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PREFACE 

 

 

 
 

 

This report is a product of group B105’s project work during the 10
th

 semester of the 

master degree of Structural and Civil Engineering at Aalborg University. The project is 

completed within the period of 1st of February 2011 to the 17th of June 2011 under the 

supervision of Lars Bo Ibsen and Søren P. H. Sørensen. The report is prepared and 

made in accordance and compliance of the current curriculum of the 10th semester in 

Civil Engineering. 

The project is based on the theme "Experimental and Numerical Evaluation of the 

behaviour of laterally- loaded non slender piles". The aim of the project is to provide 

the knowledge to apply advanced experimental and numerical methods to analyse the 

lateral soil resistance related to load-displacement of monopiles under pressure. 

The project report consists of two parts, the main project and the appendix. The 

appendix is divided into A, B, C, D, E, F, G, H, I and J which are found at the end of the 

report and whose contents are explained in the index.  

The main project consists of an introduction, three articles concerning experimental 

testing, dimensionless analysis of the results and numerical modelling by FLAC
3D

 and 

Plaxis 3D 2010 and a concluding chapter including some directions for future research.  

An experimental and a numerical evaluation of the pile behaviour for laterally loaded 

non-slender piles is carried out through the project. The experimental tests have been 

conducted on instrumented piles situated in a pressure tank. Hence, p-y curves have 

been determined based on the strain gauge measurements. The numerical simulations 

have been carried out by means of FLAC
3D

 and Plaxis 3D 2010 employing 3 different 

material models, i.e. Mohr-Coulomb, Hardening soil and Hardening soil Small Strain 

material models. 

A dimensionless analysis is also performed in order to obtain a general relation for the 

lateral displacement of the pile and the lateral load applied. 

The project report uses the Harvard method of bibliography with the name of the source 

author and year of publication after the text, for example: Zaaijer and Tempel (2006). 

The lists of all the sources of reference are found in the bibliography list which can be 

found in the end of the report, sorted by alphabetic order. 
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SUMMARY 

 

Offshore wind turbines are a highly competitive source of renewable energy. The 

development of these offshore installations has advanced quickly, therefore the 

elaboration of a specific regulation and theoretical method for the design of wind 

turbine foundations is needed. 

Several types of foundation concepts can be employed for offshore wind turbines, i.e. 

gravitational foundation, monopile foundation, bucket foundation, tripod foundation, 

etc. For water depths of 15 to 30 m, the monopile foundation concept has been 

employed in many projects. The focus of this report is therefore on monopile 

foundations. The goal of the project has been to understand and investigate the 

uncertainties in the design method currently being used for monopile foundations. 

Small-scale tests have been carried out in a pressure tank with the objective of 

minimising small-scale effects. Afterwards, these tests have been modelled by means of 

three dimensional numerical methods by the programs FLAC
3D

 and Plaxis 3D 2010. A 

dimensionless analysis is realised through the project with the goal of analysing the soil 

exponent and deriving a general equation which relates the lateral load to the lateral 

displacement of the pile. A full-scale model is also modelled in Plaxis 3D 2010 and 

FLAC
3D

. 

The method followed to design monopile foundations in sand is based on the p-y curve 

method, but this method does not fit the requirements of the monopile foundations 

properly. The reason of the problem is that p-y curve formulations were developed for 

lateral loaded piles with higher diameters and slenderness ratios, designed for offshore 

petroleum industry, where most of the discoveries were located in areas with soft clays 

primarily, extended later to the knowledge of the behaviour in sands. 

Therefore, the methods developed for the oil industry, the jag piles, are based on slender 

piles with different geometries and properties than the wind turbine monopiles, such as 

the slenderness ratio. Slenderness ratios for wind turbine monopiles are considered less 

than 10, due to the fact that they have bigger diameter and shorter embedded length than 

the jags piles, which are considered slender piles. 

Another uncertainty in the actual method is that the different diameters of the piles and 

the initial stiffness have not been taken into account due to the fact that they are 

designed regarding to the ultimate limit state, where it has been assumed that possible 

initial deformations of the soil are not included in the calculations. Thereby, in the 

service limit state, the initial stiffness is very important for the design of monopile 

foundations. In the case that the monopile rotates a bigger angle than the maximum 

allowed by API design regulations, the efficiency of the wind turbines decreases. 

The experimental tests are realised on a monopile with strain gauges installed on it 

which can measure the strain at eleven different levels through the embedded length of 

the pile. In total 22 tests with different slenderness ratios and pressure levels are carried 

out since 2009, but only 10 have been conducted by Borobia, Mikalauskas and Troya 

during the present year. Afterwards, the same tests have been modelled numerically by 

FLAC
3D

 and Plaxis 3D 2010 in order to analyse the possible uncertainties between 

different methods and a dimensionless analysis is performed to derive a general 

equation which relates the lateral displacement of the pile with the load applied. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY IN SPANISH 

 

Las turbinas eólicas situadas lejos de la costa, son una fuente energética con una alta 

competitividad en el ámbito de las energías renovables. El desarrollo de estas 

instalaciones alejadas de la costa ha crecido muy rápidamente. De este modo, la 

elaboración de una regulación específica y un método analítico para el diseño de los 

cimientos de dichas turbinas eólicas es necesaria. 

Existen varios tipos de cimentaciones que pueden ser empleadas para turbinas eólicas en 

el mar: cimentación gravitacional, cimentación “monopila”, cimentación de succión y 

cimentación en trípode, entre otras. Para profundidades marinas entorno a 15-30 m, la 

cimentación monopila ha sido empleada en muchos proyectos reales. Por esta razón, 

este proyecto está centrado en las cimentaciones “monopila”. El objetivo de del mismo 

es entender e investigar las incertidumbres en el actual método de diseño usado para el 

diseño de cimentaciones en monopila.  

Experimentos a pequeña escala han sido llevados a cabo en un tanque de presión, con el 

objetivo de minimizar los efectos de escala. Dichos tests experimentales han sido 

modelados más tarde mediante tres métodos numéricos tridimensionales gracias a los 

programas FLAC
3D

 y Plaxis 3D 2010. Un análisis adimensional es realizado durante el 

proyecto, con el objetivo de analizar el exponente del suelo y derivar una ecuación 

general que relacione la fuerza lateral con el desplazamiento lateral de la monopila. Un 

prototipo de monopila a escala real es también modelado en los programas Plaxis 3D 

2010 y FLAC
3D

. 

El método usado para el diseño de cimentaciones monopila en arena, está basado en el 

método de las curvas p-y. Sin embargo este método no se adapta a los requerimientos de 

las monopilas adecuadamente. La razón del problema es que las formulaciones de las 

curvas p-y fueron desarrolladas para monopilas cargadas lateralmente con diámetros y 

radios de esbeltez más grandes, diseñados para las plataformas petrolíferas de la 

industria del petróleo. Además, estas regulaciones de diseño fueron desarrolladas para la 

industria del petróleo en áreas donde las arcillas blandas predominaban, y luego estos 

conocimientos fueron extendidos al comportamiento de las monopilas en arena.  

Los métodos desarrollados para la industria del petróleo, concretamente para las “jag 

piles”, están basados en monopilas esbeltas con diferente geometría y propiedades que 

las modernas monopilas de las turbinas eólicas. La mayor diferencia es el radio de 

esbeltez, el cual, para las monopilas de las turbinas eólicas es considerado menor de 10, 

debido a que tienen mayor diámetro y menor longitud embebida en el fondo marino que 

las “jag piles”. 

 



Otra incertidumbre en el actual método de diseño, es que los diferentes diámetros de las 

monopilas y la rigidez inicial del fondo marino no son tenidas en cuenta, debido a que 

están diseñadas de acuerdo al “Estado límite último”, donde se asume que posibles 

deformaciones iniciales del suelo no son incluidas en los cálculos. De esta forma, en el 

“estado límite último”, la rigidez inicial del fondo marino es muy importante para el 

diseño de cimentaciones en monopila. En el caso de que la monopila rotase un ángulo 

mayor del máximo permitido por las regulaciones de diseño API y DNV (American 

Petroleum Industry y Det Norske Veritas), la eficiencia de las turbinas eólicas marinas 

decrecería. 

Los experimentos son realizados en una monopila con sensores de deformación 

instalados sobre ella, en ambos lados. Dichos sensores, pueden medir la deformación en 

11 niveles a lo largo de la longitud embebida de la pila. En total 22 experimentos con 

diferentes radios de esbeltez y niveles de presión son llevados a cabo desde el año 2009, 

sin embargo, sólo 10 han sido realizados por Borobia, Mikalauskas y Troya, durante el 

año presente. Después de haber finalizado los experimentos, los mismos son modelados 

por dos programas numéricos tridimensionales anteriormente mencionados: FLAC
3D

 y 

Plaxis 3D 2010, con el objetivo de analizar las posibles incertidumbres entre los 

diferentes métodos empleados al usar los programas, y un análisis adimensional es 

llevado a cabo para obtener una ecuación general que relacione el desplazamiento 

lateral de la pila con la carga aplicada. 
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CHAPTER 1 

 INTRODUCTION 

 
In the following chapter the motivation for this project will be described followed by a 

presentation of the problems to be handled. This leads to the scope for the project, 

which will be answered through the report. 

A short description about the different methods and offshore wind turbine foundations is 

presented and the different foundation choices are explained. 

An overview about offshore wind turbine foundations, the importance of their 

development for the future and the different methods used to analyse them through the 

project is described in this Chapter.  

 

 

 

The evolution of wind farms from land-based to offshore locations is gradual but surely 

significant. Stronger winds, better technologies, less impact on real estate values and on 

the nature, makes offshore wind power an important side of the wind power industry in 

its attempts to meet the high electricity demands of heavily populated coastal areas. 

 

To date, most offshore wind farms have been installed in shallow waters just off the 

coast and locations have been dictated by the shallowness of the sea bottom because the 

foundation technology has focused on a limited depth solution. This is also due to the 

fact that the actual offshore foundations are a lot cheaper in shallow water depths than 

in deep depths. Innovation Consulting is working on a design that will eventually push 

the depth threshold to 120 m of water using ‘conventional’ technology from the oil and 

gas industry where jack-up platforms have been in use for a number of years. The 

proposed designs are purpose built jack-ups using the same principles as those in the oil 

and gas industry. World Wind Energy Association (2010). 

 

The Danish wind power industry has grown uninterruptedly to its current level. Up 

scaling and technological advances have made it possible to produce approximately 100 

times more electricity at the newest wind turbines (up to 2 MW of unitary power) than 

at the first modern versions. The previsions show that in the following years the 

offshore wind turbines will be able to produce 5 MW of unitary power. The most recent 

wind turbines have been built higher and higher (for instance at Horn Revs II they reach 

a height of 70 m) , which has meant that, for visual reasons and in consideration of 

potential neighbours onshore, it has become attractive for the wind power industry to 

prioritise locating wind turbines offshore. Danish Energy Authority (2005). 

 

Europe continues playing the leading role in the global market, Germany and United 

Kingdom as the largest domestic markets, although the market in United Kingdom is 

growing strongly, especially with respect to large offshore wind farms. The American 

market also seems to have impressive potential, cf. Figure 1.1. 
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Figure 1.1: Expected global offshore wind power expansion to 2009. Danish Wind 

Industry Association (2008) 

 

 

 

For instance, in Denmark, the Horns Reef I offshore wind farm, constructed in 2002, 

comprises 80 wind turbines capable of an annual production corresponding to the 

consumption of 150.000 households. The European Commission requires that 30 % of 

the total Danish energy consumption shall be covered by the renewable energy in 2020 

(currently 20% of the Danish energy consumption is covered by offshore wind 

turbines). As a step towards reaching this goal, a large extension of Horns Reef I 

offshore wind farm by 91 new wind turbines, named Horns Reef II, was constructed in 

2009. Being capable of an annual production corresponding to the consumption of 

200.000 households, Horns Reef II is the world’s largest wind farm up to date. DONG 

energy (2010). 

 

Denmark has been leading in the development of wind energy since the early 1980s. 

Due to this, the level of knowledge in the area is high. Combining this knowledge with 

the favourable sea and wind conditions near the Danish coast, Denmark has significant 

wind energy potential which can be seen in Figure 1.2 where it is shown the Danish 

wind farms which are in operation, under construction, planned, and under 

consideration. 

 

In order for wind turbines to be set up in Denmark or in Danish waters they, and the 

foundation used, must first be approved according to the Danish Energy Authority’s 

technical approval scheme. This scheme, which has been in place since the beginning of 

the 1980s, is intended to ensure that wind turbines and their foundations are constructed 

and installed in agreement with regulations governing safety, energy and quality. 

Danish Energy Authority (2005).  
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Figure 1.2: Danish wind farms in operation, under construction, planned and under 

consideration Sørensen et. al (2009) 

 

 

There are a number of different aspects connected to a wind farm project. This project 

focuses on the design of the foundation for the wind turbines. As previously mentioned, 

keeping the overall cost of the project as low as possible is of great interest. General 

experience indicates that the costs of the foundations constitutes around 30% to 40% of 

the total costs. This emphasises the essentiality of optimising the cost of the foundation. 

Danish Energy Authority, 2005. 

 

In this pursuit, alternative solutions for foundations become attractive. In the advance of 

the foundation technology it is basically possible to consider four different kinds of 

typologies depending on the water depth and soil characteristics. In the following, a 

small concept description of each kind of foundation is given in order to create a general 

idea. 

 

However, this report is focused only on monopile foundations with the aim of analysing 

the behaviour of this kind of foundation when the overburden pressure and the 

slenderness ratio vary, in order to be able to understand the possible uncertainties in the 

theoretical formulation developed for slender monopiles from the oil industry. 
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1.1. Overview of foundation types 

 
Basically four foundation types are in use and developed nowadays: Monopiles, Jacket-

monopiles-hybrids, gravity based foundations and suction bucket foundations. A short 

introduction of these foundation types are given in the following, as well as advantages 

and disadvantages of each kind of foundation. 

 

 
1.1.1 The monopile foundation 

 

It is a simple construction. The foundation consists of a steel monopile with a diameter 

between 3.5 and 4.5 meters. The pile is driven some 15 to 30 meters into the seabed 

depending on the type of soil. The monopile foundation is effectively extending the 

turbine tower under water and into the seabed. 

 

An important advantage of this foundation is 

that no preparations of the seabed are necessary. 

On the other hand, it requires heavy piling 

equipment as well as scour protection, and the 

foundation type is not suitable for locations with 

many large boulders in the seabed. If a large 

boulder is encountered during piling it is 

possible to drill down to the boulder and blast it 

with explosives. In evaluation of soil resistance 

against pile loads, the following factors shall be 

considered. DNV (2007): 

 

•   Shear strength characteristics. 

  

• Deformation properties and in-situ stress 

conditions of the foundation soil surrounding 

the pile. 

 

•   Method of installation 

 

•   Geometry of installation 

 

•   Type of loads. 

 

 

 

 

Figure 1.3: Sketch of a monopile 

foundation 
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1.1.2 Gravity-based foundation  

 

The purpose of a gravity based foundation is to use its 

mass and width to keep the wind turbine stable. It is an 

adaptable solution in shallow water. The gravity based 

foundation consists of a large concrete frame in which 

gravel and stones are added for extra stability. 

 

The gravity based foundation is resting on the seabed and 

therefore the horizontal forces on the wind turbine are 

absorbed by shear stresses between the seabed and the 

foundation. The function of a gravity based foundation is 

to utilize its mass to withstand the horizontal and 

overturning forces from wind and waves. The base of a 

foundation of this type will be around 14 by 15 m (or a 

diameter of 15 m for a circular base) for water depths 

from 4 to 10 m. The weight used to be around 1000 

tonnes, depending on the construction materials and if it 

is necessary to add pack ice protection like in the North 

Sea. 

 

Seabed preparation should be done before installation of 

the foundation, silt has to be removed and a smooth 

horizontal bed of shingles has to be prepared by divers. 

 

Figure 1.4: Sketch of a 

gravity-based foundation 

 

 

1.1.3 Jacket-monopile hybrids and tripods 

 

Designs of jacket monopiles tend to rely on 

technology used by the oil and gas industry. 

This technology is generally used at deeper 

depths and has not been used on many wind 

turbine projects to date. 

 
The jacket-monopile hybrid structure is a three-

legged jacket structure in the lower section 

connected to a monopile in the upper part of the 

water column, all made of cylindrical steel 

tubes. The base width and the pile penetration 

depth can be adjusted to suit the actual soil 

conditions. 

 

 

Figure 1.5: Photo of tripod 

foundation. Dajin Industries. 
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The tripod is a standard three-legged structure made of cylindrical steel tubes. The 

central steel shaft of the tripod makes the transition to the wind turbine tower. 

 

The tripod can have either vertical or inclined pile sleeves. Inclined pile sleeves are used 

when the structure is to be installed with a jack-up drilling rig, cf. Figure 1.5. 

 
The base width and pile penetration depth can be adjusted to suit the actual 

environmental and soil conditions. These types of structures are well suited for sites 

with water depth ranging from 20 to 50 meters. DNV (2007). 

 
The advantage of the three-legged model is that it is suitable for larger water depths 

further from shore where the wind is stronger furthermore the projects can be invisible 

from the shoreline lowering the chances of opposition. Cost efficiency may be one of 

the biggest challenges facing deep water offshore technology. 

 

 

1.1.4 Suction-bucket foundations 

 

 

Suction bucket foundations are tubular steel 

foundations, which distribute the loads 

from the centre column to the edge of the 

bucket, cf. Figure 1.6. 

 
The wind turbine tower is connected to the 

centre pile above mean sea level. The steel 

bucket consists of vertical steel skirts 

extending down from a horizontal base 

resting on the soil surface.  

 

 

 

 

The bucket is installed by applying suction, and the hydrostatic pressure difference and 

the deadweight cause the bucket to penetrate the soil. This benign installation procedure 

allows the buckets to be connected to the rest of the structure before installation, 

enabling a reduction in steps of the installation procedure. DNV (1992). 

 

In the design of offshore foundations it is important to take into account the scour 

phenomenon, since it usually appears after installing the wind turbine foundation. Scour 

is a type of erosion that can occur around an offshore foundation, and can cause a 

significant amount of soil to be removed. Scour holes can reach depths of double the 

diameter of the foundation. Scour especially develops at locations with tidal currents 

and where the soil consists of sand or silty-sand. Scour occurs due to the effect of the 

foundation on the local flow pattern and the velocity of this flow. Scour around a 

monopile is caused by current and waves and scour protection becomes an important 

and necessary actuation in offshore foundations. However, in this project scour is not 

considered, since it has been focused on other fields explained in the next sections. 

Zaaijer and Tempel (2006). 

 

 

Figure 1.6:   Photo of a bucket 

foundation. Dong Energy & Aalborg 

University, 2003] 
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1.2 Aim of the thesis 

 
Monopile foundations are the most employed type of foundation for offshore wind 

turbines, thereby this report is focused on the evaluation and analysis of monopile 

foundations. This is also due to the non-validation of the design procedure for big pile 

foundations. 

 

A fundamental study of soil response of piles subjected to lateral loads in sand is 

conducted. Stress paths for selected soil elements around a pile subjected to lateral loads 

are investigated experimentally and numerically. The effects of pile properties 

(stiffness, diameter, slenderness ratio) and soil properties (friction angle, density index 

and soil dilation) are also analysed. 

 

The aim is to compare the p-y curves obtained experimentally and numerically, and 

establish some conclusions and knowledge which can solve the uncertainties generated 

by the API and DNV regulations, and provide results to develop a specific formulation 

for non-slender monopiles. A dimensionless analysis will be also carried out, with the 

purpose of studying the variation of the soil exponent, and be able to derive a general 

equation which describes the lateral behaviour of the pile. Prosperine K. Peralta (2010). 

 

This thesis is mostly focused on the dimensionless analysis and numerical modelling by 

means of FLAC
3D 

and Plaxis 3D 2010, since an analytical and experimental analysis 

was performed during 9
th

 semester. 

 

 

1.3 General Idea of experimental and numerical methods 

 
The procedure followed to conduct and establish the knowledge for each method is 

explained in each chapter but a basic description of each method is presented in the 

following: 

 

 

1.3.1 Experimental tests at Aalborg University laboratory 

 

 

Twenty-two small-scale tests have been carried out since 2009 by different students at 

Aalborg University Laboratory: 6 tests by Sørensen et al. (2009), 6 by Rousse and 

Thomassen (2010) and 10 by Borobia, Mikalauskas and Troya (2010 and 2011). 

However, the same test setup and soil preparation has been used through the 22 small-

scale tests. 

 

A pressure tank is used for the performance of the mentioned tests which allows to 

increase the effective stresses in the soil by the help of a rubber membrane placed inside 

the tank, cf. Figure 1.7. 

 

The sand inside the tank is well known due to previous triaxial tests realised at Aalborg 

University laboratory, cf. Ibsen and Bødker (1994). To verify that the tests are 

conducted in homogeneous soil conditions, six CPT’s (Cone penetration tests) are 

carried out at different positions in the tank.  
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Figure 1.7:   Left: Cross-section view of the test setup cf. Sørensen et al. (2009). Right: 

Photo of the pressure tank. 

 

 

Three displacement transducers which proportionate information of horizontal 

displacement above the soil surface when the pile is subjected to a horizontal load, are 

attached to the pile, cf. Figure 1.7, left. 

 

The pile is loaded horizontally at the same level of the displacement transducer placed 

in the middle. The pressure is applied constantly and homogeneously to the entire soil 

surface within a plastic membrane with dimensions equal to the inner dimension of the 

tank. The tests are carried out on two different close-ended piles provided with eleven 

strain gauges on each side, a total of 22 strain gauges in the pile. The strain gauges 

provide live measurements of the strain, therefore stress at eleven different levels in the 

soil can be derived. 

 

Within this strain data, the deflection of the pile, bending moment distribution and soil 

resistance at each level can be computed. Thus, the p-y curves, which represent the non-

linear relation between the soil resistance of the soil and the lateral deflection of the pile 

can be obtained and then, be analysed comparing the results obtained by different 

methods and commercial software.  

 

 

1.3.2 Numerical Modelling by FLAC
3D

 

 

 

FLAC
3D

 is a numerical modelling program for advanced geotechnical problems where 

continuum analysis is necessary in three dimensions. The program utilizes an explicit 

Finite Difference formulation that can model complex mechanical behaviours not 

suitable for Finite Elements method. FLAC
3D

 manual (2009). 

 

The purpose of using the commercial software FLAC
3D

 is to create a numerical model 

(cf. Figure 1.8) with the same conditions as the experimental tests. The input for the 
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numerical program is the soil parameters obtained by the CPT’s, the pile geometry, 

overburden pressure of each test and lateral displacement of the pile. 

 

 
Figure 1.8:  Model geometry generated by FLAC

3D
 

 

 
 

With the test results, the FLAC
3D

 models are calibrated in order to obtain the right 

numerical approach and to be able to compare to the experimental results and to the 

models generated by Plaxis
 
3D 2010. 

 

The output of the program provides the soil resistance, lateral deflection, and force 

applied at different levels. The output depends on the initial setup, i.e. generation of the 

grid and number of steps. A further explanation is given in Appendix F. 

 

Furthermore, a full-scale model is generated in FLAC
3D

 in order to analyse how a real 

monopile with real dimensions behaves when it is submitted to lateral loading in a 

typical offshore location with layered soil.  

 

 

1.3.3 Numerical Modelling by Plaxis 3D 2010 

 

 

Plaxis 3D 2010 is a commercial three dimensional finite element program used to 

perform deformation and stability analysis for various types of geotechnical structures 

such as foundations, anchors and sheet piles. Plaxis 3D is an implicit element solver 

relating forces and displacements by demanding equilibrium in every point in the 

model. In contrast to FLAC
3D

, Plaxis 3D is a static solver, meaning that inertial forces 

are omitted.  

The numerical models in Plaxis 3D, cf. Figure 1.9, are modelled with the same 

parameters as in FLAC
3D

 using as input data the soil parameters obtained by the CPT’s, 

pile geometry and overburden pressure of each test. The aim of the Plaxis 3D model is 

to compare the results to the ones obtained by FLAC
3D 

and to analyse the behaviour of 

the numerical models based on the experimental tests. 
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Figure 1.9:   Plaxis 3D model geometry. 

 

Results of load-displacement relationship, bending moment distribution, zero deflection 

point and p-y curves along the pile length are obtained. Furthermore, a full-scale model 

is modelled with the same geometrical and geotechnical parameters as used in an 

ABAQUS model done by L. Kellezi and P. B. Hansen (2003). This full-scale model 

corresponds to a real offshore wind turbines project carried out in Horns Rev II. 

The results of the full-scale model obtained by Plaxis 3D are compared to the results of 

the same model obtained by FLAC
3D

 in order to verify the accuracy of these 

commercial software programmes and find out which one gives more accurate results 

when comparing to the experimental results. For a further explanation and details of 

Plaxis 3D modelling see Appendix G. 

 

1.4 Triaxial tests 

Triaxial tests were previously carried out at Aalborg University Laboratory with the 

purpose of analysing how the soil behaves when confining pressure is applied. The soil 

is compressed in the three directions yielding in a significant volumetric strain (the 

height of the specimen decreases). It is assumed that the behaviour of the soil specimen 

represents the behaviour of the entire soil, cf. Figure 1.10.  

 

Figure 1.10:    Soil specimen subjected to compression in the three directions 
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The purpose of these triaxial tests is to obtain the soil exponent, k, cf. Appendix D, from 

the stress-strain relationship of the soil, and be able to compare it to the one obtained by 

the small-scale tests. The triaxial tests are also employed to compute the characteristic 

line which defines the transition between the elastic behaviour and the plastic behaviour 

of the soil to have an idea of the force to be applied in the small-scale tests, cf. Figure 

1.11. Gudehus and Hettler. 

 

Figure 1.11:    Characteristic line of Baaskarp Sand no.15. ID = 1. 

 

Furthermore, an analysis of the variation of the characteristic friction angle and peak 

friction angle with the density index is realised through the project, cf. Appendix C. 

 

1.5   Dimensionless analysis 

A dimensionless analysis is performed by means of the Π-factors. A general relation of 

the lateral displacement of the monopile and the force applied is obtained depending on 

the soil exponent, density index and pile properties. Prosperpine K. Peralta (2010). 

The soil exponent, k, is obtained by the small-scale tests and its validity is checked by 

comparing the result obtained by small-scale tests to the one obtained by means of the 

triaxial tests. An analysis of the variation of the soil exponent depending on the 

slenderness ratio and the overburden pressure level is carried out, cf. Chapter 3. 
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CHAPTER 2 

 

SMALL-SCALE TESTING OF 

STATIC LATERALLY LOADED NON-

SLENDER PILES IN COHESIONLESS 

SAND 
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1 Introduction  

 
Up to date, monopile foundations are the 
most common kind of foundation when de-
signing offshore wind turbines. The p-y curve 
method based on design regulations such as 
API, 1993 and DNV, 1992 is often used as 
basis for the design of monopiles. However, 
it is considered by many researches (Ther-
zagui (1955), Vesic (1961), Lesny and Wie-
mann (2006), etc.) as inaccurate and incom-
plete since it is based on tests conducted at 
Mustang Island with slenderness ratio of L/D 
= 34.4, cf. Cox et al. (1974) and validated 
through a series of tests on flexible piles, 
Murchison and O’neill, 1984. Firstly, it was 
developed for jag piles in the oil industry for 
primarily clays and then extended to sand.  
 
Modern wind turbines have a slenderness ra-
tio of L/D < 10, exhibiting a rigid behaviour 
when they are subjected to lateral loading. 
The recommended p-y curves do not take in-
to account the slenderness ratio. This fact 

justifies the aim of carrying out several 
small-scale tests with varying slenderness ra-
tio at different pressure levels by the use of a 
pressure tank. The objective is to reduce the 
scale effects by increasing the effective 
stresses of the soil, implying a reduction in 
the uncertainties regarding soil parameters. 

 
This paper presents an overview of the ob-
tained results and focuses on the effect of 
varying slenderness ratio and changing over-
burden pressure. 
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Abstract 

A monopile is often employed as the foundation for offshore wind turbines. The 

design regulations propose to use the Winkler model approach in the design of 

monopiles, employing p-y curves to describe the soil-pile interaction. The cur-

rently adopted p-y curves are based on experiments on flexible piles with di-

ameters up to 2 meters and higher slenderness ratios than used for modern wind 

turbines. A monopile foundation for an offshore wind turbine typically behaves 

rigidly, has diameters of 4-6 m and slenderness ratios lower than 10. The aim of 

this paper is to analyse the behaviour of non-slender aluminium piles situated in 

fully saturated sand. Small-scale tests are conducted in a pressure tank at Aal-

borg University. Hereby, the effective stresses of the soil can be increased min-

imizing uncertainties regarding soil parameters. An analysis of the variation of 

the initial stiffness is performed. Finally, some conclusions are drawn as well as 

some directions for future research. 
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2 Tests overview 

Full-scale tests are expensive and time con-
suming, reason for why ten quasi-static 
small-scale tests are conducted at Aalborg 
University Laboratory. The tests are con-
ducted on piles with a diameter of D = 80 
mm and D = 100 mm, changing slenderness 
ratio, L/D, and different overburden pres-
sures, P0, with the objective of reducing the 
small scale effects which usually appear in 
this kind of experiments, such as uncertain-
ties when obtaining soil parameters. The pile 
is a closed-ended pile with 22 strain gauges 
placed along its length (except for the pile of 
D = 100 mm and tests 8, 9 and 10) and a con-
stant wall thickness of 5 mm. An overview of 
all the tests can be shown in table 1: 
 

Test no. 
D 

[mm] 
P0 

[KPa] 
L/D 

Strain 
Gauges 

Test 1 100 50 5 No 
Test 2 80 0 5 22 
Test 3 80 50 5 22 
Test 4 80 50 6 22 
Test 5 80 100 4 22 
Test 6 80 100 5 22 
Test 7 80 100 6 22 
Test 8 80 50 3 No 
Test 9 80 0 3 No 
Test 10 80 100 3 No 

Table 1: Test programme 

3 Calibration of the pile 

Strain gauges installed on the pile show live 
measurements of the strain along the pile ax-
is. In order to obtain reliable values of the 
bending moment, a calibration of the pile is 
done. When calibrating the pile, it is support-
ed at two points and two loads are applied at 
different times and positions in 10 loading 
steps, cf. Figure 1. Bending moment can be 
computed analytically, and then related to the 
strain as figure 2 shows. 

 

Figure 1:  Sketch of the calibration of the 

pile 

 

 

Figure 2:  Analytical Bending Moment – 

Strain  

 
The data points are fitted by a straight line 
which slope, kg, is called the strain gauge 
factor, later used to obtain experimentally the 
bending moment as equation 1 states: 
 

 

 gkxM )(  (1)  

4 Installation of the pile 

The pile is installed by the help of a hydrau-
lic piston placed on the top hatch of the tank, 
and it is driven into fully saturated sand with 
embedded lengths of 240 mm, 320 mm, 400 
mm, 480 mm and 500 mm, cf. Figure 3. 
 
 

 

Figure 3:  Installation of the pile 

 
After the installation of the pile a standard 
preparation of the soil for all the tests has 
been performed. 
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5 Preparation of the soil 

Baaskarp sand no.15 brought from Sweden is 
used for all the tests, characterised by the 
properties shown in table 2: 
 

BAASKARP SAND No. 15 

Specific grain density ds 2,64 

Maximum void ratio emax 0,858 

Minimum void ratio emin 0,549 

Table 2: Baaskarp Sand No.15 

The large grains are rounded while the small 
grains have sharp edges. The sand consists of 
quarts, but also contains feldspar and biotite. 

 
The soil has been vibrated previous to the 
tests with the purpose of achieving homoge-
neous properties. It consists of three steps: 

 
 Water flow in the upwards direction 

(i=0.9) with the objective of loosen-
ing up the soil. 

 
 Random pre-vibration of the soil in 

the surroundings of the pile. 
 

 Systematic vibration procedure by the 
help of a wooden plate with holes, cf. 
Figure 4. 

 
 

 

 

Figure 4:  Systematic vibration of the soil 

previous to the tests. 

 
To verify the homogeneity of the soil and 

calculate the soil parameters 6 CPT’s were 

carried out at 6 different positions in the 

tank. Since Baaskarp Sand no.15 is consid-

ered cohesionless, only tip resistance is 

measured by the cone, cf. Figure 5.  

 

Figure 5:  Cone penetration test 

The density index, ID, and the unit weight of 
the soil, γ’, are obtained by iteration using 
equations 2 to 5: 
 

 

   
    

         
    (2)  

  
       (3)  

      (
  

 

  
  

)

  

 (4)  

  

 
            

         
     (5)  

 
 
Where γw is the unit weight of the water, x 
defines the depth and c1 and c2 are fitting 
constants. The rest of the soil parameters are 
obtained based on previous triaxial tests real-
ized at Aalborg University and the relation 
between the density index and the friction 
angle proposed by Schmertmann (1978). 

 
An average of the soil parameters derived for 
Baaskarp Sand no.15 are shown in table 3 for 
tests 1 to 7. 

 
Test 
no. 

tr[˚] tr  [˚] ID [%] 
’  

[kN/m
3
] 

E0 [MPa] 

1 49.92 17.56 87.20 10.33 29.96 
2 52.70 17.03 84.57 10.27 [-] 
3 47.26 15.70 77.91 10.15 25.15 
4 48.26 16.09 79.85 10.18 26.12 
5 45.46 15.45 76.60 10.12 36.54 
6 45.67 16.06 79.66 10.18 38.85 

7 45.54 15.84 78.59 10.15 38.00 

Table 3: Estimated soil parameters 

Notice that for tests 8, 9 and 10, it was decid-
ed not to carry out any CPT’s, since the slen-
derness ratio considered was L/D = 3 and 
thus, the embedded length of the pile leads to 
240 mm, which only allows to conduct 
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CPT’s of 10 cm depth. For this reason, the 
CPT’s interpretation is not reliable enough 
for these 3 tests, and it is preferred to use an 
averaged value of the density index of 83% 
for further calculations.  

