
Summary

Soft-errors in an operating circuit are characterised by a bit-flip, the consequence of which
varies in severity. The main natural source of these is cosmic rays which are highly charged
particles originating from outer space. This makes it hard to eliminate soft-errors at their
source. Furthermore, soft-errors are becoming an increasing concern with the constant
demand and development of chips with increased density. This motivates the search for
new and efficient soft-error mitigation techniques.

In the period between 2016 and 2018, several experiments were conducted where
embedded computers were subjected to high levels of ionising radiation resembling the
radiation caused by cosmic rays. During these experiments logs from the system operations
were collected to supply data for later analysis and development of detection and resilience
methods. One dataset created based on these experiments is the “LANSCE 18 Cruise”
dataset. This dataset consists of logs from repeated simulations of a car driving with
cruise control.

In 2022 the first study analysing the “LANSCE 18 Cruise” dataset was presented. Here
different data representations to improve the preconditions for detecting soft-errors with
machine learning were explored. In this study, we continue researching the “LANSCE 18
Cruise” dataset although with a focus on exploring different relevant machine-learning
models. Note that we also utilise two extensions to the “LANSCE 18 Cruise” dataset.

Typically for this type of dataset, the data is naturally represented as a time-series.
That is a collection of observations over time. However, we further experiment with the
data transformation known as matrix profile. A matrix profile is a meta time-series which
is developed to support time-series analysis tasks.

The approach of this study is to explore a variety of sequence-based machine-learning
models as potential solutions to the binary classification problem of predicting whether
or not a soft-error has occurred in a given log. The models in focus are: Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), Random Convolutional Kernel Transform (ROCKET), and HIVE-COTE 2.0
(HC2). Within the experimentation on the original data representation, ROCKET reached
the highest accuracy of 0.67. However, transforming the data to matrix profiles was found
to yield a general increase in accuracy. Here ROCKET reached an accuracy of 0.96 which
is a percentage increase of about 43%. Furthermore, when transforming the data to matrix
profiles, GRU was similarly found to reach an accuracy of 0.99 which is a percentage
increase of about 94%. These results suggest that machine learning is a promising approach
for detecting soft-error occurrences in PID-controlled environments. It further indicates
that transforming the data to matrix profiles yields valuable information for the machine
learning models.
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Introduction 1
In an operating circuit, a Single Event Error (SEE) is a disruption caused by an electrical
disturbance. When discussing naturally occurring SEEs the electrical disturbance is
typically caused by a single ion passing through or near a sensitive node in the circuit.
The effect of the SEE may be destructive or non-destructive and are as such divided into
two groups namely hard- and soft-errors, of which we focus on the latter. Soft-errors are
characterised as a bit-flip within a memory cell caused by an electrical disturbance. The
following consequences of which can vary in severity. The main source of soft-errors is
cosmic rays from outer space which makes them hard to eliminate at their source. The
rate at which these types of errors occur depends on different factors such as altitude
and chip density. Soft-errors are of increasing concern due to the constant demand and
development of chips with increased density. [1, 2]

The current methods used for soft-error detection and mitigation among others include
Error correcting code (ECC) and replication at both the software and hardware level. All
of these techniques add an extra layer of hardware requirements and complexity that with
other techniques possibly could be solved more efficiently. [3]

In 2018 the “LANSCE 18 Cruise” dataset was created, where a system was subjected to a
high level of ionising radiation resembling that caused by cosmic rays. This was achieved
by exposing the system to an accelerated neutron beam. The dataset as such consists of
system operation logs of which a subset registers occurrences of soft-errors. The purpose of
creating this dataset was to provide real-world data for later analysis to develop detection
and resilience methods.[4]

Mikkelsen and Bonde [3] presented in 2022 their results from an initial analysis and
experimentation of the “LANSCE 18 Cruise” dataset. The goal of this study was to explore
different data representations to improve the preconditions for detecting soft-errors with
machine learning by experimenting with different sampling approaches.

In this study, we continue this research on the “LANSCE 18 Cruise” dataset. Here
we shift the focus from a general analysis and understanding of the dataset to exploring
different relevant machine-learning models.
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Problem Analysis 2
This chapter will present further relevant domain knowledge to continue the research of
Mikkelsen and Bonde [3]. This includes an introduction to the “LANSCE 18 Cruise” dataset
and PID controllers. We furthermore present some related works among others in terms
of machine-learning models that have shown potential in similar tasks.

2.1 The “LANSCE 18 Cruise” Dataset

Within this study, we employ the “LANSCE 18 Cruise” dataset[5]. It was created back in
2018 to capture real-world occurrences of soft-errors in system operation logs. The dataset
was created by simulating a 2017 Toyota Corolla driving on flat ground and exposing the
PID controller, representing the cruise control, to an accelerated neutron beam. [4, 5]

The dataset includes a total of 6 860 independent system log files from different experiment
runs. These log files fall into two categories; nominal- and experiment-type. Nominal-type
logs were created while the accelerated neutron beam was turned off and acted as the
ground truth for the expected behaviour of the system given the experiment settings.
Experiment-type logs were created while the beam was on, however, it is not guaranteed
that these experience any abnormal behaviour. Abnormal behaviour within a log file is
labelled with an off-nominal flag. This flag is set by comparing each experiment-type
log with a nominal-type log from experiments with the same settings. Only 58 of the
6 725 experiment-type logs sets the off-nominal flag. Logs from experiments with the same
settings and with no abnormal behaviour are equivalent which leaves the dataset with
only 111 unique log files. Table 2.1 shows some relevant numbers in terms of the size of
the dataset.

Type Number of logs
Experiment 6 725
Nominal 135
Total 6 860

Table 2.1. Dataset numbers of the original LANSCE 18 Cruise dataset [5].

2.2 PID Controllers

PID controllers are widely used in the industry today as a mechanism for automatic
feedback control. They work by applying corrections to a control function given the current
values of the system. This is done by continuously computing an error value 1 and then
applying a correction based on the three terms: proportional, integral and derivative. [6]

1The difference between a desired setpoint and a measured process variable
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A typical example of a PID controller is the cruise control in a car. Here the measured
process variable is the current speed of the car while the setpoint is the desired speed.
When the environment changes eg. when the car reaches a hill, then the engine power
needed to keep the desired speed is increased as a result. The PID controller then restores
the speed with minimal delay by regulating the power from the engine in a controlled
manner.

In summary, PID controllers regulate system outputs for different processes even though
these may be disturbed, such as a car reaching a hill. However, if the integrity of the
PID controller itself is compromised eg. by a soft-error, bit-injection, or if a sensor in the
process is faulty and as a consequence feeds wrong information to the PID controller, this
will cause a problem for the overall process. It would therefore be interesting to research
whether we can detect faults in the system given the output from a PID controller or the
process it is interacting with.

2.3 Related Work

Machine learning has shown great potential in domains such as maintenance and anomaly
detection. Machine learning models can learn complex patterns and behaviours that can
be used to efficiently solve tasks that would otherwise be difficult and computationally
complex to solve. [7, 8]

One category of machine learning models which we focus on in this study is sequence-
based models. These types of models train on sequential data such as time-series and text
streams. A time-series is a collection of observations over time that can be used to analyse
trends and patterns. The logs from the “LANSCE-18 Cruise” dataset can be represented
as time-series as it is comprised of data logged over time. As we represent the dataset as
such, the data transformation known as matrix profile would be worth investigating.

In regards to the sequence-based machine learning models, two subcategories are
of interest in this study namely the Recurrent Neural Network (RNN) and time-series
classification models. We will in the following sub-sections introduce relevant machine
learning models within these two sub-categories as well as matrix profiles. A more detailed
description of all of these can be found in Chapter 4.

2.3.1 Matrix Profile

Yeh et al. [9] presented in 2016 the data transformation known as Matrix Profile which
can be used to support different time-series analysis tasks. Two fundamental tasks are the
identification of anomalies and trends. Given this research Benschoten et al. [10] presented
in 2020 an API which leverages matrix profiles. Hence, this API supplies an array of
functions which can support different time-series analysis tasks utilising matrix profiles.

2.3.2 Recurrent Neural Network

RNN is a type of Neural Network (NN) that handles sequential data and has the notion
of memory. Hence, what previously appeared in a sequence affects the evaluation of the
current step in the sequence. The simple RNN model often suffers from the exploding or
vanishing gradient problem resulting in suboptimal learning. [11]

4
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Hochreiter and Schmidhuber [12] presented in 1997 a model called Long Short-Term
Memory (LSTM) that mitigates this exploding/vanishing gradient problem by considering
both long- and short-term memory. It achieves this by introducing a range of gates that
helps to forget and retain certain information when passing the output to the next step
in the sequence. The LSTM model has gained widespread popularity and has for example
been used by Google and Facebook to improve their services [13].

Chung et al. [14] introduced in 2014 a model called Gated Recurrent Unit (GRU) that is
similar to LSTM in that they both retain long-term memory. GRU differentiates itself by
having a simpler architecture and is, by extension, less computationally expensive. This
makes it an easier model to train. However, on more complex tasks, the LSTM model still
outperforms the GRU model.

2.3.3 Time-series Classification

Time-series classification is another subcategory of sequence-based machine learning
models. These models are eg. used to identify unusual and anomalous behaviour within
a time-series[15]. Two state-of-the-art time-series classification models [16] are Random
Convolutional Kernel Transform (ROCKET)[17] and HIVE-COTE 2.0 (HC2)[18].

Dempster et al. [17] presented in 2020 a fast and accurate time-series classification model
called ROCKET. It works by initialising a large number of random convolutional kernels
that are used to transform the data into a linear classification problem. This is in part
what makes ROCKET appealing as it can achieve similar results to other state-of-the-art
models in a fraction of the time.

Bagnall et al. [18] introduced in 2021 the second major iteration of their HIVE-COTE
time-series classification ensemble model. HC2 combines classification models from different
domains. The previously described ROCKET[17] model is as of the second major iteration
also part of this model.This ensemble model greatly outperforms other state-of-the-
art time-series classification models when testing the performance on the UEA archive
datasets[19]. The UEA archive contains a collection of a broad range of time-series
classification datasets.

2.4 Problem Statement

Soft-errors are becoming an increasing concern as chip density grows. Furthermore, current
mitigation techniques require additional or specialised hardware. This motivates the search
for new and more efficient approaches for mitigating soft-errors. Machine learning is a
natural area to explore as it has shown to have potential in similar complex tasks. The
“LANSCE 18 Cruise” dataset contains data that can be used to train a machine learning
model to classify soft-error occurrences and by extension, help to mitigate these in PID-
controlled environments. We have, given these considerations, formulated the following
problem statement:

Given logs from a PID-controlled system, to what extent can a machine-learning classifier
detect the effect that soft-errors have on a system?
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Datasets 3
We will, in this chapter, present the datasets used in this study to get an understanding
of the data used when training the machine learning models in our experiments. These
datasets include the “LANSCE 18 Cruise” dataset[5] introduced in Section 2.1 as well as
two simulated extensions that were created at a later date. The chapter is based on: the
“LANSCE 18 Cruise” dataset documentation[4], the findings of Mikkelsen and Bonde [3],
and our own analysis.

3.1 Dataset Creations

This section will provide a brief summary of the creation process of the three datasets
used. These are presented in order of their creation.

3.1.1 LANSCE 18 Cruise

The “LANSCE 18 Cruise” dataset[5] was created in 2018 at Los Alamos Neutron Science
Center (LANSCE), New Mexico, USA. As presented in Section 2.1, the dataset was created
by simulating a 2017 Toyota Corolla driving on flat ground. In the experimental setup
used to construct the dataset, two Arduino Uno boards were used. Here one ran the PID
controller, representing the cruise control of the car, while the other acted as the plant,
representing the actual car with simple physics modelling. The Arduino Uno board running
the PID controller was subjected to ionising radiation from an accelerated neutron beam.
During the experiments, simulating the car driving, the CAN data of the two boards
were captured. This information was then used to create the log files which constitute the
“LANSCE 18 Cruise” dataset.

Note that the log files of this dataset are divided into two types, as presented in Section 2.1.
The files of the first type, referred to as ’nominal’, are from experiments conducted with
the accelerated neutron beam turned off. On the other hand, the files of the second type,
referred to as ’experiment’, are from experiments conducted with the accelerated neutron
beam turned on.

3.1.2 Nominal Extension

Section 2.1 remarks that the “LANSCE 18 Cruise” dataset in fact only contains 111 unique
log files. To provide a larger dataset of unique log files the nominal extension was created.
This extension was first presented in [3]. It was constructed by simulating the creation
process of the “LANSCE 18 Cruise” dataset (Section 3.1.1). This extension only contains
log files that all would have been considered nominal-type in the original dataset.
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3.1.3 Fail-injected Extension

During this project, we gained access to another newly created extension to the “LANSCE
18 Cruise” dataset. The goal of this extension was to supply a number of log files that shows
abnormal behaviour. As described in Section 3.2.2 this means that the log files at some
point deviate in the high word, recorded from the CAN bus, compared to a nominal-type
log with the same settings.

This dataset was created by simulating the creation process of the “LANSCE 18 Cruise”
dataset, similar to the nominal extension. The difference is that soft-errors were simulated
while creating the dataset. This was done by using fail-injection in the form of bit-flips.
Some concepts and numbers presented in Section 3.2 are used to introduce the intuition
behind the fail-injection implementation.

The two main aspects of the fail-injection to consider for understanding the implementation
are where and when the bit-flips occur.

Firstly, during the creation of the “LANSCE 18 Cruise” dataset, the sum of a byte
array1 from the program memory was used in the computations performed by the PID
controller. Simulating a soft-error was thus done by flipping one bit in this byte array. The
bit to be flipped was chosen by using a uniform distribution. Consequently, when the bit
is flipped the sum of the byte array would change from 0 to a power of 2.

The second aspect to consider is when the bit-flip is injected. These injections happen
when the controller is performing its computations. Thus the abnormal behaviour in the
log appears when the controller sends information about the torque to the plant. This
will happen 1 500 times in each log. One of these 1 500 steps is sampled from a truncated
normal distribution with a mean of 730 and a standard deviation of 447. The lower bound
of this distribution is 0 while the upper bound is 1 499. This normal distribution is found
by analysing the logs from the “LANSCE 18 Cruise” dataset that experience abnormal
behaviour and at what time step this happens.

3.2 Structure of the Datasets

The three datasets presented in section 3.1 have a similar structure as the two extensions
simulate the “LANSCE 18 Cruise” dataset creation process. Therefore, unless otherwise
specified, it can be assumed that all information in the following section pertains to all
three datasets.

3.2.1 Naming Scheme of Dataset Files

The datasets consists of a number of logs. These are identified by a unique run ID, which
is further used as a naming scheme to save each log into individual CSV files. The run IDs
consist of six parts: four experiment configurations, the type, and the number of the run.
The four experiment configurations, henceforth referred to as settings, are those used as
input to the experimental setup of the “LANSCE 18 Cruise” dataset creation. The types
used are: ’nominal’, ’experiment’, and ’simulation’. Here, as already stated in section 2.1
and section 3.1.1, the logs of the “LANSCE 18 Cruise” dataset are either of the nominal-

1Initialised as a zero byte array
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or experiment-type. On the other hand, the logs from the two extensions are all of the
simulation-type.

3.2.2 Log Structure

The log of each run is saved as a table in CSV files. This table, as can be seen in Table 3.1,
consists of seven columns namely: timestamp, CAN ID, high word, low word, mem. sum
and off nom.. We will here present the meaning of the columns relevant to this study.

CAN ID is the descriptive name associated with the ID field of the logged CAN message.
We delve deeper into these CAN IDs later in this section. The high word column contains
the first 32-bits of the CAN-data, from the logged CAN message. The values are saved
as signed integers. The mem. sum column is comprised of the sum of a byte array in
the program memory at the time the corresponding CAN message was logged. This byte
array was used to increase the sensitivity of the system to soft-errors. Finally, the off nom.
column shows the status of the ’off nominal’ flag. This flag is used to indicate if a run
deviates in behaviour from a nominal-type run with the same settings. Thus, ’0’ means
that the run has not yet deviated. When it is discovered that the log deviates from the
expected behaviour the flag is raised and stays as such for the rest of the log.

