character having a special id.
Additionally adding the [CLS] and [SEP] token the model can comprehend when a
sentence starts, and when a sentence stops, further increasing its ability in understanding
the context the sentence tries to convey.

2.3.2.2 XLnet
When BERT is trained, one of the tasks it is given is to fill in masked input, i.e. fill in
the missing word in a sentence. However, as it is an autoencoding model, it does not
consider how each mask in a sentence might be connected. For instance, in the sentence
She went to the [MASK] to buy [MASK] an appropriate solution would be that She went
to the pharmacy to buy medicin. However, seeing as BERT does not consider the
connection between the two masks, She went to the pharmacy to buy popcorn, is also
a valid solution despite it being quite unlikely. BERT has therefore been bested in many
NLP tasks by XLNet, an autoregressive model, which does consider the permutation of
these masks. As with BERT, the input to XLNet must be tokenised, however, via a
slightly different subword-based tokenisation algorithm.[40]
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2.3.2.3 RoBERTa
Robustly Optimized BERT, or RoBERTa, is a reimplementation of BERT with a slight
difference in the masking task explained in Section 2.3.2.2. With BERT, the number
of different ways a sentence is masked is fixed to 10, while for RoBERTa, the generation
of masks from the input sequence is done dynamically, potentially increasing the number
of different masking variations. Consequently, Yinhan Liu et al. could report RoBERTa
introduced an increase in performance when compared to BERT. As the model is based
on BERT, but simply trained differently, RoBERTa uses the same tokeniser as BERT.[41]

2.3.2.4 DistilBERT
The distilled version of BERT, or DistilBERT, is, as the name implies, a smaller, cheaper,
faster and lighter version of BERT. By reducing the number of parameters utilised in the
model by 40%, DistilBERT runs up to 60% faster than BERT while preserving over 95%
of the performance. These metrics have popularised the model, as it allows for similar
performance while reducing computational foodprint, consequently enabling its use in
constrained devices such as recent smartphones. Despite the reduction in parameters,
the model, as RoBERTa follows the same tokeniser structure as BERT.[42]

2.3.3 spaCy NLP Pipelines
spaCy[32] is a popular open-source NLP framework that allows the easy creation of
pipelines, which represent a sequence of processing steps that transform raw text into
meaningful linguistic annotations. For a basic NLP pipeline, spaCy first tokenises the
text according to the model specified, which can then subsequently be passed through
NLP models such as POS taggers, entity recognisers or text classifiers. Each processing
step is defined in an initial configuration file along with their respective hyperparameters.
Additionally, it comes with a set of pre-trained word-vectors that encapsulate general
comprehension of various languages. In this thesis, their English word vectors were
therefore utilised for reduced processing time and increased accuracy.

2.3.4 Machine Learning Metrics
To effectively evaluate the performance of machine learning models fine-tuned for the
NLP tasks of this thesis, a selection of metrics are calculated while training the models.
These metrics provide quantitative measures to assess the accuracy, precision, recall,
and overall effectiveness of the models. Each of these measures is calculated based
on four variables produced during training: the number of True Positives (TP), the
number of False Positives (FP), the number of False Negatives (FN), and the number of
True Negatives (TN). These variables represent the outcomes of the model’s predictions
compared to the ground truth labels.
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Precision measures the proportion of correctly classified positive instances out of all
instances predicted as positive. Consequently, this measure is of particular importance
in situations where minimising false positives is crucial, such as for medical diagnoses.
Accuracy measures the proportion of correctly classified instances, both positive and
negative, out of the total number of instances. As such, accuracy is only an indicative
performance metric when the dataset is balanced. I.e. if the dataset consists of 90%
label 1 and 10% label 2, the model still achieves 90% accuracy when always predicting
label 1, regardless of the model’s ability to accurately classify instances of label 2.

Recall, also known as sensitivity or true positive rate, measures the proportion of
correctly classified positive instances out of all actual positive instances. As such, recall
is useful when the consequence of missing positive instances is significant, such as in
disease detection. Finally, the F1-score combines precision and recall and is, therefore,
especially valuable when dealing with imbalanced datasets, given its ability to consider
the trade-off between identifying positive instances (recall) and minimising false positives
(precision). Thus it ensures that the model’s performance is adequately evaluated even
on the minority class.

2.3.4.1 Loss
In machine learning, loss functions quantify the dissimilarity between the predicted and
actual labels during the training process. Training loss therefore serves as an optimisa-
tion objective, allowing the model to update its parameters during training to minimise
the loss and improve performance. As such, it provides a measure of how well a model
is learning during each iteration (epoch), which, when visualised, provides insight into
the model’s capability to learn from the dataset. Validation loss, on the other hand,
serves as an indicator of how well the model generalises to new, unseen examples. The
validation loss is calculated on a separate validation dataset that is distinct from the
training data. This is done to ensure the model does not become Overfit to the dataset,
i.e. to avoid having it memorise the training data rather than learning the underlying
patterns.

After the model has been trained and fine-tuned on the training and validation set,
its performance must be evaluated on an entirely independent dataset. This dataset is
unseen and representative of real-world scenarios and thus provides an unbiased estimate
of how the model will perform when making predictions on new, unseen instances. A
common way to split the train, validation and test set is 80% training, 10% validation
and 10% test.[43]



3
Methodology

The primary objective of this project is to obtain comprehensive information regarding
the scope and character of illicit activities prevalent on clear web forums. As stated in
the introduction, to accomplish this, web scraping techniques will be utilised to gather
data from these forums, and NLP will be employed to analyse it. This section will
outline the organisational structure of the project and the methodologies employed to
achieve the research objectives.

3.1 Project Management: Agile Methodology
The project was managed using an Agile approach, breaking it down into smaller sprints
with specific goals and objectives. At the end of each sprint, progress was reviewed, and
the plan was adjusted based on the supervisors’ feedback. This approach allows for
flexibility and adaptation to changes, ensuring the data gathered is relevant, timely, and
accurate. Each sprint concerned a site being scraped or a dataset being analysed, with
lessons learned implemented in the scraper and NLP models for future iterations.[44]

That isn’t to say work was conducted sequentially. While a sprint with the goal of
setting up the scraper for one site was completed, concurrently, the scraper was set up
for another site, and the same approach was taken for the training of NLP models.

Although the Agile methodology has many benefits, such as increased flexibility and
faster time-to-market, it is important to acknowledge its limitations. Harleen K. Flora
et al.[45] stated that one of the main drawbacks of Agile is that the constant changing
of requirements can lead to never-ending projects and a lack of predictability, making
it difficult to establish a clear vision for the final product and manage schedule, budget,
and scope. For instance, the target data for selected forums may change as different
analysis approaches are taken, requiring extensive rewriting and rerunning of the entire
scraper for each site. To counteract this, when creating the scraper, it was set up to
gather as much visible data as possible, regardless of if it may currently be of interest.
This may include info such as awards granted to the user or who most frequently visits
the user’s page.

Additionally, as Agile requires minimal documentation, it can also make it challeng-
ing for new developers to understand the software’s development process, as the internal
design changes frequently based on changing requirements after every iteration. This
can result in a lack of detailed documentation of design and implementation, making it
difficult for new developers to pick up where the previous team members left off. To bat-
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tle this, Jupyter Notebooks[46] were utilised, providing a clear, interactive description
of each step in running both the scraper and the NLP pipeline.

3.2 Selection of Target Forums
The project’s initial stage will involve a comprehensive literature review and a thorough
investigation of online hacking forums to identify the unlawful hacking forums operating
on the clear web. The chosen forums must reflect the current state of these activities
and be selected based on factors such as the nature of illicit goods or services being
offered, the forum’s magnitude, and its general popularity within the online community.

Locating these forums and forums can be challenging and potentially risky due to
their covert nature. Hacking-related forums, such as Reddit’s /r/hacking[47] or /r/Black-
HatHackers[48], are common places to find links to these forums. Once a forum has been
found, it must be examined in more detail by creating an account, browsing available
goods and services, and potentially interacting with other users.

However, it is crucial to approach this process with care and ethical considerations,
as the potential harm and legal implications of engaging with illicit forums must be
considered. Any data collected must be used confidentially and appropriately while
maintaining transparency in research practices. These considerations will be elaborated
upon in Section 3.8.

Security precautions are essential to ensure the safety of the investigator and the
integrity of the investigation. Therefore, to effectively ensure the anonymity of the
researcher, the following precautions were taken:

• A Virtual Private Network (VPN) was used to obscure the investigator’s IP address
and location

• A secure (Brave[49]) was used to ensure the possibility of browser fingerprinting
and drive-by downloads were limited

• Utilised devices were regularly backed up

• The anti-virus software on the utilised devices was kept up to date

After extensive research taking the aforementioned approaches, the sites investigated
were boiled down to Breached.vc, Sinister.ly, Hackforums.net and Leakzone.net,
given their popularity and size as described by Yuval Shini[50], and the Feedspot
Media Database Team.[51] Although there were other notable contenders such as
xss.is[52] or mpgh.net[53] these were excluded from the selection due to language barriers
and a lack of hacking focus, respectively The succeeding subsections will provide a brief
description of each of the chosen sites.

https://www.reddit.com/r/hacking/
https://www.reddit.com/r/BlackHatHackers/
https://www.reddit.com/r/BlackHatHackers/
https://breached.vc
https://sinister.ly
https://hackforums.net
https://leakzone.net
https://xss.is/
https://mpgh.net/
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3.2.1 Breached.vc
Breached.vc or BreachForums, is a forum containing anything from doxing and mal-
ware to cracked software and database leaks. The site contains over 964K posts, 47K
threads and 337K members[54] as of 19/03/2023 and has been noted as the successor to
the infamous RaidForums.[55]. A screenshot of some of the threads found on breached, re-
lated to software tools, can be seen in figure Figure 3.1. As seen, the listings commonly
concern cracked software, in this case Nessus[56] (a professional vulnerability scanner).

Figure 3.1: Software threads subforum on Breached.vc (Source: [54])

3.2.1.1 The FBI Intervenes
On the 15th of March 2023, the FBI and Department of Health and Human Services
Office of Inspector General (HHS-OIG) conducted a disruption operation that caused
BreachForums to go offline. In the process, they arrested the alleged leading site operator
Conor Brian Fitzpatrick, a 20-year-old from New York. Fitzpatrick is now charged
with conspiracy to commit access device fraud and facing up to five years in prison if
convicted.[57]

The takedown of a site that provided illegally obtained datasets with sensitive in-
formation is a significant achievement for law enforcement. However, it has limited the
output of the project, as the scraper’s initial design was based on BreachForums, making
a large part of the work in building the scraper unnecessary. Nevertheless, this was not
a total loss since the development of bypassing anti-scraping measures, iterating over
the site structure, and inducing rate-limiting and IP rotation was established, which
could be used for scraping other websites in the future. Unfortunately, BreachForums
was seized before the scraper managed to scrape any usable dataset. The remaining
data mostly consisted of links and the number of threads in subforums, which while still

https://breached.vc


3.2 Selection of Target Forums 18

useful is not sufficient to provide a comprehensive understanding of the forum’s activi-
ties. As a result, this dataset was not included in any NLP models and was not used
in the analysis. Nonetheless, the development conducted during this project related to
BreachForums will still be discussed, as it was still an important part of the project’s
progression.

3.2.2 Sinister.ly
Sinister.ly is a forum for discussing topics related to hacking, cracking, and cryp-
tocurrency. With over 1.1M posts, 153K threads and 190K users as of 30/03/2023[58],
it allows for sharing of cracked combo lists, tutorials, hacking solutions, and configura-
tions. The website was created in 2014 and also has sections related to sales of malware,
hacking tools or other sinister services as depicted in Figure 3.2.

Figure 3.2: Accounts, software and services sold on Sinister.ly (Source: [58])

From the figure, it is clear that the listings found on the site are quite diverse, ranging
from account sales to combo lists as well as hacking (omgo.pro) and cryptocurrency
software.

https://sinister.ly
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3.2.3 Hackforums.net
Hackforums.net is a long-standing and extensive community of hackers that can be
easily accessed through the surface web. The forum grew in popularity after the release
of the Mirai botnet source code on the site and is considered one of the larger hack-
ing communities still ongoing.[3] As of 09/05/2023, it holds 5.4M members, 62M posts
and 6.3M threads[59] and provides various services as well as hacking or leaking related
products as depicted on Figure 3.3.

Figure 3.3: Malware and accounts sold on Hackforums.net (Source: [59])

As with the other sites, it can be seen that the selection of listings is quite broad, as
they can concern anything from the sharing or takedown of accounts to obtaining shells
on servers.

https://hackforums.net
https://hackforums.net
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3.2.4 Cracked.io
Cracked.io is a community forum that provides cracking tutorials, tools, and leaks,
while also functioning as a distribution channel for various cracked software and malware.
The site received over 5.4 million requests in March 2023, proving its popularity and
mainly receives visitors from the US, Germany and Spain.[60] As of 09/05/2023 it holds
25M posts, 845K threads and 3.76M users[61] and provides products and services as the
ones seen in Figure 3.4,

Figure 3.4: Malware and accounts sold on Cracked.io (Source: [61])

In contrast to the other sites, it can be seen that Cracked.io has listings related
to capturing card details (carding) as well as offering web hosting and other hacking
services.

3.2.5 Leakzone.net
Leakzone.net is a hacking forum with a specific focus on leaking & cracking and, as
of 09/05/2023, consists of 35K threads, 216K posts and 78K members.[62] As seen on
Figure 3.5, the selection of items and services being sold on Leakzone.net is quite broad
and quite similar to the other chosen sites.

https://cracked.io
https://cracked.io
https://cracked.io
https://leakzone.net
https://leakzone.net
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Figure 3.5: Malware and accounts sold on Leakzone.net (Source: [62])

The figure confirms Leakzone.net’s dedication to the sales of leaked accounts, as
opposed to hacking tools.

3.3 Data Collection
Once the target forums had been identified, the next step was to collect data from these
sites. This involved web scraping techniques to extract information such as the vendor
names, the type of goods or services being sold and the prices. A web scraping tool was
created in Python with the packages described in Section 2.1.3 to extract the relevant
data from the HTML source code of the forums. The developed tool was able to run
on standard hardware, and the data collected was converted to a structured format for
further analysis. A more detailed explanation of the development of this tool can be
found in Section 7.1.

3.4 Data Storage
The data was stored locally in a database on the system that collected and extracted it,
which will be elaborated upon in Section 7.2. After being provided to the university, the

https://leakzone.net
https://leakzone.net
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data will be erased from the author’s system within three months of project completion,
no later than August 22, 2023. The university will be free to maintain the data, and it
will only be accessible upon request, subject to their terms.

3.5 Data Cleaning
Once the data has been collected, it will be necessary to clean and pre-process the
data to ensure that it is in a format that can be easily analysed. This will involve
removing any irrelevant information, correcting erroneous data, and transforming the
data into a consistent format. In this project, the data is comprised of raw text, and
to effectively filter out irrelevant information and group similar data together, various
NLP techniques such as Bulk Labelling (BL) and Text Classification (TC) will be utilised,
alongside dimensionality reduction, to cluster similar data together. The implementation
of these techniques will be described in Section 7.4.

3.6 Data Analysis
The next step will be to analyse the data collected from the illicit forums. This will entail
the use of descriptive statistical techniques to uncover discernible patterns and trends
within the data. Specifically, these techniques will be leveraged to visually represent the
information extracted from the text data, thereby offering a comprehensive overview of
the user base and the scale of the forums. The extracted information will additionally
allow for a comprehensive understanding of the types of malware or other digital services
offered on clear web illicit forums. The insights obtained via this information will be
valuable for both law enforcement agencies and researchers concerned with the unlawful
forums found on the internet. Not only would it assist law enforcement in developing
effective enforcement strategies, but it would also allow researchers to better comprehend
the inner workings of illicit forums on the clear web.

3.7 Machine Learning Models
To ensure the data cleaning, as well as information extraction, is accurate, supervised
machine learning models based on pre-trained LLMs will be developed from manually
annotated segments of the raw data. The pre-trained models chosen will be based on the
current state-of-the-art LLMs available at the time of writing (10/09/2023), as described
in Section 2.3.2. The models developed will consist of TC models for data segmentation
and categorisation and an NER model for extracting price information. These combined
techniques will allow for efficient and accurate extraction of insights from the raw text
data.



3.8 Ethical Issues 23

3.8 Ethical Issues
Web scraping on illicit forums raises several ethical issues, as it involves collecting and
using data from unauthorised sources without proper consent or permission. One of
these issues is the violation of privacy. While illegal forums often limit the amount of
sensitive and personal information present for an individual, they still host data that can
help infer the identity of both buyers and sellers, as well as what they buy or sell, similar
to how third-party cookies are used to identify individuals. Additionally, users across
forums were cross-referenced during the analysis. This action was performed as the risk
of identifying the users’ identities solely based on their usernames was deemed low by
the author. While the identification of criminal individuals may excite law enforcement,
it is not the goal for researchers to infringe on individuals’ privacy. Care will be taken to
ensure that the methods used for data collection and analysis do not interfere with the
normal functioning of the forum or compromise the security of the individuals involved,
despite the illegal actions that may be conducted on these sites. As a researcher, the
goal is simply to understand the inner workings of these forums.

3.8.1 Availability and Scraped Data
Although web scraping is not inherently illegal, it may be perceived as unethical and
potentially unlawful. However, the research conducted in this thesis is confined to gath-
ering information that is already accessible to the general public through the navigation
of the selected illicit forums. This information includes site structure, raw thread text
data, posting date, and user information such as username and date joined. Since this
information is publicly available, its study is unlikely to cause harm and instead may
facilitate scientific progress.[63] Furthermore, while the scraping system does run in a
non-headless mode, meaning the entire page to be scraped, including images, is loaded,
the system does not store these images. Simply their links, hence disallowing sensitive
information encoded in images to be stored.

Moreover, rate-limiting is enabled, both to reduce the risk of the system being banned
by the server as well as fostering equity across the network, i.e. limiting the impact on
the availability of the crawled sites. In practice, this meant a request rate of no more
than one request every 5 seconds, or 0.2 requests/sec. Considering that a machine with
a basic Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, which is not considered a high-
end server CPU by current standards, can handle about 100 requests per second[64], the
scraping system is not likely to limit the availability of the illicit forums.

Additionally, for the system to operate effectively and have access to the data of
interest on the different sites, premium accounts were purchased on three of the sites:
Cracked.io, Leakzone.net and Sinister.ly. While monetarily contributing to these services
is ethically dubious, it was deemed necessary to extract interesting data for analysis. The
feeble amount each of these sites was given for this access (20€, 15£ and 15$ respectively)
is quite low, and hence the contribution it brings to the illegal activities they may conduct
is considered quite limited.

https://cracked.io
https://leakzone.net
https://sinister.ly
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3.8.2 Risks to The Researcher
Engaging in web scraping activities on illegal forums may potentially infringe upon
intellectual property rights, given that these online platforms are notorious for trad-
ing counterfeit merchandise, pirated content, and other unlawful goods that are safe-
guarded by copyright and trademark laws. Although this content is seldom provided
free of charge, sellers commonly furnish samples to entice buyers, as illustrated in Fig-
ure 3.6. Nonetheless, scraping such samples can result in the researcher possessing
trademarked, copyrighted, and other illicit items, constituting a violation of intellectual
property rights.

Figure 3.6: A sample being presented in a listing offering a Netflix gift card generator
(Source: [65])

As the custodian of this data, the researcher has a legal obligation to provide it as
potential evidence in legal proceedings.[66] However, in doing so, it is the researcher’s
responsibility to ensure that the data is not stripped of its identifiability, as the de-
identification of data without lawful justification is widely recognized as a criminal of-
fence under the privacy and data protection laws of numerous institutions and countries,
such as the European Union and the United States[67]. The degree of sanctions levied on
violators of this law may differ based on the gravity of the offence and the legal frame-
work of each jurisdiction. However, maximum penalties for such violations may reach up
to 20 years imprisonment or more.[68] Steps are therefore taken to ensure that the data
collected for this thesis is not immediately deleted, and as mentioned in Section 3.4,
the data will responsibly be handed over to the university for any future use, processing
or possible legal proceedings.



4
Related Works

The proliferation of the internet and e-commerce has led to the growth of illicit forums
that engage in illegal activities such as the sale of malware, DDoS attacks and other
criminal digital goods.[69] Various studies have been conducted to assist researchers in
understanding the operations of these forums and their impact on society. In this sec-
tion, a comprehensive overview of the literature on web scraping, illicit forums, and the
analysis of their data will be presented. In doing so their key contributions and findings
will be examined to shed light on the current state of knowledge.

4.1 Illicit Forums & Web Scraping
While not all content or items posted on underground forums are necessarily illegal, their
source or purpose may be questionable. Examples of this could be sales of Amazon gift
cards or the selling of illegally obtained digital goods such as unique items in Massively
Multiplayer Online (MMO) games. The analysis of these forums is commonly conducted
by developing a Web scraper.

Web scraping is a common research topic and has produced crawlers for web forums
such as iRobot by Rui Cai et al.[70], FoCUS by Jiang, Jingtian et al.[71] and Vigi4Med
by Audeh, Bissan et al.[72] These crawlers, however, are mostly focused on scraping
general online forums, that do not necessarily employ anti-crawling techniques. Due to
the illicit nature of the forums that are to be investigated in this thesis, a crawler that
can actively combat anti-scraping techniques must be developed.

These anti-scraping techniques, as described by Alkhatib, Bassel et al.[73] encom-
pass dealing with login functionality, bypassing CAPTCHAS and gaining privileged
access via registration. In some cases, the website administrators even incorporate func-
tionality that disables inactive accounts or accounts with barely any visible behaviour
on the site as well as accounts that display any form of suspicious (non-human) be-
haviour.[73] For the scraper developed in this thesis, the techniques for scraping data on
the sites will be a combination of the techniques employed byAlkhatib[73]. I.e. HTML
Parsing, DOM parsing and Xpath traversing, seeing as these generally work quite well
at extracting specific data on a site. Additionally, several measures will be taken to
efficiently handle anti-scraping techniques employed by the forums. These techniques
will be elaborated upon in Section 4.1.2.
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4.1.1 Dark Web Forums
Many of the illicit forums present today are located on the so-called Dark Web, only
accessible via The Onion Router (TOR) protocol. Online anonymous markets, which
started as mainly drug-oriented markets in 2011, have become a significant part of the
cybercrime world. Their supply of digital goods, both in quantity and diversity, has
steadily increased over the years, and a single top-tier market can generate over 200,000
US dollars daily, as found by van Wegberg.[74] The illegal products and services offered
on these markets range from physical goods like passports to digital goods like stolen
credit cards or malware packages. These markets are used not only for retail transactions
(e.g., small drug quantities or a few compromised Netflix accounts) but also for wholesale
transactions (e.g., bulk drug sales or large databases of compromised email accounts).[74]

Many previous studies were conducted on the dark web market Silk Road, the first
cryptomarket that appeared in 2011, which offered both business-to-customers (B2C)
and business-to-business (B2B) transactions. Investigations by Broséus J. et al.[12]

showed that while there were over 1000 vendors active with annual sales reaching almost
90 million USD, the site was seized by law enforcement after just two years in 2013, as
given by Buskirk, Joe et al.[75], which is often the case with unlawful online forums.
As stated by the US Department of Justice[76] Silk roads successor Alpha Bay also
had a modest time to live, being spun up in December 2014 and suffering a similar fate
when taken down in 2017.