6 Test setup 

The tests are carried out inside a pressure 
tank with a height of 2.5 m and a diameter of 
2.1 m, cf. Figure 6. The purpose is to reduce 
small-scale effects, such as the variation of 
the friction angle with the stress level. 
 

 

Figure 6:  Pressure tank at Aalborg Univer-

sity 

 
Inside the tank, a 0.58 m thick layer of sand 
was located and also a layer of highly perme-
able gravel below it was placed with the ob-
jective of being able to lead out water out of 
the tank easily in the case that it was neces-
sary. 

 
Measuring devices are lead out of openings 
in the tank side and connected to a spider 
which is also plugged to the computer shown 
in figure 6. 
 
The 10 tests carried out inside the pressure 
tank have a similar setup, consisting of three 
displacement transducers attached at three 
different heights over the soil surface (-265 
mm, -370 mm, -480 mm), cf. Figure 7. The 
pile is pulled out by a wire connected at the 
same height as the displacement transducer 
placed in the middle (-370 mm) and at the 
same time attached to a force transducer ca-
pable of producing a force up to 20 kN when 
the hydraulic piston moves. Figure 8 shows 
an outside view of the hydraulic piston. 

 

Figure 7:  Displacement transducers 

 

Figure 8:  Hydraulic piston 

In order to increase the effective vertical 
stresses homogeneously, and to reduce the 
vertical water flow, a rubber membrane is 
placed on the soil surface, cf. Figure 9. 
 
Since the membrane is not completely tight, 
air can penetrate through leaks in the mem-
brane increasing the pore pressure. The dy-
namic viscosity of water is approximately 55 
times higher than for air, so some water must 
be poured in the tank, reaching a level of ap-
proximately 16 cm above the membrane. 
Hereby, the leaking is minimized. 

 
In order to maintain a hydrostatic pore pres-
sure in the soil, an ascension pipe is used, cf. 
Figure 10.  
 

 

Figure 9:  Rubber membrane over the soil 

surface 

Displacement transducers 

Wire 
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Figure 10:  Ascension Pipe 

 
The mechanism of controlling the hydrostatic 
pressure is realised by means of the ascen-
sion pipe. When the water column increases, 
some water is lead out of the tank through a 
drain on the bottom of it, directly to the sew-
er. 

7 Test results 

7.1 Load-displacement relationship 

 
The test programme described in Table 1 is 
designed to analyse the behaviour of the pile 
when the slenderness ratio and the pressure 
level vary. This criterion will be followed 
through all the results presented. 

 
In the following graphs, cf. Figures 11 and 
12, the lateral displacement of the pile at the 
height of the hydraulic piston is shown for 
L/D = 3, 4, 5, 6 and P0 = 0, 50, 100 kPa, cor-
responding to tests 5, 6, 7, 10 and 2, 3, 6 re-
spectively.  
 
 

 

Figure 11:  Lateral displacement at -370 

mm for P0 = 0, 50, 100 kPa and L/D = 5 

 

Figure 12:  Lateral displacement at -370 mm 

for P0= 100 kPa and L/D = 3, 4, 5, 6. 

 
As it was expected, either the higher over-
burden pressure applied inside the tank or a 
higher slenderness ratio is considered, a big-
ger force is required to pull out the pile. In 
order to reach the same lateral displacement 
at the height of the second displacement 
transducer a higher force is applied. For in-
stance, the highest force registered is around 
12 kN for P0 = 100 kPa and L/D = 6.  

 
On the other hand, the minimum force was 
found to be around 0.4 kN for P0 = 0 and L/D 
= 5.  

 
The soil is loaded, unloaded and reloaded 
again, meaning that plastic deformations oc-
cur after the first loading. Figures 11 and 12 
show how plastic deformations decrease 
when either the pressure level or the slender-
ness ratio increase, meaning a more elastic 
behaviour of the soil. 
 
Due to the increasing overburden pressure 
the curvature of the line is higher because of 
a higher dilation of the soil. In general, the 
higher the slenderness ratio or the overbur-
den pressure is, the lower lateral deflection is 
experienced by the pile. 

7.2 Lateral deflection of the pile 

 
Lateral deflection of the pile shows in all the 
cases that for the slenderness ratios consid-
ered (L/D = 4, 5, 6) and the different pressure 
levels (P0 = 0, 50, 100 kPa) the pile exhibits 
a rigid behaviour, experimenting negative de-
flections due to the existence of a rotation 
point. Figures 13 and 14 show how the rota-
tion point varies with the overburden pres-
sure and slenderness ratio.  
 
Lateral deflection is computed experimental-
ly by equation 6 using some boundary condi-
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tions measured by the displacement trans-
ducers above the soil surface (constant rota-
tion above the second displacement transduc-
er, known lateral deflection at displacement 
transducer 2, similar rotation and displace-
ment at the soil surface).  

 
The deflection variation along the depth is 
represented against depth in figures 13 and 
14. Notice that it is not possible to represent 
the deflection variation for L/D = 3 since the-
se tests were carried out without any strain 
gauges. 
 

 

dxdx
IE
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xy

zz
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Furthermore, the pile behaves more flexibly 
when either the pressure level is increased or 
the slenderness ratio considered is higher.   
However, it always remains inside the rigid 
limits, which is in accordance with the crite-
rion showed in equations 7 and 8. DNV-OS-
J101 (October, 2007). 
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When the slenderness ratio considered is 
lower than 10 the pile behaves rigidly, 
whereas a flexible behaviour of the pile is 
adopted when the slenderness ratio is higher 
than 10.  

 
Criteria based on the bending stiffness and 
the embedded length can also be used to veri-
fy whether the monopiles behave flexibly 
(when equation 9 is fulfilled) or rigidly 
(equation 10 is verified) as it is expressed in 
the following, cf. Poulus and Hull (1989): 
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Figure 13:  Depth-deflection for P0 = 0, 50, 

100 kPa 

 

Figure 14:  Depth-deflection for L/D = 4, 5 

and 6 

The depth of the rotation point is found to 
vary for the different tests. This is due to the 
higher force which is applied to the pile 
when either the overburden pressure or the 
slenderness ratio increases.  

7.3 Bending moment distribution 

 
Bending moment distribution along the em-
bedded length of the pile is analysed in the 
following regarding to varying overburden 
pressure and changing slenderness ratio. 11 
levels along the depth of the pile are consid-
ered, corresponding to the depths where eve-
ry pair of strain gauges is located. A linear 
distribution of the bending moment is ob-
tained above the soil surface, whereas a 5

th
 

degree polynomial has been used to fit the 
data points through all the embedded length 
of the pile. Figure 15 shows the moment dis-
tribution for 5 time steps during the first 
loading for test no.2 (D = 80 mm, L/D = 5, P0 
= 0 kPa).  
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Figure 15:  Bending moment distribution for 

5 time steps, test no. 2 (P0 = 0 kPa, L/D = 5) 

 
The bending moment is found to be very sen-
sitive to the lateral load applied, increasing 
very rapidly. The peaks of the bending mo-
ment curves are located between the soil sur-
face and 100 mm depth. The moment de-
creases until a value of zero N mm at the 
pile toe in all the cases. Figures 16 and 17 
show the bending moment distribution along 
the depth for different overburden pressures 
and slenderness ratios. 
 

 

Figure 16:  Bending Moment distribution for 

P0 = 0, 50, 100 kPa, L/D = 5 

 

Figure 17:  Bending Moment distribution for 

L/D = 4, 5, 6 and P0 = 100 kPa 

Regarding Figure 16, for a pressure level of 0 
kPa, the pile behaves almost like a rigid 
body, and it behaves more flexibly when the 

overburden pressure increases since the force 
needed to be applied to reach the same dis-
placement at the height of the hydraulic pis-
ton is bigger. Furthermore, as the dashed or-
ange line shows, the peaks of the moment 
curves are located closer to the soil surface 
when the P0 considered is higher.  
 
It can be concluded that the bending moment 
is very sensitive to the overburden pressure 
variation, increasing drastically when P0 also 
does. 

 
Of high importance it is also the variation of 
the bending moment with the considered 
slenderness ratio. It is also affected by L/D, 
but not as drastically as the overburden pres-
sure does, cf. Figure 17. Notice that the blue 
distribution adopts a strange distribution 
above the soil surface which is due to a 
wrong measurement by the strain gauges 
placed at that depth level. 

 
Both parameters (P0 and L/D) affect in a sim-
ilar way to the bending moment, due to the 
fact that the pile is subjected to a higher lat-
eral load when any of these two parameters 
become higher.  

 
The bending moment has not been computed 
for the last 3 tests, since no strain gauges 
were considered. 

7.4  p-y curves 

 
The actual design criterion for monopile 
foundations is based on Winkler model ap-
proach which uses p-y curves method to rep-
resent the pile-soil interaction. In p-y curves, 
the soil resistance and the lateral displace-
ment of the pile are related non-linearly. 

 
Lateral displacement is computed as equation 
6 shows, applying the four previously men-
tioned boundary conditions obtained by the 
displacement transducers above the soil sur-
face. 

 
Soil resistance is directly obtained from the 
bending moment distribution as equation 11 
states: 

2

2 )(
)(

dx

xMd
xp   (11)  

Piecewise Polynomial fitting curve method is 
used to derive the resistance of the soil, p, 
Yang & Liang (2006). 
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P-y curves corresponding to different over-
burden pressures and a constant slenderness 
ratio of L/D = 5 are presented in figures 18, 
19 and 20. It is expected to obtain higher 
values of soil resistance when the overburden 
pressure increases since the soil is more 
compacted and offers a higher resistance 
against the movement of the pile.  
 

 

Figure 18:  p-y curves for test 2, P0 = 0 kPa, 

L/D = 5 

 

Figure 19:  p-y curves for test 3, P0 = 50 

kPa, L/D = 5 

 

Figure 20:  p-y curves for test 6, P0 = 100 

kPa, L/D = 5 

 

Based on the experimental p-y curves ob-
tained from the tests carried out at Aalborg 
University Laboratory the soil resistance in-
creases significantly when the effective stress 
level rises. For instance, at the soil surface 
the lowest value of ultimate soil resistance is 
obtained, reaching 2, 10 and 20 N/mm for 0, 
50 and 100 kPa respectively.  

 
There are some curves which point to posi-
tive values of the soil resistance meaning that 
those depths are below the zero deflection 
point. 

 
Focusing on detail in the graphs, the rotation 
point is found to increase in depth when the 
overburden pressure applied is higher.  

 
On the other hand, it is shown for an increas-
ing slenderness ratio how the soil resistance 
decreases, cf. Figures 21 to 23. This behav-
iour is expected since a raise in L/D means an 
increment in the embedded length. The more 
embedded length is considered, the more 
length is to distribute the strength of the soil, 
yielding into a decrement in soil resistance. 

 

Figure 21:  p-y curves for test 5, P0 = 100 

kPa, L/D = 4 

 

Figure 22:  p-y curves for test 6, P0 = 100 

kPa, L/D = 5 
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Figure 23:  p-y curves for test 7, P0 = 100 

kPa, L/D = 6 

Notice that more depth levels in the pile are 
considered for higher slenderness ratios when 
computing p-y curves, since more embedded 
pile length is driven into the soil and more 
strain gauges are in contact with it. The soil 
surface shows the lowest value of soil re-
sistance, reaching values of 50, 20 and nearly 
0 N/mm for L/D = 4, 5 and 6 respectively. 
The rotation point is found to decrease in 
depth when the slenderness ratio increases.  

7.5 Uncertainties in the computed p-y 
curves 

 
The p-y curves obtained experimentally are 
in general difficult to fit by a polynomial 
function, since some of them show uncorrela-
tion and the p-y data points are quite disperse 
and unreliable. This is due to the inefficiency 
when using the Piecewise polynomial fitting 
curve method when computing the soil re-
sistance. 

 
However, not all of them are inaccurate. The 
p-y curves obtained for the highest overbur-
den pressure (100 kPa) show a better distri-
bution, and thus a better shape, due to the un-
certainties observed for low pressure levels, 
such as the overestimated value of the fric-
tion angle.  

 
In all the p-y curves plots, the p-y curves 
which are computed near the rotation point 
show a strange shape, due to the suddenly 
change in the sign of soil resistance, since the 
pile exhibits a total rigid-body motion. Thus, 
these p-y curves are considered unreliable. 

 
Some of the p-y curves show negative dis-
placements in the beginning, cf. Figure 22, 
which is not reasonable, and thus the initial 
stiffness cannot be computed in those p-y 
curves.   

8 Analysis of initial stiffness 

 
The initial stiffness defined as the stiffness of 
the soil for small deflections as equation 12 
reads, is found to increase in all the cases 
with depth, and also with the variation of the 
stress level, cf. Figures 24 and 25. DNV-OS-
J101 (October, 2007). 
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Where k is the initial subgrade reaction mod-
ulus and x denotes the depth along the em-
bedded length of the pile. Graphically, the in-
itial stiffness is defined as the tangent of the 
initial part of the p-y curve shown in figures 
24 to 26. 

 
API (1993) and DNV (1992) design regula-
tions state that the variation of the initial 
stiffness is dependent on depth but not on the 
pile properties or the overburden pressure. 
However, it is shown in figure 25 the varia-
tion of the initial stiffness when the pressure 
level increases. 

 

Figure 24:  Variation of initial stiffness with 

depth, P0 = 50 kPa, L/D = 5 

 

 

Figure 25:  Variation of initial stiffness with 

overburden pressure level, L/D = 5, x = 40 

mm 
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The initial stiffness tends to decrease when 
the slenderness ratio increases, showing the 
opposite behaviour when P0 gets higher, cf. 
Figure 26.  
 

 

Figure 26:  Variation of initial stiffness with 

slenderness ratio, P0 = 100 kPa, x = 40 mm 

Furthermore, the design regulations are based 
on the assumption that the initial stiffness 
varies linearly with depth being in disaccord-
ance with the results obtained at Aalborg 
University Laboratory, resulting in a non-
linear variation of the initial stiffness with 
depth, cf. Figure 27. 
 

 

Figure 27:  Variation of initial stiffness with 

depth, test no. 2 

It was expected to obtain a non-linear varia-
tion of the initial stiffness, based on previous 
research, however the results obtained at 
Aalborg University Laboratory show a sig-
nificant change in the initial stiffness adopt-
ing a quadratic fitting. 

9 Conclusions 

 The deflection of the pile consists of a rig-
id body motion. The pile rotates around a 
zero deflection point in all the cases (L/D 
= 3, 4, 5 and 6). 

 
 Overburden pressure, P0, and slenderness 

ratio, L/D, affect in the same way to the 
lateral deflection of the pile, y. The larger 

P0 or L/D become, the lower lateral de-
flection is experimented by the pile. 
 

 When applying overburden pressure, ef-
fective stresses in the soil, increase, and as 
a result the pile behaves more flexibly.  
 

 Soil resistance is very sensitive to depth 
and overburden pressure variation, in-
creasing rapidly when depth or pressure 
increase. 
 

 When the pressure is kept constant and the 
slenderness ratio increases the soil re-
sistance decreases. 
 

 The bending moment, M(x), is very sensi-
tive when the pressure and the slenderness 
ratio are increased, since it rises very 
quickly. For an overburden pressure of 0 
kPa, the pile behaves almost like a rigid 
body. Additionally, when the pressure in-
creases, the maximum bending moment 
occurs closer to the soil surface. This fact 
is due to the increase of effective stresses 
in the soil. Consequently, when the over-
burden pressure increases, the bending 
moment also becomes higher, and as a re-
sult the pile behaves more flexibly. 
 

 The soil has a linear elastic behaviour in 
the initial part of the p-y curves, and the 
initial stiffness, Epy

*
, increases when 

overburden pressure is being added. This 
means that when the pressure increases, 
the vertical effective stresses also increase 
and the soil will experiment less defor-
mation, because of Hooke’s Law.  
 

 One assumption made is that the initial 
stiffness is independent of the pile proper-
ties, however, the tests carried out at Aal-
borg University laboratory, show the op-
posite. Initial stiffness decreases for big 
slenderness ratios, which is a function of 
the diameter. This observation is not in 
accordance with the recommendations 
provided by the design regulations, such 
as API or DNV. 
 
 

 The initial stiffness is assumed to vary 
linearly with depth according to API and 
DNV. However, the test results indicate 
that its variation is not linear. 

 
 Some scale effects related to scaling ap-

peared. However, the results obtained 
show that scaling effects were minimized.  
 

24



 The test conducted at low stress level 
show uncertainties due to the fact that the 
friction angle is a parameter with a strong 
relationship with the stress level of the 
soil. 
 

 Numerical modelling was processed only 
for small-scale tests. In future research 
these models and conclusions should be 
extrapolated to full-scale models.  
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1 Introduction  

 
Up to date, monopile foundations are the 
most employed type of foundation for off-
shore wind turbines. The p-y curve method 
based on design regulations such as API 
(1993) and DNV (1992) is often used as ba-
sis for the design of monopiles, however it is 
considered by many researchers as inaccurate 
and incomplete, cf. Borobia et al. (March, 
2011). 

 
Full-scale test models are very expensive and 
time consuming, reason for why 22 quasi-
static small-scale models have been per-
formed at Aalborg University Laboratory by 
different students since 2009 until the current 
date.  
 
When this kind of tests are realised, small-
scale effects usually appear. In order to re-
duce these small-scale effects, the tests are 
carried out inside a pressure tank, increasing 
the effective stresses, and thus reducing the 
uncertainties when the soil parameters are 

obtained, due to the strong dependency of the 
friction angle on the effective stress level. 

 
Furthermore, some triaxial tests previously 
performed at Aalborg University on the same 
kind of sand (Baaskarp sand no. 15) are 
compared to the behaviour of the soil for the 
22 quasi-static tests taken into account for 
this analysis. These tests were carried out by 
Sørensen et al. (2009), Roessen and Thomas-
sen (2010) and Borobia et al. (March, 2011). 

 
This paper presents an overview of the re-
sults obtained for the 22 small-scale tests and 
a dimensionless analysis is realized based on 
the comparison between small-scale tests and 
previous triaxial tests carried out at Aalborg 
University. 
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Abstract 

Twenty two small-scale tests concerning monopiles subjected to static lateral loading 

have been conducted at Aalborg University from 2009 to 2011 by different students 

taking into account varying slenderness ratios (L/D = 3, 4, 5 and 6) and different over-

burden pressures (0 kPa, 50 kPa, 100 kPa). Based on these tests, a dimensionless analy-

sis is carried out. The results are investigated, sorted and compared regarding to the 

variation of overburden pressure and slenderness ratio. Some load-displacement nor-

malized graphs are represented in logarithmic scale and the data points are fitted by the 

so called Power Law. Previously to the small-scale tests, some triaxial tests were per-

formed on Baaskarp sand no.15 at different confining pressures which are also com-

pared to the monopile small-scale tests carried out since 2009. Finally, a general equa-

tion which describes the lateral displacement of the small-scale tests is derived, as well 

as some conclusions of the performed analysis. 
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It is focused on the load-displacement nor-
malized relationship, being compared and 
analysed regarding to the varying slenderness 
ratio and changing overburden pressure. 
Therefore, an analysis of the variation of the 
soil exponent is performed. Gudehus and  
Hettler (1983). 

2 Tests overview 

The main characteristics of the 22 small-
scale tests carried out at Aalborg University 
are presented in table 1. The test programme 
is conducted on piles with diameters of D = 
40, 60, 80, 100 mm, changing slenderness ra-
tio (L/D = 3, 4, 5, 6) and different overburden 
pressures (P0 = 0, 50, 100 kPa). The piles are 
closed-ended piles, some of them with strain 
gauges attached, and some of them without. 
A constant wall thickness of 5 mm is used for 
the 4 piles. 
 

Test 

number 

D 

[mm] 

P0 

[kPa] 
L/D 

Strain 

gauges 

Test 1 40 0 5 No 

Test 2 40 50 5 No 

Test 3 40 100 5 No 

Test 4 60 0 5 10 

Test 5 60 50 5 10 

Test 6 60 100 5 10 

Test 7 80 0 3 No 

Test 8 80 50 3 No 

Test 9 80 100 3 No 

Test 10 80 100 4 22 

Test 11 80 0 5 22 

Test 12 80 50 5 22 

Test 13 80 100 5 22 

Test 14 80 0 5 10 

Test 15 80 50 5 10 

Test 16 80 100 5 10 

Test 17 80 50 6 22 

Test 18 80 100 6 22 

Test 19 100 0 5 No 

Test 20 100 50 5 No 

Test 21 100 50 5 No 

Test 22 100 100 5 No 

Table 1: Test programme. 

Tests 1 to 3 and tests 19, 21 and 22 were 

performed by Roessen and Thomassen 

(2010). Tests 14 to 16 and 4 to 6 were car-

ried out by Sørensen et al. (2009) and the 

10 remaining tests were conducted by 

Borobia et al. (March, 2011). 
 

3 Installation of the pile 

The pile is installed by the help of a hydrau-
lic piston placed on the top hatch of the tank, 
and it is driven into fully saturated sand with 
embedded lengths of 200, 240, 300, 320, 
400, 480 and 500 mm, cf. Figure 1. 
 
 

 

Figure  1:  Installation of the pile 

 
After the installation of the pile, a standard 
preparation of the soil for all the tests must 
be performed as it is fully explained in 
Borobia et al (March, 2011). 
 
To verify the homogeneity of the soil and 
calculate the soil parameters 6 CPT’s were 
carried out at 6 different positions. Since 
Baaskarp Sand no.15 is considered cohesion-
less, only tip resistance is measured by the 
cone, cf. Figure 2.  

 

 

 

Figure  2:  Cone penetration test 

 
The density index, ID, and the unit weight of 
the soil, γ’, are obtained by iteration using 
equations 1 to 4: 
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Where γw is the unit weight of the water, x 
defines the depth and c1 and c2 are fitting 
constants. The rest of the soil parameters are 
obtained based on previous triaxial tests real-
ized at Aalborg University and the relation 
between the density index and the friction 
angle proposed by Schmertmann (1978), cf. 
Figure 3. 

 

 

 

Figure  3:  Schmertmann Relation based on 

triaxial tests, Schmertmann (1978) 

 
An average of the soil parameters derived for 
Baaskarp Sand no.15 in all the tests are re-
flected in table 2. 

 
Notice that for tests 7, 8 and 9 corresponding 
to a slenderness ratio of L/D = 3, it was de-
cided not to carry out the CPT’s since the 
embedded length is only 240 mm and the 
CPT cone could only penetrate 10 cm, which 
is not deep enough to rely on these CPT’s. 
Thus, an averaged density index of ID = 83 % 
is assumed for the calculation of the rest of 
the parameters in these tests (the range of ID 
varies from 75% to 91%). 
 
 
 

Test 

no. 
tr[˚] tr[˚] ID [%] 

’  
[kN/m

3
] 

E0 

[MPa] 

1 54.4 20.4 91.0 10.4 [-] 

2 50.4 19.1 89.0 10.4 38.6 

3 48.0 18.6 91.0 10.40 57.2 

4 52.6 18.1 79.0 10.2 [-] 

5 48.5 16.9 79.0 10.2 25.4 

6 45.9 16.2 79.0 10.2 41.1 

7 52.6 18.2 83.0 10.3 [-] 

8 49.5 17.9 83.0 10.2 27.6 

9 49.7 17.0 83.0 10.2 44.4 

10 45.5 15.5 76.6 10.1 36.5 

11 52.7 17.0 84.6 10.3 [-] 

12 47.3 15.7 77.9 10.2 25.2 

13 45.7 16.1 79.7 10.2 38.9 

14 52.2 17.5 76.0 10.1 [-] 

15 45.1 15.3 75.0 10.1 37.4 

16 48.3 16.7 78.0 10.1 24.9 

17 48.3 16.1 79.9 10.2 26.1 

18 45.5 15.8 78.6 10.2 38.0 

19 53.7 19.6 86.0 10.3 [-] 

20 49.9 17.6 87.2 10.3 30.00 

21 50.3 19.0 89.0 10.4 38.2 

22 47.7 18.3 90.0 10.4 55.6 

Table 2: Averaged soil parameters obtained 

by Sørensen et al. (2009), Roessen and 

Thomassen (2010) and Borobia et al. (2011) 

4 Test setup 

The tests are carried out inside a pressure 
tank with a height of 2.5 m and a diameter of 
2.1 m. The objective of the pressure tank is to 
increase the effective stresses, which are very 
significant when calculating the soil parame-
ters, specially the friction angle which 
strongly depends on the stress level.  It is ob-
served that the friction angle is overestimated 
for low values of the pressure level.  

 
Thus, the rest of the parameters also depend 
on the effective stresses, since all of them are 
related by equations 1 to 4 and also by the 
equations presented by Schemertmann, 1978.  

 
A full description of all the test setup can be 
found in Borobia, Mikalauskas and Troya, 
March 2011. 

5 Dimensionless Analysis 

The normalised load-deflection relationship 
shown in figures 4 to 6 represents only the 
first loading of the 10 tests realised at Aal-
borg University by Borobia et al. (March, 
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2011), the 6 tests carried out by Roessen and 
Thomassen (2010) and the 6 tests performed 
by Sørensen et al. (2009) respectively. 
 

 

Figure  4:  Normalised load-deflection for 

tests carried out by Borobia et al. (2011) 

 

Figure  5:  Normalised load-deflection for 

tests performed by Roessen and Thomassen 

(2010) 

 

Figure  6:  Normalised load-deflection for 

tests carried out by Sørensen et al. (2009) 

For piles subjected to static loading, and as-
suming the validity of the power law, cf. 
Prosperine K. Peralta (2010), the pile dis-
placement can be expressed as a potential 
function, cf. Equation 5, where C is a con-
stant dependent on the pile geometry and soil 
properties and α denotes the exponent of the 
lateral load on a pile.  



 







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3L

H
C

L

y

 

(5)  

According to Dietrich (1983) and Hettler 
(1981) assuming a rigid behaviour of the 
pile, α is inversely proportional to k which is 
the soil exponent obtained from the triaxial 
tests previously performed at Aalborg Uni-
versity, cf. Equation 6. 

 

  
 

 
Regarding to the data points shown in all the 
figures through this dimensionless analysis, 
only the points which are linearly distributed 
are fitted by a straight line, obtaining the ex-
ponent of the lateral load, α, and thus the soil 
exponent, k, by means of equation 6, assum-
ing a rigid-pile system. 

 
Table 3 shows how the exponent of the lat-
eral load, α, and the analytically computed 
soil exponent, k, vary for the different tests 
carried out in the last two years by different 
students at Aalborg University Laboratory. 
The diameter and overburden pressure are 
expressed in mm and kPa respectively. 
 
Notice that for this analysis, test no. 21 has 
been ignored, since some problems with the 
hydraulic piston appeared, and the initial 
loading is too small to be considered, cf. fig-
ure 7. 

 

Figure  7:  Load-deflection plot for test 

no.21 

k
rigid

1
  (6)  
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Test 

no. 
D L/D P0 α k 

1 40 5 0 1.82 0.55 

2 40 5 50 1.37 0.73 

3 40 5 100 1.19 0.84 

4 60 5 0 1.34 0.74 

5 60 5 50 1.64 0.61 

6 60 5 100 1.36 0.73 

7 80 3 0 3.00 0.33 

8 80 3 50 1.53 0.65 

9 80 3 100 1.55 0.65 

10 80 4 100 1.22 0.82 

11 80 5 0 1.38 0.72 

12 80 5 50 1.43 0.70 

13 80 5 100 1.43 0.70 

14 80 5 0 1.47 0.68 

15 80 5 50 1.40 0.72 

16 80 5 100 1.61 0.62 

17 80 6 50 1.16 0.87 

18 80 6 100 1.11 0.90 

19 100 5 0 1.45 0.69 

20 100 5 50 1.51 0.66 

21 100 5 50   

22 100 5 100 1.37 0.73 

Table 3: Variation of α and k for all the tests  

The maximum variation in the exponent of 
the lateral load on a pile is found to be 39% 
corresponding to tests 1 and 18, carried out at 
different pressures (0 kPa and 100 kPa). The 
same behaviour occurs to the soil exponent, 
k, since it is directly related to α by equation 
6. 

The tendency of the data in figures 4 to 6 
show a linear tendency, but slightly curved in 
the upper part of it. This behaviour could be 
due to the dilation of the soil which varies 
depending on the overburden pressure and 
the slenderness ratio. 

More similar slopes of the straight lines in 
the load-deflection relationship are obtained 
for the tests carried out at the same pressure 
level, cf. Figures 8 to 10 and tables 4 to 6. 

However, for the tests realised without any 
overburden pressure applied, the results are 
more uncorrelated due to the inaccuracy 
when calculating the friction angle and the 
young’s modulus of elasticity for small pres-
sure levels, cf. Figure 8.  

 

 

Figure  8:  Normalised load-deflection for 

tests carried out at P0 = 0 kPa 

D L/D P0 C α k 

40 5 0 9.54 10
-4 

1.82 0.55 

60 5 0 7.66 10
-3 

1.34 0.74 

80 3 0 8.30 10
-7 

3.00 0.33 

80 5 0 3.38 10
-3 

1.38 0.72 

80 5 0 2.75 10
-3 

1.47 0.68 

100 5 0 3.40 10
-3 

1.45 0.69 

Table 4: Variation of α for P0 = 0 kPa 

 
A maximum variation of k with a value of 
26.4 % is obtained for the tests carried out at 
0 kPa for a constant value of L/D = 5.  

It is also observed that for a slenderness ratio 
of L/D = 3 a value of k = 0.33 is obtained, 
which is not reasonable.  

For this reason, the tests carried out without 
any overburden pressure applied are consid-
ered unreliable. The averaged soil exponent 
is computed for 0 kPa, considering a constant 
L/D = 5, yielding a value of k = 0.67. Figure 
9 shows the dimensionless load-displacement 
for a pressure level of 50 kPa.  

 
Figure  9:  Normalised load-deflection for 

tests performed at P0 = 50 kPa 
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D L/D P0 C α k 

40 5 50 3.59 10
-4 

1.37 0.73 

60 5 50 2.15 10
-5 

1.64 0.61 

80 3 50 1.87 10
-5 

1.53 0.65 

80 5 50 8.45 10
-5 

1.43 0.70 

80 5 50 1.20 10
-4 

1.40 0.72 

80 6 50 1.27 10
-3 

1.16 0.87 

100 5 50 5.98 10
-5 

1.51 0.66 

Table 5: Variation of α and k for P0 = 50 

kPa 

 
The maximum variation of the exponent of 
the lateral load on a pile subjected to a pres-
sure level of 50 kPa for a constant L/D = 5, is 
found to be 14.8 % which is lower than for 0 
kPa. The averaged soil exponent is found to 
be k = 0.69, which is slightly higher than for 
0 kPa. Moreover, for a slenderness ratio of 
L/D = 6 it is obtained a high value of the soil 
exponent k = 0.87, which is considered unre-
liable since it is very elevated compare to the 
rest. 

 
For the maximum overburden pressure ap-
plied in the tests (100 kPa), the highest varia-
tion experienced by k is found to be 26.1 % 
for a constant L/D = 5,  cf. Figure 10 and ta-
ble 6.  
 
The averaged soil exponent for a constant 
L/D = 5 reaches a value of k = 0.72, which is 
higher than for 0 kPa and 50 kPa. 
 
 

 

Figure  10:  Normalised load-deflection for 

tests carried out at P0 = 100 kPa 

 
 
 
 

D L/D P0 C α k 

40 5 100 1.25  10
-3 

1.19 0.84 

60 5 100 8.24  10
-5 

1.36 0.73 

80 3 100 1.11  10
-5 

1.55 0.65 

80 4 100 2.60  10
-4 

1.22 0.82 

80 5 100 7.74  10
-5 

1.43 0.70 

80 5 100 1.98  10
-5 

1.61 0.62 

80 6 100 1.26  10
-3 

1.11 0.90 

100 5 100 1.17  10
-4 

1.37 0.73 

Table 6: Variation of α and k for P0 = 100 

kPa 

Regarding the three pressure levels, in gen-
eral, higher values of the soil exponent are 
found when the overburden pressure level in-
creases, with averaged values of k = 0.67, 
0.69, and 0.72 for 0, 50 and 100 kPa respec-
tively.  
 
It can be concluded that the overburden pres-
sure makes the exponent of the lateral load to 
decrease, and thus the soil exponent increas-
es, meaning lower lateral deflection experi-
enced by the pile when the pressure level in-
creases. 

 
Four different diameters were considered for 
all the small-scale tests carried out at Aalborg 
University (40, 60, 80 and 100 mm), and its 
influence when calculating the soil exponent 
is shown in figures 11 to 14 and tables 7 to 
10.  

 
Figure 11 shows agreement with the fact of 
increasing k for higher values of overburden 
pressure. The averaged value of the soil ex-
ponent for D = 40 mm is found to be k = 
0.71, cf. Table 7. 
 

 

Figure  11:  Normalised load-deflection 

D = 40 mm and P0 = 0, 50 and 100 kPa 
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D L/D P0 C α k 

40 5 0 9.54 10
-4 

1.82 0.55 

40 5 50 3.59 10
-4 

1.37 0.73 

40 5 100 1.25 10
-3 

1.19 0.84 

Table 7: Variation of α and k for D = 40 mm 

 

Figure  12:  Normalised load-deflection D = 

60 mm and P0 = 0, 50 and 100 kPa 

D L/D P0 C α k 

60 5 0 7.66 10
-3 

1.34 0.74 

60 5 50 2.15 10
-5 

1.64 0.61 

60 5 100 8.24 10
-5 

1.36 0.73 

Table 8: Variation of α and k for D = 60 mm 

Based on Figure 12, uncertainties are shown 
again for the test carried out at 0 kPa, since it 
is expected to obtain the lowest value of k. 
An averaged value of k = 0.69 is found for D 
= 60 mm.  

 
Figure 13 represents the normalised load-
displacement relationship for D = 80 mm. 

