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Preface

This report is written by a group of software engineer students at the Computer
Science department of Aalborg University during the spring semester SW10
2011. The project started February 1st 2011 and ended June 9th 2011. The
overall topic is Clustering Analysis.

The report and the work done herein is partly based on the report Clustering
Analysis of Spatial Data[1], written in the previous semester. Reading the
previous report may benefit the reader’s understanding of the content of this
report.

References are written in square brackets like: [2], and their reference can
be found at the end of the report.

We would like to thank Manfred Jaeger for supervising this project.
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1
Introduction

Clustering involves analysing a given data set and finding subsets, referred to
as clusters that have similar attributes. A subcategory of this is spatial clus-
tering, i.e. clustering of data where data points correspond to points on a
given 2D grid. Clustering of spatial data can be applied in numerous different
scenarios. Examples of usage range from preprocessing images for optical char-
acter recognition (OCR) to recognition of objects such as houses and roads in
satellite pictures. It has also been applied within the field of medicine, where
brain MR images can be automatically segmented.[3]

We propose a multi-layer spatial clustering model based on a Markov Ran-
dom Field model, where observed variables are modelled by either a multino-
mial model or a logistic regression model. The intent is to separate factors of
the data into individual layers, e.g. for spatial botanical data, one layer could
describe the pH-value of the soil and another layer could describe average tem-
peratures.

We will focus on two types of spatial data; image and geofloral data. For
image data, we will primarily focus on initialisation, i.e. learning the observed
variable model that will be used for the first clustering iteration. We have cho-
sen image data for initialisation problems, because for most images we are able
to intuitively identify a segmentation. Due to this it is easier to verify whether
the initialisation is meaningful, e.g. for an image of a house, a meaningful
initialisation could separate the house and background. For geofloral data, we
will focus on clustering with a multi-layer spatial model. This is because ge-
ofloral data depends on a multitude of factors, e.g. temperatures, pH-values,
precipitation, topography, etc.

This report builds on our previous SW9 project, Cluster Analysis of Spa-
tial Data[1], in which we already developed a clustering method based on a
Markov Random Field model that could successfully cluster single layers. A
multinomial multi-layer model was proposed but proved to be unable to sepa-
rate factors as intended. Additionally, we used initialisation based on a random
segment configuration. We will perform tests with approaches from this report
as well as those from the previous to showcase any improvements.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

We develop a multi-layer spatial clustering model with observed variables mod-
elled using logistic regression. We expect the more sophisticated method to be
able to separate factors into different layers as intended. Additionally, we de-
velop initialisation methods using histograms and heuristics.

In our previous work in this field, a basic clustering method was developed
for images and geofloral data. Additionally, attempts were made to develop
a multi-layer clustering model, with little success. In this report, we intend
to improve upon these methods to create a functional multi-layer clustering
model.

Additionally, in the previous report, random initialisation was found to
cause scenarios, where our clustering algorithm would be unable to escape a
local maximum. In this report we will attempt to improve upon the initiali-
sation methods using histograms and heuristics. We will focus on images as
there is an intuitive method of approximately verifying results.
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Part I

Analysis
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2
Data

This chapter describes the data used for both types of segmentation. Note that
this chapter was originally a part of the preceding report on this subject, Cluster
Analysis of Spatial Data[1], with minor changes to reflect the modifications in
the code since.

2.1 Image Data

The system is capable of handling Bitmap (BMP) and Portable Network Graph-
ics (PNG) files, as these are natively supported in C#. Further support of image
formats would be trivial to implement, but as they do not provide additional
knowledge, we have chosen to not implement further support.

When we access image data, the image is stored in an instance of the native
Bitmap class. A given pixel can then be retrieving by providing an X and Y
values, indicating the location of the pixel in the image. We create observed
variables from the image data by iterating over the X and Y coordinates, creat-
ing an instance of the Site class for each pixel. Each of these instances contains
the observed colour of their respective pixel and a unique ID constructed from
the X and Y value. Each pixel also contains references to its neighbours.

2.2 Geofloral Data Set

The data set used was a combination of two sources. One was a data file
from Swiss Web Flora[4], containing distribution data for 2697 plants over 565
regions, with the possible values no data, rare, frequent, registered until 1984,
registered until 1995, registered until 1998 and registered until 2000. Plants
that were not categorised as frequent in any region were discarded, leaving 2398
plants in the data set. Of the 565 regions, 350 are categorised as below the
treeline and 215 as above the treeline. However, this information is not used
during clustering.

Additionally, we had a graphics file in the XFIG format containing the
physical shapes of the regions. This was created as a part of Clustering Bio-
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2.2. GEOFLORAL DATA SET

geographic Data Using Relational Model [5]. The regions mapped in the XFIG
file can be seen in Figure 2.1.

Figure 2.1: A drawing of Switzerland divided into 565 regions with shapes from the
XFIG file[5]

Both the plant data and the XFIG file were combined into a single, custom
format. This is an XML file, following a specific pattern.

First, there is an XML declaration. Following that, there is an outer tag
called MRFData. Contained within is the metadata for the file, usually simply
the amount of plants, and the ID of each. Additionally, we have an array of
sites, each in its own Site tags. These have an ID attribute, corresponding to the
region number in the plant data and XFIG file. Inside these are three groupings,
Points, Neighbours and DiscreteVariables. Points have child nodes called Point
with an X and Y attribute. Neighbours have Neighbour children with an ID
attribute corresponding to the ID of the neighbouring site. DiscreteVariable
have an ID and Value attribute, corresponding to the ID and value for the site
in the plant data file.

This format maps closely to the attributes of the Site class. The points
form a polygon for illustration purposes, the neighbours and plants form the
data necessary for segmentation.

An example of the format is seen in Listing 2.1.
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CHAPTER 2. DATA

�
1 <?xml version="1.0">
2 <MRFData>
3 <MRFMetaData>
4 <DiscreteVariableCount>4</DiscreteVariableCount>
5 <DiscreteVariables>
6 <DiscreteVariable ID="3" Name="Lycopodium Annotinum" />
7 <DiscreteVariable ID="22" Name="Equisetum telmateia " />
8 <DiscreteVariable ID="55" Name="Athyrium distentifolium " />
9 <DiscreteVariable ID="59" Name="Cystopteris montana " />

10 </DiscreteVariables>
11 </MRFMetaData>
12 <Sites>
13 <Site ID="108" AboveTreeLine="false">
14 <Points>
15 <Point X="765" Y="5535" />
16 <Point X="945" Y="5265" />
17 <Point X="1170" Y="5130" />
18 <Point X="990" Y="5355" />
19 <Point X="765" Y="5535" />
20 </Points>
21 <Neighbours>
22 <Neighbour ID="107" />
23 </Neighbours>
24 <DiscreteVariables>
25 <DiscreteVariable ID="3" Value="3" />
26 <DiscreteVariable ID="22" Value="3" />
27 <DiscreteVariable ID="55" Value="3" />
28 <DiscreteVariable ID="59" Value="3" />
29 </DiscreteVariables>
30 </Site>
31 </Sites>
32 </MRFData>
 	

Listing 2.1: Example of the geofloral data format.
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3
Markov Random Field

In this chapter, we will describe the unordered graph model, Markov Random
Field (MRF). Note that this chapter was originally a part of the preceding
report on this subject, Cluster Analysis of Spatial Data[1].

3.1 General

In general, an MRF is an undirected graph consisting of random variables
that satisfy the Markov property. The Markov property will be explained
in Section 3.2. Thus, an MRF is a probabilistic model where dependencies
between the random variables can be mapped. A neighbourhood system for an
MRF relates the random variables to each other.[2] A variety of neighbourhood
systems are explained in Section 3.3. Given any MRF, a joint probability
distribution can be calculated for it.

3.2 Markov Property

In order for an undirected graph to be classified as an MRF it must fulfil
the Markov property that can be seen in Equation 3.1, where xi denotes a
hidden variable, xk is any hidden variable in x other than xi and Ni is the
neighboorhood of i. It states that the sites, S, in an MRF are conditionally
independent of each other, given their neighbourhood. It follows from this
that given all other hidden variables, each non-adjacent site in an MRF is
conditionally independent.

P (xi|∀xk ∈ x, xi 6= xk) = P (xi|Ni) (3.1)

3.3 Neighbourhood systems

The sites, S, in an MRF are related to each other through a neighbourhood
system, N . This system can be defined in a variety of ways and we will now
examine these neighbourhood systems and the cliques they can contain. In
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CHAPTER 3. MARKOV RANDOM FIELD

general, an MRF is a graph with vertices and edges. Formally, a neighbourhood
system can be defined as in Equation 3.2[2], where i /∈ Ni and i ∈ Ni′ ⇐⇒ i′ ∈
Ni. As can be seen, each site, i, has a unique neighbourhood, Ni, associated
with it.

N = {Ni|∀i ∈ S} (3.2)

Depending on the placement of the sites, different neighbourhoods are de-
fined. In Figure 3.1(a), the sites in an MRF are placed on a regular lattice.
Figure 3.1(b) and Figure 3.1(c) illustrate a four and eight neighbourhood sys-
tem for Figure 3.1(a), respectively. Dark grey nodes indicate sites that are part
of the neighbourhood of site e.

a cb

d fe

g ih

(a) Sites on a regular
lattice

b

d fe

h

(b) A four neighbour-
hood system

a cb

d fe

g ih

(c) An eight neighbour-
hood system

Figure 3.1: Neighbourhood systems on a regular lattice.

A four neighbourhood system on a regular lattice can be defined as in
Equation3.3.[2, P.23] Note that the sites near the edges have three neighbours,
the sites at the corners have two.

Nx,y = {(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)} (3.3)

Neighbourhoods can also be defined for irregular sites. In this case, the
neighbourhood of a site, Ni, is of arbitrary size. One method of finding the
neighbours of a site, i, is to select all sites within a distance, r, of i. However
for certain spatial data other methods are required, for instance when handling
geographical data, where region borders define neighbours.

An MRF consisting of irregular sites is illustrated in Figure 3.2. As some
sites have multiple neighbours and other sites only have a single neighbour,
this will result in different cliques within the neighbourhood systems. The
neighbourhood for a few sites of Figure 3.2 can be found in Table 3.1.
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3.4. DEFINING THE JOINT DISTRIBUTION

a

b

d

e

c

g

h

f

i

j

k

Figure 3.2: An MRF consisting of irregular sites.

Site C1 C2 C3

a {a}, {c}, {f}, {i}, {j} {a, c}, {a, f}, {a, i}, {a, j} {a, f, j}
e {d}, {e}, {g} {d, e}, {e, g} {}

Table 3.1: A table containing examples of neighbourhood cliques for Figure 3.2.

3.4 Defining the Joint Distribution

A joint distribution calculation determines the probability of a specific config-
uration f being correct, i.e. the higher this is, the closer the configuration is
to the right one.

The joint distribution probability of an MRF can be calculated, among other
ways, by using a Gibbs distribution. This is due to the equivalence of MRFs
and Gibbs distributions[2, S. 2.1.4] as per the Hammersley-Clifford theorem[6,
Theorem 1].

First, let us look at how at how a Gibbs distribution is defined. This is
shown in Equation 3.4. Z is called the partition function, and works as a
normalising constant, while U(f) is called the energy function. It is the sum
of the clique potentials Vc(f) over all possible cliques C. In these, T is the
temperature, in most cases assumed to be 1, which controls the sharpness of
the distribution, and F is the set of all possible configurations.

P (f) = Z−1 · e
−
1

T
U(f)

Z =
∑

f∈F
e
−
1

T
U(f)

U(f) =
∑

c∈C
Vc(f)

(3.4)

9



CHAPTER 3. MARKOV RANDOM FIELD

P (f) calculates the probability of a configuration, f . To calculate it, we first
need to calculate Z. However, when working with discrete values, F contains
a combinatorial number, that quickly becomes too high to feasibly calculate.
Instead, it is approximated using a number of techniques.[2, P.26]
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4
Segmentation

This chapter describes the extensions and specialisations of the MRF model to
enable using it for segmentation. Note that this chapter was originally a part
of the preceding report on this subject, Cluster Analysis of Spatial Data[1].

4.1 Specialising the Markov Random Field Model

An MRF is often used in labelling problems such as image segmentation. This
is due to the fact that an MRF is structured in a way that allows observable
variables such as the intensity of an image or the presence of a plant to be
easily represented.

An MRF for segmentation is organised in sites, each consisting of one node
connecting to the other sites, called the hidden variable or x, and a number of
nodes connected to this one, called the observed values or y. An example of
this is shown in Figure 4.1. The observed values are the data known initially,
e.g. the red, green and blue values of a pixel or the presence of different plants.
The hidden variable is unknown initially, and represents the segment the site
would belong to in an optimal configuration. The goal of segmentation is to
find the best value of the hidden variable.

Figure 4.1: A Markov Random Field. The grey nodes represent observed variables.
The white nodes represent hidden variables. Source: [7]

11



CHAPTER 4. SEGMENTATION

As seen in Figure 4.1, there are two distinct types of cliques. One is the
type consisting of a hidden variable and an observed variable, {xi, yi,k}, where
k indicates which observed value of the site i the clique contains. This will be
called an observation clique from now on. The other is the type consisting of
two hidden variables, {xi, xj}, where j is a neighbour of i. This will be called
a neighbourhood clique. It should be noted that we only focus on 2-clique
neighbourhood cliques, to reduce the computational complexity.

We define the neighbourhood clique potential as VC(xi, xj). We likewise
define the observation potential as VC(xi, yi,k).

We can specialise the Gibbs distribution w.r.t. segmentation by using these
potentials in the energy function, as seen in Equation 4.1. It should be noted

that the temperature − 1

T
has been excluded, as it has no bearing on our use

of the model. Additionally, it should be noted that since the neighbourhood
and observation potentials refer to a specific site i, we sum over this variable
as well.

P (f) = Z−1 · eU(f)

Z =
∑

f∈F
eU(f)

U(f) =
∑

i

∑

j

Vc(xi, xj) +
∑

i

∑

k

Vc(xi, yi,k)

(4.1)

4.2 Ising Model

This section is based on [6, S. 1.3.1].

The Ising Model is a joint density model for binary data. It represents the
probability of a given site having a given binary value, depending on which
binary values its neighbours have. Traditionally, this is used for black and
white images, but in our case, we will use it for whether or not a given site is
a part of the segment.