Timestamp CAN ID HW LW flux Mem. sum Off nom.
1 538 668 440.030 839 PLANT_INFO_SimulationTime 0 0 368 372 0 0
1 538 668 440.031 831 PLANT_INFO_VehicleSpeed 361 0 368 372 0 0

...
...

...
...

...
...

...
1 538 668 496.918 876 CTRL_INFO_TorqueCommand 64 661 0 526 246 4 1
1 538 668 496.929 3 CTRL_INFO_VehSpd_ECHO 1 500 0 526 246 4 1

Table 3.1. The first and last entries of the ”kp122ki13kd1sp13experiment29” log.
Note that high word and low word have been abbreviated to HW and LW respectively.

There are four types of CAN IDs present in the datasets, all of which are shown in Table 3.2.
Together these four can be considered a step within a given log. Hence, the logs consist of
these CAN IDs in a repeated pattern, or equivalently they are comprised of multiple steps.

The CAN IDs ’PLANT_INFO_SimulationTime’, ’PLANT_INFO_VehicleSpeed’,
and ’CTRL_INFO_TorqueCommand’ are the ones used when determining whether or
not to raise the off-nominal flag. The flag is as such raised when the high word of these
CAN messages differs from a corresponding nominal-type log.

Hex
ID

Dec
ID

Descriptive
name in DB Sender Purpose High word

meaning
Low word
meaning

130 304 PLANT_INFO_
SimulationTime Plant Report the simulation time

steps, beginning at zero
Simulation
time in ”steps” NA

132 306 PLANT_INFO_
VehicleSpeed Plant Report the current speed

from the Plant (vehicle) Current velocity NA

210 528 CTRL_INFO_
TorqueCommand Controller The controller command

to set the torque
Calculated torque
value NA

211 529 CTRL_INFO_
VehSpd_ECHO Controller Echo back the speed used

in the torque calculation Current velocity NA

Table 3.2. The CAN IDs present in the dataset and relevant information pertaining
to these [4].
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3.2.3 Central Numbers

The numbers presented in this section exclude the three outliers2 that deviate from the
normal length of a log file. Further details on these three outliers can be found in Mikkelsen
and Bonde [3].

The “LANSCE 18 Cruise” dataset contains 6 857 logs where 134 are of the nominal-type
and the rest are of the experiment-type. However, as presented in Section 2.1 the “LANSCE
18 Cruise” dataset only contains 111 unique logs due to repeated execution of the same
settings. Excluding the three outliers results in 108 unique runs. Of these unique logs, 52
are of the nominal-type and the other 56 are of the experiment-type. Note that given the
way we extract the unique samples all 56 logs of experiment-type raises the off-nominal
flag. A full list of the run IDs of these 56 runs can be found in Appendix B. The nominal
extension dataset contains 794 630 logs that can be considered nominal-type. Additionally,
the fail-injected extension dataset on the other hand contains 100 000 logs that all sets the
off-nominal flag. Finally, Common for all three datasets is that each log consists of 1 500
steps (Section 3.2.2) which translates to 6 000 log entries.

2‘kp147ki5kd1sp7experiment57’, ‘kp274ki9kd3sp15experiment77’, and ‘kp695ki5kd2sp13experiment65’
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Background 4
In this chapter, we present the models used in our experimentation in a more formalised
manner. We first define a time-series as this is how we represent the data. Matrix profiles
are also defined as we use this data transformation to highlight anomalies in the data. We
then examine the different machine learning models used in this study, which are divided
into baseline-, RNN-, and time-series classifications models. Finally, we present the metrics
used for evaluating the performance of the machine learning models.

4.1 Time-series

As presented in Section 2.3, a time-series is a collection of observations gathered over time.
These observations can then be used to analyse trends and patterns.

Definition 4.1.1. A time-series T is a sequence of n real-valued vectors containing d
observations each. That is T = t1, t2, . . . , tn where ti ∈ Rd for 1 ≤ i ≤ n.

From Definition 4.1.1 we see how each time step ti contains d observations. An example
of these observations, related to the datasets used in this study, could be: Given a log
from the datasets, a time-series with 1 500 time-steps (Section 3.2.3) where each time-step
is a two-dimensional vector can be generated. Let T be such a time-series. Then each
step contains two observations such that ti = ⟨θi, ψi⟩ for 1 ≤ i ≤ 1500. Here θi and ψi

are the high words of the log entries, at time-step i, with the CAN IDs “CTRL_INFO_-
TorqueCommand” and “PLANT_INFO_VehicleSpeed” respectively.

If the value d in Definition 4.1.1 is equal to one, the time-series is univariate. Whereas
if d is greater than one, the time-series is multivariate.

We define a subsequence of a time-series as seen in Definition 4.1.2. Note that a subsequence
given this definition is in itself also a time-series.

Definition 4.1.2. Given a time-series T with length n, a subsequence Si,L of T is a
sampling of length L ≤ n of contiguous position from i. That is
Si,L = ti, ti+1, . . . , ti+(L−1) for 1 ≤ i ≤ n− L+ 1.

4.2 Matrix Profile

When analysing time-series data, one is usually interested in identifying trends and
anomalies [20]. A trend within a time-series is a repeated subsequence in regard to its
visual “shape”, whereas an anomaly is a subsequence that is unique from the rest of the
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time-series. In our case, we want to identify if an anomaly has happened within a log
in the dataset. A data structure developed to ease the process of finding anomalies in a
time-series is matrix profiles[10]. A matrix profile is intuitively a collection of comparisons
between all subsequences of a specific length. It stores the difference between a subsequence
and its most similar counterpart among all other subsequences of the same length. If a
sub-sequence is part of a trend the difference stored by the matrix profile would be zero,
or close to zero if the data contains noise. On the other hand, as anomalies usually look
unique they lead to high values in the matrix profile, also called discords. In Figure 4.1, we
see an example, from the ”Lance 18 Cruise” dataset, of how the anomaly due to its unique
“shape” leads to high values in the matrix profile compared to the rest of the profile.

Figure 4.1. (Top) The high word values of the ’CTRL_INFO_TorqueCommand’
from the log ’kp105ki8kd1sp20experiment54’ plotted as a time-series, with the
abnormal behaviour marked. (Bottom) The matrix profile of the time-series from
the above plot, with the top discord marked.

When formally defining a matrix profile we first need to understand the distance function
used to compare two time-series. To determine the distance between two time-series T

and S of the same length n, the first step is to individually z-normalise them. That is
where each time-series is normalised to have a mean of zero and a standard deviation of
one. This is done to not let the distance measure be affected by the off-sets of the two
time-series and rather let it be an evaluation of their respective “shapes”. Once the two
time-series have been z-normalised the Euclidean distance function is applied as can be
seen in Equation 4.1.[21, 22]

dist(T,S) =

√√√√ n∑
i=1

(ti − si)2 (4.1)

As noted in Section 4.1 a subsequence of a time-series is also a time-series. Thus we can
use the approach just presented to compute the distance between two subsequences of the
same length as well. This leads to the definition of a matrix profile below.[22, 23]

Definition 4.2.1. Given a univariate time-series T with length n, the matrix profile
PL ∈ Rn−L+1 of T is a meta time-series that consists of the shortest z-normalised
Euclidean distance of each subsequence of length L and all other subsequences of the
same length. That is PL = p1, p2, . . . pn−L+1 s.t. pi = min{dist(Si,L,Sj,L)|∀j ∈
{1, 2, . . . , n− L+ 1} ∧ i ̸= j}
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Remark When talking about matrix profiles the term window size is used interchangeably
with the considered subsequence length L.

Remark As subsequences of a time-series T that are close to each other in regards to
starting position have a tendency to be similar in distance, an exclusion zone is applied
when computing the matrix profile. Applying the exclusion zone to the matrix profile has
the following effect: Subsequences, where the starting point is in the exclusion zone, are
disregarded when determining the shortest distance to other subsequences. The exclusion
zone is set to be the area of half the window size, L, both before and after the start point,
i of the subsequence that is considered Si,L

4.3 Baseline Models

In this section, we present the models Logistic Regression (LR) and Support Vector
Machine (SVM) based on [24, 25]. We refer to these as baseline models as the results
of experiments run with these models (Section 6.3) are used as a baseline for the general
experimentation.

Before presenting these two models we introduce a bit of notation. The goal of the
machine learning models is to predict the class of the time-series given as input. The class
of a time-series is set to one if abnormal behaviour caused by soft-errors is present and zero
otherwise. We differentiate between the actual class label of a time-series y ∈ {0, 1} and
the predicted class ŷ ∈ {0, 1}. Finally, the dataset of m univariate time-series is denoted
as X = {Ti|∀i ∈ {1, 2, . . . ,m}} where all time-series are of the same length n.

4.3.1 Logistic Regression

Once the LR model is fitted we predict the target value ŷnew of a new sample Tnew

by first computing the probability of that sample experiencing an anomaly. That is
P (ynew = 1|Tnew). This probability is computed using the function p̂ from Equation 4.2.
Here w ∈ Rn is the weight vector and b is the bias term. Note that the dimensionality of the
weight vector and the length of Tnew must be equal to the length of the time-series within
the dataset X . After computing p̂, a threshold of 0.5 is used to determine the predicted
class as seen in Equation 4.2.

ŷnew =

{
1, p̂(Tnew) ≥ 0.5

0, otherwise
where p̂(Tnew) =

1

1 + e(−Tneww−b)
(4.2)

Given a dataset X of m samples we fit the model by minimising the following cost function
(Equation 4.3) in regards to the weights and the bias term of the prediction function p̂.
These updated weights and bias term are then used in Equation 4.2 when predicting the
target values of the given samples.

w, b = argmin
w,b

m∑
i=1

(−yilog(p̂(Ti))− (1− yi)log(1− p̂(Ti))) +
1

2
||w̃||22 (4.3)

In Equation 4.3 w̃ ∈ Rn+1 is the vector resulting from prepending the bias term to the
weight vector such that w̃ = [bw] = ⟨b, w1, . . . , wn⟩.
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4.3.2 Support Vector Machine

For a binary classification task, the SVM optimises the decision boundary given by
Equation 4.4 by maximising the margin. The margin is the smallest distance between
the decision boundary and any samples used when optimising the model. If the dataset
is non-linearly separable the samples are mapped to a higher-dimensional feature space
where they become linearly separable.

db(T) = wϕ(T) + b (4.4)

In Equation 4.4, ϕ : Rn → RD is a fixed mapping function which maps T of length n

to a feature space where the data is linearly separable. It is typically the case for this
mapping that n < D. Furthermore, w ∈ RD is the weight vector of the constructed
decision boundary and b is the bias term.

Given a dataset X of m samples and the vector y ∈ Rm where yi is the class label of
sample Ti for all i = 1, . . . ,m we optimize the db function using Equation 4.5. With this
optimization problem, we try to maximise the margin by minimising ||w||2. As the dataset
may not necessarily be perfectly separable ζi is added to the optimization problem. ζi is
a distance measure we allow sample Ti for i = 1, . . . ,m to be from its correct margin
boundary.

w, b = argmin
w,b,ζ

1

2
||w||2 +

m∑
i=1

ζi

subject to: yi(wϕ(Ti + b)) ≥ 1− ζi,

ζi ≥ 0, i = 1, . . . ,m

(4.5)

The optimization problem found in Equation 4.5 can be transformed into the problem
found in Equation 4.6 with the use of Lagrange multipliers.

α = argmin
α

1

2
αTQα− eα

subject to: yα = 0,

0 ≤ αi ≤ 1, i = 1, . . . ,m

(4.6)

In Equation 4.6 e ∈ Rm is a vector of all ones, and m is equal to the number of samples
in the dataset X for which the model is optimised. Secondly, α ∈ Rm is the vector of
the Lagrange multipliers αi for i = 1, . . . ,m. Lastly, Q is a m ×m positive semi-definite
matrix, where the entries are given by Qij ≡ yiyjK(Ti,Tj) for all i, j ∈ {1, 2, . . . ,m}.
The function K used when computing the entries of Q is a kernel function, that is
K(Ti,Tj) = ϕ(Ti)ϕ(Tj). The kernel trick is used when computing the Kernel function.
This allows for the dot product to be computed between two vectors that are mapped to
a higher dimensional space, without explicitly computing the mapping to that space.

When the optimisation problem, found in Equation 4.6, has been solved we can predict
the class values of new samples. This is done by applying the sign function to the updated
decision boundary function db′ which is given by the following equation.

ŷnew =

{
0, sign(db′(Tnew) = −1

1, otherwise

db′(Tnew) =
∑

yiαiK(Ti,Tnew) + b, ∀Ti ∈ S

(4.7)
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In the updated decision boundary function db′ in Equation 4.7 we sum over support
vectors and their respective target values and Lagrange multipliers. Support vectors are
the samples, from the dataset X used when solving Equation 4.6, that lies within the
margin. The collection of support vectors is denoted S. Only the support vectors are used
in db′ as the Lagrange multiplier, α, is zero for all other samples.

4.4 Recurrent Neural Network
We will, in this section, present the three types of RNN models used in our experimentation:
Simple RNN, LSTM, and GRU. We focus on the internal structure and the computations
performed on the samples given as input. These samples are part of a dataset X = {Ti|∀i ∈
{1, 2, . . . ,m}} of m samples. Similarly to Section 4.3 all time-series within the dataset are
of the same length n. However, when using the models presented in this section the dataset
is no longer restricted to univariate time-series. Instead, the real-valued vectors of all time-
series within the dataset should have the same dimensionality d (Definition 4.1.1). Finally,
the loss function and optimizer we use to train these three models in our experimentation
are presented in Section 4.4.4.

4.4.1 Simple Recurrent Neural Network

Figure 4.2. Visualisation of the chain-like structure of the simple RNN [26].

The Simple RNN refers to the model introduced by Elman in 1990 [11]. This model has a
chain-like structure of repeating modules called hidden cells (Figure 4.2). In this structure
each time step tj for j = 1, . . . n of a time-series T are fed sequentially to the hidden cells
together with the output of the previous hidden cell. Thus the output of a hidden cell
hj ∈ Rh at time step j is computed using Equation 4.8. Here h is the number of hidden
units within the cell. To compute the output of a hidden cell, two separate weight matrices
are used namely W and U . The weight matrix W ∈ Rh×d is applied to the current time-
step tj . Thus d is equal to the dimensionality of the time-steps within T (Definition 4.1.1).
The matrix U ∈ Rh×h is on the other hand applied to the output of the previous hidden
cell. Finally, b ∈ Rh is the bias vector and tanh is the hyperbolic tangent function. [27]

hj = tanh(W tj + Uhj−1 + b) for j = 1, . . . , n where h0 = 0 (4.8)

The weights of the model are updated at each time step by doing backpropagation through
time (BPTT) on the output of the current time step [28]. With BPTT the RNN model is
unfolded into a feed-forward NN and backpropagation is applied to update the weights.

When using backpropagation the error between the predicted output and the target
value is first calculated and propagated backwards through the network. Hereafter, the
gradients obtained from the backward pass through the network are used to update the
weights.
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The Simple RNN can quickly be affected by vanishing or exploding gradients. This is
due to the multiplication of gradients when applying backpropagation backwards through
time. Vanishing gradients prevents the model from learning long-term dependencies while
exploding gradients can cause the model to become unstable.[27]

4.4.2 Long Short Term Memory

This section is based on [3, 29]. The LSTM model was first presented in Hochreiter
and Schmidhuber [12]. By introducing ’gates’ within the hidden cells of the simple RNN
structure, the LSTM model could mitigate the vanishing/exploding gradient problem.

Similar to the simple RNN model the LSTM model also has a chain-like structure.
However, the hidden cells of this model are more complex due to the introduction of gates.
In Figure 4.3 we see a representation of the inner workings of these hidden cells.

Figure 4.3. The inner workings of a LSTM hidden cell [3].