This proves to show that these forums are of ever-changing nature and research
results in the field are hence short-lived. In other words, despite the vast amount of
studies on illicit forums (24400 as of 12/02/2023 on Google Scholar), continued research
is required to accurately follow the development and inner functions of these forums, as
well as understand the scale at which they function.

4.1.2 Clear Web Forums
As described in Section 4.1.1 many infamous hacking forums are hosted on the dark
web. However, the aim of this study is to investigate forums on the clear web, though
with a more recent state and expanded palette of forums.

Alice Hutchings et al.[3] developed Crimebot for automatically collecting data
from online clear web forums and analysing it for useful insights. Each of these resulted
in a dataset that, when analysed, provided a comprehensive overview of the products
sold on these forums. Crimebot actively attempted to evade the anti-scraping techniques
found on illicit forums. Specifically, it was developed to manage session cookies obtained
from previous registrations via its session management module to circumvent repetitive
CAPTCHA solving to access privileged information reserved for registered users. Essen-
tially, a non-headless browser is opened from which a human operative can solve the
CAPTCHA and log in, allowing the Crimebot to browse and scrape data without being
apprehended by a login wall.

Additionally, CrimeBot was developed for modularity, making it easy to add ad-
ditional scrapers for different web toolkits or custom sites. These modules are then
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combined with a general approach to displaying human behaviour, such as varying nav-
igation times and patterns, changing HTTP headers to resemble non-headless browsers
and limiting the crawling time to mimic a human browsing session.[3]

The scraper developed in this thesis will employ similar functionality as Crimebot,
with the difference being the added functionality of handling sites, not investigated
by Alice Hutchings et al.[3] such as Sinister.ly, Cracked.io and Leakzone.net.
Additionally, the scraper developed in this thesis will also be able to bypass certain
CAPTCHAs, specifically hCAPTCHAs, automatically.

4.2 Analysing Forum Data
At scale, NLP and ML methods are commonly used to analyse forums. With these,
intent can be inferred from messages, and posts can be related to transactions, products
and pricing, which, when combined, can help identify the supply chain of products on
online forums as described by Anh V. Vu et al.[4] Comparing the work of this thesis
with previous efforts, it is clear that there is little research conducted on the digital
products found on these forums. In the following subsections, current work analysing
unstructured text data will be outlined.

4.2.1 Topic Modelling
A common approach when analysing unstructured text data is to use Topic Modelling
(TM). TM is an unsupervised learning method used to identify the main topics or themes
present in a collection of text data. Middleton, Stuart E[77] utilised this approach to
cluster extracted information from online forums related to illegal trades of endangered
plant species. The model extracted this data via a set of predefined search terms, in this
case, the plant species names. For the work of this thesis, no specific terms are defined
as a term, such as malware is an umbrella term. Each specific piece of malware usually
has custom names completely unrelated to the malware term, such as Agent Tesla or
NanoCore.[78] Conversely, this study will adopt a targeted methodology involving manual
labelling of a subset of the data and the development of customised models for the
categorisation of thread types, identification of sales-oriented threads, and determination
of the corresponding product pricing. This is done to ensure the labelled data is accurate
and its subsequent analysis is indicative of the true nature of the dataset.

4.2.2 POS Tagging
The goal of web scraping projects is to extract information about actors, products, prices,
and other relevant details found on a site. In order to perform this extraction effectively,
POS tagging is often utilised. With POS tagging, words are categorised into their
respective parts of speech, such as nouns, verbs, adjectives, and adverbs. Utilising this
method, it becomes possible to identify which words are most relevant to the extraction

https://sinister.ly
https://cracked.io
https://leakzone.net
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process. Pastrana, Sergio et al.[79] performed POS tagging to extract nouns from
text to help classify actors based on their main topics of conversation. Similarly, in
this project, POS tagging is employed to extract nouns, as nouns in this context often
refer to the key actors, products, and other entities involved in such forums. However
Pastrana, Sergio et al.[79] then fed these POS tags into a topic analysis model, where
in this case, the POS tags will be used directly for analysis, via word clouds, to grant
an overview of the main topics discussed on the investigated forums. Furthermore, the
extracted POS tags will be used for smart labelling of data.

4.2.3 Named Entity Recognition
NER is an essential NLP task that involves identifying and categorising named entities,
such as people, locations, and organisations, in textual data and significantly simplifies
the process of information extraction from unstructured textual data. Eduardo Fi-
dalgo et al.[80] employed this technique to identify categories of named entities such
as location, person and corporation in onion domains on the Tor network. Similar ap-
proaches will be taken in this thesis, with a specific focus on extracting Monetary entities,
i.e. at what price and in which quantities are products being sold on the illicit forums
being investigated.

4.2.4 Large Language Models
The development of LLMs has been one of the most significant recent advances in NLP.
LLMs are neural network-based language models that can learn to represent text data
in a high-dimensional vector space, allowing them to perform a range of NLP tasks, such
as language generation, text classification, and machine translation. The introduction
of LLMs has revolutionised the field of NLP, enabling researchers to achieve state-of-
the-art results on many NLP benchmarks. Today LLMs are available pre-trained on
a large corpus of data, making the task of creating models for a specific task much
easier as done by Dogu Tan Araci.[81] Araci utilised the BERT LLM, as described in
Section 2.3.2.1, to fine-tune a model for tackling NLP tasks in the financial domain,
such as analysing sentiment from financial text.

This project will take a similar approach to Araci[81] to finetune a state-of-the-art
LLM. However, this work will focus on creating TC and NER NLP models for classifying
forum thread data and extracting prices for items potentially being sold in the thread,
respectively.



5
Requirements

The purpose of this chapter is to outline the requirements for developing the web scraper
to extract data from the chosen illicit clear web forums, as well as the defining a set
of performance requirements for the LLM models used for information extraction. Sec-
tion 5.1 will specify the requirements of the former, while Section 5.2 will provide the
performance requirements of the latter.

5.1 Web Scraping Requirements
For the development of an effective web scraper for extracting data from the chosen illicit
clear web forums, a set of functional and non-functional requirements must be defined.
Functional Requirements (FR), as described by Martin Glinz[82], are requirements that
define functionalities in the system, while Non-Functional Requirements (NFR), concern
performance, attributes or constraints. For the web scraper to function and deliver reli-
able data for the analysis while still ensuring the scraped forum is not overloaded, the
following requirements should be met:

Functional Requirements

1. Robustness: The web scraper should be robust and able to handle site structures
and layouts of each of the chosen forums as well as handle any obstructions and
request timeouts.

2. Data quality: The web scraper should ensure high-quality data by performing
data validation and cleansing during the scraping process. This can include tasks
such as removing emojis, unsupported Unicode characters, or irrelevant ASCII art.
This will reduce the likelihood of errors or inconsistencies in the extracted data.

3. Data Parsing: After obtaining a specific page on a forum’s HTML structure,
the web scraper must be capable of effectively parsing the Document Object Model
(DOM) structure for each of the selected forums to extract any valuable data.

4. Data storage: The web scraper should store the extracted data in a structured
format that is easy to manipulate and analyse using data analysis tools in Python.

5. IP Rotation: To effectively counteract IP banning, the scraper should be able to
change IP address, either per request or per a given time interval.
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6. Bypassing Anti-scraping techniques: The scraper should be able to bypass
any anti-scraping techniques employed by each of the respective forums. This
includes IP banning (see above), DDoS blocks and CAPTCHA blockades. Should
the scraper be encountered by an (h)CAPTCHA, the system should automatically
solve the CAPTCHA, thereby bypassing it and granting the scraper access to the
forum.

Non-Functional Requirements

1. Scalability: The web scraper should be scalable and able to handle large volumes
of data efficiently. This will ensure that the scraper can extract data from multiple
forums and store it in a structured format for subsequent analysis.

2. Efficiency: The web scraper should function as efficiently as possible, utilising
minimal computational resources. As such the scraper should be to run on con-
sumer hardware, as well as run for several sites at once in parallel.

3. Rate Limiting: To ensure the scraper does not affect the availability of the
forums while scraping, rate limiting must be induced, ensuring a balance between
speed and fairness over the network.

How each of these requirements will be addressed will be covered in Sections 7.1, 7.2.3
and 7.3 respectively.

5.2 NLP and LLM Performance Requirements
When the data has been collected, it has to be subsequently passed through an NLP
pipeline for analysis. This will ensure the data is categorised, and any data of interest
in the unstructured text data will be gathered for analysis. To fine-tune the custom
state-of-the-art LLM models for each of the NLP tasks used for information extraction,
the following requirements must be enforced:

Functional Requirements

1. Input Flexibility: The fine-tuned LLM models must be able to handle text
inputs of any length and, in any case, as well as being able to process all types of
characters, including special characters.

Non-Functional Requirements

1. High Performance: The fine-tuned LLM models should provide accurate results
in the task they are fine-tuned for. Hence they should achieve a reasonable F1 score.
This metric was selected for its effectiveness in comparing models and depicting a
fair score with unbalanced datasets as described in Section 2.3.4. Demanding a
strong F1-Score will ensure that the extracted data is reliable and consistent for
the subsequent data analysis.
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2. Efficiency: The fine-tuned LLM models should be efficient in terms of both train-
ing and prediction time. This will ensure that the models can be trained and used
in a timely and cost-effective manner.



6
Design

This chapter provides an overview of the system architecture, which, as previously stated,
is composed of two main components: the web scraper and the NLP pipeline. The web
scraper is responsible for collecting and parsing data from illicit clear web forums, while
the NLP pipeline processes the textual data to extract relevant features for analysis,
enabling insights into the products, services, and users on the forums.

Section 6.1 includes an overview of the scraper architecture, including its different
components and how they are integrated to achieve the project objective. Additionally,
Section 6.2 outlines the hierarchy of the gathered data as well as how it is stored and
connected in the database. Finally, in Section 6.3 an overview of the NLP pipeline
design is given, highlighting the various techniques used to extract features from the
textual data, including connecting the various models used in the pipeline.

6.1 Web Scraper Design
The web scraper runs off a plethora of functions divided into the following modules:

1. Scraping functions (scraping.py)

2. Parsing/extraction functions subdivided in:

a) Forum parsing/extraction functions (forum_extraction.py)
b) Thread parsing/extraction functions (thread_extraction.py)
c) User parsing/extraction functions (user_extraction.py)

3. Database functions (db_func.py)

4. Utility functions (utils.py)

The web scraper uses the modules mostly in the order presented above, with the excep-
tion of the utility functions that are used throughout each module. A visual representa-
tion of the scrapers flow can be found in the sequence diagram in Figure 6.1.
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Figure 6.1: Sequence diagram of the flow the scraper operates by when scraping the
illicit clear web forums (Generated with PlantUML[83])

Following the flow illustrated in Figure 6.1 the scraper begins by utilising functions
from the scraping.py module to navigate to the home page. Additionally, it performs
a thorough examination to confirm whether it has effectively circumvented any anti-
scraping measures implemented by the website, including DDoS protection, hCAPTCHA
blockades, and IP bans. The methods for how the scraper will achieve this is described
in more detail in Section 7.3. Once it has successfully bypassed these techniques,
the scraper uses functions from the forum_extraction.py module to obtain the site
structure.

After obtaining the site structure, the scraper begins a loop iterating over the sub-
forums on the site using functions from the same module. A subforum in this context
would for example be a forum Java contained within the parent forum Software. Within
each iteration, the scraper gathers links to all the threads within the subforum, provided
the subforum is not already present in the database. The scraper will then iterate over
each thread link, calling functions from the thread_extraction.py module to check if
the thread already exists in the database, and navigates to the thread link if it does not.
If a new thread is encountered a database entry is created for each of its posts (thread
responses), while linking the post to the thread in the database.

Additionally, the scraper initiates another loop over the links to the users posting in
the thread. In this process, the user_extraction.py module is invoked to navigate to
the profile of each user and retrieve their information, should the user not already be
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present in the database. Subsequently, every user is appropriately linked in the database
to the thread and/or posts they have created.

Once all threads, their posts and their associated users have been extracted, the IDs
of the threads and posts in a given subforum are returned to the forum_extraction.py
module. The generation of these IDs is based on the extracted data and is explained in
further detail in Section 7.2.1. The forum_extraction.py module then compiles the
thread IDs and their post IDs into a dictionary, which subsequently is converted into a
query for the creation of the subforum data entry in the database. This process repeats
until all subforums have been scraped and their data have been saved in the database.

In addition to its main functions, the scraper can also be given inputs to allow
it to start scraping from a specific subforum, thread, or user page, depending on the
desired starting point. For the purposes of generating the datasets used in this thesis,
the scraper was given the input starting point of the illicit forums’ main Marketplace
page, i.e. the subforum where sales and requests take place. The implementation of the
various modules and their inner workings will be discussed in Chapter 7.

6.2 Database Design
The data acquired by the web scraper exhibits a structural resemblance to that of a graph
database. Specifically, the type of graph database commonly used for social networks.
In particular, users can initiate threads, which can encompass posts authored by other
users. Additionally, threads are associated with specific forums or subforums, which can,
in turn, be subforums of other forums. This topology is visually represented in Figure
Figure 6.2, providing a concise top-down depiction of the hierarchical relationship
between sites, forums, subforums, threads, posts and users.

Figure 6.2: Topology of the forums investigated
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To effectively store this information, an interconnected database schema must be gen-
erated. Each of the aforementioned entities is therefore interconnected in the database
as described before. The connections between each of the entities in the database are
presented in Figure 6.3. Note certain attributes for the various objects are left out,
indicated by the [...], for simplification.

Figure 6.3: ER diagram granting an overview of the database structure

It should be noted that as indicated in Chapter 1, only data from 2023 was gathered,
simply as anything more was not considered achievable within the time frame of the
project. As such, the database did not require any extensive capabilities in terms of
handling large datasets but should simply be well-structured and efficient.
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6.3 NLP Pipeline Design
The extracted data from the scraper is further processed through an NLP pipeline, which
is comprised of two text classifiers and an NER classifier, before being exported to a
final dataset for analysis.

The first text classifier is designed to determine if a given thread (and its posts)
concerns a Sale, an Request or is simply a Discussion. I.e. what Intent the text has.
The classifier is based on the latest developments in LLMs to ensure efficiency as well
as accuracy. The second text classifier is designed to identify which category the specific
thread belongs to. I.e. is it related to malware, database leaks, cracked software etc.
Specifically, it will classify the text into one of the following categories:

• Malware

• Cracking

• Software

• Account/Database/Combolist

• Ban-Service

• Gift cards

• Gaming-cheats

• Web-hosting

• Cryptocurrency

• Botnet

• Bot

• Money-earning-guide

Hereof, Bot refers to automation bots such as scrapers for extracting emails for
spamming, while Botnet refers to hacked devices used in DDoS campaigns. Combo
lists are a list of usernames/emails and passwords. Malware functions as an umbrella
term for viruses, ransomware etc. while Cracking denotes the cracking of software to
bypass license restrictions. Ban-services are services used for actively banning someone
else’s account or unbanning one’s own account on various platforms. Gaming-cheats
specify hacks used in games to give the player an advantage over others. Software, like
Malware, is an umbrella term for leaked software, while Web-hosting refers to services
such as proxies, website hosting or cloud computing resources. Gift cards are, as the
name implies, the sale of digital gift cards (e.g. Amazon gift cards), which are often
used for money laundering.[84] Cryptocurrency simply refers to any threads related to
crypto-topics in any conceivable way. Finally, Money-earning-guide denotes the sale of
methods that can be used to Make Money Fast online. The choice of these categories
is based on preliminary investigations of the forums threads and is described further
in Section 7.4.1. The model is similar to the first in the sense that it is based on a
state-of-the-art LLM, though fine-tuned on a different dataset.

The NER classifier is designed to identify and extract the prices of the product being
sold. Should the thread, for example, has been classified by the first text classifier as
Request, this would be the price a certain product is requested at. Similarly, for a Sale
thread, this would be the price the product in the thread is sold at. Threads marked as
Discussion by the first classifier are passed to the second for categorisation. However,
they are not passed to the NER classifier, as there is nothing being sold or requested in
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the thread, and hence there is nothing for the NER classifier to find. As with the other
classifiers, this also utilises a pre-trained LLM model that is fine-tuned for the specific
task. Each of the classifiers is given an input consisting of the combination of the main
thread text, as well as its posts. The overall pipeline is visualised in Figure 6.4.

Figure 6.4: Flow diagram for the NLP pipeline (Generated with Lucid[85]. Icon sources:
[86, 87, 88, 89, 90])

After passing through the text and NER classifiers, the extracted data is exported
to a final dataset for analysis. This dataset includes the original input text data, the
output of the two text classifiers, and the NER annotations. This is then used for further
analysis, such as identifying product categories and their prices. The development and
implementation of this NLP pipeline will be described in further detail in Section 7.4.



7
Implementation

This chapter provides a comprehensive overview of the technical aspects involved in de-
veloping a web scraper. In Section 7.1 an in-depth discussion of the choice of program-
ming language, libraries, and frameworks used in the development process of the scraper
is presented along with the inner workings of the scraper. Furthermore, in Section 7.2,
the methods used for implementing data storage is discussed. Moreover, Section 7.4
covers the process of developing the NLP pipeline. It describes the approach taken to
generate a labelled dataset for training the NLP models and explains the rationale be-
hind the choice of pre-trained LLMs for developing the different models. Additionally,
the chapter presents the performance of the developed models and compares them to
other state-of-the-art models in the field.

7.1 Scraping
As outlined in Section 2.1, there exists a variety of tools and techniques that can be
utilised for web scraping. Although the illicit marketplaces under investigation, employ
server-side rendering Beautiful Soup and REST APIs did not prove sufficient for the task.
Dynamic web scraping techniques, utilising Selenium, proved to be more effective as this
allowed for circumventing the anti-scraping measures implemented by the marketplaces,
more effortlessly. The succeeding subsections will provide a comprehensive overview of
the scraper’s general structure and workflow, as defined in section Section 6.1. Ad-
ditionally, it will detail how the scraper was modified to handle all of the investigated
forums.

7.1.1 Illicit Forum Backend: MyBB
All of the investigated forums utilise the open-source MyBB[91] forum software to run
their site. As it is open-source, it is quite frequently seen used for hosting these
types of marketplaces, with similar forums such as Nulled.to and Mpgh.net like-
wise using this software for their sites. The structure of the investigated forums is,
therefore, fortunately quite consistent. Specifically, whenever a page concerns a fo-
rum the URL of the site will look like http://breached.vc/Forum-<Forum-name> i.e.
http://breached.vc/Forum-General. Should a forum contain several pages append-
ing ?page=<page_number> will provide the page specified by the page number. This
pagination feature is present on all the investigated forums. The same holds true for the

https://nulled.to
https://mpgh.net
https://breached.vc/Forum-General
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threads where Forum is simply replaced by Threads- followed by the title of the thread.
Finally, each user on the site has their own page that likewise follows the URL scheme,
i.e. consisting of the main site URL + /User-<username>.

The only slight alteration to this structure is for Hackforums.net where forums
have a URL of the type https://hackforums.net/forumdisplay.php?fid=1, with
the fid indicating the forum id. The same accounts for the thread pages where
forumdisplay.php?fid=1 is simply replaced by showthread.php?tid=1 and for user
pages it is replaced by member.php?action=profile&uid=1. Hereof the tid and uid refer
to the thread and user id respectively. Additionally the /User- part of the URL is re-
moved on Cracked.io, leaving just the username (i.e. https://cracked.io/ExactGoat).

The scraper utilises this setup allowing it to run separate actions to extract data
for each of these types of URLs. Specifically, to determine what approach to take, the
scraper simply uses string matching to determine if a specific page is a Forum, Thread or
User page. The strings it matches by are, therefore, /Forum or forumdisplay.php?fid=,
/Thread or showthread.php?tid= and /User or ?action=profile&uid= respectively.
For Cracked.io user pages, it was simply checked that /Thread and /Forum were not in
the URL. In the following subsections, the methods used to extract data for each of the
respective page types are discussed.

7.1.1.1 Forum Pages
A Forum page will generally contain a table wherein each row contains a link to a thread
or a subforum as seen in Figure 7.1.

Figure 7.1: A forum page on a MyBB site (source: https://breached.vc)

As seen the forum can sometimes be paginated. To determine if the forum is pagi-
nated the scraper searches for any Division Element (div) with the CSS class pagination.

https://hackforums.net
https://hackforums.net/forumdisplay.php?fid=1
https://cracked.io
https://cracked.io/ExactGoat
https://cracked.io
https://breached.vc
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Once found, it finds the maximum pagination page number by simply using a regex
expression to find all numbers in this div, and choosing the largest one as seen in List-
ing 7.1.

Listing 7.1: Finding the maximum number in a string with regex expressions
html = BeautifulSoup(driver.page_source)
pagination_div = html.find("div",{"class":"pagination"})
max_page = max([int(n) for n in re.findall('\d+',pagination_div.text)])

Hereof, the driver.page_source is simply the raw HTML of the fetched site stored
in a Selenium WebDriver object.[92] To extract all links (anchor tags) from each pagina-
tion page, the raw HTML is first converted into a BeautifulSoup object, which provides
a convenient interface for parsing HTML documents. The find_all('a') method is
then used to extract all anchor tags, from which the source URL (href value) of each link
is obtained. The process is performed recursively through each pagination page until
reaching the maximum page number or encountering threads older than a specified date
if provided.