For a given clique of two hidden variables, if they are the same, the po-
tential of the clique is 1. If they are different, it is 0. This is represented in
Equation 4.2, where I[xi = xj ] is 1 if they are the same, and 0 if not. β is
a weight, which changes the importance of the neighbourhood in relation to
other cliques. Higher values lead to more coherence in clusters.

Vc(xi, xj) = β · I[xi = xj ] (4.2)

Following from Equation 3.4, if we insert this clique potential into a Gibbs
distribution, we get Equation 4.3, where i v j represents each neighbour j of
i. As should be evident, this is essentially the Ising model. It should be noted,
that β has been moved out out the summation.

12



4.3. OBSERVED VALUES

P (i) = Z−1 · eU(i)

Z =
∑

x

eU(i)

U(i) = β ·
∑

ivj

I[xi = xj ]

(4.3)

4.3 Observed Values

This section deals with specifying the observation potential Vc(xi, yi,k).

An observed value can be divided into two types, continuous and discrete.
Continuous values fall within a range, e.g. the red component of a pixel will
fall within the [0, 255] range. Discrete values are a set of labels, e.g. "true"
and "false" for indicating the presence of a plant.

For both continuous and discrete values, we find the probability of a site
having a hidden variable, given the observed variable.

The probability function for a continuous value is a Gaussian distribution,
see Equation 4.4.

Vc(xi, yi) =
1√
2πσ2

s

e

(yi − µs)
2

2σ2
s (4.4)

The probability function for a discrete value is shown in Equation 4.5.

Vc(xi, yi) = pxi,yi
(4.5)

For both data types, the probability is based on learning the distribution of
values of the variable across all sites in a segment. Equation 4.6 and 4.7 defines
the mean and variance, respectively, of a continuous value, and Equation 4.8
defines the probability of a discrete value being a given label.

µs =
1

n

∑

i:xi=s

yi (4.6)

σ2
s =

1

n

∑

i:xi=s

(yi − µs)
2 (4.7)

In Equation 4.6 and 4.7, s is the segment ID and n is the number of sites
tied to the segment.

ps,l =
1

n

∑

i:xi=s
yi=l

1 (4.8)
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CHAPTER 4. SEGMENTATION

In Equation 4.8, l is the label the potential is being calculated for. A special
case holds for binary discrete values. Only the probability for one label needs
to be calculated, as the other one will be pfalse = 1− ptrue.

4.4 Using the Specialised Markov Random Field
Model

Expanding on the specialised Gibbs distribution in Equation 4.1, we need to
insert the potentials.

Given that the observation probabilities are not strictly speaking potentials,
we need to extract P (x) from P (f) = P (x, y). This is done as shown in
Equation 4.9.

P (x, y) = P (x)P (y|x) (4.9)

With P (x) depending only on the neighbourhood potential, it can be defined
as a Gibbs distribution over these nodes as shown in Equation 4.10.

P (x) = Z−1e

β ·
∑

ivj

Vc(xi, xj) (4.10)

The probability of y given x is actually the observation probability as seen
in Equation 4.11.

P (y|x) = Vc(x, y)

P (y|x) =
∏

i

∏

k

Vc(xi, yi,k)
(4.11)

Combining Equation 4.10 and Equation 4.11 and rewriting them so that
they take the form of a Gibbs distribution can be seen in Equation 4.12.

P (f) = Z−1e

∑

i

∑

ivj

Vc(xi, xj)

·
∏

i

∏

k

Vc(xi, yi,k)

P (f) = Z−1e

∑

i

∑

ivj

Vc(xi, xj)

· e

∑

i

∑

k

ln(Vc(xi, yi,k))

P (f) = Z−1e

∑

i

∑

ivj

Vc(xi, xj) +
∑

i

∑

k

ln(Vc(xi, yi,k))

(4.12)

Here, f is a configuration, i.e. a set of values for the different variables in
the graph. We need to find the set of segment values for the different hidden
variables that gives us the highest result of P (f).

14



4.4. USING THE SPECIALISED MARKOV RANDOM FIELD MODEL

This gives us the benefit of being able to eliminate Z, as this will be the
same for all configurations, and as such, in direct comparisons it will have no
bearing on the final result.

However, even with Z eliminated, the number of different configurations f
needing to be checked is exponential with regards to the hidden variables, and
as such, the method is computationally unfeasible.

To eliminate this problem, we use a heuristic composed of calculating P for
a single site i. Again, we need to find the segment value giving the highest value,
so the function becomes P (xi). This change, and the Z change, is reflected in
Equation 4.13.

P (i) = eN(i)+O(i)

N(i) = β
∑

ivj

I[xi = xj ]

O(i) =
∑

k

ln(Vc(xi, yi,k))

(4.13)

For each iteration, we select a number of sites randomly, iterating over the
segments, assuming that the hidden variable xi is that segment, and calculate
the probability using P (i). After the probabilities for all segments over all
selected sites have been calculated, the sites are set to new segments based on
which segment has the highest probability.

Over a series of iterations, as the changes from one configuration to the next
become less dramatic, the configuration will be converging to a local maximum
probability distribution. �

1 Randomly assign all sites to a segment
2 Estimate distributions of observed values
3 for k = 1 to nit ; Iterate iterations
4 for i = 1 to nsi ; Iterate sites
5 Randomly select site
6 for s = 1 to nse ; Iterate segments
7 Calculate probabilities based on Equation 4.13
8 Set segments of sites according to probabilities
9 Re−estimate distributions
 	

Listing 4.1: Pseudocode for MRF segmentation.
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5
Multinomial MRF

This chapter describes the extension of the segmentation MRF model into a
multi-layered Multinomial Markov Random Field (MMRF) model. Note that
this chapter was originally a part of the preceding report on this subject, Cluster
Analysis of Spatial Data[1].

5.1 Model

We will expand on the specialised MRF model from Section 4.4 in this section.
We need to alter the potentials so that they properly take layers into account.
As seen in Figure 5.1, the hidden variable from each layer of a site is connected
to the observed variable(s) of that site. Furthermore, the hidden variables of a
site are all connected. i.e. layer2 in the figure is connected to layer1 and layer3
and so on.

Yi,1..kYi,1..kyi,1..k

xi,1

xi,2

xi,3

layer1

layer2

layer3

Figure 5.1: A site in a multinomial MRF with three layers.
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5.1. MODEL

The observation potential of a site will then depend upon the configuration
of the hidden variable of each layer of that site. The model in Section 4.4 relied
solely on the configuration of a single hidden variable for each site and thus
the number of potentials for each site was the number of segments. In this
model the potentials will be stored in an n-dimensional matrix, where n is the
number of layers. The total size of a potential per site will be the product of
the number of segments for each layer.

x1,1

x1,2

x1,3

x4,1

x4,2

x4,3

x2,1

x2,2

x2,3

yy

x3,1

x3,3

y3,1..k

x3,2

yyy1,1..k

yyy4,1..k

yyy2,1..k

Figure 5.2: A multinomial MRF with three layers containing four sites.

The neighbourhood of a site will consist of independent neighbourhoods
for each layer. Each layer has a neighbourhood potential weight, βl associated
with it. In Figure 5.2, an MRF consisting of four sites and three layers is
depicted. In the figure, the neighbourhood potential for the site with an index
of 3, would be the sum of the Ising model from Section 4.2 applied to each
layer independently, with the appropriate weight applied.

See Equation 5.1 for the specialised multinomial MRF model, where l is
the number of layers and Li is a configuration of segment IDs in the different
layers for the site i.

P (f) = Z−1 · eN(f)+O(f)

Z =
∑

f∈F
eN(f)+O(f)

N(f) =
∑

i

∑

l

βl
∑

ivj

I[xi,l = xj,l]

O(f) =
∑

i

∑

k

ln(Vc(Li, yi,k))

Li = {xi,1, xi,2 . . . xi,l}

(5.1)
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CHAPTER 5. MULTINOMIAL MRF

5.2 Using the Multinomial Markov Random Field
Model

The approach for using the MMRF model is similar to that for using the seg-
mentation MRF model, seen in Section 4.4. The changes performed there are
likewise performed on the MMRF model, resulting in the equation seen in
Equation 5.2, where Li is an ordered set for a site, i, consisting of a segment
ID for each layer, i.e. Li = (xi,1, xi,2 . . . xi,l).

ln(P (Li)) ≈ N(Li) +O(Li)

N(Li) =
∑

l

∑

ivj

I[xi,l = xj,l]

O(Li) =
∑

k

ln(VC(Li, yi,k))

(5.2)

We take the natural logarithm of both sides of the equation. This is in
order to prevent an implementation issue, where the exponential of the sum of
the potentials would result in an overflow.

Furthermore, instead of P (xi), the equation uses P (Li), the set of all hidden
variables in the site i. This is because we no longer look at single segmentation
values, but the combination of segment values for the site i. It should be noted
that like the problem with the single layer segmentation model, the number
of combinations of segment IDs for the site is exponential with regards to the
number of layers. However, as this is not expected to rise above 10, this is not
expected to be a problem.

Additionally, the observation potential uses the set of hidden variables as
well, corresponding to the observation clique consisting of one observed variable
and all hidden variables in a site.

These changes do not affect the pseudocode to a great extent. Once the
score for each set of segment values has been calculated, the highest set is
chosen, and the hidden variables of the site are set according to this. The final
pseudocode can be seen in Listing 5.1. �

1 Randomly assign all sites to a combination of segments L
2 Estimate distributions of observed values
3 for k = 1 to nit ; Iterate iterations
4 for i = 1 to nsi ; Iterate sites
5 Randomly select site
6 for s = {1, 1 . . . 1} to {nse1 , nse2 . . . nsel} ; Iterate segment combinations
7 Calculate probabilities based on Equation 5.2
8 Set segments of sites according to probabilities
9 Re−estimate distributions
 	

Listing 5.1: Pseudocode for multinomial segmentation.
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6
Logistic Regression

In this section we will examine logistic regression and how we can use it to
define a model for observed variables that properly takes the configuration of
which segments a site belongs to in each layer into account.

Logistic regression is a method used in statistics often used to model the
probability of an event occurring given other data points. Logistic regression
requires a data set consisting of different cases with all relevant data, e.g. for a
heart disease study, the cases could contain data such as blood pressure, age,
etc, as well as whether or not the patient died within 10 years of the other
variables being collected.

Given this data we can select an attribute as being the dependent variable,
and a subset of the remaining variables as independent variables. Using logistic
regression we can use the data set and these categorisations to fit a set of
parameters to a logistic regression model.

Inserting these parameters into the logit equation seen in Equation 6.1,
where β0 is the intercept, a parameter used to weight a logit where all variables
are 0, xi is the value of the variable i, and βi is the parameter for the variable
i.

logit = β0 + x1 · β1 + x2 · β2 + ...+ xn · βn (6.1)

Given the logit, we can define an equation, as seen in Equation 6.2, to find
the probability of the dependent variable being present given the independent
variables, e.g. in the heart disease study, if patient death was selected as the
dependent variable, inserting blood pressure, age and all other variables for a
patient, this equation models the probability of that patient dying within the
next 10 years.

P =
elogit

1 + elogit
(6.2)

Logistic regression is able to handle binary variables, e.g. gender. This is
simply modelled as 0 for one gender, 1 for the other, and is otherwise handled as
a numerical variable. Logistic regression is also capable of handling multinomial
categorical variables, e.g. race or civil status. This is handled by splitting these
up into a binary indicator variable for each category, and these are then handled
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CHAPTER 6. LOGISTIC REGRESSION

as any binary variable. For an extension of the logit function to handle these
types of data, see Equation 6.3, where I[xi=j] is an indicator variable that is 1,
when xi is j, and 0 when it is not.

logit = β0 + I[x1=1] · β1,1 + I[x1=2] · β1,2 + ...+ I[xn=m] · βn,m (6.3)

We will establish a function by estimating the parameters that describes
the logistic regression for a plant, given the segment configuration of the site
that the plant belongs to. The segments can be given as both numerical and
categorical variables. Once the logistic regression model has been fitted, we
can calculate the probability of a plant, given a segment configuration. This
probability is then used in place of learned model as defined in Section 4.3.
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7
Histogram Initialisation

In this chapter we will propose several initialisation methods based on his-
tograms and selection heuristics. We will also illustrate the motivation for this.
Additionally, the selection heuristics for each method will be explained along
with the possible downsides to them.

A naive approach to initialisation is to set the configuration of segments for
each site randomly. When using our clustering algorithm for images with an
entirely random initial configuration, segmentations are likely to be unfocused
and wrong. This is mainly due to the fact that the clustering algorithm yields
a segmentation where the likelihood value has reached a local maximum, e.g.
when attempting to cluster the poster in Figure 7.1(a). If we configure our
clustering algorithm to use three segments, we expect that one segment will
contain the background and the differently coloured text will be contained in
a segment each, as illustrated in Figure 7.1(b). However, due to the way the
computer interprets the colour data, the noise in the background and letters
end up taking up the third segment, leaving only two segments for the two
types of text and the background. This effect is shown in Figure 7.1(c).

(a) The original
Menantes poster

(b) The expected clus-
tering of the Menantes
poster

(c) The results using
random initialisation

Figure 7.1: The Menantes poster problem illustrated
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CHAPTER 7. HISTOGRAM INITIALISATION

One solution to this is to make a heuristic for initialisation. For pictures, a
natural choice is a histogram solution. A histogram is a way to roughly divide
the pixels of an image into groups based on their colours. This is commonly
achieved by using the RGB values of each pixel, using a 3-dimensional matrix,
where each axis of the matrix corresponds to a colour, see Figure 7.2 for a
visual representation of this.

Figure 7.2: An illustration of how the histogram matrix corresponds to colours

Each axis is subdivided into a number of groups, for example for colour
values for red of 0 to 255, these may be 0 to 127 and 128 to 255, as is the case
in the visual representation. The amount of subdivisions along each axis is the
granularity factor.

Each pixel is then placed in the cell that corresponds to the colour values it
has. This is essentially a form of crude clustering, however there is no way to
directly control how many segments are produced. The image will be divided
into a number of groups dependent on the differences in colour. An image
consisting entirely of shades of the same colour could potentially all end up in
the same bucket, if the red axis is not divided into sufficiently small buckets.
This problem is illustrated in Figure 7.3. For this image, two histograms have
been created, with different bracket sizes. One has a granularity factor of 2.
This leaves every pixel in the image in the same bucket, as shown in Figure 7.4
and Table 7.1. With a higher granularity factor of 4, the image is subdivided
into two buckets, as shown in Figure 7.5 and Table 7.2. In both of the tables,
average colour is represented as ([red], [green], [blue]), with each colour ranging
from 0 to 255.