 

Figure  13:  Normalised load-deflection D = 

80 mm and P0 = 0, 50 and 100 kPa 

D L/D P0 C α k 

80 3 0 8.30 10
-7 

3.00 0.33 

80 3 50 1.87 10
-5 

1.53 0.65 

80 3 100 1.11 10
-5 

1.55 0.65 

80 4 100 2.60 10
-4 

1.22 0.82 

80 5 0 3.38 10
-3 

1.38 0.72 

80 5 50 8.45 10
-5 

1.43 0.70 

80 5 100 7.74 10
-5 

1.43 0.70 

80 5 0 2.75 10
-3 

1.47 0.68 

80 5 50 1.20 10
-4 

1.40 0.72 

80 5 100 1.98 10
-5 

1.61 0.62 

80 6 50 1.27 10
-3 

1.16 0.87 

80 6 100 1.26 10
-3 

1.11 0.90 

Table 9: Variation of α and k for D = 80 mm 

An averaged value of the soil exponent is 
computed for D = 80 mm, obtaining k = 0.68. 

 
It can be noticed that for tests with similar 
characteristics carried out in two different 
years (2009 and 2011) it is obtained correla-
tion between the results. For instance, for 
tests 11 and 14 (D = 80 mm, L/D = 5 and 0 
kPa) it is obtained values of k = 0.72 and k = 
0.68, respectively. Tests 12 and 15 (D = 80 
mm, L/D = 5 and 50 kPa) also show similar 
results of the soil exponent, k = 0.70 and 
0.72, respectively.  

 
Figure 14 shows the variation of the lateral 
load exponent and the soil exponent for a di-
ameter of D = 100 mm.  

 

Figure  14:  Normalised load-deflection D = 

100 mm and P0 = 0, 50 and 100 kPa. 

D L/D P0 C α k 

100 5 0 3.40 10
-3 

1.45 0.69 

100 5 50 5.98 10
-5 

1.51 0.66 

100 5 100 1.17 10
-4 

1.37 0.73 

Table 10: Variation of α and k for D = 

100 mm 
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It is obtained averaged values of the soil ex-
ponent of 0.71, 0.69, 0.68 and 0.69 for D = 
40, 60, 80 and 100 mm respectively. Since 
these values are very similar from each other, 
it can be considered that the soil exponent is 
independent of the pile diameter, with an av-
eraged value of k = 0.69 
 
However, the influence of the slenderness ra-
tio is difficult to analyse, since most of the 
tests were carried out with a slenderness ratio 
of L/D = 5 and thus, its influence cannot be 
analysed. 
 
In general, an average value of the load ex-
ponent is computed for the three pressure 
levels being independent of the diameter of 
the pile, yielding 0.67, 0.69 and 0.72 corre-
sponding to overburden pressure levels of 0 
kPa, 50 kPa and 100 kPa and an averaged 
density index of ID = 82.4 %. 
 
For a rigid pile system, a constant value of α 
= 1/k is assumed, being a soil constant which 
only depends on the stress level and can be 
derived from the triaxial tests previously car-
ried out at Aalborg University on Baaskarp 
sand no. 15. Thereafter, these values are ana-
lysed and then compared to the values ob-
tained by means of the small-scale tests. 

6 Triaxial tests 

Some triaxial tests were performed at Aal-
borg University Laboratory with the purpose 
of analysing how the soil behaves when con-
fining pressure is applied. Four different void 
ratios were employed, corresponding to den-
sity indexes of ID = 1, 0.8, 0.51, 0.025 and 
many different confining pressures σc were 
used for each density index. 

 
However, in order to compute and compare 
the calculated soil exponents, k, by means of 
the small-scale tests, to the ones obtained by 
the triaxial tests, only the data corresponding 
to a density index of 80% is used, since an 
averaged density index of ID = 82.4 % is ob-
tained from the 22 tests carried out at the Ge-
otechnical Laboratory. Furthermore, the 
maximum overburden pressure applied inside 
the tank for the small-scale tests was 100 
kPa. By means of the lateral earth pressure 
coefficient at rest, the relation defined by 
equation 7 shows the maximum confining 
pressure to be considered in the triaxial tests, 
yielding 27 kPa. 

 

1)sin1(  c  (7)  

In figure 15 it can be observed how a triaxial 
test is carried out and stresses in the three di-
rections were applied on the soil specimen. 
 

        

Figure  15:  Triaxial test on the left and 

sketch of soil specimen on the right. 

The purpose of performing this kind of tests 
is to determine the mechanical properties of 
the soil assuming that the soil specimen rep-
resents the behaviour of the entire soil, and 
the properties obtained through these small-
scale tests are reliable enough to extrapolate 
them to full-scale. 

 
Figure 16 shows the stress-strain relationship 
for the triaxial tests in a double-logarithmic 
scale, where the data points are fitted again 
by the power law and the exponent is found 
to be the soil exponent, k.  

 

Figure  16:  Stress-Strain relation in the tri-

axial tests for different confining pressures 

Figure 16 shows disagreement between the 
soil exponent calculated by small-scale tests 
and triaxial tests for low confining pressures. 
It is obtained values of k = 0.90, 0.75, 0.72 
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and 0.67 for confining pressures of 5 kPa, 10 
kPa, 20 kPa and 40 kPa, respectively. Thus, 
only the soil exponent computed for an over-
burden pressure of 100 kPa in the small-scale 
tests is considered reliable (k = 0.72), corre-
sponding to a confining pressure computed 
by equation 7 of approximately 27 kPa. 
 
This result was expected, since previous tri-
axial tests carried out at Aalborg University 
showed uncorrelation for low confining pres-
sures when calculating the friction angle, cf. 
Figure 3.  
 
This k is assumed to be a soil constant, only 
depending on the stress level, and the static 
pile test results show that the power law of 
the force-displacement curve can to a large 
extent be verified using small-scale models. 

 
The degree of influence of the applied hori-
zontal load on a pile system can be predicted 
using the soil exponent, k. The displacement 
of a rigid pile will increase with the applied 
horizontal load amplitude to the power of 
1/k. Thus, the load function is given by the 
power law expressed by equation 8: 
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Based on equation 5, the coefficient C is de-
pendent on the geometry of the pile and the 
soil density, thus the Π-products are inde-
pendent of the pile bending stiffness, yield-
ing: 

ed ffe
L

d
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Thus, the dimensionless displacement can be 
represented by equation 10 reading: 

Hed fff
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y
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In cohesionless soils, the density of the soil 
has a significant effect on the pile displace-
ment, y, since soil resistance to the static load 
along the length of the pile is dependent on 
this parameter. The function fe can be calcu-
lated by means of fn proposed by Hettler 
(1981): 
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The soil porosity is related to the void ratio 
by equation 12 and considering eref = emax = 

0.858, corresponding to the loosest state of 
Baaskarp sand no. 15, and a void ratio of e = 
0.60 for an averaged density index of 85% , 
fn is found to be 0.0874 and it is assumed 
constant for further calculations. 
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 (12)  

This means that the total lateral pile dis-
placement should decrease by approximately 
87% for ID = 0.85 when compared to the 
maximum pile displacement in a loose cohe-
sionless soil (when fn = 1).  
 
Since the bending stiffness (EI) of the pile 
system can be ignored for rigid piles, the 
general displacement equation for rigid pile 
systems can further be described according to 
equation 13, where the only unknown func-
tion is fd. cf. Appendix D. 
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Taking only into account the soil exponents 
computed for a pressure level of 100 kPa, 
and based on equation 13,  four  linear func-
tions for fd can be obtained for the four diam-
eters used through all the tests (40 mm, 60 
mm, 80 mm, 100 mm), corresponding to tests 
3, 6, 13 and 22, cf. Figure 17.  

 

 

Figure  17:  Variation of fd with the normal-

ised displacement 

The four linear functions adopt the form of a 
straight line with a common shape for the 
four tests considered as shown in equation 
14: 

b
L

y
af d   (14)  

According to the four different equations ob-
tained for fd for each pile diameter, and sub-
stituting each fd in equation 13, four implicit 
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dimensionless equations to describe the lat-
eral deflection of the pile for the four differ-
ent diameters (40, 60, 80, 100 mm) can be 
computed, being fn = 0.0874, cf. Equation 15 
to 18 respectively. 
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These four equations are obtained for four 
different diameters (D = 40, 60, 80 and 100 
mm). However, the goal is to obtain only a 
general equation which can describe the di-
mensionless lateral displacement of a pile as 
a function of the density index of the soil, its 
pile diameter, force applied, unit weight of 
the soil, soil exponent and embedded length 
of the pile. This equation will adopt the form 
shown in equation 19:  
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(19)  

Therefore, the coefficients a and b can be 
represented as a function of the pile diameter, 
cf. Figures 18 and 19.  
 

 

Figure  18:  Variation of a with the diameter 

of the pile 

 

Figure  19:  Variation of b with the diameter 

of the pile 

Substituting a(D) and b(D) in equation 19, 
the general dimensionless implicit equation 
which can describe the lateral displacement 
of the pile at the height of the hydraulic pis-
ton and taking fn = 0.0874, reads: 
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(20)  

7 Extrapolation of Small–Scale 
parameters to a Prototype 

An extrapolation of the parameters from the 
small-scale test to a full-scale model is real-
ised in this section. Due to the uncertainties 
observed when calculating the friction angle 
for low stress levels, only the tests carried out 
with an overburden pressure of 100 kPa are 
chosen to extrapolate the parameters. Thus, 
model pile parameters of tests 3, 6, 13 and 22 
(100 kPa, D = 40, 60, 80 and 100 mm, re-
spectively) and extrapolated parameters to a 
prototype are shown in table 11. 

 
Π-

products 

Model Pile 

Parameters 

Prototype 

Parameters 

T
es

t 
3
 

fd = 0.0033 
D = 0.04 m 

L = 0.2 m 

D = 2.2 m 
L = 10.1 m 

fn = 0.0874 γ = 10.4 kN/m
3
 γ = 10.4 kN/m

3
 

fH  =  4.604 H = 300 N H = 4.9MN 

T
es

t 
6
 

fd = 0.0121 
D = 0.06 m 

L = 0.3 m 

D = 3.29 m 
L = 16.43 m 

fn = 0.0874 γ = 10.2 kN/m
3
 γ = 10.2 kN/m

3
 

fH = 5.850 H = 1000 N H = 16.4MN 

T
es

t 
1
3

 

fd = 0.016 
D = 0.08 m 

L = 0.4 m 

D = 4.38 m 
L = 21.9 m 

fn = 0.0874 γ = 10.2 kN/m
3
 γ = 10.2 kN/m

3
 

fH = 2.675 H = 1300 N H = 21.3MN 

T
es

t 
2
2
 

fd = 0.0173 
D = 0.1 m 

L = 0.5 m 

D = 5.48 m 
L = 27.4 m 

fn = 0.0874 γ = 10.4 kN/m
3
 γ = 10.4 kN/m

3
 

fH = 2.861 H = 2800 N H = 45.9MN 

Table 11: Variation of α and k for D=100 mm 
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A scaling factor of λ = 0.01826 is used, ac-
cording to the defined scaling laws defined in 
Appendix D. 

 
The lateral load, H, taken into account for the 
extrapolation of the model parameters corre-
sponds to the reached force when a maxi-
mum rotation allowed by the API regulations 
of 0.25˚occurs. 

 
Notice that an averaged density index of 85% 
is considered in all the cases, yielding to the 
same Π-product, fn in the four tests consid-
ered for the extrapolation, and a load eccen-
tricity of h = 370 mm is used in the calcula-
tions. 
 
Furthermore, two full-scale models are mod-
elled numerically in order to analyse the real 
behaviour of a typical monopile offshore 
foundation, cf. Borobia, Mikalauskas and 
Troya (May, 2011). 

8 Conclusions 

 Soil parameters derived for the 22 quasi-
static tests showed correlation between 
them; decreasing the value of the friction 
angle when the overburden pressure gets 
higher; yielding to a more accurate value 
of the friction angle for high overburden 
pressure levels (typical offshore locations 
rarely have a friction angle above 40 de-
grees). 

 
 The exponent of the lateral load, α, can be 

computed by means of the double loga-
rithmic-scale graphs, obtained as the slope 
of the straight line which fits the data 
points in the normalised load - lateral de-
flection graphs.  

 
 The models are assumed to be rigid-pile 

systems where the soil exponent, k, is di-
rectly related to the exponent of the lateral 
load by means of equation 6. 
 

 Averaged values of the soil exponent, k, 
of 0.71, 0.69, 0.68 and 0.69 are obtained 
for diameters of 40, 60, 80 and 100 mm, 
respectively. Due to the similarity of the 
results obtained for the 4 diameters con-
sidered, it can be assumed that the soil ex-
ponent is independent of the pile diameter, 
with an averaged value of k = 0.69. 

 
 Averaged values of the soil exponent for 

the three overburden pressure levels ap-

plied at Aalborg University Laboratory 
were found to be k = 0.67, 0.69 and 0.72 
for 0 kPa, 50 kPa and 100 kPa, respective-
ly. This leads into a significant sensitivity 
of the soil exponent regarding the over-
burden pressure. The higher the overbur-
den pressure level is, the higher soil expo-
nent is obtained, meaning a lower lateral 
deflection experienced by the pile when 
the pressure level increases. 

 
 The soil exponent is assumed to be a soil 

constant which only depends on the stress 
level, and it is independent of the pile 
properties, such as the pile diameter. 
Thus, the soil exponent can be obtained 
by means of triaxial tests.  
 

 
 Disagreement between the soil exponent 

calculated by small-scale tests and triaxial 
tests for low confining pressures is ob-
served. Due to the uncertainties observed 
when calculating the soil parameters for 
low stress levels and the uncorrelation 
found between small-scale tests and triax-
ial tests, only the soil exponent computed 
for an overburden pressure of 100 kPa in 
the small-scale tests is considered reliable 
(k = 0.72), corresponding to a confining 
pressure in the triaxial tests of 27 kPa. 

 
 The influence of the slenderness ratio 

cannot be analysed, since most of the tests 
were conducted with a slenderness ratio of 
L/D = 5, and thus, its influence is difficult 
to observe. 

 
 It is assumed the validity of the Power 

Law, which states that the lateral dis-
placement of the pile is a function of the 
density index of the soil, pile diameter, 
force applied, unit weight of the soil, soil 
exponent and embedded length of the pile. 
Therefore, a general implicit equation 
which describes the lateral displacement 
of the pile is obtained by means of the Π-
products, cf. Appendix D. 

 
 An extrapolation of the model parameters 

to full-scale parameters is carried out 
based on the scaling laws shown in Ap-
pendix D. An averaged value of ID = 85% 
and a lateral load, H, corresponding to the 
maximum rotation allowed by API design 
regulations (0.25˚) have been used in the 
calculations.  
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1 Introduction  

 
The actual design of laterally-loaded mono-
piles, employed as foundation for offshore 
wind turbines, is the Winkler model approach 
based on the p-y curve method and following 
the design regulations of the petroleum in-
dustry: API (1993) and DNV (1992). How-
ever, they are considered as inaccurate and 
incomplete when designing monopile foun-
dation for offshore wind turbines, cf. Borobia 
et al. (March, 2011). Several uncertainties in 
the method are found, such as the linear vari-
ation of the initial stiffness of the p-y curves 
with depth or its non-dependency on the pile 
properties.  
 
These uncertainties are generated due to the 
fact that design regulations are based on 

some tests conducted on two slender flexible 
piles with L/D = 34.4, in contrast to modern 
monopiles which have a slenderness ratio 
L/D ≈ 5, Cox et al. (1974). 
 
Full-scale tests are expensive and time con-
suming, therefore numerical modelling be-
comes interesting to be performed. Further, 
small-scale tests have been conducted exper-
imentally at the Aalborg University Geotech-
nical Laboratory by Borobia et al. (March, 
2011). 
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Abstract 

A monopile is often employed as the foundation for offshore wind turbines. These 

piles are subjected to lateral loads generated by wind and waves, leading to significant 

lateral loads and overturning bending moments. The current method for the design of 

offshore wind turbines is the Winkler Model approach in which the soil resistance act-

ing against the pile wall, p, is modelled by means of p-y curves. However, this method, 

and the recommended p-y curves are developed for jag-piles for the oil-industry, pri-

marily developed for soft clays and then extended to sand. These jag-piles have higher 

slenderness ratios than modern wind turbines (L/D > 10) due to higher embedded 

lengths and lower diameters (less than 2 meters). In contrast, modern wind turbines 

have diameters of 4-6 m and L/D < 10. For this reason, uncertainties appear when us-

ing the p-y curve method in the design of monopiles. This paper consists of a numeri-

cal evaluation performed by two commercial three dimensional numerical programs: 

FLAC
3D

 and Plaxis 3D 2010. Mohr-Coulomb cut-off material model is used to com-

pare the results obtained by both three dimensional programs. Moreover, two more ma-

terial models: Hardening Soil model and Hardening Soil small strains model are em-

ployed in order to analyse and compare the accuracy of using one of them regarding 

the experimental results. The numerical modelling is then compared with small-scale 

laboratory tests. Furthermore, one full-scale monopile previously analysed in 

ABAQUS by Kellezj and Hansen (2003) is modelled by means of FLAC
3D

 and Plaxis 

3D 2010 to analyse the real behaviour of a monopile foundation.   
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Thus, seven small-scale models with the 
same characteristics as the experimental tests 
are modelled numerically by means of two 
commercial three dimensional numerical 
programs: FLAC

3D
 and Plaxis 3D

 
2010. 

 
Three different material models are em-
ployed in order to analyse which one repre-
sents a better approach of the real behaviour 
of the soil when a monopile foundation is in-
stalled and submitted to a lateral load: 
 

 Mohr-Coulomb tension cut-off model 

 Hardening Soil model 

 Hardening Soil small strains model 

 
Furthermore, one full-scale model previously 
conducted by Kellezj and Hansen (2003) 
with the help of another numerical program 
(ABAQUS) is modelled by FLAC

3D
 and 

Plaxis
 
3D 2010, with L = 21 m, D = 4 m and 

a layered soil with varying friction angle 
from 21.6 to 44.3 degrees.   
 
Through this paper an evaluation and a com-
parison of the results obtained by FLAC

3D
 

and Plaxis 3D 2010, taking into account the 
three material models previously mentioned, 
is presented. 

2 Laboratory Test Setup  

Quasi-static laboratory tests have been con-
ducted by Troya et al. (March, 2011) with 
two closed-ended aluminium pipe piles with 
the outer diameter of D = 80, 100 mm with 
different slenderness ratios (L/D = 3 – 6) and 
subjected to different overburden pressures 
(P0 = 0, 50, 100 kPa). Seven of these tests 
were chosen to be modelled numerically. 
Each test parameters are given in Table 1. 
 

Test no. D [mm] L/D P0 [kPa] 

Test 1 100 5 50 

Test 2 80 5 0 

Test 3 80 5 50 

Test 4 80 6 50 

Test 5 80 4 100 

Test 6 80 5 100 

Test 7 80 6 100 

Table 1: Tests’ geometries and overburden 

pressures 

Input parameters for the soil in the models 
are taken the same as found in the small-
scale tests by CPT’s. The values of these pa-
rameters are given in Table 2. 
 

Test   

no. 
tr[˚] tr[˚] ’ [kN/m

3
] 

E0 

[MPa] 

Test 1 49.92 17.56 10.33 29.96 

Test 2 52.70 17.03 10.27 9 

Test 3 47.26 15.70 10.15 25.15 

Test 4 48.26 16.09 10.18 26.12 

Test 5 45.46 15.45 10.12 36.54 

Test 6 45.67 16.06 10.18 38.85 

Test 7 45.54 15.84 10.15 38.00 

Table 2: Mechanical soil parameters ob-

tained in the laboratory 

3 Small-scale numerical modelling 

3.1 FLAC
3D

 modelling procedure 

 
A 3D model is generated with FLAC

3D
 

which uses explicit finite difference method. 
Geometry is modelled to match the exact 
conditions as measured in the laboratory 
tests, cf. Tab. 1. 
 
As the geometry is symmetrical, only a half 
of the test setup is created. At first, the soil is 
generated and the volume near the pile is 
meshed into smaller elements as the stresses 
have greater variation in these zones. To 
have correct model conditions an interface is 
generated at the soil-pile interaction. This al-
lows separation and sliding between two ma-
terials. These elements are attached to the 
face of a soil surface. On the appearance of 
contact with the pile each interface node 
characterizes sliding properties, normal and 
shear stiffnesses between the materials. The 
pile is embedded to the soil after generating 
all the elements. A number of around 6500 
elements is used in the model, as this number 
was found to be appropriate by convergence 
tests. Final model geometry is shown in fig-
ure 1. 
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Figure 1.  Final model geometry 

A solid pile is used instead of a hollow to 
simplify the model; therefore equivalent 
Young’s modulus and density have to be 
used. 

 

Figure 2.  Hollow and solid pile cross-

sections 

solid

hollowhollow

solid
I

IE
E


  (1)  

solid

hollowhollow

solid
A

A




 (2)  

The Poisson’s ratio (ν = 0.33) and hence the 
shear stiffness for aluminium are not scaled 
due to negligible effect to the results. 

 
Interface properties have a great influence to 
the results. They are described by the follow-
ing parameters given in table 3. These values 
of the parameters were chosen so that numer-
ical load-displacement curves would show 
the best approach to the experimental. 

 

Friction angle tr’ [˚] 36.8 – 38.7 

Cohesion cint [kPa] 0.001 

Dilation angle tr [˚] 0 

Normal stiffness kn [MPa] 100 x E0 

Shear stiffness kn [MPa] 100 x E0 

Table 3:  Interface properties 

The friction angle is calculated by formula 3, 
where φtr is the internal friction angle for 
sand. 

  tr

1

tr tan3/2tan'   
 (3)  

Mohr-Coulomb material model with tension 
cut-off is used to represent relations in the 
sand. This model describes the soil stress-
strain behaviour in an elastic-plastic state. 
The elastic part is described by Hooke’s law 
whereas in the plastic part the strain is de-
scribed as a sum of elastic and plastic strains. 
An elastic, isotropic model is used for the 
monopile. In this case, stress-strain relation-
ship is described by the Hooke’s law. Null 
model is used for the rest of the volume – the 
part above the soil. In this type of material 
stresses are automatically set to zero.  

 
Boundary conditions are modelled to match 
the real conditions in the tank. Three differ-
ent conditions are assigned to different parts 
of the model, cf. Fig 3. 

 

Figure 3.  Model boundaries: 1-bottom of 

the pressure tank, 2- pressure tank walls, 3- 

symmetry plane 

All nodes in the bottom of the model (1) are 
fixed in x, y and z directions. Nodes in verti-
cal part which simulate the pressure tank 
walls (2) are fixed in x and y directions. 
Nodes in the symmetry plane (3) are fixed in 
the y direction. 
Initial conditions are assigned by applying 
densities, gravity loading and overburden 
pressure for model elements. The horizontal 
pressure is defined by use of the coefficient 
of horizontal earth pressure at rest K0=1-
sin(φtr), valid for normally consolidated soil. 
 
As in the laboratory tests the deflection is 
applied to the pile instead of the force. Ve-
locity is applied to the nodes at 370 mm 
height above the soil surface. It is increased 
slowly to avoid any dynamic response in the 
model which would make the inertia effects 
dominant. A steady-state response is 
achieved in the system by using more than a 
million time steps.  
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To ensure quasi-static solution of the model, 
motion equations have to be damped. Signif-
icant uniform motion is apparent as velocity 
loading is applied and the velocity will not 
change sign in most of the nodes. Therefore 
the combined damping is used. In this mech-
anism damping depends on the unbalanced 
force sign variation and it is more appropriate 
for rigid-body motion systems. 
 
Bending moments, M, are calculated at dif-
ferent levels of embedded pile by formula: 

iiizz xAM  ,  (4)  

Where σzz,i is the vertical normal stress for el-
ement i, Ai is the area of the element i, xi is 
the x coordinate of the center of element i. 
The soil resistance along the pile, px, is calcu-

lated by equation: 

 dCTp xx  (5)  

Where Tx is the x-component of the total 
stress and C is the pile circumference. 

3.2 Plaxis 3D 2010 modelling procedure 

 
Plaxis 3D 2010 is a commercial three-
dimensional finite element program used to 
perform deformation and stability analysis 
for various types of geotechnical structures 
such as foundations. The program uses a 
convenient graphical user interface that ena-
bles users to generate a model quickly and 
easily. 
 
Plaxis 3D is an implicit element solver relat-
ing forces and displacements by demanding 
equilibrium in every point in the model. 
From the equations of equilibrium the weak 
formulation of the continuum problem is ob-
tained by means of virtual work. In contrast 
to FLAC

3D
, Plaxis 3D is a static solver, 

meaning that inertial forces are omitted.  
 
The generation of a three-dimensional finite 
element model is based on the small-scale 
model geometry. The program, in contrast 
with FLAC

3D
, does not allow using sym-

metry simplifications and moreover, does not 
allow curved outer boundaries, only square 
boundaries. Therefore a whole model has 
been created.  
 
The monopile is modelled as a closed-ended 
hollow pile, as the monopile used in the la-
boratory, with the geometry shown in table 1. 

For the soil volume, the outer boundaries of 
the model are set to the dimension of the soil 
volume in the pressure tank. Hence, the side 
length is 2.10 meters and the depth of the soil 
is set to 0.58 meters. The lateral load is ap-
plied as a punctual load in the centre of the 
cross section of the top pile and the overbur-
den pressure is simulated as a distributed 
load in all surface area of the model. In fig-
ure 5 the mesh of the small-scale model can 
be appreciated for test number 7.  
 
Along all boundaries Plaxis 3D automatically 
imposes a set of fixities corresponding to a 
free ground surface and a fully fixed bottom. 
All vertical boundaries are fixed in the direc-
tion of their normal. 
 
The structural surfaces of the monopile are 
modelled as plates, which are 6-noded wedge 
triangle elements with 6 degrees of freedom 
in each node, i.e. three translational and three 
rotational degrees of freedom. These plates 
allow the shearing, bending and axial defor-
mation. The top and bottom plates are creat-
ed with higher thickness than the mantle of 
the cylinder to avoid transversal defor-
mations when the lateral load is applied. 
 
In Plaxis 3D 2010, 3 different Material mod-
els have been employed to model and ana-
lyze the small-scale tests.  
 
A traditional Mohr Coulomb failure criterion 
with tension cut-off is used for the small-
scale models since the same material model 
is employed in FLAC

3D
. Furthermore, Hard-

ening soil and Hardening soil small strain 
models are employed in order to compare the 
effect of more advance material models. 
 
Mohr Coulomb model with tension cut-off 
describes perfectly elastic-plastic soil behav-
iour and no tension is allowed for the soil. 
Further explanation is given in Appendix I. 
 
The soil elements are generated by means of 
10-noded tetrahedral elements. This type of 
element has three translational degrees of 
freedom in each node. The program offers a 
three-dimensional mesh generation feature, 
which can be carried out for various mesh 
densities in different surfaces. A convergence 
test is made in order to establish the optimal 
density mesh with which the horizontal dis-
placement remains constant if the density 
mesh increases. 
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Interfaces are attached to the plate elements 
for an accurate interaction of the soil-
structure behaviour. To each interface the 
program assigned a 'virtual thickness’, which 
is used to calculate the stiffness properties of 
the interface. However in the finite element 
formulation, the coordinates of each node 
pair are identical, which means that the ele-
ment has a zero thickness. Hence, a pair of 
nodes is found with the same coordinates. In-
terfaces are composed of 12-node interface 
elements. Interface elements consist of six 
pairs of nodes, compatible with the 6-noded 
triangular side of a soil element or plate ele-
ment. Each node has three translational de-
grees of freedom and it is numerically inte-
grated using 3 point Gauss integration. The 
aim of these interface nodes is to allow slip-
ping and gapping by means of differential 
displacements between the node pairs. 

 
The interface stiffness and strength can be 
defined depending on the kind of analysis, 
and it is controlled by the parameter Rinter. In 
general, for real soil-structure interaction the 
interface is weaker and more flexible than the 
surrounding soil, which means that the value 
of Rinter should be smaller than 1. However, it 
is possible to find a suitable value of Rinter by 
the following relationships, cf. Eq. 6 to 8: 
 

   seri R  tantan int   (6)  

 (7)  

 

(8)  

 
Where: 
 

i 
Friction angle of the interface [º] 

Obtained by equation 3 

s Friction angle of the soil  [º] 

Ei 
Young’s Modulus Interface 

[kN/m
2
] 

ES Young’s Modulus soil [kN/m
2
] 

Gi
 Shear Modulus interface [kN/m

2
] 

GS Shear Modulus soil [kN/m
2
] 

 
 
 
According to equation 6, a value of Rinter is 
calculated for every test since it changes with 
different frictions angles. The coefficients of 
earth pressure at rest, K0,X and K0,Y are also 
determined for every test, cf. Tab. 4. Plaxis 
3D requires an input value for cohesion, even 
if the soil is considered cohesionless, there-
fore a very small value is introduced. 

Test 

no. 

Rinter in-

terface 

Poisson’s 

ratio 

Cohesion 

[kPa] 
K0X , K0Y 

1 0.4664 0.23 0.001 0.2349 

2 0.4223 0.23 0.001 0.2045 

3 0.5122 0.23 0.001 0.2656 

4 0.4946 0.23 0.001 0.2538 

5 0.5455 0.23 0.001 0.2872 

6 0.5415 0.23 0.001 0.2847 

7 0.5440 0.23 0.001 0.2863 

Table 4: Specific input mechanical parame-

ters for Mohr Coulomb models in Plaxis 3D 

When the interface is elastic, both slipping 
(relative movement parallel to the interface) 
and gapping or overlapping (i.e. relative dis-
placements perpendicular to the interface) 
can be expected to occur. 
  
Therefore interfaces are created around the 
mantle of the cylinder and in the bottom of 
the pile, to simulate the toe-kick effect that 
appears due to the rigid motion of the non-
slender pile. Figure 4, shows the interface 
surrounding. 
 
 

 

 

Figure 4.  Interface (green mesh) attached 

to the monopile. The interface is surrounded 

only in the embedded part of the pilel 

In the calculation stage, the K0-procedure is 
employed. The initial vertical stresses are 
computed using the submerged unit weight. 
The horizontal stresses are computed using 
the coefficient of horizontal earth pressure at 
rest, K0=1-sin(tr) for normally consolidated 
soil. Following the initial phase, a second 
phase, called the installation phase, is initiat-
ed. In the installation phase the foundation is 

serni ERE  2

in t

serni GRG  2

in t
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"constructed", the plate and interface surfaces 
are activated. The 3rd phase involves the cre-
ation of the distributed load on the soil sur-
face (cf. Figure 5 for the model in phase 3 
with the overburden pressure applied.), 
which corresponds to the overburden pres-
sure simulation. Afterwards the lateral load is 
applied in the centre of the top plate of the 
pile. The load is applied using different load 
intervals, and each interval corresponds to a 
different phase. 
 

 

 

Figure 5.  Plaxis 3D Model boundaries, test 

7 P0=100kPa. Total stresses in z-direction 

4 Comparison of FLAC
3D

 and 
Plaxis 3D 

 
Seven different tests have been conducted by 
means of FLAC

3D
 and Plaxis 3D using the 

Mohr-Coulomb material model. Obtained re-
sults from both models are compared includ-
ing load-displacement relationship, bending 
moment distribution, pile deflection and soil 
resistance along the embedded pile length, as 
well as the p-y curves. Only a comparison of 
one of the test results is presented, which is 
representation for the other tests, that can be 
found in the Appendix H. 
 
In order to see if the models follow the con-
ditions in the small scale tests in the laborato-
ry, load – displacement curves at the force 
application level of the pile are compared cf. 
Fig. 6. Both models show disagreement with 
the experimental test, but FLAC

3D
 shows a 

better approach as the displacement for the 
same load is observed closer to the experi-
mental.  

 

Figure 6.  Load – displacement at force ap-

plication level for test 5 

Bending moment distribution shows similar 
behaviour – the peak moment values are lo-
cated in the same depth and are found closer 
to the soil surface with higher force applied, 
cf. Fig. 7. However there is a mismatch in the 
bending moment values. Same as in load - 
displacement stiffer soil behaviour was ap-
preciated by the FLAC

3D
.  

 

Figure 7.  Moment distribution along the 

embedded pile length for test 5 

Both models prove a rigid-body motion with 
a zero displacement point at the same depth, 
cf. Fig 8. However, same as in the bending 
moment distribution uncertainties are found 
regarding the displacement values. 
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Figure 8.  Displacement distribution along 

the embedded pile length for test 5 

Soil resistance distribution along the embed-
ded pile length is presented in the figure 9. A 
good match of the curves is found when the 
pile experiences a small load in contrast with 
the curves obtained when the pile experienc-
es bigger load, where uncertainties are found 
in the first 100 mm of the soil. In Plaxis 3D 
the curve reaches the maximum of 100 
N/mm, while FLAC

3D
 shows 140 N/mm for 

the same depth.  

 

Figure 9.  Soil resistance distribution along 

the embedded pile length for test 5 

This is in accordance with the p-y curves, cf. 
Fig. 10. In the shallow depths of the soil, 
where the soil resistance is close or equal to 
ultimate resistance, the difference between 
the values is high and it decreases with the 
depth. Moreover the initial subgrade reaction 
modulus is found to be smaller in the Plaxis 
3D model. Due to these reasons, more con-
servative results are appreciated by Plaxis 3D 
in the previous plots. 

 

Figure 10.  p-y curves for test 5 

In general, it was found that using Mohr-
Coulomb constitutive models in Plaxis 3D 
and FLAC

3D
 gives overestimated results; due 

to the fact that Young’s modulus is not stress 
dependant and only initial value (E0) is used 
for the whole stress-strain curve. 
Even though the same material model (Mohr-
Coulomb) and input parameters were used, 
significant difference is observed between 
the programmes. 
It was found that Plaxis 3D has more under-
estimated results than the FLAC

3D
 especially 

with higher forces applied. This is because 
FLAC

3D
 model shows stiffer behaviour due 

to the higher values of the soil resistance in 
the p-y curves, especially in the shallow soil 
depths. 

5 Comparison of Mohr-Coulomb, 
Hardening Soil and Hardening Soil 
Small Strain models 

5.1 Introduction to material models 

 
As it was found in the previous section, using 
Mohr-Coulomb material model gives high 
uncertainties. Therefore it is in the interest to 
analyse if other material models would give 
better results. 
 