As explained in Section 7.1.1, the links to both (sub)forums and threads follow a
consistent structure. Therefore, extracting all links that contain the string thread will
gather the thread links, while links containing forum will gather the (sub)forum links.
In the case of Hackforums.net, the search is modified to include links with the strings
tid and fid in the href attribute to collect the thread and forum links, respectively. After
processing all paginated pages, the relevant data is extracted and stored in a database
entry, following the flow of the scraper described in Section 6.1. This data comprises
forum entities such as the title, number of pages, and links to all its threads. The
complete function running this workflow is presented in Appendix A2.

www.hackforums.net
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7.1.1.2 Thread Pages
After collecting all thread and subforum links of a given forum, the scraper proceeds to
scrape each thread and subforum iteratively. In the case of a thread, the page structure
typically comprises a table, as illustrated in Figure 7.2. Each row in the table represents
a reply to the thread, which, as previously mentioned, is also referred to as a post.

Figure 7.2: A thread page on a MyBB site (source: [58])

As with the forum pages, the thread can be paginated. Should that be the case,
the same approach as described in Section 7.1.1.1 will be taken. Once the paginated
pages have been gathered, each page will be processed by finding the main table on the
page by the div class or div id, depending on the site. The tables on a thread page
are processed by iterating over their rows, which are defined by a list of divs contained
within the table. During the iteration, each post is converted into a row in a Pandas
DataFrame. Since the structure of these tables remains consistent, the data is extracted
directly from each row. As depicted on Figure 7.2 The first row contains the author
of the post as well as the title and the date of posting for the thread. All subsequent
rows represent posts to the thread and are extracted as such. For each post, the uid
of the user who created the post and the post identifier (pid) of the post is extracted
from the metadata of the link to the user and post, respectively. Additionally, the date
of posting, as well as the post content (including any external links or image links), are
extracted by the div that contains them.

Once all posts and pages of a thread have been gathered, an entry is created in the
database for each post and one for the thread itself, with the database IDs of each of
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the posts it contains. Additionally, threads are linked to the forum section they belong
to and are along with the posts it contains related to the user that created them in
the database. I.e. a link between the nodes is created in the database as described in
Section 6.2.

7.1.1.3 User Pages
To relate a thread or post to a specific user, a corresponding user entry must be present
in the database. If it is not, following the flow of the sequence diagram in Figure 6.1,
the page for the relevant user is fetched via inserting the uid gathered from the thread
or post into the URL: https://<domain-name>/.php?action=profile&uid=<uid>. A
user page largely consists of several tables arranged in a grid-like fashion within a div
as displayed in Figure 7.3.

Figure 7.3: A user page on a MyBB site (source: [54])

Similar to the approach used for the forum and thread pages, the container housing
these tables is first extracted, and each table within this container is subsequently pro-
cessed. As the tables on these sites may contain various types of information, the tables
are simply extracted as raw data to a list of DataFrames. Subsequently, the data in each
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of these DataFrames is scanned for specific keywords such as Join Date, Date of Birth,
Reputation etc. Whenever a keyword is encountered during the scanning process, the
associated value is extracted and added to a dictionary. Once all keywords have been
searched for, the dictionary is compiled into a user entry to be stored in the database
and linked to the posts or threads generated in the previous step.

7.2 Data Storage: SurrealDB
As mentioned in the Section 2.2.1, the selection of the database for the project was
based on its ability to model graph-related data while also enabling individual nodes in
the graph to store documents or tables. The chosen SurrealDB database allows each node
in the database to contain information in the form of key-value pairs, such as username,
post date, or text content, stored as documents or tables. Each document/table can
then be interconnected with each other to preserve the relation each scraped entity has
to each other. In the following subsections, the implementation of the database and its
connection to the scraper will be described.

7.2.1 Using SurrealDB in Python
To utilise SurrelDB, their provided Python package[93] was installed and integrated into
the script that runs the scraper. Once the scraper has gathered data, it is sent to the
SurrealDB to be created, ensuring that existing data is not duplicated but updated
with the most up-to-date value. Utilising the aforementioned Python package, a simple
function named create_database_entry was constructed which as the name implies
creates a database entry in the database. The code for the function can be found in
Appendix B1.

When data needs to be stored in the database, and the create_database_entry
function is used, it internally calls the create_with_id function. The create_with_id
function, in turn, uses the SurrealDB Python package’s db.create function to initialise
a Remote Procedure Call (RPC) to the SurrealDB.

Having distinct object types in the database necessitates the creation of different
unique ID values. The function get_unique_id was therefore created for the purpose of
generating a unique SHA256 hash using the Python hashlib package. For user entries,
the hash is derived from the user’s ID, title/rank, and the specific forums they are
associated with. Having this approach guarantees the maintenance of uniqueness among
users within the database, even when data from multiple sites is coalesced. Consequently,
the occurrence of duplicate data is thereby effectively prevented.

For threads, a unique hash is constructed by combining the thread identifier (tid)
with the corresponding author’s user identifier (uid). Posts are likewise assigned a
unique identifier by merging the post identifier (pid) with the respective post author’s
user identifier. Forum entries are identified by a combination of the forum URL and
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title. As with the unique ID generated for users, the other objects’ unique hash is also
based on the main site URL, to ensure uniqueness across sites.

Additionally, the create_with_id function is wrapped in a try/except clause within
the create_database_entry. This approach handles the scenario where the code at-
tempts to create an item in the database with an ID that already exists. If such a sit-
uation occurs, the SurrealDB Python package raises a SurrealPermissionException
indicating that the object already exists. In response, the code performs a comparison
between the timestamps of the new entry and the existing entry and inserts the entry
that was scraped most recently.

7.2.2 SurrealDB Security
The default settings for SurrealDB’s local hosting specify that it will only accept requests
coming from the localhost space (127.0.0.1/32), and the default port is set to 0.0.0.0:8000.
In other words, it will only accept requests coming from the machine it is running on. As
the scraper simply runs on a laptop and saves the data to the SurrealDB locally, setting
up complex (but safer) authentication mechanisms is hence not necessary as the only
device that can make alterations to the database is the laptop itself. Had the project
been expanded to concern more forums, the database might have needed to be set up
on a server with more storage, but given the scale of the websites investigated in this
thesis, the storage capacity of the laptop proved sufficient.
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7.2.3 Handling Special Characters (Unicode / Emojis)
Unfortunately, the SurrealDB RPC client is not configured to escape special Unicode
characters (such as emojis) when making queries to the database. If a special Unicode
character is passed, it simply crashes the database service. Hence these characters had
to be removed with the function found in Listing 7.2.

Listing 7.2: Function for removing emojis and other special Unicode characters
import demoji
import re

def remove_emojies(obj): # Source: https://tinyurl.com/mpfc7kf2
""" Removes all emojis from a string"""
emoji_pattern = re.compile("["

u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
u"\U0001F1F2-\U0001F1F4" # Macau flag
u"\U0001F1E6-\U0001F1FF" # flags
u"\U0001F600-\U0001F64F"
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
u"\U0001f926-\U0001f937"
u"\U0001F1F2"
u"\U0001F1F4"
u"\U0001F620"
u"\u200d"
u"\u2640-\u2642"
"]+", flags=re.UNICODE)

if isinstance(obj,str):
return demoji.replace(emoji_pattern.sub(r'',obj),'').replace('--','

').replace("\"","\'").replace("’","\'").replace("\\","\\\\")
elif isinstance(obj,(list,tuple,set)):

return type(obj)(remove_emojies(elem) for elem in obj)
elif isinstance(obj,dict):

return {remove_emojies(key):remove_emojies(value) for key,value in
obj.items()}

else:
return obj

The function simply uses regular expressions to match any Unicode characters in
specific ranges, mainly the ones concerning emojis. Additionally, when two hyphens (--)
appear together, it also makes the database fail, as when making a call to the database,
an SQL query is performed, and -- in SQL queries are used for commenting out code.
This was therefore replaced with a space. Similar approaches were taken for characters
such as ’ and escape characters like \.
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7.2.4 Handling Large Requests
Some posts on the illicit marketplaces being investigated contain an immense corpus of
text, which unfortunately makes the function making RPC calls to the database fail, as
the payload is too big and it simply times out. In those cases sending a manual CREATE
query string is needed, which surpasses this implementational error in the SurrealDB
Python package. This is achieved with the KeyError clause in the create_with_id
function in Appendix B1 by simply converting the dictionary values to be saved into
one long string of the form CREATE <table>:<id> SET x=1, y=2.

7.3 Surpassing Access Limits
Websites, as previously stated, often implement measures to restrict website scraping, as
it can result in a high load on their servers without providing any benefit to the website
itself. Such measures include blocking IP addresses that make too many requests in
a short period of time or using CAPTCHAs to verify that the requests are made by
humans. However, there are ways to bypass these restrictions and scrape the website’s
data. One approach is to use a proxy server or rotating IP addresses, which makes it
difficult for the website to track the source of the requests. Another method is to use
web scraping frameworks that mimic human browsing behaviour, such as changing the
headers of the requests or adding random delays between requests. For optimal effect,
these measures were combined to avoid being blocked when scraping the illicit forums.
In the following subsections, the steps taken to counter these anti-scraping techniques
are discussed.

7.3.1 Proxies
In order to address the issue of IP blocking, proxies were initially employed as a solution.
Proxies serve as intermediaries that route internet traffic through different IP addresses,
creating the appearance that the traffic originates from those locations. This approach
shares similarities with VPNs (Virtual Private Networks), although it lacks the same
level of security provided by VPNs, as these also encrypt the transmitted data. By
utilising proxies and dynamically changing the IP address for each request, the scraper
successfully circumvented IP blocking measures implemented by the targeted website in
the majority of cases.

However, the free proxies available are often unreliable, slow and heavily used. Perino,
D. et al.[94] found that less than 1% of available free proxies in 2018 provided reliable
performance and 10% of them even exhibited malicious behaviour like ad injection or
TLS interception as well as monitoring traffic to sell to third parties. Additionally, the
IP addresses of free proxy services are often blocked or blacklisted by most websites and
many free proxies do not allow HTTPS connections, meaning the connection is entirely
unencrypted, which in turn could expose the researcher conducting the scraping.[94]
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7.3.2 Successful Solution: VPN IP Rotation
For the sake of security and reliability, the choice therefore turned to VPNs. Although
reliable VPNs are typically not free of charge, they offer a dependable connection that
surpasses the security level provided by proxies. The rationale behind this shift is rooted
in the fact that repeatedly sending a high volume of requests to a website from a single or
a few IP addresses would trigger suspicion in the website’s traffic monitoring system. To
circumvent this a vast amount of IPs, with substantially different geographical locations,
is needed, which while effective is not offered for free.

7.3.2.1 Chosen VPN: NordVPN
Among the available options, NordVPN [95] emerged as the final choice for VPN service
based on several compelling factors. Notably, NordVPN boasts an extensive global
network of over 5500 servers, surpassing the server count offered by most other VPN
providers. Furthermore, NordVPN is also renowned for its robust security measures,
stringent logging policies, impressive connection speeds, and supplementary features
such as split tunnelling and double VPN functionality[96]. These attributes played a
vital role in addressing the challenges outlined in Section 7.3.1 and a basic monthly
subscription to the service was therefore purchased for the scraping task.

Changing the VPN location does however incur performance degradation of the
scraper. Each time a new connection is made, the Python code running the scraper has
to wait until the connection is established successfully. To minimise this, the scraper
was set up to only change the VPN location after a certain amount of time. Initially,
15 min was attempted, as this is roughly the amount of time users spend on average on
social network platforms per visit.[97] However this proved to be inefficient as the scraper
was still being blocked rather often. Several values below 15 min were tried and 5 min
seemed to provide the best balance between speed and avoiding IP blocking. To rotate
IP addresses NordVPN was utilised along with the nordvpn-switcher Python package,
which allows for changing VPN location from a Python script through the code found
in Listing 7.3.

Listing 7.3: Swithcing IP address location with nordvpn_switcher
from nordvpn_switcher import initialize_VPN,rotate_VPN
vpn_settings = initialize_VPN(stored_settings=1)
last_vpn_switch_time = datetime.datetime.now()
rotate_VPN(vpn_settings)

As seen the setup is as simple as initialising the VPN and calling the rotate_VPN
function which will handle changing location, and waiting till the connection is estab-
lished successfully. Should it fail to connect to the first location it will attempt to connect
to another location. When the VPN is initialised using the initialize_VPN function,
the stored_settings flag is set to 1. This flag indicates that the code will search for a
nordvpn-switcher settings file, which is simply a .txt file that contains which operating
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system the code is running on, and a list of locations to connect to. When running the
scraper the global last_vpn_switch_time variable is checked against the current time,
and the IP is rotated if more than 5 min has passed.

7.3.3 Selenium and Undetected Chromedriver
The scraper runs on Selenium and is created with the undetected-chromedriver[23]

Python package, as described in Section 2.1.3.1. Furthermore, the scraper is set to
wait a random amount of time between 5 to 15 seconds between each page it gets to
imitate user behaviour. The code for instantiating the Selenium driver can be found in
Listing 7.4.

Listing 7.4: Instantiating an undectected_chromedriver instance with hCAPTCHA
solving capabilities
# Source: https://github.com/QIN2DIM/hcaptcha-challenger
import nest_asyncio
nest_asyncio.apply()
import hcaptcha_challenger as solver
from urllib.parse import urlparse
url_parsed = urlparse(url_main)
driver = solver.get_challenge_ctx(silence=False, lang="en")
driver.get(url_main)

As seen the driver is firstly initialised from the hcaptcha_challenger Python pack-
age, whose get_challenge_ctx function returns a Selenium driver object from the
undetected_chromedriver package. Subsequently, the relevant site is fetched. The
instantiation of the Selenium driver from the hcaptcha_challenger module, as op-
posed to directly from the undetected_chromedriver package, serves the purpose of
granting the scraper the capabilities to bypass hCAPTCHAs. To detect if the scraper
has been met with an hCAPTCHA the following approach is taken. Firstly, whenever
the scraper navigates to a site it employs a waiting mechanism that delays its execution
for up to 5 minutes, or until the page title is no longer identified as DDoS-Guard. This
is done as certain websites utilise DDoS-Guard[98] to restrict the volume of incoming re-
quests. Should the title of the page no longer be DDoS-Guard after 5 min, it is assumed
the scraper has bypassed the DDoS-Guard security mechanism. This occurred in most
cases.

However, if the scraper remains stuck on the DDoS-Guard page after the des-
ignated time frame, it indicates that the DDoS-Guard system has likely flagged
the scraper as a bot. Consequently, the DDoS-Guard system prompts the scraper
to solve an hCAPTCHA challenge. The scraper then utilises the functions the
hcaptcha-challenger[21] provides, in order to gain access to the site. If these func-
tions fail to solve the hCAPTCHA challenge, the scraper simply refreshes the page,
allowing for a subsequent attempt to solve the hCAPTCHA. This is repeated up to 15
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times before the scraper admits defeat and starts a waiting period of 30 min, before
attempting to scrape from the site again.

Initially, a smaller time frame was utilised however after testing various values it was
found that 30 min commonly un-marked the scraper as a bot, allowing it to proceed to
the site at the next attempt, without being blocked by an hCAPTCHA. Listing 7.5
displays a partial view of the implementation of these hCAPTHCA solving steps. The
complete code for the main function running the the scraper can be found in Appendix
A1.

Listing 7.5: Rotating IP addresses and bypassing CAPTCHAS with the
nordvpn-switcher and hcaphtca_challenger packages
[...]
try:

datetime_now = datetime.datetime.now()
if ((datetime_now - last_vpn_switch_time).total_seconds() /

60.0) > 5 and not is_retry:
rotate_VPN(vpn_settings)
last_vpn_switch_time = datetime.datetime.now()

scrape_time = datetime_now.strftime("%Y-%m-%d %H:%M:%S")
driver.get(request_url)
WebDriverWait(driver, 300).until_not(EC.

title_contains("DDoS-Guard"))
time.sleep(randint(5,15))

[...]
except Exception as e:

try:
h_captcha = driver.find_element(By.ID,"h-captcha")
if h_captcha:

await solve_h_capthca(site=request_url,ctx=driver)
except NoSuchElementException as e2: # no Captcha found on site

[...]
html = BeautifulSoup(driver.page_source)
title = html("title")[0].text
if is_recursive:

return {"scrape_time":scrape_time,"title":
title,"url":request_url,"response":driver.page_source}

else:
return responses

As seen in the listing, in the event that the WebDriverWait produces a
TimeOutException after a waiting period of 5 minutes (300 seconds), the scraper will at-
tempt to locate the hCAPTCHA on the site by its element id: h-captcha. Subsequently
the scraper transfers control to the solve_h_catpcha function to solve the hCAPTCHA
on the illicit forum before proceeding. If the scraper fails to locate the hCAPTCHA ele-
ment, it is assumed that either the scraper is being blocked through other means, or the
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implementation of the DDoS-Guard system has been modified, necessitating a revision
of the code.

7.3.4 Forum Specific Access Restrictions
Some content is unfortunately not available unless you create an account on the illicit
forums and log in as seen in figure Figure 7.4. Additionally, each of the illicit forums
has proprietary rules for what level of access different users have. For instance, specific
forums may mandate a minimum number of posts, a specified membership duration, or
a certain rank before granting access to restricted areas. Some of these restrictions can
be bypassed by purchasing a premium account for the illicit forum. For the sake of the
author’s security and anonymity an anonymous email and VPN service (NordVPN[95]

and Proton mail[99]) were utilised to both directly access the scraped illicit forums as well
as obtain verified accounts for the illicit forums. The following subsections will outline
each of the illicit forums’ proprietary access rules, as well as how they are surpassed.

7.3.5 Access Restrictions: Breached.vc
On Breached.vc quite a large section of the website is available publicly without any
requirements for registration. However when navigating to certain parts of the illicit
forum, such as when attempting to use the search functionality you are met with a
blockade as seen in Figure 7.4

Figure 7.4: Page displayed on Breached.vc when trying to access pages that are re-
stricted to certain users

Additionally, certain threads demand not only that you are logged in to see the
content as seen in Figure 7.5, but also that you reply to the thread before the content
will be visible as displayed in Figure 7.6.

https://breached.vc
https://breached.vc
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Figure 7.5: Thread requiring that the logged-in user replies to the thread before content
will be displayed

Figure 7.6: Thread requiring authentication before content will be displayed

Luckily, by simply creating an account the first issue is resolved. The second obstacle
can be tackled by either having the scraper reply to a thread, to see the content, or
upgrading the account to a VIP account, which allows the user to see thread content
without having to reply to the thread first. For simplification, the latter solution was
used to bypass this restriction. To replicate the login mechanism in the scraper, the
request made to https://breached.vc, after logging in was captured. In the headers
of this request, the cookies were found, wherein the key mybbuser appears after logging
in as seen in Figure 7.7.

https://breached.vc
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Figure 7.7: Request headers for fetching https://breached.vc before and after log-
ging in

Conveniently, the value associated with the mybbuser cookie remains constant across
logins. In other words, if someone possesses your mybbuser cookie, they can freely log in
as you without encountering any restrictions. This value was therefore simply added to
the Selenium driver, with the add_cookie function as seen in Listing 7.6. This allows
the scraper to operate as if it were logged in as the mybbuser identified in the cookie,
enabling seamless retrieval of the text from restricted threads.

Listing 7.6: Adding a cookie to the Selenium driver
cookie = {"name":"mybbuser","value":user_cookie,"domain":url_parsed.netloc}
driver.add_cookie(cookie)

Hereof the user_cookie value is naturally set elsewhere to the value depicted in
Figure 7.7.

https://breached.vc
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7.3.6 Access Restrictions: Sinster.ly
Of all the forums scraped Sinister.ly seemed to have the least anti-scraping techniques
in place. Staying with the same IP and removing the randomised waiting period between
each request had no effect on being blocked by the site. In fact Sinister.ly simply seemed
not to block scrapers entirely unless an running the scraper for a prolonged period of
time. Simply waiting for 10 min before continuing fixed this issue. However, similarly
to Breached.vc certain areas of the site are inaccessible to non-VIP members or in this
case Bronze or above members as seen in Figure 7.8.

Figure 7.8: Bronze membership benefits on Sinister.ly

A Bronze membership was therefore purchased and these access restrictions were
lifted, allowing broadened access to specific forums as well as utilising the search func-
tionality of the site. To have the scraper act as a logged-in user, the same approach as
in Section 7.3.5 was taken.

https://sinister.ly
https://sinister.ly
https://breached.vc
https://sinister.ly
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7.3.7 Access Restrictions: Hackforums.net
As with the other forums certain areas of Hackforums.net are accessible to everyone
however most forums do demand that you have an account as displayed in figure Fig-
ure 7.9

Figure 7.9: Access restrictions on Hackforums.net when not logged in

Though in comparison to the other sites, Hackforums.net seem to have more open
forums for basic users. However, certain features, such as seeing all available forums
and a list of users, only come with their premium L33t membership. This was however
now needed for the data to be extracted by the scraper and hence was not purchased.
Out of all the forums, Hackforums.net was by far the most aggressive in terms of anti-
scraping techniques. Cloudflare was always met, whenever making the initial request to
the forum, which was mostly handled by the undetected_chromedriver. Additionally,
after a few hours of scraping, the scraping account was frequently banned, necessitating
the creation of a new account and repeating the process. The frequency of bans varied
significantly depending on the specific day.

https://hackforums.net
https://hackforums.net
https://hackforums.net
https://hackforums.net
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7.3.8 Access Restrictions: Cracked.io
Cracked.io had, like Hackforums.net, CloudFlare employed which sometimes blocked
the scraper. Additionally, certain content could be hidden; however, this could be by-
passed with a premium account as depicted in Figure 7.10. Hence for simplification,
an account was likewise purchased here.

Figure 7.10: Selection of purchasable ranks on Cracked.io

The moderators of Cracked.io were much less aggressive in banning, and the pur-
chased account was fortunately only banned at the very end of the scraping period. At
that point, the scraper had already scraped the relevant forums and was simply focusing
on scraping additional user data, which did not require a premium account.

https://cracked.io
https://hackforums.net
https://cracked.io
https://cracked.io
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7.3.9 Access Restrictions: Leakzone.net
Leakzone.net is rather similar to Hackforums.net in the sense that most areas of the site
are completely inaccessible without an account. When attempting to access restricted
areas of the forum the message depicted in Figure 7.11 is displayed.

Figure 7.11: Message displayed on when trying to access restricted areas on Leak-
zone.net

Additionally, several sections of the marketplace are inaccessible without a premium
account, including the marketplace section. Furthermore when browsing forums that
were available certain content would not be visible unless a premium account was pur-
chased as illustrated in Figure 7.12.

