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Dansk resumé

Dette speciale er udarbejdet i foråret 2011 af studiegruppe B120b som afslutningen på uddan-
nelsesforløbet ved Aalborg Universitet til: Kandidat i Bygge- og Anlægskonstruktion. Rapportens
titel er: Vurdering af vibrationer i gulve påvirket af rytmisk personlast og tager sit udgangspunkt
i en konkret dækkonstruktion i Nordkraft-bygningen i Aalborg. Dækkonstruktionen antages at
være kritisk med hensyn til påvirkninger fra rytmisk personlast, og opgavens primære formål er
derfor at undersøge dækkonstruktionens dynamiske respons overfor denne lasttype. Dækket er
opbygget af ni forspændte TTD dækelementer med overbeton, og konstruktionen dækker et areal
på 16.3×21.6m, hvor elementerne spænder i den korte retning.

På den undersøgte dækkonstruktion i Nordkraft-bygningen har DGI-Huset en idrætshal, og
dækket bliver således udsat for forskellige former for rytmisk personlast. Under dækkonstruktio-
nen findes den største af Teater Nordkrafts teatersale. Analysen af dækkets dynamiske opførsel
deles i en egensvingningsanalyse, hvor egenfrekvenser og egensvingningsformer bestemmes,
samt en responsanalyse, hvor dækket antages påvirket af en rytmisk personlast fra hop.

Egensvingningsanalyse

Egenfrekvenser samt egensvingningsformer analyseres med både analytiske, numeriske og
eksperimentielle metoder. De numeriske modeller er opstillet i det kommercielle beregningspro-
gram ABAQUS og både solid- såvel som skalfiniteelementmodeller er anvendt. Endvidere be-
tragtes både bjælke- såvel som plademodeller af varierende kompleksitet i de analytiske og nu-
meriske metoder. Det findes ved sammenligning med eksperimentielle målinger, at plademo-
dellerne er bedst egnede til beregning af dækkets egenfrekvenser og egensvingningsformer. Der-
imod er bjælkemodellerne kun anvendelige til bestemmelse af den første svingningsform. Ud fra
forsøg findes de tre første egenværdier til at være henholdsvis 8.3Hz, 9.4Hz og 11.0Hz.

Resultaterne fra de analytiske og numeriske modeller vurderes ud fra forsøgene på dækket,
og stivheden anvendt i beregningsmodellerne opdateres, således at en bedre overensstemmelse
mellem egenfrekvenser fra forsøg og modeller opnås. Desuden illustreres fordele og ulemper ved
de enkelte analysemetoder.

Responsanalyse

De opdaterede modeller bruges herefter til den egentlige vurdering af gulvets dynamiske respons,
hvis underlagt en rytmisk hoppelast. Det ønskes her undersøgt, hvorvidt det for udvalgte last-
scenarier er muligt at opnå vibrationer, som er i strid med de for anvendelsesgrænsetilstanden
normgivne værdier, målt i accelerationsniveau. Her tages udgangspunkt i det danske nationale
anneks til Eurocode, hvor en øvre grænse på 10% af tyngdeaccelerationen for standardafvigelsen
af accelerationen angives [10].

Til at simulere den rytmiske personlast anvendes to forskellige lastmodeller. Den første last-
model er angivet i det danske nationale anneks til Eurocode, Eurocode-modellen, mens den an-
den lastmodel er angivet i en artikel af Ellis & Ji [8], Ellis & Ji-modellen. Der tages udgangspunkt
i laster, som kan frembringes af maksimalt 20 hoppende personer. I forbindelse med anven-
delsen af lastmodellerne udføres laboratorieforsøg for at vurdere visse af de brugte inputparame-
tre. Beskrivelsen af disse forsøg er vedlagt rapporten som bilag.

Fra den indledende undersøgelse af gulvkonstruktionen, blev det fundet at tre vibrations-
former ville være dominerende for den dynamiske respons, og der opstilles derfor tre lastsce-
narier. Hvert lastscenarie svarer til en placering af den rytmiske personlast på dækket, som vil
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anslå én af de første tre egensvingningsformer maksimalt. For hvert lastscenarie tilpasses hoppe-
frekvensen ligeledes, således resonans opnås for hver af de tre første egensvingningsformer.
Disse scenarier modelleres analytisk, numerisk og eksperimentielt. De analytiske løsninger byg-
ger på en antagelse om modal dekobling, mens den numeriske løsning foretages i ABAQUS ved
hjælp af samme skalmodel, som blev anvendt i egensvingningsanalysen. Løsningen i ABAQUS

bygger på direkte integration af de styrende svingningsligninger for hvert tidsskridt.
De fundne resultater sammenlignes, hvorved fordele og ulemper mellem de enkelte metoder

kan kommenteres. Det findes, at Eurocode-modellen generelt giver mindre præcise resultater
for accelerationsniveauet for de valgte lastscenarier på grund af nogle basale antagelser omkring
frekvensfordelingen i lastmodellen, mens anvendelse af Ellis & Ji-modellen genererer rimelig
virkelighedstro værdier. De fundne accelerationsniveauer anvendes til at kommentere og op-
stille scenarier, hvor anvendelsesgrænseværdierne kan blive overskredet, og chancen for at opnå
et sådant scenarie kommenteres.

Ud over forskellene mellem de to anvendte lastmodeller, findes den anvendte beregnings-
metode ligeledes at have afgørende betydning. Metoderne, hvor modal dekomposition an-
tages, giver mindre præcise resultater sammenlignet med eksperimentielle målinger i forhold til
ABAQUS-resultaterne. Samlet set synes resultaterne af responsanalysen at være meget følsomme
overfor både den anvendte lastmodel samt den beregningsmetode, som vælges.
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List of Symbols

Symbols included in the main report are shown in the following list. Auxiliary symbols might be
found in appendices, where an explanation to them also can be found.

Latin symbols
A,B ,C ,D Integration constants to be found from initial conditions / boundary condi-

tions.
a(t ) Acceleration a at time t .
ai ,bi Coefficients of load model.
amax Maximum value of acceleration during time series.
arms Root-mean-square value of acceleration during time series.
Acab Cross sectional area of prestressed cable.
Arib Cross sectional area of rib in TTD element.
A(t ) Time dependent amplitude function.
c,ch Modal damping coefficient of structure and human, respectively.
cr Contact ratio, cr = tc/Tp.

Ci Crowd reduction factor for the i th jumping load component.
C Damping matrix.
Dcab Diameter of prestressed cable.
D Dynamic amplification factor.
D,Dx,Dy,Dxy Flexural and torsional stiffnesses.
Ec,Es Young’s modulus of concrete and steel, respectively.
E I Bending stiffness (used in general sense before choosing Young’s modulus

and moment of inertia).
f Cyclic natural frequency, f =ω/2π.
fck Characteristic strength of concrete.
fh Fundamental frequency of human.
fp Jumping frequency.
fmn (t ) Time dependent modal forcing function.
f Matrix of modal forcing functions.
F (t ) Time dependent forcing function.
gmn Static modal load.
G Static weight of humans.
Gs Equivalent static weight of humans.
H Effective torsional stiffness of plate, H = νD +2Dxy.

Hi Structural response factor of i th jumping load component.
I , It Moment of inertia and transformed moment of inertia, respectively.
Ip Polar moment of rib.
i , I Number of load component of human jumping load, and total number of

load components considered in a specific load model, respectively.
j , N Index for jumping humans, and total number of jumping humans, respec-

tively.
Jx, Jy Rotary inertia of ribs in x- and y-direction, respectively.
k,kh Modal stiffness of structure and human, respectively.
ka Acceleration response factor.
kF Load response factor.
K Stiffness matrix.
Lx,Ly Dimensions of deck in x- and y-direction.
m,mh Modal mass of structure and human, respectively.
Mp, Ms Mass of plate and stiffeners, respectively.
M Mass matrix.

continues. . .
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n,m Vibration mode number in x- and y-direction, respectively.
Ne Number of “effective” humans.
q Modal coordinate describing structure motion.
q Matrix of modal coordinates.
qh Modal coordinate describing motion of human.
s Number of ribs / stiffeners in y-direction.
S Standard deviation of stochastic variable.
t Thickness of deck / Time.
∆t Time step.
ttot Total time of analysis.
tc Contact time during the jumping load period, Tp.
T Period of vibration.
Tp Period of jumping load.
Tmax Maximum kinetic energy.
Umax Maximum potential energy.
u Displacement of deck in z-direction.
up Deflection due to the static human load G .
V Coefficient of variation.
X Load effect.
|X | Force amplitude.

Greek symbols
αi Fourier coefficient of the i th jumping load component.
β Length to width ratio, β= Ly/Lx.
γ Mass per unit length of ribs / stiffeners.
Γα,Λα,Ψα Constants.
δ Logarithmic decrement.
∆ Non dimensional stiffness parameter.
ε Scaling factor, ε= Es/Ec.
ζ,ζh Damping ratio of structure and human, respectively.
η Reduction factor due to load distribution.
θ Angle, θ =π/2−ϕ.
λ Auxiliary parameter, λ4 =µω2L4

x/E I .
µ Mass per unit length of TTD element.
νc,νs Poisson’s ratio of concrete and steel, respectively.
ρ,ρ Density of reinforced concrete, and equivalent mass per unit area of or-

thotropic plate, respectively.

ρi Correlation coefficients of the i th jumping load component.
σa Standard deviation of acceleration.
τ Time (used in calculations when t designates thickness).

ϕi Phase lag for the i th jumping load component.
Φ Shape function.
Ψ Phase lag of response compared to load.
ω Circular natural frequency, ω= f ·2π.
ωp Circular forcing frequency.