To understand the computations within a hidden cell we extend the notation used in
Section 4.4.1. As can be seen in Figure 4.3 a hidden cell at time step j for j = 1, . . . n now
has three inputs rather than the usual two. These are:

• The output vector of the previous hidden cell: hj−1 ∈ Rh.
• The current time step vector tj ∈ Rd of the input time-series T of length n.
• The cell state of the previous hidden cell cj−1 ∈ Rh

The hidden cells of the LSTM model consist of four layers namely: the forget gate f ,
input gate i, output gate o, and the memory cell layer c. Consequently, the hidden cells
make use of eight weight matrices and four bias vectors. The weight matrices applied
to the input vector and the output of the previous hidden cell are respectively denoted
as Wq ∈ Rh×d and Uq ∈ Rh×h for q ∈ {f, i, o, c}. The four bias vectors are denoted as
bq ∈ Rh for q ∈ {f, i, o, c}. Within this notation q ∈ {f, i, o, c} indicates which of the four
layers the matrices and bias vectors belong to. Additionally, the LSTM model utilises the
two activation functions: sigmoid σ and the tangent hyperbolic function tanh. Finally, it
applies to all equations in this section that h0 = 0.

The computations within the hidden cell can intuitively be divided into two parts. In the
first part, the cell state is updated and in the second part, the output of the hidden cell is
computed.
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Updating the cell state is done by first evaluating what information to be disregarded from
the cell state of the previous hidden cell cj−1 (Equation 4.9). Hence the output vector fj
from Equation 4.9 represents the importance of the elements within cj−1. The next step is
to determine the new information to be stored in the cell state. In Equation 4.10 the vector
ij is computed. This vector indicates which values of cj−1 that should be updated with
new information. Furthermore, the vector c̃j , computed in Equation 4.11, contains the
new candidate values to update the cell state with. Finally, the cell state cj is computed
using Equation 4.12. Note that ⊙ is the Hadamard product, also known as the elementwise
product.

fj = σ(Wftj + Ufhj−1 + bf ) (4.9)

ij = σ(Witj + Uihj−1 + bi) (4.10)

c̃j = tanh(Wctj + Uchj−1 + bc) (4.11)

cj = fj ⊙ cj−1 + ij ⊙ c̃j (4.12)

Computing the output of the hidden cell hj is a straightforward process when first the
cell state has been updated. First, the output gate is computed using Equation 4.13. The
results from this act as a form of short-term memory. Combining this with the current
state of the acting long-term memory cj we see the reason for the name of this model. The
output of the current hidden cell at time-step j for j = 1, . . . , n is as such computed using
Equation 4.14.

oj = σ(Wotj + Uohj−1 + bo) (4.13)

hj = oj ⊙ tanh(cj) (4.14)

4.4.3 Gated Recurrent Unit

The GRU model was first presented in Cho et al. [30]. Similar to the LSTM model this
model also introduces ’gates’ to the hidden cells of the simple RNN. However, different
from the LSTM model the GRU model does not have a separate cell state 1. Similar to
the simple RNN and LSTM models the GRU model also has a chain-like structure. In
Figure 4.4 we see a representation of the inner workings of the hidden cells of this model.

Figure 4.4. The inner workings of a GRU hidden cell [31].

1cj for j = 1, . . . , n from the LSTM model (Section 4.4.2)

17



Group: cs-22-mi-9-10 4. Background

The notation used when presenting the maths used within GRU is mostly similar to that
found in Section 4.4.2. Although, due to the different layers within this model, there are
minor changes in the notation.

The GRU model has three layers namely: the reset gate r, the update gate z, and
the candidate layer h̃. Thus, the weight matrices applied to the input vector and the
output of the previous layer are respectively denoted as Ws ∈ Rh×d and Us ∈ Rh×h for
s ∈ {r, z, h̃}. Likewise, are the bias vectors denoted as bs ∈ Rh for s ∈ {r, z, h̃}. Similar to
q in Section 4.4.2, s indicates for which of the three layers the weight matrices and bias
vectors belong. Finally, recall that h0 = 0.

The reset gate of a hidden cell at time step j is computed using Equation 4.15. Given
this, the candidate layer can be computed (Equation 4.16). From Equation 4.16 we can see
that if the values of the reset gate are close to 0 the output of the previous hidden cell is
ignored. If this is the case the information is then ’reset’ with the current input tj instead.

rj = σ(Wrtj + Urhj−1 + br) (4.15)

h̃j = tanh(Wh̃tj + Uh̃(r ⊙ hj−1) + bh̃) (4.16)

The final gate before computing the output of the hidden cell is the update gate. This
gate is computed by applying Equation 4.17. Given the update vector zj the output of the
current hidden cell is found by using Equation 4.18. The update gate thus controls how
much information from the output of the previous hidden cell is to be used in the current
hidden cell.

zj = σ(Wztj + Uzhj−1 + bz) (4.17)

hj = zj ⊙ hj−1 + (1− zj)⊙ h̃j (4.18)

4.4.4 Adam Optimizer

Optimizer algorithms are used to update the weights and biases of a model over a number
of epochs to minimise the loss function. Loss functions are used to measure the difference
between the predicted values ŷ ∈ Rm and the target values y ∈ Rm of a model given
a dataset X of m samples. The loss function commonly used for binary classification
is the binary cross-entropy, also known as log-loss [32]. Binary cross-entropy is given by
Equation 4.19. Instead of using the predicted target values, Equation 4.19 use the predicted
probability of a sample belonging to class 1. That is p̂i = P (yi = 1|Ti) for all Ti ∈ X .[3, 33]

log-loss = − 1

m

m∑
i=1

yi · log(pi) + (1− yi) · log(1− pi) (4.19)

Most optimization algorithms utilise gradient descent. The intuition of which is to calculate
the gradients in the model by computing the derivative of the loss function. These gradients
are then used to determine the direction in which the weights and biases are updated.

The Adaptive Moment Estimation (Adam) algorithm[34] is an optimization algorithm
that makes use of an adaptive learning rate together with momentum. These elements
are introduced to help the model converge on a local minima faster. The learning rate at
iteration t of the optimisation is determined for each model parameter w by first calculating
the exponential moving average m and the squared gradient v as seen in Equation 4.20.
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mt = β1mt−1 + (1− β1)gt vt = β2vt−1 + (1− β2)g
2
t (4.20)

Here, gt is the gradient of w at time t, and g2 = g⊙g. β1 and β2 are the default parameters
of 0.9 and 0.999 respectively. After calculating mt and vt, they are both corrected for bias
to prevent them from converging towards zero. The bias correction of mt and vt can be
seen in Equation 4.21.

m̂t =
mt

1− βt1
v̂t =

vt

1− βt2
(4.21)

The bias-corrected moving averages, m̂t and v̂t, are finally used to update the model
parameters w at time t as shown in Equation 4.22.

wt = wt−1 − η
m̂t√
v̂t + ε

(4.22)

Here, η is the learning rate and ε is a near zero constant to avoid zero division. [3, 34]

4.5 Time-series Classification

Time-series classification is another group of machine learning models for sequential data.
These models are as their names imply specialised in classifying time-series. The models we
focus on are ROCKET[17] and HC2[18]. In this section, we present the intuition of these
two models. Note that for these models, the dataset X consists of m univariate time-series
all of length n.

4.5.1 Random Convolutional Kernel Transform

ROCKET is a time-series classification model that has been shown to be both fast and
accurate compared to other state-of-the-art models. ROCKET works by initialising 10 000
random convolutional kernels that are used to transform all time-series from the dataset
X . These transformed features are then used to train a linear classifier We will here give
a notion of the kernel creations and how they are used to transform the data before using
it as input to a logistic regression model.[17]

Applying a convolutional kernel to some data produces a feature map that highlights
certain relevant features of the input data. The convolutional kernels generated and used
in ROCKET consist of five different parameters that are initialised with random values as
follows:

• The length of the kernel lkernel is with equal probability selected from the set
{7, 9, 11}.

• The weights of the kernel ω are first sampled from the normal distribution N (0, 1)

and thereafter mean centred.
• The kernel bias b is sampled from the uniform distribution U(−1, 1).
• The dilation of the kernel is d = ⌊2x⌋ where x is sampled from the uniform

distribution U(0, A) and A = log2
linput−1
lkernel−1 . Here linput is the length of the time-series

T given as input.
• The padding is a boolean value of which the value is chosen randomly.
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Note that two otherwise similar kernels except for their dilation to match the same or
similar patterns at different frequencies. Furthermore, if padding is chosen to be used for
a kernel the time-series T given as input is appended at the start and end with a zero-
padding. This is done such that the ’middle’ element of the kernel is centred on every point
in T.

When the convolutional kernels have been randomly generated they are applied to each
time-series of length n within the dataset X which results in a number of feature maps for
each time-series. Computing the feature map given a time-series Ti and kernel ω is done
using Equation 4.23.

f =
〈 lkernel−1∑

j=0

ti+j×d × ωj |i = 1, . . . n
〉

(4.23)

For each feature map f for a time-series Ti, ROCKET computes two features. First is the
maximum value of the computed feature map max. Second, is the proportion of positive
values ppv which is the number of positive entries in f . The final transform of Ti is then
ki = ⟨(maxc, ppvc)|c = 1, . . . 10000⟩ where c indicates the kernel used.

As only positive values in the computed features maps are ultimately used, the
aforementioned bias allows for two otherwise similar kernels to highlight different aspects.
This effect happens as the bias shifts the values above or below zero with a fixed amount.

4.5.2 HIVE-COTE 2.0

HC2 is a state-of-the-art ensemble model for time-series classification. The ensemble is
comprised of four main components that are trained independently. These four components
are Shapelet Transform Classifier (STC), ROCKET, Temporal Dictionary Ensemble
(TDE) and Diverse Representation Canonical Interval Forest (DrCIF). This section
describes the intuition behind these different components as HC2 is quickly discarded
as a primary focus of the experimentation (Section 6.3.3). [18]

STC[35]: Shapelets, within time-series classification, refer to sub-sequences of a time-
series that is used to discriminate classes. STC is a model that searches for high-quality
shapelets across multiple time-series independent of position and alignment. Here it starts
by sampling a set number of shapelets for each time-series. The quality of these shapelets is
then calculated using information gain to determine how well a shapelet can discriminate
the classes of the dataset. Top-k shapelets are then used to train a classifier. [18, 35, 36]

ROCKET[17]: HC2 implements the ROCKET model described in Section 4.5.1. HC2
implements an ensemble of multiple ROCKET classifiers with fewer kernels to get better
class probabilities that better fit HC2. [17, 18]

TDE[37]: TDE is an ensemble approach of dictionary classifiers that uses the bag-of-
words concept. The ensemble of TDE consists of dictionaries that are generated with
different parameters such as word length and window size. Words are determined by a
sliding window of a given length over a time-series. Occurrences of each word per time-
series are counted and the resulting histogram is used to train a classifier. [18, 37]
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DrCIF[38]: DrCIF is an interval-based classifier ensemble. Interval-based classifiers work
by extracting subsequences from time-series to discriminate classes, similar to shapelets
from STC. The main difference between these two approaches is that interval-based
classifiers work on phase-dependent intervals, meaning that the position and alignment
of the subsequences are taken into consideration. The quality of a given interval in terms
of its ability to discriminate classes is determined by information gain. The DrCIF ensemble
consists of multiple interval-based classifiers that use different intervals. [18, 38]

HC2 uses Bootstrap Aggregation (Bagging) to combine the probability predictions for all
classifiers previously described. Bagging includes independently training the classifiers in
parallel and averaging the resulting probability predictions. [18]

4.6 Evaluation Metrics

Evaluation metrics are used to measure the performance of, in this case, a machine learning
model. There exist a variety of different evaluation metrics. However, in this study, we use
accuracy and F1-score. [3, 39]

Before presenting the equations of the accuracy and F1 metrics for the binary classification
problem we describe four key terms. These are: true positives TP , true negatives TN , false
positives FP , and false negatives FN . TP and TN are the number of samples that are
correctly predicted to have the positive and negative label respectively. On the other hand,
FP and FN are the number of samples wrongly predicted to have the positive and negative
label respectively.

Accuracy is calculated as the ratio between the number of correct predictions and the total
number of predictions, see Equation 4.24.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.24)

The F1-score is generally used when the dataset is imbalanced as it takes the label
distribution into account. It is calculated by taking the harmonic mean of the two metrics
precision and recall, see Equation 4.25. The equations for precision and recall can be seen in
Equation 4.26. Here we see that the precision is the proportion of the positive predictions
made that was correct. The recall is then the proportion of positive samples that were
predicted correctly.

F1-score = 2× Precision×Recall

Precision+Recall
(4.25)

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(4.26)
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Modelling 5
Given the dataset introduction (Chapter 3) and background theory (Chapter 4), we present
relevant implementation details of the experimental setup in this chapter. Our experimental
setup is implemented in Python and any following implementation details are consequently
Python related. The purpose of this chapter is to ensure transparency and reproducibility
of the experiments performed in this study.

We first introduce how the data is preprocessed and initialised to match the expected input
of the machine learning models. Next, the necessary implementation details of the different
models are presented.

5.1 Preprocessing

The raw log data from the datasets are transformed to match the expected input shape
of the models tested in the experiments. This is done by extracting the high word values
from log entries with relevant CAN-IDs and then constructing a time-series given these
high word values. The expected input shape depends on the model and in our case
results in two scenarios. The first scenario is a 2-dimensional Numpy array with the
shape (Number of samples, Number of time-steps). In the second scenario, a third
dimension is added when using high word values from multiple CAN IDs. Thus the time-
series created is multivariate. This 3-dimensional Numpy array has the shape (Number
of samples, Number of time-steps, Number of features). The 3-dimensional array
is only used as input to the RNN models: SimpleRNN, LSTM, and GRU. The 2-dimensional
array is then used as input to the other models LR, SVM, ROCKET, and HC2.

5.1.1 Matrix Profiles

The creation of matrix profiles is an optional part of the preprocessing. In order to create
these we use the ’matrixprofile.compute’ function from the MatrixProfile library[10].
Given a list of window sizes, the respective matrix profiles are computed for each time-
series in the dataset. If this list of window sizes is larger than one, the newly created
matrix profiles are zero-padded at the end so that they all match the length of the largest
profile. Hereafter, the multiple matrix profiles for one time-series are combined to create a
multivariate time-series. As an example let the list of window-sizes be [5, 10, 25] then given
a univariate time-series T the matrix profiles M5, A10, and R25 are individually computed.
Hereafter zero padding is used such that all three profiles have the same length n1. Finally
the three profiles are combined such that P[5,10,25] = p1, . . . ,pn where pi = ⟨mi, ai, ri⟩ for

1n is the length of the largest profile before applying zero-padding
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1 ≤ i ≤ n. Here mi, ai, and ri are the i’th entry in the zero padded matrix profiles M5,
A10, and R25 respectively.

The output of this step has one of two shapes. If the size of the list of window sizes is
one, a univariate time-series is created for each time-series in the input. The final output
is thus a 2-dimensional Numpy array with the shape (Number of samples, Number of
time-steps). Where the number of time-steps is equal to the length of the matrix profile.
On the other hand, if the list of window sizes is larger than one, a multi-variate time-series
is created instead for each time-series in the dataset. The output in this case is the 3-
dimensional Numpy array with the shape (Number of samples, Number of time-steps,
Number of window-sizes).

5.2 Baseline Models

The two baseline models used in this study are LR and SVM. These models are implemen-
ted using the sci-kit learn library[24]. Experiments using LR uses sci-kits ’sklearn.linear_-
model.LogisticRegression’ classifier using the L-BFGS solver together with the L2-
regularization term. Experiments using SVM use sci-kits ’sklearn.svm.SVC’ with the ’rbf’
kernel. The parameters for both LR and SVM are the default parameters for the respective
sci-kit implementations. As presented in Section 5.1, these models use the 2-dimensional
array representation as input.

5.3 RNN Models

We use the Keras library[40] to build the RNN models tested in our experiments.
This includes defining the layers of the models together with specifying their respective
parameters. We implemented the function build_rnn() (Listing 5.1) to streamline the
modelling process and quickly build a variety of models with different architectures. It
builds a model with a specific architecture given a model type (model_name) and the
number of consecutive RNN layers (num_layers)(lines 4-13). The first layer of this new
model will consist of a user-defined number of units (init_units). Thereafter this number
is halved for each consecutive layer (line 13). This approach to modelling the architectures
was chosen to conform to standard practices within machine learning [41].