Figure 7.12: Hidden content in a thread for non-premium users on Leakzone.net

As the marketplace section was the section of interest for this project, a premium
VIP account was purchased. This allowed these restrictions to be bypassed as given in
Figure 7.13

https://leakzone.net
https://hackforums.net
https://leakzone.net
https://leakzone.net
https://leakzone.net
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Figure 7.13: Premium ranks on Leakzone.net

7.4 Natural Language Processing
As described in Section 2.3 natural language processing has revolutionised the way
data is analysed, offering powerful tools to extract meaningful insights from large and
complex datasets. The preceding subsections focus on the crucial preprocessing steps
necessary to efficiently apply NLP techniques to the gathered data. Additionally, the
specifics of how different NLP techniques were implemented will be outlined.

7.4.1 Data Preprocessing
To efficiently apply NLP techniques to the gathered data, it is essential to have a clear
understanding of the main topics of interest in the data, i.e. which words are most
common. To avoid having this list of words contain common so-called stop-words, i.e.
commonly used words such as the, and etc., the data is firstly pre-processed with the
nltk Python package as seen in Listing 7.7

https://leakzone.net
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Listing 7.7: Removing stop-words in the thread titles with nltk
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import re
import numpy as np
# Downloading the stopwords and punkt resources
nltk.download('stopwords')
nltk.download('punkt')

text = " ".join([thread["title"] + " " + thread["body"] for _, thread in
threads_df.iterrows()])

text = text.lower()
# Tokenizing the text data
tokens = word_tokenize(text)
tags = nltk.pos_tag(tokens)
# Filter for nouns
nouns = [word for word,pos in tags if (pos == 'NN' or pos == 'NNP' or pos ==

'NNS' or pos == 'NNPS')]
# Removing stopwords, non-alphabetic characters and empty strings
stop_words = set(stopwords.words('english'))
filtered_tokens = [re.sub(r'[^a-zA-Z]', '', token) for token in nouns if not

token in stop_words and token != ' ']
filtered_tokens = [token for token in filtered_tokens if token != '']

As seen, all the data was firstly coalesced into one string and subsequently tokenised,
as described in Section 2.3.1. Hereafter the data was filtered for stop-words with the
stop_words corpus from the nltk.corpus package. Additionally, any non-alphabetic
characters, empty strings etc. were filtered out and each word was assigned a Part Of
Speech (POS) tag, as described in Section 2.3.1.1. This was then utilised to extract
just the nouns, as the aim is to find items of digital products being sold. Lastly, a
lemmatiser is used, to combine words such as Accounts and Account into their base
form (Account). The filtered tokens could then subsequently be processed, with the
pandas.DataFrame.value_counts() function to generate a table of unique words and
their occurrence as depicted in Table 7.1 and Table 7.2 respectively.
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Word Occurrence
Account 1064
Service 949
Money 728
Method 514
Day 440
Discord 301
Month 267
Crypto 265
Sale 247
Bot 232

Table 7.1: Top 10 most popular words in
thread titles

2-Gram Occurrence
Make money 246
Per day 123
Earn money 114
Checker v 103
Disputed contract 101
Make day 73
Quick love 71
Get free 69
Dispute resolved 68
Contract dispute 68

Table 7.2: Top 10 most popular 2-grams
in thread titles

As seen accounts and services are the most popular terms found in thread titles.
This is rather self-evident as these forums are mostly Leak and Hacking service sites.
Additionally, when looking at the N-grams (set of N words occurring together), with
N=2 the more popular phrases are concerning making or earning money. With this list
of words serving as guidance the task of generating a labelled dataset could begin.

7.4.2 Bulk Labelling
To efficiently classify all threads on the various forums, a suite of NLP models was
required. To ensure the precision of these models, a labelled dataset, was required to
train and evaluate the models’ performance on. In order to avoid manually labelling
large amounts of the data, as redundant data may be in abundance, as well as to ensure
a balanced dataset, several techniques can be utilised. One would be to shuffle the data
and simply select random portions of data from each dataset, However, this approach
provides little guarantee that the majority of the data, will be of interest. Instead a Bulk
Labelling technique was used. Bulk[100] is a tool that provides an interface wherein the
user can visualise their data in a 2-dimensional space, and inspect and save subsets of
it. Text however is regrettably not 2 dimensional, and therefore has to be transformed
into a 2D representation of itself to be used with this tool.

7.4.2.1 Uniform Manifold Approximation and Projection (UMAP)
One way to transform high dimensional data to a 2D representation is to use dimen-
sion reduction algorithms such as Uniform Manifold Approximation and Projection
(UMAP). UMAP is a mathematically complex algorithm that constructs a high-dimensional
graph representation of the input data and then optimises a low-dimensional graph to
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be as structurally similar as possible.[101] The UMAP algorithm does not accept text di-
rectly, and hence the text must first be transformed into a vector representation of itself.
One way to do that is to use sentence-transformer networks like MPNet. Fortunately,
the Python sentence-transformers package provides pre-built models to transform
sentences into their dense vector representation counterparts. The code to implement
this can be seen in Listing 7.8.

Listing 7.8: Projecting text data to 2 dimensions with the UMAP algorithm
import pandas as pd
from umap import UMAP
from sentence_transformers import SentenceTransformer
# Load the universal sentence encoder
model = SentenceTransformer('all-mpnet-base-v2') # best all-around model
df = pd.DataFrame(texts, columns=["text"])
sentences = texts
X = model.encode(sentences)
# Reduce the dimensions with UMAP
umap = UMAP()
X_tfm = umap.fit_transform(X)
# Apply coordinates
df['x'] = X_tfm[:, 0]
df['y'] = X_tfm[:, 1]

df.to_csv("2D_projection.csv")

After the text is projected into 2 dimensions, it is subsequently saved to a file. This
can then be used with the Bulk tool with a list of keywords to highlight clusters concern-
ing specific topics such as account, virus, bot etc. These are inspired by the keywords
in Table 7.1 and Table 7.2 respectively, with a few manual additions. Using the lasso
tool clusters are selected, inspected and saved if they contain data of interest. In this
case, if the data concerns the sale of either malware, account hacks etc. Figure 7.14
displays the tool interface with a cluster concerning botnets and viruses selected.
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Figure 7.14: Interface used for bulk labelling of data

The process was repeated for each forum dataset to generate a balanced dataset of
relevant threads (e.g. sale of malware, database leaks) and irrelevant discussions (e.g.
favourite programming language).

7.4.3 Prodigy
With a subset of the data now selected, the literal labelling process can begin. Prodigy[102]

is a Python CLI tool that works by calling a Python package or recipe for a specific model,
and then utilising that model for semi-automatic smart labelling of data. This greatly
reduces the overall amount of labelling work and allows for quick iteration of models. An
illustration of the interface that the Prodigy tool provides can be found in Figure 7.15
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Figure 7.15: Annotating data with the Prodigy interface

7.4.4 Intent Text Classification Model
As previously mentioned, the threads of the hacking forums can concern anything be-
tween selling hacking-related items, asking for services or simply discussing various topics.
To efficiently determine if a thread concerns a Sale, Ask/Request or Discussion a
text classification model was developed. Using Prodigy a labelled dataset containing
these three classes was created. Initially, it was attempted to train a model with a
labelled dataset of around 5% of the total gathered data. The Prodigy tool also func-
tions as a wrapper around the spaCy[32] training API, as introduced in Section 2.3.3.
This allows for creating models at a higher level of abstraction, by having the API auto-
matically handle tokenisation of the text, as explained in Section 2.3.1. Furthermore,
Prodigy automatically handles the splitting of the data into training and validation sets
and basing the model to be trained on an industrial-strength text classification model.
Assuming the labelled text classification dataset is saved in the prodigy database cat-
egories the command in Listing 7.9 will start training a model, and save it in the
./models/textcat/categories folder.

Listing 7.9: CLI command to train a text classification model with Prodigy
$ prodigy train –textcat categories –base-model en_core_web_lg –eval-split 0.2 –gpu-id 0
–label-stats ./models/textcat/categories

Hereof the --base-model parameter is set to en_core_web_lg which is the pre-
trained pipeline provided by spaCy for the English language as given in Section 2.3.3.
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It comes in various sizes, this being the largest. Additionally, the --eval-split param-
eter defines how much of the data should be used for validation, which in this case is set
to 20% - a common division of training and validation data. Regrettably, the software
does not allow for the introduction of a test set as well, meaning the scores produced are
based on the validation set, i.e. data it has technically seen before, introducing the risk
of overfitting. The other two metrics --gpu-id and --label-stats simply run the com-
mand on the GPU and outputs metrics for each of the classification labels respectively.
The default text classification recipe, utilises the following hyperparameters[103]:

• Batch Size: 128

• Learning Rate: 5e-05

• Optimiser (Adam):

– Warm-up steps: 250
– Total Steps: 20000

The command ran for around 5 min and produced the output found in Figure 7.16

Figure 7.16: Performance metrics of the Prodigy intent text classification model during
training
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The tool conveniently displays the weighted average F1-score over the different intent
categories at various numbers of epochs (E) and iterations (#). Additionally, the speed,
given in words processed per second, is given along with the CATS_SCORE, i.e. the F1
score on the validation set. SCORE is the weighted average of all the components in the
NLP pipeline (see Section 2.3.3) which in this case is the same as CATS_SCORE but
normalised between 0 and 1. Finally, the value of the loss function for each component
in the NLP pipeline is given, which in this case is simply the text tokenizer and text
classifier.

From the numbers, it can be seen that already after 2 epochs the score has jumped
to 73% and hardly increase in the following epochs. At the bottom, it can be seen that
the model averages an F1-Score across the labels of around 79%, though the accuracy
for each of the labels is fairly high and nearly identical. However, as described in
section Section 2.3.4, accuracy is hardly a great metric to evaluate the model on, as it
cannot be guaranteed that the dataset is completely balanced. Likewise as explained in
Section 2.3.4, in machine learning the goal is to minimize the loss function, i.e. bring
the computed output as close to the expected as possible. In the output in Figure 7.16
the loss function stays at 0 after the 49th epoch untill the training finishes, indicating
that the model is simply unable to learn any new information from the given dataset.

7.4.4.1 Improving The Model
To try and improve the model, a common approach is to generate a learning curve as
described in Section 2.3.4. This will help determine if adding more labelled data to
the dataset will help improve the model’s performance. Prodigy conveniently provides a
train-curve command that will train with 0%, 25%, 50%, 75% and 100% of the data
respectively, and report the performance at each step. Should the score increase in the
last segment it could indicate that providing more data would improve the model. The
command is rather similar to the train as seen in Listing 7.10, the only difference
being the --show-plot parameter, that produces a visual representation of the learning
curve as depicted in Figure 7.17.

Listing 7.10: CLI command to produce a learning curve with Prodigy
$ prodigy train-curve –textcat categories –base-model en_core_web_lg –eval-split 0.2 –gpu-
id 0 –show-plot
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Figure 7.17: Output of the Prodigy train-curve comand

From the figure, it can be seen that the performance of the model increases at
every step as more data is added, especially in the last step. This is a clear indication
that adding more labelled data to the dataset would have a fair chance of improving
the model’s performance. Consequently, the procedure followed in Section 7.4.3 was
reenacted by manually labelling another 5% of the total data gathered. To ensure only
new data was added, Prodigy provides an --exclude parameter that allows for excluding
data from previous datasets for labelling. With the labelled dataset now hosting 10% of
the total gathered threads a new model was trained with the same approach as before.
The output of the models training and its learning curve is depicted in Figure 7.18 and
Figure 7.19 respectively.
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Figure 7.18: Output of the Prodigy tool when training the intent classifier with 10%
labelled data of the total dataset

Figure 7.19: Learning curve for the intent text classification model trained on 10%
labelled data of the total dataset

As evident in the figures, the overall score improved by about 6% while the loss
function started converging much earlier (epoch 18) than the previous model. This
would be a clear indication that the model simply needed more data to improve its
performance, as it now converges much quicker. Likewise, the F1-Score improved quite
significantly for each of the classes, the sales class especially. To verify that the model’s
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0.86 F1-score is truly competitive, however, it must be compared to other models in the
field.

7.4.4.2 Comparing to State-of-the-art LLMs
To ensure that the text classification model developed is on par with state-of-the-art
LLMs, the model developed by the Prodigy software will be compared with 4 of the
most renowned LLMs on the market: BERT, XLNet, RoBERTa and DistilBERT. These
models were chosen based on both their popularity as well as proclaimed performance.
In the following subsections, the development of each of these models will be discussed
and a comparison of their performance will be given.

BERT
As described in Section 2.3.2.1 BERT is a commonly used transformer model in NLP.

It would therefore be suitable to test if using a pre-trained BERT model as a base can
improve the performance of the text classifier. To utilise a pre-trained BERT model,
the text first has to be encoded into the right format as outlined in Section 2.3.2.1.
Conveniently the transformers library provides a pre-trained BERT model along with
a BertTokenizer that will automatically encode text to the BERT-supported format as
seen in Listing 7.11

Listing 7.11: Using the transformer library’s BertTokenizer to tokenize the dataset.
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',

do_lower_case=True)

The tokenizer now contains the text in tokenised format as well as each of their
respective token IDs as seen in Figure 7.20

Figure 7.20: Example of text tokenised for a BERT model

To add the special tokens (CLS, SEP, PAD) as described in Section 2.3.2.1, the
tokeniser provides an encode_plus method, transforming the data into a vector with
these tokens added. Finally, the labelled dataset is divided into a training, validation
and test set, and converted into a TensorDataset so it can be passed into the pre-trained
BERT model. When fine-tuning the model a linear scheduler was utilised to adjust the
learning rate as the model trains. This was instantiated with zero warm-up steps and the
number of training steps set to the size of the training set times the number of epochs,
ensuring each epoch covers the entire training dataset. The code utilised to conduct
these steps as well as train the model can be found in Appendix C1. As described
in the code comments, Jacob Devlin et al.[30], the creators of BERT, claimed the
following hyperparameters worked well across all tasks:
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• Batch size: 16,32

• Learning Rate (Adam): 5e-5, 3e-5, 2e-5

• Number of Epochs: 2,3,4

To find the optimal model, a combination of all parameters was therefore tested, and
the best parameters were saved along with the model it produced. The models were
trained on a server with an NVIDIA A10 GPU with 24GB of onboard RAM, an Intel
Xeon Processor (Icelake) with 60 cores and 120 GB system RAM, though the entire
training barely utilised anything but the GPU. It was found that the best parameters
for this use case were:

• Batch size: 16

• Learning Rate (Adam): 2e-05

• Number of Epochs: 4

This produced a final weighted average F1-score of 0.92, which while not a a signif-
icant increase from 0.86 is still a quite high score in its own right. To ensure this truly
is the optimal model, it was tested against the other state-of-the-art pre-trained LLMs.

XLNet
As with BERT, a pre-trained version of XLnet is available via the transformers Python
package. The model was created with the same suite of parameters utilised for the
BERT model, with the only difference being that the BERT pre-trained model was an
uncased model. I.e. it does not differentiate between cased and uncased text. The only
available pre-trained XLNet model available at the time of writing was a cased model.
After running the model with the various set of hyperparameters the best performance
achieved was an F1-score of 0.91 with the following hyperparameters:

• Batch size: 32

• Learning Rate (Adam): 2e-05

• Number of Epochs: 4

Surprisingly it performed slightly worse than BERT, despite XLNet supposedly outper-
forming BERT in many other tasks.[40] This may be caused by the fact that the XLNet
considers the case in the text when classifying. As a lot of threads don’t strictly present
perfect grammar etiquette, such as having entire threads in all caps, this may be the
cause of the model’s slightly reduced performance.



7.4 Natural Language Processing 69

RoBERTa
RoBERTa is likewise only available in a case-sensitive version from the transformers
package. Testing the suite of hyperparameters utilised for the previous models, achieved
a maximum weight average F1-score of 0.87 with the same optimal hyperparameters
as the XLNet model. Surprisingly, it did not outperform BERT despite the fact that
RoBERTa is supposed to be a Robust Optimised version of BERT.[41] Compared to
BERT, RoBERTa was only trained on a masking task, whereas BERT was trained on a
masking task and next-sentence prediction task. From the achieved performances this
could mean that the BERT model better handles the data present in this task, as the
dataset consisted of a combination of thread title and body, for which BERT’s next
sentence prediction capabilities may have granted it an advantage.

DistilBERT
DistilBERT is, as explained in Section 2.3.2.4, essentially a smaller and faster version
of BERT. It is therefore expected that the model achieves a similar performance. The
optimal hyperparameters for this model were however found not to be the same as the
BERT model but the same as the RoBERTa and XLNet model, achieving a maximum
weighted average F1-score of 0.89. This should be considered quite impressive as the
model was twice as fast to train as BERT and much faster than any of the other models,
as displayed in Table 7.3.

Model Type Prodigy BERT DistilBERT XLNet RoBERTa
Epoch 26 4 4 4 4
Learning Rate 5e-05 2e-05 2e-05 2e-05 2e-05
Batch Size 128 16 32 32 32
Training Time 5m 17s 2m 9s 1m 3s 1h 6m 20s 3m 10s
Weighted Avg F1 0.86 0.92 0.89 0.90 0.87

Table 7.3: Performance comparison of LLMs for the intent text classification model

From Table 7.3 it should also be noted that the training time for XLNet is not truly
indicative of the time it takes to train. As the model is larger than the others, the 24GB
of onboard GPU RAM was simply not enough to host the model during training with
a batch size of 32. Hence the XLNet model with those parameters was trained on a
CPU. This only further advertises the superiority of the BERT and DistilBERT models,
as these were trainable with 24GB of RAM, and achieved better performances than the
XLNet and RoBERTa models.

Looking at the training and validation loss for each of the models, as depicted in
Figure 7.21, it can also be seen that all the models except XLNet start converging
after just two epochs, indicating that further training using the same training dataset
would not produce significantly better results. The XLNet model converges slightly later,
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at 3 epochs, and is still quite far from zero. Seeing as it starts to converge, despite being
far from zero, indicates that the model is simply not fit for this specific NLP task. Note
the Prodigy model’s data is not included in the graph due to its prolonged number of
epochs, which would render the remaining models’ data unreadable.

Figure 7.21: Training and validation loss for the best performing models for the intent
text classification task

The best-performing model, in this case, the BERT model, was naturally selected for
integration into the NLP pipeline. With the first model created, the focus could turn to
the next model for the NLP pipeline.

7.4.5 Category Text Classification Model
To develop the next text classifier the same approach as with the previous model was
taken. 10% of the total dataset was labelled, according to the classes defined in Sec-
tion 6.3. Both Prodigy and the previously tested models were trained on this dataset,
utilising the same hyperparameters as before.

Prodigy revealed comparable results as with the previous model, averaging an F1-
score of 0.8. It especially struggled on the Software (F1=0.5) and Gaming-Cheats
(F1=0.7) tags, as depicted in Figure 7.22, indicating that the generated labelled dataset
is unbalanced.
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Figure 7.22: Performance metrics of the Prodigy category classification model during
training

Training the suite of transformer models also did not improve the performance sig-
nificantly, with the best-performing model (XLNet) achieving an F1 score of 0.84. An
overview of the performance for each of the trained models is depicted in Table 7.4,
along with their accompanying loss curves in Figure 7.23.

Model Type Prodigy XLNet DistilBERT BERT RoBERTa
Epoch 36 4 4 4 4
Learning Rate 5e-05 2e-05 2e-05 2e-05 2e-05
Batch Size 128 16 16 16 32
Training Time 8m 57s 4m 40s 1m 4s 2m 6s 2m 3s
Weighted Avg F1 0.8 0.84 0.81 0.79 0.74

Table 7.4: Performance comparison of LLMs for the category text classification model
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Figure 7.23: Training and validation loss for the best performing models for the cate-
gory text classification task

The loss curves clearly illustrate that the majority of the models’ validation loss
starts to converge after the third epoch, with DistilBert showing convergence even earlier,
after the second epoch. This observation strongly suggests that increasing the number
of epochs will not improve the models’ performance. While an attempt could be made
at adding more data, due to the small size of the overall dataset it is likely that it would
only induce marginal performance improvements. Efforts were therefore directed more
towards the other models as well as the analysis of the data they created. Consequently
the XLNet model was chosen to operate as the category classifier in the NLP pipeline,
as it performed the best among all the models developed.

7.4.6 NER Classification Model
Having segregated the data into intent and category classes, the next step is to extract
the prices of items being sold or discussed in the threads using an NER classifier. Similar
to the two text classifiers, the development of the NER classifier required annotating a
portion of the dataset to create a labelled dataset for training. This annotation process
was once again facilitated by using Prodigy, allowing for the straightforward selection of
spans of text, in this case, the prices mentioned in the text.

Initially, only 5% of the dataset was labelled for training the NER classifier, which
resulted in a relatively low average F1-score of 0.64 when trained using Prodigy. In an
attempt to improve the performance, an additional 5% of the data was labelled, increas-
ing the size of the training set to match that of the previous models. Unfortunately, this
incremental increase had a minimal impact, with the F1-score only improving to 0.73.
To check if adding more data would improve the model further, the learning curve was
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generated through the same approach as for the text classifiers, producing the graph
found in Figure 7.24.

Figure 7.24: The learning curve for the NER model when using 0, 25, 50, 75 and 100%
of the training dataset

As more data is added, the model’s performance improves up to 25%, but the rate
of improvement after this plateaus and actually decreases indicating that adding more
data would not necessarily improve the model’s performance. A likely cause of this could
be that the model has already learned most of the relevant patterns in the data, and
additional data would not provide significant new information. As with the other models,
the model created by Prodigy was compared to a suite of state-of-the-art transformer
LLMs, resulting in the metrics found in Table 7.5.



7.4 Natural Language Processing 74

Model Type Prodigy XLNet RoBERTa BERT DistilBERT
Epoch 24 4 2 2 3
Learning Rate 2e-05 5e-05 3e-05 5e-05 3e-05
Batch Size 128 16 32 16 32
Training Time 8m 29s 4m 5s 3m 15s 2m 52s 1m 33s
Weighted Avg F1 0.73 70.76 70.34 68.97 72.26

Table 7.5: Performance comparison of LLMs for the NER classification model

From the table, it is evident that regardless of the model used, the performance does
not surpass an F1-score of 0.73. Surprisingly DistilBERT performs nearly identically
to Prodigy, despite its much shorter training time. To accurately depict how well the
models improve during their training the loss curves were produced as illustrated in
Figure 7.25

Figure 7.25: Loss curves for the various models trained for the NER task

It should be noted that due to the format of the produced labelled NER dataset,
the Prodigy tool was utilised to train the transformer LLMs as well. This was naturally
conducted with the same collection of hyperparameters utilised for the other models,
however, the calculation of loss is done differently in Prodigy, meaning the values of
loss are depicted as quite high with values reaching as high as 12000. Additionally,
Prodigy only provides the training loss, disallowing the integration of the validation
loss in the figure. Nonetheless, the loss curves prove that the loss plateaus around the
second epoch across the board, indicating, that increasing the number of epochs, will
not provide substantially better results.