Chapter 1

Introduction

Near the water front of Aalborg city centre lies the newly renovated building of Nordkraft, an
old power plant now utilized for cultural activities such as sports, concerts, cafés, theatres, and
cinemas. Due to its historical usage as a power plant building, the complex comprising Nordkraft
is rather large and not originally designed for purposes where vibrations and noise could be a
problem. As a consequence, the combination of different activities gives rise to high demands on
the magnitude of vibration and noise transmission through walls and floors.

The project revolves around a part of the floor construction of the rightmost of the two larger
sports halls situated on the second level in Nordkraft. In Figure 1.1 a cut through the building is
shown and the relevant sports floor is marked. This sports floor separates the sports hall from the
main theatre hall of “Theatre Nordkraft”. At present, noise inconvenience can be experienced in
the theatre hall, when the sports hall is used. This is due to direct sound transmission through the
deck and shaking of lighting equipment attached to the underside of the deck, which is affected
by vibrations in the deck. From this it could be asked whether the structural vibrations of the
deck are of a magnitude, which also causes inconvenience for the users of the sports hall. An
assessment of this question will be the main focus of this report.

Figure 1.1: Cross sectional cut through Nordkraft [19].

Naturally, the magnitude of vibrations in the deck is dependent on the type of activity in the
sports hall. The human-induced forces, which causes the vibrations, differ according to the ac-
tivity of the humans. However, in order to examine a critical situation, focus will be on human-
induced jumping loads, as these are the most powerful human loads [3].

The considered deck consists of 9 prestressed concrete TTD elements manufactured by the
concrete element company Spæncom A/S. In Figure 1.2, a plan drawing of the sports floor is
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2 Chapter 1. Introduction

shown, and the position of the 9 TTD elements are shown in relation to the floor. Figure 1.3
shows the TTD elements in relation to the two theatre halls underneath the sports hall, and as
seen, the TTD elements are exactly above the larger of the theatre halls.

Figure 1.2: Floor plan of level two, TTD elements are marked with a red box [19].

Figure 1.3: Floor plan of level one, TTD elements are are marked with a red box [19].
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In Figure 1.4 and Figure 1.5 photos of the sports hall and the main theatre hall are shown.
The considered deck is placed in the far end of the sports hall seen from Figure 1.4. As seen in
Figure 1.5, lighting equipment is attached to the TTD elements from underneath.

Figure 1.4: Sports hall of DGI-Huset in Nordkraft.

Figure 1.5: Theatre Hall of Teater Nordkraft.
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1.1 Technical Properties of TTD element

A short description of the construction will be given. The TTD elements span Lx = 16.3m in
the direction of the stiffeners and are supported by the concrete walls of the theatre hall. The
length of the deck perpendicular to the stiffeners is Ly = 21.6m. A detailed plan of the 9 TTD
elements is shown in Figure 1.6, and the specification of four detail drawings, A–D, is shown in
the figure. These detail drawings, which are shown in Figure 1.7 and Figure 1.8, illustrate the
boundary conditions of the four sides of the deck.

Figure 1.6: Floor plan of TTD elements.

In relation to the shown detail drawings of the floor structure, it should be noticed that con-
crete topping is cast on top of the TTD elements. Moreover, the interface between the TTD el-
ements and the concrete topping might be considered rough, meaning that shear forces can be
transferred from the TTD elements into the layer of the concrete topping. The assumption that
the interface is capable of transferring shear forces of a certain level is built on the fact that the
TTD elements have visible rebar steel in the top surface for the same purpose. A cross sectional
cut of a TTD element can be seen in Figure 1.9. In addition to this, it can be observed that the
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(a) Detail A-A (b) Detail B-B

Figure 1.7: Detail drawings.

(a) Detail C-C (b) Detail D-D

Figure 1.8: Detail drawings.
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concrete topping forms a continuous layer, which connects the TTD elements to the surrounding
floor construction. This is the case for all four sides of the plate.

Statically, the TTD elements are connected by the concrete topping, and thereby, the TTD el-
ements and the concrete topping are regarded as rigidly connected. In contrast to this, the sound
proofing layer is a rubber-like material, which come in 10mm mats, and its ability to transfer
forces is not certain. Two sound proofing mats are used. Therefore, a calculation model of the
floor structure should take into account not only the stiffness and mass of different layers, but
also the interface between them.

Figure 1.9: TTD cross section [24].

The TTD elements come with a versed sine of approximately 50mm and are designed to have
a minimum of 120mm concrete topping, which in combination gives the deck an average of ap-
proximately 150mm concrete topping, see Figure 1.7 and Figure 1.8. The sound proofing layer
is covered by 60mm of fibre reinforced concrete, on which the sports floor is placed. The ac-
tual sports floor is a flooring solution from Virklund-Sport A/S called Boflex, which consists of a
30mm wooden construction covered with 4mm of sports linoleum as seen in Figure 1.10.

Fibre concrete

Expansion joint
4 mm sports linoleum
Crossclued lamella
Longitudal lamella
Evazote 50

Figure 1.10: Boflex sports floor construction [29].

From this brief description of the deck, it is obvious that assumptions must be made in order
to make a mathematical treatment of the deck possible. This is due to the fact that the deck is
made up of numerous layers and materials, and the interfaces between the different layers are not
fully known with respect to strength and stiffness. Before a more profound technical treatment
of the deck is undertaken, the scope of the project must at first be presented and explained.
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1.2 Scope and Methods of Project

The scope of the project is to assess the vibrations of the deck, which separates the sports hall
and the main theatre hall in Nordkraft with respect realistic load scenarios. The vibrations are as-
sumed to be excited by jumping loads, which represents a critical case of human-induced loads.
These kind of vibrations, which are not directly critical with respect to the ultimate limit state
(ULS) of the construction, are instead treated as a serviceability limit state (SLS) problem. It
should be stressed that original design calculations of the actual deck are known to the authors,
where both the ultimate and serviceability limit states are considered. From these it is clear that
the ultimate limit state is of no problem, whereas the serviceability limit calculations show that
vibrations might reach a level, which is close to unacceptable. This makes the deck in Nordkraft
rather interesting as the found vibrational response is relatively sensitive to the chosen calcula-
tion model of both structure and load. However, the scope of the project is limited to an inves-
tigation of the serviceability for some selected scenarios, and hence a conclusive control of the
serviceability limit will not be obtained.

The objective when analyzing the response of a construction with respect to a certain load
type is illustrated in a general sense in Figure 1.11, which points out that both the load and con-
struction must be characterized in order to assess the response. In principle, a spectrum shows
the energy content at a certain frequency. A general representation of a jumping load can be seen
in the upper graph. The main energy is present at the jumping frequency fp, but energy is also
concentrated at frequencies i fp, where i = 1,2, . . . . These peaks of the load spectrum are desig-
nated load components or load harmonics. If one of the load components hit the maximum of
the frequency response spectrum, resonance occurs, and the response of the structure might be
dramatically amplified.

Figure 1.11: Principle in response analysis.

To help the jumper(s) to jump with an exact frequency fp, music with an overall beat fre-
quency equal to the aimed jumping frequency has been chosen. This procedure was chosen
instead of using a signal sound as it is believed that it is easier to keep the pace of a known piece
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of music. Furthermore, jumping to the sound of music is a more realistic scenario. In relation to
this, it is also chosen to focus on jumping frequencies near 2.0Hz, which is the region of frequen-
cies that is expected to be the most natural ones to keep up the pace with.

The assessment of vibrations in the deck includes numerous phases, and in accordance with
Figure 1.11, the vibrational response is dependent on two main conditions, namely the dynamic
properties of the construction and the applied load. The first part of the report concerns the
determination of essential parameters, which describes the dynamic properties of the construc-
tion. Hereafter, the vibrational response of the construction is analyzed with respect to human-
induced jumping loads. In case the vibrations are found too severe, examples of remedial mea-
sures are finally stated. Figure 1.12 shows the different phases throughout the report and their
associated methods and main results. The connection between methods and main results is il-
lustrated with symbols.

Figure 1.12: Methods, phases, and main results in the project.

Determination of structural dynamic properties includes the following:

• The natural frequencies of the deck are estimated by both analytical and numerical meth-
ods. Beam and plate models are used in the analytical approach, whereas the commercial
software ABAQUS is used for the numerical treatment. As the deck is a rather complex struc-
ture, certain approximations must be made, and the different methods used will be more
or less precise. Finally, the natural frequencies are measured experimentally, and the ob-
tained results are compared with the estimated analytical and numerical values. Thereby,
assumed parameters in the analytical and numerical methods are updated, so their solu-
tions fit that of the experiment as close as possible.

• In connection with the determination of the natural frequencies, the vibrational mode
shapes as well as other modal parameters will also be found as these are highly connected
with each other.
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• The deck is a physical construction, and when idealized to a vibrating system, it will possess
damping in some manner. The amount of damping is important when it comes to the
response of the system from human-induced jumping loads. The damping properties will
be determined through analysis of a measured acceleration signal on the deck.

When these issues have been treated, the deck should be well-described when it comes to its free
vibrations, and furthermore, a calculation framework should be set up, with which the response
to jumping loads can be predicted. Two load models will be used as the basis for analyzing the
deck in detail. The first load model is described in the Danish National Annex to Eurocode 1 [11],
while the second load model is described in an article by Ellis & Ji [8]. Therefore, the next steps
will be to excite the structure with load scenarios, which are predominant in the sports hall. As a
consequence, the following is done:

• The load models are applied to the analytical and numerical models of the floor and from
these, the response of the floor is estimated. The analytical models are here a simple proce-
dure described in Eurocode meant for practical design purposes, and a differential equa-
tion solution in modal coordinates. Also, Newmark time integration is used as a way of
solving the governing differential equation of motion. As in the first phase, the numerical
model is made in ABAQUS. Both the Eurocode load model and Ellis & Ji load model are used
in connection with analytical and numerical solution. As numerous different load scenar-
ios are possible in the sports hall, some cases which may be critical will be defined and
examined.