The three RNN layer types supported in build_rnn() are SimpleRNN, LSTM and GRU.
They are implemented by setting the layer variable in build_rnn() to one of the
respective layer classes from Keras (line 3), listed in Table 5.1.

Layer Type Layer Class
SimpleRNN tf.keras.layers.SimpleRNN()
LSTM tf.keras.layers.LSTM()
GRU tf.keras.layers.GRU()

Table 5.1. Keras layer classes used for the different RNN layer types.

Models that have more than one RNN layer are set to pass all hidden states of the current
RNN layer to the next using the ’return_sequence’ flag (line 7 and 11). The models will
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1 def build_rnn(data_shape, model_name, init_units, num_layers, min_units):
2 model = Sequential()
3 layer = eval(model_name)
4 for i in range(num_layers):
5 if i == 0: # First layer need to specify input shape.
6 model.add(layer(units,
7 return_sequences=(i < num_layers - 1),
8 input_shape=(data_shape[1], data_shape[2])))
9 else:

10 model.add(layer(units,
11 return_sequences=(i < num_layers - 1),))
12 if units > min_units:
13 units //= 2
14 model.add(Dense(1, activation=’sigmoid’))
15 model.compile(loss=’binary_crossentropy’,
16 optimizer=’adam’,
17 metrics=[’accuracy’, get_f1])
18 return model

Listing 5.1. build_rnn() implemenation.

always end with a dense layer of size 1 (line 14). This layer uses the sigmoid activation
function for the model to output a probability used for the binary classification. All RNN
models build with build_rnn() use the Adam optimizer together with the binary cross-
entropy loss function (line 15).

5.4 Time-series Classification

The two time-series classification methods tested in this project are ROCKET and HC2.
These are implemented using the Sktime library[42]. To build the ROCKET models we
use the ’sktime.transformations.panel.rocket.Rocket’ class. Here, 10 000 kernels are
randomly initialised and the normalisation flag is set to true. These parameters are chosen
as they are the default values and have been shown to generally perform the best[17]. The
HC2 models are implemented using the ’sktime.classification.hybrid.HIVECOTEV2’
class with default parameters.
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Experimentation 6
This chapter goes through our experimentation, including the experimental setting, range
of experiments and result analysis. The implementation of the experimental setup is
described in Chapter 5.

6.1 Experimental Setting

The experimental methodology for this study is to control for confounding variables and
blocking factors as much as possible while manipulating independent variables to examine
their effect on the results. This is in part achieved by introducing a range of control
constants across the different experiments.

The control constants include using the same input data across experiment groups. Here,
the original dataset refers to the “LANSCE 18 Cruise” dataset (Section 3.1.1) with only
unique samples and excluding the three outliers mentioned in Section 3.2.3. The reason
we only looked at unique samples for the original dataset is based on the findings of
Mikkelsen and Bonde [3]. This study concludes that using the full dataset adds unwanted
bias to the models compared to only using unique samples. The second dataset used is
the fail-injected dataset which refers to a dataset created by combining the nominal- and
fail-injected extensions (sections 3.1.2 and 3.1.3). Here 20 000 samples have been randomly
sampled from each dataset resulting in a dataset with a total of 40 000 samples. This
number of simulated samples was chosen to balance the amount of information and time
complexity. The exact number of samples for the two datasets can be found in Table 6.1.
Throughout the experimentation and regardless of the dataset used, 20% of the data is set
aside for testing, leaving 80% of the data for training the models.

Dataset Name Number of
negative samples

Number of
positive samples

Total number of
samples

Original dataset(†) 52 56 108
Fail-injected dataset(‡) 20 000 20 000 40 000

Table 6.1. Dataset specifications.

We consider two input features from the datasets, namely the vehicle speed and torque. All
models, unless otherwise stated, are trained on both of these input features individually
as univariate time-series. Some models are also trained using both input features at the
same time as multivariate time-series. These three variations of the data representation
are specified in Table 6.2.

Each experiment is replicated three times independently, where the only difference is the
seed. The three arbitrary seeds 42, 404, and 192 are used in all experiments to control for
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Input Feature Description
Vehicle Speed Univariate time-series constructed from the

logged high word values for entries with the
CAN ID “PLANT_INFO_VehicleSpeed”.

Torque Univariate time-series constructed from the
logged high word values for entries with the
CAN ID “CTRL_INFO_TorqueCommand”.

Vehicle Speed
& Toruqe Multi-variate time-series constructed from the

logged high word values for entries with the
CAN ID “PLANT_INFO_VehicleSpeed” and
“CTRL_INFO_TorqueCommand”.

Table 6.2. Input feature specifications.

confounding variables and ensure reproducibility. These seeds are used in different parts
of the code such as data split, shuffling of data, and weight initialisation. The arithmetic
mean and standard deviation of the results of the three runs are computed and presented
in Section 6.3. The results from the individual runs of each experiment can be found in
Appendix D.

The remaining control constants specific to the different groups of experiments are covered
in Section 6.2.

6.2 Experiment Groups

The experiments conducted in this study can be divided into four main categories. These
are: baseline, RNN, time-series classification, and matrix profile. This section will explain
the experimental setup as well as the range of experiments within each category.

6.2.1 Baseline Models

We have chosen two traditional machine-learning models as our baselines, these are LR and
SVM. These two models are chosen to give an insight into the performance of relatively
simple models on this binary classification problem. They can further be used to argue for
the need for more complex/specialised solutions.

These baseline models are run with different combinations of the datasets and single input
features. Thus, we individually train the models on the original and simulated dataset with
the two univariate input feature variations.

6.2.2 RNN

The RNN experiments include the testing of different RNN models, input data and
architectures. The RNN models tested are SimpleRNN, LSTM, and GRU. Each of these
models are tested on three specified architectures modelled with the build_rnn() function
described in Section 5.3. The specification of the three architectures can be seen in
Table 6.3. These architectures are chosen to determine the effect that the size of the
RNN model has going from a small model (A1) to a relatively large model (A3). The
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combinations of model types and architectures are also all tested on the three different
variations of input features.

Name init_-
units

num_-
layers

Description

Architecture 1 (A1) 32 1 A small model with one RNN layer
of 32 units.

Architecture 2 (A2) 64 2 A medium sized model with two
consecutive RNN layers of 64 and 32
units respectively.

Architecture 3 (A3) 128 3 A large model with three consecu-
tive RNN layers of 128, 64 and 32
units respectively.

Table 6.3. Architecture specifications.

All RNN experiments are trained for 150 epochs as initial experiments, given their loss
curves, showed this to be enough to converge. Other control constants include training on
batch sizes of 32 and an initial learning rate of 0.001. These control constants were chosen
as they are the default parameters for the Adam optimizer and were not the focus of our
RNN experimentation [34]. All experiments were run on the original dataset. LSTM and
GRU are further run on the simulated datasets as well. The SimpleRNN is not included
in these experiments. This is due to the fact that the Keras implementation is not GPU
accelerated resulting in too long training times.

6.2.3 Time-series Classification

The time-series classification experiments include testing of the two presented methods,
ROCKET and HC2, on the different combinations of datasets and univariate input features.
However, HC2 was not tested on the simulated dataset due to too long training times.
The goal of these experiments is to examine whether these more specialised models can
outperform the more generally applicable baseline and RNN models tested.

6.2.4 Matrix Profile

Experiments within the matrix profile group refer to models that are trained using matrix
profiles generated using the window sizes L ∈ {5, 15, 25, 100} as input. These inputs are
generated using the approach described in Section 5.1.1. We initially experiment with
combinations of the two datasets and different matrix profiles as input to the baseline
models LR and SVM. This is done to get an initial insight into the difference in performance
compared to training the models on the original logged data as well as determining the
best-performing window sizes.

The matrix profiles with the window sizes that performed the best on the baseline models
are then applied to a select number of models that previously have shown potential. For
the RNN we also experimented with using the multivariate matrix profiles P[15,25]. Thus
combining the matrix profiles P15 and P25 as described in Section 5.1.1. This is again to see
whether transforming the data to a matrix profile will result in better overall performance,
in terms of accuracy and F1-score, compared to using the original data representation.
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6.3 Results

This section presents relevant aggregated results and observations within each experiment
group. The non-aggregated result can be found in Appendix D.

6.3.1 Baseline

The aggregated results of the baseline experiments can be seen in Table 6.4. These results
are used as a comparison point to the other experiments conducted. The best-performing
baseline experiment is the SVM model on the simulated dataset with torque as the input
feature. This experiment yielded an accuracy and F1-score of 0.53 and 0.54 respectively.

Two main observations were made given these baseline experiments. Firstly, the SVM
model on the original dataset tends to consistently predict either 0 or 1 resulting in an
accuracy of ∼ 0.50 and an F1-score of ∼ 0.33. Secondly, applying the LR and SVM models
on the simulated dataset consistently results in an accuracy and F1-score of ∼ 0.50 which
is similar to random guessing. These two observations are further supported by examining
their respective confusion matrices found in Appendix C. These results point to the fact
that this binary classification problem requires more complex/specialised models in order
to make useful predictions.

Vehicle Speed Torque
Accuracy F1-score Accuracy F1-score

LR† 0.43
(0.09)

0.43
(0.09)

0.38
(0.02)

0.36
(0.03)

SVM† 0.52
(0.0)

0.34
(0.0)

0.51
(0.02)

0.35
(0.02)

LR‡ 0.52
(0.01)

0.51
(0.0)

0.52
(0.0)

0.52
(0.0)

SVM‡ 0.53
(0.01)

0.5
(0.05)

0.54
(0.01)

0.52
(0.01)

Table 6.4. Mean accuracy and F1-score with standard deviation noted in parenthesis
for the baseline experiments on the original dataset (†) and simulated dataset (‡)
independently trained using the features vehicle speed and torque.

6.3.2 RNN

The aggregated accuracies for the different RNN experiments can be seen in Table 6.5. We
have, in this group of experiments, chosen to only show the accuracy of the experiments
to ease the readability of the results. This is further justified as the datasets tested are
balanced and we generally see the same tendencies across the accuracies and F1-scores
for these experiments. The best performing RNN experiment is the LSTM model with
the small architecture (A1) on the original dataset with the multivariate input feature
representation. This experiment achieved an accuracy of 0.58.

Overall, we did not see the expected increase in accuracy and F1-score from these more
complex RNN models compared to the baseline experiments. We can instead observe some
similar tendencies. One of these observations is that the SimpleRNN on the original dataset
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always predicts either 0 or 1 similar to the SVM model. We can furthermore see a general
tendency of the results to have an accuracy close to 0.50, especially for the experiments
trained on the simulated dataset. This is further evidence that the models do not probably
learn any useful features seeing how similar these results are to random guessing. Note
that the range of tested architectures is relatively small and more specialised architectures
could potentially improve performance.

Vehicle Speed Torque Vehicle Speed
& Torque

A1 A2 A3 A1 A2 A3 A1 A2 A3
SimpleRNN† 0.52

(0.0)
0.52
(0.0)

0.52
(0.0)

0.54
(0.05)

0.55
(0.03)

0.54
(0.03)

0.52
(0.05)

0.51
(0.07)

0.48
(0.09)

LSTM† 0.48
(0.05)

0.42
(0.07)

0.41
(0.07)

0.51
(0.07)

0.51
(0.13)

0.52
(0.12)

0.58
(0.09)

0.48
(0.0)

0.4
(0.02)

GRU† 0.47
(0.11)

0.42
(0.07)

0.42
(0.05)

0.57
(0.0)

0.55
(0.03)

0.52
(0.08)

0.55
(0.11)

0.46
(0.03)

0.42
(0.09)

LSTM‡ 0.5
(0.01)

0.5
(0.01)

0.5
(0.01)

0.5
(0.01)

0.51
(0.0)

0.5
(0.01)

- - -

GRU‡ 0.5
(0.01)

0.5
(0.01)

0.5
(0.01)

0.5
(0.01)

0.51
(0.01)

0.5
(0.01)

- - -

Table 6.5. Mean of the accuracy with standard deviation noted in parenthesis for
the different RNN experiments on the original dataset (†) and simulated dataset (‡)
independently trained on the three input feature variations. A1, A2, and A3 refers to
the three model architectures specified in Table 6.3.

6.3.3 Time-series Classification

The aggregated results of the time-series classification experiments can be seen in Table 6.6.
Here the best-performing experiment is the ROCKET model on the simulated dataset using
torque as the input feature. This experiment achieved an accuracy and F1-score of 0.67
and 0.66 respectively which is a noticeable increase from the best-performing baseline and
RNN experiments. Other time-series classification experiments showed a similar increase
in performance including the HC2 model on the original dataset using torque as the input
feature. With this experiment, we achieve an accuracy and F1-score of 0.65 and 0.64
respectively. However, this experiment had a higher inconsistency compared to ROCKET
with a standard deviation of 0.13. This could be contributed to the lower number of samples
in the original dataset. In conclusion, these experiments show the potential of using more
specialised models.

We considered using the simulated dataset as input to HC2 as well but this was discarded
due to too long training times.

6.3.4 Matrix-profile

The aggregated accuracies of the initial matrix profile experiments can be seen in Table 6.7.
Note that we for this experiment group have chosen to only present accuracies to improve
readability. This decision is further justified as we are only working with balanced datasets
and generally see the same tendencies across accuracies and the F1-scores. We initially
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Vehicle Speed Torque
Accuracy F1-score Accuracy F1-score

ROCKET† 0.52
(0.05)

0.49
(0.05)

0.35
(0.08)

0.33
(0.06)

HC2† 0.33
(0.03)

0.33
(0.03)

0.65
(0.13)

0.64
(0.13)

ROCKET‡ 0.64
(0.01)

0.63
(0.01)

0.67
(0.01)

0.66
(0.0)

Table 6.6. Mean accuracy and F1-score with standard deviation noted in parenthesis
for the time-series classification experiments on the original dataset (†) and simulated
dataset (‡) independently trained on the two univariate input features vehicle speed
and torque.

ran the two baseline models LR and SVM on the different combinations of datasets, input
features, and univariate matrix profiles with different window sizes.

One of the key observations made here is that the initial experiments trained with the
simulated dataset, using torque as the input feature saw a noticeable increase in accuracies
compared to their respective baseline results. Here the best-performing experiment is the
SVM model where the window size of the matrix profiles is set to 15, which yields an
accuracy of 0.77. This is a 42.86% percentage increase compared to the baseline experiment
of the same experimental setup.

The other initial experiments, namely where the original dataset or the input feature
vehicle speed is used, saw similar performance to that of their respective baseline results.
For these experiments, we see accuracies ranging from 0.35 to 0.57. The reason why the
experiments trained on the original dataset did not see an increase in performance is likely
due to a lack of information as a consequence of the small number of samples. The reason
that matrix profiles generated using the vehicle speed feature perform worse than those
generated from the torque can be attributed to the fact that vehicle speed is affected by
inertia making the discords less noticeable. Based on these initial observations, we narrowed
the second part of the matrix profile experiments to mainly focus on different models on
the simulated dataset and matrix profiles generated given the torque as input feature.

In the second part we experimented with the time-series classification model ROCKET,
the results of which can be found in Table 6.7. Here we observed an overall increase
in accuracies compared to the initial matrix profile experiments. The best-performing
experiment with ROCKET is where P25 for the simulated dataset using torque as input
feature. This experiment yielded an accuracy of 0.96 which is a percentage increase of
about 43% compared to its respective experiment with the original data representation.
This increase in accuracy was somewhat expected as ROCKET is similar to SVM in that
they both utilise kernels.