Combining this with the insights of Figure 7.24 no further attempts were made
in increasing the labelled dataset, as it was unlikely to improve the performance of the
model. Consequently, the Prodigy model was therefore chosen as the NER classifier
for the pipeline. The three models were subsequently integrated to form one cohesive
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pipeline that, when given a segment of text, will firstly classify its intent, i.e. is it
concerning a Sale, Request or simply a Discussion. Secondly, the category is determined
by the second model, and lastly, the NER model extracts the prices found in the text.
The code connecting these three models in sequence can be found in Appendix D1.
The unstructured text could now be passed through this pipeline, thereby extracting
the information it contains, and its analysis could commence.



8
Analysis

Having successfully scraped data from the chosen illicit forums, as well as built NLP
models to process the data, the analysis of this data could commence. The datasets were
separated by forum and were initially analysed in a thread segment and user segment. In
the following subsections, the various analytical approaches and their reasoning will be
elaborated. All graphics were generated in Python, and the code associated with them
can be found in the accompanying zip file in the DataAnalysis.ipynb, plotting.py
and utils.py files respectively.

8.1 Threads
Firstly the investigation will focus on the thread segment. Specifically, their size by site,
the products they contain, their categorical distribution and their main topics. Each of
these will be discussed in the following subsections.

8.1.1 Thread Distribution
While the forums investigated contain many discussion-related forums, the focus of this
thesis is the Sales and Request of digital products being conducted on the forums.
The focus was therefore as previously mentioned directed towards their Marketplace
subforums. As the forums have emerged at different times, the selection of threads in
these subforums is hence quite varied in size as given by Figure 8.1.
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Figure 8.1: Distribution of threads in the Marketplace subforum across the investigated
forums

From the figure it is evident that Sinister.ly holds majority over the other sites, with
Cracked.io and Hackforums.net having 10% less than Sinister.ly. Lastly Leakzone.net
is by far the minority, which when correlated with each of the forum’s self-proclaimed
number of threads as given in Table 8.1, matches with the fact that Leakzone.net is
simply a smaller site.

Website Total forum
threads

Total marketplace
threads 2023

%
of Total

Sinister.ly 155058 5067 3.27
Hackforums.net 6300000 3441 0.05
Cracked.io 842000 3588 0.43
Leakzone.net 35655 569 1.60

Table 8.1: Proclaimed number of threads of investigated forums (including all subfo-
rums. Sources: [58, 61, 59, 62])

From the table, it is also evident that the number of threads, from 2023, that occur
within the Marketplace subforum of each of the forums is rather modest compared to
the overall sizes of the forums. This just proves that the forums are much more than
illegal marketplaces for hackers to gather. This especially holds true for Hackforums,
however seeing as it is a forum that has been around for longer, the total number of
threads is naturally higher. This hence makes the number of threads in the marketplace
section for 2023, quite small. That isn’t to say that the subsequent analysis conducted

https://sinister.ly
https://cracked.io
https://hackforums.net
https://sinister.ly
https://leakzone.net
https://Leakzone.net
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in this section is not indicative. As the data is focused on a specific subforum and only
concerns 2023, it naturally is a rather small subset of the total amount of threads on the
forums. However, the analysis still grants valuable insights into the trends of Sales and
Requests of the Marketplace subforum for 2023 for each of the investigated forums.
In addition to Table 8.1, Table 8.2 displays the number of collected threads being
classified as a Sale, Request or Discussion threads respectively.

Site Sale Threads Request Threads Discussion Threads
Cracked.io 246 (14.03%) 1437 (81.97%) 70 (3.99%)
Hackforums.net 3635 (52.74%) 3099 (44.97%) 158 (2.29%)
Leakzone.net 8 (0.71%) 1104 (98.31%) 11 (0.98%)
Sinister.ly 4505 (51.98%) 4081 (47.09%) 81 (0.93%)

Table 8.2: Distribution of threads classified as Sale, Request, or Discussion for each
of the investigated forums

The table clearly displays a fairly even distribution of Sale and Request related
threads for Hackforums.net and Sinister.ly. Cracked.io has a far more skewed distri-
bution with just 14% Sale threads, and 82% Request threads, though not as badly
as Leakzone.net, with only 0.7% of threads classified as Sales. Hence in the following
subsections, the visualisations produced for Hackforums.net and Sinister.ly will paint
a robust picture of their actual Sale and Request related threads. Conversely, the
conclusions drawn for Cracked.io and Leakzone.net will be far more indicative of their
threads related to Requests, as opposed to Sales.

https://Hackforums.net
https://Sinsiter.ly
https://cracked.io
https://leakzone.net
https://Hackforums.net
https://Sinsiter.ly
https://cracked.io
https://Leakzone.net
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8.1.2 Thread Categories
Having parsed all of the collected threads through the NLP pipeline their category as
given in Section 6.3, have been assigned. Looking at their distribution in terms of sales
in Figure 8.2, it is clear that each of the sites has its own unique focus. Specifically,
Sinister.ly’s sales mainly focuses on Money-earning-guides (46%), followed by Cryptocur-
rency (36%). Additionally, Sinister.ly has more Sales threads than all the other sites
combined.

Figure 8.2: Treemap of the categories for the Sale threads on the investigated forums

Surprisingly, despite its name Cracked.io’s main focus in Sales threads lies not on
Cracking, but on Cryptocurrency (46%), Malware (20%), and Botnets (9%). Hackfo-
rums.net follow a similar pattern as the previous forums, having Cryptocurrency (38%),
Money-earning-guides (26%) and Malware (15%) as the top digital products sold. Leak-
zone.net likewise follows the trend, mainly focusing on Cryptocurrency (39%) and Mal-
ware (16%). However, it differs from the others, by having 17% of the listings related
to Ban-services. From the collected threads, it is clear that the main topics of 2023
across the forums seem to be Malware, Cryptocurrency and Money-earning-guides. In
the case of Cryptocurrency this is no surprise as the world’s largest cryptocurrency has
risen almost 80% this year alone.[104] How to easily earn money is naturally a topic that
never dies, and Malware occurrences have seen a 15% increase in Q1 2023 compared to
Q1 2022.[105]

Turning to the main categories when it comes to Requests, paints an entirely dif-
ferent picture is given as illustrated in Figure 8.3.

https://sinister.ly
https://sinister.ly
https://cracked.io
https://hackforums.net
https://hackforums.net
https://leakzone.net
https://leakzone.net
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Figure 8.3: Treemap of the categories for the Request threads on the investigated
forums

Cryptocurrency is no longer the main topic of interest and each class is more evenly
distributed amongst the threads. In contrast to the Sales threads, where Sinister.ly
had the most threads, Cracked.io, has the most Request threads, though the distri-
bution between forums is much more even, apart from Leakzone.net. When it comes
to Requests, Cracked.io’s main focus has now shifted to Malware (28%), Web-hosting
(16%) and Botnets (14%). A similar pattern is seen for Hackforums.net, however with
Cryptocurrency (18%) instead of Botnets. Sinister.ly has a slightly more even distribu-
tion between its top 3 categories: Malware, Cryptocurrency and Money-earning-guides
(15-18%), with Leakzone.net being the only site with a skewed distribution. Specifically,
Account/Database/Combolists seem to be much more requested than other products.

Contrarily to the Sales threads, these statistics indicate Request threads are much
more related to illicit products such as malware and botnets across most of the forums.
One interpretation of this would be that for the sake of security and anonymity of
the vendor, these products are not as heavily advertised as cryptocurrency and money-
making methods are. To access these services, it would hence make sense for the vendor
to simply monitor requests and directly contact potential customers.
To summarise the findings of this section:

• Sinister.ly has more Sales threads and Cracked.io more Request threads than
the other sites.

• The top 3 categories found in Sales threads are Cryptocurrency, Malware, and
Money-earning-guides

https://sinister.ly
https://cracked.io
https://leakzone.net
https://cracked.io
https://hackforums.net
https://sinister.ly
https://leakzone.net
https://sinister.ly
https://Cracked.io
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• The top category found in Request threads are Malware, followed by a split
between Cryptocurrency, Web-hosting and Money-earning-guides

8.1.3 Thread Prices
From the distribution of the forums defined in the previous section, it would naturally
also be of interest to investigate, the prices for items listed in the Marketplace subfo-
rums in terms of both Request and Sale threads. Figure 8.4 displays boxplots of the
distribution of the Sales and Request threads prices for each of the forums respectively.
A boxplot determines the Inter Quartile Range (IQR) or the range of most common
values. The whiskers at the end depict the minimum and maximum values respectively
with the boxes’ vertical lines displaying Q1, the median and Q3 respectively. Note the
data has been filtered from outliers via IQR filtering. This effectively removes outliers
from a dataset, allowing the analysis to continue with a focus on the central tendency
of the data and reducing the influence of extreme values.

Figure 8.4: Box plot of the distribution of prices for Sale and Request threads across
the investigated forums

The figure clearly displays that the vendors on Leakzone.net request products at
much lower prices, than the other sites. From Q1 it is clear that 25% of the data falls
below 0.5$, which is usually connected with subscription-based or token-based sales (e.g.
price per SMS in SMS scamming). The distribution is also quite skewed, with a wide
range between the Q3 at 11$, and the maximum whisker at 35$, followed by a selection of
outliers. This indicates that the distribution of Request threads is quite skewed towards
lower prices. Contrariwise the Sales are more skewed toward higher prices, with 25% of
the sales being below 20$, and 75% of the data being above 80$. On average products
on Leakzone.net are sold for around 50$.

In contrast, the IQR for both the Sales and Request threads of the other forums
are skewed towards the higher end. Hackforums.net and Cracked.io have nearly identical

https://leakzone.net
https://leakzone.net
https://hackforums.net
https://cracked.io
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distributions, apart from Cracked.io’s Q1 Sales being at 4$ opposed to Hackforums.net’s
11$. Sinister.ly has a slightly lower distribution of sale prices by about 3-4$ in the lower
end compared to Hackforums.net.

Overall, apart from Leakzone.net, it can be concluded that:

• Most prices for Sales vary between 3-80$

• Most prices textbfRequests vary between 6-60$

This distinctively indicates that vendors on average expect a higher price for their items
than customers believe it is worth. In the following subsection, the distribution of prices
will be investigated based on the category, they have been classified as.

8.1.3.1 Prices Per Category: Sales
Taking the same approach as in Figure 8.4, the distribution of prices across forums
as well as categories can be visualised. The following subsections will look at the price
distribution by category for both Sales and Request threads respectively. In the gen-
eration of Figure 8.5 it should be noted that there may be discrepancies between the
distribution of the categories compared to those found in Figure 8.2. The NER model,
as discussed in Section 7.4.6, achieves an average F1-score of 0.73, meaning it cannot
be guaranteed that all prices in each of the threads were extracted successfully. Addi-
tionally, certain threads classified as a Sale or Request thread respectively may not
mention any price in the thread, but link to external sources instead.

https://cracked.io
https://hackforums.net
https://Sinister.ly
https://hackforums.net
https://leakzone.net
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Figure 8.5: Price distribution by forum and category for Sale related threads

Starting with Cracked.io, from Figure 8.5 it can be seen that Malware and Botnet
prices are skewed toward the lower end. For the Sales of Malware, the IQR is quite
broad, with prices ranging from 5$ up to around 80$, with an average of around 50$.
Botnets are comparatively cheaper ranging between 2-40$ with a much lower median
of 13$. Finally, Cryptocurrency related Sales quite closely resemble the Botnet sales,

https://cracked.io


8.1 Threads 84

albeit with a slightly higher IQR from 10$ in Q1 to 40$ in Q3. Gaming cheats and
Ban-services displays similar prices, while Money-earning-guides more closely resemble
the prices found for Malware Sales. Cracking and Software is surprisingly low, however,
this is most likely to be the cause of the NER model having extracted subscription-based
prices ( 0.05$ per API request for instance). Web-hosting on the other hand has much
higher prices than any of the categories. This is to be expected though as many of the
hosting services involve cloud computing, where you purchase an entire cloud machine
on a subscription basis, commonly found at 55-100$ a month.

Progressing to Sinister.ly, Cryptocurrency Sales are comparable to those found on
Cracked.io, though slightly lower. Specifically ranging from 4-35$ and a median of 10$.
Botnets however are priced much higher than on Cracked.io, with a median of 50$ (an
increase of 280%). Contrarily, Malware is priced much lower with a median of 15$ (a
decrease of 70%). A similar trend is seen in Web-hosting (80% decrease), Money-earning-
guides and Gaming-cheats (50% decrease). Sinister.ly however also introduces some new
categories, namely Gift Cards, Bot, and Account/Database/Combolist. Each of these,
apart from Bot, lie in the cheaper end of the spectrum, with the Gift Cards category’s
IQR ranging from 5-35$, and Account/Database/Combolist ranging from 1-30$, similar
to the pricing for Cryptocurrency on Sinister.ly. The reason accounts median lie at the
cheap price of 2$ could be that Account/Database/Combolist Sales often list a price per
account, despite selling dumps of several thousands of accounts at a time.

Next on Hackforums.net, the prices for Web Hosting and Money-earning guides are
comparable to the prices found on Sinister.ly, while the prices for Malware more closely
resembles those found on Cracked.io, though slightly more skewed towards lower prices.
Bots and Gift Cards however are considerably more expensive than on Sinister.ly, with
an increase in median of Gift Cards by 200% and an increase in the median price of Bot
by 23%. Additionally, the median price of Ban-services is increased by 42% compared to
Sinister.ly, and the price of Cryptocurrency sales by 92%. Botnets have nearly identical
median pricing to Sinister.ly, though it is much more consistent, narrowing the IQR to
be between 23-60$. Finally, compared to both of the previous sites the median price for
Gaming Cheats is 55-65% cheaper.

Lastly, for Leakzone.net, the NER classifier was only able to extract prices from
the Sales threads related to Account/Database/Combolists. Nonetheless, the prices it
did extract show that Sales of Account/Database/Combolists on Leakzone.net have a
significantly higher price (50$), than on Sinister.ly (2$ median price) and Hackforums.net
(40$ median price) combined. Though the cause of the extremely low price on Sinister.ly
is as mentioned most likely due to the price being per account vs a whole dump of
accounts.

Table 8.3 grants a more comprehensible overview of the insights these price distribu-
tions provide, while clearly highlighting, for each category, where the highest and lowest
price is found, as well as the average price across sites.

https://sinister.ly
https://cracked.io
https://cracked.io
https://sinister.ly
https://sinister.ly
https://hackforums.net
https://sinister.ly
https://cracked.io
https://sinister.ly
https://sinister.ly
https://sinister.ly
https://leakzone.net
https://leakzone.net
https://sinister.ly
https://hackforums.net
https://sinister.ly
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Category Cheapest Sale on Average Most Expensive Sale on
Account/Database/
Combolist Sinister.ly (2$) 30.66 Leakzone.net (50$)

Malware Sinister.ly (15$) 30.5$ Cracked.io (50$)
Cryptocurrency Cracked.io (10$) 15.13$ Hackforums.net (25$)
Money-earning-guide Sinister.ly (14$) 34.25$ Cracked.io (29.5$)
Cracking Cracked.io (2$) 2$ Cracked.io (2$)
Bot Sinister.ly (65$) 72.5$ Hackforums.net (80$)
Web hosting Sinister.ly (10$) 25$ Cracked.io (55$)
Software Cracked.io (1$) 1$ Cracked.io (1$)
Gift cards Sinister.ly (10$) 15$ Hackfroums (20$)
Gaming Cheats Hackforums.net (5$) 10.66$ Cracked.io (15$)
Botnet Cracked.io (13$) 37.66$ Hackforums.net (50$)
Ban Service Cracked.io (16.5$) 33.83$ Hackforums.net (50$)

Table 8.3: Overview of the cheapest, most expensive and average price of sale threads
for each category (Prices based on median values)

8.1.3.2 Prices Per Category: Requests
As mentioned in Section 8.1.3.1 for Figure 8.5, it cannot be guaranteed that all
categories are present. The same holds true for the categories present in Figure 8.6,
versus the ones found in Figure 8.3. Though when looking at Figure 8.6, it is quite
clear, that the prices for many more categories have been successfully parsed.
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Figure 8.6: Price distribution by forum and category for Request related threads

Starting with Sinister.ly, the price of Account/Database/Combolists has increased
considerably compared to the prices listed in Sales threads (previously 2$ vs 30$ for
Request threads). Though this probably stems from customers requesting entire dumps
of databases/accounts as opposed to a single specific account. The price of Malware in-
creased marginally (15$ to 20$), and similar trends are found in Gaming Cheats (12$

https://sinister.ly
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to 15$) and Cryptocurrency (10.5$ to 22$). Contrarily, several categories had a reduc-
tion in price including Ban-services (35$ to 20$), Money-earning-guides (14$ to 7.5$),
Web-hosting (10$ to 6$) and Bots (65$ to 30$). Additionally, the Cracking and Software
categories are now present, with a median price of 2$ and 10.5$ respectively. Gener-
alised, the users of the forum are willing to pay more on Accounts/databases/combolists,
Malware, Gaming Cheats and Cryptocurrency, than what it is being sold for on Sinis-
ter.ly. In contrast, they are less willing to pay for Ban-services, Money-earning-guides,
Web-hosting and Bots than what they are commonly sold for on the forum.

Taking a look at Hackforums.net, the reductions in median pricing are found in
Botnets (50$ to 17.5$), Bots (80$ to 50$), and Accounts/Databases/Combolists (40$
to 8$), with minor changes in Cryptocurrency (25$ to 20$). Conversely, there are also
considerable increases in Gaming cheats (5$ to 30$), while the categories Money-earning-
guide, Gift cards and Ban-services remain the same. Summarised, the buyers on Hack-
forums.net are less willing to pay the market price (of the forum) for Botnets, Bots
and Accounts/Databases/Combolists, while being willing to pay more for Gaming cheats.
Additionally, the Software category is introduced, with a median price of 22.5$.

Progressing to Cracked.io, more categories are introduced compared to its Sales
counterpart, namely Gift Cards, Bots and Accounts/Databases/Combolists, all three of
which have their distribution skewed to a lower price range. As with the other forums,
there has been an increase in prices in a selection of classes. Specifically, Ban-services
(16.5$ to 27.5$), Gaming cheats (12$ to 40$), Software (0.75$ to 3$) and Cracking (1.5$
to 75$). The other categories only saw minor changes except for a couple of consid-
erable decreases in Money-earning-guides (30$ to 10$) and Web-hosting (55$ to 15$).
Abridged, the customers of Cracked.io, are willing to more for Ban-services, Gaming
cheats, Software and Cracking while demanding cheaper prices for Money-earning-guides
and Web-hosting.

Concluding with Leakzone.net, more categories than the puny one found for its Sales
equivalent, are present. Upon further investigation users of the site requests a couple of
services at the same price as the competition. Namely Gaming Cheats at around 30$,
Cryptocurrency for around 20$ and Gift cards at around 10$. Contrariwise, a few of its
services are requested at a substantially higher price than the competition. For instance
Botnets (400% increase compared to the closest competition) as well as Software, with a
median of 50$ vs Cracked.io’s 3$ and Hackforums.net’s 22.5$. Leakzone.net’s userbase
does however request Account/Database/Combolist, Bots and Malware at the cheapest
prices of 0.55$, 1$ and 3$ respectively, when comparing to the other forums. In summary
Leakzone.net requests Account/Database/Combolists at much lower prices than what is
offered on the forum. Additionally, users on the site request Botnets and Software at
much higher prices than the competition, while requesting Bots and Malware at much
lower prices than the competition.

As with the sales-related threads, Table 8.4 grants a more generalised overview of
where categories are requested at the highest and lowest prices, as well as what price
they are requested at on average.

https://sinister.ly
https://sinister.ly
https://hackforums.net
https://hackforums.net
https://hackforums.net
https://Cracked.io
https://Cracked.io
https://Leakzone.net
https://Cracked.io
https://hackforums.net
https://Leakzone.net
https://Leakzone.net
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Category Cheapest Request On Average Most Expensive Request On
Account/Database/
Combolist Leakzone.net (0.55$) 15.89$ Sinister.ly (30$)

Malware Leakzone.net (3$) 17$ Hackforums.net (30$)
Cryptocurrency Cracked.io (15$) 19.25$ Sinister.ly (22$)
Money-earning-guide Sinister.ly (7.5$) 15.63$ Hackforums.net (25$)
Cracking Sinister.ly (2.2$) 38.6$ Cracked.io (75$)
Bot Leakzone.net (1$) 22.75$ Hackforums.net (50$)
Web hosting Sinister.ly (6$) 14.25$ Leakzone.net (24$)
Software Cracked.io (3$) 21.5$ Leakzone.net (50$)
Giftcards Cracked.io (8$) 12$ Hackforums.net (20$)
Gaming Cheats Sinister.ly (15$) 28.5$ Cracked.io (40$)
Botnet Cracked.io (15$) 18.5$ Leakzone.net (99$)
Ban Service Leakzone.net (5$) 25.63$ Hackforums.net (50$)

Table 8.4: Overview of the cheapest, most expensive and average price of request
threads for each category (Prices based on median values)

Comparing Table 8.3 and Table 8.4, combined with the observations made in
Section 8.1.3.1 as well as this section the following list of insights become apparent:

• Accounts/Databases/Combolists, Malware, Money-earning-guides, Bot, Web-hosting,
Gift cards, Botnets and Ban-services are on average requested at a lower price, than
what it is offered for.

• Conversely Cryptocurrency, Cracking and Software are on average requested at a
higher price, than what they are offered for.

• Sinister.ly offers the lowest price across the highest number of categories

• Cracked.io offers the highest price across the highest number of categories

• The cheapest requests across the highest number of categories is made on Leak-
zone.net and Cracked.io

• The most expensive requests across the highest number of categories is made on
Hackforums.net

• Users on Sinister.ly and Hackforums.net make requests at higher prices than the
sales price on the forum across the most categories

• Users on Sinister.ly, cracked.io and Leakzone.net make requests at lower prices
than the sales price on the forum across the most categories.

• Users on Cracked.io, make the request with the biggest difference from the sales
price on the forum (55$ to 15$).

https://sinister.ly
https://Cracked.io
https://Leakzone.net
https://Leakzone.net
https://cracked.io
https://hackforums.net
https://Sinister.ly
https://Hackforums.net
https://Sinister.ly
https://cracked.io
https://leakzone.net
https://Cracked.io
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• The biggest increase from sales price versus requested price is found in the Crack-
ing category on Cracked.io (1.5$ to 75$)

• The average sales price across all categories ranges between 1$-72.5$, with a mean
of 25.69$

• The average request price across all categories ranges from 12$-38.6$ with a mean
of 20.8$.