• Experiments on the floor in Nordkraft are carried out in order to verify the used calculation
models. The same load scenarios as used in the calculation models are applied, where a
group of humans participated in the experiments to reassemble a certain load on the floor.

• The experiments serve also to clarify the effect of numerous humans jumping compared
to just one human, i.e. it gives an estimate of the so-called crowd reduction factor, which
takes into account that total synchronization of humans cannot be achieved. Thus, the
jumping load is not proportional with the number of people.

• Likewise, the damping properties of passive humans are also assessed through the exper-
iments. These experimental results are compared to results obtained from the Newmark
time integration, where passive humans are modelled as a spring-mass-damper system.

• An additional test series is made in order to analyze the precision with which a human can
jump with a given frequency. The results of this experiment are used when considering
the crowd reduction factor with a group of jumping humans. Likewise, also one-person
jumping tests have been performed to assess the two used load models.

Finally, the results from the analysis of the deck response are summarized and assessed. Es-
pecially, in case the vibrational response of the deck are unacceptable, a possible solution to this
problem is described.

1.3 Geometrical and Material Parameters

The vibrational behaviour of the deck is very dependent on various geometric and material pa-
rameters. Generally, both geometrical and material parameters are treated in a deterministic
manner disregarding that some of them could be described by means of a statistical distribu-
tion. However, qualified estimates of various parameters are needed in order to achieve reliable
results, see Table 1.1. Later, Young’s modulus of concrete Ec is updated by use of experiments.
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Length of deck parallel to ribs Lx 16.3 m
Length of deck perpendicular to ribs Ly 21.6 m
Area of cross section in Figure 1.13 Arib 2.02×105 mm2

Young’s modulus of steel Es 200 GPa
Young’s modulus of concrete (initial guess) Ec 40 GPa
Poisson’s ratio of steel νs 0.3
Poisson’s ratio of concrete νc 0.2
Density of reinforced concrete ρ 2400 kg/m3

Table 1.1: Geometrical and material parameters of deck.

The moment of inertia I of the deck cross section is calculated in different ways throughout
the report, and therefore, a description of how the used value is obtained will be given in con-
nection with the specific calculation. But generally, two different approaches can be followed
regarding the steel of the prestressed cables of the TTD elements:

1. Either the stiffness of the steel is taken into account by calculating a “transformed moment
of inertia” It. Here, the relatively small area of the steel is scaled with a factor ε = Es/Ec

and the transformed moment of inertia is calculated from this new cross section [15]. The
transformed moment of inertia should be calculated with respect to the neutral axis of the
new cross section, taking into account the scaled areas of the steel. It should be recognized
that this modification is somewhat mixing the definitions of Young’s modulus E , which is a
material parameter, and the moment of inertia I , which is a geometrical parameter. Nev-
ertheless, it can be done to incorporate the larger stiffness of steel compared to concrete.

2. Otherwise, the steel of the prestressed cables can be disregarded in the calculation of the
moment of inertia, i.e. the cross sectional area of the cables is regarded as concrete.

The effect of the prestressing force in the cables is disregarded in both cases, and generally, the
prestressing force is not treated as a parameter in the calculations throughout the report. A MAT-
LAB-script has been written, which is able to calculate the moment of inertia in both of the two
mentioned cases. Likewise, it is also able to handle different heights of the concrete topping, and
the axis, about which the moment of inertia is calculated, can be adjusted manually. The script
can be found in Transformed_I.m, and two examples of its output can be seen in Figure 1.13 and
Figure 1.14, where the prestressed cables are excluded and included, respectively. The thickness
of the concrete topping is assumed to be 150mm.
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For Young’s modulus, both a static and dynamic value exists, and in particular, Young’s mod-
ulus for concrete is quite uncertain. Therefore, the value of Ec = 40GPa is used initially, and when
sufficient experimental data for the deck is found, Ec is updated to fit the specific concrete con-
struction. The other parameters in Table 1.1 are kept at the given value.

The guessed value of Ec = 40GPa can be based on the Danish National Annex to Eurocode
2 [12], where an approximate formula is given to calculate Young’s modulus Ec,init for the initial
slope on the stress-strain curve, see Eq. (1.1). The characteristic concrete strength is fck = 45MPa.

Ec,init = 51000 · fck

fck +13
≈ 40×103 MPa (1.1)

1.4 Design Guidelines

When assessing the performance of the floor under human-induced jumping loads, it is neces-
sary to define some boundaries, which states the limit between an acceptable vibration level and
an unacceptable vibration level. But as the human perception of vibration is a very subjective
matter, such limits are not easy to define. Generally, the level of vibration which is considered
acceptable will vary from person to person, and is likely to be dependent on age, gender, the
character of the activity, etc. [30].

The matter of human perception of vibrations could be the case of a distinct study, and this
will not be treated profoundly here. Nevertheless, to establish some limits for acceptable vibra-
tions of the floor, the rules from the Danish National Annex to Eurocode 0 [10] are adopted, and
these are repeated in Table 1.2. As seen, the limits depend on the type of construction and its us-
age, and therefore in this case, the sports hall in Nordkraft must be placed within the first row. The
frequency limits given in Table 1.2 can be assessed after analyzing the structure in free vibrations,
whereas the acceleration limit only can be assessed after a more detailed response analysis. The
frequency limits are suggested in order to ensure sufficiently high natural frequencies of a struc-
ture so that one of the lower load components, i.e. a load component with a relatively high energy
content, will not be in resonance.

CONSTRUCTION LOAD NORMALLY

SATISFACTORY

CONDITION

OFTEN NOT

SATISFACTORY

CONDITION

LIMIT

ACCELERATION

σa or arms

Grand stands,
fitness centres,
sports halls, and
meeting rooms

Rhythmical
human-
induced loads

f > 10Hz f < 6Hz 10% of g

Residences Walking load f > 8Hz f < 5Hz 0.1% of g

Offices Walking load f > 8Hz f < 5Hz 0.2% of g

Table 1.2: Suggested limits for natural frequencies and accelerations [10].

The acceleration limits are given with respect to the so-called standard deviation of the ac-
celeration σa, which is equivalent to the so-called root-mean-square acceleration arms in most
English literature. Both measures will be used. It should be noted that a simplified formula
for calculating σa is stated in Eurocode, which assumes a perfect sinusoidal acceleration sig-
nal. Therefore, if the maximum acceleration value in a time series is denoted amax, the standard
deviation of the acceleration σa can be found as in Eq. (1.2).

σa = 1p
2

amax (1.2)
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However, this will always yield a conservative value [10]. The root-mean-square acceleration
arms is calculated as given in Eq. (1.3), where T is the period of time over which the acceleration
is measured. a(t ) designates an acceleration time series [3].

arms =
√

1

T

∫ T

0
a2(t ) d t (1.3)



Chapter 2

Analytical Methods

This chapter presents various analytical methods for estimating the natural frequencies of the floor
construction. At first, the floor construction is simplified to a beam model, and the frequencies are
estimated from this by different approaches. Afterwards, the floor construction is modelled as an
orthotropic plate, which is used to estimate the natural frequencies.

d d d

2.1 Dynamic Analysis of Beam Models

As a quick alternative to analyzing a complex numerical model or plate model of the sports floor,
an analytical estimate of the natural frequencies can be performed by means of simple beam
models. Here, two different methods are presented. The first method to be considered is based on
the solution of the governing differential equation of a vibrating beam. Here the TTD element is
assumed to be a Bernoulli-Euler beam with constant mass per unit length µ= ρArib and constant
bending stiffness E I throughout its length. Afterwards, the approximative method of Rayleigh’s
fraction is used, where an assumed vibration shape of the beam must be guessed in order to
obtain results. As touched upon in the introduction, it is not totally obvious how to model the
boundary conditions of the floor construction. Hence, for the beam models two extreme cases
are examined, namely a simply supported beam, and a beam clamped in both ends. The beam
models are based on a rib in the element as shown in Figure 2.1.

Figure 2.1: Simply supported and clamped beam.

2.1.1 Differential Equation

The governing differential equation of a vibrating Bernoulli-Euler beam is given by Eq. (2.1). No
normal force nor exiting force is assumed when formulating the differential equation [17].

E I
∂4u(x, t )

∂x4 +µ ∂2u(x, t )

∂t 2 = 0 (2.1)

13



14 Chapter 2. Analytical Methods

A solution of Eq. (2.1) is obtained from assuming that each differential mass element µd x is per-
forming harmonic oscillations in phase. Taking that Φ(x) is the real amplitude of the differential
mass element µd x andω is the circular eigenfrequency of the oscillation, a solution to the differ-
ential equation is given by Eq. (2.2).

u(x, t ) =Φ(x)cos(ωt ) (2.2)

Eq. (2.2) is substituted into the differential equation of Eq. (2.1) and a new differential equation is
obtained, see Eq. (2.3). This is also an eigenvalue problem, which is the basis for calculating cir-
cular eigenfrequenciesωm and mode shapesΦm(x) for the mth mode. Along with the differential
equation, the relevant boundary conditions for the two considered cases are shown in Eq. (2.3).

Differential equation

E I
d 4Φ(x)

d x4 −ω2µΦ(x) = 0

Simply supported beam

Φ(0) = 0
d 2Φ(0)

d x2 = 0

Φ(Lx) = 0
d 2Φ(Lx)

d x2 = 0

Clamped beam in both ends

Φ(0) = 0
dΦ(0)

d x
= 0

Φ(Lx) = 0
dΦ(Lx)

d x
= 0



(2.3)

The general solution for the differential equation of Eq. (2.3) is stated in two different ways for
the simply supported beam and the clamped beam, respectively [17, 27]. The general solution
for the differential equation in case of a simply supported beam is given by Eq. (2.4a), while the
general solution for the clamped beam case is stated in a slightly different way in Eq. (2.4b).