Three different material models have been 
employed in Plaxis 3D to model the small-
scale tests and analyse the load-displacement 
behaviour using the experimental load-
displacement relationship as a referent. Three 
Material models are: the traditional Mohr-
Coulomb model, Hardening soil model and 
Hardening soil small-strain model. It is con-
sidered drained conditions in all the simula-
tions. The basic principal difference between 
Mohr coulomb and the hardening soil models 
can be appreciated in figure 11.  
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The Mohr-Coulomb model is a linear-elastic, 
perfect plastic model (blue line) and the 
Hardening Soil model describes work curve 
of the soil in a more realistic manner (red 
curve).  
 
In contrast to an elastic perfectly-plastic 
model, the yield surface of a hardening plas-
ticity model is not fixed in principal stress 
space, but it can expand due to plastic strain-
ing. 

 

Figure 11.  Basic difference between Mohr 

Coulomb (Blue line) and Hardening soil 

(Red curve) models 

Mohr-Coulomb model does not take into ac-
count stress dependency or stress path de-
pendency on stiffness. The model considers 
the initial Young’s Modulus constant and in-
dependent of the variation of effective stress-
es. In contrast, the Hardening soil small 
strain model incorporates strain dependence 
on stiffness modulus, simulating the different 
reaction of soils from small strains. In the 
loading and unloading, the strain range in 
which soils can be considered truly elastic 
(i.e. where they recover from applied strain-
ing almost completely) is very small. With 
increasing strain amplitude, soil stiffness de-
cays nonlinearly. 
 
The parameters used for the Mohr Coulomb 
model are specified in table 2, where the 
Young’s Modulus employed is E0. Same pa-
rameters are used in the Hardening soil mod-
el and Hardening soil small strains model 
with additional parameters in table 5.  
 

Test no. 
 

[kN/m
2
] 

 

[kN/m
2
] 

m 

[-] 

 

[kN/m
2
] 

1 57235 171706 0.58 44027 

2 53812 161438 0.58 41394 

3 45840 137521 0.58 35262 

4 48061 144184 0.58 36970 

5 44386 133160 0.58 34143 

6 47840 143520 0.58 36800 

7 46609 139828 0.58 35854 

Table 5:  Specific input mechanical parame-

ters for Hardening soil models in Plaxis 3D 

Where: 
 

 
Secant stiffness in standard 

drained triaxial test 
[kN/m

2
] 

 
Unloading/reloading stiff-

ness 
[kN/m

2
] 

 
Tangent stiffness for prima-

ry oedometer loading 
[kN/m

2
] 

m 
Power for stress level de-

pendency on stiffness 
[-] 

 
The Hardening soil small strain models have 
extra parameters for the small strain stiffness 
cf. Tab. 6. 
 

Test no. kN/m
2
] 0,7 (10

-5
) [-] 

1 82454 28,4 

2 82354 21,7 

3 82104 27.63 

4 82177 27.87 

5 82057 35.95 

6 82170 35.97 

7 82130 35.96 

Table 6: Additional input mechanical parame-

ters for Hardening soil small strains models in 

Plaxis 3D 

Where: 

 

 
Reference shear modulus 

at very small strains 
[kN/m

2
] 

0,7 Shear strain at which [-] 

 

Secant shear modulus 

0722,0 GGs   
[kN/m

2
] 

 

For further details of Hardening soil and Hard-

ening soil small strain model employed, a 

deeper explanation of the theory and the pro-

cedure for obtaining the parameters of the 

model is written in Appendix I. 

5.2 Load-Displacement relationship 

 
In order to validate the results obtained by 
Plaxis 3D, the load-deflection relationships 
are plotted within the experimental results. In 
figure 12 load-displacement curves from 2 
different numerical approaches with different 
material models are compared with experi-
mental. 
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Figure 12.  Comparison load-displacement 

curves for the 2 different material models, 

test 4 

Analysing the graph, the load-displacement 
relationship obtained using the Mohr-
Coulomb model tends to underestimate the 
load, giving a higher lateral displacement; 
hence the Young’s modulus of the soil is 
smaller than the real stiffness of the soil in 
the small-scale test at the laboratory.  
 
However, when the Hardening soil material 
model is employed, the load-deflection rela-
tionship fits better the experimental results, 
especially in the first half of the loading. In 
the second half of the loading, the model 
tends to overestimate the soil stiffness, giving 
less ultimate lateral displacement. This be-
haviour occurs due to the fact that in the 
Hardening soil material model, the values of 
Young’s modulus has a dependence on the 
stress-strain state, cf. Fig. 13. 
 

 

Figure 13.  Young’s modulus dependency on 

stress and strain (Plaxis 3D manual) 

Therefore at the beginning of the loading, 
small strain and stress gives a more accurate 
value of Young’s modulus. However, with 
high stresses and strains the Young’s modu-
lus becomes higher, causing the soil to be 

stiffer and smaller values of the lateral dis-
placement.  
In figure 14, the Young’s Modulus distribu-

tion of unloading and reloading, Eur, is plot-

ted for the last phase of test number 4, when 

the entire load has been applied. 

 

 
Figure 14.  Young’s modulus distribution of 

unloading and loading in test 4 

It is important to highlight the increment of 
the Young’s Modulus when the pile deflec-
tion creates high levels of stress and strain. In 
test number 4 the input parameter of Young’s 
Modulus of unloading and reloading referent, 
Eur

ref
 is calculated as 3 times E50

ref
 giving a 

value around 144 MN/m
2
. 

As it can be appreciated in the figure 14, 
when the total load is applied the values of 
Eur are much higher than the Eur

ref
, around 

315 MN/m
2
 in the areas of maximum stress, 

giving higher values of Young’s Modulus. 
Therefore it is proved that due to the stiffness 
dependency on stress-strain path, the Harden-
ing soil model provides higher values of 
Young’s Modulus for high stress-strain 
paths. Hence, the result is a stiffer soil in the 
model than in the experimental case, reason 
for why the numerical load-displacement 
graph shows for the same force slightly 
smaller displacement than the experimental 
curve. 
 
When the Hardening soil small strains model 
is employed, cf. Fig. 15, the results are 
slightly better compared to the other 2 mod-
els, since the improved stiffness of the soil 
for small strains in the beginning of the load-
ing.  
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Figure 15.  Comparison load-displacement 

curves for the 3 different materials models, 

test 4 

 
However, the model still does not fit properly 
the experimental curve, as the Young’s mod-
ulus has a big dependency on high stress-
strain level. Nevertheless, the results can be 
considered accurate compared to the experi-
mental results, since it is not expected to ob-
tain exactly the same path of load-
displacement due to the uncertainties while 
conducting the laboratory tests and obtaining 
the mechanical soil parameters. 
 
For a better understanding of Hardening 
small strains model, figure 16 shows nonlin-
ear decay of the soil stiffness, with higher 
strain amplitude. Plotting soil stiffness 
against log (strain) yields characteristic “S-
shaped” stiffness reduction curves.  

 

Figure 16.  Characteristic stiffness-strain be-

haviour of soil with typical strain ranges for 

laboratory tests and structures. Plaxis 3D 

manual (2010) 

Observing the characteristic shear strains it 
turns out that at the minimum strain which 
can be reliably measured in classical labora-
tory tests, i.e. triaxial tests (s around 1e

-4
), 

soil stiffness is often decreased to less than 
half its initial value. 

Therefore Hardening soil small strains model 
takes into account very small soil stiffness 
and it shows non-linear dependency on strain 
amplitude.  
 
With this improvement it is expected that an-
alysing the load-displacement graph for very 
small strains, the Hardening small strain 
model gives higher values of stiffness than 
the Hardening material model. In figure 17 
the load-deflection curve is zoomed-in in the 
zone of small displacements, in order to be 
able to see if what it has been explained can 
be observed in the model. 
 

 
Figure 17.  Zoom of the small lateral dis-

placement zone in test number 6 

As it was expected, the Hardening soil small 
strains gives smaller lateral displacement 
compared to the Hardening soil, when the 
soil is in low stress-strain state, cf. Fig. 17 
and 18 respectively. 
The behaviour observed in tests number 4 
and 6 is representative for the other tests, cf. 
Appendix H.  
 

 

Figure 18.  Comparison load-deflection 

curves for the 3 different materials models, 

test 6 

In conclusion, the Mohr-Coulomb model 
seems to be simple model to simulate the soil 
behaviour. It is computationally light and 
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recommended when conducting an initial 
numerical analysis of soil behaviour. It is a 
first order model that does not take into ac-
count stress dependency or stress path de-
pendency on stiffness. The model describes 
the failure state quite well when using effec-
tive values, friction angle and cohesion, but 
is insufficient when the load-displacement is 
compared with the experimental results.  
 
The Hardening soil model becomes more re-
alistic and accurate, since the model de-
scribes a better approach of the work curve. 
However it is important to take into account 
the stiffness dependency on stress-strain 
path, which could result too high values of 
Young’s Modulus. 

 
As an improvement of the Hardening soil 
model, the Hardening soil Small strains mod-
el gives better results in the beginning of the 
loading, due to the better approach in the 
small stress-strain path. However, the models 
do not offer a great difference when com-
pared to the Hardening soil model but still 
are slightly better. Perhaps in another kind of 
simulation, where not so high strain values 
are reached, the Hardening soil small strain 
model could provide a better approach.  

6 Calibration of small-scale tests 

It is in the interest to compare results ob-
tained numerically and experimentally. It 
was chosen to compare FLAC

3D
 models as 

they showed better approach than Plaxis 3D. 
However it was found in section 4 that labor-
atory tests and FLAC

3D
 models do not follow 

the same conditions as the load-displacement 
curves do not fit. In order to be able to com-
pare the results, calibration of the tests has to 
be done, which is based on changing soil pa-
rameters until the load-displacement curves 
match (values of E0 and tr are regulated). 
Increasing the elasticity modulus calls bigger 
values of horizontal load for the same dis-
placement and increasing the friction angle 
decreases the curve asymptote. In figures 19 
and 20 the numerical and experimental load-
displacement curves at different load trans-
ducer levels (265 mm, 370 mm, 480 mm) for 
test 5 are presented before and after the cali-
bration respectively. 
 

 

Figure 19.  Load-displacement curves before 

calibration for test 5 

 

Figure 20.  Load-displacement curves after 

calibration for test 5 

 
The soil parameters after models calibration 
are given in the table 7. 
 
 

Test no. tr [˚] E0 [MPa] 

Test 1 40.00 48.00 

Test 2 40.00 7.00 

Test 3 33.00 62.00 

Test 4 35.00 49.00 

Test 5 38.00 59.00 

Test 6 36.00 60.00 

Test 7 40.00 58.00 

Table 7: Calibrated soil properties for each 

test 

After the models have been calibrated, results 
from different tests are compared in the fol-
lowing sections. 
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6.1 Evaluation of lateral deflection 

 
Deflection of the embedded pile is computed, 
when the displacement of the pile at 370 mm 
above the soil surface is 10 mm and 35 mm. 
The deflections along the pile length are plot-
ted at the different overburden pressure lev-
els. As it is seen in lateral deflection plots, cf. 
Fig. 21, the pile behaves rigidly as the rota-
tion point changes very slightly, even though 
more flexible pile behaviour is observed with 
greater pressure levels. 
 

 

Figure 21.  Lateral pile deflection with depth 

for different P0, when the displacement of the 

pile at 370 mm is 10 mm (black) and 35mm 

(red) 

 
For higher slenderness ratios the pile rotation 
point tends to increase in depth, moreover the 
pile shows more flexible behaviour, cf. Fig. 
22. 
 

 

Figure 22.  Lateral pile deflection with depth 

for different slenderness ratios, when the dis-

placement of the pile at 370 mm above the 

soil surface is 10 mm (black) and 35 mm 

(red) 

6.2 Evaluation of bending moments 

 
Like the deflection, the bending moment dis-
tribution is computed along the pile length. 
Results are plotted in figure 23. It is observed 
that the maximum bending moment position 
is different in all the tests and is dependent 
on the overburden pressure. With higher val-
ues of the pressure, the maximum bending 
moment is located closer to the soil surface. 
 

 

Figure 23.  Bending moment distribution 

with depth for different overburden pres-

sures, when the displacement of the pile at 

370 mm above the soil surface is 10 mm 

(black) and 35 mm (red) 

In figure 24 bending moment distribution of 
different pile slenderness ratios are shown. 
As slenderness ratio becomes higher, larger 
bending moment values are observed and the 
peaks of the curves tend to be deeper in the 
soil. 

 

Figure 24.  Bending moment distribution 

with depth for different slenderness ratios, 

when the displacement of the pile at 370 mm 

above the soil surface is 10 mm (black) and 

35 mm (red) 
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6.3 Evaluation of p-y curves 

 
In figures 25 to 28 the soil resistance and p-y 
curves are plotted for different pressure lev-
els. It can be noted that for the test without 
overburden pressure the maximum soil pres-
sure is located at the depth of approximately 
150 mm. And the initial stiffness at this level 
tends to increase respectively. At next range 
up to the rotation point the soil pressure tends 
to decrease with the depth as well as the ini-
tial subgrade reaction modulus (E

*
py). At the 

last part until the pile foot soil resistance and 
E

*
py tend to increase with the depth. 

 

0

*





y

py
dy

dp
E  (9)  

 

Figure 25.  Soil resistance distribution with 

depth for different overburden pressures, 

when the displacement of the pile at 370 mm 

above the soil surface is 10 mm (black) and 

35mm (red) 

In the tests with overburden pressures the soil 
pressure tends to decrease from the soil sur-
face to the pile rotation point and increase 
from that point up to the pile foot. Respec-
tively does the E

*
py so it shows that the E

*
py 

depends of the stress state. 

 

Figure 26.  p-y curves test 2 (P0=0 kPa) 

 

 

Figure 27.  p-y curves test 3 (P0=50 kPa) 

 

 

Figure 28.  p-y curves test 6 (P0=100 kPa) 

7 Experimental and numerical 
results of small-scale tests 

The purpose of this section is to compare the 
numerical (FLAC

3D
) and experimental results 

and make the conclusions if the small scale 
tests and numerical models work by same 
principles. This is done by comparing the 
depth-deflection, moment distribution and p-
y curves from different tests.  

 
Numerical models are calibrated by means of 
experimental tests, which are described in 
section 6. Therefore, no comparison of load-
deflection plots between experimental and 
numerical methods are carried out. 

7.1 Evaluation of bending moments 
distribution 

 
The bending moments obtained by FLAC

3D
 

are compared to the ones obtained from the 
small-scale tests in the laboratory. In figure 
29 the results without the overburden pres-
sure are presented.  
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In this case the bending moments do not 
match, especially with smaller loading val-
ues. However, the peaks of the curves are ob-
served at same depths for both numerical and 
experimental work results. In this case the 
biggest uncertainty is that as the friction an-
gle, φtr, is highly dependable on the stress 
level and the density index, ID, which were 
calculated from the CPT’s. 
 

 

Figure 29.  Moment distribution along depth 

at different force levels for test 2 (dots repre-

sent the results from the experimental tests) 

In the tests with overburden pressure the 
moment curves fit much better – the shape 
and the peaks of the curves are similar, cf. 
Fig. 30 to 31. The maximum bending mo-
ment position is different in all the tests and 
is dependent on the overburden pressure. 
Both numerical and experimental results 
show that with higher values of the pressure, 
the maximum bending moment is observed 
closer to the soil surface due to the increase 
of the soil resistance. 
 

 

Figure 30.  Moment distribution along depth 

at different force levels for test 4 (dots repre-

sent the results from the experimental tests) 

 

Figure 31.  Moment distribution along depth 

at different force levels for test 5 (dots repre-

sent the results from the experimental tests) 

7.2 Evaluation of deflection distribution 

 
Pile deflections along the depth obtained by 
FLAC

3D
 and the small-scale tests are com-

pared. However, same as in the bending mo-
ment comparison, disagreements are found in 
the test without the overburden pressure, cf. 
Fig. 32. In this instance neither the rotation 
angle of the pile, nor the pile rotation point 
match.  

 

Figure 32.  Deflection distribution along 

depth at maximum force for test 2 

The deflection plots fit better in the tests with 
the overburden pressure as the deflection 
values, pile rotation points and the pile rota-
tion angles are similar, cf. Fig. 33 to 35. 
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Figure 33.  Deflection distribution along 

depth at maximum force for test 3 

 

Figure 34.  Deflection distribution along 

depth at maximum force for test 4 

 

Figure 35.  Deflection distribution along 

depth at maximum force for test 5 

Although some uncertainties are observed in 
the comparison, the results are considered to 
be reasonable; therefore following remarks 
can be made. 

 
The deflection of the pile consists of a rigid 
body motion. The pile rotates around a zero 
deflection point. More flexible behaviour in-

side the rigid limits can be observed with an 
increase of the pressure or the slenderness ra-
tio. 

7.3 Evaluation of p-y curves 

 
The p-y curves obtained by FLAC

3D
 are 

compared to the ones obtained from small-
scale tests in the laboratory. Although the 
shape and the distribution along the depth of 
the curves are correct, there is no reasonable 
relation between the curves in any of the 
tests, cf. Fig. 36 to 39. Soil resistance values 
from the experiments are lower compared to 
the ones obtained by numerical modelling 
and this difference gets higher as the over-
burden pressure level rises. The initial stiff-
nesses of the experimental curves are ob-
served to be either higher than the FLAC

3D
 

curves or lower without any reliance to the 
slenderness ratio or overburden pressure. 
This could be due to the mathematical and 
experimental errors while obtaining the ex-
perimental curves. 

 

Figure 36.  p-y curves for test 2 

 

Figure 37.  p-y curves for test 4 
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Figure 38.  p-y curves for test 5 

 

Figure 39.  p-y curves for test 7 

The comparisons show that in the tests with 
the overburden pressure bending moment 
distributions and depth-displacement plots 
match the FLAC

3D
 results well. As expected 

results show some uncertainties in the test 
without the overburden pressure as in this 
case the friction angle, φtr, is highly depend-
able on the stress level and the density index. 
 
It is approved by both, the numerical and the 
experimental results that with higher values 
of the pressure, the maximum bending mo-
ment is observed closer to the soil surface 
due to the increase of the soil resistance. 
 
The deflection of the pile consists of a rigid 
body motion. Even when the pressure and the 
slenderness ratio increase, the pile rotates 
around a zero deflection point. Therefore, the 
pile behaves more flexibly inside the rigid 
limits. 
 
However the p-y curves show disagreement 
between the numerical and the experimental 
results in all the tests. As the curves obtained 
by the FLAC

3D
 have logical tends, it can be 

stated, that the experimental p-y curves are 
not reasonable. 

8 Full Scale Models 

It has been shown in Section 4 that FLAC
3D

 

fits the experimental results better in compar-
ison with Plaxis 3D. In order to see if these 
programs behave in the same way in the full-
scale, a comparison of FLAC

3D
, Plaxis 3D 

and additionally an ABAQUS model is pre-
sented. 
 
Kellezi and Hansen (2003) have simulated a 
monopile foundation at Horns Rev subjected 
to static lateral load. The analysis was per-
formed by means of the three-dimensional 
numerical program ABAQUS assuming 
drained soil conditions and Mohr Coulomb 
material model. The soil conditions, shown 
in table 8 have been also employed in Plaxis 
3D and FLAC

3D 
in order to ensure the same 

conditions in all numerical models. 
 

Depth 

(m) 

E 

(kN/m
2
) 

’ (kN/m
3
)  (º)  (º) υ 

1 31800 10 42 12 0.3 

3.5 57100 10 43.5 13.5 0.3 

5.5 52534 10 42.5 12.5 0.3 

6.5 44100 10 41.7 11.7 0.3 

7 58200 10 43.2 13.2 0.3 

8.5 72170 10 44.3 14.3 0.3 

10 52950 10 43.1 13.1 0.3 

11.5 35400 10 40.3 10.3 0.3 

12.5 23530 10 37.2 7.2 0.3 

13.5 13600 10 33.8 3.8 0.3 

20 3135 7 21.6 0 0.3 

21 12950 7 31.2 1.2 0.3 

42 36800 10 37.8 7.8 0.3 

Table 8: Geometric and mechanical parame-

ters for the soil after Kellezi and Hansen 

(2003) 

All layers consist of sand except two layers 
of organic sand characterised by a small ef-
fective density and low strength, located at a 
depth from 13.5 to 21 meters. 
 
The outer boundaries of the full-scale models 
in Plaxis 3D and FLAC

3D
 are used as it is in 

ABAQUS model. However, as the width of 
the soil is not given, it is determined to use 
the suggested values by Abbas et al. (2008) 
and in Sørensen et al. (2009). The width of 
the soil mass is set to 40 times the diameter 
of the pile and the bottom boundary is set to 
the last layer depth.  
It is important for the full-scale model, that 
the bottom and vertical boundaries are locat-
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ed in a distance from the foundations large 
enough to avoid interference with the failure 
zone around the foundation. If the boundaries 
interfered with the failure zone it would 
strengthen the soil. This issue has been ex-
amined; in conclusion, the purpose is that the 
chosen geometry does not pose any problems 
in the deformed mesh area.  
 
The material model employed in the three 
numerical models is Mohr-Coulomb iso-
tropic hardening/ softening, since it was em-
ployed by Kellezi and Hansen (2003) in the 
ABAQUS model. It is very important to en-
sure that the initial conditions are the same in 
all the different models in order to be able to 
compare the results. 
 
The geometry and material properties for the 
pile are based on a preliminary pile design, 
which consists of a 4 m diameter and 22 m 
embedded pile length, composed for four dif-
ferent sections, cf. Fig. 40, with the following 
parameters: 

 
Esteel  210E6 [kN/m

3
] 

steel  78.5 [kN/m
3
] 

υ 0.3 [-] 

Table 9: Mechanical parameters for the 

monopile after Kellezi and Hansen (2003) 

 

 

Figure 40.  Full-scale monopile sections and 

distribution of the different layers of soil 

 
The extreme static horizontal load is H = 
2503 kN and the bending moment M = 84983 
kNm are acting at the seabed level. In order 
to simulate the same conditions, in the mod-
els by means Plaxis 3D and FLAC

3D
, a lat-

eral force is applied with an eccentricity of 
34 meters above the soil surface creating a 
moment of the same magnitude. 

 
 To be able to apply the load at that specific 
eccentricity, the pile is extended until 34 me-
ters above the soil surface, giving low values 
of density to the extra section of the pile to 
make the weight of the foundation as low as 
possible, similar to the ABAQUS and Plaxis 
models. The stiffness of the extended pile 
section is used as in section 1.  

 
In Plaxis 3D, the pile is modelled as a closed-
ended hollow steel pile tube. It is considered 
to behave linearly elastic and it is modelled 
as a cylindrical structure. In FLAC

3D
 a solid 

pile is used with equivalent pile stiffness and 
density, which are calculated by the formulas 
described in the section 3.1, cf. Eq. 1 and 2. 
The geometry of each section is: 
 

Sections Depth (m) 
Walls thickness 

(mm) 

Section 1 1.4 50 

Section 2 9.1 54 

Section 3 12.4 50 

Section 4 14.7 40 

Section 5 22 30 

Table 10: Geometrical parameters for the 

monopile in Plaxis 3D model. 

In figure 41 load-displacement relationship is 
presented. The behaviour of FLAC

3D
 and 

Plaxis 3D is found to be similar as it was in 
small-scale models. In the beginning of the 
curves FLAC

3D
 shows stiffer behaviour, 

while Plaxis 3D and ABAQUS have similar 
results. However with larger displacement 
Plaxis 3D shows bigger uncertainties than 
FLAC

3D
 in comparison with ABAQUS. 

 

Figure 41.  Load-displacement curves for 

different numerical models. 
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9 Conclusions 

In this paper numerical analysis of laterally 
loaded small-scale and large-scale monopiles 
in cohesionless soils is presented. Results of 
three dimensional numerical programs 
FLAC

3D
 and Plaxis 3D have been compared 

using experimental results as reference. As 
Plaxis 3D shows high uncertainties in the 
comparison using a Mohr-Coulomb material 
model, a deeper analysis of material models 
has been conducted. Meanwhile FLAC

3D
 is 

calibrated to the small-scale tests carried out 
at Aalborg University Laboratory. Finally 
full-scale models are simulated with the same 
characteristics according to Kellezi and Han-
sen (2003) ABAQUS model. The general 
conclusions are: 
 
 Both, in small-scale and large-scale model 

comparison between FLAC
3D

 and Plaxis 
3D it was found that with Mohr-Coulomb 
material model, Plaxis 3D overestimates 
the displacement and underestimates the 
soil resistance. 

 
 Comparing material models by Plaxis 3D, 

Hardening soil shows more accurate re-
sults than Mohr-Coulomb.  

 
 Hardening soil model slightly overesti-

mates the values of Young’s modulus in 
high stress-strain states, when compared to 
the experimental results, which is found to 
be reasonable, due to uncertainties while 
obtaining the soil parameters. However, 
the curvature of the Hardening soil model 
was expected to be higher. 

 
 Hardening soil small strain model provides 

a better approach in the small stress-strain 
path, giving slightly better results. Howev-
er, the difference between the models was 
found to be very small, therefore, it can be 
concluded that it is not worth using Hard-
ening soil small-stain model for non-
slender statically loaded monopile analy-
sis. 

 
 Comparison of FLAC

3D
 calibrated model 

and experimental tests show similar results 
of bending moment distributions and 
depth-displacement plots. As expected re-
sults show some uncertainties in the test 
without the overburden pressure as in this 
case the friction angle, φtr, is highly de-
pendable on the stress level and the density 
index, ID. 

 

 It is proved that with higher values of the 
pressure, the maximum bending moment is 
observed closer to the soil surface due to 
the increase of the soil resistance. 

 
 The deflection of the pile consists of a rig-

id body motion. Even when the pressure 
and the slenderness ratio increase, the pile 
rotates around a zero deflection point. 
Therefore, the pile behaves more flexibly 
but inside the rigid limits. 
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CHAPTER 5 

CONCLUDING REMARKS 

 

An overview of all the numerical, experimental and dimensionless analysis done 

through the project is outlined. Concluding remarks for the results obtained by the 

numerical and experimental approaches are drawn, as well as some conclusions 

concerning the dimensionless analysis and interpretation of triaxial results. A general 

equation describing the lateral displacement of the pile, based on the experimental tests 

carried out at Aalborg University, is found. Finally, some directions for future research 

are recommended.  

 

 

The actual method for the design of offshore wind turbine foundations is the p-y curve 

method proposed by API (1993) or DNV (1992), although it shows some inaccuracies 

and uncertainties such as the variation of the initial stiffness or the validity of this 

method for cohesionless sand, since it was primarily developed for soft clays. The 

purpose of this thesis has been to evaluate the pile behaviour, including the p-y curve 

method for non-slender monopiles in cohesionless sand. The evaluation has been 

carried out in three steps: 

 Experimental work: Twenty-two small scale tests have been performed at 

Aalborg University since 2009 until the current date. The previous results 

obtained by other students (Sørensen et al. (2009) and Roessen and Thomassen 

(2009)) at Aalborg University Laboratory, and the results obtained by means of 

the 10 small scale tests carried out by Borobia, Mikalauskas and Troya during 

2010 and 2011, form a complete set of tests with the scope of analysing p-y 

curves, bending moment distribution, and load-displacement relationship. 

Additionally, the laboratory tests have been used to calibrate numerical models 

in FLAC
3D

 and also an elaboration of numerical models by PLAXIS
3D

. The tests 

were carried out successfully inside a pressure tank at Aalborg University 

laboratory, minimising the scale effects which are often introduced in small-

scale tests, such as the overestimation of the friction angle for low stress levels. 

The conducted tests were realised on closed-ended aluminium piles, with 

diameters of 40 mm, 60 mm, 80 mm and 100 mm, varying overburden pressure 

from 0 kPa to 100 kPa, different slenderness ratios L/D = 3,4,5,6 and a constant 

wall thickness of 5 mm. The closed-ended piles with diameters of 60 mm and 80 

mm had strain gauges attached on both sides of the pile, in order to give live 
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measurements of the strain when the piles were pulled out by the hydraulic 

piston. The computed p-y curves were acceptable, however some uncertainties 

were also observed in the measurements realised by the strain gauge devices. 

 

 Numerical models: Small scale laterally-loaded monopiles with the same 

characteristics as in the experimental tests have been simulated by means of the 

commercial three dimensional numerical programs FLAC
3D 

and Plaxis 3D, with 

the purpose of analyse the accuracy of these programs and compare the 

numerical results to the experimental results. Three material models have been 

used for the numerical analysis: Mohr-Coulomb with tension cut-off, Hardening 

soil model and Hardening soil small strains model. The comparison between 

FLAC
3D 

and Plaxis 3D results, when the Mohr-Coulomb model is employed, 

shows a clear overestimation of lateral displacement by Plaxis 3D, giving an 

underestimation of soil resistance. The soil in the numerical modelling by 

FLAC
3D

 is stiffer than in Plaxis 3D, thus smaller values of curvature are 

obtained for the pile, giving smaller bending moment distribution compared to 

Plaxis 3D, also meaning smaller values of the soil resistance in the p-y curves. 

 

Due to the simplicity of the Mohr-Coulomb model, a deeper analysis employing 

other two material models becomes interesting. As it was expected, more 

accurate results with Hardening Soil material model are obtained, since it is a 

more complex method which takes into account the stiffness dependency on the 

stress-strain path. The hardening soil small strains model is an improvement of 

the Hardening model due to the fact that it gives a better approach when 

concerning small strains. However, the differences between the results are not 

high, perhaps caused because the pile deflection creates high strains, and the 

region of small strains is very small compared on large strains region.  

 

Some uncertainties were found in the tests without overburden pressure. In this 

case the friction angle, φtr is highly dependable on the stress level and the 

density index ID. It is proved that with higher values of the pressure, the 

maximum bending moment is observed closer to the soil surface due to the 

increase of the soil resistance.  

 

Furthermore, a full-scale model, with the same characteristics as Kellezi and 

Hansen (2003) ABAQUS model is also modelled by FLAC
3D

 and Plaxis 3D in 

order to verify the validity of the numerical modelling when a full-scale model is 

conducted. As it was found out in the small-scale tests, Plaxis 3D overestimates 

the lateral displacement when it is compared to FLAC
3D

 results, according also 

with the full-scale model, where a similar behaviour is obtained. Nevertheless, 

the results obtained by FLAC
3D

 and Plaxis 3D for the full-scale test are 

considered more accurate than for the small-scale tests, but both of them 

overestimated the lateral displacement regarding the ABAQUS model. 
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 Dimensionless analysis: Based on the 22 small-scale tests carried out at 

Aalborg University from 2009 until 2011, a dimensionless analysis was 

conducted. The results are investigated, sorted and compared regarding the 

varying pile diameter, changing overburden pressure and the different 

slenderness ratios used in the tests. Some load-displacement normalised graphs 

in double logarithmic scale have been obtained, and the data points shown in 

these graphs were fitted by the so called Power Law in order to obtain the 

exponent of the lateral load, and thus the soil exponent (k). [G. Gudehus and A. 

Hettler (1988)]. 

Some triaxial tests previously carried out at Aalborg University were also used 

to compute the soil exponent at different confining pressure levels by the  help 

of stress-strain graphs, and then it has been compared to the one obtained in the 

different small-scale tests, obtaining a more reliability in the soil exponent 

obtained for higher pressure levels. Additionally, by means of the Π-factors, and 

based on the Buckingham’s theorem (c.f. Appendix D), a general, implicit, 

dimensionless equation is derived to describe the lateral behaviour of the pile for 

the different pile diameters and embedded lengths when it is submitted to a 

horizontal load. Finally, based on the scaling laws shown in Appendix D, an 

extrapolation of the model parameters to a full-scale model was realised, 

however the results are found to overestimate the reality.  

 

The main findings of the project are summarised in the following, based on the 

experimental and numerical results described in the previous chapters. 

 

 

5.1. Lateral pile deflection 

The piles used at the laboratory and numerical modelling had a slenderness ratio of L/D 

= 3, 4, 5, 6 and behaved rigidly when they were influenced by the lateral load, even 

though when the overburden pressure and the slenderness ratio were increased, the 

bending moment became also larger, and thus, the piles behaved more flexibly, but still 

inside the rigid behaviour. 

Overburden pressure, P0, and slenderness ratio, L/D, affect in the same way to the lateral 

deflection of the pile, y. The larger P0 or L/D become, the lower lateral pile deflection is 

experienced by the pile.  
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5.2. Variation of initial stiffness Epy* with depth 

Based on design regulations API (1993) and DNV (1992), Epy* increases linearly with 

depth and they do not take into account the pile properties when computing the initial 

stiffness. However, this assumption was not verified by numerical and experimental 

simulations, which showed a non-linear distribution of the initial stiffness along the 

embedded length of the pile, and Epy* decreases when the slenderness ratio increases. 

c.f. Chapter 2. 

 

5.3. Sensitivity of Epy* to varying embedded pile length and 

changing overburden pressure. 

The tests carried out at Aalborg University laboratory showed that the initial stiffness 

decreases for high slenderness ratios and increases for higher values of the pressure 

level. The analysis of the numerical models indicated that E*py is dependent on the 

slenderness ratio and overburden pressure, as E*py increases with a growth of these 

parameters. This observation is not in accordance with the recommendations in the 

design regulations, such as API or DNV. 

 

5.4. Variation of soil resistance with overburden pressure and 

slenderness ratio 

It was shown by experimental and numerical models, that when overburden pressure 

was applied, the soil resistance, p, increases, due to a higher compaction of the soil, and 

as a result the pile behaves more flexibly, but always inside the rigid limits. 

On the other hand, when the pressure is constant and the slenderness ratio increases, the 

opposite behaviour occurs to the soil resistance, it decreases.  

 

5.5. Sensitivity of bending moment distribution to varying 

embedded pile length and changing overburden pressure. 