Assuming we can control the amount of divisions along each axis, we can
assume that for all images with at least n distinct colours, we can find n distinct
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Figure 7.3: An image where colour values are very close to each other.

Figure 7.4: The chosen buckets are shown visually on the left for a granularity factor
of 2. On the right, the segmentation corresponding to this initialisation is shown.

groups of pixels, where n is the number of segments we want. We can then use
these pixels as a basis for the learned colour model for the gaussian distribution.

However, the problem now becomes that for most images, we will have more
than n groups of pixels. This can be solved in a number of different ways, as
we will detail in the next sections.

7.0.1 Base Histogram

The naive approach is to simply select the n highest buckets, however this can
be a problem, if the two largest groups of pixels are similar in colour. An exam-
ple of this is using the base histogram method on the Menantes poster shown
in Figure 7.1(a). Here, a granularity factor of 3 means that the background is
divided into two buckets, as shown in Figure 7.6 and Table 7.3.

Average colour (R=63, G=63, B=63) Not applicable
Pixel count 16384 0

Table 7.1: A histogram with 2 brackets of 128.
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CHAPTER 7. HISTOGRAM INITIALISATION

Figure 7.5: The chosen buckets are shown visually on the left for a granularity factor
of 4. On the right, the segmentation corresponding to this initialisation is shown.

Average colour (31, 31, 31) (95, 95, 95)
Pixel count 8192 8192

Table 7.2: A histogram with 4 brackets of 64.

7.0.2 Distance Rating

One method to prevent picking similar groups is to rate buckets based on their
difference from already selected buckets. The simple way of measuring the
distance is to consider the histogram as a 3D grid. The distance between two

buckets is then the Manhattan distance, |



cr

cg

cb


−



cr

cg

cb




′

|, where cr, cg and cb is

the cell coordinates for the red, green and blue axes.

The first bucket is then chosen as normal, but each following bucket has
a rated histogram calculated, for which each cell is recalculated using Equa-
tion 7.1, where c and c′ is the value in a given cell and the adjusted value based
on distance respectively, w is a weight to alter the importance of the distance
and d is the distance to the nearest already chosen bucket. An alternative to
this is Equation 7.2, where m is the highest of the d values for all buckets.

c′ = c+ w ∗ d (7.1)

c′ = c ∗ (d/m) (7.2)

Average colour (198, 184, 157) (186, 150, 120) (208, 197, 175)
Pixel count 421489 92482 78241

Table 7.3: The brackets shown in Figure 7.6.
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Figure 7.6: The base histogram initialisation is shown on the left. On the right, the
segmentation corresponding to this initialisation is shown.

The benefit of this method is that for cases where the primary segments
are expected to be close to each other in terms of colours, it will not make this
impossible. However, for the first case, the weight w needs to be set carefully,
or buckets with an original value of 0 may become the highest rated bucket.
This is eliminated in the second case.

7.0.3 Distance Lockout

Another method is to simply not allow buckets within a minimum distance of
any selected bucket. This makes it impossible for adjacent buckets to be chosen,
eliminating the problem of slight colour differences taking up two separate
segments.

The downside to this method is that in images where the buckets are
grouped together, one or more segments may contain no pixels. Looking back
to Figure 7.5 and Table 7.2, whichever bucket is chosen first, if the lockout dis-
tance is even 1, this heuristic would force the system to set the second segment
to a bucket containing no pixels.
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8
Likelihood Value

In this chapter we will propose a measure that describes the likelihood of a
given segmentation. The motivation for this is that we need to estimate the
quality of a segmentation.

A given segmentation, created using an MRF clustering model, has a like-
lihood value, given by the Gibbs distribution for the MRF, as described in
Section 4.1. This equation, however, has some problems before it is useful for
comparison of segmentations.

The biggest issue is the Z variable, seen in Equation 8.1. This is the sum
of the likelihood values over all configurations of segment IDs, which makes it
exponential with regards to both the sites, layers and segments. This makes
it computationally unfeasible. Additionally, since we base this variable on the
currently learned logistic regression model, we cannot simply eliminate it, since
for two compared values, the Z variable will not be the same.

Z =
∑

f∈F
eU(f)

U(f) =
∑

i

∑

j

Vc(xi, xj) +
∑

i

∑

k

Vc(xi, yi,k)
(8.1)

However, given that our observation probabilities are not potentials, we
needed to divorce them from the Gibbs distribution, as shown in Equation 8.2.

P (f) = P (X,Y ) = P (X)P (Y |X) (8.2)

Since P (X) is the Gibbs distribution for an MRF ignoring the observed
variables, if we set β to 0, this becomes a constant, and can thus be eliminated.
This also eliminates the Z variable, leaving us with P (Y |X), which is our ob-
servation probability. P (X,Y ) given a β of 0, is then the sum of the observation
potential over all sites and plants. To prevent overflows, we take the natural
logarithm of this, leaving us with Equation 8.3. This value is proportional with
the likelihood value, given a β of 0, and can thus be used for comparisons.

ln(P (f)) ≈
∑

i

∑

k

ln(Vc(xi, yi,k)) (8.3)
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Figure 8.1: A representation of likelihood values over different segment configura-
tions, and how the algorithm moves from configuration to configuration towards a
local maximum.

When clustering, we expect this value to go up for each iteration, signifying
that the segmentation is getting better for each iteration. As we progress, the
changes in the value will become smaller, and finally the segmentation will
reach a local maximum. This behaviour is illustrated in Figure 8.1. Note that
the X-axis here represents different configurations of segments over all sites.

The likelihood value is the strength of modelling observation potentials with
a logistic regression model. For the multinomial model, we expect this value to
form a number of maxima of the same value, making it impossible to distinguish
which segmentations are better, as shown in Figure 8.2.
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CHAPTER 8. LIKELIHOOD VALUE

Figure 8.2: A representation of likelihood values over different segment configura-
tions for a multinomial clustering model.

Figure 8.3: A segmentation showing three vertical bars in one layer, and two hori-
zontal bars in the other.

This is due to how the multinomial model models the plants. If a given plant
is in all of the sites with a given segment combination, this plant contributes a
value of 1 for each site. That means that for an intended segmentation as seen
in Figure 8.3, any segmentation that, for each layer, splits the sites up in such
a way that the combined segmentation, as seen in Figure 8.4, is still modelled,
will have the same likelihood value, e.g. the segmentation seen in Figure 8.5
has the same likelihood value as the intended segmentation.

For the logistic regression model, we do not expect this behaviour to be
present, instead having one global maximum. We still expect there to be a
number of local maxima, however, it is possible to distinguish a good segmen-

Figure 8.4: The combined segmentation of the two layers of Figure 8.3.
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Figure 8.5: An example of a wrong multinomial segmentation. Note that the
combined segmentation of the layers is still that of Figure 8.4.

Figure 8.6: A representation of likelihood values over different segment configura-
tions for a logistic clustering model.

tation from a bad one using the value. An example of the values we expect are
shown in Figure 8.6.
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Part II

Implementation
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9
Architecture

The system is designed as a class library, with one main class, Data, containing
all other elements of the clustering. This is then inherited by two specialised
classes, ContinuousData and DiscreteData, for images and plant data respec-
tively, as seen in Figure 9.1.

The individual sites are contained in instances of the Site class in a list in
the Data class instance, each of which contain the observed variables for that
site.

Additionally, the neighbourhood potential and the learned model for the
observed variables are contained in a list of instances of specialised classes
inheriting from the Potential class in the Data instance, one for the neigh-
bourhood and one for each observed variable.

9.1 Data

The Data class is both the container for the data necessary to perform a segmen-
tation, and the starting point for the clustering method. Specialised types are
ContinuousData and DiscreteData. This specialisation is due to the unique
conditions for the two data types. For continuous data, multiple layer seg-
mentation is not of much interest within the scope of this project. Addition-
ally, for continuous data, the initialisation is handled by histogram methods.
For discrete data, categorical logistic regression is available. Additional infor-
mation for the two variable types is contained in continousVariables and
discreteVariables.

Cluster is used by the program using the library. It performs a clustering
on the given filename, using the settings given. This method simply initialises
the ClusterSingle method a number of times, choosing the result with the
highest likelihood value.

ClusterSingle performs a single clustering using the given file and settings.
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CHAPTER 9. ARCHITECTURE

Figure 9.1: Class diagram of our clustering solution.

9.2 Site

The Site class contains all information about a single site. Observed variables
for each site are contained in a list indexed by the ID of the observed variable,
in continuousValues and discreteValues respectively.

The Site class has two constructors, one with an XML node as a parameter,
basing the construction of the instance on the MRF data format, and one taking
a pixel as a parameter, for use with image data.

9.3 Potential

The Potential class contains the information necessary to calculate the neigh-
bourhood potential or the probability for an observed value. It is specialised
into two classes, NeighbourhoodPotential and ObservedPotential, the latter
of which is specialised further into the DiscretePotential and ContinuousPotential
classes. These specialised classes simply handle the appropriate types of data.

Calculate returns the value of the given potential or probability based on the
given site and segment IDs.

EstimateDistributions learns the model of the observed values.
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10
SPSS

We use the IBM SPSS Statistics Programmability Extension to access the
backend of SPSS in our code. The extension contains a class library that
we import into our project. This allows us to use mediator component that
contains functionality to submit SPSS syntax to the backend. This chapter
will describe how we have implemented SPSS and any troubles we have had.

10.1 Implementation

When designing our statistics module, we want to keep modularity and flexibil-
ity in mind. We have decided to create an abstract class, StatisticsBackend,
describing a generic backend for a statistics module which can be seen in Fig-
ure 10.1. Our SPSS module and any future statistics modules will implement
this interface. Below is a short description of each method in the SPSSBackend
class which implements the StatisticsBackend abstract class.

CalculateProbabilities will calculate the probabilities of each plant being
present in a site given a segment configuration, for all sites. Results will be
stored for later reference.

GetIntercept will retrieve the intercept of a plant, p.

GetProbability will retrieve the probability of a plant, p, being present in a
site s, given a specific configuration of segments in that site, i.e. the probability
P (p|L0 = 2, L1 = 3).

GetWeights will return all parameter weights for the logistic regression model
of a plant, p.

SPSSBackend initialises the internal components of the module.

Start will start the SPSS backend and set the desired encoding of files.

Stop will stop the SPSS backend.
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Figure 10.1: A class diagram of the SPSS statistics backend.

10.2 Submitting Data to SPSS

It is possible to submit data to SPSS in a variety of formats. Among these are
Excel spreadsheets, various formats of raw text and SPSS SAV data set files.
We will use tab delimited text files as these are the easiest to read and write.
Before we calculate the probabilities in each iteration, we write a tab delimited
text file containing all the necessary information for SPSS. The tabulator char-
acter will be used to separate columns. The format of the text file can be seen
in Listing 10.1, where \t indicates the tabulator character and m and n are the
number of layers and plants, respectively. Each line in the text file represents
a site in the dataset. A site’s identifier is represented by the ID column and is
only included to simplify debugging as it is not needed for the actual logistic
regression. The L1 to Lm columns represents the current segment that each
layer in the site is currently assigned to. The P1 to Pn columns are categori-
cal values that represent the presence of plants, where 1 means present and 0
means absent. An example of a format containing sites with ID 101 through
105, two layers and five plants can be seen in Listing 10.2. �

1 [ID]\t[L1]\t ...\ t[Lm]\t[P1]\t ...\ t[Pn]
 	
Listing 10.1: Format of the tab delimited text file.

�
1 ID\tL1\tL2\tP1\tP2\tP3\tP4\tP5
2 101\t2\t3\t1\t0\t1\t0
3 102\t3\t1\t0\t1\t0\t0
4 103\t2\t1\t1\t0\t0\t0
5 104\t3\t2\t1\t0\t1\t1
6 105\t3\t1\t1\t0\t0\t1
 	

Listing 10.2: An example tab delimited text file.

Once we have created our data file, we need to instruct SPSS to load it
as a dataset. In Listing 10.3 the syntax we use to load a tab delimited text
file into SPSS. FILENAME indicates the desired file name to load and VARIABLE
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DEFINITION indicates a defitinion of the variables expected to be found in the
specified file. The variable definition defines the names of the columns and the
order in which they occur. After each variable name, we declare the maximum
number of digits that can occur in the dataset before and after a decimal point.
A variable definition of the variables from the tab delimited text file example
from Listing 10.1 can be seen in Listing 10.4. �

1 DATA LIST FREE FILE=’[FILENAME]’ /[VARIABLE DEFINITION].
 	
Listing 10.3: SPSS Load Syntax

�
1 /ID (F5.0) L1 (F1.0) ... Lm (F1.0) P1 (F1.0) ... Pn (F1.0) .
 	

Listing 10.4: An example variable definition.

10.3 Executing the Logistic Regression

Once data has been loaded into SPSS, we want to fit each plant to a logistic
regression model. In order to extract results from SPSS when a calculation has
been completed, we need to use the Output Management System (OMS) of
SPSS. As when loading data into SPSS, we have several formats for outputting.
We will again choose tab delimited text files as they are straight-forward to
parse. The syntax for activating OMS and instructing SPSS to direct the
results of any subsequent commands to a text file can be seen in Listing 10.5,
where FILENAME indicates the output destination and SUBSEQUENT COMMANDS
indicates any result producing commands such as logistic regression. One thing
to note is that we instruct SPSS to only include the Parameter Estimates
result tables, which contain the only information we need. �

1 OMS /SELECT TABLES
2 /IF SUBTYPES=[’Parameter Estimates’]
3 /TAG = ’logistic’
4 /DESTINATION FORMAT = TABTEXT OUTFILE = ’[FILENAME]’.
5 [SUBSEQUENT COMMANDS]
6 OMSEND TAG = [’logistic’].
 	

Listing 10.5: Syntax for activating the OMS.

Now, for each plant we will instruct SPSS to calculate parameter estimates
that fit a multinomial logistic regression model. The syntax for this can be
seen in Listing 10.6, where PLANT ID is the plant we currently want to estimate
parameters for and LAYERS are the names of the layer columns in the dataset.