We lastly experimented with using matrix profiles on the previously tested RNN models
to see if it would add useful information to these models as well. The aggregated results of
the RNN matrix profile experiments can be seen in Table 6.8. Here we chose to only focus
on torque as the input feature in combination with the two best-performing window sizes
L = 15, 25. We also further experimented with combining the generated matrix profiles
P[15,25]. The main observation of these experiments is that they show some large variations
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Vehicle Speed Torque
P5 P15 P25 P100 P5 P15 P25 P100

LR† 0.39
(0.09)

0.41
(0.07)

0.32
(0.03)

0.49
(0.07)

0.35
(0.05)

0.39
(0.08)

0.43
(0.14)

0.42
(0.02)

SVM† 0.46
(0.03)

0.46
(0.05)

0.46
(0.05)

0.46
(0.05)

0.45
(0.09)

0.56
(0.08)

0.55
(0.05)

0.57
(0.05)

ROCKET† - - - - 0.64
(0.11)

0.54
(0.09)

0.65
(0.05)

0.37
(0.07)

LR‡ 0.5
(0.01)

0.51
(0.01)

0.51
(0.0)

0.51
(0.0)

0.63
(0.01)

0.66
(0.0)

0.66
(0.0)

0.54
(0.0)

SVM‡ 0.52
(0.01)

0.52
(0.01)

0.51
(0.01)

0.54
(0.01)

0.75
(0.01)

0.77
(0.0)

0.75
(0.0)

0.65
(0.01)

ROCKET‡ - - - - 0.89
(0.01)

0.88
(0.0)

0.96
(0.01)

0.77
(0.0)

Table 6.7. Mean accuracy with the standard deviation noted parenthesis for the
matrix profile (PL) experiments of different windows sizes L for the matrix profile PL

on the original dataset (†) and simulated dataset (‡) independently trained using the
two univariate input features vehicle speed and torque.

in the results across the three individual runs of each experiment. However, some specific
experiments show promising results with accuracies up to 0.99. This result was achieved by
the GRU model with architecture 2 (A2) on the simulated dataset with the multivariate
matrix profile P[15,25]. This is a percentage increase in the accuracy of about 94% compared
to its respective experiment with the original data representation.

The aforementioned inconsistencies appear in two different forms. Firstly, most experiments
trained on the simulated dataset have a relatively high standard deviation. Secondly, a
handful of experiments trained on the simulated dataset experienced a “Not a Number”
error1 during training, resulting in the training stopping prematurely. The exact reasons
for these inconsistencies are unknown but one likely reason would be that some models
experience an exploding gradient at some point during training.

P15 P25 P[15,25]

A1 A2 A3 A1 A2 A3 A1 A2 A3
LSTM† 0.45

(0.07)
0.48
(0.05)

0.48
(0.08)

0.48
(0.05)

0.43
(0.09)

0.49
(0.05)

0.55
(0.14)

0.48
(0.05)

0.48
(0.08)

GRU† 0.52
(0.0)

0.58
(0.1)

0.52
(0.16)

0.51
(0.02)

0.46
(0.07)

0.46
(0.07)

0.48
(0.0)

0.49
(0.07)

0.49
(0.09)

LSTM‡ 0.53*
(0.05)

0.5
(0.01)

0.5
(0.01)

0.54*
(0.11)

0.62
(0.22)

0.5
(0.01)

0.65
(0.18)

0.63
(0.23)

0.5
(0.01)

GRU‡ 0.81
(0.17)

0.64*
(0.25)

0.64*
(0.24)

0.66*
(0.15)

0.77
(0.25)

0.66*
(0.29)

0.85
(0.16)

0.99
(0.01)

0.66*
(0.29)

Table 6.8. Mean accuracy with standard deviation noted in parenthesis for RNN
matrix profile experiments on the original dataset (†) and simulated dataset (‡) and
different window size L for the matrix profiles PL. A1, A2, and A3 refer to the three
model architectures specified in Table 6.3. Experiments marked with ’*’ have stopped
training prematurely due to a “Not a Number” error.

1Experiments affected by the “Not a Number” is marked with ’*’ in Table 6.8.
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Discussion 7
This chapter will shed light on some discussion points and potential future works given
our results presented in Section 6.3.

7.1 Result Discussion

The task of classifying abnormal behaviour caused by soft-errors in logs gathered from
PID-controlled environments is still new meaning that knowledge of models that would
perform well in this domain is limited. Due to this, the main focus of the study has been
to test a variety of different machine-learning models that have been applied in similar
domains. Parameter tuning of the individual models has thus been down-prioritised. Bad
performing models in this study can therefore not be completely discarded based on our
results, as parameter tuning could potentially improve the performance. However, the
results presented can be used as initial guidance as to what kind of models and input data
that have the most potential for further improvements.

Several steps have been taken to ensure the validity of the results presented. One of
these steps is that we run each experiment three times with different seeds and calculate
the standard deviation between the three runs. Most experiments conducted seem to be
relatively consistent as they have standard deviations of less than 0.10. The primary
exception is the RNN experiments trained on matrix profiles. Here we both see large
variations in the mean and standard deviation of the accuracy of the different models.
These inconsistencies across similar experiments can be attributed to the RNN models not
being able to train correctly which may be due to an exploding gradient.

Further research within this domain would benefit from additional experimentation. One
direction could be to experiment with further tuning of the best performing models by
doing a grid search of relevant parameters. The RNN model experiments could also be
further extended with more architecture variations and the introduction of mechanisms
such as dropout. Finally, the data used as input are not normalised as initial experiments
showed it did not result in a noticeable difference in results. However, a more thorough
investigation of the effect of normalising the data could be beneficial, especially when
considering a multivariate setup.

7.2 The Environment of the Simulated Car

The datasets used within this study consist of logs from simulations of a car running on
flat ground. Only considering a flat ground environment provided a simplified and concise
problem to work with. We have through experimentation found that machine learning
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may be a viable approach to classify whether a PID-controlled system was affected by
soft-errors. A natural next step would be to work with a more broad dataset that consists
of different environments and scenarios. This could include environments such as uphill,
downhill and transitions between environments. We argue that especially these changes
between environments are important to include as we assume they would affect the logs
and consequently the generated time-series the most. This broader dataset would as a
result be used to train the models in a more dynamic setting that better can be applied
in a real-world scenario. We do not expect the intricacy of the classification problem to
increase by much if matrix profiles are used. This is based on the assumption that these
new logs would consist of similar patterns that would be highlighted by the matrix profile.

7.3 Real-world Applications

In this study, we focus on classifying a time-series of a fixed size rather than classifying
each point individually. Hence, if one would want to utilise the trained model in a live
PID-controlled system, such as the cruise control of a car, this should be considered. Two
intuitive approaches to this implementation are: First, the system could keep a memory
of the last x1 number of logged values e.g. the torque values sent by the controller. Then
every time the controller sends a new torque value, the updated time-series is given to the
pre-trained model for classification. Second, the system could save intervals of x number
of the logged values for the time-series. Then at the end of an interval, pass these to the
pre-trained model for classification. With the second approach, each time-series passed to
the model would be completely different whereas in the first approach, it is only the last
entry in the time-series that would be new when predicting the class labels.

As previously stated, applying the models of this study in a live environment naturally
requires some extra steps or considerations. However, there exist other more directly
applicable use cases. An example of this could be to use the pre-trained models of this
study to filter out samples that include abnormal behaviour caused by soft-errors to avoid
unwanted outliers in an unlabelled dataset.

7.4 Classification vs. Detection

Other than classification another learning task for time-series is detection. When applying
this to our problem one would be trying to determine which points in the time-series are
part of the abnormal behaviour. This is typically done by computing an anomaly score
for each point in the time-series and if this score is larger than a certain threshold it is
considered an anomaly[43].

With time-series detection, we would be able to discern more precisely where in a time-
series abnormal behaviour occurs as well as differentiate between multiple anomalous
behaviours. Whereas with classification we make one prediction for the whole time-
series. We do not use time-series detection in this study as the models considered [43]
are trained and tested on only one continues time-series. As the datasets used in this
study are transformed into multiple small time-series, these methods are not directly

1x is a fixed number determining the size of the time-series considered
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applicable. One approach to transform the dataset into one continuous time-series could
be to concatenate the time-series generated from the datasets. Although this is expected
to introduce unnatural patterns that would harm the integrity of the problem. Given these
considerations, time-series detection methods were discarded.
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Conclusion 8
Soft-errors are becoming an increasing concern as chip density grows. Furthermore, current
mitigation techniques require additional or specialised hardware. This motivates the search
for new and more efficient approaches for mitigating soft-errors. In this study, we have
explored the use of machine learning as a potential solution. Here, we used the “LANSCE
18 Cruise” dataset and two simulated extensions to train different machine learning
models to classify whether a soft-error has occurred in a PID controller. A variety of
machine learning models were tested since this is still a new problem. The models tested
are: Logistic Regression (LR), Support Vector Machine (SVM), Simple Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and
the two state-of-the-art time-series classification models Random Convolutional Kernel
Transform (ROCKET) and HIVE-COTE 2.0 (HC2). We furthermore experimented with
transforming the data into matrix profiles to potentially highlight certain features that
would benefit the machine learning models’ ability to train.

We concluded during the experimentation process that, based on the baseline experiments,
more specialised approaches were needed to achieve any meaningful performance. This
conclusion is based on the fact that all of these results are similar or worse than random
guessing with accuracies of ≤ 0.58. Experiments with the time-series classification models
showed a noticeable increase in accuracies. Notably HC2 on the original dataset and
ROCKET on the simulated dataset, both using torque as the input feature, yielded
accuracies of 0.65 and 0.67 respectively. These are the highest accuracies recorded in
experiments without matrix profiles.

Using matrix profiles as input data to the machine learning models showed a general
increase in performance. This supports our assumption of matrix profiles being useful to
the machine learning models as they highlight anomalous behaviour in the logged data.
Noteworthy results here are gained with the SVM and ROCKET models trained on the
simulated dataset with torque as the input feature. These experiments reached an accuracy
of 0.77 and 0.96 respectively. Furthermore, some experiments with matrix profiles as input
to the RNN models also performed exceptionally well. Here the GRU model with the A2
architecture trained on the simulated dataset with torque as the input feature and the
matrix profiles P[15,25] achieved an accuracy of 0.99.

The results achieved in this study suggest that machine learning is a promising approach
for detecting abnormal behaviour caused by soft-errors in a PID-controlled environment.

39





Bibliography

[1] Stephen Buchner and Dale McMorrow. Overview of single event effects.
Presentation at SERESSA 2015. URL https:
//www.inaoep.mx/seressa2015/archivos/Lunes_16_30%20%20Buchner.pdf. Last
visited: 2023-05-19.

[2] Soft errors in electronic memory – a white paper, 2004. URL
https://tezzaron.com/media/soft_errors_1_1_secure.pdf. Last visited:
2023-05-19.

[3] Simon Kanne Mikkelsen and Anna Veibel Bonde. Representing real-world data to
detect soft-errors with machine learning - a study analysing and applying the ”lansce
18 cruise” dataset. Private source, 2022.

[4] Sean Kauffman. Lansce 18 cruise documentation. Private source, 2018.

[5] Sean Kauffman. Lansce 18 cruise dataset. Private source, 2018.

[6] Mostafa Mohamed Sayed. Applications of pid controllers in industry, 2023. URL
https://www.linkedin.com/pulse/
applications-pid-controllers-industry-mostafa-mohamed-sayed. Last
visited: 2023-05-19.

[7] Machine learning with applications. Machine Learning with Applications, 6:1–2,
2022. ISSN 2666-8270. URL https:
//www.sciencedirect.com/journal/machine-learning-with-applications.

[8] Mary Pratt. 10 common uses for machine learning applications in business. URL
https://www.techtarget.com/searchenterpriseai/feature/
10-common-uses-for-machine-learning-applications-in-business. Last
visited: 2023-05-19.

[9] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,
Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh.
Matrix profile i: All pairs similarity joins for time series: A unifying view that
includes motifs, discords and shapelets. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pages 1317–1322, 2016. doi: 10.1109/ICDM.2016.0179.

[10] Andrew Van Benschoten, Austin Ouyang, Francisco Bischoff, and Tyler Marrs. Mpa:
a novel cross-language api for time series analysis. Journal of Open Source Software,
5(49):2179, 2020. doi: 10.21105/joss.02179.

[11] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.
ISSN 0364-0213. doi: https://doi.org/10.1016/0364-0213(90)90002-E. URL
https://www.sciencedirect.com/science/article/pii/036402139090002E.

41

https://www.inaoep.mx/seressa2015/archivos/Lunes_16_30%20%20Buchner.pdf
https://www.inaoep.mx/seressa2015/archivos/Lunes_16_30%20%20Buchner.pdf
https://tezzaron.com/media/soft_errors_1_1_secure.pdf
https://www.linkedin.com/pulse/applications-pid-controllers-industry-mostafa-mohamed-sayed
https://www.linkedin.com/pulse/applications-pid-controllers-industry-mostafa-mohamed-sayed
https://www.sciencedirect.com/journal/machine-learning-with-applications
https://www.sciencedirect.com/journal/machine-learning-with-applications
https://www.techtarget.com/searchenterpriseai/feature/10-common-uses-for-machine-learning-applications-in-business
https://www.techtarget.com/searchenterpriseai/feature/10-common-uses-for-machine-learning-applications-in-business
https://www.sciencedirect.com/science/article/pii/036402139090002E


Group: cs-22-mi-9-10 Bibliography

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

[13] Greg Van Houdt, Carlos Mosquera, and Gonzalo Nápoles. A review on the long
short-term memory model. Artificial Intelligence Review, 53, 12 2020. doi:
10.1007/s10462-020-09838-1.

[14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling, 2014.

[15] Time series classification. URL
https://paperswithcode.com/task/time-series-classification. Last visited:
2023-05-19.

[16] Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and
Anthony Bagnall. The great multivariate time series classification bake off: a review
and experimental evaluation of recent algorithmic advances. Data Mining and
Knowledge Discovery, 35(2):401–449, Mar 2021. ISSN 1573-756X. doi:
10.1007/s10618-020-00727-3.

[17] Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally
fast and accurate time series classification using random convolutional kernels. Data
Mining and Knowledge Discovery, 34(5):1454–1495, 2020.

[18] Anthony Bagnall, Jason Lines, Michael Flynn, and James Large. Hive-cote 2.0: a
new meta ensemble for time series classification. Machine Learning, 110(3):489–514,
2021.

[19] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron
Bostrom, Paul Southam, and Eamonn Keogh. The uea multivariate time series
classification archive, 2018, 2018.

[20] Tyler Marrs. Introduction to matrix profiles, 2019. URL https:
//towardsdatascience.com/introduction-to-matrix-profiles-5568f3375d90.
Last visited: 2023-05-19.

[21] Eamonn J. Keogh, Jessica Lin, and Ada Wai-Chee Fu. Hot sax: Finding the most
unusual time series subsequence: Algorithms and applications. 2004.

[22] Anh Dau and Eamonn Keogh. Matrix profile v: A generic technique to incorporate
domain knowledge into motif discovery. pages 125–134, 08 2017. doi:
10.1145/3097983.3097993.

[23] Riccardo Guidotti and Matteo D’Onofrio. Matrix profile-based interpretable time
series classifier. Frontiers in Artificial Intelligence, 4, 2021. ISSN 2624-8212. doi:
10.3389/frai.2021.699448. URL
https://www.frontiersin.org/articles/10.3389/frai.2021.699448.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

42

https://paperswithcode.com/task/time-series-classification
https://towardsdatascience.com/introduction-to-matrix-profiles-5568f3375d90
https://towardsdatascience.com/introduction-to-matrix-profiles-5568f3375d90
https://www.frontiersin.org/articles/10.3389/frai.2021.699448


Bibliography Aalborg Universitet

[25] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

[26] Vivek Singh. Basic architecture of rnn and lstm, 2017. URL https:
//pydeeplearning.weebly.com/blog/basic-architecture-of-rnn-and-lstm.
Last visited: 2023-05-19.

[27] Mehreen Saeed. An introduction to recurrent neural networks and the math that
powers them, 2023. URL https://machinelearningmastery.com/an-\
introduction-to-recurrent-neural-networks-and-the-math\
-that-powers-them/. Last visited: 2023-05-19.

[28] Thomas Wood. Backpropagation. URL
https://deepai.org/machine-learning-glossary-and-terms/backpropagation.
Last visited: 2023-05-19.