Given this list of insights, it is evident, that users across the sites on average request
products and services, at a lower price, than what they are advertised for. Additionally,
users on Hackforums.net are more inclined to request products or services at a higher
price, than what it is actually worth. Contrariwise, users on Cracked.io and Leakzone.net
are more predisposed to request products or services at a lower price, than what they
are actually worth. Users on Sinister.ly are just as likely to request a service or product
at a higher price, than the sales price on the forum, as they are to request it at a lower
price.

8.1.4 Popular Thread Topics
To grant a better understanding of what the main topics of interest for each of the
categories found in the threads of the forums are, word clouds were utilised. In this
case, word clouds were created based on the titles of threads, with stopwords, special
characters etc. filtered out. To easily generate word clouds from the data, the Python
package wordclouds[106] was utilised. In the following subsections, the word clouds for
each of the categories in the Sale and Request threads respectively will be investigated.
Note that the categories have been broken into two groups for increased resolution of
the word clouds.

8.1.4.1 Thread Topics by Category: Sales
Starting with the Sales threads, looking at Figure 8.7, the words associated with the
Account/Database/Combolist category, unsurprisingly usually consist of Account, and
their associated type (e.g. Amazon, Skype etc.). More unexpectedly, the word Bump is
also quite prevalent, which in this case, simply refers to when a vendor tries to bring
their threads back to the front page by Bumping it up, through replying to it.

Next, in the Money-earning-guide category, the words Method and Guide are natu-
rally the most frequent. However, the other common words associated with this class
seemingly have little to do with money-making guides (e.g. Gift Card, Order ID).
Though when browsing the Money-earning-guide related threads, it does become evident
that the selection of methods employed to Make money fast are quite broad, ranging
from automatic gift card generation to refunding methods (given and Order ID).

Most shockingly, for the Cryptocurrency category, there does not seem to be a single
crypto-related word. Everything concerns contracts, guides or variations of account and

https://cracked.io
https://Hackforums.net
https://Cracked.io
https://leakzone.net
https://sinister.ly
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purchasing methods. As with the previous category, after browsing the Cryptocurrency
related sales threads on several of the forums, there is a clear trend of these threads
relating to crypto matters outside of the forum. For instance, referrals to crypto ex-
changes or guides to mining crypto, which explains the prevalence of the words such as
Guide and Contract.

Figure 8.7: Word clouds for Sales threads in the categories: Account/Database/Com-
bolist, Money-earning-guide, Cryptocurrency, Botnet, Malware and Gaming Cheats

The Botnet word cloud is much more predictable, with words such as Zoombies
and Botnet being quite frequent. A Zoombie in this context refers to a so-called Bot
in a botnet. Additionally, there appears to be a fair bit of dissatisfaction from the
users browsing in this category, indicated by the sizeable word Scammer. The words
for the Malware category are likewise quite anticipated. Words such as Rogue and
Miner are usually used in the context of installing malware undetected and installing
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cryptocurrency mining software, respectively. Additionally, a considerable amount of
words related to building, buying and running are present, indicating that this category
is active in both sales, implementation and utilisation of malware. Finally, the Gaming-
Cheats category, like the Cryptocurrency category, does not provide words indicative of its
name. Threads in this category are apparently much more focused on the procurement
of cheats games as given by the prevalence of purchasing-related words such as Bought
and Sell. One thing to note is the common occurrence of Wrote PM clearly indicating
that sales are made by directly writing to the vendor bringing the purchase off the forum.

Progressing to the Web-hosting category in Figure 8.8 barely any words related to
web hosting can be found. Though as with the Gaming-Cheats category, this may relate
to the high occurrence of Wrote PM, meaning the deals and discussions for web hosting
take place privately between individuals. Similarly in the Cracking category, seemingly
no words related to cracking are present. Though given their overall small prevalence in
the dataset as given by Figure 8.2 and Figure 8.3, respectively, this may simply be
because there are barely any threads to base the word cloud off of.

The Ban-Service category seems to be much more focused on reputability from ven-
dors, denoted by words such as Vouch, Guy and Rep. Similarly to Gaming-Cheats and
Web-hosting these services seem to also frequently occur through private messaging given
the popularity of Wrote PM. The same holds true for the Software category, however,
here there are a fair few discernible software-related terms such as Settings and Config.
Contrarily for the Bot category, there are no words fitting the category name. The focus
in this category is much more directed towards seemingly unhappy clients, designated by
words such as Refund, Dispute and Contract. Finally the Giftcards category obviously
mainly contains the word Gift Card, along with similar trend of Wrote PM.
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Figure 8.8: Word clouds for Sales threads in the categories: Web-hosting, Cracking,
Ban-Service, Software, Bot, Gift cards

8.1.4.2 Thread Topics by Category: Requests
Already from the Account/Database/Combolist category’s word cloud, in Figure 8.9, it
becomes apparent that there is a lot of difference between Sales threads and Request
threads, despite the overall category being the same. Specifically, where the Sales
related threads for this category were more focused on words such as Account and
different account type names, the Request related threads for this category are much
more focused on Tokens. In this context, tokens refer to access tokens to various accounts.
Additionally, tokinaist and sellix.io are noticeable, which are popular domains for
purchasing social media accounts.[107]

The Malware category, similarly deviates from its Sales equivalent, with Order ID
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being the most frequent term, followed by words like Need and Discord.[108] Comparable
to the Sales threads, the Cryptocurrency category has no discernible crypto-related
words. Contrarily, however, it does have a fair amount of market-related words such as
Dipping and Limit. This could indicate that the vendors requesting cryptocurrency-
related products often mention the current state of the market in their threads.

Figure 8.9: Word clouds for Request threads in the categories: Account/Database/-
Combolist, Money-earning-guide, Cryptocurrency, Botnet, Malware and Gaming-Cheats

In contrast, the Money-earning-guide category for Request threads has quite a differ-
ent suite of words compared to the Sales threads. Specifically, Bankroll and Per Unit
are quite common, referring to a flow of money and money to be made per device/invest-
ment etc., respectively. As for the Sales threads there are barely any Cracking related
threads in the dataset, which in Figure 8.9 is confirmed by the lack of words, none of
them being particularly indicative to cracking. Finally, the Bot related threads in the
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corpus of Request related threads are much more unsurprising, with the main word
simply being Bot. Additionally, there seem to be fewer words indicating a negative
relation to vendors, compared to the Sales related Bot threads.

Moving on to Figure 8.10, the Web-hosting category is entirely predictable, with
nearly every single prominent word relating to Proxies, i.e. locations to pass web
traffic through to avoid geo-restrictions or traceability. Software on the other hand,
unexpectedly barely has any recognisable software names. Instead, simple words such
as Auto Bumped are seen, signifying that software-related threads are less active, seeing
as the forums automatic thread refresher Auto Bumped the threads. However, there are
still a few software-related terms such as Code and Xupgrader, though they are not the
most frequent.

As opposed to the Money-earning-guide, the Gift cards category shockingly does
not host the word Giftcards. It does, however, contain a lot of brand names such as
Ralph Lauren, assumedly to the brand the gift card is for. As opposed to the Sales
threads, the words in the Gaming-cheats category in the Request threads are actually
quite indicative of its title, with some of the most prevalent words simply being Game
and Cheat. Additionally, there is a fair bit of Bumps meaning there is likely not much
activity on the threads where a user requests game cheats. The Botnet category likewise
contains a lot of Bumps and as opposed to its Sales counterpart it is not at all indicative
of its title. The Request related Botnet threads appear to be much more focused on
the botnet Service. This is quite expected as a user would usually request a botnet
Service, as opposed to buying the botnet itself. Contrariwise to the Botnet category
the Ban-service category contains a lot of very telling words. Particularly the things to
ban, i.e. Instagram, TikTok etc, as well as the form it is requested in (e.g. Package or
Service).
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Figure 8.10: Word clouds for Request threads in the categories: Web-hosting, Crack-
ing, Ban-Service, Software, Bot, Gift cards

To summarise the comprehensive exploration of the topics of each of the categories
across Sales and Request related threads given in the preceding and current subsec-
tions, the following insight was gathered:

• The Web-hosting category was more easily recognised in the Request threads,
mainly consisting of the word Proxy

• Botnets were more directly discussed in Sales threads, directly mentioning Botnet
and Zoombies

• No words in the Cracking category were indicative of its content, due to its low
prevalence in the dataset
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• Users in Sales related threads in the Bot category, seemingly display dissatisfaction
with the services indicated by words like Refund

• The Gift card category was easily recognisable in both Sales and Request related
threads through brand names and the word Gift Card.

• The Sales threads Software category was more identifiable, through words such as
Settings and Config, compared to the Request threads System.

• The Request threads Gaming-cheats category naturally contained frequent men-
tions of Game and Cheat, while its Sales counterpart mostly featured words such
as Bought and Sell

• The Ban-service category in the Sales threads were commonly focused on credi-
bility, while the Request related threads were focused on specific account types.

• Users more commonly requested tokens in the Account/Database/Combolist cate-
gory compared to Sales related threads that more specifically focus on the type
of account

• The Money-Earning-Guides often concerned the use of Order IDs (refunding meth-
ods)

• The Cryptocurrency category was not seemingly identifiable in either of the thread
types

• The Request threads of the Malware category, were more focused on purchasing,
than the type of malware requested as opposed to the Sales related threads that
mostly discuss the technique used in the malware.

Collectively the Sales threads naturally differ from the Request given that how a prod-
uct is advertised is usually quite different, than what a user might request. Given that
these forums are hacking forums, there is a surprisingly small amount of slang prevalent
in any of the categories. However, this could be from the fact that when requesting and
advertising products, more professional/clear language is often used, compared to the
language used in discussions.

8.1.4.3 Overall Topics by Forum
Investigating what topics are usually discussed in each of the various thread categories,
while interesting in itself, regrettably does not depict what the main overall topics are
per forum. Figure 8.2 and Figure 8.3, provide a general overview of the distribution of
topics per site for the Sale and Request thread groups. However to paint a clear picture
of the difference in words used for various categories across forums and thread groups, one
has to look at the words used on the forums individually. Consequently, the word clouds
presented in the previous sections are now generated on a forum basis, on all of their
threads (including discussions), across all their categories. The following subsections
will provide an investigation into the overall topics for each of the investigated forums.
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Sinister.ly
As discovered in Section 8.1.3.1 and Section 8.1.3.2, Sinister.ly contained threads
within all of the categories specified in Section 6.3. Consequently, when looking at
Figure 8.11, one would expect a quite varied distribution of words.

Figure 8.11: Word cloud of threads for Sinister.ly’s Marketplace section

Figure 8.11 clearly displays that the more commonly discussed topics relate to
Money, Accounts, Services or Methods. Combined with the knowledge gathered from
browsing of the site, these keywords are often seen together in forms such as Money
making methods, or Account selling services as well as Ban services. Conversely,
terms such as Database (upper left horn) or Script (middle right horn) are less frequent.
These terms usually appear in connection with database leaks or malware-related activ-
ities respectively, which one would expect to be frequent on a site like Sinister.ly. The
minimal presence of Database could stem from the fact that the names of accounts are
quite varied. The same holds true for Scripts, where their name might frequently be
used (e.g. K2LL33D).

A couple of references to Cryptocurrency such as BTC (below left horn) and Crypto
(bottom middle), are fairly prevalent alongside Web-Hosting terms such as Proxy, Website.
Apart from these the other categories of Section 6.3, are quite spread out, with the
seemingly only non-prevalent categories being Gaming Cheats and Botnets (not to be
confused with the Bot category). Combining these observations with those of Figure 8.2
and Figure 8.3 respectively confirms that the threads of Sinister.ly mostly fall within
the categories, Money-earning-guides, Account/Database/Combolists and Ban-services.

https://Sinister.ly
https://Sinister.ly
https://Sinister.ly
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Additionally, each of these categories mostly seems to be identified by words like Money,
Account and Service respectively.

Hackforums.net

Figure 8.12: Word cloud of threads for Hackforums.net’s Marketplace section

As with Sinister.ly, Hackforums.net’s threads mainly seem to discuss Services,
Accounts and Methods as depicted in Figure 8.12. However, a slight difference is
seen in the amount of hacking terms such as Domain Bypass, Bot and Access. This
could indicate that Hackforums.net is more concerned with hacking, while Sinister.ly
is more concerned with account dumps and money-making methods. Additionally, a
few words related to Cryptocurrency are present, such as Crypt and Crypto. This is
confirmed by the prevalence of threads categorised as Cryptocurreny and Malware in
Figure 8.2 and Figure 8.3 respectively.

https://hackforums.net
https://Sinister.ly
https://hackforums.net
https://hackforums.net
https://Sinister.ly
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Cracked.io

Figure 8.13: Word cloud of threads for Cracked.io’s Marketplace section

Moving on the Cracked.io, it similarly has its main focus on Accounts and Services
as portrayed in Figure 8.13. As Cracked.io is a place for leaks,[61] it is not surprising to
see words such as Combo or Log (upper left wing) occur frequently, Combo here meaning a
so-called Combolist. Interestingly there are a lot of words related to purchasing (Buying,
WTB (want to buy), Selling). Combining this with the skewed distribution of Table 8.2,
these words should in fact not be connected to sales, but requests, which is confirmed
by Cracked.io’s major presence in Figure 8.3

https://cracked.io
https://cracked.io
https://cracked.io
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Leakzone.net
Finally, Leakzone.net seems to be no exception as the most frequent terms occurring on
its marketplace forum are Account and Service as illustrated in Figure 8.14.

Figure 8.14: Word cloud of threads for Leakzone.net’s Marketplace section

Apart from this, Leakzone.net’s most popular terms seem to be a combination of
some of the other sites, having both several purchasing-related terms (Market, Price),
leaking related terms (Database, Combolist) and hacking related terms (Stealer, Key)
occurring regularly. Where it sets itself apart is in that Crypto related subjects seem to
be a common topic of its marketplace threads.

In summary from the word clouds, it can be concluded that topics related to Accounts
and Services were the most frequent across the board. This paints an entirely different
picture than that given in Figure 8.2 and Figure 8.3 respectively, as neither of these
figures, indicate Accounts/Database/Services or Ban-services as being the main topics
for any of the sites except for Leakzone.net. This may be an indication of misclassifica-
tion by the intent classifier in the NLP pipeline. However, it may also be that the more
prevalent words such as Account, Service may often be used in the context of several
of the different categories (e.g. Bank Account in Money-earning-guide).

8.1.5 External Links
As the investigated forums are on the clear web, many of the transactions don’t occur
directly on the site for the sake of anonymity as indicated by the prevalence of words such
as Wrote PM as stated in Section 8.1.4.1. Therefore many of the threads concerning
Sales or Requests link to external sites such as Telegram[109], Discord[108] or .onion
addresses. By the simple use of regular expressions as explained in Section 2.1.2.1, the
links found in the forums threads can be extracted and displayed on a Sankey diagram
as portrayed in Figure 8.15.

https://leakzone.net
https://leakzone.net
https://leakzone.net
https://leakzone.net
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Figure 8.15: Sankey diagram over top 10 external links in the investigated illicit forums
threads

In the Sankey diagram the width of the connecting bars displays the occurrence of
a given link. The figure clearly illustrates that all four sites have a significant number
of external links pointing to Telegram[109] (t.me). This observation is not unexpected,
considering that Telegram, an anonymous messaging platform, can provide anonymity
for the users on these forums. Additionally, Sinister.ly and Leakzone.net exhibit a con-
siderable portion of references to smmgoal.com, a social media management platform.
smmgoal.com offers likes, views etc., for various social media platforms, which, while not
sounding inherently illegal, can often be obtained via dubious methods, that may be in
violation of the social media platforms terms of service. Sinister.ly and Leakzone.net
also commonly mention tokinaist.sellix.io and we1.town, which also provide social
media services, however in this case, sales of social media accounts and account creation
software respectively.

Analysing the distribution of links, it becomes apparent that a significantly higher
percentage of links are posted on Sinister.ly (43% of total) and Leakzone.net (43% of
total), than on Cracked.io (12% of total) and Hackforums.net (1% of total) combined.
In the case of Sinister.ly, this could be attributed to a larger number of scraped threads
compared to the other sites, as discussed in Section 8.1.1. For leakzone, as it is a
smaller site than the others, as portrayed in Table 8.1, its small userbase is primarily
dedicated to redirecting users to other sites for various purposes, such as external sales.
The scarcity of links on Hackforums.net is quite surprising, as no obvious explanation
for its minimal contribution of external links can be determined. Finally, regarding
Cracked.io, since many of the cracking/leaking services offered are meant to be shared
anonymously, it is reasonable to expect a significant number of links to Telegram and
Discord[108] (discord.gg).

https://sinister.ly
https://leakzone.net
https://smmgoal.com
https://smmgoal.com
https://sinister.ly
https://leakzone.net
https://tokinaist.sellix.io
https://we1.town
https://sinister.ly
https://leakzone.net
https://cracked.io
https://hackforums.net
https://sinister.ly
https://hackforums.net
https://cracked.io
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Examining the .onion (TOR) links mentioned in threads, as depicted in Fig-
ure 8.16, reveals a similar narrative. Of the forums investigated, only Sinister.ly fea-
tured references to .onion addresses, with a significant majority (75%) of these links
directing to the TOR address associated with the Just Kill marketplace. Just Kill
is a Russian marketplace offering a wide range of hacking-related services such as SMS
flooding and email flooding. Due to the ephemeral nature of .onion links, there is no
guarantee that all of these links lead to active destinations. After testing each of the
links, only the Just Kill forum returned a response.

Figure 8.16: Sankey diagram over top 10 external TOR links from the investigated
illicit forums

Given the prevalence of the aforementioned Russian hacking marketplace as the most
commonly linked website on Sinister.ly, it could suggest that a considerable portion of
the illicit activities carried out on the platform are associated with Russian hackers. In
summary, this section discovered:

• There were considerably more external links on Sinister.ly and Leakzone.net than
Cracked.io and Hackforums.net combined

• Hackforums.net only linked to Telegram

• Sinister.ly and Leakzone.net both mainly link to smmgoal.com, a social media
management platform

• The most popular external sites listed are smmgoal.com, t.me and
tokinaist.mysellix.io

• From the collected dataset only Sinister.ly hosted .onion links, the only active
one leading to the Russian hacking marketplace Just Kill

https://sinister.ly
https://sinister.ly
https://sinister.ly
https://leakzone.net
https://cracked.io
https://hackforums.net
https://hackforums.net
https://sinister.ly
https://leakzone.net
https://smmgoal.com
https://smmgoal.com
https://t.me
https://tokinaist.seelix.io
https://sinister.ly
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8.2 User Analysis
Each forum has different ranks for its users depending on their popularity, number of
posts or other similar metrics. In some cases, the ranks can be directly purchased for
a relatively small fee (usually 20-60€). In others, however, they are earned through
reputation or certain actions. Users that have a higher rank generally have a higher
presence (number of posts written) on the forum, which is rather intuitive as they have
either invested money or obtained credibility on the forum to gain their high rank. In the
following subsections, the distribution of user ranks for Sinister.ly is investigated. For
the other scraped forums, regrettably, only 1-2% of their total user base was scraped,
meaning any subsequent analysis on these, would not be indicative of their true nature.

8.2.1 Users: Sinister.ly
The user ranks Sinister.ly fall within one of the following categories:

• Normal ranks

– Senior Member
– Junior Member
– Member
– Newbie

– Registered
– Account not Activated
– Spiders/bots
– Banned

• Premium ranks

– Administrator
– Super Moderator
– Moderator
– Registered (Deceit)
– Registered (Platinum)
– Registered (Diamond)

– Registered (Gold)

– Registered (Silver)

– Registered (Bronze)

– Registered (Legends)

– Otaku

Hereof only the Registered Bronze, Silver, Gold, Diamond, and Platinum are purchasable
ranks. As displayed on Figure 8.17 the distribution of these ranks is quite skewed with
just over 0.5% of the users, being premium users and the majority of these (54%) being
the lower tier premium users (Bronze).

https://sinister.ly
https://sinister.ly
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Figure 8.17: Distribution of User ranks on Sinister.ly (before 23/04/2023)

This indicates that very few users are willing to spend money on their accounts for
the site itself. Of the few that do upgrade they are most likely to simply go for the
bronze tier as this grants them access to the Upgraded Lounge, Upgraded Giveaways &
Freebies and Advanced Security sections. Any users purchasing ranks above this are
usually sellers, to get Gold, Platinum etc. prefixes to their threads, making them stand
out more than regular threads.

On the left-hand doughnut chart, it can also be seen that the majority of regular
users are Account not Activated and Newbie (69%). This is clearly an indication that
the majority of users of the site are new users, or simply users that made a temporary
account and never bothered activating it. The high number of Account not Activated
users may be due to bots creating basic accounts to avoid detection while scraping the
site. The same could be the case for Newbie accounts, as these are simply accounts
recently joined and verified. Though this could also be users simply testing out the site.

Deducting the Banned users leaves just over 27% (52945) of users that are to some
extent more active to the site along with just over 900 actually investing money in
their account. Given that the amount of scraped users amounts to 99% of what the
forum itself claims to have (as of 14/05/2022) it can be assumed this illustration is quite
reliable.

https://sinister.ly
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8.2.2 Comparing Users on Different Forums
As the forums investigated in this project have a fair similarity in what their purpose is,
it is safe to assume that a given user, is also likely to have an account on one of the other
forums. As depicted in Figure 8.18, users on Hackforums.net commonly also have an
account on Sinister.ly.

Figure 8.18: Distribution of users that have accounts on several sites (combinations
below 0.1% filtered out)

It should be noted that the figure is generated on the basis of the usernames used on
the various sites. While these do not guarantee to identify an individual it is common
for users to reuse their username similarly to how they might reuse their password.[110]

Moreover, the figure also displays that users on Sinister.ly additionally often have an
account on Cracked.io. Subsequent combinations of forums are more rare, though still
present. Though as indicated by the title of the figure, only 2% of the total amount of
users scraped had identical usernames on other sites. Additionally as mentioned in the
introduction of Section 8.2, only Sinister.ly had a substantial amount of users scraped,
compared to the number of users available, explaining why Figure 8.18’s most prevalent
Forum is Sinister.ly.