The bending moment, M(x), is very sensitive when the pressure and the slenderness 

ratio are increased, since it rises very quickly. For an overburden pressure of 0 kPa, the 

pile behaves almost like a rigid body. When the pressure is increased to 50 kPa, the 

bending moment experiences a change of 10 times larger than for 0 kPa for the same 

pile displacement. Additionally, when the pressure increases, the maximum bending 

moment occurs closer to the soil surface. This finding indicates that the relative increase 

in soil resistance is more significant near the soil surface than at the pile toe. 
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Even though the pile behaves more flexibly when the bending moment increases, the 

deflection of the pile still consists of a rigid body motion. The pile rotates around a zero 

deflection point. 

 

5.6. Small-scale test effects 

When small-scale tests are performed, usually small-scale effects appear, such as 

uncertainties when calculating the soil parameters for low stress levels. The CPT’s 

carried out in the Geotechnical Laboratory at Aalborg University were realised taking 

into account the pressure levels applied by the help of the pressure tank and the rubber 

membrane (0 kPa, 50 kPa and 100 kPa). Lower values of the friction angle were 

obtained when the overburden pressure increases, yielding to a more realistic value of 

the friction angle when the stress level increases, since in real offshore locations it is 

rarely above 40 degrees. 

 

5.7. Variation of the soil exponent with pile diameter, 

overburden pressure and slenderness ratio. 

The exponent of the lateral load (α) was computed by means of the double logarithmic-

scale graphs obtained as the slope of the straight line which fits the data points in the 

normalised load-lateral deflection graphs. The models are assumed to be rigid-pile 

systems where the soil exponent (k) is directly related to the exponent of the lateral 

load. cf. Chapter 3.  

Very similar values of the soil exponent are found for the different diameters (40 mm, 

60 mm, 80 mm and 100 mm). Therefore, it is assumed that the soil exponent is 

independent of the pile diameter, and it is only a function of the stress level in the soil. 

Averaged values of the soil exponent for the three different pressure levels were 

computed, showing only agreement between the soil exponents obtained by the triaxial 

with a confining pressure of approximately 27 kPa and an overburden pressure of P0 = 

100 kPa in the small-scale tests. This result was expected, since some uncertainties were 

observed when calculating the friction angle for low stress levels. For this reason  it was 

decided to ignore the soil exponent computed for 0 kPa and 50 kPa, and it was only 

taken into account the averaged soil exponent computed for 100 kPa, independent of the 

pile diameter (k = 0.72). 

For this reason the soil exponent can be considered as a soil constant which does not 

depend on the pile properties but it is a function of the stress level of the soil. 
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The influence of the slenderness ratio cannot be analysed properly, due to the small 

variation of L/D. Most of the tests (16/22) were conducted with a slenderness ratio L/D 

= 5, and wrong conclusions might be drawn from this analysis. 

 

5.8 General equation for the lateral movement of the pile and 

extrapolation of the small-scale model parameters. 

Based on the 22 small-scale tests, assuming the validity of the Power Law, and with the 

help of the Π-factors, a general implicit dimensionless equation was derived to describe 

the lateral displacement of the pile as a function of the load applied, unit weight of the 

soil, soil exponent, and pile properties such as pile diameter and embedded length. cf. 

Appendix D. 

Furthermore, some geometrical scaling laws were defined in order to extrapolate the 

small-scale model parameters to a full-scale prototype, by the use of a scaling factor set 

to λ = 0.01826. 

 

5.9 Constitutive materials models. 

Based on the numerical analysis using FLAC
3D 

and Plaxis 3D 2010, the material model 

employed has a high influence in the results. It is also remarkable the importance of the 

employed mechanical soil parameters, since the soil stiffness is very sensitive to their 

variation, and thus, it can affect the results drastically.  

The variation of friction angle and initial Young’s Modulus affects to the curvature and 

slope of the load-deflections curves. Increasing the values of friction angle produces 

less curvature, and increasing the initial Young’s Modulus, the slope of the load-

deflection curve tends also to increase. Furthermore in cohesionless soils, in which very 

small values (near to zero) of cohesion are expected, the strength of the soil depends 

uniquely on friction angle. Therefore it is clear the importance of employing a precise 

friction angle in the numerical approach.  

The constitutive materials models used to approximate the stress-strain behaviour of the 

soil shows the importance of the Young’s Modulus employed in each model. In Mohr-

Coulomb, the initial Young’s Modulus is defined since the beginning and remains 

constant and independent of the stress-strain path during the linear elastic part, which 

has proved to be very inaccurate, giving an overestimation of the lateral displacement 

compared to the experimental curve. Employing more advanced constitutive material 

models, the approach of the stress-strain curve is considerable better. Hardening Soil 

model employs a more accurate work curve to simulate the stress-strain path of the soil. 

c.f. Appendix I. The Young’s Modulus is not constant and there are not perfectly elastic 

and plastic regions in contrast to Mohr-Coulomb model.  
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It is very important to be aware of the Young’s Modulus dependency on the stress-

strains path, meaning that the stiffness of the soil depends on the effective stresses state. 

It is proved that the model fits better the experimental load-displacement curve, but also 

for large stress-strains the values of the Young’s Modulus become too high, giving as a 

result too stiff soil which underestimates the value of lateral displacement compared to 

the experimental curve.  

The Hardening Soil small strains can be considered as an improvement of the 

Hardening soil material model, since it takes into account the stiffness dependency in 

the small strains regions. This dependency means, that for very small strains which 

cannot be measured in laboratory by regular techniques as for instance triaxial test, the 

shear strain values are higher than in normal strains, almost double. Therefore, the 

stiffness of the soil when very small strains occur is much higher, giving a better 

approach of the experimental curve. This issue has been analysed, and slightly higher 

values of lateral displacement for small displacements are obtained using Hardening 

small strains regarding the Hardening soil results. Such a small difference is due to the 

fact that the region of small strains, where it is expected to give a better approach, is 

very small compared to the region where strains are created by the monopile when it is 

submitted to lateral loading. 

 

5.10. Directions for future research 

The review presented through this project about load-deflection, bending moment 

distribution, p-y curves method, dimensionless analysis and numerical modelling is only 

valid for offshore wind turbine foundations in homogeneous, dense, cohesionless sands, 

since Baskarp sand No. 15 was used in the tests. Similar analyses are to be performed in 

layered soils, and in different types of soils. 

Cyclic loading is of high interest to be analysed, due to cyclic loading from wind and 

waves, and only static loading was considered through this project.  It may involve a 

study of the entire wind turbine system.  

The effect of scour is a good topic to be evaluated, and develop strategies to avoid this 

kind of erosion.  Also more analyses are to be performed including a large range of pile 

diameters.  

 

5.10.1. Experimental work 

Large-scale tests are very expensive and time consuming, reason for why 22 small-scale 

tests were carried out at Aalborg University laboratory. Some effects related to scaling 

usually appear in this kind of tests, but the results obtained show that the scaling effects 

were minimised by the help of the pressure tank.  
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At the moment there are no well-documented large-scale tests available, so small-scale 

tests are of high importance in order to predict the soil-pile interaction for slender 

laterally loaded monopiles. 

The piles used in the tests are closed-ended piles, which is in contrast with the reality 

because usually open-ended piles are used as monopile foundations. Some factors such 

as sleeve friction are neglected, since no sand is inside the closed-ended pile. This 

decision was taken in order to prevent possible damages to the strain gauges and the 

cables which are inside the pile.  

The pressure tank used to increase the stress level in the soil was subjected to 1 bar of 

pressure, but future tests must contain higher pressure levels in order to simulate more 

realistic offshore locations with a more realistic and lower friction angle, due to the 

overestimation of the friction angle for low pressure levels.  

 

5.10.2. Numerical work 

Two different numerical programs, FLAC
3D

 and Plaxis
3D

 2010 have been employed in 

the numerical analysis of laterally-loaded monopiles in cohesionless sand. Even if 

FLAC
3D

 is considered as explicit finite element program and Plaxis
3D

 2010 is a finite 

element program, it is assumed that for a large number of elements and in case of static 

analysis, both programs should give similar results. However, the results have a high 

dependency on the material model employed in the simulation. It is recommended for 

an initial numerical analysis of soil behaviour to use the Mohr-Coulomb material model, 

since it is computationally light and requires the basic mechanical soil parameters. It is a 

first order model that does not take into account stress dependency or stress path 

dependency on stiffness. The model describes the failure state quite well when using 

effective values, friction angle and cohesion, but is insufficient when the load-

displacement is compared with the experimental results. 

Therefore, for a deeper analysis and more accuracy of the soil behaviour, it is necessary 

to employ more complex models such as Hardening soil material model. This is a more 

complex model with the advantage that the model describes a better approach of the 

work curve and takes into account the stiffness dependency on stress-strain path. 

However, it is important to be aware that it could provide high values of soil resistance 

for high values of stress-strain, making the soil stiffer than in the real case. 

Hence, the Hardening soil model is more realistic and accurate, but also needs as an 

input more mechanical parameters, which requires deeper geotechnical studies as 

triaxial test analysis.  

Depending on the kind of numerical analysis, Hardening soil small strains material 

model can be a better approach than the Hardening soil model. For instance, when 

analysing monopiles submitted to cyclic loading, small strains are generated in the soil, 
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and the Hardening soil model small strains offers a better approach of the Young’s 

Modulus concerning the stress-strain state.  

Nevertheless, in the analysis of monopiles submitted to static lateral displacements, the 

Hardening soil small strains seems to give slightly better results than the Hardening soil, 

but also requires more mechanical soil parameters such as the small strain shear 

modulus and the secant shear modulus obtained by more complex dynamic techniques. 

 For this reason, it is acceptable to use Mohr-Coulomb cut-off or Hardening Soil Model, 

however it could be interesting to perform a deeper analysis regarding Hardening soil 

small strains, which could firstly include obtaining the p-y curves, bending moment and 

soil resistance distribution along the embedded pile length. Moreover, it could be 

interesting to employ this material model for long-term cyclic loading, where small 

strains are constantly present. 
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APPENDIX A 

TEST SETUP 

 

 

Twenty two small-scale tests with different diameter and overburden pressure are 

performed in the Geotechnical Engineering laboratory at Aalborg University, in order 

to investigate the effect of changing overburden pressure and slenderness ratio in the 

pile behaviour, for non-slender piles (L/D < 10). In this appendix, the test setup is 

described.  

 

 

A.1. Introduction to the laboratory  

Different types of tests are carried out, using various pile diameters (40, 60, 80 and 100 

mm), different overburden pressures (0, 50 and 100 kPa), changing slenderness ratio 

(L/D = 3, 4, 5 and 6), and a constant wall thickness of 5 mm. An overview of all the 

tests performed is shown in table A.1. 

From test 4 to 6 and from test 10 to 18, strain gauges are attached on both sides of the 

pile in two different layouts, with the purpose of measuring the strains at different 

depths of the pile, produced by the horizontal load, cf. Figures A.1 and A.2: 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Strain gauges mounted on the pile for tests 10 to 13, 17 and 18.   

 

75



 

 

 

 

 

 

 

Figure A.2: Strain gauges mounted on the pile for tests 4 to 6 and 14 to 16 

 

 D [mm] L/D P0 [kPa]  S.G. 

Test 1 40 5 0  No 

Test 2 40 5 50  No 

Test 3 40 5 100  No 

Test 4 60 5 0  10 

Test 5 60 5 50  10 

Test 6 60 5 100  10 

Test 7 80 3 0  No 

Test 8 80 3 50  No 

Test 9 80 3 100  No 

Test 10 80 4 100  22 

Test 11 80 5 0  22 

Test 12 80 5 50  22 

Test 13 80 5 100  22 

Test 14 80 5 0  10 

Test 15 80 5 50  10 

Test 16 80 5 100  10 

Test 17 80 6 50  22 

Test 18 80 6 100  22 

Test 19 100 5 0  No 

Test 20 100 5 50  No 

Test 21 100 5 50  No 

Test 22 100 5 100  No 

 

Table A.1:   Overview of the Small-scale tests carried out at Aalborg University 

 

This strain is directly related to the stress (by Hooke’s Law), which is later used to 

compute the bending moment distribution through the whole length of the pile, M(x). 
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The lateral loading is produced by a hydraulic piston positioned 370 mm above the soil 

surface. The load is transferred to the pile by a force transducer connected by a wire to 

the pile, which is pulled in the direction of the hydraulic piston, cf. Figure A.3. 

The lateral displacements of the pile at different levels are measured by three 

displacement transducers positioned above the soil surface. As it can be observed in 

figure A.4, the wire is placed at the same level as force transducer 2. 

 

 

Figure A.3: Hydraulic piston 

 

 

Figure A.4: Location of displacement transducers and wire 

 

In figure A.4 it is shown the initial position of the displacement transducers, however, 

displacement transducer number 1 is moved 6.5 cm upper after test 2, to be able to 

increase the water level a few centimetres more. This decision was taken with the 

purpose of keeping the water level as highest as possible, cf. Figure A.5: 
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Figure A.5: New location of the displacement transducers 

 

A.2. Pressure tank 

The pressure tank is manufactured by Bergla Maskinfabrik in Brønderslev, Denmark, 

and its purpose is to increase the effective stresses of the soil to avoid uncertainties 

when obtaining the soil parameters, due to the strong relationship of the friction angle 

with the stress level and thus also the rest of the parameters. The dimensions of the tank 

are 2.5 m of height and a diameter of 2.1 m. The tank is installed in a load-frame over a 

reinforced foundation with no connection to the surrounding floor. A platform is 

mounted on the top of the tank to make easier the preparation of the tests which will be 

carried out in the tank, cf. Figure A.6.  

To be able to enter the tank, to install the pile and prepare the soil, a trapdoor on the side 

of the tank is placed, cf. Figure A.7. A top hatch is used for the installation of the 

hydraulic piston, cf. Figure A.8, which is used for the installation of the pile, for 

conducting the cone penetration tests and keeping the pile in an upright position while 

the vibration of the soil is being done.  

Measuring devices are led out of openings in the tank side, and connected to a spider 

which is also plugged to the computer, providing the output data which can be shown 

through the computer screen, cf. Figure A.9. 

A 580 mm thick layer of Baskarp Sand No. 15 is placed in the pressure tank above a 

layer of highly permeable gravel. During the tests the sand is fully saturated, keeping 

the water table approximately 20 cm above the soil.  
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Figure A.6: Layout of pressure tank at Geotechnical laboratory at Aalborg University 

 

        

       
  

 

 

 

 

 

 

 

 

 

Load frame 

Pressure tank 

Top hatch 

Platform 

Trap door 

Data adquisition 

Hydraulic 

piston 

Figure A.7: Trapdoor to access 

into the tank 

Figure A.8: Top hatch for the 

installation of the hydraulic piston. 
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Figure A.9: Measuring devices connected to a spider and connected to a computer 

 

A cross section of the final setup with all its elements and the thickness of the layers is 

shown in figure A.10: 

 

Figure A.10: Cross-sectional view of the test setup [Sørensen, 2008] 

 

 

Measuring devices 

Spider 
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A.3. Increasing the effective stresses  

In order to increase the effective vertical stresses corresponding to the applied air 

pressure, a rubber membrane is placed on the soil surface cf. Figure A.11. 

 

 

Figure A.11: Rubber membrane to increase the effective pressure 

 

This method increases the effective vertical stresses without increasing the pore 

pressure in the soil. Along the outer perimeter of the membrane, a vertical rubber band 

is attached to it, with the purpose of a perfectly placement of the membrane, and in 

order to minimize the risk of gaps between the membrane and the tank, cf. Figure A.12. 

With the purpose of reducing the risk of water flowing through the joint between the 

tank wall and the membrane, a rubber skirt is glued to the side of the tank, and placed 

above the rubber band.  

Finally, the rubber band and the mouldings are pressed against the tank wall by a fire 

hose filled with water and air with a pressure of approximately 7 bar, cf. Figure A.13. 

 

 

 

 

 

 

 

 
 

 

Figure A.12: Mouldings attached to the 

membrane. 

 

 

Figure A.13: Fire hose pushing the mouldings 

against the wall. 
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A.4. Constant hydrostatic pore pressure  

 

Since the membrane is not completely tight, air can flow through leaks in the 

membrane, and increase the pore pressure. The dynamic viscosity of water is 

approximately 55 times higher than for air, so water must be poured in the tank, 

reaching a level of approximately 16 cm above the membrane, cf. Figure A.15. 

This level should be kept constant, in order to maintain a hydrostatic pore pressure in 

the soil by the use of an ascension pipe connected to the tank, cf. Figure A.14.  

 

 

      Figure A.14: Ascension Pipe                Figure A.15: Water above the membrane 

The mechanism of controlling the pore pressure is very simple. When the water column 

in the ascension pipe increases, water is lead out of the tank through a drain in the 

bottom of it, and is conducted directly to the sewer.  

Due to the volumetric strains when applying the overburden pressure a maximum water 

volume of around 60 litres/hour was found to pass through gaps between the membrane 

and the pressure tank. 

This water flow can be measured by the help of the ascension pipe. There are two marks 

in the ascension pipe separated 15 cm each other, and its diameter is D = 13 cm. 

The water velocity through the gaps is defined as equation A.1 shows: 

t

HD

t

V
v






4

2

 

Where 

V The volume of the ascension pipe [dm
3
] 

D Diameter of the ascension pipe [dm] 

H Height the ascension pipe [dm] 

t Time [h] 

 

 

(A.1) 
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A.5. Calibration of the pile  

 

The piles used in the tests are made from aluminium, with a wall thickness of 5 mm. 

Strain gauges from HBM of the type K-LY43-3/120 are placed in 11 levels as it is 

shown in figure A.16.  

 

Figure A.16: Strain gauges placed on the pile in 11 depth levels 

 

Before installing the pile inside the pressure tank, a calibration of the strain gauges must 

be done. It implies the calculation of the calibration factors, kg, for each one of the strain 

gauges, in order to relate the strain measurements to the bending moment, cf. Figure 

A.17. 

 

Figure A.17: Load applied at 385 mm from the left support 
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The calibration is realised in 5 steps: 

1. Pile supported by two simple supports in both edges. 

2. Two loads in 12 steps of 10 kg each are applied (1200 N): at 385 mm from 

the left support and at 675 mm from the right one, cf. Figure A.17. 

3. Based on the bending moment distribution for a double supported pile shown 

in figure A.16, bending moment and strain (obtained along the loading and 

unloading time) can be plotted together, in order to get a relation between 

them, cf. Figure A.18. 

4. Linear regression is used to fit a straight line through the points. 

5. The slope of this straight line is defined as the calibration factor of the strain 

gauge, kg. 

 

Figure A.18: Example of calibration factor, kg, obtained from the calibration 

 

The gauges are covered with a protective coating in order to protect them from the 

water, and to be able to measure the strain at that fixed levels. The strain gauges are 

installed in milled grooves as shown in figure A.19. The depth, width and length of the 

mill outs are approximately 2, 6 and 10 mm, for each gauge respectively. This fact is 

discarded in order to carry out the calculations for each pile.  

 

 

M(ε)= k   ε 
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  Figure A.19: Strain gauges installed on the pile and cross section at a measurement 

level 

 

Calibration factors used through tests 10 to 13, 17 and 18 carried out in the laboratory in 

2010 and 2011 can be observed in Table A.2: 

 

Calibration factors [N mm] 

k1 = 1.3624 10
9 

k 12 = 1.4376 10
9
 

k 2 = 1.4489 10
9
 k 13 = 1.4426 10

9
 

k 3 = 1.3946 10
9
 k 14 = 1.4237 10

9
 

k 4 = 1.4265 10
9
 k 15 = 1.4153 10

9
 

k 5 = 1.3206 10
9
 k 16 = 1.3602 10

9
 

k 6 = 1.4425 10
9
 k 17 = 1.3543 10

9
 

k 7 = 1.4396 10
9
 k 18 = 1.3555 10

9
 

k 8 = 1.4236 10
9
 k 19 = 1.3819 10

9
 

k 9 = 1.3162 10
9
 k 20 = 1.3816 10

9
 

k 10 = 1.4389 10
9
 k 21= 1.4484 10

9
 

k 11 = 1.3968 10
9
 k 22 = 1.5756 10

9
 

 

Table A.2: Calibration factors for all the strain gauges used in tests 10 to 13, 17 and 18, 

numbered from 1 to 22. 
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APPENDIX B 

 SOIL PREPARATION 

 
In the following chapter the procedure to prepare the soil is explained. The laboratory 

tests are carried out in a pressure tank partly filled with Baskarp sand No. 15. 

Basically, the monopile is installed in the sand, then the soil is vibrated and afterwards 

6 cone penetration tests (CPT) are carried out. Then the membrane is placed, the 

overburden pressure is added and the pile is loaded with a horizontal load. The purpose 

of the soil preparation is to ensure that the soil is homogenous, saturated and with 

similar basic parameters in each CPT with the aim of having similar conditions in all 

the tests and also to be able to model similar sand characteristics in the numerical 

models by FLAC
3D

 and Plaxis 3D. 
 

 

B.1 Initial soil preparation for the test 

 

The laboratory tests are carried out in a pressure tank. The pressure tank can stand air 

pressures up to two bars corresponding to the pressure conditions at depths down to 20 

m, but in our tests the maximum pressure reached is one bar. In the following, the 

literature Sørensen et al. (2008) and Ibsen et al. (2009) are used. 

The tank is filled with a 58 cm thick layer of Baaskarp sand No. 15. This type of sand is 

used, because it was used in previous tests in the laboratory. 

Before testing the pile, it is important to ensure that the soil is in the right conditions. It 

is necessary to avoid having air captions inside the soil and to carry out the tests in 

saturated conditions and homogeneous compaction. 

CPT’s must be realised, in order to verify that a homogenous compaction of the soil has 

been attained and to determine the soil parameters needed as input in FLAC
3D

 and 

Plaxis 3D. 

 

B.2 Preparation of the soil for the pile installation 

 

In all the tests, before the installation of the pile, an upward gradient of magnitude 0.9 is 

applied in order to minimize the pressure at the bottom of the pile and through the pile 

surface. 

Afterwards, a layer of water above the soil surface of around 5 cm depth is added with 

the purpose of avoiding possible air captions in the sand. A random pre-vibration is 
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conducted with the intention of reorder and compact the sand surrounding the pile.  

This random pre-vibration reduces the effect that appears when the pile is unplugged in 

order to have homogeneous initial conditions before the installation. 

 

B.3 Soil procedure after installation of the pile 

 

Once the pile has been installed successfully, a procedure to ensure the right 

characteristics of the soil before carrying out the tests has to be followed. 

Again, an upwards gradient of magnitude 0.9 is applied during five minutes before the 

vibration. The sand must be vibrated, cf. Figure B.1. This is done with the attempt to 

achieve compact and homogenous sand before any testing is initiated. 

Regarding to the gradient, it is important to appreciate in the piezometer, cf. Figure B.2, 

where the initial watertable level is and then add the corresponding gradient depending 

on the initial watertable level to ensure that the correct gradient magnitude 0.9 is being 

applied. The gradient should not be very high because it may create water channels in 

the sand and if it is very small it will not loosen up the sand properly. Kristensen & 

Pedersen (2007). 

 

 

Figure B.1:  Vibrator machine. 

Watertable 5 cm avobe the surface 

Figure B.2: Photo of the piezometer 

used to measure the gradient magnit

 

5 cm of water are poured into the tank, cf. Figure B.1, in order to avoid mixing the sand 

with air during vibration. The vibration will eliminate the effects of previous 

experiments and remove old air captions in the soil. Additionally, the soil around the 

pile is loosened up during installation, which is also re-compacted during the vibration. 

The pile is retained by the hydraulic piston during vibration to avoid moving the pile 

accidentally, cf. Figure B.4. To achieve a uniform vibration, a plate with holes is placed 

inside the pressure tank. The plate is shown in figure B.3. 
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Figure B.3: Sketch of the plate. 

Sørensen (2008). Numerated holes are 

used to re-compact the soil after 

installation 

 

 

Figure B.4: Plate installed inside the 

tank, pile fixed to the hydraulic 

piston.

 

The procedure followed for the vibration with the plate of the figure B.3 is explained:  

 The sand is loosened up by an upward gradient of 0.9.  

 Vibration in the numbered holes.  

 Vibration in the black holes.  

 Vibration in the white holes. 

 

This procedure is realised twice, therefore the sand is loosened in between the two 

vibration procedures  

It is important the vibration of the numbered holes, because after the installation of the 

pile the soil has failed. 

The vibration following the numerated procedure has the objective of minimizing the 

soil failure. It approximates the coefficient of horizontal earth pressure, K0 for the 

surrounding area of the pile to the coefficient of the rest sand inside the tank.  

When the soil is prepared for testing, CPT’s are carried out in order to verify the 

compaction and homogeneity of the sand and to determine the effective unit weight, 

friction and dilation angle, secant modulus of elasticity and relative density of Baaskarp 

sand No. 15. The procedure of the CPT’s is explained in the next. 

B.4 Cone Penetration Tests at the laboratory 

In order to ensure soil homogeneity and to obtain a similar average of the soil 

parameters, 6 CPT’s are carried out. The Cone penetration tests used at the laboratory 

are different as the ones used in reality in a natural scale cone penetration test. 

In the laboratory, the CPT, cf. Figure B.5, only measures the tip resistance but not the 
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sleeve friction and pore pressure, due to the fact that in cohesionless soils such as sand it 

is possible to omit the sleeve friction. 

 

 

 

Figure B.5: Sketch of the tip cone of the CPT. Sørensen (2008) 

A full bridge strain gauge placed in the cone head measures the tip resistance, cf. Fig. 

B.5. 

The locations for the 6 CPT’s are shown in the figure B.6. 

CPT’s 1 to 4 are performed at 50 cm from the centre of the pile in four different 

positions. 

CPT’s 5 and 6 are done at 20 cm from the centre of the pile, in order to test the soil 

surrounding the pile and perpendicular to the load wire. The reason of this distribution 

is not to alter the soil in the wire direction, because is the most important part as the soil 

resistance is evaluated at this side.  

 

 

 

 

 

 

 

 

 

Figure B.6: A sketch of the CPT’s distributions inside the tank  

 

The CPT-device is mounted in a structure made for the tank’s dimensions and attached 

to the hydraulic piston, to ensure that the CPT-device is moving constantly in a straight 

vertical direction into the soil, and it is not embedded with a rotation and inclination, cf. 

Figures B.7 and B.8. 
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Figure B.7: CPT during the test 

inside the tank 

Figure B.8: CPT cone head 

 

The embedded length in each CPT test depends on the embedded length of the pile and 

it has been carried out as close as the structure can be to the top pile in each test. 

 

B.5 CPT’s calculations and results 

In order to analyse the data obtained in each CPT, the method used is explained and the 

possible uncertainties are discussed. To verify that the CPT have been conducted 

properly and the results are reliable, the values are compared with the results found by 

Sørensen (2008) to ensure that we have similar conditions in order to compare results of 

this experimental test with the results of previous pile tests at Aalborg University 

laboratory. 

The parameters obtained from the CPT’s are: 

Effective unit weight '  [F/L
3
] 

Friction angle   [º] 

Dilatancy angle 
tr  [º] 

Relative density 
DI  [-] 

Initial stiffness  
0E  [F/L

2
] 

 

B.5.1 Baaskarp sand no. 15 

The soil used in the pressure tank is fully saturated Baaskarp Sand No. 15. This sand is 

well known at Aalborg University, since it has been object of several previous tests. The 

sand is graded sand from Sweden. The large grains are rounded while the small grains 
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have sharp edges. The sand consists of quarts, but also contains feldspar and biotite. A 

distribution of the grains found by sieve analysis can be seen in figure B.9:  

 

 

Figure B.9:  Distribution of Baaskarp Sand No.15 Found by sieve analysis Ibsen and 

Bødker (1994) 

 

The material properties for Baaskarp sand No.15 are shown in table B.1: 

 

BAASKARP SAND No. 15 

Specific grain density ds 2,64 

Maximum void ratio emax 0,858 

Minimum void ratio emin 0,549 

d50 50%-quantile [mm] 

U d60/d10 

Table B.1: Material properties for Baskarp Sand No.15, Andersen et al. 

(1998) 

 

B.5.2 Calculation of the parameters  

The properties of Baaskarp sand no. 15 are well known for values of the confining 

pressure σ3 ranging from 5 − 800 kPa. The friction angle     and dilatancy angle 

   were plotted versus the relative density    ,cf. Fig. B.10. Triaxial tests were 

performed with two different density indices and nine different confining pressures. 

The equations are based on the described relationship between relative density and 

friction angle proposed by Schmertmannn (1978), cf. Figure B.10. The parameters are 

derived in accordance to Ibsen (2009). 
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Figure B.1:   Friction angle and dilatancy angle versus relative density. The legend 

displays the nine confining pressures σ3, Ibsen and Bødker (1994) 

Figure B.2: Based on figure B.10, the equations of the friction angle and dilation 

angle as a function of relative index are as equations B.1 and B.2 state: 

    

21.2339.27152.0
2807.0'

3 


 Dtr I   (B.1)  

946.986.14195.0
09764.0'

3 


 Dtr I   (B.2)  

 

Equations B.1 and B.2 are based on curve fitting in figure B.10 where it can be seen, 

that the friction angle and dilation angle versus the relative density are relatively 

uncorrelated for small confining pressures. Moreover, the limit values of     and     

for   
 →0 are infinity. As the CPT-cone only reaches depths of around 45 cm,   

  will 

reach values between 0-2.5 kPa based on the assumption, that the effective unit weight 

of the sand is   ≈10 kN/m
3
 and the coefficient of horizontal earth pressure at rest, K0 is 

0.5.  

In calculating the friction angle and dilatancy angle, the horizontal effective stress, σ’3 is 

set to 5 kPa. This will yield a higher friction angle and dilation angle than the real value. 

As these soil strength parameters are highly stress dependant this constitutes a problem. 

However, the problem is assessed by increasing the air pressure in the pressure tank. 

Therefore, the difference in friction angle and dilation angle is considered admissible. 

The relative density index ID and the effective unit weight    are found using equations 

B.3 to B.6 in an iterative procedure, governed by the expressions: 

 

   
    

         
    (B.3)  

  
       (B.4)  
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      (
  

 

  
  

)

  

 (B.5)  

   
            

         
     (B.6)  

 

Where: 

 

  
  Effective vertical stress [kPa] 

   Specific grain density [-] 

        In situ void ratio 

     Minimum void ratio 

  Depth [m] 

     Maximum void ratio 

   Unit weight of water [kN/  ] 

         Fitting constants,  

                         

   Cone resistance [MPa] 

 

In table B.1 the values of the maximum void ratio, minimum void ratio, and the specific 

grain density obtained in previous triaxial tests have been presented.  

The iteration process is initiated by setting             , then the effective unit weight 

is calculated by equation B.3. Afterwards the effective vertical stress is computed by 

equation B.4. Finally the density index is obtained by equation B.5 and the new 

        is updated in equation B.6. 

The iteration process is continued until the difference between two successive values of 

        is lower than    . 

The effective horizontal stress,   
  can be expressed in terms of the vertical effective 

stress,   
  in order to be able to apply equations B.1 and B.2 for friction angle and 

dilation angle. The dependency of both terms is connected by the coefficient of 

horizontal earth pressure at rest,    as it is expressed in the next equations: 

  
    

     (B.7)  

 

Where   
  can be expressed in terms of unit weight, overburden pressure and depth: 

  
  (       ) (B.8)  

 

And the coefficient of horizontal earth pressure at rest is: 

   (         ) (B.9)  

 

Finally replacing in B.7, it is obtained: 
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  (       )  (         ) (B.10)  

 

Where: 

 

   Overburden pressure [kPa] 

   Earth pressure coefficient at rest [-] 

 

The initial stiffness of the soil E0 is determined, the secant modulus E50 is calculated 

following the equation suggested by Ibsen et al. (2009). Notice that E0 is not calculated 

for small confining pressures (0 kPa) due to the inaccuracy of the method explained 

before. Equations B.11, B.12 are given by Brinkgreve and Swolfs (2007). 

 

    (         
           )  (

            
        

           
    

       

)

    

 (B.11)  

   
     

    
 (B.12)  

Where: 

 

 

 

 

 

 

 

 

B.5.3 Interpretation of the CPT’s 

 

Depth versus Cone resistance is plotted in figure B.11 for the 6 CPT‘s carried out for 

the first test, and the dashed line represents the average of the cone resistance for the 

last 6 tests. 

Figure B.11 shows that each CPT reaches similar results independent of the CPT 

location and similar results obtained in the first test compared to the average of the last 

6 tests. 

 

    Secant modulus of elasticity [kPa] 

   Tangential modulus of elasticity [kPa] 

   Ratio between    and    .The standard value is setting to  

  =0.9 [Brinkgreve and Swolfs (2007)] 

  
    

 

  
    

         

Reference pressure set to  

   Ultimate deviatoric stress [kPa] 

   Asymptotic value of the shear strength [kPa] 
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Figure B.3: For test no. 1, the 6 CPT‘s have been plotted, depth versus cone 

resistance. The discontinuous bold line represents the average of cone resistance 

obtained for the last 6 tests. 

In general, table B.2 shows the average of the soil parameters for every test: 

 

 D [mm] P0 [kPa] tr   [˚] tr  [˚] ID [%] ’  [kN/m
3
] E0 [MPa] 

Test 1 40 0 54.4 20.4 91.0 10.4 [-] 

Test 2 40 50 50.4 19.1 89.0 10.4 38.6 

Test 3 40 100 48.0 18.6 91.0 10.4 57.2 

Test 4 60 0 52.6 18.1 79.0 10.2 [-] 

Test 5 60 50 48.5 16.9 79.0 10.2 25.4 

Test 6 60 100 45.9 16.2 79.0 10.2 41.1 

Test 7 80 0 52.6 18.2 83.0 10.3 [-] 

Test 8 80 50 49.5 17.9 83.0 10.2 27.6 

Test 9 80 100 49.7 17.0 83.0 10.2 44.4 

Test 10 80 100 45.5 15.5 76.6 10.1 36.5 

Test 11 80 0 52.7 17.0 84.6 10.3 [-] 

Test 12 80 50 47.3 15.7 77.9 10.2 25.2 

Test 13 80 100 45.7 16.1 79.7 10.2 38.9 

Test 14 80 0 52.2 17.5 76.0 10.1 [-] 

Test 15 80 50 45.1 15.3 75.0 10.1 37.4 

Test 16 80 100 48.3 16.7 78.0 10.1 24.9 

Test 17 80 50 48.3 16.1 79.9 10.2 26.1 

Test 18 80 100 45.5 15.8 78.6 10.2 38.0 

Test 19 100 0 53.7 19.6 86.0 10.3 [-] 

Test 20 100 50 49.9 17.6 87.2 10.3 30.0 

Test 21 100 50 50.3 19.0 89.0 10.4 38.2 

Test 22 100 100 47.7 18.3 90.0 10.4 55.6 

Table B.2: Average CPT’s result for each test. 