[29] Christopher Olah. Understanding lstm networks. URL
http://colah.github.io/posts/2015-08-Understanding-LSTMs/. Last visited:
2023-05-19.

[30] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using rnn encoder-decoder for statistical machine translation. 2014. doi:
10.48550/arXiv.1406.1078.

[31] Rnn, lstm & gru, 2019. URL http://dprogrammer.org/rnn-lstm-gru. Last
visited: 2023-05-19.

[32] Jason Brownlee. How to choose loss functions when trainning deep learning neural
networks. URL https://machinelearningmastery.com/how-to-choose-loss-\
functions-when-training-deep-learning-neural-networks/. Last visited:
2023-05-19.

[33] Sanket Doshi. Optimizers in deep learning, 2019. URL
https://towardsdatascience.com/
optimizers-for-training-neural-network-59450d71caf6. Last visited:
2023-05-19.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[35] Jason Lines, Luke Davis, Jon Hills, and Anthony Bagnall. A shapelet transform for
time series classification. pages 289–297, 08 2012. doi: 10.1145/2339530.2339579.

[36] Anthony J. Bagnall, Michael Flynn, James Large, Jason Lines, and Matthew
Middlehurst. A tale of two toolkits, report the third: on the usage and performance
of HIVE-COTE v1.0. CoRR, abs/2004.06069, 2020. URL
https://arxiv.org/abs/2004.06069.

[37] Matthew Middlehurst, James Large, Gavin C. Cawley, and Anthony J. Bagnall. The
temporal dictionary ensemble (TDE) classifier for time series classification. CoRR,
abs/2105.03841, 2021. URL https://arxiv.org/abs/2105.03841.

43

https://pydeeplearning.weebly.com/blog/basic-architecture-of-rnn-and-lstm
https://pydeeplearning.weebly.com/blog/basic-architecture-of-rnn-and-lstm
https://machinelearningmastery.com/an-\introduction-to-recurrent-neural-networks-and-the-math\-that-powers-them/
https://machinelearningmastery.com/an-\introduction-to-recurrent-neural-networks-and-the-math\-that-powers-them/
https://machinelearningmastery.com/an-\introduction-to-recurrent-neural-networks-and-the-math\-that-powers-them/
https://deepai.org/machine-learning-glossary-and-terms/backpropagation
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dprogrammer.org/rnn-lstm-gru
https://machinelearningmastery.com/how-to-choose-loss-\functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-\functions-when-training-deep-learning-neural-networks/
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://arxiv.org/abs/2004.06069
https://arxiv.org/abs/2105.03841


Group: cs-22-mi-9-10 Bibliography

[38] Matthew Middlehurst, James Large, and Anthony J. Bagnall. The canonical interval
forest (CIF) classifier for time series classification. CoRR, abs/2008.09172, 2020.
URL https://arxiv.org/abs/2008.09172.

[39] Harleen Kaur. Understanding accuracy, recall, precision and f1 scores and confusion
matrices. URL https://towardsdatascience.com/understanding-accuracy-\
recall-precision-f1-scores-and-confusion-matrices-561e0f5e328c. Last
visited: 2023-05-19.

[40] François Chollet et al. Keras. https://keras.io, 2015.

[41] Aman Sachdev. Choosing number of hidden layers and number of hidden neurons in
neural networks, 2018. URL https://www.linkedin.com/pulse/
choosing-number-hidden-layers-neurons-neural-networks-sachdev. Last
visited: 2023-05-19.

[42] Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines,
and Franz J Király. sktime: A unified interface for machine learning with time series.
arXiv preprint arXiv:1909.07872, 2019.

[43] Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon.
Towards a rigorous evaluation of time-series anomaly detection. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(7):7194–7201, June 2022. doi:
10.1609/aaai.v36i7.20680. URL
https://ojs.aaai.org/index.php/AAAI/article/view/20680.

44

https://arxiv.org/abs/2008.09172
https://towardsdatascience.com/understanding-accuracy-\recall-precision-f1-scores-and-confusion-matrices-561e0f5e328c
https://towardsdatascience.com/understanding-accuracy-\recall-precision-f1-scores-and-confusion-matrices-561e0f5e328c
https://keras.io
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev
https://ojs.aaai.org/index.php/AAAI/article/view/20680


Abbreviations A
Adam Adaptive Moment Estimation.

Bagging Bootstrap Aggregation.
BPTT backpropagation through time.

DrCIF Diverse Representation Canonical Interval Forest.

ECC Error correcting code.

GRU Gated Recurrent Unit.

HC2 HIVE-COTE 2.0.

LR Logistic Regression.
LSTM Long Short-Term Memory.

NN Neural Network.

RNN Recurrent Neural Network.
ROCKET Random Convolutional Kernel Transform.

SEE Single Event Error.
STC Shapelet Transform Classifier.
SVM Support Vector Machine.

TDE Temporal Dictionary Ensemble.
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Experimental-type Runs
with Anomalies B

The run IDs of the 56 experimental-type runs that deviates in behaviour from their
corresponding nominal-type run.

kp105ki8kd1sp20experiment54
kp116ki3kd2sp18experiment105
kp122ki13kd1sp13experiment29
kp122ki13kd1sp13experiment50
kp131ki11kd2sp14experiment37
kp131ki11kd2sp14experiment89
kp149ki11kd3sp18experiment82
kp151ki10kd3sp2experiment59
kp151ki10kd3sp2experiment60
kp151ki10kd3sp2experiment94
kp188ki3kd3sp18experiment39
kp238ki3kd2sp5experiment51
kp260ki7kd1sp11experiment46
kp260ki7kd1sp11experiment47
kp261ki2kd3sp4experiment84
kp270ki3kd3sp15experiment128
kp274ki9kd3sp15experiment80
kp293ki9kd1sp2experiment23
kp293ki9kd1sp2experiment79
kp297ki4kd3sp5experiment18
kp332ki14kd1sp12experiment69
kp336ki10kd3sp6experiment117
kp336ki10kd3sp6experiment25
kp346ki3kd2sp9experiment129
kp346ki3kd2sp9experiment42
kp374ki4kd2sp9experiment67
kp494ki15kd3sp1experiment44
kp494ki15kd3sp1experiment63

kp544ki5kd2sp16experiment36
kp544ki5kd2sp16experiment81
kp583ki15kd1sp0experiment126
kp583ki15kd1sp0experiment37
kp611ki3kd1sp0experiment71
kp621ki4kd1sp13experiment30
kp634ki6kd2sp11experiment51
kp654ki10kd3sp7experiment129
kp654ki10kd3sp7experiment23
kp654ki10kd3sp7experiment25
kp695ki5kd2sp13experiment21
kp718ki5kd1sp16experiment113
kp718ki5kd1sp16experiment17
kp729ki4kd1sp5experiment31
kp731ki10kd3sp3experiment86
kp746ki3kd1sp4experiment29
kp746ki3kd1sp4experiment83
kp770ki2kd1sp20experiment44
kp770ki2kd1sp20experiment76
kp771ki15kd3sp15experiment53
kp790ki9kd1sp6experiment37
kp790ki9kd1sp6experiment62
kp790ki9kd1sp6experiment65
kp831ki11kd3sp18experiment43
kp840ki8kd2sp17experiment18
kp840ki8kd2sp17experiment67
kp952ki3kd1sp12experiment16
kp972ki9kd2sp3experiment90

47





Confusion Matrices C
The confusion matrices from the two ’Baseline’ experiments with the SVM model trained
on the original and simulated dataset respectively both with torque as the input feature.
The resulting confusion matrices of the three individual run of each of the two experiments
can be found in the two figures figures C.1 and C.2.

(a) Confusion matrix from the first run. (b) Confusion matrix from the second run.

(c) Confusion matrix from the third run.

Figure C.1. Confusion matrices for all tree runs where an SVM model was trained
on the original dataset with torque as the input feature.
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(a) Confusion matrix from the first run. (b) Confusion matrix from the second run.

(c) Confusion matrix from the third run.

Figure C.2. Confusion matrices for all tree runs where an SVM model was trained
on the simulated dataset with torque as the input feature.
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Experiment Results D
This appendix lists all results related to the aggregated results found in Section 6.3. Each
experiment is as stated in Section 6.1 run three individual times where the only difference is
the seed used for data shuffling and weight initialisation. The values presented in Section 6.3
are the aggregated arithmetic mean values and standard deviation listed in parenthesis.
Dataset and input feature specifications are described in Section 6.1.

D.1 Baseline

Logistic Regression

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.52 0.52 0.52
2 0.43 0.43 0.43 0.43
3 0.35 0.34 0.34 0.34

Mean 0.43 (0.09) 0.43 (0.09) 0.43 (0.09) 0.43 (0.09)

Table D.1. LR trained on the original dataset with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.39 0.39 0.39
2 0.39 0.36 0.38 0.36
3 0.35 0.34 0.34 0.34

Mean 0.38 (0.02) 0.36 (0.03) 0.37 (0.03) 0.36 (0.03)

Table D.2. LR trained on the original dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.51 0.51 0.51 0.51
2 0.52 0.52 0.52 0.51
3 0.52 0.52 0.52 0.51

Mean 0.52 (0.01) 0.52 (0.01) 0.52 (0.01) 0.51 (0.0)

Table D.3. LR trained on the simulated dataset with vehicle speed as the input
feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.52 0.52 0.52 0.52
2 0.52 0.52 0.52 0.52
3 0.52 0.52 0.52 0.52

Mean 0.52 (0.0) 0.52 (0.0) 0.52 (0.0) 0.52 (0.0)

Table D.4. LR trained on the simulated dataset with torque as the input feature.

Support Vector Machine

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.52 0.26 0.5 0.34

Mean 0.52 (0.0) 0.26 (0.0) 0.5 (0.0) 0.34 (0.0)

Table D.5. SVM trained on the original dataset with vehicle speed as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.48 0.42 0.46 0.38
3 0.52 0.26 0.5 0.34

Mean 0.51 (0.02) 0.31 (0.09) 0.49 (0.02) 0.35 (0.02)

Table D.6. SVM trained on the original dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.53 0.53 0.53 0.52
2 0.53 0.53 0.53 0.53
3 0.52 0.55 0.52 0.44

Mean 0.53 (0.01) 0.54 (0.01) 0.53 (0.01) 0.5 (0.05)

Table D.7. SVM trained on the simulated dataset with vehicle speed as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.55 0.56 0.55 0.53
2 0.54 0.55 0.54 0.53
3 0.54 0.56 0.55 0.51

Mean 0.54 (0.01) 0.56 (0.01) 0.55 (0.01) 0.52 (0.01)

Table D.8. SVM trained on the simulated dataset with torque as the input feature.
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D.2 RNN

The names A1, A2, and A3 used in this section refer to the architecture of the RNN
models specified in Section 6.2. The experiment runs marked with ’*’ encountered a ’Not
a Number’ error which results in the model stopping learning prematurely.

SimpleRNN

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.52 0.26 0.5 0.34

Mean 0.52 (0.0) 0.26 (0.0) 0.5 (0.0) 0.34 (0.0)

Table D.9. SimpleRNN (A1) trained on the original dataset with vehicle speed as
the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.52 0.26 0.5 0.34

Mean 0.52 (0.0) 0.26 (0.0) 0.5 (0.0) 0.34 (0.0)

Table D.10. SimpleRNN (A2) trained on the original dataset with vehicle speed as
the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.52 0.26 0.5 0.34

Mean 0.52 (0.0) 0.26 (0.0) 0.5 (0.0) 0.34 (0.0)

Table D.11. SimpleRNN (A3) trained on the original dataset with vehicle speed as
the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.57 0.76 0.58 0.49
2 0.48 0.49 0.5 0.38
3 0.57 0.76 0.58 0.49

Mean 0.54 (0.05) 0.67 (0.16) 0.55 (0.05) 0.45 (0.06)

Table D.12. SimpleRNN (A1) trained on the original dataset with torque as the
input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.57 0.56 0.56 0.56
2 0.52 0.51 0.51 0.46
3 0.57 0.61 0.55 0.49

Mean 0.55 (0.03) 0.56 (0.05) 0.54 (0.03) 0.5 (0.05)

Table D.13. SimpleRNN (A2) trained on the original dataset with torque as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.51 0.51 0.49
2 0.52 0.52 0.52 0.52
3 0.57 0.58 0.55 0.52

Mean 0.54 (0.03) 0.54 (0.04) 0.53 (0.02) 0.51 (0.02)

Table D.14. SimpleRNN (A3) trained on the original dataset with torque as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.55 0.53 0.49
2 0.48 0.49 0.49 0.42
3 0.57 0.77 0.55 0.44

Mean 0.52 (0.05) 0.6 (0.15) 0.52 (0.03) 0.45 (0.04)

Table D.15. SimpleRNN (A1) trained on the original dataset with vehicle speed
and torque as the input features.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.36 0.42 0.36
2 0.57 0.6 0.58 0.54
3 0.52 0.51 0.51 0.46

Mean 0.51 (0.07) 0.49 (0.12) 0.5 (0.08) 0.45 (0.09)

Table D.16. SimpleRNN (A2) trained on the original dataset with vehicle speed
and torque as the input features.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.39 0.4 0.38
2 0.48 0.48 0.48 0.47
3 0.57 0.64 0.58 0.52

Mean 0.48 (0.09) 0.5 (0.13) 0.49 (0.09) 0.46 (0.07)

Table D.17. SimpleRNN (A3) trained on the original dataset with vehicle speed
and torque as the input features.
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Long Short-Term Memory

Run nr. Accuracy Precision Recall F1-score
1 0.48 0.49 0.49 0.45
2 0.43 0.44 0.44 0.43
3 0.52 0.26 0.5 0.34

Mean 0.48 (0.05) 0.4 (0.12) 0.48 (0.03) 0.41 (0.06)

Table D.18. LSTM (A1) trained on the original dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.42 0.45 0.39
2 0.48 0.48 0.48 0.48
3 0.35 0.2 0.36 0.26

Mean 0.42 (0.07) 0.37 (0.15) 0.43 (0.06) 0.38 (0.11)

Table D.19. LSTM (A2) trained on the original dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.34 0.41 0.33
2 0.48 0.48 0.48 0.48
3 0.35 0.2 0.36 0.26

Mean 0.41 (0.07) 0.34 (0.14) 0.42 (0.06) 0.36 (0.11)

Table D.20. LSTM (A3) trained on the original dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.57 0.58 0.57 0.56
2 0.43 0.39 0.45 0.36
3 0.52 0.53 0.53 0.52

Mean 0.51 (0.07) 0.5 (0.1) 0.52 (0.06) 0.48 (0.11)

Table D.21. LSTM (A1) trained on the original dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.34 0.41 0.33
2 0.48 0.48 0.48 0.47
3 0.65 0.68 0.66 0.65

Mean 0.51 (0.13) 0.5 (0.17) 0.52 (0.13) 0.48 (0.16)

Table D.22. LSTM (A2) trained on the original dataset with torque as the input
feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.39 0.37 0.4 0.36
2 0.61 0.61 0.61 0.61
3 0.57 0.61 0.55 0.49

Mean 0.52 (0.12) 0.53 (0.14) 0.52 (0.11) 0.49 (0.13)

Table D.23. LSTM (A3) trained on the original dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.65 0.68 0.66 0.65
2 0.48 0.49 0.49 0.45
3 0.61 0.64 0.62 0.6

Mean 0.58 (0.09) 0.6 (0.1) 0.59 (0.09) 0.57 (0.1)

Table D.24. LSTM (A1) trained on the original dataset with vehicle speed and
torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.48 0.47 0.47 0.47
2 0.48 0.49 0.49 0.45
3 0.48 0.42 0.46 0.38

Mean 0.48 (0.0) 0.46 (0.04) 0.47 (0.02) 0.43 (0.05)

Table D.25. LSTM (A2) trained on the original dataset with vehicle speed and
torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.37 0.4 0.36
2 0.39 0.39 0.4 0.38
3 0.43 0.43 0.44 0.42