Φ(x) = A sin

(
λ

x

Lx

)
+B cos

(
λ

x

Lx

)
+C sinh

(
λ

x

Lx

)
+D cosh

(
λ

x

Lx

)
(2.4a)

Φ(x) = A

(
cos

(
λ

x

Lx

)
+cosh

(
λ

x

Lx

))
+B

(
cos

(
λ

x

Lx

)
−cosh

(
λ

x

Lx

))
. . .

+C

(
sin

(
λ

x

Lx

)
+ sinh

(
λ

x

Lx

))
+D

(
sin

(
λ

x

Lx

)
− sinh

(
λ

x

Lx

))
(2.4b)

where λ4 = µω2L4
x

E I

When using the boundary conditions for a simply supported beam together with Eq. (2.4a) a
frequency condition can be found from which the circular eigenfrequencies and mode shapes
can be found. This classical solution is not shown here, but can be seen in [17]. The circular
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eigenfrequencies and the corresponding mode shapes can be found from Eq. (2.5).

ωm = m2π2

√
E I

µL4
x

Φm,Simp(x) = Am sin

(
mπ

x

Lx

) (2.5)

Eigenvalues obtained by Eq. (2.5) are presented later after the presentation of other approaches,
whereas the three first mode shapes of a simply supported beam can be seen in Figure 2.2. As
seen from the shapes of the curves, these mode shapes satisfy the boundary conditions of a sim-
ply supported beam.
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Figure 2.2: Three first mode shapes of a simply supported beam.

To solve the problem of a beam with two clamped ends, the boundary conditions for a
clamped beam stated in Eq. (2.3) are used together with the general solution, Eq. (2.4b). The
boundary conditions at x = 0 yield that A = C = 0. From this, using the boundary conditions at
x = Lx, the following system of equations is obtained, Eq. (2.6). Index m is implicitly assumed.

K(λ(ω))

[
B
D

]
=

[
0
0

]
⇔

[
cos(λ)−cosh(λ) sin(λ)− sinh(λ)
sin(λ)+ sinh(λ) −cos(λ)+cosh(λ)

][
B
D

]
=

[
0
0

]
(2.6)

To obtain other than the trivial solution, the following frequency condition must be solved:
det(K(λ(ω))) = 0. This yields the following equation, Eq. (2.7).

cos(λ)cosh(λ) = 1 (2.7)

The determination of roots λm from Eq. (2.7) is not straightforward, and as a consequence a
Newton-Raphson iterative solution of the equation is used. The calculations can be found in both
Analytical_frequency_of_beam_model.xmcd and Roots_NR.m. The three first roots of Eq. (2.7)
are given below:

λ1 λ2 λ3

4.7300 7.8532 10.9956

The circular eigenfrequencies are implicitly given by these roots, and the exact values can be
obtained by use of the definition of λ in Eq. (2.4b). To obtain the mode shapes, the roots λm are
used in Eq. (2.6) to obtain the values of Bm and Dm . Either Bm or Dm must be arbitrarily chosen,
and therefore it is rather the ratio Bm/Dm which is found. Hereafter, the values of λm , Bm , and
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Dm are substituted into the general solution of Eq. (2.4b), see Eq. (2.8).

λ4
m = µω2

mL4
x

E I
⇔ ωm =

√
λ4

mE I

µL4
x

Φm,Clamp(x) = B

(
cos

(
λm

x

Lx

)
−cosh

(
λm

x

Lx

))
. . . (2.8)

+D

(
sin

(
λm

x

Lx

)
− sinh

(
λm

x

Lx

))
The results for the circular eigenfrequencies are given later, whereas the three first mode shapes
are depicted in Figure 2.3. The zero slope of all curves at each of the supports should be noted, as
it satisfies the boundary conditions.
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Figure 2.3: Three first mode shapes of a beam fixed in both ends.

2.1.2 Rayleigh’s Fraction

An estimate of a specific natural frequency for both beam cases can be found by the use of
Rayleigh’s fraction. This method estimates the natural frequency from a given approximated
mode shape Φapp(x), which makes the accuracy of the estimate highly dependent on the cho-
sen mode shape. The method is based on analyzing the ratio between the maximum potential
energy (strain energy) and the maximum kinetic energy of the system. The estimate on the natu-
ral frequency can be found from Eq. (2.9), where Umax is the maximum potential energy and Tmax

is the kinetic energy during one period of vibration. The theoretical background of Rayleigh’s
fraction is more profoundly treated in Appendix A.

Umax = 1

2

∫
Lx

E I

(
d 2Φapp(x)

d x2

)2

d x

Tmax = 1

2
ω2

∫
Lx

µ
(
Φapp(x)

)2 d x


ω2 =

∫
Lx

E I

(
d 2Φapp(x)

d x2

)2

d x∫
Lx

µ
(
Φapp(x)

)2 d x
(2.9)

When the properties of the beam are given, i.e. length Lx, Young’s modulus E , moment of inertia
I , and the mass per unit length µ, only an approximated shape of the first vibration modeΦapp(x)
must be given. The only requirement to the approximated shape Φapp(x) is that it fulfils the
geometric boundary conditions [4].

For the simply supported beam and the beam with two ends clamped, the used approxi-
mative shapes are given by Eq. (2.10a) and Eq. (2.10b), respectively. For the simply supported
beam, Eq. (2.10a) is actually the exact vibrational shape, and therefore, Rayleigh’s fraction is also
expected to yield the exact solution. Regarding the approximated shape for the clamped beam
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case, Eq. (2.10b), it should be noted that the expression is defined within the boundaries from
− 1

2 Lx to 1
2 Lx instead of 0 to Lx as for the simply supported case.

Φapp,Simp(x) = sin

(
π

x

Lx

)
(2.10a)

Φapp,Clamp(x) =
(
1−4

x

Lx

)2

(2.10b)

The mode shape of a clamped beam can be described by Eq. (2.10b) for the first bending mode
and is illustrated in Figure 2.4, where it for the sake of completeness is plotted together with
the exact mode shape for the beam with two clamped ends. The constants Bm and Dm in the
expression of the exact mode shape are modified so the mid-beam deflection is the same for
the exact and approximated shape. Thus, comparing the two shapes, Eq. (2.10b) seems to be a
good approximation to the exact shape, Eq. (2.8), and therefore a close estimate of the circular
eigenfrequency can be found.
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Figure 2.4: Comparison of approximated and exact shape.

In the calculations a dynamic Young’s modulus of 40GPa is used. The moment of inertia is
calculated for the pure geometry of the TTD element with 150mm of concrete topping and no
corrections done to account for the prestressed cables. On these premises the moment of inertia
becomes I = 4.134×1010 mm4, see Figure 1.13. The exact length of the beam is set to Lx = 16.3m.
With these parameters the frequency estimates can be calculated and the results can be seen in
Table 2.1. The calculations can be found in the MATHCAD document Analytical_frequency_of_
beam.xmcd. The relationship f =ω/2π has been utilized in Table 2.1.

fm [Hz] m Simple Clamped

Analytical solutions
1 7.19 16.29
2 28.75 44.92
3 64.69 88.05

Rayleigh’s fraction 1 7.19 16.35

Table 2.1: Estimated natural frequencies of the TTD element.

By comparison of the values, it is seen that the estimated frequencies obtained by Rayleigh’s
fraction is quite close to those of the exact analytical solution. The exact eigenfrequency is found
for the simply supported case as the exact mode shape has been used, and for the clamped case,
the estimate of Rayleigh’s fraction is slightly higher.
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2.1.3 Frequency Drop due to Additional Mass

The frequency estimates done in the previous section only takes into account the mass of the TTD
element and the concrete topping. The actual deck has additional 20mm sound proofing rubber
mats on which 60mm fibre concrete is placed. On top of the fibre concrete the actual sports
floor construction, Boflex, is installed. These layers naturally adds mass to the construction and
will hence alter the dynamics of the system estimated previously. As the connection between
concrete topping, sound proofing mats, and fibre concrete is not fully know, it is in the following
assumed that the layers add mass but no stiffness to the dynamic system. The additional three
layers are simplified to one 80 mm thick layer with an average mass equal to concrete.

Describing the TTD element and concrete topping as a dynamic system with modal parame-
ters m and k, the expression for the angular eigenfrequency is given by [17]:

ω=
√

k

m
where


m =

∫
Lx

µΦ(x)2d x

k =
∫

Lx

E I

(
d 2

d x2Φ(x)

)2

d x

(2.11)

The change in eigenfrequency, when adding a rigid mass attachment of mass ∆m, can be shown
with the following expressions, Eq. (2.12). ∆m is determined as in Eq.(2.11), but with a mass per
unit length µadd, which corresponds to the mass of the additional layers.

ω=
√

k

m
⇒ k =ω2m

ωnew =
√

k

m +∆m
⇒ k =ω2

new(m +∆m)



ω2m =ω2
new(m +∆m) ⇒

ωnew =ω
√

m

m +∆m
⇒

fnew = f

√
1

1+ ∆m
m

(2.12)

Eq. (2.12) can be used to account for the mass of the additional layers by calculating the modal
masses. The modal masses are dependent on the mode shape and hence varies if the beam is
assumed simply supported or clamped in both ends. The modal masses and reduction in natural
frequency are carried out in the MATHCAD-document Analytical_frequency_of_beam_model.
xmcd and the results can be seen in Table 2.2. The reduction factor is in every case calculated to

be
√

1/
(
1+ ∆m

m

)= 0.92.

fm [Hz] m Simple Clamped

Differential equation
1 6.62 15.01
2 26.48 41.37
3 59.59 81.10

Rayleigh’s fraction 1 6.62 15.06

Table 2.2: Reduced natural frequencies when accounting for added mass of top layers.