 

It was not possible to carry out CPT’s in tests 8 to 10 (marked in grey in table B.2), 
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since the slenderness ratio considered is too small (L/D = 3) and thus, the embedded 

length is only 240 mm, making it impossible to perform the CPT’s. The structure which 

holds the CPT would hit the pile if the soil was penetrated more than 15 cm. As the 10 

first cm are discarded in the soil parameters calculation only 5 cm would be considered, 

which makes the calculations not reliable.  

For this reason, the soil parameters for tests 8 to 10 are computed using an averaged 

density index, ID between the maximum and the minimum values reached through the 

tests.  Therefore, the rest of the soil parameters can be computed based on this averaged 

density index. It is expected to obtain a higher friction angle for 0 kPa than for 50 kPa 

and 100 kPa. 

Furthermore, it can be concluded that the sand is assessed as homogeneous and 

sufficiently compacted in order for the tests to begin. 
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APPENDIX C 

INTERPRETATION OF TRIAXIAL TEST 

RESULTS 

 

An interpretation of the triaxial test results is done through this chapter, obtaining the 

q-ε1, εv- ε1 and the p'-q plots, in order to compute the called characteristic line, to be 

able to make an approach to the real friction angle, φcr and the dilatancy angle, ψ, for 

Baskpard sand no. 15 used for the small-scale tests at Aalborg University Laboratory. 

Thus, these results will be useful not to reach the plastic behaviour of the soil, and also 

for the extrapolation of the small-scale tests to a full-scale prototype. 

 
 

 

 

C.1 Introduction 

Some triaxial tests were carried out at Aalborg University Laboratory with the purpose 

of analysing how the soil behaves when confining pressure is applied. Four different 

void ratios were employed, corresponding to density indexes of ID = 1, 0.8, 0.51, 0.025 

and many different confining pressures σc were applied for each density index. 

The maximum q defined as equation C.1 shows, will be also determined for each 

confining pressure, in order to ensure that the small-scale tests are carried out without 

reaching a plastic behaviour of the soil staying always inside the elastic limit. 

 

31  q  (C.1)  

 

 

C.2 Triaxial tests description 

The purpose of performing this kind of tests is to determine the mechanical properties 

of the soil assuming that the soil specimen represents the behaviour of the entire soil, 

and the properties obtained through these tests are reliable enough to extrapolate them 

to full-scale. In figure C.1 it can be observed how a triaxial test was being carried out. 
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Figure C.1:  Triaxial test. 

 

Stress is applied in the three directions, σ1, σ2 and σ3, cf. Figure C.2. Drainage conditions 

are regulated and changes in volume and strains of the soil are measured, obtaining a 

complete set of stress-strain data representing the behaviour of the soil. 

 

Figure C.2:  Specimen of soil submitted to stress in the three directions 

 

At first, the volume of the specimen decreases, reaching a maximum compression, but 

after that, the volume increases again because of dilation phenomenon. 

 

C.3 Interpretation of triaxial tests results 

The test results obtained at Aalborg University for Baaskarp Sand no. 15 are analysed 

and discussed in order to achieve a good comprehension of the soil behaviour when it is 

submitted to stress in all the directions. 
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There are some relations which are interesting to analyse, such as q-ε1, εv-ε1 to check 

how the soil deforms when it is submitted to stress and how its volume varies. It is also 

of high interest to investigate the stress space, q-p' in order to obtain a real value of the 

friction angle taking into account the dilation of the soil, ψ. 

The deviator stress, q and volumetric strain, εv, have been plotted together against ε1 in 

the same graph to check the stress state corresponding to the maximum volume 

variation (characteristic state), and also to be able to obtain the maximum dilation 

experienced by the soil corresponding to a stress status of qmax (failure state). For 

instance, all these parameters can be observed in Figure C.3 and C.4 corresponding to ID 

= 1 and σc = 200 and 320 kPa. 

 

 

  

Figure C.3:  q-ε1, εv- ε1, relationships for ID = 1 and σc = 200 kPa 
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Figure C.4:  q-ε1, εv- ε1, relationships for ID = 1 and σc = 320 kPa 

 

As it was expected, the peak of the volumetric strain, εv and the deviator stress, q are 

higher when the confining pressure increases. For the maximum volumetric strain, a 

value of q is obtained by the straight line plotted in the upward direction. In the stress 

space, the q corresponding to the maximum εv can be plotted against p', obtained as 

equation C.2 shows, defining a straight line (characteristic line) which represents the 

transition between an elastic and the plastic behaviour of the soil, cf. Figure C.5. 

3

2
' 31  
p  (C.2)  

 

For instance, the q-p' graphs corresponding to the different density indexes are obtained 

based on triaxial tests realised at different confining pressures. Figure C.5 shows the 

characteristic line obtained for ID = 1. 
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Figure C.5:  Characteristic line for ID = 1, obtained for σc = 40, 80, 160, 200, 320 kPa 

 

The real value of the friction angle, called the peak friction angle, is defined as it is 

shown in equation C.3: 

peakclpeak    (C.3)  

Where: 

peak  Real value of friction angle [
◦
] 

cl  Characteristic friction angle [
◦
] 

  Dilation angle [
◦
] 

 

 

The characteristic friction angle, cl  is calculated based on the slope of the 

characteristic line which defines the border line where the soil experiments a change in 

its behaviour (from elastic to plastic), cf. Equation C.4. 

 




tan61

3
sin


cl  (C.4)  
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The maximum dilation of the soil, ψpeak occurs for the peak value of the deviator stress, 

qmax in the q-ε1 relationship, and qmax for the different confining pressures is represented 

in the stress space, q-p‘ adopting the form of a curve above the characteristic line, cf.  

Figure C.6. 

 

Figure C.6:  Failure state line and characteristic state line 

 

As it can be observed in figure C.6, it was obtained empirically that the qmax data points 

and the q data points corresponding to the maximum volumetric strain, εv for the same 

confining pressure can be connected by a straight line which in all cases has a constant 

slope of 1/3.    

Thus, the maximum dilation of the soil can be computed by means of the variation of 

qmax with the confining pressure (red function shown in Figure C.6). Cf. Equations C.5 

and C.6. 

  




tan61

3
sin


peak  (C.5)  

 

clpeakpeak    (C.6)  
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Four different values of characteristic friction angle, φcl 4 peak dilation angles, ψpeak and 

4 peak friction angles, φpeak are calculated, depending on the considered density index 

derived from each void ratio by equation C.7.  Cf. Figures C.9, C.10 and tables 1 to 4. 

100
minmax

max 





ee

ee
I insitu

D  (C.7)  

 

Where: 

maxe  0.858 

mine  0.549 

 

 

C.4 Triaxial test results 

In the following, the graphs showing the q-ε1, εv-ε1, and q-p’ representing the 

characteristic state and the failure state are presented for the 4 density indexes used for 

the triaxial tests. The confining stresses used to obtain these graphs are the ones shown 

in tables 1 to 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure C.7:  q-ε1 and εv- ε1 for ID = 1 and 0.8 
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Figure C.8:  q-ε1 and εv- ε1 for ID = 0.51 and 0.025 

 

 

 

 

 

 

 

 

 

 

 

Figure C.9:  q-p’ for ID = 1 and 0.8 

 

 

 

 

 

 

 
 

σc [KPa] φcl [˚] φpeak [˚] Ψpeak [˚] 

40 30.5 46.3 15.8 

80 30.5 44.8 14.2 

160 30.5 43.8 13.3 

200 30.5 43 12.5 

320 30.5 42.1 11.6 

 

σc [KPa] φcl [˚] φpeak [˚] Ψpeak [˚] 

10 29.3 49.7 19.2 

40 29.3 44.6 14.1 

100 29.3 42.3 11.8 

160 29.3 41.6 11.1 

640 29.3 39.6 9.1 

 
Table 1:  Friction angles and dilation 

angle for ID = 1 

Table 2:  Friction angles and dilation 

angle for ID = 0.8 
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Figure C.10:  Stress space, q-p’ for ID = 0.51 and 0.025 

 

 

 

 

 

 

 

In conclusion, it can be observed in Figures C.9 and C.10 that the lower density index, 

the more near the failure line is to the characteristic line, meaning that the dilation 

angle, ψ decreases for higher void ratios of the soil, e. 

The characteristic friction angle, φcl is almost constant and independent of the void 

ratio, meaning that the characteristic line, and thus the transition from an elastic 

behaviour of the soil to a plastic behaviour remains constant, cf. Figure C.11. This result 

is expected, since every kind of soil has its own characteristic friction angle, and the 

peak friction angle varies depending on the density index or the void ratio. 

Moreover, in typical offshore locations, the friction angle is much lower (rarely existing 

above 40 degrees) than the ones obtained at Aalborg University Laboratory in the small-

scale tests. This is due to the fact that the pressure in typical offshore locations is higher 

than the maximum applied in the pressure tank (100 kPa). 

 On the other hand, it can be observed in the triaxial tests results that the higher the 

confining pressure is, the more accurate and reliable the obtained friction angle 

  

σc [KPa] φcl [˚] φpeak [˚] Ψpeak [˚] 

40 29.8 41.8 12 

80 29.8 37.8 8 

160 29.8 37.4 7.6 

320 29.8 37.1 7.3 

640 29.8 35.9 6.1 

 

σc [KPa] φcl [˚] φpeak [˚] Ψpeak [˚] 

20 30.4 38 7.6 

160 30.4 33.4 3.05 

640 30.4 32.4 2.05 

800 30.4 32.1 1.73 

990 30.4 31.9 1.54 

 
Table 3:  Friction angles and dilation 

angle for ID = 0.51 

Table 4:  Friction angles and dilation 

angle for ID = 0.025 
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becomes. This behaviour is due to the strong relationship between the friction angle and 

the stress level. 

 

 

Figure C.11:  Constant characteristic friction angle for different void ratios 
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APPENDIX D  

SCALING SMALL-SCALE MODELS OF 

MONOPILES IN SAND 

 

In this chapter, the techniques and theories used for the scaling and analysis of small-

scale models are described in the beginning. Then some assumptions are described 

followed by the scaling criteria which was applied to the models. Finally some 

similarity laws and relations are presented in order to extrapolate small-scale models 

to full-scale models. 
 

 

D.1 Introduction 

Small-Scale modeling is often used to provide accurate and reliable results of 

phenomenos which occur in reality. These small-scale models are conducted in such a 

way that small-scale effects are minimised by the help of the pressure tank. Dimensional 

analysis is necessary when small-scale tests are carried out in the field of Geotechnical 

Engineering, which means that any phenomenon can be described by a dimensionless 

group, known as Π-factors. For this reason, it is essential to use a similitude theory in 

order to be able to provide quantitative results.  

There are many similitude theories; however, all of them provide a set of scaling 

relations to adapt the observed behaviour in a small-scale model to the real-scale 

behaviour. This similarity is achieved when the model and the prototype's 

dimensionless group has the same values in both of them. 

Some scaling laws will be derived from a dimensional analysis, and the empirical data 

can be extrapolated to the full-scale model. 
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D.2 Dimensional analysis and similitude theories 

The dimensional analysis of a physical phenomenon is done by representing a set of 

dimensionally and homogeneous equations among certain significant variables. This 

equations should not depend on the fundamental units of measurement. If a physical 

phenomenom can be correctly described by dimensionally homogeneous equations it 

can be assumed that a complete similarity exists between the phenomenon and the 

small-scale test. This similarity has to be fulfilled geometrically, kinematically and 

dinamically. Prosperine K. Peralta (2010).  

If similarity exists, the mechanical behaviour of the physical phenomenon can be 

reproduced by the small-scale model, which means a reduction in time and money, and 

can be carried out under controlled conditions. Three conditions must be fulfilled to 

achieve similarity: 

 A constitutive law for soil and a load-displacement relationship for monopile 

foundations must be derived and expressed by dimensionless variables. 

 

 Constitutive law and load-displacement relationship must be identical. 

 

 

 Constitutive law and load-displacement relationship must be verified by small-

scale tests at Aalborg University Laboratory. 

Dimensional analysis supports that the significant variables that influence a physical 

phenomenon can be grouped into a set of dimensionless products that form a solution to 

the problem, named Π-products. 

By grouping the specified significant variables into dimensionless products, a reduction 

of these variables is obtained, and a solution to the problem can be obtained as a 

function of the Π-factors. 

Some combinations of the variables can be formed and several dimensionless products 

can be obtained. However, only those which are independent of each other are valid. 

Buckingham's theorem is used to obtain a complete set of dimensionless products, 

meaning that all possible combination of variables forming independent dimensionless 

products have been found. 

Based on Buckingham's theorem, the number of dimensionless products in a complete 

set is equal to the number of the specified variables minus the number of fundamental 

dimensions in the problem, see equation D.1: 

 

)()( POfGf   (D.1)  
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Where: 

G  Number of dimensionless products in a complete set. 

O  Number of significant variables in the problem. 

P  
Fundamental dimensions in the problem. 

 

 

Once a complete set of dimensionless products for an equation defining a physical 

phenomenon is achieved, quantitative information can be derived by means of a model 

test whose setup provides independent dimensionless products with similar values for 

the model than for the prototype.  

It can be said that the small-scale model and the prototype are completely similar, and 

full similitude laws can be enforced on the model. 

According to Langhaard (1951), full similarity between a small-scale model and a 

prototype can be defined as geometric, kinematic or dynamic, however through this 

project only geometric similarity is possible. Besides, being the soil involved also its 

properties are considered equal in laboratory and in reality. 

 

D.3 Constitutive Law 

A constant problem for engineers is the challenge of finding a scaled equivalent of a 

prototype soil material, which in many cases is virtually impossible.  

A constitutive law for cohesionless soil under cylindrical compression and extension 

was presented by Gudehus et Hettler (1983) using a more general formulation presented 

earlier by Hettler (1981). 

Their theory was developed for the case of cohesionless soils under monotonic and 

cyclic loading affirming that similarity can exist when the soil stresses before loading 

(initial stress state) are identical in both, small-scale model and full-scale model. 

Initially, before any load is applied to the soil, the stress path leads to the initial 

principal stresses: σ1,0 and σ2,0 = K0   σ1,0, where K0 denotes the coefficient of earth 

pressure at rest.  

Further, when the soil is loaded a stress path can be defined by Δσ1 and Δσ2 = K   Δ σ1 

where K is another constant different to the coefficient of earth pressure at rest. When a 

stress path is presented, consequently there are associated strains Δε1 and Δε2 which are 

a function of the Π-products as shown in equations D.2 and D.3: 
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Notice that f1 and f2 can be expressed as functions of Π-products, and the first product 

should remain constant under any confining pressure. It is important to remark that if 

the same stress path to a soil medium with different voids ratios, e is applied, the strain 

path varies proportionally. 

If a log-log scale is considered when plotting Δε1 and Δε2 against 
0,1

1




 and 

0,2

2




 

straight lines must be obtained, since a linear relation exists between the initial stress 

path and the strain, always remaining in an elastic behaviour of the soil without 

reaching the plastic behaviour. 

Taking into account the factors which depend on K and K0, and considering the 

hypothesis explained before, the corresponding function related to equations D.2 and 

D.3 can be rewritten as a stress-independent constitutive law with the shape of a 

potential function: 
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D.4 The power law 

Based on the constitutive law derived above, it has been chosen a force-displacement 

relationship named the “power law”. This law was purposed by Hettler (1981) and 

investigated by Gudehus and Hettler (1983), but it has not been until 2010 when Peralta 

used this “power law” succeeding in a research regarding piles subjected to cyclic 

loading.    

The power law states that the lateral displacement of any rigid structure is proportional 

to a power of the normalized horizontal load.  

u

KKf












 


0,2

2

02 ),(



  (D.5)  

112



As it was described when obtaining the constitutive law, before applying any load to the 

system, the soil is considered to be in the state of natural sedimentation, so that at a 

generic depth x: 

 

When a lateral load, H is applied to the monopile, displacements in any directions will 

occur. Taking the horizontal displacement u as main objective through this project, its 

correspondent horizontal strain is expressed by equation D.7: 

 

Where fs is a dimensionless factor dependent on the spatial coordinates, u is the lateral 

displacement of the monopile and L is the embedded pile length. The horizontal stress 

Δσ2 is defined by the power law as shown in equation D.8: 

 

The lateral force acting on the pile, H  discarding shear stresses, is the sum of all 

horizontal stresses acting on the pile, yielding: 

 

Thus, the dimensionless lateral displacement can be expressed as: 
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Naming C the second product and rearranging the equation in dimensionless quantities, 

equation D.10 is simplified to: 

 

C is a dimensionless product that is a function of the spatial coordinates, soil parameters 

(k, K0 and K), pile geometric parameters and depth (x/L).  

The dimensionless load-displacement equation shown above is similar to the assumed 

dimensionless constitutive law of a cohesionless soil, cf. Equation D.5. Hence, one of 

the essential conditions of the similitude theory has been fulfilled.  

Therefore, equation D.11 will be employed as the corresponding function for the load-

displacement behaviour of a monopile foundation. 

 

D.5 Π-products derived for the load-displacement equation 

Considering a simplified system for the 1-g modelling of laterally-loaded piles in 

cohesionless soil, the variables chosen to describe the behaviour of a monopile 

foundation subjected to horizontal static loading are described in figure D.1, where: 

H  Value of the lateral Load [F] 

L Embedded length of the pile [L] 

D Diameter of the pile [L] 

 Ep Ip Pile flexural rigidity [F L
2
] 

γ Unit weight of the soil [KN/L
3
] 

φ Friction angle of the soil [˚] 

      K0 Coefficient of earth pressure at rest 
  

 

Figure D.1:  Sketch of a simplified system and variables in a laterally-loaded pile 

,Prosperine K. Peralta (2010) 
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Thus, the lateral displacement of a pile subjected to lateral static loading can be 

expressed as: 

 

Notice that the vertical force corresponding to the self-weight is not taken into account, 

and the friction angle, φ is a function of the void ratio, e and the mean effective stress 

p’. Furthermore EpIp can be disregarded since a rigid system is considered for all the 

calculations. 

There are two fundamental dimensions in Equation D.12: force, F and length, L and five 

significant variables. Therefore, according to the Buckingham’s theorem stated in 

equation D.1, four homogeneous dimensionless products are needed in a complete set, 

given as Equation D.13 shows: 

 

gs represents a generic function which will be found theoretically and thereafter 

numerically by means of small-scale tests at Aalborg University Laboratory. 

Furthermore, a corresponding equation should be found for each dimensionless variable 

presented in equation D.13, yielding: 

 

This equation, as it was explained before, remains valid in small-scale and in full-scale 

only if there is dimensional similarity between the model and the prototype. For further 

details see Borobia, Mikalauskas and Troya (April, 2011). 

D.6 Similitude Laws 

In the following, the similitude laws for a laterally static loaded pile are derived. Due to 

the non-existence of cyclic loading of the soil and the pile structure, dynamic similarity 

is unnecessary.  

Based on the initial stress state of the soil “at rest”, the dimensionless lateral 

displacement y/L of the model can be extracted to the prototype by means of the 

geometric similarity ratio λ, set to λ = 0.01826. 

The geometrical similarity states that: 
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Where the sub-indexes M and P are referred to the model and prototype respectively. 

Then the similitude laws are defined in Equations D.16 to D.20: 

 

 

 

 

By the use of the scaling laws, the measured results of small-scale model tests carried 

out in the lab can be extrapolated to a full-scale prototype. 

Notice that the lateral force taken into account in the small-scale model is the one which 

corresponds to a maximum rotation of 0.25 degrees allowed by API and DNV 

regulations for the design of offshore wind turbine foundations. 

In table D.1 the Π-products and equivalent scaling for the 1-g model pile described in 

Borobia, Mikalauskas and Troya (April, 2011) for 100 kPa and L/D = 5 are shown: 
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Π-products 
Model Pile 

Parameters 

Prototype 

Parameters 

Test 3   

fd = 0.0033 
D = 0.04 m 

L = 0.2 m 

D = 2.2 m 

L = 10.1 m 

fn = 0.0874 
γ = 10.4 

kN/m
3
 

γ = 10.4 

kN/m
3
 

fH  =  4.604 H = 300 N H = 4.9 MN 

Test 6   

fd = 0.0121 
D = 0.06 m 

L = 0.3 m 

D = 3.29 m 

L = 16.43 m 

fn = 0.0874 
γ = 10.2 

kN/m
3
 

γ = 10.2 

kN/m
3
 

fH = 5.850 H = 1000 N H = 16.4 MN 

Test 13   

fd = 0.016 
D = 0.08 m 

L = 0.4 m 

D = 4.38 m 

L = 21.9 m 

fn = 0.0874 
γ = 10.2 

kN/m
3
 

γ = 10.2 

kN/m
3
 

fH = 2.675 H = 1300 N H = 21.3MN 

Test 22   

fd = 0.0173 
D = 0.1 m 

L = 0.5 m 

D = 5.48 m 

L = 27.4 m 

fn = 0.0874 
γ = 10.4 

kN/m
3
 

γ = 10.4 

kN/m
3
 

fH = 2.861 H = 2800 N H = 45.9MN 

 

Table D.1: Π-products,  Model Pile Parameters and Prototype Parameters 
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APPENDIX E 

 PRESENTATION OF 

EXPERIMENTAL RESULTS   

 

 

In this appendix, an interpretation of the strain gauges measurements is carried out and 

the experimental results are presented through it. Bending moment distribution, load-

deflection plots, and p-y curves are shown for the 10 tests carried out at Aalborg 

University Laboratory. Notice that for tests 1, 8, 9 and 10 bending moment distribution 

and p-y curves are not shown, since no strain gauges were used through these tests. 

 

 

E.1. Interpretation of strain gauge measurements  

 

Once the tests have been conducted, an interpretation of the strain gauges measurements 

must be carried out. The output file of each test is a matrix with around 80.000 rows and 

22 columns which defines the time steps and the strain measurements from the strain 

gauges, respectively. In order to simplify the calculations, 100 time steps are chosen 

equally distributed through the test. 

 

At each time step the average strain,  ε, is computed for each pair of strain gauges: 

 

 

 

ε1, and ε2 are the single strain gauge measurements at the same level of the pile. For the 

calculation of the bending moment distribution, calibration factors are used. Bending 

moment is related to strain by  equation E.2: 
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where: 

 Bending moment [Nmm] 

kg Calibration factor [Nmm] 

ε Strain [-] 

 

Since the pile is loaded without reaching the yielding limit, the relation force-

displacement is supposed to be linear, thereby Hooke’s law is applied, so σxx,i can be 

computed by equation E.3: 

 

 

 

With all this, M(x) can be computed at 11 different levels (where every couple of strain 

gauges is placed) at 100 steps of time. 

 

The curvature of the pile can be calculated by equations E.4 to E.6: 
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ε1 ε1) 

Young’s modulus of elasticity for the pile [F/L
2
] 

Second moment of inertia [L
4
] 

Distance from the centre of the pile to the strain gauges [L] 

Curvature of the pile [L
-1
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Based on the bending moment distribution all over the depth, the p-y curves can be 

obtained by integrating twice and differentiating the distribution of moment twice along 

the length of the pile. The deflection of the pile wall, y(x), and the soil resistance p(x), 

can be obtained by: 

 

 

 

In order to differentiate M(x) twice, and obtain the soil resistance p(x), Piecewise 

Polynomial Curve fitting method will be presented through the next paragraphs. Yang 

& Liang (2006). 

 

E.1.1. Calculation of soil resistance by piecewise polynomial curve 

fitting method  

 

Piecewise polynomial curve fitting method employs five points of the measured 

bending moment in order to determine a polynomial function of third order which fits 

the points, using the least square technique.  

This third degree polynomial function is differentiated twice and evaluated in the 

middle of the interval to obtain the soil resistance, p, at that point. 

This step is repeated as many times as possible, depending on the number of data points 

that are being considered, moving one point lower in the distributed data, or one point 

upper. For a better understanding of the method see figure E.1. 

To evaluate the soil resistance in the points located near to the soil surface, or the 

deepest points, the function which includes them situated in the border is differentiated 

twice, and evaluated at those points. 

Notice that the moment distribution is zero above where the load is applied, and then 

varies linearly from that point until the soil surface. A linear regression is used to fit 

these data points, cf. Figure E.1. 
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Figure E.1: Piecewise Polynomial Curve Fitting Method for L/D = 5 

 

A boundary condition to be able to apply this method must be included: the zero 

moment at the loading point, or a known value of the moment at the soil surface. 

In this project, in all the tests carried out, a pair of strain gauges was placed on the soil 

surface, with the objective of measuring the strain, and thus calculating the bending 

moment at that point. This bending moment is then used as boundary condition for the 

calculations. 

 

E.1.2. Lateral deflection of the pile  

 

The lateral deflection of the pile is differently obtained, depending on which depth is 

being considered. Two different zones can be differentiated, directly related to the 

moment distribution, in order to obtain the lateral deflection of the pile, y, as it can be 

observed in figure E.2: 

1. Between the load applied and the soil surface (blue line). 

2. Under the soil surface (red curve). 

 

The moment distribution can be seen in equation E.10 and graphically shown in figure 

E.2: 

M = 0 

M1(x) = ax
3 
+ bx

2 
+ cx + d 

M2(x) = ax
3 
+ bx

2 
+ cx + d 

M3(x) = ax
3 
+ bx

2 
+ cx + d 

M(x) = ax + b 
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Figure E.2: Moment distribution along the pile 

 

1. Lateral deflection function obtained from the linear distribution moment (blue 

line defined by equation E.11: 

bxaxM )(2  

 

 

 

2. Lateral deflection function obtained from the red distribution of the moment data 

shown in figure E.2. 

M1 = 0 

M2(x) = ax  + b 

 M = 0 
 + b 

M3(x) = ax
5 

+ bx
4
 + cx

3
 + dx
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In summary, the lateral deflection function can be defined in two intervals, but has to be 

a continuous function between the intervals, cf. equation E.15: 

 

 

 

 

 

 

 

 

In equation E.15, the coefficients a, b, c, d, e and f have been obtained, fitting the 

bending moment points in each time step obtained from the strain measurements by the 

strain gauges. 

On the other hand, 4 boundary conditions must be formulated for the calculation of C1, 

C2, C3, and C4, to be able to obtain the lateral deflection: 

 Constant rotation above second displacement transducer: 
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The function y(x) has to be continuous in all its domain, so the rotation, and the 

displacement has to be the same at the soil surface, since it is a common point for 

functions y2(x) and y3(x): 

 Similar rotation in the soil surface: 

 

 

 Similar displacement in the soil surface: 

 

 

  

Equations E.16, to E.19 form an equation system which is solved for each time step, 

obtaining C1, C2, C3 and C4, and therefore the lateral deflection of the pile for any 

depth, x.  

 

E.2. Test 1 (D = 100 mm, P = 50 kPa, L/D = 5, No gauges) 

Load-Displacement Plots 
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E.3. Test 2 (D = 80 mm, P = 0 kPa, L/D = 5) 

Load-Displacement Plots  

 

Deflection along the depth. 

 

Bending Moment Distribution 

 

 

126



P-y Curves for different depths 

Surface        40 mm 

 

 

120 mm      160 mm 

 

 

 

240 mm      320 mm 

 

 

 

 

 

127



All depths 

 

 

E.4. Test 3 (D = 80 mm, P = 50 kPa, L/D = 5) 

Load-Displacement plots 

 

 

 

 

 

 

 

 

Displacement transducer 1 did not work as expected. Thus, the results are plotted, and it 

can be observed that the displacements shown by displacement transducer 1 are wrong 

(very near to 0), cf. Appendix J. 
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Deflection along the depth 

 

Bending moment distribution 

 

P-y Curves for different depths 

Surface      40 mm 
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120 mm      160 mm 

 

 

240mm      320mm 

 

All depths 
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E.5. Test 4  (D= 80 mm, P = 50 kPa, L/D = 6) 

Load-Displacement plots 

 

Deflection along the depth 

 

Bending Moment Distribution 
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P-y curves for different depths 

Surface      40 mm 

 

 

80 mm       120 mm 

 

 

160 mm      200 mm 
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240 mm       320 mm  

 

 

400 mm  

 

 

All depths 
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E.6.Test 5  (D= 80 mm, P = 100 kPa,  L/D = 4) 

Load-Displacement plots 

 

 

 

 

 

 

Deflection along the depth 

 

Deflection along the depth 

 

Bending Moment Distribution 
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P-y Curves for different depths 

Surface      40 mm 

 

80 mm       160 mm 

 

 

240 mm 
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All depths 

 

 

E.7. Test 6  (D= 80 mm, P = 100 kPa,  L/D = 5) 

Load-Displacement Plots 

 

 

 

 

 

Bending Moment Distribution 

 

Bending moment distribution 

 

Deflection along the depth 
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Bending moment distribution 

 

P-ý Curves for different depths 

Surface      40 mm 

 

80 mm       120 mm  
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160 mm      240 mm 

 

 

 

320 mm 

 

All depths 
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E.8. Test 7  (D= 80 mm, P = 100 kPa,  L/D = 6) 

Load-Displacement plots 

 

 

 

 

 

 

Deflection along the depth 

 

Deflection along the depth 

 

Bending Moment Distribution 
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P-y Curves for all depths 

 

Surface      40 mm 

 

80 mm       120 mm 

 

 

160 mm      200 mm 
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240 mm      320 mm 

 

 

400mm 

 

All Depths 
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E.9. Test 8   (D = 80 mm, P =  50 kPa, L/D = 3) 

Load-displacement plots 

 

 

E.10. Test 9   (D = 80 mm, P =  0 kPa, L/D = 3) 

Load-displacement plots 

 

E.11. Test 10   (D = 80 mm, P =  100 kPa, L/D = 3) 

Load-displacement plots 
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APPENDIX F 

GENERATION OF FLAC
3D

 MODELS 

 

The goal of the chapter is to describe the numerical modelling in more detail with a 

short introduction to the FLAC
3D

 4.0, generation of the models and the description of 

employed elements. 
 

 

F.1 General Introduction to FLAC
3D

 

FLAC
3D

 is a numerical modelling program for advanced geotechnical problems where 

continuum analysis is necessary in three dimensions. The program utilizes an explicit 

Finite Difference formulation that can model complex mechanical behaviour not 

suitable for Finite Elements method, such as large displacements and strains, non-linear 

material behaviour and unstable systems like cases of yield or failure over large areas or 

total collapse. [FLAC
3D

 manual] 

The materials are represented by polyhedral elements within a 3D mesh that can be 

adjusted to fit the shape of the modelled object. Each of these elements behave 

according to linear or nonlinear stress/strain law. 

The program carries out Lagrangian calculations process and the “mixed-discretization” 

of each zone, this makes it possible to obtain accurate plastics behaviour in the model. 

The advantages of FLAC
3D

 compared to Finite Elements numerical method are: 

The laws of motion for the continuous medium are transformed into discrete forms of 

Newton‟s law at the nodes, resulting an ordinary differential equations system, which is 

solved numerically using explicit finite difference approach in time.  

The explicit solution used can follow arbitrary nonlinear behaviour, whereas implicit 

solutions can take significantly longer time to solve nonlinear problems. Moreover it is 

possible to work with large number of elements and large deformations. Furthermore it 

is seen that linear simulations run more slowly than nonlinear. Large-strain problems or 

situations physically unstable. [FLAC
3D

 manual] 

Another advantage of FLAC
3D

 is the graphic facilities. The user-friendly interface 

makes it possible to make plots not only at the end of the process, but also while 

processing the model. There is a large range of possibilities like generating two 

dimensional planes of cross sections and obtaining the parameters needed at that part of 

the model. [FLAC
3D

 manual] 
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F.2 Model generation steps 

Generation of the model and carried out calculations are briefly described step by step: 

 Geometry generation and material properties assignment; 

 Boundary conditions and initial stress assignment; 

 Bringing model to equilibrium with assigned sand material properties both to the 

sand and the pile; 

 Real material and boundary condition assignment. Bringing model to 

equilibrium again. 

 Load application 

 During the analysis total force, displacements, bending moments and pressures 

are recorded. 

More detailed descriptions of each step are given in the next sections. 

F.3 Geometry generation 

Geometry is modelled to match the exact conditions as in the laboratory test. As the 

geometry is symmetrical, only a half of test setup is modelled to have smaller number of 

elements. Different parts of the model are generated by using zone elements which have 

specific primitive shapes. At first only a quarter of the test setup is created and the other 

part is generated by reflecting the first one. To have correct model conditions an 

interface is generated at the sand-pile interaction. 

 

 D [mm] L/D P0 [kPa] 

Test 1 100 5 50 

Test 2 80 5 0 

Test 3 80 5 50 

Test 4 80 6 50 

Test 5 80 4 100 

Test 6 80 5 100 

Test 7 80 6 100 

Table F.1: Tests‟ geometries and overburden pressures 

 

F.3.1 Soil generation 

The soil is generated with cylindrical shell elements. At first the part around the pile is 

generated, then the part below it.  The sand near the pile is meshed into smaller 

elements as the stresses have greater variation in this zone.  
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Figure F.1:  Cylindrical shell zone.  

FLAC
3D

 4.0 manual (2009) 

 

Figure F.2:  Generated soil elements 

Soil properties are defined the same as found from the laboratory tests. 

 D [mm] P0 [kPa] tr [˚] tr [˚] ID [%] ‟ [kN/m
3
] E0 [MPa] 

Test 1 100 50 50,26 17.56 87.20 10.33 29.96 

Test 2 80 0 49,77 17.03 84.57 10.27 - 

Test 3 80 50 48,63 15.70 77.91 10.15 25.15 

Test 4 80 50 48,90 16.09 79.85 10.18 26.12 

Test 5 80 100 48,30 15.45 76.60 10.12 36.54 

Test 6 80 100 48,86 16.06 79.66 10.18 38.85 

Test 7 80 100 48,66 15.84 78.59 10.15 38.00 

Table F.2: Soil properties for each test 

The horizontal earth pressure coefficient at rest (K0), the shear modulus (G) and the 

bulk modulus (K) are calculated by equations F.1 to F.3. 