An example of an output file can be seen in Listing 10.7.
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�
1 NOMREG [PLANT ID] (BASE=LAST ORDER=ASCENDING) BY [LAYERS]
2 /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)

PCONVERGE(0.000001) SINGULAR(0.00000001)
3 /MODEL
4 /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR)

REMOVALMETHOD(LR)
5 /INTERCEPT=INCLUDE
6 /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI.
 	

Listing 10.6: Syntax for a multinomial logistic regression.

�
1 Parameter Estimates
2 B Std. Error Wald df Sig. Exp(B) 95% Confidence Interval

for Exp(B)
3 P174(a) Lower Bound Upper Bound
4 0 Intercept −5,032 ,661 58,003 1 ,000
5 [L0=0] 6,848 ,691 98,240 1 ,000 942,350 243,265 3650,438
6 [L0=1] ,569 ,759 ,562 1 ,453 1,767 ,399 7,823
7 [L0=2] 0(b) . . 0 . . . .
8 [L1=0] 1,778 ,588 9,150 1 ,002 5,921 1,870 18,744
9 [L1=1] 0(b) . . 0 . . . .

10 a The reference category is: 1.
11 b This parameter is set to zero because it is redundant.
 	

Listing 10.7: An output file showing an example Parameter Estimates table.

Once results have been written to a text file, we load them into our system.
We do this by simply opening the text and parsing the results with regular
expressions.

10.4 Retrieving Warnings and Errors

We want to be aware any warnings or errors that occur in SPSS while execut-
ing our commands. For this we can use the OMS in a similar manner as in
Section 10.3, except instead of selecting tables, we will be selecting logs and
warnings as seen in Listing 10.8. We will execute this command as soon as we
have initialised SPSS, so that any subsequent commands can be captured by
the OMS. �

1 OMS SELECT LOGS WARNINGS
2 /TAG = ’errorlog’
3 /DESTINATION FORMAT=TEXT OUTFILE=’[FILENAME]’.
4 [SUBSEQUENT COMMANDS]
5 OMSEND TAG = [’errorlog’].
 	

Listing 10.8: Syntax for activating the OMS.
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10.5. PERFORMANCE ISSUES

Since we are using the .NET plugin instead of executing commands directly
in SPSS, we found that there is a problem with the above approach. When
submitting commands to SPSS from our application, any error that occurs
results in an exception being thrown with error code 3 (meaning fatal error).
No additional information is supplied in the thrown exception and it can thus
be troublesome to debug the exact cause of an error. Since normally OMS is
able to capture and report errors, we need to find a way to retrieve detailed
error descriptions. When our application is executed in Visual Studio 2008, the
hosting process feature of Visual Studio enables us to catch exceptions at run
time and allows us to inspect the state of objects at the time the exception was
thrown. When SPSS throws an exception due to an error occurring somewhere
in our syntax, executions of our application is paused and we are able to inspect
the the Processor class, that mediates all communication with SPSS. We have
found that it has a static, non-public FileStream object, resultFile, where
any communication with SPSS is written. By examining the Name accessor of
resultFile, we can determine the location and name of that file, which is a
nonsensically named file in the temporary files folder of the current user. This
file contains all output produced by SPSS in an unfiltered format, including
verbose error descriptions of any errors encountered while executing syntax.

10.5 Performance Issues

We observed a performance issue when computing on the real world data set,
where the first iteration would complete within a matter of minutes and the
computation time for each subsequent iteration would increase significantly,
taking over a day within a few iterations. At first we wondered if it could
be caused by previous data remaining in memory and somehow affecting the
calculations on the new data. However, examining the memory footprint of
SPSS indicated that previous data was released as each iteration ended. We
then considered, if it could be a problem with our code, but profiling the code
showed that over 99 % of CPU time was spent waiting for the SPSS process.
Examining the performance of the code, we noticed that SPSS was able to fit
a logistic regression model for several plants within a second but this gradually
slowed down until at around 75 plants, each plant took a second to calculate.
We experimented with restarting the SPSS mediator component and we noticed
that the restart resulted in an immediate increase in performance. We were
not able to determine the exact reason for the performance decrease but we
were able to circumvent the problem by restarting the mediator process after
a fixed amount of plants had been processed.
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11
Histogram Initialisation

As described in Chapter 7, random initialisation often produced unsatisfac-
tory results in image segmentation. To combat this, a histogram heuristic was
implemented. The implementation of this is very simple, as shown in List-
ing 11.1. The pseudocode indicates that multiple histogram methods can be
used simultaneously. This is not the case, though this is merely a constraint
applied by us. The methods available are the base histogram method, additive
distance rating, multiplicative distance rating and distance lockout, described
in Chapter 7.
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1 Create histogram as a three−dimensional array of (b)x(b)x(b), where b is the

granularity factor
2 For each site
3 Find the colour bracket it fits into for each color
4 Add 1 to histogram cell with coordinates matching the three brackets
5

6 Select n best buckets, where n is the wanted number of segments
7 For i = 1 to n
8 If using Additive Distance Ranked Histogram
9 Rank buckets using Equation 7.1

10 For each bucket
11 Find distance, d, from nearest previously chosen bucket (or 0, if no

bucket has been chosen)
12 Find adjusted cell value using Equation 7.1
13 If using Multiplicative Distance Ranked Histogram
14 Rank buckets using Equation 7.2
15 Find maximum value of d, m, over all buckets
16 For each bucket
17 Find distance, d, from nearest previously chosen bucket (or 0, if no

bucket has been chosen)
18 Find adjusted cell value using Equation 7.2
19

20

21 If using Distance Lockout Histogram
22 Select highest bucket a minimum of l away from any chosen bucket, where

l is the lockout distance
23 Else
24 Select highest bucket
25

26 For each site
27 Find the colour bracket it fits into for each color
28 If the coordinates of the three brackets match chosen bucket, set to

segment based on this
29

30 Cluster as normal, ignoring any pixels which has not been set to a segment
 	
Listing 11.1: Pseudocode for histogram initialisation.
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Part III

Experimentation
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12
Histogram Initialisation

This chapter describes experiments performed with the histogram initialisation
methods. They will be separated into synthetic test cases, showcasing the
shortcomings of each different method, and real world image tests, proving the
effectiveness of the methods on real images.

Our motivation for performing these tests is based on results when at-
tempting to cluster real world images using random initialisation, e.g. those in
Section 12.2. In these pictures, the background took up a far higher amount
of pixels than either type of text. This meant that for all segments, the colour
model was heavily skewed towards the background. Due to the colour of the
background being heterogeneous, this meant that all segments had slightly dif-
ferent versions of the background. Therefore, the text, despite intuitively being
the most important, did not affect the segmentation as much as desired. In or-
der to remedy this, we have devised various initialisations based on histograms,
which should be able to mitigate these issues.

In all these tests, initialisations using histogram methods will be described
using a bar graph of the chosen buckets, showing the relative amount of pixels,
as well as the average colour of the pixels. Additionally, a table is constructed,
showing the average colour of each bucket in the format ([red], [green], [blue]),
with each colour between 0 and 255, and the total amount of pixels in each
bucket.

12.1 Synthetic Images

These test cases use constructed images to test the histogram initialisation
methods, to prove that they work as intended, as well as showcasing how each
method is not always ideal for different scenarios.

12.1.1 Gradient Image Tests

For the first set of tests, an image consisting of a gradient from a colour value
of (0, 0, 0) to (127, 127, 127), seen in Figure 12.1.
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CHAPTER 12. HISTOGRAM INITIALISATION

Figure 12.1: Gradient spanning the RGB values (128, 128, 128) to (255, 255, 255)

Base Histogram, Granularity Factor 2,4,8

This test showcases the problems associated with selecting different granularity
factors, GF . We will be using granularity factors of 2, 4 and 8. With GF = 2,
the axes will be separated into 0-127 and 128-255. With the gradient ranging
from 128 to 255, we expect all pixels will end up in the same bucket. For a
GF = 4, two buckets will be available in the range 128 to 255 and we expect
that pixels will be distributed evenly among the buckets. Lastly, for GF = 8
we expect the results to be similar to those of GF = 4, but since there are more
valid buckets, we expect the algorithm will run more iterations before reaching
a final result.

Results As expected, for GF = 2, the image initialised with all pixels in the
first segment, and all other segments were eliminated, as shown in Figure 12.2
and Table 12.1. For GF = 4, we observed an even split of the picture into
two segmentations, as shown in Figure 12.4 and Table 12.2. Additionally, over
multiple runs, the choice of which bucket is selected first was random. For
GF = 8, the histogram showed the image separated into 4 buckets, 2 of which
were chosen at random. Over multiple runs, 6 distinct initialisations became
apparent. An assortment of these are shown in Figure 12.6 and Table 12.3.
Full segmentations have been run, and all resulted in the same segmentation
as in the previous test, though it took more iterations of segmentation to get
to the final result for these initialisations.

In summary, these tests have highlighted the various problems that can arise
when using different granularity factors. If the granularity factor is set too low,
such as GF = 2 in our test, then the algorithm tends to place most pixels into
the same bucket. This is easily solved by increasing the granularity factor, as
seen in our tests with GF = 4 and GF = 8. However, as GF = 8 highlights,
choosing a large granularity factor can introduce quirks as well. In our case,
the consequences of this were not severe, as it merely took more iterations of
segmentation to get to the final result.

Average colour (63, 63, 63) Not applicable
Pixel count 16384 0

Table 12.1: Base histogram for the gradient image with a granularity factor of 2.
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12.1. SYNTHETIC IMAGES

Figure 12.2: Base histogram for the gradient image with a granularity factor of 2.

Figure 12.3: Result of the segmentation.

Figure 12.4: Base histogram for the gradient image with a granularity factor of 4.

Average colour (31, 31, 31) (95, 95, 95)
Pixel count 8192 8192

Table 12.2: Base histogram for the gradient image with a granularity factor of 4.

12.1.2 Colour Blocks Image Tests

The second set of tests is performed with an image composed of three blocks
of colours, of which two are similar in terms of RGB values, and the last one
is very different, seen in Figure 12.7.
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Figure 12.5: Result of the segmentation.

Figure 12.6: Base histograms for the gradient image with a granularity factor of 8.

Average colour (47, 47, 47) (79, 79, 79)
Pixel count 4096 4096

Average colour (111, 111, 111) (15, 15, 15)
Pixel count 4096 4096

Average colour (111, 111, 111) (79, 79, 79)
Pixel count 4096 4096

Table 12.3: Base histograms for the gradient image with a granularity factor of 8.

Base Histogram, Granularity Factor 4

This method shows the issue with the base histogram. The image used is com-
posed of three blocks of colour, two similar to each other, purple and blue, and
one very different, yellow. However, when simply selecting the biggest buckets,
the purple and blue blocks should be chosen, leading to a worse segmentation.

Results As expected, the initialisation chose the two biggest blocks. The
initialisation and resulting segmentation is shown in Figure 12.8. The final
segmentation does choose the yellow block, and segments the blue and purple
blocks together. This takes 9 iterations.
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Figure 12.7: An image composed of blocks of colour. RGB values are, from left to
right, (127, 0, 255), (0, 0, 255) and (255, 255, 0).

Figure 12.8: The result of the base histogram test of the colour blocks image. The
initialisation bar graph is shown to the left, the resulting segmentation to the right.

Additive Distance Ranked Histogram, Distance Weight 1600, Gran-
ularity Factor 4

This test shows how weighting the distance makes the more different colour
more important, resulting in a better segmentation.

Results As expected, the yellow colour block is chosen, as shown in Fig-
ure 12.9. While the final segmentation is the same, with this method, it is
achieved in a single iteration.

Multiplicative Distance Ranked Histogram, Granularity Factor 4

This test is expected to behave similar to the test above. The blue block will
still be chosen first. The bucket containing the purple pixels will then in the
rated histogram have a ninth of its original value, while the bucket containing
the yellow pixels will have the same value as before, resulting in the yellow
bucket becoming much higher.

Average colour (0, 0, 255) (127, 0, 255)
Pixel count 6400 4800

Table 12.4: Base histogram for the colour blocks image with a granularity factor of
4.
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Figure 12.9: The result of the additive distance ranked histogram test on the colour
blocks images. The initialisation bar graph is shown on the left, and the resulting
segmentation on the right.

Average colour (0, 0, 255) (255, 255, 0)
Pixel count 6400 3200

Table 12.5: Additive distance ranked histogram for the colour blocks image with a
granularity factor of 4 and a distance weight of 1600.

Results As expected, the segmentation is identical to that of the additive
distance ranked histogram test.

Distance Lockout Histogram, Lockout Distance 3, Granularity Factor
4

As the previous test, this test should yield the same result as the additive
distance ranked histogram test. With a lockout distance of 3, the bucket con-
taining the purple pixels should not be possible to choose, resulting in the
algorithm choosing the bucket with the yellow pixels.

Results As expected, the segmentation is identical to that of the additive
distance ranked histogram test.

12.1.3 Conclusion

We have verified that in our synthetic data experiment, our histogram algo-
rithms worked as expected. We have also illustrated the pitfalls of using an
inappropriate method or parameters on an image.

12.2 Real World Images

These tests show how the different methods handle real world images with
different settings. The intention is to show that each method can perform
better or worse than the other methods, given the right image.
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12.2.1 Menantes Poster

For the first set of tests, the image used is the Menantes poster, shown in
Figure 12.10.

Figure 12.10: Menantes poster, an aged poster with faded text.

Random Initialisation

This is included as a baseline test to compare the histogram initialisation meth-
ods against.

Results The initialisation bears no resemblance to the poster. The final seg-
mentation has not identified the two text types, instead separating the back-
ground into two segments. See Figure 12.11 for the results.

Base Histogram

This is used to show the effectiveness of the histogram test as opposed to
the random initialisation test, as well as to provide a baseline for the other
histogram methods.

Parameters Runs will be performed with a granularity factor of 2, 3 and 4.

Results The results are shown in Figure 12.12. Surprisingly, for GF = 2,
the initialisation is nearly perfect. With GF = 3, the background is separated
into two segments, and with GF = 4, parts of the background takes up all
three segments. In both of these cases, the resulting segmentation adopts this
separation of the background, leading to a worse result.
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Figure 12.11: Different results of the Menantes random initialisation test. The top
row shows each initialisation, the bottom row shows the respective final result after
segmentation.

Average colour (198, 184, 158) (171, 111, 80) (83, 73, 55)
Pixel count 548466 62910 60915

Average colour (198, 184, 157) (186, 150, 120) (208, 197, 175)
Pixel count 421489 92482 78241

Average colour (199, 183, 157) (208, 196, 172) (184, 171, 144)
Pixel count 323799 120918 103376

Table 12.6: Different results of the Menantes base histogram test.