From the analytical frequency estimates assuming the deck to follow a beam model, it can
be seen that the simply supported model predicts a natural frequency where caution should be
taken as the low frequency might be excited by load components of human jumping loads. The
natural frequencies for the simply supported beam models are lower than the suggested limits
defined in Table 1.2. It should also be noted that the boundary conditions, simple or clamped,
have severe effects on the estimated frequency, and it could be argued that depending on the
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construction, both cases should be calculated and used as limit cases as the actual frequency in
reality will take on a value in between.

2.2 Dynamic Analysis of Plate Models

The natural frequencies of the deck can be determined using different approaches. An analogy
to a plate model seems relevant due to the size and shape of the deck. The TTD element struc-
ture exhibits some of the characteristics of a plate, namely, two dimensions of the structure are
considerable larger than the latter. Furthermore, due to the concrete topping, the deck can be
considered as a continuous structure as the concrete topping connects all of the nine TTD ele-
ments. Nevertheless, there are some obvious problems in adopting a plate model as the basis
for determining the natural frequencies. First of all, the two ribs of each TTD element makes the
bending stiffness of the structure considerably larger in one direction compared to the perpen-
dicular direction. Secondly, the deck is made of two materials: concrete and steel, where steel
is found both in form of rebar in the concrete topping and prestressed cables in the TTD ele-
ments. These two facts complicate the formulation of a useful plate model for the determination
of natural frequencies.

The different bending stiffnesses in two perpendicular directions makes the model of an iso-
tropic plate insufficient, i.e. a plate model with the same stiffness in all directions. Instead, an
orthotropic plate model is adopted. Here, it is important to point out that orthotropy can be un-
derstood in two different ways. First, natural orthotropy is the case where the material itself has
an orthotropic structure as for example tree, where the stiffness in the direction of the fibres is
larger than in the cross-fibre direction. Secondly, when the geometric shape of the structure or a
mix of materials is the source of the orthotropic behaviour, the structure is designated structural
orthotropic. From these definitions it is clear that the deck falls within the second category as
the rib stiffeners of the deck increase the bending stiffness in only one direction [28]. The overall
dimensions of the plate problem are illustrated in Figure 2.5.

Figure 2.5: Overview of analytical plate problem.
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Generally, orthotropic plate models apply for plates of natural orthotropy, while approxima-
tions have to be made for plates of structural orthotropy. In the following section it will be de-
scribed, how the deck is modelled by various orthotropic plate models as well as the approx-
imations connected with them. Finally, the natural frequencies are found using the different
approaches. Generally, two different methods are used:

• Estimates of the natural frequencies are found using the governing differential equation of
motion of an orthotropic plate. This equation is of 4th order and a specific solution might be
obtained by use of sine-series, which satisfy the boundary conditions of a simply supported
plate. Therefore, assuming a sine-series solution, this approach is limited to plates, which
are simply supported on all four edges [28].

• Energy methods can be used to estimate the natural frequencies of a structure. In this
case, both Rayleigh’s fraction and the Rayleigh-Ritz method have been utilized. Expressions
for the potential energy U and kinetic energy T of the structure are formulated by use of
approximate shape functions satisfying the boundary conditions. From this, estimates of
the natural frequencies are calculated from a minimization procedure, see Appendix A.

It should be noted that the stiffnesses, which are calculated in the coming sections, are des-
ignated with respect to the primary direction of the normal strains, which accompany bending.
E.g. the flexural stiffness Dx is used when bending occurs around an axis parallel to the y-axis,
and the normal strains develop in the x-direction.

As seen in Figure 2.5, the deck can be divided into two main parts. A plate with uniform thick-
ness and some equally spaced rib stiffeners, which together may be designated a structurally
orthotropic plate. The plate with uniform thickness consists of: the flange of the TTD element,
concrete topping, a sound proofing mat, and a fibre concrete layer. The very top layer, the sports
floor, is not considered at all in the following calculations due to its relative low weight and stiff-
ness. Two different thickness measures of the plate are used. When calculations regarding the
stiffness of the plate are made, only the combined thickness of the flange and concrete topping
is used. However, when calculations regarding the mass are made, the total thickness of flange,
concrete topping, sound proofing mat, and fibre concrete is used. This distinction is made as the
sound proofing mat is considered very flexible with respect to vibrations.

2.2.1 Differential Equation of Motion

The governing differential equation of motion of an orthotropic plate is given by Eq. (2.13). Here,
only the homogeneous part has been shown as free vibrations are studied. The differential equa-
tion has been formulated in such a way that it takes the effect of the rotating inertia of the stiff-
eners Jx and Jy into account [28].

The inclusion of the rotating inertia or the mass moment of inertia of the stiffeners is impor-
tant as the rib stiffeners have a mass, where energy should be used in order to put these into
motion. Therefore, the mass moment of inertias enter together with the mass of the uniform
plate.

Dx
∂4u

∂x4 +2H
∂4u

∂x2∂y2 +Dy
∂4u

∂y4 + ∂2

∂τ2

(
ρtu − Jx

∂2u

∂x2 − Jy
∂2u

∂y2

)
= 0 (2.13)
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where

u Lateral deflection of plate with respect to in-plane coordinates u(x, y).
Dx Flexural stiffness in the x-direction.
Dy Flexural stiffness in the y-direction, Dy = D = Et 3/(12(1 −ν2)).
H Effective torsional stiffness, H = νD +2Dxy, definition of Dxy is seen in Eq. (B.2) in Appendix B.
Jx Mass moment of inertia per unit area, in x-direction.
Jy Mass moment of inertia per unit area, in y-direction.
ρ Density of material.
t Thickness of uniform thick plate disregarding stiffeners.
τ Time.

It is obvious that the plate rigidity parameters: Dx, Dy, and H must be determined in a way
that takes the structural orthotropy of the deck into account. Furthermore, in the determination
of the plate rigidities it is important to recognize that the stiffeners of the uniform plate have an
eccentric position with respect to the mid-plane of the plate, where normal strains develop in the
mid-plane of the uniform plate. The determination of the plate rigidities is treated in Appendix B
using an approach suggested by Iyengar [14]. Likewise, the determination of the mass moment
of inertias, Jx and Jy, is treated in Appendix B.

One solution of the homogeneous differential equation, Eq. (2.13), is given by Eq. (2.14). Due
to the sine-terms, the lateral deflection u(x, y) will always be zero at the boundaries as will the
curvature. Therefore, Eq. (2.14) satisfies only simply supported boundary conditions.

u(x, y,τ) =∑∑
sin

(
mπ

x

Lx

)
sin

(
nπ

y

Ly

)
sin(ωmnτ) (2.14)

where

ωmn Natural circular frequency of plate.
m Number of half-sine mode in x-direction.
n Number of half-sine mode in y-direction.
Lx Width of plate parallel to stiffeners.
Ly Length of plate perpendicular to stiffeners.

The suggested solution, Eq. (2.14), is substituted into the differential equation, Eq. (2.13), and
after some mathematical manipulations, which are not treated here, an expression for the natural
circular frequency is given by Eq. (2.15).
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(
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(
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Ly

)2
) (2.15)

The results obtained from Eq. (2.15) are presented in Section 2.2.4 together with results from
other approaches. The calculation can be found in Analytical_frequency_of_plate_model.

xmcd.

2.2.2 Rayleigh’s Method

One of the energy methods which has been used to estimate the natural frequency of the struc-
ture is based on an article of Dickinson [6]. Rayleigh’s method is used, but unfortunately, the
approximated functions defining the shape of the vibrating plate is not stated in the article, and
it has not been possible to find the source, where the functions are defined. Nevertheless, the
method has been applied due to its simplicity.
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The natural circular frequency ω of the plate is found from Eq. (2.16). The designations
“simple-simple” and “clamped-clamped” refer to the boundary conditions of two sides opposite
each other.

ρtω2L2
x L2

y

π4H
= Dx

H
Γ4

x

L2
y

L2
x
+ Dy

H
Γ4

y
L2

x

L2
y
+2

[
ΛxΛy +2

Dxy

H

(
ΨxΨy −ΛxΛy

)]
(2.16)

Coefficients in Eq. (2.16). α takes the value of x and y respectively, and p is the number of
nodal lines including supported edges perpendicular to direction α [6].

p Γα Λα Ψα

Simple-simple 2,3,4 p −1 (p −1)2 (p −1)2

Clamped-clamped 2 1.506 1.248 1.248

The plate rigidities used in the formula are calculated in Appendix B for two different values
of the second moment of area of the stiffeners. Results are summarized in Section 2.2.4, and the
calculations can be found in Analytical_frequency_of_plate_model.xmcd.

Rayleigh’s method will yield frequencies that can be expected to be higher than the exact
ones. If the chosen shape function is not the correct one, additional constraints are applied to
the model, and these will increase the rigidity in the system. To minimize the added rigidity, Ritz
proposed to superpose a number of assumed shape functions, and then find a minimum of this
function by differentiation with regard to the amplitudes of the assumed functions. The shape is
defined by the functionΦ(x, y), which is used in the time varying function, Eq. (2.17).

u(x, y,τ) =Φ(x, y)cos(ωτ) (2.17)

The shape function used for Ritz’s solution is, when assuming a sine shape of deflection, ac-
tually a summation of the shape functions which are used in Rayleigh’s solution. The number
of summed functions limits the number of frequencies which can be computed. The shape
functions used for the two methods are shown for a simply supported plate in Eq. (2.18a) and
Eq. (2.18b).
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For comparison with Eq. (2.16), a Rayleigh solution has been derived specifically for the floor.
The solution is described in further details in Appendix A, and the solution, when Eq. (2.18a) is
assumed as shape function, is presented in Eq. (2.19).
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where

D Uniform flexural stiffness of plate.
E I Bending stiffness of a stiffener.
yi Distance to stiffener number i along the y-axis.