)sin(10 trK   (F.1)  

)21(3 


E
K  (F.2)  




22

E
G  (F.3)  

 

Where: 

tr  is the internal angle of friction [
◦
] 

E is the elasticity modulus [F/L
2
] 

 

F.3.2 Interface generation 

By using the interface command pile-sand interaction is modelled. This allows 

separation and sliding between two materials. Interfaces are represented as a set of 

triangular elements, which are defined by three interface nodes. These elements are 

attached to the face of a zone surface. On the appearance of a contact with another 
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element surface each interface node characterizes sliding properties, normal and shear 

stiffnesses between the materials. Each interface node has a representative area and the 

relationship between interface elements and interface nodes is illustrated in figure F.3. 

As it is shown in figure F.4 the interface is generated in two parts – vertical and 

horizontal. 

 

 

 

Figure F.3:  Distribution of representative areas to 

interface nodes FLAC
3D

 4.0 manual (2009) 

 

Figure F.4:  Generated 

interface elements 

The interface properties have a great influence in the results. They are described by the 

following parameters given in table F.3. The values of the parameters were chosen to 

match the results form laboratory tests. 

Friction angle tr
‟
 [˚] 36.81 – 38.73 

Cohesion cint [kPa] 0.001 

Dilitation tr [˚] 0 

Normal stiffness kn [MPa] 100 x E0 

Shear stiffness kn [MPa] 100 x E0 

Table F.3: Average CPT result for each test. 

Friction angle is calculated by formula F.4: 

  tr

1

tr tan3/2tan'     (F.4)  

Where: 

tr  is the internal angle of friction for the sand[
◦
] 
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F.3.3 Pile generation 

In the laboratory test closed-ended hollow piles are used, however in the FLAC
3D

 

models a solid pile is used cf. Fig. F.7. The pile geometry is generated by using the 

cylinder elements cf. Fig. F.5. 

 

Figure F.5:  Cylinder zone.  FLAC
3D

 4.0 manual (2009) 

The pile is created by 4 different parts: a part which will be embedded in the soil, a part 

between the soil and the first displacement transducer, a part between the first and the 

second transducers, a part between the second and the third transducer. The elements 

are generated above the soil surface. This is done so it would be possible to select only 

the pile nodes, when it is embedded in the soil. This way of selection makes it easier to 

operate only the pile nodes when obtaining the test parameters.  

 

Figure F.6:  Generation of the pile 

As a solid pile is used instead of a hollow, equivalent Young‟s modulus and density 

have to be used cf. Eq. F.5 and F.6. 
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Figure F.7:  Hollow and solid pile cross-sections 
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Where: 

Ehollow 

is the Young‟s modulus of the aluminium (7.2x10
4
 MPa) 

according to Teknisk Ståbi [Jensen and Olsen, 2007] 

Esolid is the Young‟s modulus of the solid pile 

Ihollow
 is the moment of inertia of the hollow pile cross -section 

Isolid is the moment of inertia of the solid pile cross -section 

ρhollow 

is the density of the aluminium (2700 kg/m
3
) according to 

Teknisk Ståbi [Jensen and Olsen, 2007] 

ρsolid is the density of the solid pile 

Ahollow is the area of hollow pile cross-section 

Asolid is the area of solid pile cross-section 

  

The Poisson‟s ratio for aluminium (ν = 0,33) is not scaled due to negligible effect to the results. 

F.4 Pile installation 

The pile is embedded in the soil after generating all the elements. The final model 

geometry is shown in figure F.8. 

 

Figure F.8:  Final model geometry 
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F.5 Material models 

There are thirteen basic models in FLAC
3D

: one null, three elastic and nine plastic 

models. Different material models are used for different parts of the model. 

The Mohr-Coulomb material model with tension cut-off is used to represent relations in 

the sand, cf. Figure F.9. This model describes the stress-strain behaviour of the soil in 

an elastic-plastic state. The elastic part is described by Hooke‟s law whereas in the 

plastic part the strain is described as a sum of elastic and plastic strains, cf. Figure F.10. 

 

Figure F.9:  Graphical representation of the Mohr-Coulomb failure criteria 

 

Figure F.10:  Elastic-plastic stress-strain curve 

Elastic, isotropic model is used for the monopole. In this case stress-strain relationship 

is described by the law of Hooke. 

Null model is used for the rest of the volume – the part above the soil. In this type of 

material stresses are automatically set to zero.  

 

F.6 Boundary and initial conditions 

Boundary conditions are modelled to match the real conditions in the tank. Three 

different conditions are assigned to different parts of the model, cf. Figure F.11. 
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Figure F.11:  Model boundaries 

All nodes in the bottom of the model are fixed in x, y and z directions. Nodes in vertical 

part which simulate the pressure tank walls are fixed in x and y directions. Nodes in the 

symmetry plane are fixed in the y direction. 

Initial conditions are assigned by applying densities, gravity loading and overburden 

pressure for model elements. The horizontal pressure is defined by use of horizontal 

earth pressure coefficient K0=1-sin(φtr). 

At first the soil properties are assigned for the whole volume and the model. This is 

done to avoid stress concentrations around the pile. The friction in the interface between 

the pile and the soil is set to zero and then the whole model is brought to equilibrium. 

After that, correct interface and pile properties are set the damping is used to get the 

equilibrium state in the soil and to initialize stresses in the interface between the soil and 

the monopile. 

It is seen in figure F.12 that in the model without the overburden pressure the horizontal 

stresses vary depending on the depth, however in figure F.13 which represents the 

model with overburden pressure the stress variation is small in comparison with the 

overall pressure. 

 

 

Figure F.12:  Initial horizontal stresses 

without overburden pressure 

 

Figure F.13:  Initial horizontal stresses 

with overburden pressure P0=50 kPa 
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F.7 Damping 

To ensure static or quasi-static solution of the model, motion equations have to be 

damped. There are two different damping mechanisms in FLAC
3D

: local damping by 

default or combined damping. 

Local damping is based on the sign variation of the velocity component. However in 

this case significant uniform motion is apparent as velocity loading is applied and in the 

velocity will not change sign in most of the nodes. Therefore the combined damping is 

used. In this mechanism damping depends of the unbalanced force sign variation and it 

is more appropriate for rigid-body motion systems as well as oscillatory motion 

dissipation.  

 

F.8 Numerical stability 

In order to get valid results from finite difference equations numerical scheme has to be 

stable. The ideal medium is a set of points with applied masses connected by springs 

with stiffness k. The whole systems eigenperiod is related to the critical timestep and 

stable result is obtained if it is greater than the chosen timestep. 

It„s impractical to have global eigenvalue analysis, so variety of local stability analysis 

are performed where unit timestep Δt = 1 is applied for the whole system. 

For infinite series of masses and springs the limit-stability criterion is: 

 2tkm   (F.7)  

 

By selecting unit timestep Δt = 1, system will be stable if the point mass is eaqual or 

greater than spring stiffness. Validity in equation F.7 is extended to tetrahedron in the 

local analysis by interpreting m and k in local nodes as the nodal mass contribution and 

nodal stiffnes contribution respectiveley. The critical timestep is obtained according to 

the system stiffness. 

 

F.9 Deflection application 

As in the laboratory tests the deflection is applied to the pile instead of the force. 

Velocity is applied to the nodes at 370mm height above the soil surface. It is increased 

slowly to avoid any dynamic response in the model which would make the inertia 

effects dominant. A steady-state response is achieved in the system by using more than 

a million time steps.   
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F.10 Bending moment and soil resistance calculation 

Bending moments, M, are calculated at different levels of embedded pile by equation: 

iiizz xAM  ,  (F.8)  

Where: 

σzz,i is the vertical normal stress for element i 

Ai is the the area of the element i 

xi
 is the x coordinate of the center of the element i 

 

The x-component of all stresses in the interface points is equal to soil resistance per unit 

length. Total stress in each of these nodes can be calculated by equation F.9. 

zxzyxyxxxx nnnT  '''   (F.9)  

Where: 

Tx 

is the x-component of the total 

stress 

nx, ny, nz are unit normal components 

 

The soil resistance along the pile, px, is calculated by equation F.10. 

 dCTp xx  (F.10)  

Where: 

C is the interface circumference 
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APPENDIX G 

NUMERICAL MODELLING BY 

PLAXIS3D 

 

In the following appendix, a numerical analysis of the monopile foundation is carried 

out using numerical finite element commercial software Plaxis 3D 2010. The aim is to 

evaluate and compare the results in Plaxis 3D 2010 with the ones obtained by the 

numerical explicit finite element program FLAC
3D

 using the experimental tests 

performed at Aalborg University laboratory as a model. 

Initially, a short description of Plaxis 3D is presented, then the procedure to create the 

model geometry and the calculation phases are explained. 

Load-displacement relationships, p-y curves, zero deflection point and moment 

distribution along the monopile are obtained, depending on the different soil 

characteristics and test setup of each test.  

Plaxis 3D manual (2010) has been followed as bibliography and the results are shown 

in Appendix H 
 

 

 

G.1 Introduction to Plaxis3D 2010 

 

Plaxis3D 2010 is a commercial three dimensional finite element program used to 

perform deformation and stability analysis for various types of geotechnical structures 

such as foundations, anchors and sheet piles. The program uses a convenient graphical 

user interface that enables users to generate a geometry model and a finite element mesh 

quickly and easily. 

Plaxis 3D is an implicit element solver relating forces and displacements by demanding 

equilibrium in every point in the model. From the equations of equilibrium the weak 

formulation of the continuum problem is obtained by means of virtual work. A 

difference between FLAC
3D 

and Plaxis 3D is that the last one is a static solver, meaning 

that inertial forces are omitted.  

The generation of a three-dimensional finite element model is based on the model 

geometry such as volumes, surfaces, lines and points. To create the soil stratigraphy 

different boreholes can be defined. Boreholes are locations in the drawn area at which 

the information on the position of soil layers and the water table is given. The program 

will interpolate the soil layer position between each borehole. 
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The sign convention used by Plaxis 3D, is based on the Cartesian coordinate system cf.  

figure G.1. Compressive stresses and forces, including pore pressures, are taken to be 

negative, whereas tensile stresses and forces are taken to be positive. The international 

system criterion is used for the unit and dimensions. 

 

Figure G.1: Sign convention in Plaxis 3D 

 

In models that involve pore pressure, the input of the water unit weight is required to 

determine the effective stresses and pore pressure. In these models is set by default to 10 

kN/m
3
. 

Plaxis 3D provides four predefined materials models. The Mohr-Coulomb tension cut-

off for drained conditions is used in this numerical approach, as is also used in the 

FLAC
3D 

models. The tension cut-off model considers that the soil can only be submitted 

to compression and it cannot resist tension.  

The creation of the model basically consists of two parts, generation of the model and 

calculation phase. The model geometry is a composition of boreholes and work planes. 

Only one borehole is created in the numerical modelling, as no information on the soil 

stratigraphy at the site is available, i.e. the soil layers are assumed to be horizontal and 

homogenous. The work planes are used in order to define loads and structures at 

different vertical levels. 

Soil and material properties can be added using material library in Plaxis 3D, where 

standards values of the material properties of construction materials can be found. For 

these numerical approaches, the soil material is assignment depending on the soil 

properties obtained from the CPT’s made in the geotechnical laboratory for each test. 

The program offers a three-dimensional mesh generation feature, which can be carried 

out for various mesh densities in different surfaces. A convergence test is made in order 

to establish the optimal density mesh with which the horizontal displacement remains 

constant if the mesh density increases.  

After the mesh creation, the calculation phase is built. The initial situation, plates and 

interfaces, overburden pressure load and the lateral load are defined in different 

calculation phases.  
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G.2 Generation of the model 

 

G.2.1 Model geometry 

The numerical model has to fit properly the laboratory test setup; therefore the outer 

boundary of the geometry model is set to the dimension of the soil volume in the 

pressure tank.  

The boundary conditions are similar to the ones employed in the FLAC
3D 

model, except 

that no boundary restrictions are attached to the plane of symmetry, since there are no 

symmetry simplifications in the Plaxis 3D model. Moreover, in discordance with 

FLAC
3D

, Plaxis 3D does not allow curved outer boundaries, only square boundaries. 

Therefore, a whole model is created in Plaxis 3D, where the diameter of the inner walls 

of the pressure tank corresponds to the side length of the model. Therefore, the side 

length is 2.10 meters and the depth of the soil is set to 0,58 meters. In the calculation of 

the convergence test for the mesh density it has been proved that the soil model is big 

enough to ensure that the boundaries do not affect the displacement and the behaviour 

of the monopile, when is submited to horizontal loads. 

 

 

Figure G.2: Model geometry 

The monopile is generated importing a vertical hollow cylinder from the Plaxis 3D 

volumes and surfaces library. The dimensions of the monopile are set equal to the 

small-scale monopile used in the laboratory tests. 

The surfaces of the monopile can be discomposed into simple surfaces; each surface can 

be modelled as a plate or as a geogrid. In this model the surfaces are modelled as a plate 

and then the material properties of the monopile can be added to the plates. 
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G.2.2 Model boundary fixities 

Along all boundaries Plaxis 3D automatically imposes a set of fixities corresponding to 

a free ground surface and a fully fixed bottom. All vertical boundaries are fixed in the 

direction of their normal. 

The soil volume: 

 Vertical model boundaries with their normal in x-direction are fixed in x-

direction (Ux=0) and free in y and z-direction. 

 Vertical model boundaries with their normal in y-direction are fixed in y-

direction (Uy=0) and free in x and z-direction. 

 The model bottom boundary is fixed in all directions (Ux=Uy=Uz=0) 

 The surface is free in all directions. 

It is important for the full-scale model, that the bottom and vertical boundaries are 

located in a distance from the foundations large enough to avoid interference with the 

failure zone around the foundation. If the boundaries would interfere with the failure 

zone it would strengthen the soil. This issue has been examined for the full-scale test; in 

conclusion, the purpose is that the chosen geometry does not pose any problems in this 

regard. However for the small-scale test it has not been studied because the propose is to 

model as accurate and similar as possible to the laboratory test, and no changes of 

geometry are considered. 

 

G.2.3 Interface 

In order to achieve a good relationship between the pile structure and the soil volume, 

an interface is created. Interfaces are joint elements to be added to the surfaces to allow 

for a proper modelling of soil-structure interaction. Interfaces are used to simulate the 

contact between a plate (from the pile structure surfaces) and the surrounding soil. An 

interface can be created next to the plate or geogrid elements or between two soil 

volumes. In the model the interface is created next to the pile plates. The thickness of 

the interface is zero, which means that the pair of nodes are located with the same 

coordinates, however, a virtual thickness is used automatically by the program to 

calculate the stiffness and cannot be modified. 

The interface consists of 16 nodes quadrilateral shaped elements. Interface elements are 

numerically integrated using 3 Gauss integration points. Cf. Figure G.3, for the position 

of the nodes and integration points.  
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Figure G.3: Local position of nodes (bold dots) and integration points (crosses) in a 

16 nodes interface element. 

The interface elements have pairs of nodes instead of single nodes. The distance 

between the two nodes of a node pair is zero. Each node has three translational degrees 

of freedom (Ux, Uy, Uz.). The aim of these interface nodes is to allow for differential 

displacements between the node pairs slipping and gapping. 

A positive interface (the side of the surface at the positive local z-direction) is created 

between the mantle part of the pile and the surrounding sand. A negative interface (the 

side of the surface at the negative local z-direction) is created for the inner wall of the 

cylinder. A positive interface is created for the toe pile, which is embedded in the sand 

for a better interaction between soil and toe pile due to the expected toe-kick effect 

caused by the rigid motion of the pile. 

The sign of an interface is only used to enable distinguishing interfaces at either side or 

at the surface, but it does not affect its behaviour. 

The interface stiffness and strength can be defined depending on the kind of analysis, 

and it is controlled by the parameter Rinter. 

A rigid interface, perfectly rough soil-structure, is used when the interface should not 

have a reduced strength with respect to the strength in the surrounding soil. It is not 

intended for soil-structure interaction and should not have reduced strength properties. 

The strength of these interfaces should be assigned as rigid (which corresponds to Rinter 

= 1.0). 

The value of Rinter can be entered manually. In general, for real soil-structure interaction 

the interface is weaker and more flexible than the surrounding soil, which means that 

the value of Rinter should be less than 1. As a recommendation it may be assumed that 

Rinter is of the order of 2/3. However, it is possible to find out a suitable value of Rinter by 

the following relationships cf. Equations G.1 to G.3. Plaxis 3D manual (2010). 

 (G.1) 

 (G.2) 

 (G.3) 
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Where: 

i Friction angle of the interface [º]  

Set to 29º by recommendation 

s Friction angle of the soil  [º] 

 Young’s Modulus interface [kN/m
2
] 

 Young’s Modulus soil [kN/m
2
] 

 Shear Modulus interface [kN/m
2
] 

 Shear Modulus soil [kN/m
2
] 

 

When the interface is elastic, then both slipping (relative movement parallel to the 

interface) and gapping or overlapping (i.e. relative displacements perpendicular to the 

interface) could be expected to occur. 

 

G.2.4 Material assignment  

G.2.4.1. Mohr-Coulomb model  

As previously mentioned, it has been chosen Mohr-Coulomb tension cut-off, cf. Figure 

G.4. The model is chosen in drained conditions in which stiffness and strength are 

defined in terms of effective properties. 

 

Figure G.4: Mohr-Coulomb tension cut off model. 

A perfectly plastic model is a constitutive model with a fixed yield surface, i.e. a yield 

surface that is fully defined by model parameters and not affected by plastic straining. 

The basic principle of elastoplasticity is that strains and strain rates are decomposed into 

an elastic part,  e, and a plastic part  .
p
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Figure G.5: Basic idea of elastic perfectly plastic model by Plaxis3D manual (2010) 

In the Mohr-Coulomb model five parameters are required. These five parameters are 

basic geotechnical parameters that can be obtained by CPT’s. The five parameters can 

be found in table G.1. 

Geotechnical Parameters Mohr Coulom  

E Young’s Modulus [kN/m
2
] 

υ Poisson ratio [-] 

 Friction angle [º] 

 Dilatancy angle [º] 

c Cohesion [kN/m
2
] 

 

Table G.1: Geotechnical parameters used in the Mohr-Coulomb model. 

For further information of the Mohr-Coulomb model see Appendix I, Materials models. 

 

In the models, a unique borehole is placed in the drawn area of the model. The assigned 

depth is the pressure tank depth, 0.58 m and the head of the water table is set to zero due 

to the aim is to increase the effective stresses of the soil and not the pore pressure.  

The material properties of the Baaskarp sand and the CPT’s results for each test are 

created in the Plaxis’s library and assigned to the borehole. The soil properties and 

parameters are considered homogenous along the depth. See table G.2 and G.3: 

Parameter Name Sand Interface Unit 

General    - 

Material Model Model Mohr-Coulomb Mohr-Coulomb - 

Type of material behaviour Type Drained A Drained A - 

Parameters    - 

Poisson’s ratio υ 0,23 0,23 - 

Cohesion  Cu,ref 0,001 0,001 kN/m
2 

Increase in stiffness E’inc 0 0 kN/m
2
/m 

Increase in cohesion Su,inc 0 0 kN/m
2
/m 

Rinter  Table H.3 1 - 

Table G.2: Constants input parameters for the sand and interface according 

to Plaxis3D input 
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Test no.  P0 [kN/m
2
] tr[˚] tr[˚] 

’
 [kN/m

3
] E0 [MPa] 

Rinter for 

interface 
K0,X , K0,y 

1 50 49.92 17.56 10.33 29.96 0.4664 0.2349 

2 0 52.70 17.03 10.27 9 0.4223 0.2045 

3 50 47.26 15.70 10.15 25.15 0,5122 0.2656 

4 50 48.26 16.09 10.18 26.12 0.4946 0.2538 

5 100 45.46 15.45 10.12 36.54 0.5455 0.2872 

6 100 45.67 16.06 10.18 38.85 0,5415 0,2847 

7 100 45.54 15.84 10.15 38.00 0.5440 0.2863 

Table G.3: Sand input parameters in Plaxis3D Foundation for each test 

obtained from experimental CPT’s at the laboratory. 

 

The material model is computationally light and recommended when obtaining an initial 

numerical analysis of soil behaviour. It is a first order model that does not take into 

account stress dependency or stress path dependency on stiffness. The model describes 

the failure state quite well when using effective values, friction angle and cohesion. 

Moreover the model limitations are more apparent when undrained behaviour is 

considered, but in this case, only drained conditions are considered.  

 

 

G.2.4.2. Hardening soil model  

As an alternative model to Mohr-Coulomb material model, the Hardening Soil model 

has been considered. The small-scale tests have been simulated using the Hardening soil 

model due to the fact that a better approach of the load-displacement relationship is 

expected using this model. 

The Hardening Soil model is, like the Mohr-Coulomb model, a failure criterion, which 

can be used to model the soil. The principal difference between both material models 

can bee appreciated in figure G.6. 

 

Figure G.6: Basic difference between Mohr Coulomb (Blue line) and Hardening soil 

(Red curve) models 
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The Mohr-Coulomb model is a linear-elastic, perfect plastic model (blue line) and the 

Hardening Soil model describes work curve of the soil in a more realistic manner (red 

curve). In contrast to an elastic perfectly-plastic model, the yield surface of a hardening 

plasticity model is not fixed in principal stress space, but it can expand due to plastic 

straining. 

For further details of Hardening soil model used, a deeper explanation of the theory and 

the procedure for obtaining the parameters of the model is written in Appendix I, 

Material models. 

The basic parameters necessary to describe the Hardening soil model are: 

Geotechnical Parameters Hardening soil model 

 Secant stiffness in standard drained triaxial 

test 

[kN/m
2
] 

 Unloading/reloading stiffness [kN/m
2
] 

 Tangent stiffness for primary oedometer 

loading 

[kN/m
2
] 

m Power for stress level dependency of stiffness [-] 

υ Poisson ratio [-] 

 Friction angle [º] 

 Dilatancy angle [º] 

c Cohesion [kN/m
2
] 

 

Table G.4: Input parameters for Hardening soil model. 

 

The values of the input parameters for every test, following the procedure explained in 

Appendix I, are shown in table G.5. The friction angle and dilatancy angle are the 

values obtained from the CPT’s in table G.3. 

 

Test 

no. 


’
3  

[kN/m
2
] 

  

[kN/m
2
] 

 

[kN/m
2
] 

m 

[-] 
 

[kN/m
2
] 

1 11.74 57235 171706 0.58 44027 

2 5 53812 161438 0.58 41394 

3 13.20 45840 137521 0.58 35262 

4 12.70 48061 144184 0.58 36970 

5 28.70 44386 133160 0.58 34143 

6 28.50 47840 143520 0.58 36800 

7 28.60 46609 139828 0.58 35854 

 

Table G.5: Input parameters for Hardening soil model. 
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G.2.4.1. Hardening soil small strain model  

This is an elastoplastic type of hyperbolic model, similar to the Hardening Soil model. 

Moreover, this model incorporates strain dependent stiffness modulus, simulating the 

different reaction of soil in small strain state. 

The original Hardening Soil model assumes elastic material behaviour during unloading 

and reloading. However, the strain range in which soils can be considered truly elastic, 

i.e. where they recover from applied straining almost completely, is very small. With 

increasing strain amplitude, soil stiffness decays nonlinearly.  

For further details of Hardening soil small strain model, a deeper explanation of the 

theory and the procedure for the obtained parameters of the model can be found in 

Appendix I. 

The basic necessary parameters to describe the Hardening soil small strain model are 

the ones from Table G.4 within the additional parameters shown in Table G.6: 

  Geotechnical Parameters Hardening soil small strains model 

 Reference shear modulus at very small strains [kN/m
2
] 

 Secant shear modulus [kN/m
2
] 

υur poission ratio for unloading and reloading [-] 

0,7 Shear strain at which  [-] 

 

Table G.6: Extra input parameters for Hardening soil small strains model. 

The calculated values (Cf. Appendix I for the calculation procedure) for the additional 

parameters for each test are: 

Test 

no. 
 

[kN/m
2
] 

 

[kN/m
2
] 

0,7 (10
-5

) 

[-] 

1 82454 17185 28,4 

2 82354 10462 21,7 

3 82104 18316 27.63 

4 82177 17926 27.87 

5 82057 28722 35.95 

6 82170 28645 35.97 

7 82130 28690 35.96 

 

Table G.7: Extra input parameters for Hardening soil small strains model. 
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G.2.5 Mesh generation 

The model is meshed using the automatic mesh generation tool in Plaxis 3D 2010. The 

mesh is generated using different types of elements depending on the body being 

meshed. In Plaxis 3D the soil is modelled by means of 10-node tetrahedral elements. 

This type of element provides a second-order interpolation of displacements, cf. Figure 

G.7. Plaxis 3D uses three local coordinates (ξ, η, ζ), the shape functions have the 

property that the function value is equal to unity at node i, and zero at the other nodes. 

This type of element has three translational degrees of freedom in each node and is 

generated from 6 nodes triangular wedge elements, suitable for a two-dimensional 

mesh. 

 

Figure G.7: Local numbering and positioning of nodes (•) and integration points (x) 

of a 10-node wedge element in Plaxis 3D. Plaxis 3D manual (2010) 

The monopile is modelled as a hollow pile and meshed using 6 node triangle plate 

elements, see figure G.8. This type of element has six degrees of freedom in each node, 

i.e. three translational (Ux, Uy, Uz) and three rotational degrees of freedom (x , y , z ). 

These elements are directly integrated over their cross section and numerically 

integrated using 3 point Gaussian integration. The position of the nodes (bold dots) and 

integration points (crosses) can be observed in figure G.8. 

 

Figure G.8: Local numbering and positioning of nodes and integration points of a 6 

nodes plate element used to model the monopile in Plaxis 3D. [Plaxis 3D manual, 

2010] 
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The top plate, where the lateral load is applied, has been created stiffer than the top plate 

of the monopile in the laboratory, in order to have punctual load distributed evenly in 

pile circumference and to avoid having any deformation in the cross section. 

 

G.2.6 Convergence test 

To evaluate the optimal number of necessary elements in the finite element mesh and 

the behaviour of the pile depending on the mesh density, a convergence test is carried 

out for test number 7, with 100 kPa of overburden pressure. The lateral load has been 

applied in the centre point of the cross section of the top pile and the maximum total 

horizontal displacement is evaluated for the same load step within different mesh 

densities. The result, cf. Figure G.9, shows that the lateral displacement becomes 

constant (around 31.5 mm) with a number of elements of around 25000. The mesh 

density around the pile is higher than in the soil in order to obtain more data in the plate 

and interface nodes to compile the p-y curves and moment distribution. 

 

Figure G.9: Convergence test for two different load steps and maximum horizontal 

deflection of the top pile.  

Therefore, according with the convergence test, the tests are modelled with an average 

of 25000 elements, which is considered accurate enough and the calculations stages are 

not very complex. 

The next step is the calculation phase, which is explained in the following. 
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G.2.7 Calculation phase 

At this phase the construction of the model and loads applied are staged. The first phase 

is the initial phase, where the initial stresses in the soil are computed using the -

procedure. In this procedure the initial vertical stresses are computed using submerged 

soil unit weight. Then, related horizontal stresses are computed using the coefficient of 

lateral earth pressure at rest, 
 

assuming normally consolidated soil. 

Following the initial phase, a second phase, called the installation phase, is initiated. In 

the installation phase the foundation is "constructed", the plate and interface surfaces 

are activated. The 3
rd

 phase involves the creation of the distributed load on the soil 

surface, which corresponds to the overburden pressure simulation. Afterwards, the 

lateral load is applied in the centre of the top plate of the pile. The load is applied using 

different intervals of load, and each interval corresponds to a different phase. The 

calculation phase is staged in this order, because the displacements are reset to zero 

after the initial stresses have been calculated and the foundation has been installed. This 

is done to calculate the displacements solely created by the applied loads. The staging is 

summarised below: 

1. Calculation of initial stresses using the  procedure. 

2. The interface and the plates are activated and the monopile is installed. 

3. Surface load is applied; the model is brought to equilibrium setting the displacements 

to zero. 

4. The horizontal load is applied in different phases corresponding to increments of 

load. 

 

G.3 Generation of the full scale model 

A full-scale model is generated in Plaxis 3D 2010. The same model is modelled in 

FLAC
3D

 and ABAQUS. The aim is to compare the results of load-displacement 

relationship with the ones obtained in FLAC
3D

 and ABAQUS in order to analyze the 

reliability of the numerical models using different finite element programs.  

 

The input data is obtained from L. Kellezi and P. B. Hansen (2003).  

 

The material properties for the soil are assigned based on the offshore geotechnical 

investigation carried out at Horns Rev. The geometry and material properties for the pile 

are based on a preliminary pile design which consists of a 4 m diameter and 22 m pile 

length. 

 

The extreme static horizontal load is H = 2503 kN and the bending moment M = 84983 

kNm, acting at the seabed level. In order to simulate the same conditions, a lateral force 

is applied at an eccentricity of 34 meters above the soil surface creating a moment of the 
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same magnitude. To be able to apply the load at that specific eccentricity, the pile is 

extended until 34 meters above the soil surface, giving low values of density to the extra 

section of the pile to make the weight of the foundation as minimum as possible. The 

stiffness of the extended pile section is used as in section 1, cf. Table G.8. 

The pile is modelled as a hollow steel pile tube close ended. It is considered to behave 

linearly elastic and modelled as a cylindrical structure. Different values of wall 

thickness are set to the different sections, cf. Table G.8. 

 Depth 

(m) 

Esteel 

(kN/m
2
) 

steel 
(kN/m

3
) 

υ Walls thickness 

(mm) 

Section 1 1.4 210E6 78.5 0.3 50 

Section 2 9.1 210E6 78.5 0.3 54 

Section 3 12.4 210E6 78.5 0.3 50 

Section 4 14.7 210E6 78.5 0.3 40 

Section 5 22 210E6 78.5 0.3 30 

 

Table G.8: Mechanical input data for the pile geometry 

In figure G.10 the 5 different sections can be observed for a better understanding of the 

pile geometry. 

 

Figure G.10: Sketch of pile sections and the different soil layers creating in the model. 

 

The soil profile is modelled with 13 different layers with derived designed parameters 

taken as averaged values as shown in table G.9 as it has been modelled in the ABAQUS 

model. From the soil profile it can be noted that at depth 13.5 m to 20 m a layer of 
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organic sand is located having rather low value of the friction angle. Different interfaces 

are created for each soil layer in order to make the soil-structure interaction the most 

possibly accurate. Values of Rinter are calculated for each interface following the criteria 

explained in equations G.1 to G.3. 

 

Soil layer Name Depth 

(m) 

E 

(kN/m
2
) 

/
’
 

(kN/m
3
) 

 (º)  (º) Rinter υ 

Layer 1 Sand 1 31800 20/10 42 12 0.6156 0.3 

Layer 2 Sand 3.5 57100 20/10 43.5 13.5 0.584 0.3 

Layer 3 Sand 5.5 52534 20/10 42.5 12.5 0.604 0.3 

Layer 4 Sand 6.5 44100 20/10 41.7 11.7 0.622 0.3 

Layer 5 Sand 7 58200 20/10 43.2 13.2 0.590 0.3 

Layer 6 Sand 8.5 72170 20/10 44.3 14.3 0.568 0.3 

Layer 7 Sand 10 52950 20/10 43.1 13.1 0.592 0.3 

Layer 8 Sand 11.5 35400 20/10 40.3 10.3 0.653 0.3 

Layer 9 Sand 12.5 23530 20/10 37.2 7.2 0.730 0.3 

Layer 10 Sand 13.5 13600 20/10 33.8 3.8 0.828 0.3 

Layer 11 Org.sand 20 3135 17/7 21.6 0 1 0.3 

Layer 12 Org.sand 21 12950 17/7 31.2 1.2 0.915 0.3 

Layer 13 Sand 41.8 36800 20/10 37.8 7.8 0.714 0.3 

 

Table G.9: Geometric and mechanical input data for the pile soil 

 

Figure G.11 shows the different layers of soil and interface around the pile for each 

layer of soil. 

 
 

 

Figure G.11: Left: Soil geometry. Right: Different interface for each soil layer.  

The mesh and number of elements has been created with the same mesh factors than the 

ones using in the convergence test. Calculation procedure has the same procedure as  

followed in the simulation of the small-scale test.  
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G.4 Post processing of results 

Once Plaxis 3D has finished the calculation stages, an output window with all the 

results is displayed. In the next, the basic analysis of the output is shown as it has been 

used for the calculation of p-y curves and bending moment.  

In figure G.12 the deformed mesh can be observed for the ultimate applied load. Plaxis 

3D allows the user to select different parts of the model, being possible to select only 

the plates corresponding to the pile and the interface attached to the embedded part of 

the monopile. An output of total horizontal displacement, forces acting in the monopile 

plates and stresses in the interface are obtained for every load step in each node of each 

element. 

 

Figure G.12: Deformed mesh, test number 7 L/D = 6 P0 = 100kPa. Maximum applied 

lateral load 10 kN corresponding to a total displacement of 32 mm. 

In phase number 2, the interface and plates are installed, the model is brought to 

equilibrium and the displacements are set to zero. The difference in the soil stress 

distribution between phase 2 and phase 3 (when the overburden pressure is applied) can 

be observed in figures G.13 and G.14 which correspond to test number 7, L/D = 6 and 

P0 = 100 kPa. 

 

Figure G.13: Steady state of the pore pressure before the overburden pressure is 

applied. 
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Figure G.14: Cartesian total stress distribution in z-direction when an overburden 

pressure of 100kPa is applied. 

The program allows obtaining the stress and forces distribution along the pile in the 3 

Cartesian axes and it can show it graphically for a better understanding. In figure G.15 

on the left, can be observed the stress distribution when the pile is bended for the 

ultimate load step 10 kN. It can be appreciated the tension and compression along the 

monopile and the stress distribution in the toe-pile due to the shear forces.  