Mean 0.4 (0.02) 0.4 (0.03) 0.41 (0.02) 0.39 (0.03)

Table D.26. LSTM (A3) trained on the original dataset with vehicle speed and
torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 0.5 0.25 0.5 0.33
3 0.51 0.51 0.5 0.36

Mean 0.5 (0.01) 0.34 (0.15) 0.5 (0.0) 0.34 (0.02)

Table D.27. LSTM (A1) trained on the simulated dataset with vehicle speed as the
input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.5 0.5 0.5 0.37
2 0.5 0.25 0.5 0.33
3 0.49 0.25 0.5 0.33

Mean 0.5 (0.01) 0.33 (0.14) 0.5 (0.0) 0.34 (0.02)

Table D.28. LSTM (A2) trained on the simulated dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.5 0.5 0.37
2 0.5 0.25 0.5 0.33
3 0.49 0.25 0.5 0.33

Mean 0.5 (0.01) 0.33 (0.14) 0.5 (0.0) 0.34 (0.02)

Table D.29. LSTM (A3) trained on the simulated dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.51 0.5 0.4
2 0.51 0.51 0.51 0.46
3 0.5 0.53 0.51 0.39

Mean 0.5 (0.01) 0.52 (0.01) 0.51 (0.01) 0.42 (0.04)

Table D.30. LSTM (A1) trained on the simulated dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.51 0.51 0.51 0.5
2 0.51 0.51 0.51 0.48
3 0.51 0.5 0.5 0.48

Mean 0.51 (0.0) 0.51 (0.01) 0.51 (0.01) 0.49 (0.01)

Table D.31. LSTM (A2) trained on the simulated dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.51 0.51 0.51 0.5
2 0.51 0.51 0.51 0.49
3* 0.49 0.25 0.5 0.33

Mean 0.5 (0.01) 0.42 (0.15) 0.51 (0.01) 0.44 (0.1)

Table D.32. LSTM (A3) trained on the simulated dataset with torque as the input
feature.
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Gated Recurrent Unit

Run nr. Accuracy Precision Recall F1-score
1 0.57 0.58 0.57 0.56
2 0.48 0.48 0.48 0.48
3 0.35 0.2 0.36 0.26

Mean 0.47 (0.11) 0.42 (0.2) 0.47 (0.11) 0.43 (0.16)

Table D.33. GRU (A1) trained on the original dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.42 0.45 0.39
2 0.48 0.48 0.48 0.48
3 0.35 0.35 0.35 0.35

Mean 0.42 (0.07) 0.42 (0.07) 0.43 (0.07) 0.41 (0.07)

Table D.34. GRU (A2) trained on the original dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.34 0.41 0.33
2 0.48 0.48 0.48 0.48
3 0.39 0.32 0.38 0.33

Mean 0.42 (0.05) 0.38 (0.09) 0.42 (0.05) 0.38 (0.09)

Table D.35. GRU (A3) trained on the original dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.57 0.56 0.56 0.56
2 0.57 0.57 0.56 0.54
3 0.57 0.57 0.57 0.56

Mean 0.57 (0.0) 0.57 (0.01) 0.56 (0.01) 0.55 (0.01)

Table D.36. GRU (A1) trained on the original dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.58 0.54 0.46
2 0.57 0.57 0.56 0.54
3 0.57 0.77 0.55 0.44

Mean 0.55 (0.03) 0.64 (0.11) 0.55 (0.01) 0.48 (0.05)

Table D.37. GRU (A2) trained on the original dataset with torque as the input
feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.48 0.49 0.5 0.38
2 0.48 0.42 0.46 0.38
3 0.61 0.79 0.59 0.52

Mean 0.52 (0.08) 0.57 (0.2) 0.52 (0.07) 0.43 (0.08)

Table D.38. GRU (A3) trained on the original dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.57 0.6 0.58 0.54
2 0.43 0.44 0.44 0.43
3 0.65 0.71 0.66 0.63

Mean 0.55 (0.11) 0.58 (0.14) 0.56 (0.11) 0.53 (0.1)

Table D.39. GRU (A1) trained on the original dataset with vehicle speed and torque
as the input features.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.42 0.45 0.39
2 0.48 0.49 0.49 0.45
3 0.48 0.45 0.47 0.43

Mean 0.46 (0.03) 0.45 (0.04) 0.47 (0.02) 0.42 (0.03)

Table D.40. GRU (A2) trained on the original dataset with vehicle speed and torque
as the input features.

Run nr. Accuracy Precision Recall F1-score
1 0.35 0.33 0.36 0.33
2 0.39 0.39 0.39 0.39
3 0.52 0.51 0.51 0.46

Mean 0.42 (0.09) 0.41 (0.09) 0.42 (0.08) 0.39 (0.07)

Table D.41. GRU (A3) trained on the original dataset with vehicle speed and torque
as the input features.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.5 0.5 0.37
2 0.5 0.25 0.5 0.33
3 0.51 0.51 0.5 0.35

Mean 0.5 (0.01) 0.42 (0.15) 0.5 (0.0) 0.35 (0.02)

Table D.42. GRU (A1) trained on the simulated dataset with vehicle speed as the
input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.5 0.5 0.5 0.37
2 0.5 0.25 0.5 0.33
3 0.51 0.51 0.5 0.34

Mean 0.5 (0.01) 0.42 (0.15) 0.5 (0.0) 0.35 (0.02)

Table D.43. GRU (A2) trained on the simulated dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 0.5 0.25 0.5 0.33
3 0.51 0.25 0.5 0.34

Mean 0.5 (0.01) 0.25 (0.0) 0.5 (0.0) 0.33 (0.01)

Table D.44. GRU (A3) trained on the simulated dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.51 0.5 0.34
2 0.5 0.5 0.5 0.49
3 0.51 0.59 0.5 0.34

Mean 0.5 (0.01) 0.53 (0.05) 0.5 (0.0) 0.39 (0.09)

Table D.45. GRU (A1) trained on the simulated dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.51 0.5 0.36
2 0.5 0.51 0.5 0.44
3 0.52 0.52 0.51 0.44

Mean 0.51 (0.01) 0.51 (0.01) 0.5 (0.01) 0.41 (0.05)

Table D.46. GRU (A2) trained on the simulated dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 0.5 0.55 0.5 0.36
3 0.51 0.52 0.5 0.35

Mean 0.5 (0.01) 0.44 (0.17) 0.5 (0.0) 0.35 (0.02)

Table D.47. GRU (A3) trained on the simulated dataset with torque as the input
feature.
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D.3 Time-series Classification

ROCKET

Run nr. Accuracy Precision Recall F1-score
1 0.57 0.58 0.55 0.52
2 0.48 0.45 0.47 0.43
3 0.52 0.52 0.52 0.52

Mean 0.52 (0.05) 0.52 (0.07) 0.51 (0.04) 0.49 (0.05)

Table D.48. ROCKET trained on the original dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.38 0.39 0.38
2 0.39 0.36 0.38 0.36
3 0.26 0.26 0.26 0.26

Mean 0.35 (0.08) 0.33 (0.06) 0.34 (0.07) 0.33 (0.06)

Table D.49. ROCKET trained on the original dataset with torque as the input
feature.

Run nr. Accuracy Precision Recall F1-score
1 0.64 0.64 0.64 0.64
2 0.64 0.64 0.64 0.63
3 0.63 0.63 0.63 0.63

Mean 0.64 (0.01) 0.64 (0.01) 0.64 (0.01) 0.63 (0.01)

Table D.50. ROCKET trained on the simulated dataset with vehicle speed as the
input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.67 0.67 0.67 0.66
2 0.67 0.67 0.67 0.66
3 0.66 0.67 0.66 0.66

Mean 0.67 (0.01) 0.67 (0.0) 0.67 (0.01) 0.66 (0.0)

Table D.51. ROCKET trained on the simulated dataset with torque as the input
feature.

HIVE-COTE 2.0

Run nr. Accuracy Precision Recall F1-score
1 0.35 0.32 0.34 0.33
2 0.3 0.3 0.3 0.3
3 0.35 0.35 0.35 0.35

Mean 0.33 (0.03) 0.32 (0.03) 0.33 (0.03) 0.33 (0.03)

Table D.52. HC2 trained on the original dataset with vehicle speed as the input
feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.65 0.71 0.64 0.62
2 0.52 0.52 0.52 0.52
3 0.78 0.85 0.77 0.77

Mean 0.65 (0.13) 0.69 (0.17) 0.64 (0.13) 0.64 (0.13)

Table D.53. HC2 trained on the original dataset with torque as the input feature.

D.4 Matrix Profile for non-RNN models

Matrix profile experiments and window size notation is described in Section 6.2.

Logistic Regression

Run nr. Accuracy Precision Recall F1-score
1 0.3 0.29 0.3 0.29
2 0.39 0.39 0.39 0.39
3 0.48 0.47 0.47 0.47

Mean 0.39 (0.09) 0.38 (0.09) 0.39 (0.09) 0.38 (0.09)

Table D.54. LR trained on the matrix profile P5 created from the original dataset
with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.39 0.39 0.39
2 0.48 0.48 0.48 0.48
3 0.35 0.34 0.34 0.34

Mean 0.41 (0.07) 0.4 (0.07) 0.4 (0.07) 0.4 (0.07)

Table D.55. LR trained on the matrix profile P15 created from the original dataset
with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.3 0.3 0.3 0.3
2 0.35 0.34 0.34 0.34
3 0.3 0.3 0.3 0.3

Mean 0.32 (0.03) 0.31 (0.02) 0.31 (0.02) 0.31 (0.02)

Table D.56. LR trained on the matrix profile P25 created from the original dataset
with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.48 0.48 0.48 0.48
2 0.57 0.57 0.57 0.56
3 0.43 0.4 0.42 0.39

Mean 0.49 (0.07) 0.48 (0.09) 0.49 (0.08) 0.48 (0.09)

Table D.57. LR trained on the matrix profile P100 created from the original dataset
with vehicle speed as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.3 0.26 0.31 0.27
2 0.39 0.39 0.39 0.39
3 0.35 0.35 0.35 0.34

Mean 0.35 (0.05) 0.33 (0.07) 0.35 (0.04) 0.33 (0.06)

Table D.58. LR trained on the matrix profile P5 created from the original dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.35 0.33 0.36 0.33
2 0.35 0.35 0.35 0.35
3 0.48 0.48 0.48 0.47

Mean 0.39 (0.08) 0.39 (0.08) 0.4 (0.07) 0.38 (0.08)

Table D.59. LR trained on the matrix profile P15 created from the original dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.3 0.26 0.31 0.27
2 0.43 0.44 0.44 0.43
3 0.57 0.56 0.56 0.56

Mean 0.43 (0.14) 0.42 (0.15) 0.44 (0.13) 0.42 (0.15)

Table D.60. LR trained on the matrix profile P25 created from the original dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.42 0.43 0.42
2 0.43 0.43 0.43 0.43
3 0.39 0.38 0.39 0.38

Mean 0.42 (0.02) 0.41 (0.03) 0.42 (0.02) 0.41 (0.03)

Table D.61. LR trained on the matrix profile P100 created from the original dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.5 0.5 0.5
2 0.51 0.51 0.51 0.51
3 0.5 0.5 0.5 0.5

Mean 0.5 (0.01) 0.5 (0.01) 0.5 (0.01) 0.5 (0.01)

Table D.62. LR trained on the matrix profile P5 created from the simulated dataset
with vehicle speed as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.5 0.5 0.5 0.5
2 0.51 0.51 0.51 0.51
3 0.51 0.52 0.52 0.51

Mean 0.51 (0.01) 0.51 (0.01) 0.51 (0.01) 0.51 (0.01)

Table D.63. LR trained on the matrix profile P15 created from the simulated dataset
with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.51 0.51 0.51 0.51
2 0.51 0.51 0.51 0.51
3 0.51 0.51 0.51 0.51

Mean 0.51 (0.0) 0.51 (0.0) 0.51 (0.0) 0.51 (0.0)

Table D.64. LR trained on the matrix profile P25 created from the simulated dataset
with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.51 0.51 0.51 0.51
2 0.51 0.51 0.51 0.51
3 0.51 0.51 0.51 0.51

Mean 0.51 (0.0) 0.51 (0.0) 0.51 (0.0) 0.51 (0.0)

Table D.65. LR trained on the matrix profile P100 created from the simulated
dataset with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.63 0.64 0.63 0.63
2 0.62 0.63 0.62 0.62
3 0.63 0.63 0.63 0.63

Mean 0.63 (0.01) 0.63 (0.01) 0.63 (0.01) 0.63 (0.01)

Table D.66. LR trained on the matrix profile P5 created from the simulated dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.66 0.67 0.66 0.66
2 0.66 0.66 0.66 0.66
3 0.66 0.67 0.66 0.66

Mean 0.66 (0.0) 0.67 (0.01) 0.66 (0.0) 0.66 (0.0)

Table D.67. LR trained on the matrix profile P15 created from the simulated dataset
with torque as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.66 0.66 0.66 0.66
2 0.66 0.67 0.66 0.66
3 0.66 0.67 0.66 0.66

Mean 0.66 (0.0) 0.67 (0.01) 0.66 (0.0) 0.66 (0.0)

Table D.68. LR trained on the matrix profile P25 created from the simulated dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.54 0.54 0.54 0.54
2 0.54 0.54 0.54 0.54
3 0.54 0.54 0.54 0.54

Mean 0.54 (0.0) 0.54 (0.0) 0.54 (0.0) 0.54 (0.0)

Table D.69. LR trained on the matrix profile P100 created from the simulated
dataset with torque as the input feature.

Support Vector Machine

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.36 0.42 0.36
2 0.48 0.25 0.46 0.32
3 0.48 0.25 0.46 0.32

Mean 0.46 (0.03) 0.29 (0.06) 0.45 (0.02) 0.33 (0.02)

Table D.70. SVM trained on the matrix profile P5 created from the original dataset
with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.24 0.42 0.3
2 0.52 0.26 0.5 0.34
3 0.43 0.24 0.42 0.3

Mean 0.46 (0.05) 0.25 (0.01) 0.45 (0.05) 0.31 (0.02)

Table D.71. SVM trained on the matrix profile P15 created from the original dataset
with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.24 0.42 0.3
2 0.43 0.24 0.42 0.3
3 0.52 0.26 0.5 0.34

Mean 0.46 (0.05) 0.25 (0.01) 0.45 (0.05) 0.31 (0.02)

Table D.72. SVM trained on the matrix profile P25 created from the original dataset
with vehicle speed as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.43 0.43 0.44 0.42
2 0.43 0.36 0.42 0.36
3 0.52 0.55 0.53 0.49

Mean 0.46 (0.05) 0.45 (0.1) 0.46 (0.06) 0.42 (0.07)

Table D.73. SVM trained on the matrix profile P100 created from the original
dataset with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.35 0.35 0.35 0.34
2 0.52 0.51 0.51 0.49
3 0.48 0.48 0.48 0.48

Mean 0.45 (0.09) 0.45 (0.09) 0.45 (0.09) 0.44 (0.08)

Table D.74. SVM trained on the matrix profile P5 created from the original dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.52 0.52 0.52
2 0.52 0.51 0.51 0.49
3 0.65 0.65 0.65 0.65

Mean 0.56 (0.08) 0.56 (0.08) 0.56 (0.08) 0.55 (0.09)

Table D.75. SVM trained on the matrix profile P15 created from the original dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.52 0.52 0.52
2 0.52 0.51 0.51 0.49
3 0.61 0.61 0.61 0.61

Mean 0.55 (0.05) 0.55 (0.06) 0.55 (0.06) 0.54 (0.06)

Table D.76. SVM trained on the matrix profile P25 created from the original dataset
with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.52 0.52 0.52
2 0.61 0.63 0.6 0.58
3 0.57 0.57 0.57 0.56

Mean 0.57 (0.05) 0.57 (0.06) 0.56 (0.04) 0.55 (0.03)

Table D.77. SVM trained on the matrix profile P100 created from the original
dataset with torque as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.51 0.51 0.51 0.5
2 0.52 0.52 0.52 0.51
3 0.52 0.52 0.52 0.5

Mean 0.52 (0.01) 0.52 (0.01) 0.52 (0.01) 0.5 (0.01)

Table D.78. SVM trained on the matrix profile P5 created from the simulated
dataset with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.51 0.51 0.51 0.51
2 0.52 0.52 0.52 0.51
3 0.52 0.52 0.52 0.5

Mean 0.52 (0.01) 0.52 (0.01) 0.52 (0.01) 0.51 (0.01)

Table D.79. SVM trained on the matrix profile P15 created from the simulated
dataset with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.51 0.51 0.51 0.49
2 0.52 0.52 0.52 0.49
3 0.51 0.52 0.51 0.48

Mean 0.51 (0.01) 0.52 (0.01) 0.51 (0.01) 0.49 (0.01)

Table D.80. SVM trained on the matrix profile P25 created from the simulated
dataset with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.55 0.57 0.55 0.52
2 0.54 0.55 0.54 0.51
3 0.53 0.55 0.54 0.51

Mean 0.54 (0.01) 0.56 (0.01) 0.54 (0.01) 0.51 (0.01)

Table D.81. SVM trained on the matrix profile P100 created from the simulated
dataset with vehicle speed as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.75 0.75 0.75 0.75
2 0.74 0.74 0.74 0.74
3 0.75 0.75 0.75 0.75

Mean 0.75 (0.01) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01)

Table D.82. SVM trained on the matrix profile P5 created from the simulated
dataset with torque as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.77 0.77 0.77 0.77
2 0.77 0.77 0.77 0.77
3 0.77 0.77 0.77 0.77

Mean 0.77 (0.0) 0.77 (0.0) 0.77 (0.0) 0.77 (0.0)

Table D.83. SVM trained on the matrix profile P15 created from the simulated
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.75 0.75 0.75 0.75
2 0.75 0.75 0.75 0.75
3 0.75 0.75 0.75 0.75

Mean 0.75 (0.0) 0.75 (0.0) 0.75 (0.0) 0.75 (0.0)

Table D.84. SVM trained on the matrix profile P25 created from the simulated
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.66 0.67 0.66 0.66
2 0.65 0.66 0.65 0.65
3 0.65 0.65 0.65 0.65

Mean 0.65 (0.01) 0.66 (0.01) 0.65 (0.01) 0.65 (0.01)

Table D.85. SVM trained on the matrix profile P100 created from the simulated
dataset with torque as the input feature.