The natural frequencies can be calculated as stated in Eq. (2.19) with the MATLAB script
Rayleigh_Floor.m.
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2.2.3 Rayleigh-Ritz’ Method

The Rayleigh-Ritz solutions described in [28] are used for two different cases of boundary condi-
tions: the plate is simply supported on all four edges, and the plate is clamped on all four edges.

When assuming four simply supported edges, the expression given in Eq. (2.18b) is used as
it satisfies the boundary conditions on all edges. It is used in Eq. (2.17) and the potential en-
ergy U and kinetic energy T is formulated, after which the procedure described in Appendix A is
imposed. This leads to the following frequency condition given in Eq. (2.20).

ω2 = E I π4

L3
x Ms

·
m4 + ∆

(s +1)β3 (m2β2 +n2)2

1+ Mp

(s +1)Ms

(2.20)

where

Ms Masses of stiffeners.
Mp Mass of plate.
I Second moment of area of stiffener, see Appendix B.

∆ Non dimensional stiffness parameter, ∆= LxD
E I .

s Number of stiffeners.

β Length to width ratio, β= Ly
Lx

.

When assuming four clamped edges, another function describing the shape of the plate dur-
ing vibration must be used. In accordance with [28], the expression given in Eq. (2.21) is used.
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))
(2.21)

As before, Eq. (2.21) is used in Eq. (2.17), and the Rayleigh-Ritz procedure is applied. This leads
to the frequency condition given in Eq. (2.22).
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·
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(2.22)

The natural frequencies obtained by Eq. (2.20) and Eq. (2.22) are shown in Section 2.2.4. The
calculations can be found in the file Analytical_frequency_of_plate_model.xmcd.

2.2.4 Results

The obtained natural frequencies assuming different boundary conditions are presented in this
section. Generally, two different moment of inertia of the stiffeners have been used in the calcula-
tions – one taking into account the stiffness of the prestressed cables and the other disregarding
it as described in Appendix B. Therefore, for different boundary conditions, two cases of esti-
mated natural frequencies exist. In Table 2.3, the results of the preceding formulas are shown.
The angular frequency ω has been used to calculate the frequency f by the relation f =ω/2π.

In the first method, the differential equation of a vibrating orthotropic plate has been used,
which require determination of orthotropic plate rigidities. Secondly, the energy methods have
been used in various forms, which also require the choice of appropriate shape functions for the
considered vibration mode as well as boundary conditions.
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CASE 1 CASE 2
f11 [Hz] I = 4.079×1010 mm4 I = 2.779×1010 mm4

E I = 1.63×109 Nm2 E I = 1.11×109 Nm2

Simply supported on four sides

Differential Equation, Eq. (2.15) 7.24 6.10

Rayleigh’s fraction – Dickinson, Eq. (2.16) 6.46 5.45

Rayleigh’s fraction – Authors, Eq. (2.19) 6.72 5.62

Rayleigh-Ritz, Eq. (2.20) 6.82 5.71

Clamped on edges perpendicular to stiff-
eners, simply supported on edges parallel
to stiffeners

Rayleigh’s fraction – Dickinson, Eq. (2.16) 12.56 10.52

Clamped on four sides

Rayleigh’s fraction – Dickinson, Eq. (2.16) 12.81 10.76

Rayleigh-Ritz, Eq. (2.22) 15.61 13.01

Table 2.3: First natural frequency.

The results of Table 2.3 reveal the importance of estimating the moment of inertia as exact
as possible. All frequencies calculated with I = 2.779×1010 mm4 are 15.7 - 16.7% lower than the
frequencies calculated with I = 4.079×1010 mm4. Therefore, the natural frequencies are quite
sensitive to the value of the evaluated stiffness of the orthotropic plate.

Likewise, the natural frequencies are quite sensitive to the boundary conditions of the plate.
The values of a simply supported plate on four sides are nearly doubled, when all four sides are
clamped. However, it seems of less importance when the plate is clamped in the stiffener direc-
tion and simply supported on the sides parallel to the stiffeners, as the frequency is only slightly
higher when all sides are clamped.

The boundary conditions are not expected to be perfectly clamped, and as seen from the
experimental results presented in Chapter 4, the estimates using a simply supported case is clos-
est to the experimental results. The rather large difference between the results for a simple and
clamped case also indicates that it is difficult in practice to model correct boundary conditions
in an analytical approach.

As not only the first natural frequency is of interest, the five first natural frequencies for the
plate calculated by the four methods assuming simply supported boundaries conditions can be
seen in Table 2.4. The analytical methods assuming clamped boundary conditions will not be
treated further as the estimated fundamental frequencies seems unrealistic high.

fmn [Hz] f11 f12 f13 f14 f15

Differential equation, Eq. (2.15) 7.24 10.64 15.32 21.08 24.28

Rayleigh’s fraction – Dickinson, Eq. (2.16) 6.46 9.54 13.83 19.23 22.18

Rayleigh’s fraction – Authors, Eq. (2.19) 6.72 7.39 9.24 12.64 17.58

Rayleigh-Ritz, Eq. (2.20) 6.82 7.47 9.28 12.61 17.48

Table 2.4: First five natural frequencies for different approaches.
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The importance of precise estimates of boundary conditions as well as stiffness parameters
is very relevant when it comes to practical design. When the estimated fundamental frequencies
in Table 2.3 are compared with the limit frequencies from the Danish National Annex given in
Table 1.2. All methods using simply supported boundary conditions falls within an intermediate
field: 6Hz < f11 < 10Hz, which is neither designated “normally satisfactory” nor “often not satis-
factory”. On the other hand, all methods assuming clamped boundary conditions falls with in:
f11 > 10Hz, which Eurocode states as a “normally satisfactory condition”.

The values shown in Table 2.4 are plotted in Figure 2.6. Very good agreement is seen be-
tween the methods from Eq. (2.19) and Eq. (2.20), whereas the two other methods yield somewhat
higher results. The quick increase in frequency seen in the approach using the differential equa-
tion and the Rayleigh fraction from Dickinson is notable compared to the more smooth curve by
the two latter methods. Obviously, the four analytical methods fall within two categories, where
the solution from the author’s derivation and Rayleigh-Ritz seem to be the most convincing.
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Figure 2.6: Results from methods assuming simply supported boundaries.





Chapter 3

ABAQUS Model

Due to the orthotropic composition of the deck, the numerical approach to determine the eigenmodes
and -frequencies is made in the finite element (FE) program ABAQUS. The deck is modelled with a
shell and a solid model. To be able to make a comparison with the analytical calculations, both half a
TTD element (corresponding to the beam model) and the full deck is modelled. This chapter describes
which choices are made in the modelling process, the results, and the validity of the results.

d d d

It is sought that the models will have similar boundary conditions, and that they represent the real
ones as good as possible. First of all, as illustrated in Chapter 1, the TTD decks lie on panels in the
walls. Also, the concrete topping continues over the walls. This has given rise to two boundary
conditions. The bottom of the TTD deck is supported against vertical translation. Furthermore,
the surface of the concrete topping is pinned at the walls. An illustration of the aimed boundary
conditions is showed in Figure 3.1.

Figure 3.1: Illustration of chosen boundary conditions (equivalent to
Figure 1.9).

The aimed boundary conditions mean that it is difficult to apply the exact same boundary
conditions on both the shell and the solid model. In the solid model, the boundary conditions
can be applied to the wanted surfaces of the model which match the real geometry, and hence the
upper boundary condition will act as partly fixed. But in the shell model the boundary conditions
can only be applied to points or edges of the shell. This means that it must be chosen whether the
boundary conditions at the concrete topping must be considered as a fixity of the TTD element
in the shell model, or if it should be considered pinned. As not all of the flange is connected at
the borders, it is chosen that the shell model will be pinned at the flange of the deck.

3.1 Shell Model

The first FE approach is a shell model. In the following, the shell model is described along with
illustrations of the eigenmodes and the natural frequency results.

27
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3.1.1 Model Description

The shell model contains one shell for the rib and one for the horizontal part of the TTD element.
To account for the increased stiffness due to the cables in the rib, beam elements are merged to
the shell elements. A sketch of the principle is shown in Figure 3.2.

Figure 3.2: 3D sketch of shell model.

To merge the two shells, the shells must intersect. By default, the plane drawn will be the mid
plane in depth, but it is possible to offset the shell from the plane, which is drawn. Hence, the two
shells are drawn as a “T”, and the upper shell is then offset from the intersection. The vertical shell
which represents the rib is of uniform thickness, however in reality it is a trapezoid. Therefore,
the shell is assigned a uniform thickness that will ensure an equivalent bending stiffness, EI, in
the expected bending direction. This results in a uniform thickness of 241mm.

The prestressed cables are represented by two steel beams. The lower beam accounts for the
13 cables at the bottom, and the upper beam accounts for 3 cables. As it is expected that the
cables primarily contribute with axial stiffness, the corresponding beams have cross sectional
areas equal to the sum of the areas of the cables. I.e. if the cross sectional area of a cable in
the lower group are denoted Acab,i , i = 1,. . . ,13, then the cross sectional area of the beam will
be Acab = ∑

Acab,i . Furthermore, the lower beam is positioned at the centre of mass of the rebar
group, whereas the upper is positioned at the intersection, see Figure 3.3.

Figure 3.3: Equivalent modelling of rebars [mm].