   

 

Figure G.15: Left: Axial stress distribution along the pile for 10 kN. Right: Lateral 

displacement of the pile for 10 kN. 
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In figure G.15 on the right, for the same stress state the lateral displacement along the 

pile is plotted. It is interesting to appreciate the zero deflection point near the bottom of 

the pile, as it is expected to have a rigid-body motion for a non-slender pile. 

 

G.5 Bending moment and soil resistance calculation 

Soil resistance for a pile subjected to lateral load is computed directly by integrating the 

stresses in the soil elements around the circumference of the pile. Chia-Chenmg Fan, 

James H. Long (2005). 

In Plaxis 3D, the Gauss points closest to the pile have the same coordinates as the 

interface nodes, therefore the interface nodes are taken as the soil stresses between the 

pile and soil.  

The soil resistance per unit length along the pile is the x-component of the total stress 

acting on the interface circumference. The x-component stress at a point in an interface 

element can be represented by traction vector, Tx, as follows in equation G.4: 

 (G.4) 

 

Where nx and ny are components of unit normal along the x-, y-directions, respectively, 

and are expressed as: 

 
(G.5) 

 
(G.6) 

 

Notice that nz is zero because the unit normal is on a horizontal plane.  

The soil resistance is computed as: 

 (G.6) 

 

To calculate the total soil resistance, px, per unit length along the pile, the soil resistance 

is integrated over the circumference: 

 (G.7) 

 

Where L corresponds to the perimeter of the pile.  
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The p-y relationship at a given depth is obtained by relating the soil resistances, p, to the 

corresponding lateral deflections, y, of the pile at that depth.  

 

The bending moment in the pile is computed through the forces at the plate nodes which 

conform the pile: 

 

 (G.8) 

 

The total Bending moment for a level z becomes: 

 (H.9) 

 

Where Nzi is the vertical force at the node.  

 

A value of the p-y curve per unit length, bending moment distribution, load-deflection 

relationship and zero deflection point of the monopile is obtained. Results are shown in 

Appendix H and in Chapter 4 and the analysis and conclusion of the numerical model 

are discussed.  
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APPENDIX H 

NUMERICAL RESULTS 

 

In the following appendix all the numerical results obtained by means FLAC
3D

 and 

Plaxis 3D 2010 and comparison between them and experimental results are presented. 
 

H.1 FLAC
3D

 results (not calibrated) 

H.1.1 Test 1 D=100 mm, L/D=5, P0 = 50 kPa 

 

Figure H.1:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.2:  Displacement distribution along the pile depth 
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Figure H.3:  Soil resistance distribution along the pile depth 

 

Figure H.4:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.5:  Bending moment distribution along the pile depth in the final step 
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Figure H.6:  p-y curves for different depths 

H.1.2 Test 2 D=80 mm, L/D=5, P0 = 0 kPa 

 

Figure H.7:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.8:  Displacement distribution along the pile depth 
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Figure H.9:  Soil resistance distribution along the pile depth 

 

Figure H.10:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.11:  Bending moment distribution along the pile depth in the final step 

176



 

Figure H.12:  p-y curves for different depths 

H.1.3 Test 3 D=80 mm, L/D=5, P0 = 50 kPa 

 

Figure H.13:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.14:  Displacement distribution along the pile depth 
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Figure H.15:  Soil resistance distribution along the pile depth 

 

Figure H.16:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.17:  Bending moment distribution along the pile depth in the final step 
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Figure H.18:  p-y curves for different depths 

H.1.4 Test 4 D=80 mm, L/D=6, P0 = 50 kPa 

 

Figure H.19:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.20:  Displacement distribution along the pile depth 
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Figure H.21:  Soil resistance distribution along the pile depth 

 

Figure H.22:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.23:  Bending moment distribution along the pile depth in the final step 
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Figure H.24:  p-y curves for different depths 

H.1.5 Test 5 D=80 mm, L/D=4, P0 = 100 kPa 

 

Figure H.25:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.26:  Displacement distribution along the pile depth 
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Figure H.27:  Soil resistance distribution along the pile depth 

 

Figure H.28:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.29:  Bending moment distribution along the pile depth in the final step 
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Figure H.30:  p-y curves for different depths 

H.1.6 Test 6 D=80 mm, L/D=5, P0 = 100 kPa 

 

Figure H.31:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.32:  Displacement distribution along the pile depth 
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Figure H.33:  Soil resistance distribution along the pile depth 

 

Figure H.34:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.35:  Bending moment distribution along the pile depth in the final step 
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Figure H.36:  p-y curves for different depths 

H.1.7 Test 7 D=80 mm, L/D=6, P0 = 100 kPa 

 

Figure H.37:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.38:  Displacement distribution along the pile depth 
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Figure H.39:  Soil resistance distribution along the pile depth 

 

Figure H.40:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.41:  Bending moment distribution along the pile depth in the final step 
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Figure H.42:  p-y curves for different depths 

H.2 FLAC
3D

 results (calibrated) 

H.2.1 Test 1 D=100 mm, L/D=5, P0 = 50 kPa 

 

Figure H.43:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.44:  Displacement distribution along the pile depth 
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Figure H.45:  Soil resistance distribution along the pile depth 

 

Figure H.46:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.47:  Bending moment distribution along the pile depth in the final step 
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Figure H.48:  p-y curves for different depths 

H.2.2 Test 2 D=80 mm, L/D=5, P0 = 0 kPa 

 

Figure H.49:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.50:  Displacement distribution along the pile depth 
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Figure H.51:  Soil resistance distribution along the pile depth 

 

Figure H.52:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.53:  Bending moment distribution along the pile depth in the final step 
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Figure H.54:  p-y curves for different depths 

H.2.3 Test 3 D=80 mm, L/D=5, P0 = 50 kPa 

 

Figure H.55:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.56:  Displacement distribution along the pile depth 
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Figure H.57:  Soil resistance distribution along the pile depth 

 

Figure H.58:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.59:  Bending moment distribution along the pile depth in the final step 
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Figure H.60:  p-y curves for different depths 

H.2.4 Test 4 D=80 mm, L/D=6, P0 = 50 kPa 

 

Figure H.61:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.62:  Displacement distribution along the pile depth 
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Figure H.63:  Soil resistance distribution along the pile depth 

 

Figure H.64:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.65:  Bending moment distribution along the pile depth in the final step 
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Figure H.66:  p-y curves for different depths 

H.2.5 Test 5 D=80 mm, L/D=4, P0 = 100 kPa 

 

Figure H.67:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.68:  Displacement distribution along the pile depth 
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Figure H.69:  Soil resistance distribution along the pile depth 

 

Figure H.70:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.71:  Bending moment distribution along the pile depth in the final step 
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Figure H.72:  p-y curves for different depths 

H.2.6 Test 6 D=80 mm, L/D=5, P0 = 100 kPa 

 

Figure H.73:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.74:  Displacement distribution along the pile depth 
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Figure H.75:  Soil resistance distribution along the pile depth 

 

Figure H.76:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.77:  Bending moment distribution along the pile depth in the final step 
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Figure H.78:  p-y curves for different depths 

H.2.7 Test 7 D=80 mm, L/D=6, P0 = 100 kPa 

 

Figure H.79:  Load-displacement curves obtained by numerical modelling and small 

scale test 

 

Figure H.80:  Displacement distribution along the pile depth 
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Figure H.81:  Soil resistance distribution along the pile depth 

 

Figure H.82:  Comparison of bending moments at the soil surface, obtained by 

multiplying the applied force with the eccentricity and computed by FLAC
3D

 

 

Figure H.83:  Bending moment distribution along the pile depth in the final step 
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Figure H.84:  p-y curves for different depths 

H.3 Numerical results by Plaxis 3D 2010 

H.3.1 Test 1 D=100 mm, L/D=5, P0 = 50 kPa 

  
Figure H.85:  Comparison of load-deflection curves obtained by numerical modelling 

and small scale test 

 

Figure H.86:  Bending moment distribution along the embedded pile length 
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Figure H.87:  p-y curves for different depths 

 

H.3.2 Test 2 D=80 mm, L/D=5, P0 = 0 kPa 

 

No results are obtained for the test without overburden pressure, due to the fact that in 

Plaxis 3D, cohesion is necessary as an input. Having it as almost zero value in the 

model without overburden pressure leads to disconvergence. 

 

H.3.3 Test 3 D=80 mm, L/D=5, P0 = 50 kPa 

  
Figure H.88:  Comparison of load-deflection curves obtained by numerical modelling 

and small scale 
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Figure H.89:  Bending moment distribution along the embedded pile length 

 

Figure H.90:  p-y curves for different depths 

H.3.4 Test 4 D=80 mm, L/D=6, P0 = 50 kPa 

  
 

Figure H.91:  Comparison of load-deflection curves obtained by numerical modelling 

and small scale 
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Figure H.92:  Bending moment distribution along the embedded pile length 

 

Figure H.93:  p-y curves for different depths 

H.3.5 Test 5 D=80 mm, L/D=4, P0 = 100 kPa 

  
 

Figure H.94:  Comparison of load-deflection curves obtained by numerical modelling 

and small scale 
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Figure H.95:  Bending moment distribution along the embedded pile length 

 

Figure H.96:  p-y curves for different depths 

H.3.6 Test 6 D=80 mm, L/D=5, P0 = 100 kPa 

  
 

Figure H.97:  Comparison of load-deflection curves obtained by numerical modelling 

and small scale 
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Figure H.98:  Bending moment distribution along the embedded pile length 

 

Figure H.99:  p-y curves for different depths 

H.3.7 Test 7 D=80 mm, L/D=6, P0 = 100 kPa 

  
 

Figure H.100:  Comparison of load-deflection curves obtained by numerical modelling 

and small scale 
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Figure H.101:  Bending moment distribution along the embedded pile length 

 

Figure H.102:  p-y curves for different depths 
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H.4 Comparison of FLAC
3D

 and Plaxis 3D 

H.4.1 Test 1 D=100 mm, L/D=5, P0 = 50 kPa 

\  

Figure H.103:  Comparison of load-displacement curves 

 

Figure H.104:  Comparison of bending moment distribution along the embedded pile 

 

Figure H.105:  Comparison of displacement distribution along the embedded pile 
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Figure H.106:  Comparison of soil resistance distribution along the embedded pile 

 

Figure H.107:  Comparison of p-y curves 

 

H.4.2 Test 2 D=80 mm, L/D=5, P0 = 0 kPa 

 

Due to the reasons mentioned in section H 3.2, the comparison of the graphs for test 2 

could not be performed. 

  

209



H.4.3 Test 3 D=80 mm, L/D=5, P0 = 50 kPa 

 

Figure H.108:  Comparison of load-displacement curves 

 

Figure H.109:  Comparison of bending moment distribution along the embedded pile 

 

Figure H.110:  Comparison of displacement distribution along the embedded pile 
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Figure H.111:  Comparison of soil resistance distribution along the embedded pile 

 

Figure H.112:  Comparison of p-y curves 

H.4.4 Test 4 D=80 mm, L/D=6, P0 = 50 kPa 

 

Figure H.113:  Comparison of load-displacement curves 
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Figure H.114:  Comparison of bending moment distribution along the embedded pile 

 

Figure H.115:  Comparison of displacement distribution along the embedded pile 

 

Figure H.116:  Comparison of soil resistance distribution along the embedded pile 
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Figure H.117:  Comparison of p-y curves 

H.4.5 Test 5 D=80 mm, L/D=4, P0 = 100 kPa 

 

Figure H.118:  Comparison of load-displacement curves 

 

Figure H.119:  Comparison of bending moment distribution along the embedded pile 
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Figure H.120:  Comparison of displacement distribution along the embedded pile 

 

Figure H.121:  Comparison of soil resistance distribution along the embedded pile 

 

Figure H.122:  Comparison of p-y curves 
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H.4.6 Test 6 D=80 mm, L/D=5, P0 = 100 kPa 

 

Figure H.123:  Comparison of load-displacement curves 

 

Figure H.124:  Comparison of bending moment distribution along the embedded pile 

 

Figure H.125:  Comparison of displacement distribution along the embedded pile 
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Figure H.126:  Comparison of soil resistance distribution along the embedded pile 

 

Figure H.127:  Comparison of p-y curves 

H.4.7 Test 7 D=80 mm, L/D=6, P0 = 100 kPa 

 

Figure H.128:  Comparison of load-displacement curves 
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Figure H.129:  Comparison of bending moment distribution along the embedded pile 

 

Figure H.130:  Comparison of displacement distribution along the embedded pile 

 

Figure H.131:  Comparison of soil resistance distribution along the embedded pile 
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Figure H.132:  Comparison of p-y curves 
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H.5 Comparison of FLAC
3D

 and experimental results 

H.5.1 Evaluation of bending moments distribution 

 

Figure H.133:  Moment distribution along depth at different force levels for test 2 (dots 

represent the results from the experimental tests) 

 

Figure H.134:  Moment distribution along depth at different force levels for test 3 (dots 

represent the results from the experimental tests) 
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Figure H.135:  Moment distribution along depth at different force levels for test 4 (dots 

represent the results from the experimental tests) 

 

Figure H.136:  Moment distribution along depth at different force levels for test 5 (dots 

represent the results from the experimental tests)  
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Figure H.137:  Moment distribution along depth at different force levels for test 6 (dots 

represent the results from the experimental tests)  

 

Figure H.138:  Moment distribution along depth at different force levels for test 7 (dots 

represent the results from the experimental tests)  
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H.5.2 Evaluation of deflection distribution 

 

Figure H.139:  Deflection distribution along depth at maximum force for test 2 

 

Figure H.140:  Deflection distribution along depth at maximum force for test 3 
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Figure H.141:  Deflection distribution along depth at maximum force for test 4 

 

Figure H.142:  Deflection distribution along depth at maximum force for test 5 
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Figure H.143:  Deflection distribution along depth at maximum force for test 6 

 

Figure H.144:  Deflection distribution along depth at maximum force for test 7 
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H.5.3 Evaluation of p-y curves 

 

Figure H.145:  p-y curves for test 2  

(dots represent the results from the experimental tests) 

 

Figure H.146:  p-y curves for test 3 

(dots represent the results from the experimental tests) 
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Figure H.147:  p-y curves for test 4 

(dots represent the results from the experimental tests) 

 

Figure H.148:  p-y curves for test 5 

(dots represent the results from the experimental tests) 
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Figure H.149:  p-y curves for test 6 

(dots represent the results from the experimental tests) 

 

Figure H.150:  p-y curves for test 7 

(dots represent the results from the experimental tests) 
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APPENDIX I 

MATERIAL MODELS 

____________________________________________________________________________ 

In this appendix, the material models used in the numerical modelling by means of 

FLAC
3D

 and PLAXIS
3D

 are presented. A description of Mohr-Coulomb tension cut-off 

model and Hardening soil model is presented through the appendix. The source used 

through the Appendix is Plaxis
 
3D

 
manual (2010). 

 

 

 

I.1 Mohr-Coulomb tension cut-off model 

 

As mentioned in Chapter 4, in the numerical modelling of the laboratory tests, the 

Mohr-Coulomb model with tension cut-off has been employed, cf. Figure I.1. The 

strength and stiffness of the soil have been defined in terms of effective properties as the 

soil was in drained conditions during the laboratory tests. 

 

 

Figure I.1: Mohr-Coulomb tension cut off model. 

 

Mohr-Coulomb failure criterion is a perfectly plastic model, meaning that it is a 

constitutive model with a fixed yield surface, i.e. a yield surface that is fully defined by 

model parameters and not affected by plastic straining, cf. Figure I.2. 

The basic principle of elastoplasticity is that strains and strain rates are decomposed into 

an elastic part,  e and a plastic part  p. 
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Figure I.2: Basic idea of elastic perfectly plastic model ,Plaxis 3D manual (2010) 

 

In the Mohr-Coulomb model five parameters are required. These five parameters are 

basic geotechnical parameters that can be obtained by triaxial tests. The five parameters 

can be seen in table I.1. 

Geotechnical Parameters 

E Young’s Modulus [kN/m
2
] 

υ Poisson ratio [-] 

 Friction angle [º] 

 Dilatancy angle [º] 

c Cohesion [kN/m
2
] 

 

Table I.1:  Geotechnical parameters used in the Mohr-Coulomb model. 

 

The Mohr-Coulomb model is a failure criterion, which is used to model the soil. The 

failure criterion is used to combine principle stresses to verify, whether the stresses 

result in failure in the soil. In two-dimensional analysis, the Mohr-Coulomb failure 

criterion is an envelope determined by the straight line τf = c+tan(υ) · σf , where τf is the 

shear stress at failure and σf is the stress at failure. 

 

In three dimensions the Mohr-Coulomb failure criterion spans a hexagonal failure 

surface in the principle stress space, cf. Figure I.3. Extending Coulomb’s friction law 

for general stress states creates the Mohr-Coulomb yield condition, cf. Equation I.1 to 

I.6. This ensures that Coulomb’s friction law is used in all planes in the soil.  Due to a 

tension cut-off model, three extra yield-functions usually appear. Plaxis 3D manual 

(2010). 
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Figure I.3: Yield surface in the principal stress space for the Mohr-Coulomb for a 

cohesion set 
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Plasticity is associated with the development of irreversible strains. In order to evaluate 

whether or not plasticity occurs in a calculation, a yield function, f, is introduced as a 

function of stress and strain. Plastic yielding is related with the condition f = 0. This 

condition can often be presented as a surface in principal stress space. For stress states 

represented by points within the yield surface, the behaviour is purely elastic and all 

strains are reversible. Thus, six plastic potential functions are defined for the Mohr-

Coulomb Model, cf. Equations I.7 to I.12. These equations define the directions of the 

plastic strains. 

 

 

231



   sin
2

1
)(

2

1
32321 ag  (I.7)  

   sin
2

1
)(

2

1
23231 bg  (I.8)  

   sin
2

1
)(

2

1
13132 ag  (I.9)  

   sin
2

1
)(

2

1
31312 bg  (I.10)  

   sin
2

1
)(

2

1
21213 ag  (I.11)  

   sin
2

1
)(

2

1
12123 bg  (I.12)  

 

I.2 Hardening soil model  

 

The Hardening Soil model is an advanced model for simulating the behaviour of 

different types of soil, both soft soils and stiff soils. When subjected to primary 

deviatoric loading, soil shows a decreasing stiffness and simultaneously irreversible 

plastic strains develop.  

Hardening soil model is like Mohr-Coulumb model, a failure criterion which can be 

used to model the soil. Unlike the Mohr-Coulomb model, the Hardening Soil model 

ascribes a changing stiffness of the soil depending on the strain in the soil. This is 

illustrated in figure I.4.  

 

 

Figure I.4:    The work curve for soil modelled with the Mohr-Coulomb model (blue) 

and Hardening soil model (red). 
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I.2.1 Hyperbolic Relationship for standard drained triaxial tests 

 

A basic idea in the formulation of the Hardening Soil model is the hyperbolic 

relationship between the vertical strain, ε1, and the deviatoric stress, q, in primary 

triaxial loading, cf. Figure I.5, qa represents the asymptotic value of the shear strength 

and Ei is the initial stiffness. E50 is defined as the confining stress dependent stiffness 

modulus for primary loading, and it can be obtained graphically for a 50% of the 

ultimate deviatoric stress, qf. 

 

 

Figure I.5:    Hyperbolic stress-strain relation in primary loading for a standard drained 

triaxial test. 

 

E50 is dependent on the confining stress and it is defined by equation I.13: 
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5050  (I.13)  

Where refE50  is a reference stiffness modulus corresponding to the reference confining 

pressure p
ref

 = 100 kPa. The actual stiffness depends on the minor principal stress, σ3, 

which is the confining pressure in a triaxial test. The amount of stress dependency is 

given by the power m. Notice that since in this project a cohesionless soil is used for the 

experiments, the cohesion can be neglected and thus c ≈ 0. 

The ultimate deviatoric stress, qf, and the quantity, qa, are derived from Mohr-Coulomb 

criterion and are defined as: 
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For unloading-reloading stress paths, another stress-dependent stiffness modulus is 

used, cf. Equation I.16. 
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Where ref

urE is the reference Young’s modulus for unloading and reloading, 

corresponding to the reference pressure p
ref

.  However, through this project only data 

corresponding to the primary loading in the triaxial tests has been proportioned, thus the 

recommendation given by Plaxis Material Models Manual (2010) is followed, cf. 

Equation I.17. 

refref

ur EE 503   (I.17)  

 

I.2.2  Approximation of the hyperbola by the Hardening Soil Model 

 

It is assumed that σ2 = σ3 < σ1, and that q < qf, as it is shown in figure I.5. In this section 

it will be explained how this model gives virtually the hyperbolic stress-strain curve 

when considering stress paths of standard drained triaxial tests.  Plastic strains are 

considered, and it is defined a hardening yield function of the form: 

pff   (I.18)  

Where f  is a function of stress and p  is a function of plastic strains: 
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pp

12    (I.20)  

An essential feature of the above definitions for f  is that it matches the well-known 

hyperbolic law represented in figure I.5. In order to verify this statement, one has to 

consider primary loading, which implies the yield condition f = 0. Then it yields p  = 

f  and p

1  can be expressed as: 
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Plastic strains develop in primary loading alone, but elastic strains develop both, in 

primary loading and unloading-reloading.  For drained triaxial test stress paths with σ2 = 

σ3 = constant, the elastic Young’s modulus Eur remains constant and the elastic strains 

are given by the equations: 

 

Where ur  is the unloading-reloading Poisson’s ratio.  Strains that develop during the 

first stage of the test are not considered. For the deviatoric loading stage of the triaxial 

test, the axial strain is the sum of an elastic component given by equation I.22 and a 

plastic component defined by equation I.23. Thus it can be concluded: 
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For this relationship it has been considered absence of plastic volumetric strains, i.e. 

0p

v . However, plastic volumetric strains will never be precisely equal to zero, but 

for hard soils, plastic volume changes tend to be small when they are compared with the 

axial strain so that this formulation yields a hyperbolic stress-strain curve under triaxial 

testing conditions.  

 

The input parameters considered for the input in Plaxis 3D and  are the ones shown in 

Table I.2: 
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Parameters Description Units 

c Cohesion [kN/m
2
] 

φ Angle of internal friction [˚] 

ψ Angle of dilatancy [˚] 

refE50  
Secant stiffness in standard drained triaxial 

test 

[kN/m
2
] 

ref

oedE  Tangent stiffness for primary oedometer 

loading 

[kN/m
2
] 

ref

urE  Unloading/Reloading stiffness [kN/m
2
] 

m Power for stress-level dependency of 

stiffness 

[-] 

einit Initial void ratio [-] 

 

Table I.2:     Parameters of the Hardening Soil Model 

 

The elastoplastic Hardening Soil model does not involve a fixed relationship between 

the drained triaxial stiffness E50 and the oedometer stiffness Eoed for one-dimensional 

compression. These stiffnesses are inputted independently. The oedometer stiffness can 

be defined by equation: 
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The initial oedometer stiffness, ref

oedE  is the tangent stiffness at a vertical stress of σ1 = 

ncK0

3  = p
ref

, as it can be observed in figure I.6.  However, since no data of oedometric 

tests have been proportioned for this project, an approximation of Eoed = E50/1.30 is 

assumed, based on the relation suggested by Plaxis 3D manual (2010) and Marta 

Auleda Catalá (2005). 
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Figure I.6: Definition of ref

oedE in oedometer test results 

 

There are some alternative stiffness parameters, such as the compression index, swelling 

index and initial void ratio. In reality, the first two parameters depend on the actual void 

ratio, however, in Plaxis 3D it is assumed a constant initial void ratio. These two 

parameters are obtained as follows: 
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I.2.3 Plastic Volumetric Strain for triaxial states of stress 

The plastic volumetric strain, 

p

v , is a function of the plastic shear strain defined before 

in equation I.20, represented by the linear form of the hardening flow rule: 



 p

m

p

v  sin

 

 (I.28)  

 

Where m  is the mobilised dilatancy angle, which is defined as equation I.29 states: 
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For sin υm <  3/4  sin φ :        m  =  0 

For sin υm  ≥  3/4 sin φ and  =0:      sin  m  = max
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For sin υm  ≥  3/4 sin φ and  ≤ 0:       m  =   

If  υ = 0          m  =  0 

 

υcv is defined as the critical state friction angle, being a material constant independent of 

density index or void ratio, and υm is the mobilized friction angle defined as: 
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For small mobilized friction angles and for negative values of  m, as long as the 

dilatancy angle   is positive,  m is taken zero. Furthermore, in all cases when φ = 0, 

 m  is set equal to zero.  

The essential property of the stress-dilatancy theory is that the material contracts for 

small stress ratios υm < υcv, whilst dilatancy occurs for high stress ratios υm > υcv. At 

failure, when the mobilized friction angle equals the failure friction angle, υ, it is found 

that: 
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I.2.4  Dilatancy cut-off 

Initial void ratio, einit, and the maximum void ratio, emax must be defined as general 

parameters, since a dilatancy cut-off model is taken into account to run the models in 

Plaxis 3D. As soon as the volume results change in a state of maximum void ratio, the 

mobilised dilatancy angle is automatically set to zero, as it is represented in figure I.7. 

Two zones are diferenciated: 

 

(I.29) 

(I.30) 

(I.31) 
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For e ≥ emax :   ψm = 0 

 

 

Figure I.7: Strain curve for a drained triaxial test including dilatancy cut-off 

 

The void ratio is related to the volumetric strain, εv, by the relationship: 
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I.2.5 Yield Surface in the Hardening Soil Model 

To explain the plastic volumetric strain in isotropic compression, a second yield surface 

closes the elastic region in the direction of the p-axis. While the shear yield surface is 

mainly controlled by the triaxial modulus, the oedometer modulus controls the cap yield 

surface. This can be defined: 
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The volumetric cap strain is the plastic volumetric strain in isotropic compression. 

Another constant, β, is introduced. The following relationships are used in Plaxis 3D to 

get the input parameters: 
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The cap has the shape of an ellipse in the qp ~ plane. pp determines the magnitude of 

the ellipse and α its aspect ratio; high values of α lead to steep caps underneath the 

Mohr-Coulomb line, and small values generate much more pointed caps. This ellipse is 

also a plastic potential and it still has the hexagonal shape of the Mohr-Coulomb 

criteria, cf. Figures I.8 and I.9. 

 

    
 

 

I.2.6 Hardening Soil Model with Small-Strain Stiffness 

The soil stiffness that should be used in the analysis of geotechnical structures is not the 

one that relates to the strain range at the end of the construction. Instead, very small-

strain soil stiffness and its non-linear dependency on strain amplitude should be 

properly taken into account.  

The Hardening Soil model with small-strain stiffness implemented in Plaxis 3D is based 

on the Hardening Soil model and uses the same input parameters plus two additional 

parameters to describe the variation of the stiffness with strain: 

 The initial or very small-strain shear modulus G0 

 The shear strain level γ0.7 at which the secant shear modulus GS is reduced to 

about 70% of G0. 

A number of factors influence the small-strain parameters G0 and γ0.7. Most importantly 

they are influenced by the material’s actual state of stress and void ratio e. In the 

Hardening Soil model with Small-Strain stiffness, the stress dependency on the shear 

modulus G0 is taken into account with the power law defined by: 
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Where refG0  is a function of the void ratio defined as: 

Figure I.8: 2D Yield Surface Figure I.9: Total yield contour 

(I.36) 
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Shear strain level γ0.7 can be related to the shear modulus by means of Figure I.10: 

 

 

Figure I.10:    Relationship between the Shear modulus G0 and shear strain level γ0.7 

 

The shear strain level can also be obtained analytically, adopting the Mohr-Coulomb 

criterion and a hyperbolic law for larger strains, cf. Equation I.37, Plaxis 3D manual 

(2010). 
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APPENDIX J 

 DIFFICULTIES WHEN 

CONDUCTING TESTS   

____________________________________________________________________________ 

In this appendix, the difficulties while the tests were being carried out are described. 

Some of these difficulties made impossible to rely on the test, and it had to be repeated, 

and some of the difficulties introduced uncertainties in the test results. 

 

A summary of the tests realised at Aalborg University laboratory during 2010 and 2011 

is shown in table J.1 with the corresponding difficulties occurred during their process. 

Test 

Pile 

Diameter 

[mm] 

Pressure 

[kPa] 
L/D Gauges Difficulties 

Test 1 100 50 5 No - 

Test 2-0 80 0 5 Yes Wire too tight 

Test 2-I 80 0 5 Yes Strain gauge 16 broken 

Test 3-0 80 50 5 Yes Membrane damaged 

Test 3-I 80 50 5 Yes 
High flow through the membrane 

due to gaps. 

Test 3-II 80 50 5 Yes 
No mouldings in the new membrane 

caused a high flow through it. 

Test 3-III 80 50 5 Yes 

Strain gauge 16 broken and 

displacement transducer 1 did not 

work as expected. 

Test 4-0 80 50 6 Yes High leak in the fire hose. 

Test 4-I 80 50 6 Yes 
Snapped screw from the pile while 

the piston was pulling. 

Test 4-II 80 50 6 Yes - 

Test 5 80 100 4 Yes - 

Test 6 80 100 5 Yes - 

Test 7 80 100 6 Yes - 

Test 8 80 50 3 No 
Displacement transducer 3 did not 

work as expected 

Test 9-0 80 0 3 No High scatter in the hydraulic piston 

Test 9-I 80 0 3 No - 

Test 10 80 100 3 No High leak in the fire hose. 

 

Table J.1: Overview and difficulties observed in the 10 tests carried out in the 

laboratory. 
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Test 1 (D = 100 mm, P0 = 50 kPa, L/D = 5) 

Everything worked as it was supposed to. A water flow velocity through the gaps of the 

membrane of 80 l/hour was estimated for this test. 

 

Test 2 (D = 80 mm, P0 = 0 kPa, L/D = 5) 

Two tests were conducted to be able to obtain reliable results. In test 0, the initial force 

was very high. It was observed when the force-deflection graphs were plotted. The 

initial force did not start in zero, as it was supposed to. This was caused because the 

wire from the hydraulic piston which is plugged to the pile was too tight. It was decided 

to conduct the test again.   

In test I strain gauge 16 stopped measuring at the beginning of the test, but the test was 

carried out, since the decision of skipping that measuring level for the calculation of the 

bending moment was taken. This fact can be accepted, as 22 strain gauges were placed 

on the pile, forming 11 depth levels, which are considered enough, in order to compute 

the moment distribution of the pile. 

 

Test 3 (D = 80 mm, P0 = 50 kPa, L/D = 5) 

A total of 4 tests were carried out in order to obtain reliable results for this test. 

In test 0, the pile was plugged, the soil vibrated and all the set up prepared. When the 

pressure of 50 kPa was being added to the pressure tank, the water velocity through the 

gaps of the membrane was very high, reaching 240 l/h. So, the test had to be stopped, 

the membrane was removed and it was clearly seen that it was damaged at some points, 

cf. Figure J.1. 

 

 

Figure J.1: Damaged membrane after test 0 
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The membrane was repaired with plastic glue at that point. A second attempt, test I, was 

tried without succeeding. The water velocity through gaps was still very high, reaching 

200 l/h. 

In test II, a new membrane was used, with the objective of minimizing the water flow 

velocity through gaps. The problem with the new membrane it was that it did not have 

any mouldings glued to it, which caused that the water could pass this time between the 

wall and the membrane, reaching a water velocity of 180 l/h, which was still too high to 

run the test. 

A compressible moulding was attached to the new rubber membrane, cf. Figure J.2. 

After that, test III was run solving the problem with the high water flow through gaps. 

However, two more problems were found while this test was running: strain gauge 16 

failed again, and displacement transducer no. 2 did not show correct results. 

 

 

Figure J.2: New membrane with the moulding attached to it 

This test was considered reliable, because 10 more levels of strain measurement and 2 

more displacement transducers remained measuring at two different levels in the pile. 

This was considered enough to obtain accurate results.  

 

Test 4 (D= 80 mm, P0 = 50 kPa, L/D = 6) 

Three tests were realised due to obtain accurate results for this test. 

In test 0 the fire hose was leaking too much air before starting to run the test, which 

caused a high water velocity through the membrane and the pressure tank wall, since it 

was not compressing the mouldings enough. A new joint was installed in the fire hose. 

With the new joint already installed in the fire hose, test I, was being run without any 

problems, but at some point during the test, the screw was snapped. This was due to the 

fact that the screw thread was damaged, as it can be observed in figure J.3: 
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Figure J.3: Damaged screw thread 

 

This problem was solved by welding the screw to the steel plate which is pulled by the 

piston, cf. Figure J.4. Test II was carried out without any problems. 

 

 

Figure J.4: Screw welded to the thin steel plate 

 

Test 5  (D= 80 mm, P0 = 100 kPa,  L/D = 4) 

Test 5 worked as it was supposed to, with a water flow velocity through gaps of 30 l/h. 
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Test 6  (D= 80 mm, P0 = 100 kPa,  L/D = 5) 

Test 6 worked as it was supposed to, reaching a water flow velocity through gaps of 40 

l/h. 

 

Test 7  (D= 80 mm, P0 = 100 kPa,  L/D = 6) 

Test 7 worked as it was supposed to, with a water flow velocity through gaps of 50 l/h. 

 

Test 8  (D= 80 mm, P0 = 50 kPa,  L/D = 3) 

Everything worked as it was supposed to, except for the top displacement transducer 

(no. 3), which did not measure properly. It showed a constant value of 711 mm, which 

is discarded, since it is impossible to reach such a high lateral displacement. 

 

Test 9  (D= 80 mm, P0 = 0 kPa,  L/D = 3) 

Everything worked as it was supposed to, but it was observed a high scatter in the force 

applied by the hydraulic piston, reason for why it was decided to repeat it and worked 

successfully in the second attempt.  The water flow velocity through gaps was about 8 

l/h. 

 

Test 10  (D= 80 mm, P0 = 100 kPa,  L/D = 3) 

Test 10 worked as it was supposed to, with an approximate water flow velocity through 

gaps of 6 l/h. 
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