ROCKET

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.53 0.53 0.52
2 0.65 0.68 0.66 0.65
3 0.74 0.74 0.74 0.74

Mean 0.64 (0.11) 0.65 (0.11) 0.64 (0.11) 0.64 (0.11)

Table D.86. ROCKET trained on the matrix profile P5 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.57 0.57 0.57 0.56
2 0.43 0.42 0.45 0.39
3 0.61 0.61 0.61 0.61

Mean 0.54 (0.09) 0.53 (0.1) 0.54 (0.08) 0.52 (0.12)

Table D.87. ROCKET trained on the matrix profile P15 created from the original
dataset with torque as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.61 0.62 0.61 0.61
2 0.7 0.74 0.7 0.69
3 0.65 0.65 0.65 0.65

Mean 0.65 (0.05) 0.67 (0.06) 0.65 (0.05) 0.65 (0.04)

Table D.88. ROCKET trained on the matrix profile P25 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.3 0.3 0.3 0.3
2 0.39 0.39 0.39 0.39
3 0.43 0.36 0.42 0.36

Mean 0.37 (0.07) 0.35 (0.05) 0.37 (0.06) 0.35 (0.05)

Table D.89. ROCKET trained on the matrix profile P100 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.89 0.9 0.89 0.89
2 0.89 0.9 0.89 0.89
3 0.9 0.9 0.9 0.9

Mean 0.89 (0.01) 0.9 (0.0) 0.89 (0.01) 0.89 (0.01)

Table D.90. ROCKET trained on the matrix profile P5 created from the simulated
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.88 0.89 0.88 0.88
2 0.88 0.88 0.88 0.88
3 0.88 0.89 0.88 0.88

Mean 0.88 (0.0) 0.89 (0.01) 0.88 (0.0) 0.88 (0.0)

Table D.91. ROCKET trained on the matrix profile P15 created from the simulated
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.96 0.96 0.96 0.96
2 0.96 0.96 0.96 0.96
3 0.95 0.95 0.95 0.95

Mean 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) 0.96 (0.01)

Table D.92. ROCKET trained on the matrix profile P25 created from the simulated
dataset with torque as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.77 0.78 0.77 0.77
2 0.77 0.77 0.77 0.77
3 0.77 0.77 0.77 0.76

Mean 0.77 (0.0) 0.77 (0.01) 0.77 (0.0) 0.77 (0.01)

Table D.93. ROCKET trained on the matrix profile P100 created from the simulated
dataset with torque as the input feature.

D.5 Matrix Profile for RNN models

Matrix profile experiments together with architecture and window size notation are
described in Section 6.2. Furthermore, the names A1, A2, and A3 used in this section
refer to the architecture of the RNN models specified in Section 6.2. The experiment runs
marked with ’*’ encountered a ’Not a Number’ error which results in the model stopping
learning prematurely.

Long Short-Term Memory

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.23 0.45 0.3
2 0.52 0.26 0.5 0.34
3 0.39 0.21 0.41 0.28

Mean 0.45 (0.07) 0.23 (0.03) 0.45 (0.05) 0.31 (0.03)

Table D.94. LSTM (A1) trained on the matrix profile P15 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.58 0.54 0.46
2 0.48 0.24 0.5 0.32
3 0.43 0.23 0.45 0.3

Mean 0.48 (0.05) 0.35 (0.2) 0.5 (0.05) 0.36 (0.09)

Table D.95. LSTM (A2) trained on the matrix profile P15 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.39 0.21 0.41 0.28

Mean 0.48 (0.08) 0.24 (0.03) 0.47 (0.05) 0.32 (0.03)

Table D.96. LSTM (A3) trained on the matrix profile P15 created from the original
dataset with torque as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.48 0.49 0.5 0.38
2 0.52 0.75 0.54 0.41
3 0.43 0.23 0.45 0.3

Mean 0.48 (0.05) 0.49 (0.26) 0.5 (0.05) 0.36 (0.06)

Table D.97. LSTM (A1) trained on the matrix profile P25 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.43 0.43 0.43
2 0.52 0.26 0.5 0.34
3 0.35 0.2 0.36 0.26

Mean 0.43 (0.09) 0.3 (0.12) 0.43 (0.07) 0.34 (0.09)

Table D.98. LSTM (A2) trained on the matrix profile P25 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.75 0.54 0.41
3 0.43 0.39 0.45 0.36

Mean 0.49 (0.05) 0.47 (0.25) 0.5 (0.05) 0.37 (0.04)

Table D.99. LSTM (A3) trained on the matrix profile P25 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.39 0.45 0.36
2 0.7 0.81 0.71 0.67
3 0.52 0.51 0.5 0.41

Mean 0.55 (0.14) 0.57 (0.22) 0.55 (0.14) 0.48 (0.17)

Table D.100. LSTM (A1) trained on the matrix profile P[15,25] created from the
original dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.43 0.23 0.45 0.3
2 0.48 0.24 0.5 0.32
3 0.52 0.51 0.5 0.41

Mean 0.48 (0.05) 0.33 (0.16) 0.48 (0.03) 0.34 (0.06)

Table D.101. LSTM (A2) trained on the matrix profile P[15,25] created from the
original dataset with torque as the input feature.

71



Group: cs-22-mi-9-10 D. Experiment Results

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.39 0.21 0.41 0.28

Mean 0.48 (0.08) 0.24 (0.03) 0.47 (0.05) 0.32 (0.03)

Table D.102. LSTM (A3) trained on the matrix profile P[15,25] created from the
original dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.59 0.76 0.59 0.51
2* 0.5 0.25 0.5 0.33
3 0.51 0.49 0.5 0.35

Mean 0.53 (0.05) 0.5 (0.26) 0.53 (0.05) 0.4 (0.1)

Table D.103. LSTM (A1) trained on the matrix profile P15 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 0.5 0.25 0.5 0.33
3 0.51 0.55 0.52 0.43

Mean 0.5 (0.01) 0.35 (0.17) 0.51 (0.01) 0.36 (0.06)

Table D.104. LSTM (A2) trained on the matrix profile P15 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 0.5 0.25 0.5 0.33
3 0.49 0.25 0.5 0.33

Mean 0.5 (0.01) 0.25 (0.0) 0.5 (0.0) 0.33 (0.0)

Table D.105. LSTM (A3) trained on the matrix profile P15 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.45 0.44 0.45 0.43
2 0.67 0.7 0.67 0.66
3 0.51 0.48 0.5 0.35

Mean 0.54 (0.11) 0.54 (0.14) 0.54 (0.12) 0.48 (0.16)

Table D.106. LSTM (A1) trained on the matrix profile P25 created from the
simulated dataset with torque as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 0.88 0.9 0.88 0.88
3* 0.49 0.25 0.5 0.33

Mean 0.62 (0.22) 0.47 (0.38) 0.63 (0.22) 0.51 (0.32)

Table D.107. LSTM (A2) trained on the matrix profile P25 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 0.5 0.25 0.5 0.33
3 0.49 0.25 0.5 0.33

Mean 0.5 (0.01) 0.25 (0.0) 0.5 (0.0) 0.33 (0.0)

Table D.108. LSTM (A3) trained on the matrix profile P25 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.86 0.88 0.86 0.86
2 0.54 0.54 0.54 0.54
3 0.55 0.55 0.55 0.55

Mean 0.65 (0.18) 0.66 (0.19) 0.65 (0.18) 0.65 (0.18)

Table D.109. LSTM (A1) trained on the matrix profile P[15,25] created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.48 0.5 0.35
2 0.5 0.25 0.5 0.33
3 0.89 0.9 0.89 0.89

Mean 0.63 (0.23) 0.54 (0.33) 0.63 (0.23) 0.52 (0.32)

Table D.110. LSTM (A2) trained on the matrix profile P[15,25] created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 0.5 0.25 0.5 0.33
3 0.49 0.25 0.5 0.33

Mean 0.5 (0.01) 0.25 (0.0) 0.5 (0.0) 0.33 (0.0)

Table D.111. LSTM (A3) trained on the matrix profile P[15,25] created from the
simulated dataset with torque as the input feature.
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Gated Recurrent Unit

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.52 0.51 0.5 0.41

Mean 0.52 (0.0) 0.34 (0.14) 0.5 (0.0) 0.36 (0.04)

Table D.112. GRU (A1) trained on the matrix profile P15 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.7 0.82 0.68 0.65

Mean 0.58 (0.1) 0.45 (0.32) 0.56 (0.1) 0.44 (0.18)

Table D.113. GRU (A2) trained on the matrix profile P15 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.34 0.41 0.33
2 0.48 0.24 0.5 0.32
3 0.7 0.74 0.69 0.67

Mean 0.52 (0.16) 0.44 (0.26) 0.53 (0.14) 0.44 (0.2)

Table D.114. GRU (A3) trained on the matrix profile P15 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.52 0.26 0.5 0.34
2 0.52 0.26 0.5 0.34
3 0.48 0.25 0.46 0.32

Mean 0.51 (0.02) 0.26 (0.01) 0.49 (0.02) 0.33 (0.01)

Table D.115. GRU (A1) trained on the matrix profile P25 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.21 0.41 0.28
2 0.52 0.26 0.5 0.34
3 0.48 0.24 0.5 0.32

Mean 0.46 (0.07) 0.24 (0.03) 0.47 (0.05) 0.31 (0.03)

Table D.116. GRU (A2) trained on the matrix profile P25 created from the original
dataset with torque as the input feature.

74



D.5. Matrix Profile for RNN models Aalborg Universitet

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.21 0.41 0.28
2 0.52 0.75 0.54 0.41
3 0.48 0.24 0.5 0.32

Mean 0.46 (0.07) 0.4 (0.3) 0.48 (0.07) 0.34 (0.07)

Table D.117. GRU (A3) trained on the matrix profile P25 created from the original
dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.48 0.25 0.46 0.32
2 0.48 0.24 0.5 0.32
3 0.48 0.49 0.5 0.38

Mean 0.48 (0.0) 0.33 (0.14) 0.49 (0.02) 0.34 (0.03)

Table D.118. GRU (A1) trained on the matrix profile P[15,25] created from the
original dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.57 0.6 0.58 0.54
2 0.48 0.25 0.46 0.32
3 0.43 0.23 0.45 0.3

Mean 0.49 (0.07) 0.36 (0.21) 0.5 (0.07) 0.39 (0.13)

Table D.119. GRU (A2) trained on the matrix profile P[15,25] created from the
original dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.39 0.21 0.41 0.28
2 0.57 0.76 0.58 0.49
3 0.52 0.26 0.5 0.34

Mean 0.49 (0.09) 0.41 (0.3) 0.5 (0.09) 0.37 (0.11)

Table D.120. GRU (A3) trained on the matrix profile P[15,25] created from the
original dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.65 0.68 0.65 0.64
2 0.81 0.81 0.81 0.81
3 0.98 0.98 0.98 0.98

Mean 0.81 (0.17) 0.82 (0.15) 0.81 (0.17) 0.81 (0.17)

Table D.121. GRU (A1) trained on the matrix profile P15 created from the
simulated dataset with torque as the input feature.

75



Group: cs-22-mi-9-10 D. Experiment Results

Run nr. Accuracy Precision Recall F1-score
1* 0.5 0.25 0.5 0.33
2 0.92 0.93 0.92 0.92
3* 0.49 0.25 0.5 0.33

Mean 0.64 (0.25) 0.48 (0.39) 0.64 (0.24) 0.53 (0.34)

Table D.122. GRU (A2) trained on the matrix profile P15 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1* 0.5 0.25 0.5 0.33
2* 0.5 0.25 0.5 0.33
3 0.92 0.93 0.92 0.92

Mean 0.64 (0.24) 0.48 (0.39) 0.64 (0.24) 0.53 (0.34)

Table D.123. GRU (A3) trained on the matrix profile P15 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1* 0.5 0.25 0.5 0.33
2 0.8 0.81 0.8 0.8
3 0.68 0.71 0.68 0.67

Mean 0.66 (0.15) 0.59 (0.3) 0.66 (0.15) 0.6 (0.24)

Table D.124. GRU (A1) trained on the matrix profile P25 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.5 0.25 0.5 0.33
2 1.0 1.0 1.0 1.0
3 0.8 0.8 0.8 0.8

Mean 0.77 (0.25) 0.68 (0.39) 0.77 (0.25) 0.71 (0.34)

Table D.125. GRU (A2) trained on the matrix profile P25 created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.99 0.99 0.99 0.99
2* 0.5 0.25 0.5 0.33
3* 0.49 0.25 0.5 0.33

Mean 0.66 (0.29) 0.5 (0.43) 0.66 (0.28) 0.55 (0.38)

Table D.126. GRU (A3) trained on the matrix profile P25 created from the
simulated dataset with torque as the input feature.
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Run nr. Accuracy Precision Recall F1-score
1 0.98 0.98 0.98 0.98
2 0.67 0.68 0.67 0.67
3 0.89 0.9 0.89 0.89

Mean 0.85 (0.16) 0.85 (0.16) 0.85 (0.16) 0.85 (0.16)

Table D.127. GRU (A1) trained on the matrix profile P[15,25] created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1 0.99 0.99 0.99 0.99
2 1.0 1.0 1.0 1.0
3 0.99 0.99 0.99 0.99

Mean 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)

Table D.128. GRU (A2) trained on the matrix profile P[15,25] created from the
simulated dataset with torque as the input feature.

Run nr. Accuracy Precision Recall F1-score
1* 0.5 0.25 0.5 0.33
2 0.99 0.99 0.99 0.99
3* 0.49 0.25 0.5 0.33

Mean 0.66 (0.29) 0.5 (0.43) 0.66 (0.28) 0.55 (0.38)

Table D.129. GRU (A3) trained on the matrix profile P[15,25] created from the
simulated dataset with torque as the input feature.
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