Besides the TTD element, also the concrete topping is assumed to contribute to the stiffness
of the deck. Therefore, the thickness of the upper shell is increased with 150mm, which is the
average thickness of the concrete topping. The concrete topping on top of the TTD deck also
contains reinforcement in terms of Ø10 reinforcement with spacing of 150mm in both direc-
tions, which can be included in a shell in ABAQUS. The reinforcement is then included as a layer
with equivalent thickness at a given position in the shell. The rebar layer is typed in as shown in
Figure 3.4, which also shows an illustration on how the rebar layer is implemented.
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Figure 3.4: Rebar dialog box for shell and illustration of model.

The layers on top of the concrete topping is not assumed to contribute to the stiffness, but
the mass will influence the eigenfrequencies. Therefore, the ratio between total mass and model
volume is used to calculate an equivalent density, which is used for all materials to ensure the
correct sum of masses of the shell model.

The shell model is evaluated for both half a TTD deck, as shown in Figure 3.2, and the full
deck, which consists of 9 TTD elements, see Figure 3.5.

Figure 3.5: Shell model of full deck in ABAQUS.

The elements used in the shell model are S8R for shell elements, and B32 elements for beam
elements [23]. Both type of elements are quadratic elements. An example of the mesh in the shell
model is shown in Figure 3.6.

Figure 3.6: Example of mesh in the shell model.

The parts which are used in the shell model are listed in Table 3.1.
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Thickness Diameter Young’s modulus Poisson’s ratio
Element type

t [mm] D [mm] E [GPa] ν [–]

Vertical shell 241 — 40 0.2 S8R

Horizontal shell 220 — 40 0.2 S8R

Lower beam — 45.07 200 0.3 B32

Upper beam — 21.65 200 0.3 B32

Rebar layer — 10 200 0.3 S8R

Table 3.1: Properties of the parts used in the shell model.

The shell model is found on the Appendix CD as the file Shell.cae.

3.1.2 Eigenmodes

As the half TTD element is simplified as a beam, additional boundary conditions are applied to
avoid eigenmodes in the sideways direction as the beam is modelled in 3D. Hence, “rollers” are
applied at the sides of the TTD element so it cannot move sideways nor rotate around its own
axis. The first three eigenmodes for the beam are shown in Figure 3.7 to Figure 3.9.

Figure 3.7: First eigenmode for the
beam model

Figure 3.8: Second eigenmode for
the beam model

Figure 3.9: Third eigenmode for the
beam model

The further modes of the beam model proceed in a similar manner with more oscillations. When

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

10th mode

Figure 3.10: First 10 eigenmodes for the plate model.

the TTD elements are assembled to a full deck they act as a plate and will show a combination of
modes from the two directions. The first 10 eigenmodes are shown in Figure 3.10.
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3.1.3 Eigenfrequencies

The frequency analysis has been run to determine the first 10 eigenmodes for both shell models.
The results are shown in Table 3.2.

Mode Half TTD (beam) model [Hz] Full deck (plate) model [Hz]

1 7.29 7.62
2 26.85 8.58
3 57.43 10.80
4 91.65 14.09
5 99.44 18.90
6 103.23 24.45
7 105.93 27.12
8 111.34 28.00
9 119.71 29.60

10 130.93 31.33

Table 3.2: First 10 eigenfrequencies for the shell models.

When comparing the mode shapes for the two models, it is found that mode 1 of the beam
model corresponds to mode 1 of the plate model, and that mode 2 of the beam model corre-
sponds to mode 7 of the plate model. This indicates that the stiffness in the perpendicular di-
rection of the TTD elements is much smaller, and has little influence on the global stiffness of
the deck. Furthermore, it demonstrates that a beam model is inadequate to give estimations on
more than the first mode of the deck.

3.2 Solid Model

As a first approach, it was attempted to model the solid model as close to reality as possible. By
this, the main difference from the shell model is that each cable in the TTD element is modelled
separately. However, it showed that because of the very fine mesh necessary near each cable, the
model became too computational heavy to work with. Therefore, an approach similar to the shell
model was adopted for modelling of the cables.

3.2.1 Model Description

To reduce computational time significantly, the two groups of cables are assembled into two sin-
gle cables with the same assumptions as for the shell model. The correct and the simplified ge-
ometry of the half TTD element are seen in Figure 3.11.

Figure 3.11: Left: Model with correct geometry. Right: Simplified model.

As for the shell model, the concrete topping is added on top of the TTD element, but the
reinforcement is modelled as a thin steel plate. The thickness of this plate is chosen so the volume
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is equal to the total volume of the reinforcement, resulting in a plate with a thickness of 1mm.
The full model of a half TTD element is seen in Figure 3.12 with the borders of the thin steel plate
marked with red colour.

Figure 3.12: Model of half TTD element with concrete topping included.

Also the solid model is assembled to a full deck consisting of 9 TTD elements, see Figure 3.13.

Figure 3.13: Solid model of full deck.

When conducting a dynamic analysis on a solid model, care must be taken when choosing
element types. Especially when choosing linear elements, the results might become misleading
due to phenomena like shear locking and hourglassing, which are further explained in [26]. The
element type chosen for the solid model is C3D20R, however when evaluating the full deck, this
choice of element type made the model too computationally heavy. This means that the beam
model is modelled with C3D20R elements, and the plate model is modelled with C3D15 elements.
Both element types are quadratic elements. An example of the mesh is shown in Figure 3.14.

Figure 3.14: Example of mesh in the
solid model.

The solid model is found on the Appendix CD as the file Solid.cae.
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3.2.2 Eigenmodes

The mode shapes for the beam are similar to the ones of the shell model. However, due to the
partly fixed ends, the curvature near the ends is different, which for the top side correspond to
the shape of a fixed beam, see Figure 3.15.

Figure 3.15: First eigenmode of solid beam model.

The mode shapes of the full deck are also very similar to the ones of the shell, and the differ-
ence in curvature is not as pronounced as for the beam model. The main observed difference is
that the 10th mode is different, see comparison in Figure 3.16.

Shell model Solid model

10th mode

Figure 3.16: Comparison of 10th mode for both models.

3.2.3 Eigenfrequencies

The frequency analysis has been run to determine the first 10 eigenmodes for both solid models.
The results for both are shown in Table 3.3.

Mode Half TTD (beam) model [Hz] Full deck (plate) model [Hz]

1 9.15 8.07
2 27.89 8.90
3 59.17 10.94
4 91.95 14.50
5 110.15 19.54
6 114.33 25.87
7 116.00 26.61
8 125.11 27.98
9 137.25 29.89

10 139.48 32.44

Table 3.3: First 10 eigenfrequencies for the solid models.

It is evident that when comparing to the shell model, the choice of boundary conditions has
significant influence on whether the deck can be simplified to a beam model. The results show a
higher first frequency for the beam model than for the plate model, which is not expected, as the
plate model has additional stiffness from the perpendicular direction. The first frequency is even
higher if the same element type is used for the beam (C3D15). This indicates that partly fixed
boundary conditions have smaller influence when the plate model is considered. Actually, the
eigenfrequencies for the plate model are close to the ones for the shell plate model, see Table 3.2,
though slightly higher.
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3.3 Selection of Model for Response Analysis

To model the response of the deck when exposed to loads, one model must be chosen which can
satisfy the behaviour of the deck, but which is not too computationally heavy. It is obvious that a
beam model is not adequate to model the behaviour of the deck as the two first modes actually
represents the first and seventh mode of the deck. Therefore, a plate model must be chosen. The
solid plate model is expected to give slightly more accurate results than the shell equivalent, as it
the real geometry can be modelled quite accurately. However, the solid model is so computation-
ally heavy, that it is not suitable for time series of response analyses. Furthermore, the shell plate
model gives results which are close to the ones of the solid model. The only visible difference ap-
pears at the tenth mode, which indicates that the rigidity of the plate might be interpreted slightly
different in the two models. As the tenth and higher modes are not considered relevant, and as
the shell plate model is computationally much lighter to run, the shell plate model is chosen
henceforth in the project.



Chapter 4

Experiments in Nordkraft

In order to clarify the properties of the floor construction, and if possible update certain parameters of
the analytical and numerical models, a series of tests were performed both on top and from underneath
the floor. This chapter presents the experiment set-up and results of the tests.
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4.1 Experiment Set-up

The investigated floor construction is situated with its upper surface in the sports hall under
management of DGI-Huset and beneath in the main theatre hall of Teater Nordkraft. This gave
rise to the requirement that the experiment set-up had to be light and easy to put up and remove
again. As the underside of the deck is located 6 metres above the floor in the theatre hall, an easy
to install reference point for a displacement transducer was abandoned, and the initial equip-
ment was chosen to focus on an accelerometer. The used accelerometer, produced by Brüel &
Kjær with model name 4370 and capable of measuring frequencies from 0.1 to 4800Hz, is con-
nected to a signal amplifier which is used to set the output signal to an appropriate level. The sig-
nal amplifier is wired to a so-called spider which handles the connection to the PC. It also allows
more transducers to be connected if needed. The signal is logged by the program CATMANEASY

at 1200Hz and stored into .asc files. These files are loaded into MATLAB where the actual data
processing takes place. The set-up can be seen in Figure 4.1 for measurements both on top and
underneath the deck.

Figure 4.1: Set-up used for the experiments.

The data acquiring frequency, also called sampling frequency, has influence on the final data
signal and treatment in many ways. As an example, the capture of one period of a sine wave
with a frequency of 12Hz at three different sampling frequencies, namely 60, 120, and 1200Hz
are shown in Figure 4.2.

The main data treatment consists of an FFT analysis which in short analyses the signal and
returns a plot of which frequencies are present in the measured signal and their magnitude of am-
plitude relative to the amount of data samples H . The FFT analysis used in this project is carried
out in the MATLAB script FFT.m which uses the built-in MATLAB function fft(x). The procedure
behind the FFT analysis is explained in more detail in Appendix C. One of the properties of the
FFT analysis is that the sampling frequency has to be at least twice of the desired highest fre-
quency of interest. Therefore, the sampling frequency becomes important in yet another way.
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Figure 4.2: Capture of 12 Hz sine wave with three different sampling frequencies.