Additive Distance Ranked Histogram

This test demonstrates the additive distance ranked histogram using different
weights.

Parameters The granularity factor will be set to 3 and 4. GF = 2 is excluded
due to the precision of the base histogram method, and as such, the heuristics
hold little interest for that case. Distance weights will be 10000 and 15000 for
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12.2. REAL WORLD IMAGES

(a) GF = 2 (b) GF = 3 (c) GF = 4

Figure 12.12: Different results of the Menantes base histogram test. The top
row shows each initialisation, the bottom row shows the respective final result after
segmentation.

GF = 3, and 15000 and 20000 for GF = 4. These numbers were chosen as
representative based on a wider selection.

Results In both cases, only the results on either side of the distance ranking
taking effect are shown. Before the switch, both initialisations were identical
to the base histogram samples. After the switch, the initialisation for GF = 3
and a weight of 15000 separated the poster into the two colours of text and
the background, as intended. This is shown in Figure 12.13 and Table 12.7.
For GF = 4, no such segmentation was found, though one of the segments
previously assigned to a part of the background is assigned to the text. This
is shown in Figure 12.14 and Table 12.8.

Average colour (198, 184, 157) (186, 150, 120) (208, 197, 175)
Pixel count 421489 92482 78241

Average colour (198, 184, 157) (70, 61, 44) (186, 150, 120)
Pixel count 421489 36623 92482

Table 12.7: Different results of the Menantes additive distance ranked histogram
test for GF = 3. The initialisations for distance weights 10000 and 15000 are the top
and bottom, respectively.
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Figure 12.13: Different results of the Menantes additive distance ranked histogram
test for GF = 3. The top row shows the initialisations for distance weights 10000
and 15000 from left to right, the bottom row shows the respective final result after
segmentation.

Average colour (199, 183, 157) (208, 196, 172) (184, 171, 144)
Pixel count 323799 120918 103376

Average colour (198, 184, 157) (56, 48, 31) (208, 196, 172)
Pixel count 323799 36623 120918

Table 12.8: Different results of the Menantes additive distance ranked histogram
test for GF = 4. The initialisations for distance weights 15000 and 20000 are the top
and bottom, respectively.

Multiplicative Distance Ranked Histogram

This test shows the results of the multiplicative distance ranked histogram
on the Menantes poster. As this method was developed for this image, this is
expected to result in an equal or better segmentation than the additive distance
ranked histogram.

Parameters The granularity factor will be set to 3 and 4.

Results For GF = 3, the result was identical to the additive distance ranked
histogram initialisation for the same granularity factor and a weight of 15000.
For GF = 4, the heuristic chose to assign the second segment to the red text
instead of the black. These results are shown in Figure 12.15 and Table 12.9,
along with the resulting segmentations.
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Figure 12.14: Different results of the Menantes additive distance ranked histogram
test for GF = 4. The top row shows the initialisations for distance weights 15000
and 20000 from left to right, the bottom row shows the respective final result after
segmentation.

For GF = 3, the segmentation was identical to that of the additive distance
ranked histogram test. For GF = 4, due to the inferior initialisation, the
resulting segmentation separated the background into two segments.

Average colour (198, 184, 157) (70, 61, 44) (186, 150, 120)
Pixel count 421489 36623 92482

Average colour (198, 184, 157) (171, 112, 81) (208, 196, 172)
Pixel count 323799 53856 120918

Table 12.9: Different results of the Menantes multiplicative distance ranked his-
togram test. The initialisations for GF = 3 and GF = 4 are the top and bottom,
respectively.

Distance Lockout Histogram

This shows the distance lockout histogram method on the Menantes poster.
This method is intended for use when two colours are very fairly close, and so
abundant in the image as to overshadow all other colours. The Menantes poster
does fit this somewhat, due to the background being split for most granularity
factors.
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Figure 12.15: Different results of the Menantes multiplicative distance ranked his-
togram test. The top row shows the initialisations for GF = 3 and GF = 4 from left
to right, the bottom row shows the respective final result after segmentation.

Parameters The granularity factor will be set to 3 and 4. Distance lockout
will be 1, as all other distance lockouts for both granularity factors simply
eliminated the third segment.

Results For both cases, both colours of text were identified along with the
background. Due to the good initialisation, for both GF = 3 and GF = 4, the
resulting segmentation showed a separation of background and both colours of
text. These results are shown in Figure 12.16 and Table 12.10.

Average colour (198, 184, 157) (70, 61, 44) (139, 101, 71)
Pixel count 421489 36623 29827

Average colour (198, 184, 157) (171, 112, 81) (82, 73, 52)
Pixel count 323799 53856 22308

Table 12.10: Different results of the Menantes distance lockout histogram test. The
initialisations for GF = 3 and GF = 4 are the top and bottom, respectively.

12.2.2 Conclusion

Unfortunately, the image we used had a very simple solution to the best
method, namely the base histogram with GF = 2. However, disregarding
this, we found that the different methods gave good results. For most meth-
ods, GF = 4 was unsalvageable, but with the distance lockout, even at this GF,
the segmentation was good. Generally, the distance ranked histogram methods
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Figure 12.16: Different results of the Menantes distance lockout histogram test.
The top row shows the initialisations for GF = 3 and GF = 4 from left to right, the
bottom row shows the respective final result after segmentation.

should be utilised in scenarios where the distance is large between the buckets
that would intuitively be deemed as good choices. Additionally, the distance
lockout histogram method should be used in scenarios, where two adjacent
buckets would be allocated most pixels using the other methods proposed here,
leaving a more appropriate bucket unchosen. Changing the parameters of the
distance ranked histogram methods would not always be able to solve this
problem but the distance lockout histogram method would.
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13
Multi-Layer Geofloral Segmentation

In this chapter, experiments will be run with two multi-layer segmentation
methods, the multinomial method described in the previous report[1] and the
logistic methods described in Chapter 6, on both synthetic and real world data
to show the improvement of the new methods over the old method.

13.1 Synthetic Data Experiments

In this section we will describe the experiments we will be performing on the
synthetic data sets from Section 13.1.1. Each test will be run with three data
sets, the probability matrix model, the logistic model and a numerical model.

For each of these tests, 20 clusterings will be performed. These will be sep-
arated into two categories, reflecting the original segmentation, shown in Fig-
ure 13.1, and not reflecting this. This is referred to in the chapter as "correct"
and "otherwise". Two criteria for a segmentation being correct are established.
The first criterion is a visual confirmation, the resulting segmentation should
in the 3-segment layer show three vertical bars and in the 2-segment layer show
two horizontal bars. The second criterion is a stability measure, a measure
of how many site configurations match those of another segmentation, in this
case the original segmentation. We calculate this using the stability measure
algorithm defined in Appendix A. A result must have a stability measure above
0.9 to be considered correct.

When likelihood value or value is noted in result analysis, this is to the log of
the likelihood value, computed using Equation 13.1. We take this value instead
of the likelihood value itself due to underflow problems. For more information
on how we reached this equation, see Chapter 8.

ln(P (f) =
∑

i

∑

k

ln(Vc(xi, yi,k)) (13.1)

13.1.1 Synthetic Data Sets

In this section we will describe the synthetic data sets that our experiments will
rely on. Synthetic data will be used to illustrate how our algorithms behave
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when introduced to data sets that have specific properties, i.e. a data set
that describes two layers with different segmentations. The purpose of these
experiments on synthetic data is to provide empirical proof that our algorithms
work as intended before moving on to data from the real world.

Generating Synthetic Geofloral Data

When we generate the synthetic data sets, we assign the presence of plants to
regions according to distribution types. We have defined a distribution type as
a matrix consisting of probabilities that will be used when assigning plants. The
matrix will contain all possible segment combinations. For example, consider
a data set with two layers containing three and two segments, respectively. A
distribution type for this data set could look as in Table 13.1.

L0
0 1 2

L1 0 p0,0 p1,0 p2,0

1 p0,1 p1,1 p2,1

Table 13.1: Probability matrix example.

We determine the presence of a plant by using the probabilities of the
distribution type that describe this plant. As we iterate over all sites, we look
up the probability, p, in the distribution type and use this to determine whether
or not the plant exists in this site. Pseudocode for our data set generation can
be seen in Figure 13.1. �

1 For each distribution type, dt
2 For each site, s
3 For i = 1 to 15
4 Look up probability, p, in dt based on which segments s belongs to
5 Generate random number, rand, between 0 and 1
6 if rand < p
7 Assign planti,dt as present in s
 	

Listing 13.1: Pseudocode for generating a data set.

The generated data sets will all consist of two layers, where the sites in one
layer will be distributed between three segments vertically and the sites in the
other layer will be distributed horizontally, as illustrated in Figure 13.1. The
purpose of the two layered data sets is to examine the quality of the clusterings
produced by using the different layering models on them.

Direct Probability Matrix Data

This data set will consist of five distribution types that each prefers one segment
in one layer. Three of these will prefer one of the vertical segments illustrated
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Figure 13.1: The original segmentation used to generate the data sets.

in Figure 13.1. The remaining two distribution types will prefer one of the
horizontal segments illustrated in Figure 13.1. We will create variations of
this data set as we want to gradually introduce more noise. An example of a
distribution type preferring segment 0 in layer 0 is shown in Figure 13.2, where
p is the given accuracy level, one of 1.0, 0.9, 0.8, 0.7 and 0.6.

L0
0 1 2

L1 0 p 1− p 1− p
1 p 1− p 1− p

Table 13.2: Probability matrix example.

The different values for p introduces noise in the data sets. This will be
done for these data sets in order to evaluate how much noise our layered models
are capable of handling before producing low quality segmentations.

Since randomness is involved, there is a possibility that a generated data set
does not correspond well with the probabilities for each distribution type. In
order to decrease the likelihood of that occurring, we add 15 plants to the data
set for each distribution type. Thus, sites in a data set that has 5 distribution
types will in actuality contain 75 plants. Note that the 75 plants still only
describe 5 distribution types.

For each synthetic data set, we will create a reference file that details the
original segmentations of the layers. This is useful when examining how close
a given clustering result is to the original segmentation.

Logistic Distribution Data

Each distribution type in this data set will depend on both layers and the
probabilities for each will be based on a logistic regression model. We want
a different model for each distribution type, and we want them to describe
distribution types that prefer different segment configurations. Each model will
be described by a set of parameters, an intercept, and one parameter for each
segment in each layer. One such distribution type can be seen in Table 13.3.
These values are plotted into Equation 13.2 for all combinations of segments.
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In Table 13.4 we have calculated the probabilities for the example distribution
type.

β0 βL0,S0 βL0,S1 βL0,S2 βL1,S0 βL1,S1

0 2 -2 -2 2 -2

Table 13.3: Parameters for a logistic distribution model preferring segment 0 in
layer 0 and segment 0 in layer 1.

L0
0 1 2

L1 0 0.982 0.5 0.5
1 0.5 0.018 0.018

Table 13.4: Probability matrix example for logistic distribution.

logit = β0 + βL0,Sx
+ βL1,Sy

(13.2)

Numerical Distribution Data

The numerical distribution model works much like the logistic distribution type,
with the key difference being that the model is numerical instead of categorical.
Due to this, each layer only has one parameter, as shown in Table 13.5. Two
distribution types are created, one spanning over layer 0, and one spanning over
layer 1. The calculations for turning these into probabilities for use is slightly
different, as instead of having a parameter for each, the parameter for the layer
is multiplied by the segment ID, as shown in Equation 13.3. This results in the
probabilities shown in Table 13.6.

β0 βL0
βL1

-2 2 0

Table 13.5: Parameters for a numerical distribution model depending on layer 0.

L0
0 1 2

L1 0 0.119 0.5 0.881
1 0.119 0.5 0.881

Table 13.6: Probability matrix example for numerical distribution.

logit = β0 + βL0
· Sx + βL1

· Sy (13.3)
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13.1.2 Multinomial Two Layer (3, 2) Segmentation

The purpose of this test is to examine how well our multinomial layering model
works on our synthetic data sets. This is provided as a baseline to compare
against, and is not expected to perform well based on the experimentation done
in the previous report[1].

Results None of the results were correct, across all data sets. This, however,
does not mean that the multinomial method cannot return the original segmen-
tation, only that the probability of this happening is slim at best. Additionally,
we can see that for the matrix model with p = 1, the incorrect segmentations
have a likelihood value of 0, this indicates a perfect segmentation. This means
that even if it returned a correct segmentation, this could not have a higher
likelihood value. An example of a segmentation with a high likelihood value is
shown in Figure 13.2.

Figure 13.2: An example of a result of the multinomial model on the logistic dat
set.

p = 1 Logistic Numerical

# Correct (of 20) 0 0 0
Highest value, correct N/A N/A N/A
Lowest value, correct N/A N/A N/A
Highest value, otherwise 0 -19660.296 -30142.9
Lowest value, otherwise -8811.076 -23801.189 -30485.284

Table 13.7: Results for the multinomial two layer test.

13.1.3 Logistic Two Layer (3, 2) Categorical Segmenta-
tion

In this test, we will run a logistic regression with two layers on the data sets.
Since the original data sets were all based on a two layer model, we expect that
we will be able to approximately reproduce the original segmentation. For the
data sets with noise, we expect that the results produced will gradually become
worse as the noise increases.
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Results For the probability matrix data sets, from a p of 1 to 0.8, the original
segmentation as seen in Figure 13.1 is reproduced perfectly. At a p of 0.7 and
below, the segmentation starts to be affected by noise, as seen in Figure 13.3.
As such, we will focus on the results for the p values 0.8 and 0.7.

Not all results produced the original model, however this was reflected in
a lower value. This is shown in Table 13.9. Examples of segmentations not
reflecting the original model is shown in Figure 13.4. The reason for these
results is that the algorithm works by looking for the local optimum based on
the initialisation. However, there are several local optima, so the algorithm is
not guaranteed to find the global optimum. The lower likelihood values allow
us to perform several runs, and then pick the highest scoring result as the
correct one.

Figure 13.3: Examples of the results degrading for the p = 0.7 model.

p = 0.8 p = 0.7 Logistic Numerical

# Correct (of 20) 4 6 7 5
Highest value, correct -21204.462 -25687.584 -19783.617 -30213.728
Lowest value, correct -21204.462 -25700.7 -19912.104 -30228.431
Highest value, otherwise -22124.804 -25996.11 -21677.922 -30320.508
Lowest value, otherwise -23014.636 -26203.037 -23474.905 -30438.311

Table 13.8: Results for the logistic two layer categorical test.