Summarizing the preceding chapters it can be concluded that:

• Only 2% of users present on one site, have an account on another

• Only 0.5% of users on Sinister.ly are premium users

https://hackforums.net
https://sinister.ly
https://sinister.ly
https://cracked.io
https://sinister.ly
https://sinister.ly
https://sinister.ly
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• Of the 0.5% half are users at the low tier (Bronze)

• 68% of users on Sinister.ly are new users

The rank distribution is highly indicative given that nearly all users on Sinister.ly
were scraped. However the distribution of users having accounts on several sites, mostly
regard Sinister.ly, given that less than 2% of the user base of the other sites were
collected.

https://sinister.ly
https://sinister.ly
https://sinister.ly


9
Discussion & Future Works

This chapter aims to provide an assessment of the goals for the thesis, outline in Chap-
ter 1. Subsequently, Section 9.1 offers a concise summary evaluating the requirements
introduced in Chapter 5. Section 9.2 grants an overview of the limitations of the
project, while Section 9.3 explores directions of potential future research.

9.1 Evaluation of Requirements
This section includes an individual evaluation of the requirements specified in Chapter 5.
The section is divided into two main subsections, one for each of the main objectives of
Chapter 5, namely the Web Scraper requirements and NLP and LLM requirements.

9.1.1 Web Scraper Evaluation
Chapter 5 clearly stated several functional as well as non-functional requirements. Each
of these will now be evaluated, divided into the ones that were implemented and the
ones that were not. For each of the requirements, a short description of what they entail
is given along with how they were implemented. Should they not be implemented the
reasoning behind this will likewise be described.

Implemented

1. Robustness: This requirement states the the web scraper should be flexible in
terms of sites and obstructions encountered. The web scraper was to be able to
handle several site structures and layouts as well as common obstructions such
as request timeouts. The web scraper easily handles the site structure of all the
different forums, despite their differences in layout, while correctly catching request
timeouts and waiting a few minutes before retrying.

2. Data Quality: The data that the web scraper collects should be cleansed and
validated during the scraping process. As given in Section 7.2.3, the web scraper
actively removes special Unicode characters to ensure consistency and quality in
the database.
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3. Data Parsing: As a web scraper, it must naturally be able to parse the DOM
structure of the site in question. As given in Section 7.1.1.1, Section 7.1.1.2
and Section 7.1.1.3 respectively, the scraper accurately navigates to the most
interesting parts of the investigated forums, while extracting relevant information.

4. Data Storage: To effectively analyse the data, the web scraper should store the
data in an efficient and structured format. Section 6.2 and Figure 6.3 clearly
outlined the structure of the data stored by the web scraper. Additionally as given
in Section 2.2 the web scraper stores the data in a database in the common key-
value pairs format, allowing for easy manipulation of the data during the analysis.

5. IP Rotation: Due to the IP banning policies of the investigated forums, to
operate effectively the web scraper had to implement ways to change IP addresses
programmatically. Specifically, Section 7.3.2.1 outlined how the scraper was set
up with the capabilities of changing IP address via NordVPN with a specific time
interval, effectively bypassing IP banning restrictions

6. Bypassing Anti-scraping techniques: Similar to the IP banning policies, many
of the sites employ DDoS protection and subsequent CAPTCHA blockades, both
of which the web scraper should handle. As given in Section 7.3.3 the scraper
utilised the undetected_chromedriver package to appear like a normal user, ef-
fectively bypassing the anti-scraping techniques employed by the forums. Addi-
tionally, the hcaptcha-challenger package was utilised, enabling the scraper to
bypass hCAPTCHAs.

As seen above, each of the functional requirements was implemented for the designed
web scraper. Moving on to the non-functional requirements most of these were met as
well, as seen below.

1. Scalability: The scraper should be able to handle any volume of data found on
the forums dexterously. During the scraping process, the scraper had no issue
extracting the data of interest from the site, provided the data was passed through
the cleansing process described in Section 7.2.3. The only limitation on this
front was the database itself, of which the backend RPC calls could handle limited
load sizes. Though as given in Section 7.2.4, this was handled by manually
generating a query, to send to the database, as opposed to using the SurrealDB
provided CRUD functions.

2. Rate Limiting: This requirement stated that in order to avoid stressing the
forums investigated a rate-limiting feature should be incorporated into the scraper.
Section 3.8.1 clearly outlined that the scraper was set up to make no more than
0.2 requests per second, hence inducing fairness over the network.

Not implemented
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1. Efficiency: The scraper should have a minimal computational footprint, while
still operating at a reasonable efficiency. Running for a single site, the scraper
could amount to up to 3-5GB of RAM, which while achievable on consumer hard-
ware, is not particularly effective. Additionally, the scraper was not set up to
run for several forums at once, however simply duplicating the instance (Jupyter
Notebook) running the code, allowed for several instances of the web scraper to
run concurrently. This however does not allow the concurrent instances to commu-
nicate, thereby not guaranteeing that unnecessary duplicate data is not scraped.

From the iteration of requirements above it is apparent that all the requirements gener-
ated in Section 5.1 were met, with the slight exception of the non-functional Efficiency
requirement.

9.1.2 NLP and LLM Requirements
The NLP and LLM requirements defined a much more modest decorum of requirements,
each of which is assessed below.

Implemented

1. High Performance: The weighted average F1-score for each of the fine-tuned
LLM models in the NLP pipeline should be relatively high. The performance of
the first classifier as given in Table 7.3 was very satisfactory achieving an F1-score
of 0.92. Table 7.4, gave a bit more modest, though still fair score of 0.84. Finally,
the NER classifier offered the lowest score of 0.73 given in Table 7.5. Though as
discussed in Section 7.4.6, adding more labelled data to train this model would
not necessarily promise any noticeable increase in performance.

2. Efficiency: This requirement stated that the fine-tuned LLM models should be
trained in an efficient manner. The training time in all cases stated in Tables 7.3
to 7.5 did not exceed 8 minutes, with the exception of the XLNet model trained
at a higher batch size for the intent classifier. From this, it can be concluded that
the models trained are quite effective. Granted they are run on a high-performing
NVIDIA A10 GPU, though they were able to run on the author’s (M1 MacBook)
laptop as well, with a runtime closer to 20-40 min. Hence even on consumer
hardware the fine-tuning of LLMs was quite efficient at batch sizes of 16.

Not Implemented

1. Input Flexibility: For the requirement it was given that the model should be
able to handle any length of input. Regrettably, the base BERT model used for
the intent classifier is limited to 512 tokens, thereafter simply truncating the input.
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The same holds true for the RoBERTa and DistilBERT models, though not for
the XLnet model. Hence the category classifier meets this requirement, while the
intent classifier does not. The NER classifier has no input limit and hence also
meets this requirement.

From the enumeration of the requirements above it can be confirmed that all the non-
functional requirements were implemented for all the models. In terms of the functional
requirement, while a general text classification model should effectively handle any length
of the input, the requirement did not seem to matter much for the intent classifier, which
despite truncating its input at times, still achieved an F1-score of 0.92. The category-
classifier utilised XLNet and hence did not have this restriction, though achieved lower
performance. In other words in the context of text classification, truncation of the input
text can be considered acceptable, provided the model still provides high performance.

9.2 Limitations
The project had a high entry requirement when developing the web scraper from scratch
for the first site. As there was no pre-built backend for handling request errors, and
navigating the specific investigated forums, the project had a slightly slow start. How-
ever, as soon as the web scraper was developed for the first forums, the functionality for
handling subsequent forums could be more efficiently implemented. Automated scrap-
ing tools such as Octoparse[111] could have been integrated as well, for faster iteration,
though the abstraction level of such tools is quite high. They thereby do not specifi-
cally clarify how anti-scraping measures are effectively bypassed, nor do they provide
the custom verification and cleansing of the data utilised in this thesis. Additionally,
these services are often more focused on the speed of extraction, thereby not considering
fairness over the network as done with the web scraper developed in this thesis.

Concerning the issues faced as the project progressed, as given by Section 3.2.1.1,
the scraper was initially developed for Breaced.vc, which justifiably but regrettably was
seized by the FBI during the project. As a result, the overall findings of the thesis were
reduced and a sizeable portion of work was wasted customising the web scraper to that
forum. Furthermore, Section 7.4.4.2 described how fine-tuning the LLM models at
batch sizes higher than 16 commonly resulted in the GPU running out on memory, even
with the 24GB of the NVIDIA A10. Consequently, the training time for these models
are not truly indicative of their effectiveness in training. The models could still run on
consumer CPU hardware, albeit remarkably slower.

This project is also limited to investigating the categories described in Section 6.3.
Hence despite the selection of categories being quite high, it fails to discern between
products within a category, such as ransomware, and viruses under the malware category.
Having an expanded palette of categories would improve the granularity of the results,
thereby providing more refined analysis results. Finally, the data scraped was limited
to 2023. This was chosen simply to make it achievable within the time frame, but

https://breaced.vc
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while painting a picture of the most recent state of these forums, fails to describe their
evolution.

9.3 Future Works
Numerous features could be added to improve both the web scraper and the NLP pipeline.
Naturally, due to time constraints not all of the features could be implemented and in
the list below a selection of possible improvements is discussed.

• Reduced resource usage of the scraper: As given in Section 9.1.1, the web
scraper had a relatively high RAM usage, which while not ideal, still allowed it to
be run on a basic laptop. The increased RAM usage may stem from caching when
iterating over the extensive forum site structure, and hence future efforts could be
conducted to clear out unused cached data while scraping.

• Parallelisation: The code for the web scraper is currently only set to run for one
forum at a time. Future efforts could be directed towards running subprocesses
for each forum at the same time. This would allow for faster scraping, without
overloading the individual forum with requests,

• Increased LLM performance: With the classifiers developed in this thesis hav-
ing weighted average F1-scores ranging from 0.73-0.92, there is definitely room for
improvement, especially for the NER classifier. As given in Figure 7.24, adding
more data is not necessarily the solution to improving the performance of this
classifier, necessitating the investigation of other approaches.

• Increased range of forums: As the first investigated forum was seized by the
FBI the output of the thesis became reduced. Additionally, the investigated forums
are just a few of the many available. Expanding the collection of investigated
forums will grant a more definitive overview of the true nature of these forums as
a whole, and hence future efforts could be engaged in investigating more forums

• Refining product categories: Despite the number of categories classified in this
thesis being quite high, there is still room for improved granularity as mentioned
for the Malware category for example. Having more refined categories could allow
for investigating much more specific topics, or even specific malware.

• Further Analysis of the dataset: The approaches taken for the analysis in this
thesis are a subset of the many ways the dataset could be explored. For instance,
a stronger focus on vendor reputation could be taken.

Given the dynamic and evolving nature of illicit forums, there remains constant
room for improvement in accurately portraying their intricate nature and underlying
mechanisms. As such the above suggested future works are merely suggestions and only
comprise a subset of the possible expansions to this project.
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Conclusion

The dynamic nature of online illicit forums necessitates continuous research into their
characteristics. This thesis aimed to explore the extent and nature of the illegitimate dig-
ital products found on illicit forums operating on the clear web. To address this research
objective, three sub-research objectives were formulated: developing a web scraper to
extract data from these forums, applying NLP techniques to parse the extracted data,
and gathering insights from the subsequent analysis of this data.

Firstly, a robust web scraper was developed, capable of extracting data from the illicit
forums: Breached.vc, Sinister.ly, Cracked.io, Hackforums.net and Leakzone.net.
The scraper effectively bypassed anti-scraping techniques employed by each of the fo-
rums, including IP banning, DDoS protection and CAPTCHA blockades. Additionally,
it instilled fairness over the network, and validated and cleansed the scraped data. Sec-
ondly, NLP models were created, based on state-of-the-art LLMs to extract information
from the collected textual data. This produced an NLP pipeline consisting of three
classifiers: a BERT-based intent classifier, an XLNet-based category classifier and a
spaCy-based NER classifier. The two text classifiers allowed for categorising the data
into Sales and Request related threads, along with which topic category they belonged
to. Lastly, the NER classifier determined the prices given in the threads. The extracted
information allowed for subsequent analysis to determine valuable insights into the inner
workings of the investigated sites, adding to the overall contribution of the thesis.

The analysis focused on metrics such as Prices, Size and common Topics, and showed
that across all the categories investigated, products and services were sold at just over
25$ on average. In contrast, products were on average requested at a lower price of
20$, denoting users were less willing to pay the amount a certain product or service was
offered at. Of the investigated forums Sinister.ly was the cheapest while Cracked.io was
the most expensive across the most categories. Furthermore, Sinister.ly had the most
Sales threads, while Cracked.io had the most Request threads.

Additionally, across all the forums, the most noticeable topics were Accounts and
Services. Individually however each site had its own discernible topics with a slightly
different focus. Specifically Sinister.ly had a high prevalence of topics related to Money
Making Methods, while Hackforums.net had a fair selection of Hacking related threads.
Contrariwise, Cracked.io contained common occurrences of Combolists, i.e. leaked lists
of username and password combinations, whereas Leakzone.net consisted of an evenly
distributed combination of the other forums’ main topics. However, the project still
leaves space for additional research, specifically in improving the NLP models, expanding
the selection of forums and increasing the efficiency of the web scraper.

https://breached.vc
https://sinister.ly
https://cracked.io
https://hackforums.net
https://leakzone.net
https://sinister.ly
https://cracked.io
https://sinister.ly
https://cracked.io
https://sinister.ly
https://hackforums.net
https://cracked.io
https://leakzone.net
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Appendix
This thesis is accompanied by an attached .zip file with an extended appendix. In this
zipped appendix the following is included:

1. Main scraper code (Found in siteScraping.ipynb user_extraction.py,
forum_extraction.py, thread_extraction.py and scraping.py respectively)

2. Database functions (Found in db_func.py and utils.py respectively)
3. Code used to train NLP models (Found in NLP_pipeline_creation.ipynb,

nlp_func.py and Train_NLP_model_with_params.ipynb respectively)
4. Jupyter notebooks and python files used to generate figures (Found in

DataAnalysis.ipynb, plotting.py and utils.py respectively)
5. Another zip archive containing the latex code comprising the thesis

Note that the code found in this appendix is only a subset of the code found in the zip
file, as the functions in this appendix are only mainly meant to supplement the text of
the thesis where appropriate.

Appendix A: Scraper Code

A1: Main Scraping Function
Listing 1: Main scraping function get_pages to scrape illicit forums
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from selenium.common.exceptions import TimeoutException
from db_func import query
import datetime
from random import randint
from utils import internet_on
import time
import requests
from bs4 import BeautifulSoup
from scraping import (

solve_h_capthca,
extract_links_from_responses,
get_youngest_thread_date,
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)
import re
from urllib.parse import urlparse
from db_func import (

create_database_entry,
relate_user_to_post,
relate_user_to_thread,
relate_post_to_thread,

)
from user_extraction import extract_user_data
from thread_extraction import extract_thread_data
from nordvpn_switcher import initialize_VPN, rotate_VPN
from surrealdb import Surreal

vpn_settings = initialize_VPN(stored_settings=1)
last_vpn_switch_time = datetime.datetime.now()
rotate_VPN(vpn_settings)

async def get_pages(
url_main: str,
headers: dict,
pages: list = None,
is_recursive: bool = False,
is_retry: bool = False,
table: str = None,
update: bool = True,
minimum_date: datetime = None,
db: Surreal = None,

):
global vpn_settings
global driver
global last_vpn_switch_time

if pages is None:
pages = [url_main]

responses = []
i = 0
for page in pages:

request_url = page
if url_main not in page:

request_url = url_main + request_url
try:

if table is not None and update == False:
db_entry = await query(

"SELECT * FROM " + table + " WHERE url = '" +
request_url + "'",
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db=db,
)
if db_entry:

if type(db_entry) == list:
db_entry = db_entry[0]

if table == "forums":
if db_entry["threads"] != []:

responses.append(db_entry)
i = i + 1
continue

else:
responses.append(db_entry)
i = i + 1
continue

datetime_now = datetime.datetime.now()
if (

(datetime_now - last_vpn_switch_time).total_seconds() / 60.0
) > 5 and not is_retry:

rotate_VPN(vpn_settings)
last_vpn_switch_time = datetime.datetime.now()

if internet_on():
scrape_time = datetime_now.strftime("%Y-%m-%d %H:%M:%S")
driver.get(request_url)
WebDriverWait(driver, 300).until_not(EC.

title_contains("DDoS-Guard"))
WebDriverWait(driver, 300).until_not(

EC.title_contains("Cracked.to Under Attack")
)
if "HACKFORUMS" in request_url.upper():

try:
WebDriverWait(driver, 30).until_not(

EC.title_contains("Hack Forums - Challenge")
)

except TimeoutException:
print("CloudFlare blocked by site. Trying again in

10 min")
time.sleep(600)
await get_pages(

url_main=url_main,
headers=headers,
pages=[page],
is_recursive=is_recursive,
is_retry=is_retry,
table=table,
update=update,
db=db,
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)
continue

time.sleep(randint(1, 5))
else:

print("Not connected to the internet. Waiting 10 sec to
reattempt")

time.sleep(10)
responses.extend(

await get_pages(
url_main=url_main,
headers=headers,
pages=[page],
is_recursive=is_recursive,
is_retry=is_retry,
table=table,
update=update,
db=db,

)
)
continue

except requests.exceptions.ConnectionError as e:
if "Max retries exceeded" in str(e):

print(
"Connection Error: Max retries exceeded after fetching "
+ str(

len(responses)
+ sum(

[
len(

response.get("pagination_pages", [])
for response in responses

)
]

)
)

)
if is_recursive:

return {
"scrape_time": scrape_time,
"url": request_url,
"response": response,

}
else:

return responses
elif "Remote end closed connection" in str(e):

print(
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"Connection Error: Remote host closed connection.
Waiting to retry..."

)
rotate_VPN(vpn_settings)
time.sleep(20)
response = await get_pages(

url_main,
headers,
pages=[page],
table=table,
is_recursive=False,
is_retry=True,
db=db,

)
else:

if is_recursive:
return {

"scrape_time": scrape_time,
"url": request_url,
"response": driver.page_source,

}
else:

return responses
except requests.exceptions.Timeout as e:

if "Can't fetch current ip" in str(e):
# Wait 5 minutes and try to reconnect
time.sleep(300)
response = await get_pages(

url_main,
headers,
pages=[page],
table=table,
is_recursive=False,
is_retry=False,
db=db,

)
if is_recursive:

return response[0]
else:

responses.extend(response)
continue

print(e)
if is_recursive:

return {
"scrape_time": scrape_time,
"url": request_url,
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"response": driver.page_source,
}

else:
return responses

except Exception as e:
try:

h_captcha = driver.find_element(By.ID, "h-captcha")
if h_captcha:

await solve_h_capthca(site=request_url, ctx=driver)
except Exception as e2: # no Captcha found on site

print("Unknown exception occurres: " + str(e))
try:

# see if scrape_time is defined
temp = scrape_time

except:
scrape_time = datetime_now.strftime("%Y-%m-%d %H:%M:%S")

html = BeautifulSoup(driver.page_source)
title = html("title")[0].text
if is_recursive:

return {
"scrape_time": scrape_time,
"title": title,
"url": request_url,
"response": driver.page_source,

}
else:

return responses
html = BeautifulSoup(driver.page_source)
error_div = html.find_all("div", {"class": "error-code"})
if error_div:

if error_div[0].text == "ERR_NETWORK_CHANGED":
print("Network changed. Reattempting in 15 sec")
time.sleep(15)
responses.extend(

await get_pages(
url_main=url_main,
headers=headers,
pages=[page],
is_recursive=is_recursive,
is_retry=is_retry,
table=table,
update=update,
db=db,

)
)
continue
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else:
print("Unknown network error occurred. Reattempting in 15

sec")
time.sleep(15)
responses.extend(

await get_pages(
url_main=url_main,
headers=headers,
pages=[page],
is_recursive=is_recursive,
is_retry=is_retry,
table=table,
update=update,
db=db,

)
)
continue

else:
error_div = html.find_all("div", {"class": "error_message"})
if error_div:

if "The member you specified is either invalid" in
error_div[0].text:

return responses
title = html("title")[0].text
if "DDoS-Guard" in title:

print("DDoS Guard blocked for site" + request_url)
with open("ddos-guard-blocked.txt", "a") as f:

f.write(request_url + "\n")
return {

"scrape_time": scrape_time,
"title": title,
"url": request_url,
"html": html,
"is_DDoS_Guard_blocked": True,

}
elif (

"Forbidden" in title
and not "getting" in title
and not "banned" in title
and any(char.isdigit() for char in title)

):
# rotate_VPN(vpn_settings)
response = await get_pages(

url_main,
headers,
pages=[page],
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table=table,
is_recursive=False,
is_retry=True,
db=db,

)
responses.extend(response)
continue

result = {
"scrape_time": scrape_time,
"title": title,
"url": request_url,
"html": html,

}
if is_recursive:

return result
else:

responses.append(result)
if not is_recursive:

if "LEAKZONE.NET" in request_url.upper():
tag = "span"

else:
tag = "div"

pagination_divs = html.find_all(tag, {"class": "pagination"})
if pagination_divs:

pagination_divs = [
pagination_div
for pagination_div in pagination_divs
if pagination_div.get("style") != "display: none;"

]
pagination_divs = list(set(pagination_divs))
if pagination_divs:

is_recursive = True
for pagination_div in pagination_divs:

if pagination_div.get("style"):
continue

else:
break

# get max page:
max_page = max(

[int(n) for n in re.findall("\d+", pagination_div.
text)]

)
responses[i]["pagination_pages"] = []
request_url = driver.current_url
for j in range(2, max_page + 1):

if "USER" in request_url.upper():
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page_url = [request_url + "?view=awards&page=" +
str(j)]

elif (
"HACKFORUMS" in request_url.upper()
or "CRACKED" in request_url.upper()

):
page_url = [request_url + "&page=" + str(j)]

else:
page_url = [request_url + "?page=" + str(j)]

pagination_response = await get_pages(
url_main=url_main,
headers=headers,
table=table,
pages=page_url,
is_recursive=is_recursive,
db=db,

)
if type(pagination_response) == list:

pagination_response = pagination_response[0]
responses[i]["pagination_pages"].

append(pagination_response)
if minimum_date is not None:

if (
get_youngest_thread_date(

pagination_response["html"],
site=request_url

)
<= minimum_date

):
break

is_recursive = False
parsed_url = urlparse(request_url)
site = parsed_url.scheme + "://" + parsed_url.netloc
if (

not "is_DDoS_Guard_blocked" in responses[i]
and title.upper() != "404 NOT FOUND"

):
if (

("/User-" in request_url)
or ("?action=profile&uid=" in request_url)
or ("CRACKED" in request_url.upper())
and not any([s in request_url for s in ["/Thread", "/