13.1.4 Logistic Two Layer (3, 2) Numerical Segmentation

In this test, we run the logistic regression as a numerical segmentation. We do
not expect this to do well on the categorical sets, but the numerical sets should
reproduce the three tiers of plants as a segmentation.

Results In this test, for the probability matrix model, the segmentation
started to degrade earlier, at p = 0.8. Due to this, we will focus on the p
values of 0.9 and 0.8 for this test. For the p = 0.9 data set, the only correct
result did not find a three tiered model. For the p = 0.8 data set, several
results had a higher value than the correct results despite not being a correct
segmentation. This is shown in Figure 13.6. All such results were found to be
close to the original segmentation, but having eliminated the middle segment.
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Figure 13.4: Examples of the algorithm not reflecting the original model. Shown
are the two layers of the incorrect segmentation with the best value for the p = 0.8
model above and the same for the p = 0.7 model below.

For the numerical data set, this behaviour was not present, and in all seg-
mentations representing the original segmentation, the three tiers were also
reproduced. Slight noise was present in the second segment, which may be
attributed to no plants being close to a probability of 1 for that segment.

p = 0.9 p = 0.8 Logistic Numerical

# Correct (of 20) 1 2 3 10
Highest value, correct -17410.121 -23326.62 -23714.789 -30268.719
Lowest value, correct -17410.121 -23361.778 -24258.447 -30270.395
Highest value, otherwise -17620.916 -23258.869 -23787.384 -30615.567
Lowest value, otherwise -18818.017 -23929.631 -25273.17 -30621.211

Table 13.9: Results for the numerical logistic two layer categorical test.

13.1.5 Logistic Single Layer (6) Categorical Segmentation

In this test, we show that it is possible to show a multi-layer segmentation in a
single layer with a segment count equal to the product of the segment counts
for each layer in the original segmentation.

Results For the probability matrix data set, we again found that the algo-
rithm found the correct segmentation up to p = 0.8, and began to deteriorate
at higher noise levels. For all data sets, the combined segmentation of the 3
segment and 2 segment layers was found, and had a similar likelihood value
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13.1. SYNTHETIC DATA EXPERIMENTS

Figure 13.5: A result, where the first layer does not represent a three-tiered struc-
ture. The darkness of the colour represents the ordering of the segments.

Figure 13.6: A result, where the likelihood value of an incorrect segmentation is
higher than any correct segmentation.

to that of the multi-layer segmentation, as expected. Key data for the results
are shown in Table 13.10, and an example of the segmentation is shown in
Figure 13.7.

p = 0.8 p = 0.7 Logistic Numerical

# Correct (of 20) 8 10 4 5
Highest value, correct -21122.732 -25587.077 -19660,296 -30134.102
Lowest value, correct -21310.436 -25595.557 -19776,37 -30167.078
Highest value, otherwise -21852.727 -25803.17 -21285,945 -30186.969
Lowest value, otherwise -22724.238 -26080.505 -25162,264 -30340.318

Table 13.10: Results for the logistic single layer categorical test.

13.1.6 Conclusion

As expected, the multinomial method did not provide any correct results, and
there were indications that any correct results found by chance would not be
distinguishable using the likelihood value. For the logistic regression model,
either categorical or numerical, with the right data, the results were clear, the
methods work. An unexpected error was found in that the numerical method,
using non-numerical data, tended to eliminate one segment in the first layer
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CHAPTER 13. MULTI-LAYER GEOFLORAL SEGMENTATION

Figure 13.7: A result of the single layer 6 segment segmentation.

to fit the data found, leading to incorrect segmentations with higher likelihood
values. With the numerical data set, this behaviour was not present.

13.2 Real World Experiments

In this section, we perform multi-layer segmentations with 2 and 3 layers on
the Swiss plant data set. For both these, the segmentation will be done with
a multinomial model as described in Chapter 5 and a logistic categorical and
numerical model as described in Chapter 6. For all these, 20 runs will be
performed, and the likelihood value, as defined in Chapter 8, will be used
to determine which results will be focused on. The results of all the tests
will be compared visually to maps of known climatological factors, shown in
Appendix B or cited directly when relevant.

13.2.1 Real World Data Set Modifications

The data set used consists of 2398 plant species and is a subset of the data set
in Section 2.2. Certain plants in the original data set were only classified as
rare or frequent before a certain year in regions. Since we only use plants that
are classified as frequent in the regions, these were eliminated completely. We
cannot fit parameters for a logistic regression model with an intercept based on
a plant that is not present in any regions, because it will have only one valid
value (absent). We have thus excluded any plants that are not classified as
frequent in one or more regions.

13.2.2 Two Layer (3, 3) Segmentation

In this test we will be using a configuration consisting of two layers, both
containing three segments.

Results Table 13.11 contains the highest and lowest likelihood values for each
model.

The multinomial method had the lowest likelihood compared to the other
models. In Figure 13.8 and Figure 13.9, the best and worst result for the
multinomial tests are displayed. Both results failed to present any relevant data
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Multinomial Categorical Numerical

Highest value -405937.186 -278341.644 -296552.998
Lowest value -433973.865 -288413.695 -308135.866

Table 13.11: Results for the two layer test.

and are mostly meaningless. There is no discernible difference between the best
and worst result and we expect the higher likelihood value is due to random
chance. While there are faint indications of mountains, the noise overpowers
any meaning. As with the synthetic testing, the multinomial method is not able
to separate the different factors of the data, and instead each layer becomes a
mixture of different parameters, resulting in what seems like random noise.

(a) Layer 0 (b) Layer 1

Figure 13.8: The best result for the (3, 3) multinomial segmentation.

(a) Layer 0 (b) Layer 1

Figure 13.9: The worst result for the (3, 3) multinomial segmentation.

The result for the categorical model with the highest likelihood value can be
seen in Figure 13.10. The two layers appear to be describing different factors
of the data. In Figure B.1(b), an above/below tree line separation is depicted,
which resembles layer 0. The red segment appears to describe the regions above
the tree line, the green and blue segment seem to describe the regions below
the tree line. We need to understand which aspects of the regions that the
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CHAPTER 13. MULTI-LAYER GEOFLORAL SEGMENTATION

green and blue segment describe. In Figure B.1(a), a topographical map of
Switzerland can be seen. It appears that the green segment describes regions
below the tree line with nearly no elevation. Blue seems to describe regions
below the tree line with an elevation higher than those regions in the green
segment and less than those regions in the red segment. In regards to layer 1,
we are unsure which factors are described. It is possible that more factors than
one are being depicted in the segmentation. Looking at the average annual
temperature of Switzerland[8], it appears the blue segment describes regions
where the average annual temperature is around 8-10 ◦C. The green segment
appears to be describing regions with an average annual temperature of around
2-4 ◦C.

(a) Layer 0 (b) Layer 1

Figure 13.10: The best result for the (3, 3) categorical segmentation.

Finally, the results of the numerical model can be seen in Figure 13.11.
Looking at the average precipitation[9], it appears that layer 0 approximately
fits this although it might also be describing other factors that we are unable
to identify. Referring again to the topographical map in Figure B.1(a), layer 1
appears to be descriptive of this.

(a) Layer 0 (b) Layer 1

Figure 13.11: The best result for the (3, 3) numerical segmentation.
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13.2.3 Three Layer (3, 3, 3) Segmentation

This test is a segmentation with three layers of three segments each.

Results The likelihood values for all three models are shown in Table 13.12.
The first thing we notice is that for both logistic models, the likelihood values
have gone up. This is due to having more layers, and as such, more parameters
to fit, resulting in a closer fit than with only 2 layers. This behaviour is not
present for the multinomial model.

Multinomial Categorical Numerical

Highest value -425282.323 -257595.446 -267004.937
Lowest value -440968.815 -269318.291 -277660.525

Table 13.12: Results for the three layer test.

For the multinomial model, as with the previous test, no meaningful seg-
mentation was found. The highest likelihood result is seen in Figure 13.12.

(a) Layer 0 (b) Layer 1

(c) Layer 2

Figure 13.12: The best result for the (3, 3, 3) multinomial segmentation.

For the categorical results, the results were far better, although they require
manual interpretation. The highest likelihood result is seen in Figure 13.13. For
this, layer 0 seems to be similar to the precipitation map[9], or the groundwater
hardness map[10]. Layer 1 is very similar to the topographical map seen in
Figure B.1(a), and layer 2 matches the groundwater hardness map again. This
repetition of one factor is unlikely with a high likelihood value, but it may be
because we misinterpreted one of the layers, or simply because another factor
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depends on the same underlying cause as the groundwater hardness, leading to
two factors making two sets of plants favour the same regions.

(a) Layer 0 (b) Layer 1

(c) Layer 2

Figure 13.13: The best result for the (3, 3, 3) categorical segmentation.

For the numerical results, the results were again better than the multinomial
results. The highest likelihood result is seen in Figure 13.14. In this, layer 0
matches the temperature map[8]. Layer 1 does not match any of the climate
maps we have seen, however this does not mean the result is meaningless. To
better understand what causes this layer, it would be interesting to look into
the characteristic plants of this segment, this approach is described in more
detail in Appendix C. Given a set of plants, a domain expert could then look
at the common characteristics of these plants, to determine what the map is
showing, if anything. This, however, is outside the scope of this project.

Finally, layer 2 is a north/south division, something that is in most of the
three layer numerical segmentations. Again, this does not match any climate
data we know of, however given how often it shows up, it is likely that this
represents some climate factor we do not know of. Again, this would require a
domain expert looking at the plants to determine the cause of this segmenta-
tion.

13.2.4 Conclusion

For multinomial results, the results found in the previous project holds, the
method does not produce meaningful segmentations. For categorical and nu-
merical results, it is possible to find approximate matches with climatological
maps, indicating that the segmentations are meaningful. However, the ap-
proach of trying to match the segmentations to know climatological factors is
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Figure 13.14: The best result for the (3, 3, 3) numerical segmentation.

not the right way to interpret these results. For a more scientific approach,
the characteristic plants would be found using the method described in Ap-
pendix C, and the common characteristics of what would make these plants
thrive can then be found. Based on these findings, the segmentations could
then be used to find and map unknown climatological factors.
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14
Conclusion

The purpose of this report was to propose a method for clustering based on a
multi-layer spatial clustering model along with initialisation methods.

Regarding initialisation, the transition from theory to implementation was
straight-forward. The initially proposed naive model, base histogram, in Sec-
tion 7.0.1, did not live up to our expectations and more specialised bucket
selection heuristics were proposed.

These proved to be capable of handling the image tests, though a manual
selection of the method is still necessary, as each method is highly dependent
on the image used.

The multi-layer approach based on a logistic regression model was a vast
improvement over the multinomial model implemented in the previous report.
We tried multiple statistics libraries before settling on SPSS and found that few
libraries provided results that were applicable to our project. We had issues
with SPSS in terms of error reporting and performance but once resolved, SPSS
provided better than results than any other library we examined.

For the synthetic data, the results were very clear and the logistic regression
model provided the expected results even when subjected to a significant noise
level. For the real world data, the results were less clear due to the fact that it
requires extensive of the domain, i.e. the geofloral aspects of Switzerland and
the countless climatological factors that affect these. Certain segmentations
however were clearly understandable, e.g. the topographical segmentation,
and we are confident that the results, given proper analysis by domain experts,
would prove to be useful in understanding certain geofloral aspects.

In conclusion, we believe that we have succeeded in proposing both better
initialisation methods for images as well as a multi-layer segmentation model
providing meaningful results.
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15
Future Development

This chapter outlines some of the possible topics for future development on this
topic.

Multithreading The current implementation splits the computation up into
two threads, a GUI thread and a worker thread. Optimally, to take advantage
of all the cores in a machine, there should be enough worker threads handling
part of the segmentation to provide work for all cores. This becomes especially
relevant if the method is to be usable on computer clusters.

GPU Support While this was also mentioned in the previous report, it is still
a viable research topic. If this is to be useful on a personal computing level,
taking advantage of the GPU often present in modern PCs would provide an
avenue for major speedups.

Multi-Layer Support for Images At the time of the project completion, the
implementation sets a constraint in the code that images can only segment on
one layer, as the histogram initialisation was the focus of the work for images.
However, SPSS is able to handle numeric data, and the constraint can be re-
moved, to try and see what this could accomplish for image segmentation. The
expectation is that for a three-layer segmentation, the method would segment
based on one colour, red, green and blue, for each layer.

Analysing Results With Help From Domain Expert The results found in
Section 13.2 were analysed by visual comparison with known climatological
factors. To make the results of this project more relevant to the plant research
domain, it would be interesting to go through the results looking at which plants
contribute most to the segmentation using mutual information calculations, as
shown in Appendix C, and what these plants have in common in terms of what
would make them thrive in a region. However, this is not a computer science
project, and would be best left in the hands of experts in the field of flora.

Automatic Learning of Best Parameters At this time, a set of layers and
beta values needs to be supplied for the segmentation. Using multiple restarts
and the EM algorithm[11], it would be possible to find the best set of parameters
for the data set.
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Automation of Initialisation Method Selection As the implementation of
histogram initialisation stands, the method needs to be selected by hand. Using
multiple restarts, a logistic regression model for continuous values and likeli-
hood values, it would be possible to do multiple restarts using different methods
and parameters for initialisation to find the best result. Like the learning of
segmentation parameters, this could be done with the EM algorithm.

Heuristics for Multiple Restarts While multiple restarts are not used in the
report, it is currently implemented in such a way that the number of intended
runs is supplied, and the method returns the segmentation with the highest
likelihood value. It would be beneficial to develop a heuristic that looks at how
different the likelihood values and similarity of the segmentations done so far
during the run are, to estimate the probability of seeing a radically different
segmentation, and then determining whether or not the run should terminate.

Soft Clustering This report determines a method for hard clustering, i.e. for
each iteration, each site is set fully to one segment configuration. In cases where
the probabilities of segment configurations are close to each other, this does
not fully describe the data. Instead, the segment configurations could simply
be set to the probabilities for each one, and these could then be used in the
next iteration.
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A
Similarity of Segmentations

This chapter describes a method for comparing two segmentations, where the
segmentations are assumed to have the same layer configuration in terms of
number and ordering of layers, and number of segments in each layer. This was
constructed for the previous report[1], but is used here for the same purposes,
namely synthetic geofloral data testing.

A.1 Implementation

We have designed a greedy algorithm that finds a near-optimal solution. We
will not discuss how to count the number of sites, as this is a trivial problem.
Therefore, we assume that we have a number of mappings from a segment in
one segmentation to a segment in another segmentation, along with the count
of how many sites fit this mapping. The mappings for the segmentations seen
in Figure A.1 is seen in Table A.1.

1
1

1
2

2

3

(a) Original segmentation

2
2

2
3

1

1

(b) Compared segmentation

Figure A.1: An example of a mapping between two segmentations.

1→ 1 0 2→ 1 1 3→ 1 1
1→ 2 3 2→ 2 0 3→ 2 0
1→ 3 0 2→ 3 1 3→ 3 0

Table A.1: Mappings corresponding to Figure A.1
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1 1→ 2 3
2 2→ 1 1
3 2→ 3 1
4 3→ 1 1
5 3→ 3 0

Table A.2: Sorted and abbreviated mappings of Figure A.1.

This list of mappings is then sorted according to the counts, from highest
to lowest. Two lists of booleans are maintained, detailing which segments have
been assigned in either segmentation.

Beginning from the top, the mappings are iterated, with a mapping being
assigned to a segment in either segmentation, if these have not yet been as-
signed. Once all segments are assigned, the counts are summed up and divided
by the number of sites, giving the final result.

One problem exists with this approach. In the example in Figure A.1, two
segmentations are being compared. While an optimal selection of mappings is
intuitively available, the algorithm will have a problem with these segmenta-
tions.

The mappings are sorted resulting in Table A.2. Some results are left out,
as they are not relevant to the problem.

In both the optimal selection, and the selection returned by the algorithm,
index 1 is chosen first. In the algorithm, index 2 is chosen next, and index 3
is skipped over, as segment 2 on the left side has already been taken. Finally,
index 4 is skipped over due to 1 on the right side being taken, and index 5 is
taken last, leading to a segmentation rating of 4/6.

Optimally, indices 1, 3 and 5 would be taken instead, for a segmentation
rating of 5/6.

This problem is due to the greedy approach of the algorithm, and is only
apparent, when the counts of two different mappings are the same. This makes
the problem unlikely in the normal operation of the program. The only solution
is to search through all possible setups, leading to an exponential complexity.
As such, we accept this problem as a necessary cost of effectiveness in the
algorithm.

The complete algorithm is expressed in the pseudocode in Listing A.1.
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�
1 Initialise mappings ;Count number of correct sites for each mapping
2 Sort mappings ;Sort according to count
3 Initialise leftSegments, rightSegments ;Initialise booleans for segments on

both sides
4 Initialise sum
5

6 for each (mapping in mappings)
7 if leftSegments[mapping.leftSegment] and rightSegments[mapping.

rightSegment] ;If both segments not assigned
8 sum += mapping.count
9

10 return sum / numSites
 	
Listing A.1: Pseudocode for the calculation of the stability index.
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B
Domain Information on Switzerland

In order to determine whether the segmentations produced for the real world
geofloral data set are meaningful, we need to have an understanding of the
data. In this section we will describe the domain information that is used for
explaining certain results in Section 13.2.

(a) A topographical map of Switzerland.
Source: [12]

(b) A mountain and valley separation ex-
tracted from the geofloral data set. Gray indi-
cates a region above the tree line, i.e. a moun-
tain region. Green indicates a region below the
tree line, i.e. a valley region.
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C
Characteristic Plants

When clustering on real world geofloral data, the amount of potential factors,
e.g. soil pH-value or precipitation, is very high. This means that identifying
the factors contributing to the segmentation of each layer is very hard when
only looking at the resulting segmentation.

However, given information about where the plants grow, and the final
segmentation, the mutual information for each plant can be calculated using
the equation seen in Equation C.1, where x is a given segment ID and p is a
given plant. Additionally, instead of

∑

x, 6x
, it is possible to change this to

∑

x∈Ln

,

and find the mutual information of a plant and a given layer.

MI(x, p) = −
∑

x,¬x

∑

p,¬p
p(x, p) · log(p(x)p(p)

p(x, p)
(C.1)

With the mutual information for all plants for a given segment or layer,
those with the highest value are then the most characteristic plants for that
segment or layer. For a segment, this would typically mean a plant that either
grows in every region in the segment and no other regions, or a plant that grows
in every region except for the regions in the segment.

Given these plants, one would then be able to look into the common char-
acteristics for the highest rated plants, looking for climatological factors that
limit where these plants would grow, e.g. soil pH. If one or more such factors
are found, the layer or segment for which the plants are characteristic could
then be assumed to describe an area with this climatological factor.

Additionally, the mutual information for layers can be used to indicate
whether or not a plant is descriptive of more than one layer. If the mutual
information for one plant is approximately the same for two or more layers,
this plant is equally descriptive of both those layers. A good example of this
is the synthetic data sets. For the direct probability data, each plant is only
descriptive of one layer by design, as the probabilities are identical across all
segments for one layer or the other. For the logistic data, the opposite is true,
as for any given plant, the logistic parameters for the distribution have one
high parameter for each layer, as described in Section 13.1.1. When looking at
the mutual information for a correct result, seen in Figure C.1, for both these
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data sets, the difference is clear, as is shown in the plots in Figure C.2. For
Figure C.2(a), the plot for the direct probability data set result, the plants are
separated into two groups, one favouring layer 0 and one favouring layer 1. For
Figure C.2(b), the plot for the logistic data result, the plants are all around
the line marking x = y.

(c) Layer 0 (d) Layer 1

Figure C.1: The resulting segmentation for both data sets used to generate the
mutual information plots.

(a) Direct Probability (b) Logistic

Figure C.2: Plots for all plants by their mutual information values, for layer 0 on
the x-axis, and layer 1 on the y-axis.

For real world data, the plots can be used to determine which of the two
layers is the most important in the segmentation. For the result of a numeri-
cal clustering on the real world data, shown in Figure C.3, the plot, shown in
Figure C.4, favours layer 1. Looking at the segmentation, this seems to rep-
resent the topography factor, which correlates well with how often we see this
segmentation, and what this says about the impact the topography has on the
Swiss flora.
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(a) Layer 0 (b) Layer 1

Figure C.3: The numerical result on the real world data used to generate the plot.

Figure C.4: A plot for a numerical result on real world data, for all plants by their
mutual information values, for layer 0 on the x-axis, and layer 1 on the y-axis.
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D
Factorial Clustering with an Application

to Plant Distribution Data

This supplement is a paper written based on the method defined in this report.
This paper is not included to be a part of the report, only to show a different
approach to explaining the theory and experimentation performed throughout
this report. The paper will be submitted to the 2nd MultiClust Workshop,
held as a part of European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML PKDD) 2011.
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1 Dept. of Computer Science, Aalborg University, Denmark
2 Swiss Federal Research Institute WSL

Abstract. We propose a latent variable approach for multiple clustering
of categorical data. We use logistic regression models for the conditional
distribution of observable features given the latent cluster variables. This
model supports an interpretation of the different clusterings as represent-
ing distinct, independent factors that determine the distribution of the
observed features. We apply the model for the analysis of plant distri-
bution data, where multiple clusterings are of interest to determine the
major underlying factors that determine the vegetation in a geographical
region.

1 Introduction

There exist a variety of different approaches to learning multiple clusterings.
They can differ not only with regard to their mathematical models and algo-
rithmic methods, but there can also be widely different intuitions and objectives
with regard to the interpretation of the multiple clusterings. On the one hand, in
ensemble clustering, the individual clusterings are essentially regarded as differ-
ent, imperfect versions of a single underlying true clustering (e.g. [8]). In many
multiple clustering methods, on the other hand, the different clusterings are in-
tended to represent different views of the data, each providing a different insight
into the structure of the data. One objective for clustering methods then is to
ensure that different clusterings are in some sense independent, disparate [4], or
non-redundant [6].

Several authors have investigated probabilistic latent variable models for mul-
tiple clusterings [11, 3, 1]. For the case of discrete observable features, no special
assumptions on the distributional form of the features given the latent variables
are made in these approaches, i.e. the conditional distribution of the features
follows an unconstrained multinomial distribution. Latent variable models are
also commonly used for dimensionality reduction of high-dimensional numeric
data. An important example is the factor analysis model, in which the observed
data is interpreted as a noisy linear transformation of a small number of latent
dimensions.

In this paper we propose a probabilistic latent variable model for multiple
clusterings. As in factor analysis, we interpret the observed (discrete) data as a



noisy transformation of underlying, discrete latent dimensions. The linear map-
pings of factor analysis is replaced by a log-linear logistic regression model. The
latent dimensions then define clusterings that can be seen as independent factors
that determine the distribution of the observed features.

In contrast with several other multiple clustering methods (e.g., [3, 6]) our
method is not based on an association of different clusterings with different
feature subsets, even though such associations can emerge.

Our approach is partly motivated by applications to biogeographical data.
Specifically, we are investigating plant distribution data. Segmentations of geo-
graphic units into floristic regions based on similarity of plant species composi-
tion were already undertaken in the 19th century. An early application of formal
methods of clustering in this context is [7]. We apply our method to distribution
data for 2398 plant species in Switzerland. The goal of factorial clustering for
this type of data will be to obtain multiple clusterings, each of which could cor-
respond to one of several underlying environmental, geographical, or historical
factors, which jointly influence the vegetation.

2 Latent Variable Models for Clustering

Latent variable models are routinely used for clustering, both for single and
multiple clustering. However, they can be used in several, slightly different ways.
In order to more clearly explain our approach, we briefly review in this section
possible approaches to using latent variable models for clusterings.

Throughout, we assume that the observable dataX consists of n observations
of k attributes, i.e. X is an n × k matrix. A latent variable model contains m
additional unobserved variables, and we denote with L the n × m matrix of
the latent variables in the n observations. We note that when we assume that
in the n observations both the observable and latent variables are identically
and independently sampled, it will be simpler and more natural to describe
the model in terms of vectors X, L of length n and m, respectively. However,
in some applications, especially segmentation of time sequences or images, the
latent variables are not independent at different data points.

A latent variable model, then, consists of a joint distribution for X and L,
which can be written as

P (X | L, θX|L)P (L | θL). (1)

In hierarchical models, this might be extended by a distribution over θX|L, θL
parameterized by hyperparameters λ.

The perhaps most common use of model (1) for clustering is to perform
two steps [11]: first, fit the parameters θX|L, θL by maximizing the marginal
likelihood of the observed data X = x:

(θ∗X|L, θ
∗
L) := argmax

θX|L,θL

∑

l

P (X = x | L = l, θX|L)P (L = l | θL). (2)



This step is usually performed using the EM algorithm. Then, compute the most
probable values of L given X = x:

l∗ = argmax
l

P (L = l | X = x, θ∗X|L, θ
∗
L) (3)

In multiple clustering, a joint configuration of the latent variables defines
multiple cluster indices. For simplicity we may assume for now that each latent
variable defines its own clustering, and that therefore the membership of the ith
data item in the jth clustering is given by l∗i,j . However, in the multi-cluster case,
the second step can also take a slightly different form, and the most probable
latent variable values be computed component-wise. Denoting by lj the jth
column of l, this can be written as

l∗j = argmax
lj

∑

l1,...,lj−1,lj+1,lm

P (L = l | X = x, θ∗X|L, θ
∗
L). (4)

This is the (hard) clustering rule used, e.g., in [11, 12]. The clusterings obtained
from (3) and (4) can differ.

If the ultimate goal is only to compute a most probable configuration of L,
then one may also try to simplify the combination of (2) and (3) into a single
optimization:

l∗ := argmax
l

max
θX|L,θL

P (X = x | L = l, θX|L)P (L = l | θL). (5)

This rule can be justified by a Bayesian interpretation, for example: it amounts to
finding the jointly most probably values of l, θX|L, θL, given the dataX = x, and
assuming a uniform prior for θX|L, θL. Rule (5) may be still further simplified,
if one assumes the model for the latent variables to be fixed, and not subject to
optimization, i.e., P (L = l | θL) = P (L = l | θ∗L) for fixed parameters θ∗L, and
the parameter optimization is only for θX|L. If, furthermore, P (L = l | θ∗L) is
assumed uniform, then (5) reduces to

l∗ := argmax
l

max
θX|L

P (X = x | L = l, θX|L). (6)

Whether it is justified to assume a fixed distribution P (L | θ∗L) can depend on
two considerations: first, assuming that (1) actually represents the generative
process for the data, one might have sufficient background knowledge to identify
the distribution of L a-priori. L being an unobserved variable, whose existence
is essentially hypothesized, and for which it is typically even unclear how many
states it has, this is a rather unlikely case in practice, however. Second, clustering
being an exploratory data-analysis tool, one may also consider what settings of
P (L | θ∗L) may lead via (5) to interesting insights into the data, regardless of
whether the underlying probabilistic model is accurate as a generative model.

For example, in the single clustering case, when the data is generated by a
mixture model where one mixture component has a much higher prior proba-
bility than the others, then clustering via (3) can easily lead to only obtaining
a single cluster. If, on the other hand, one eliminates the influence of the prior
distribution by assuming (incorrectly) a uniform distribution over the mixture
components, then clustering via (6) can reveal the mixture structure of the data.



3 The Factorial Logistic Model

In the factor analysis model, both X and L are numerical, the rows in X and
L are iid, and the model (1) is given by distribution

P (Li) ∼ N(0,ΣL)
P (Xi | Li) ∼ N(WLi + µ,ΣX)

where ΣL is an arbitrary covariance matrix, W is a k × m matrix, µ a m-
dimensional mean vector, and ΣX a diagonal covariance matrix. Thus, data
is assumed to be generated by sampling from a lower (k) dimensional Gaus-
sian distribution, linearly mapped into the higher (m) dimensional space, and
independent Gaussian noise added to each coordinate.

The logistic regression model for the distribution of a binary variable X
conditional on numeric latent variables L is given by

logP (X = 1 | L)/P (X = 0 | L) = w0 +wL, (7)

where w = (w1, . . . , wk) is a k-vector of real weights. We write X ∼ LR(w0,wL)
if X follows (7). This model also applies when the latent variables L are ordinal,
i.e. each Lj codes by an integer {0, . . . , rj − 1} one of rj different, ordered cate-
gories. To accommodate nominal predictor variables (i.e., unordered categorical
variables) in the logistic regression model, one encodes a nominal variable Lj

with r states by binary indicator variables Lj,1, . . . , Lj,r, i.e. Lj,h = 1, Lj,h′ = 0
(h′ 6= h) means that Lj is in its hth state.