Forum"]])
):

responses[i] = await extract_user_data([responses[i]])
if type(responses[i]) == list:
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responses[i] = responses[i][0]
if "user_info" in responses[i]:

user_database_id = await create_database_entry(
"users", responses[i]["user_info"],

site=site, db=db
)
responses[i]["user_info"]["id"] =

user_database_id
if "/Thread-" in request_url or "showthread.php?tid=" in

request_url:
thread_data = await extract_thread_data(

responses[i], site=request_url
)
if "id" in thread_data:

responses.append(thread_data)
i = i + 1
continue

if thread_data == {}:
i = i + 1
continue

if not "url" in thread_data:
if "?page=" in request_url:

thread_url = request_url.split("?page=")[0]
else:

thread_url = request_url
thread_data["url"] = thread_url

responses[i]["thread_data"] = thread_data
posts_database_ids = []
# create post entries
for idx, thread_page in enumerate(thread_data["pages"]):

if thread_page != {}:
for post in thread_page["posts"]:

db_entry_post = await query(
"SELECT * FROM posts WHERE site = '"
+ site
+ "' AND pid = '"
+ post["pid"]
+ "'"

)
if (db_entry_post == []) or update:

if not "scrape_time" in post:
post["scrape_time"] = scrape_time

post_database_id = await
create_database_entry(

"posts", post, site=site, db=db
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)
if not "posts:" in post_database_id:

post_database_id = "posts:" +
post_database_id

posts_database_ids.
append(post_database_id)

result = await relate_user_to_post(
post,
post_database_id,
site,
url_main,
headers,
db=db,

)
else:

posts_database_ids.
append(db_entry_post[0]["id"])

del thread_data["pages"]
if posts_database_ids != []:

thread_data["posts"] = posts_database_ids
# create thread entries
if not "scrape_time" in thread_data:

thread_data["scrape_time"] = scrape_time
thread_database_id = await create_database_entry(

"threads", thread_data, site=site, db=db
)
thread_data["thread_database_id"] = thread_database_id
if thread_data["author_uid"] != 0:

result = await relate_user_to_thread(
thread_data,
thread_database_id,
site,
url_main,
headers,
db=db,

)
if "posts" in thread_data:

for post in thread_data["posts"]:
result = await relate_post_to_thread(

post_id=post, thread_id=thread_database_id,
db=db

)
if "/Forum-" in request_url or "forumdisplay.php?fid=" in

request_url:
thread_links = []
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responses[i] = extract_links_from_responses(
responses=[responses[i]], url_main=url_main

)
responses[i] = responses[i][0]
if "pagination_pages" in responses[i]:

for idx, response in enumerate(
responses[i]["pagination_pages"]

):
if "links" in response:

thread_links.extend(

responses[i]["pagination_pages"][idx]["links"][
"thread_links"

]
)

if "links" in responses[i]:
thread_links.

extend(responses[i]["links"]["thread_links"])
forum_data = {

"scrape_time": responses[i]["scrape_time"],
"title": responses[i]["title"],
"url": responses[i]["url"],
"nr_of_pagination_pages":

len(responses[i]["pagination_pages"])
+ 1
if "pagination_pages" in responses[i]
else 0,
"threads": list(set(thread_links)),

}
if "?FID=" in request_url.upper():

forum_data["fid"] = re.search(r"fid=(\d+)",
request_url).group(

1
)

forum_database_id = await create_database_entry(
"forums", forum_data, site=site, db=db

)
responses[i]["forum_database_id"] = forum_database_id

i = i + 1
return responses
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A2: Extracting Forum, Thread and User Links From HTML
Listing 2: extract_links_from_html function for gathering forum, thread and user
links in HTML
from urllib.parse import urlparse

def extract_links_from_html(url_main: str, html_dict: dict):
dict_copy = html_dict.copy()
for key, value in dict_copy.items():

if not type(value) == BeautifulSoup:
continue

soup = value
anchors = soup.find_all("a")
page_links = []
thread_links = []
user_links = []
for anchor in anchors:

if not "href" in anchor.attrs:
continue

href = anchor["href"]
if url_main == href:

continue
if ".onion" in href:

continue
if "https://" not in href:

href = url_main + href
if "?" in href:

if "tid" in href and not "?action=whoposted" in href:
thread_links.append(href)

elif "USER" in href.upper() or "member.php?action=profile" in
href:

user_links.append(href)
elif "THREAD" in href.upper():

if "https://" not in href:
href = url_main + href

parsed_url = urlparse(href)
href = parsed_url.scheme + "://" + parsed_url.netloc +

parsed_url.path
thread_links.append(href)

elif "FORUM-" in href.upper() or "?FID=" in href.upper():
page_links.append(href)

if "SINISTER" in url_main.upper() or "HACKFORUMS" in url_main.
upper():

thread_links = []
rows = soup.find_all("tr", {"class": "inline_row"})
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for row in rows:
anchors = row.find_all("a")
for anchor in anchors:

href = anchor["href"]
if url_main == href or ".onion" in href:

continue
if (

"THREAD-" in href.upper()
or "SHOWTHREAD.PHP?TID=" in href.upper()

):
if "https://" not in href:

href = url_main + href
parsed_url = urlparse(href)
href = (

parsed_url.scheme
+ "://"
+ parsed_url.netloc
+ parsed_url.path
+ "?tid="
+ href.split("?tid=")[-1]

)
if " " in href:

href = href.split(" ")[0]
if "&page=" in href:

href = href.split("&page=")[0]
href = href.replace("&action=lastpost", "").replace(

"&action=newpost", ""
)
thread_links.append(href)

html_dict["links"] = {
"page_links": list(set(page_links)),
"thread_links": list(set(thread_links)),
"user_links": list(set(user_links)),

}
return html_dict
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Appendix B: Database Functions

B1: Database Creation Function
Listing 3: Functions used to create entries in the SurrealDB database
import hashlib
import re
from typing import Union
import demoji
from surrealdb import Surreal
from surrealdb.ws import SurrealException, SurrealPermissionException
import datetime
from utils import wrong_input_error, convert_tuples_to_lists
import json

def get_unique_id(original_id: int, username: str, site: str):
concatenated_str = str(original_id) + "-" + username + "-" + site
hash_value = hashlib.sha256(concatenated_str.encode()).hexdigest()
return hash_value

async def query(query: str, db: Surreal):
"""Execute a custom query."""
try:

data = await db.query(query)
except SurrealException as e:

if "already exists" in str(e):
query = query.replace("CREATE", "UPDATE")

data = await db.query(query)
if data:

data = data[0]["result"]
return data

def remove_emojies(
obj: Union[str, list, tuple, set, dict]

): # Source: https://stackoverflow.com/questions/51217909/
removing-all-emojis-from-text

"""Removes all emojies from a string"""
emoji_pattern = re.compile(

"["
"\U0001F600-\U0001F64F" # emoticons
"\U0001F300-\U0001F5FF" # symbols & pictographs
"\U0001F680-\U0001F6FF" # transport & map symbols
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"\U0001F1E0-\U0001F1FF" # flags (iOS)
"\U0001F1F2-\U0001F1F4" # Macau flag
"\U0001F1E6-\U0001F1FF" # flags
"\U0001F600-\U0001F64F"
"\U00002702-\U000027B0"
"\U000024C2-\U0001F251"
"\U0001f926-\U0001f937"
"\U0001F1F2"
"\U0001F1F4"
"\U0001F620"
"\u200d"
"\u2640-\u2642"
"]+",
flags=re.UNICODE,

)
if isinstance(obj, str):

return (
demoji.replace(emoji_pattern.sub(r"", obj), "")
.replace("--", " ")
.replace('"', "'")
.replace("’", "'")
.replace("\\", "\\\\")

)
elif isinstance(obj, (list, tuple, set)):

return type(obj)(remove_emojies(elem) for elem in obj)
elif isinstance(obj, dict):

return {
remove_emojies(key): remove_emojies(value) for key, value in

obj.items()
}

else:
return obj

async def create_with_id(table: str, custom_id: str, data: dict, db:
Surreal):

"""
Create a record with a specified id.
This will raise an exception if the record already exists.
"""
try:

data = remove_emojies(data)
if "url" in data:

if " " in data["url"]:
data["url"] = data["url"].replace(" ", "--")

response = await db.create(table + ":" + custom_id, data)



Appendix B: Database Functions 137

except KeyError as e:
query_string = (

"CREATE "
+ table
+ ":"
+ custom_id
+ " SET "
+ ", ".join(

[
str(k)
+ "="
+ (

'"' + str(v) + '"'
if type(v) != list
else "[" + ", ".join(['"' + str(i) + '"' for i in

v]) + "]"
)
for k, v in data.items()

]
)

)
result = await query(query_string, db)
return result

async def create_database_entry(
table: str = None, values: dict = None, site: str = None, db: Surreal =

None
):

if table is None or values is None:
wrong_input_error(table, str(values))

if "pid" in values:
original_id = str(values["pid"])
username = str(values["uid"])

elif "tid" in values:
original_id = str(values["tid"])
username = str(values["author_uid"])
posts = values["posts"]
values = {key: value for key, value in values.items() if key !=

"posts"}
elif "uid" in values:

original_id = str(values["uid"])
username = values["username"]

elif "nr_of_pagination_pages" in values:
original_id = values["url"]
username = values["title"]
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elif "stats" in values:
original_id = values["site"]
username = values["title"]

else:
dict_str = json.dumps(values)
with open("failed_parse.txt", "a") as f:

f.write(dict_str + "\n")
return

if "site" in values:
site = values["site"]

elif site is None:
raise ValueError("You have to specify the site the data is taken

from")
else:

values["site"] = site
hash_val = get_unique_id(original_id, username, site)
values = convert_tuples_to_lists(values)
try:

await create_with_id(table=table, custom_id=hash_val, data=values,
db=db)

except SurrealPermissionException as e:
if "already exists" in str(e):

database_record = await db.select(table + ":" + hash_val)
if database_record:

database_record = database_record[0]
hash_val = database_record["id"]

old_date = datetime.datetime.
fromisoformat(database_record["scrape_time"])

new_date = datetime.datetime.
fromisoformat(values["scrape_time"])

if new_date > old_date:
await db.update(table + ":" + hash_val, values)

else:
raise e

# to correctly store linked records, they must be manually added not as
strings

if "tid" in values:
if posts != [] and posts != " ":

query_string = (
"UPDATE "
+ ("threads:" + hash_val if not "threads:" in hash_val else

hash_val)
+ " SET posts = ["
+ ", ".join(posts)

)



Appendix C: Machine Learning Code 139

if len(posts) == 1:
result = await query(query_string.replace("[", "") + ";")

else:
result = await query(query_string + "];")

values["posts"] = posts
return hash_val

Appendix C: Machine Learning Code

C1: BERT
Listing 4: Code used to train and find the optimal hyperparameters for a BERT text
classification model
from nlp_func import get_data
from transformers import BertTokenizer
from nlp_func import get_train_test_val_split
import torch
from transformers import BertForSequenceClassification
from torch.optim import AdamW
from transformers import get_linear_schedule_with_warmup
from torch.nn.utils import clip_grad_norm_
from tqdm.notebook import tqdm
import numpy as np
import math
import pandas as pd
from torch.utils.data import TensorDataset, DataLoader, RandomSampler,

SequentialSampler

def encode(docs, tokenizer):
"""
This function takes list of texts and returns input_ids and

attention_mask of texts
"""
encoded_dict = tokenizer.batch_encode_plus(

docs,
add_special_tokens=True,
max_length=512,
padding="max_length",
return_attention_mask=True,
truncation=True,
return_tensors="pt",

)



Appendix C: Machine Learning Code 140

input_ids = encoded_dict["input_ids"]
attention_masks = encoded_dict["attention_mask"]
return input_ids, attention_masks

dataset_file = "./data/prodigy_datasets/categories.jsonl"
text, labels, label_names = get_data(dataset_file)

PRETRAINED_LM = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(PRETRAINED_LM, do_lower_case=True)
EPOCHS = 4
BATCH_SIZE = 16
LEARNING_RATE = 2e-05

df = pd.DataFrame({"text": text, "label": labels})
train_split = 0.8
validate_split = 0.1
train_df, valid_df, test_df = get_train_test_val_split(df, train_split,

validate_split)
train_input_ids, train_att_masks = encode(train_df["text"].values.tolist())
valid_input_ids, valid_att_masks = encode(valid_df["text"].values.tolist())
test_input_ids, test_att_masks = encode(test_df["text"].values.tolist())

train_y = torch.LongTensor(train_df["label"].values.tolist())
valid_y = torch.LongTensor(valid_df["label"].values.tolist())
test_y = torch.LongTensor(test_df["label"].values.tolist())
train_y.size(), valid_y.size(), test_y.size()

train_dataset = TensorDataset(train_input_ids, train_att_masks, train_y)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(

train_dataset, sampler=train_sampler, batch_size=BATCH_SIZE
)

valid_dataset = TensorDataset(valid_input_ids, valid_att_masks, valid_y)
valid_sampler = SequentialSampler(valid_dataset)
valid_dataloader = DataLoader(

valid_dataset, sampler=valid_sampler, batch_size=BATCH_SIZE
)

test_dataset = TensorDataset(test_input_ids, test_att_masks, test_y)
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler,

batch_size=BATCH_SIZE)

N_labels = len(train_df.label.unique())
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model = BertForSequenceClassification.from_pretrained(
PRETRAINED_LM,
num_labels=N_labels,
output_attentions=False,
output_hidden_states=False,

)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
scheduler = get_linear_schedule_with_warmup(

optimizer, num_warmup_steps=0, num_training_steps=len(train_dataloader)
* EPOCHS

)

train_loss_per_epoch = []
val_loss_per_epoch = []

for epoch_num in range(EPOCHS):
print("Epoch: ", epoch_num + 1)
"""
Training
"""
model.train()
train_loss = 0
for step_num, batch_data in enumerate(tqdm(train_dataloader,

desc="Training")):
input_ids, att_mask, labels = [data.to(device) for data in

batch_data]
output = model(input_ids=input_ids, attention_mask=att_mask,

labels=labels)

loss = output.loss
train_loss += loss.item()

model.zero_grad()
loss.backward()
del loss

clip_grad_norm_(parameters=model.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()

train_loss_per_epoch.append(train_loss / (step_num + 1))
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"""
Validation
"""
model.eval()
valid_loss = 0
valid_pred = []
with torch.no_grad():

for step_num_e, batch_data in enumerate(
tqdm(valid_dataloader, desc="Validation")

):
input_ids, att_mask, labels = [data.to(device) for data in

batch_data]
output = model(input_ids=input_ids, attention_mask=att_mask,

labels=labels)

loss = output.loss
valid_loss += loss.item()

valid_pred.append(np.argmax(output.logits.cpu().detach().
numpy(), axis=-1))

val_loss_per_epoch.append(valid_loss / (step_num_e + 1))
valid_pred = np.concatenate(valid_pred)

"""
Loss message
"""
print(

"{0}/{1} train loss: {2} ".format(
step_num + 1,
math.ceil(len(train_df) / BATCH_SIZE),
train_loss / (step_num + 1),

)
)
print(

"{0}/{1} val loss: {2} ".format(
step_num_e + 1,
math.ceil(len(valid_df) / BATCH_SIZE),
valid_loss / (step_num_e + 1),

)
)
model.eval()

test_pred = []
test_loss = 0
with torch.no_grad():
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for step_num, batch_data in tqdm(
enumerate(test_dataloader), desc="Testing model...",

total=len(test_dataloader)
):

# input_ids, att_mask, labels = [data.to(device) for data in
batch_data]

input_ids, att_mask, labels = [data for data in batch_data]
output = model(input_ids=input_ids, attention_mask=att_mask,

labels=labels)

loss = output.loss
test_loss += loss.item()

test_pred.append(np.argmax(output.logits.cpu().detach().numpy(),
axis=-1))

test_pred = np.concatenate(test_pred)

Appendix D: NLP Pipeline

D1: Code For Running NLP Pipeline
Listing 5: Code used to run the NLP pipeline
from nlp_func import run_nlp_pipeline
import pandas as pd
import spacy
import torch
from nlp_func import get_tokenizer, get_torch_device, get_data
from flair.nn import Classifier
from flair.data import Sentence
import flair

def decode_numeric_text_classifier(numeric_label, label_map):
return label_map[numeric_label]

def decode_dict_text_classifier(d):
return max(d, key=d.get)

def get_nlp_pipeline(
best_intent_classifier, best_category_classifier, best_ner_classifier,

use_gpu=True
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):
device = get_torch_device(use_gpu)
if "prodigy" in best_intent_classifier:

intent_classifier = spacy.load(best_intent_classifier)
intent_classifier.max_length = 2000000

else:
intent_classifier = torch.load(best_intent_classifier)
intent_classifier.eval()
intent_classifier.to(device)

if "prodigy" in best_category_classifier:
category_classifier = spacy.load(best_category_classifier)
category_classifier.max_length = 2000000

else:
category_classifier = torch.load(best_category_classifier)
category_classifier.eval()
intent_classifier.to(device)

if best_ner_classifier is None:
ner_classifier = Classifier.load("ner-ontonotes-fast")
ner_classifier.to(device)

elif "PRODIGY" in best_ner_classifier.upper():
ner_classifier = spacy.load(best_ner_classifier)
ner_classifier.max_length = 2000000

return intent_classifier, category_classifier, ner_classifier

def format_classification(
text_df, intent_classifier_dataset_file,

category_classifier_dataset_file
):

if all(
[

type(el) == int or type(el) == float
for el in list(text_df["intent_classification"])

]
):

label_map = get_data(intent_classifier_dataset_file,
return_label_map=True)

label_map = {v: k for k, v in label_map.items()}
text_df["intent_classification"] = text_df["intent_classification"].

apply(
lambda x: decode_numeric_text_classifier(x, label_map)

)
elif all([type(el) == dict for el in

list(text_df["intent_classification"])]):
text_df["intent_classification"] = text_df["intent_classification"].

apply(
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decode_dict_text_classifier
)

if all(
[

type(el) == int or type(el) == float
for el in list(text_df["category_classification"])

]
):

label_map = get_data(intent_classifier_dataset_file,
return_label_map=True)

label_map = {v: k for k, v in label_map.items()}
text_df["category_classification"] =

text_df["category_classification"].apply(
lambda x: decode_numeric_text_classifier(x, label_map)

)
elif all([type(el) == dict for el in

list(text_df["category_classification"])]):
text_df["category_classification"] =

text_df["category_classification"].apply(
decode_dict_text_classifier

)
return text_df

def get_text_classification_prediction(
text, model, pretrained_lm_name=None, tokenizer=None, use_gpu=True

):
if isinstance(model, spacy.lang.en.English):

doc = model(text)
return doc.cats

else:
if tokenizer is None:

tokenizer = get_tokenizer(
model.base_model_prefix.upper(), pretrained_lm_name

)
device = get_torch_device(use_gpu, print_message=False)
encoded_text = tokenizer(

text, padding=True, truncation=True, return_tensors="pt"
).to(device)
with torch.no_grad():

output = model(**encoded_text)
prediction = torch.argmax(output.logits, dim=1).item()
del encoded_text
if use_gpu:

torch.cuda.empty_cache()
return prediction
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def get_NER_prediction(text, model, use_gpu=True):
if isinstance(model, flair.models.sequence_tagger_model.SequenceTagger):

sentence = Sentence(text)
device = get_torch_device(use_gpu, print_message=False)
sentence.to(device)
model.predict(sentence)
spans = sentence.get_spans("ner")
tags = []
for span in spans:

span_text = span.tokens[0].form
span_tag = span.tag
tags.append({span_text: span_tag})

del sentence
torch.cuda.empty_cache()

elif isinstance(model, spacy.lang.en.English):
doc = model(text)
tags = []
for tag in doc.ents:

span_text = tag.text
span_tag = tag.label_
tags.append({span_text: span_tag})

return tags

def run_nlp_pipeline_on_row(
row,
intent_classifier,
category_classifier,
ner_classifier,
pretrained_lm_name=None,
tokenizer=None,
use_gpu=True,

):
if pd.isna(row["combined_post_body"]):

text = row["body"]
else:

text = row["combined_post_body"]
if pd.isna(text):

if not pd.isna(row["title"]):
text = row["title"]

else:
text = ""

try:
intent_prediction = get_text_classification_prediction(
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text, intent_classifier, pretrained_lm_name, tokenizer, use_gpu
)
category_prediction = get_text_classification_prediction(

text, category_classifier, pretrained_lm_name, tokenizer,
use_gpu

)
ner_prediction = get_NER_prediction(text, ner_classifier, use_gpu)

except:
return row

row["intent_classification"] = intent_prediction
row["category_classification"] = category_prediction
row["ner_tags"] = ner_prediction
return row

def run_nlp_pipeline(
df,
best_intent_classifier,
best_category_classifier,
best_ner_classifier,
intent_classifier_dataset_file,
category_classifier_dataset_file,
model_type,
pretrained_lm_name,
use_gpu=True,

):
intent_classifier, category_classifier, ner_classifier =

get_nlp_pipeline(
best_intent_classifier, best_category_classifier,

best_ner_classifier, use_gpu
)
tokenizer = get_tokenizer(model_type, pretrained_lm_name)
raw_classified = df.progress_apply(

lambda row: run_nlp_pipeline_on_row(
row,
intent_classifier=intent_classifier,
category_classifier=category_classifier,
ner_classifier=ner_classifier,
tokenizer=tokenizer,
use_gpu=use_gpu,

),
axis=1,

)
formatted_classified = raw_classified.copy()
formatted_classified = format_classification(

formatted_classified,
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intent_classifier_dataset_file,
category_classifier_dataset_file,

)
return raw_classified, formatted_classified

MODEL_TYPE = "BERT"
PRETRAINED_LM_NAME = "bert-base-uncased"
best_intent_classifier = "./models/10_percent/textcat/categories/BERT/

bert-base-uncased_4_epochs_2e-05_lr_16_batch_size.pt"
intent_classifier_dataset_file = "./data/prodigy_datasets/categories.jsonl"
best_category_classifier = (

"./models/10_percent/textcat/content_categories/prodigy/model-best"
)
category_classifier_dataset_file = "./data/prodigy_datasets/

content_categories.jsonl"
best_ner_classifier = "./models/NER/10_percent/PRODIGY/model-best/"
USE_GPU = True
raw_classified, formatted_classified = run_nlp_pipeline(

df,
best_intent_classifier,
best_category_classifier,
best_ner_classifier,
intent_classifier_dataset_file,
category_classifier_dataset_file,
MODEL_TYPE,
PRETRAINED_LM_NAME,
USE_GPU,

)
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