We will consider both ordinal and nominal latent variables for clustering.
An ordinal latent variable defines an ordered clustering, i.e. the cluster indices
define an ordering of the clusters. Whether such an ordering is meaningful and
interpretable is application dependent. For biogeographical data ordinal latent
variables and ordered clusterings are often natural, since data patterns are often
determined by underlying continuous variables. We will, thus, assume that L is
a vector of m latent variables that define c different clusterings. Furthermore, we
assume that one of the following two cases applies: (1) all Lj in L are ordinal;
in this case c = m, and the jth clustering consists of rj distinct cluster. (2)
L is an encoding by binary indicator variables of c distinct nominal variables
with r1, . . . , rc distinct states, respectively. In this case m =

∑c
i=1 ri. We refer

to model (1) as the (r1o, . . . , rko) model, and (2) as the (r1n, . . . , rcn) model.
One could also consider models combining ordinal and nominal latent variables,
but we will here focus on “pure” models.

As in the factor analysis model, we assume that P (X | L) ∼ ∏n
i=1 P (X i |

Li) ∼ ∏n
i=1

∏k
j=1 P (X i,j | Li). Assuming that each Xi,j follows a logistic re-

gression model (7) with parameters wj,0,wj , one obtains the model for the ith
data item:

P (Xi | Li) ∼
k∏

j=1

LR(wj,0,wjLi). (8)



This conditional model for X may be combined with various models for
P (L), with or without an iid assumption for the rows of L. We refer to multiple
clustering based on (8) as factorial logistic (FL) clustering.

4 Learning

We apply the simple learning rule (6) for clustering with the logistic regression
model. Thus, we assume that L is uniformly distributed, which implies, in partic-
ular, independence over rows: P (L) ∼ ∏

i P (Li). In case of L encoding nominal
variables, the uniform distribution, of course, is conditional on “legal” states of
L, i.e. at most one indicator variable for any particular nominal variable being
equal to 1.

For the optimization of (6) we then use the obvious iterative procedure, where
after a random initialization L := l0 two steps are alternated:

i θX|Lt
:= argmaxθX|L P (X = x | L = lt, θX|L)

ii lt+1 := argmaxl P (X = x | L = l, θX|Lt
)

Step i is performed in our implementation using the SPSS method of fitting
logistic regression models, which supports both ordinal and nominal predictor
variables. Due to the factorization (8), the optimization reduces to k independent
optimizations for the parameters (wj,0,wj) (j = 1, . . . , k). It is thus linear in k.
It also is linear in n, since the likelihood only depends on the counts |{i | Xi,j =

1,Li = l̂}| for fixed configurations l̂ of the latent variables.
For step ii we have P (X = x | L = l, θX|Lt

) =
∏

i P (Xi = xi | Li =
li, θX|Lt

), so that the problem decomposes into n distinct optimizations for the
li. It can be naively performed by computing P (Xi = xi | Li = li, θX|Lt

) for
each candidate li, which gives a procedure that is still linear in n and k, but
exponential in c.

Overall, we obtain a learning method that is linear in the number of data
items and the observable attributes, and exponential in the number of cluster-
ings.

5 Experiments

We apply FL-clustering to geobotanical data. In our experiments we use the
source data for the “Swiss Web Flora” 3 [9]. The dataset contains information
on the distribution of 2697 plant species in Switzerland, which has been divided
into 565 mapping areas. We reduced slightly more detailed species abundance
information in the original data to simple binary presence/absence data. We
also in this process deleted plants with a very sparse and uncertain distribution.
This left us with 2398 species in our data.4 We view each plant species as an

3 www.wsl.ch/land/products/webflora/welcome-en.ehtml
4 The data will be made publicly available



observable attribute, and the mapping areas as independent observations. Thus,
n = 565 and k = 2398 in the notation of Section 2. Figure 1 shows the division
of Switzerland into the mapping areas. Apart from the species occurrence data,
only a single additional variable is recorded for each area: a binary variable that
indicates whether the area is a mountain area (above timberline), or a valley
area (below timberline). The value of this variable is shown if Figure 1 by a
green color for valley, and grey color for mountain areas.

(a) (b)

Fig. 1. Mapping areas with mountain - valley division (a), and previous segmentation
of valley areas into floristic regions [10] (b)

Conventional (single-) clusterings of the data lead to a segmentation of
Switzerland into floristic regions. Figure 1 (b) shows a result obtained by ag-
glomerative hierarchical clustering of the valley areas only [10] (thus, the white
part of the figure does not correspond to a computed cluster; it comprises areas
not included in the clustering).

5.1 Synthetic Data

In order to obtain an initial evaluation of the feasibility of our approach, we first
conduct an experiment with synthetic data. For this we constructed two artificial
segmentations of Switzerland based on the same mapping regions as in the real
data. These segmentations are shown in Figure 2 (top), and henceforth referred
to as “vertical” and “horizontal” segmentation, respectively. For each combina-
tion of a vertical and a horizontal segment, we defined a species distribution type
by a nominal logistic regression model that expresses a preference of the species
for the selected vertical and horizontal segment. The logistic regression weights
were adjusted so as to obtain conditional probability distributions for the pres-
ence of a species of the following form (here showing the case of preference for
the first segment in both segmentations):



Fig. 2. Artificial segmentations (top); “Wrong” clusterings (bottom)

Vertical
Horizontal yellow green blue

blue 0.98 0.5 0.5
yellow 0.5 0.02 0.02

(9)

According to each distribution type we created 15 synthetic plant species,
and randomly sampled an occurrence variable for the species at each of the
mapping areas.

We then performed FL clustering based on the 90 synthetic species using
both the (3o,2o) and the (3n,2n) model (it is not our ambition at this point to
detect the “right” number of segmentations and segments per segmentation).
In approximately 1 out of 3 random restarts the algorithm terminated with the
correct segmentations of Figure 2. In the remaining restarts the algorithm ter-
minated at local optima, a representative example of which is shown in Figure 2
(bottom). However, the correct solutions were identified by a higher likelihood
score than that of the wrong solutions.

For comparison, we also performed an experiment where the logistic regres-
sion model for P (X | L) was replaced by a full multinomial model, i.e. for each
species we fit a conditional probability table of the form (9) with 6 independent
parameters. In this case, almost all restarts terminated with wrong solutions as in
Figure 2, and, more importantly, the correct solutions could not be distinguished
by a higher likelihood score: in the multinomial model, any pair of segmenta-
tions whose combination identifies the 6 different combinations of vertical and
horizontal segments achieves the same, optimal, likelihood score.

We also use this synthetic data experiment to demonstrate that in FL-
clustering there is not necessarily a correlation between clusterings and feature-



subsets. Figure 3 (a) shows for each of the 90 synthetic species the mutual
information between the species occurrence feature and the two clusterings of
Figure 2 (top). The plot shows that there is no strong association of individual
species features with one or the other of the two segmentations.

5.2 Real Data

We now perform experiments with the real data consisting of the actual 2398
species. Again, we do not try at this point to automatically detect an appropriate
number of segmentations, or segments per segmentation. We run the learning
algorithm with a few selected ordinal and nominal logistic models. In all cases
we perform 20 runs of the algorithm with different random initializations of the
latent variables L. The results shown in the following are the segmentations that
achieved the highest likelihood score (6) within the 20 restarts.

Figure 4 shows the result of clustering with the (3o,3o) and (3n,3n) logistic
models. We use different colors to represents segments computed by nominal
logistic models, and greyscale values for ordinal logistic models. The greyscale
values then show the ordering of the segments according to their (ordinal) index.
One first observes that both models have produced one segmentation in which
the mountain areas are identified as one segment: there is an almost perfect
correspondence between the mountain attribute illustrated in Figure 1, and the
dark grey, respectively yellow, segments in the first segmentations of Figure 4
(note that our method does not entail an ordering of the different segmentations;
in particular, in Figure 4 we have just for convenience vertically aligned similar
segmentations, and arbitrarily put the ones containing the mountain segment
first).

Apart from the mountain/valley attribute our data does not contain “hidden
class variables” that could be used for interpreting the segmentations, and there-
fore one has to look for additional, external data sources, and expert knowledge.
As previously mentioned, we expect that the different segmentations to some
extent correspond to ecological factors that determine plant growth. A difficulty
we now encounter is that many such candidate factors (e.g., average annual tem-
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Fig. 4. Clustering result using (3o,3o) (top) and (3n,3n) (bottom) logistic models

perature, average precipitation) are highly correlated with the mountain/valley
division, and often show a secondary gradient in north-south direction. The sec-
ond segmentations of Figure 4 are somewhat dominated by a north-south strat-
ification, and also exhibit some of the patterns visible in Figure 1 (b). However,
it seems impossible to identify these north-south segmentations with any par-
ticular ecological factor. Instead, it can only be taken as aggregating the north-
south dependency of several factors. Moreover, whereas one clustering showing
the mountain/valley division was quite consistently produced in the random
restarts, there were larger variations observed in the north-south clustering.

Figure 3 shows the mutual information values for the plant features and
the (3o,3o) segmentation of Figure 4. This plot shows a relatively strong cor-
relation of some species with the mountain/valley clustering, and a somewhat
less pronounced primary correlation of some other species with the north/south
segmentation. The large number of species with very small mutual information
values for either segmentation is largely made up of species that occur in only a
few areas.

In analogy to the experiment with synthetic data, we also perform with the
real data an experiment with full multinomial species distribution models instead
of the logistic ones. The result is shown in Figure 5. While the mountain/valley
pattern is also partly visible in some of the segments, there is no single segment
or segmentation corresponding to this division, and the overall segmentation
result is clearly less useful than the one obtained with the logistic models.

The poor performance of the multinomial model may in part be due to this
model’s inability to isolate in its different clusterings several independent ex-
planatory factors, as illustrated by the synthetic data experiments. In addition,



Fig. 5. Clustering result using multinomial P (X | L)

the multinomial model suffered from severe problems of convergence to local
optima: even though the global likelihood maximum of the multinomial model
must be at least as high as the logistic optimum, the maximum found in 20
restarts was significantly lower for the multinomial than for the logistic models.

The average time consumption of a single run (restart) of (3o,3o) or (3n,3n)
clustering was approximately 3 hours, with an average of approximately 15 iter-
ations until convergence. This increased to approximately 6 hours for (3o,3o,3o)
or (3n,3n,3n) clusterings. The time is consumed almost entirely in fitting in each
iteration the 2398 logistic regression models for all the plants. For comparison, a
single run with the multinomial model (taking approximately 8 iterations on av-
erage until convergence) takes only about 1 minute, since the multinomial model
is easily fit by taking simple counts.

6 Discussion and Future Work

Our experiments have shown that using FL-clustering we can find multiple mean-
ingful clusterings of categorical data. The objective in our approach is explana-
tory (identify underlying factors that determine the overall data patterns) rather
than descriptive (provide the user with multiple views of the data).

For our purpose, it is clearly essential to use a conditional model P (X | L) of
a restricted functional form, rather than an unconstrained multinomial model.
Logistic regression models are a canonical choice, and can be seen as a categorical
data analogue to the linear mappings between latent and observed dimensions
in the factor analysis model.

A common objective in multiple clustering is that different clusterings are in
some sense orthogonal or complementary. We are not yet able to say in which
sense, or to what extent, FL-clustering satisfies such an objective. Empirically, a
bias towards learning complementary clusterings was difficult to verify with our
data, since most natural candidate segmentations based on hidden environmen-
tal variables would exhibit rather similar patterns (and not at all resemble the
segmentations in Figure 2).

Theoretically, one can note that a multi-clustering L = l in which two clus-
terings are identical can not be a local maximum of the likelihood (6) (except for
some degenerate, noise-free, data sets). FL-clustering, thus, is biased away from



returning multiple identical clusterings. How this can be strengthened into a for-
mal result linking likelihood gain and complementarity of different clusterings is
a subject for future work.

In our experiments we have used data with a spatial structure on the data
instances. Within this paper, we have used the spatial structure only for the
visualization of the clustering (i.e., segmentation) results. The model can equally
be used for other categorical data, and is especially suited for high-dimensional
binary data (such as text document data).

On the other hand, our work was also specifically motivated by spatial data,
and the relationship in this case of multiple clustering with factorial hidden
Markov models [2] and factorial Markov random fields [5]. For spatial data one
can impose a Markov random field structure on the latent variables L, i.e.,
the assumption of a uniform distribution for L which we used to derive (6)
is replaced, e.g., by the assumption that P (L = l | θ∗L) is a Gibbs distribution
with fixed parameters θ∗L. Learning in such a setting proceeds in the same way as
described in Section 4, only that P (L = l | θ∗L) has to be added as a likelihood
factor. The optimization in step ii will then usually not be possible precisely,
and require an approximate solution. In this paper we did not employ a Markov
random field model, since this would usually be used to enforce some smoothness
and contiguity properties of the learned segments, which, for our data, seems
unwarranted (considering, e.g., the rugged outline of the mountain areas).

In this paper we focused on the core of a probabilistic (multi-) clustering
model, i.e., the joint distribution of latent and observable variables. In this model,
the number of clusterings, and the number of clusters in each clustering is fixed.
We remark, however, that either model selection techniques like BIC or MDL
scoring, or a nonparametric Bayesian ’wrapper’ around the core model can be
used to also learn the model structure.

7 Conclusion

We proposed a latent variable model for multiple clustering of categorical data
based on a logistic regression model for the conditional distribution of the ob-
served features. We believe that in analogy to successful techniques for dimen-
sionality reduction, a restricted distributional form for the noisy transformation
between the latent and the observed features can be instrumental for revealing
relevant patterns in the latent feature space.

For clustering based on a latent variable model we have suggested a simple
optimization of the conditional likelihood of the data given the latent variables,
with a fixed marginal distribution for the latent variables. This leads to a learn-
ing procedure that is linear in the number of observed features, and enables us
to experiment with high-dimensional biogeographical data. Our preliminary re-
sults from these experiments demonstrate the ability of the method to discover
clusterings that represent meaningful explanatory factors for the data. However,
further work is needed to consolidate the results returned for this data, and to
investigate their potential biological meaning.
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