This is illustrated in Figure 4.3 where a sine wave with a frequency of 50Hz is generated and sam-
pled at the same three sampling frequencies as previously. The signals are hereafter run through
the FFT analysis and the results can be seen in the rightmost figures. As seen from the signal
sampled at 60Hz, the FFT is not capable of identifying the frequency of 50Hz whereas it detects
a frequency at 10Hz which is not actually present in the generated signal, this phenomenon is
called aliasing and occurs since the signal is undersampled. To avoid undersampling the signals
when performing the experiments at Nordkraft, the sampling rate was kept at 1200Hz.
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Figure 4.3: Resulting FFT spectrum according to sampling frequency.
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4.2 Initial Experiments on Upper Side of Deck

The first experiments to be performed were carried out on top of the sports floor as it was eas-
ier than rigging the accelerometer to the deck at 6 metres height from the floor of the theatre
hall. The tests were done in order to investigate if the floor construction in reality had vibra-
tion modes excitable by rhythmic human motion, as analytical hand calculations predicted any-
thing between 6 and 16Hz depending on boundary conditions and interaction of the layers in
between. Initially, the exact centre point of the floor was chosen for measurements, but as seen
in Figure 4.4 a heel impact load dissipated to fast for any modes to be detected. It was concluded
that the Boflex sports floor was able to dissipate the relatively small load and vibrations from the
heel impact too fast for any vibration to take place in the deck or at least to be measured with the
accelerometer on top of the Boflex floor.
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Figure 4.4: Measured acceleration signal from an initial heel impact test.

Several places on the floor, casings for fixing the various nets for sports activities like bad-
minton and volleyball are moulded into the floor through the Boflex construction. These casings
are casted into the concrete topping, and it was chosen to do measurements from one of these
holes instead. An example of such a hole is show in Figure 4.5 and the corresponding measured
acceleration signal is seen in Figure 4.6.

Figure 4.5: Casing used for measurements.
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Figure 4.6: Measured acceleration signal from heel im-
pact test with accelerometer in hole.

Six heel impact tests were performed, and from these signals, FFT analysis was used to iden-
tify possible modes at approximately 8.2, 9.4, 11, and 13Hz, see Figure 4.7. The plots and data
from the upper side tests are treated in DataTreat_Upper.m.
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Figure 4.7: FFT plot of 6 impact tests with accelerometer placed in hole.

After the modes were identified, six jumping load tests were performed in order to see if it was
possible for one man to excite one or more of the modes. No audio files were used to synchronize
the jumping frequency to a specific frequency, but as it can be seen in Figure 4.8 the jumping
frequency was very close to 2.2Hz in all six tests. Jumping at 2.2Hz should in theory make the
fifth harmonic excite the mode at 11 Hz, which is also seen to be the case from the figure.
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Figure 4.8: FFT plot of initial jumping load tests.

4.3 Experiments on Underside of Deck

After identifying the actual possibility of exciting some of the vibration modes by rhythmic jump-
ing, it was also chosen to do measurements from underneath the deck in order to spot possible
differences between measuring directly on the TTD element and on top of the complex floor
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construction. At the underside of the deck lighting equipment for use in the theatre is attached
to the ribs. The hinges used for the lighting equipment is made from metal and hence attaching
the accelerometer by the use of a magnet was possible. Wooden shims were installed between
the rib and hinge to ensure as little independent movement of the hinge itself as possible. The
accelerometer attachment can be seen in Figure 4.9. The accelerometer was attached midspan
at rib 9, see Figure 6.1.

Figure 4.9: Accelerometer attachment method at underside of the deck.

The first tests to be run were three heel impact load test to compare with the ones from the
upper side tests. The data treatment of the underside tests are carried out in DataTreat_Under.m.
FFT plots from both test locations are shown in Figure 4.10. From impact tests at the underside,
vibration modes could be detected at approximately 8.4, 11, 12.7 and possibly at 18.6Hz. When
comparing the two test series in Figure 4.10, it is seen that the upper side tests indicate a mode
at approximately 9.4Hz which is not seen from the underside tests. This can be explained by
looking at Figure 3.10 where it can be seen that an accelerometer placed at the centre of the floor,
which is the case for the measurements from the theatre hall, will not be able to detect the second
mode as no vibration due to that mode is taking place at the centre point.
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Underside tests

Figure 4.10: FFT plots of upper- and underside impact tests.

For the underside tests a more coordinated sequence of jumping tests were prepared. Music
tracks that followed specific paces were selected so the jumping person would be able to jump
at certain frequencies more accurately. An investigation of how accurately it in fact is possible
to jump at various frequencies was made and is presented in Appendix D. Five frequencies were
chosen to represent the spectrum of possible jumping frequencies, namely 1.6, 2.0, 2.1, 2.2, and
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2.5Hz. The frequencies 1.6, 2.0 and 2.1Hz were chosen to identify the mode around 8Hz more
accurately, whereas the frequency 2.2Hz was chosen to try to excite the mode at 11Hz. The 2.5Hz
tests were done to elaborate the region between the two modes of 9 and 11Hz as the fourth load
component should be situated at around 10Hz depending on how well the jumper was able to
hit 2.5Hz. FFT plots corresponding to the tests done at these frequencies is seen in Figure 4.11.
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Figure 4.11: FFT plots of underside accelerations generated by jumping at various frequencies.

By looking at the FFT analysis plots, it is clear that the mode just above 8Hz is able to be
excited by one person jumping at slightly above 2Hz due to the fourth harmonic, 4 · 2.07Hz =
8.28Hz. Here, the 2.07Hz is taken as the actual jumping frequency as it can be read from the FFT
plot. From the FFT plot it is also seen that the frequency of the mode is probably at 8.3Hz rather
than 8.4Hz based on the peak values. Jumping at 1.6Hz will also excite the 8.3Hz mode, just not
to the same magnitude. This is mainly due to the fact that when the fifth load component excites
the mode, it carries less energy than lower load components. Also the fifth multiplier of 1.63Hz
is 8.15Hz, so the excitation might be just in the beginning of the resonance region. This property
is also seen from the 2.1Hz jumping tests, were the actual jumping frequency is more likely to
be 2.15Hz, which causes the fourth harmonic to hit in the outer area of resonance, making the
dynamic amplification less severe.

The mode at approximately 11Hz was sought excited by the tests at 2.2Hz, but no really clear
resonance is experienced from this test series. The dynamic amplification seen at around 11Hz
is of same magnitude as seen in the 2.1Hz jumping tests, so either this mode is not of same
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importance as the one at 9Hz, or it is sufficiently narrow banded for none of the tests to hit close
to pure resonance. This however, is not very likely as the 2.1Hz and 2.2Hz tests series covers the
region around 11Hz pretty well due to the spread in actual jumping frequency.

In Table 4.1 the results for the two tests series are summarized for the four first natural fre-
quencies. Also, four target frequencies are stated, which represent the best estimates on the nat-
ural frequency for each mode.

f [Hz] Mode Upperside Underside Target

1 8.2 8.3 8.3
2 9.4 N/A 9.4
3 11.0 11.0 11.0
4 13.0 12.7 12.7

Table 4.1: Natural frequencies found from experiment.

4.4 Damping Ratio Determination from Half-Band Width Method

The tests conducted at Nordkraft can also be used for estimating the damping ratios of the deck.
One of the two used methods is called the half-band width method and estimates the damping
ratios by taking a closer look at the region around the resonance peak in the frequency domain
from a impact excitation. The half-band width method identifies the peak and the magnitude of
the peak. The half power value is calculated with Eq. (4.1) and the frequencies fHP,1 and fHP,2 cor-
responding to the half power magnitude are found. The damping ratio is given by either Eq. (4.2)
or Eq. (4.3). If the resonance peak is well captured, the two calculation methods will give similar
results. The method is illustrated in Figure 4.12 for the 2nd mode. The signals used for the half-
band width method are zero-padded, which means zeros have been added to the original signal
before the FFT analysis are performed. This does not add more information to the FFT plot, it
only adds resolution and scales the amplitude values. The added resolution makes it possible to
identify the half power frequencies more accurately.
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Figure 4.12: Illustration of half-band width method.

AHP = APeakp
2

(4.1)

ζ= fHP,2 − fHP,1

fHP,2 + fHP,1
(4.2)

ζ= fHP,2 − fHP,1

2 f APeak

(4.3)

Six impact tests were conducted to determine the damping ratios of the first three vibration
modes. The calculations and treatment of the data are carried out in HalfPower.m. The ratios
obtained from the half-band width method are listed in Table 4.2.
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DAMPING RATIO FROM

HEEL IMPACT
MODE

DAMPING RATIO, ζ [%]

1 2 3 4 5 6 Mean

Using Eq (4.2)
1 2.39 1.29 1.88 N/A 1.58 1.70 1.77

1.69
1.96

 1.802 1.97 1.56 1.83 1.71 1.69 1.37
3 2.00 2.12 1.94 1.88 2.02 1.80

Using Eq (4.3)
1 2.37 1.29 1.87 N/A 1.58 1.70 1.76

1.69
1.96

 1.802 1.98 1.56 1.82 1.71 1.69 1.37
3 1.99 2.11 1.94 1.88 2.02 1.79

Table 4.2: Estimated damping ratios.

In the used dynamic models, it is implicitly assumed that the system of the deck can be de-
coupled into a system of independent modal equations. This is generally the case for lightly
damped systems, where the eigenfrequencies are sufficiently separated [17]. Coupling between
the different modal coordinates is dependent on the velocity term and hence the damping term.
When assuming modal decoupling, damping can be expressed through the damping ratio ζ for
the given mode, and as explained by Nielsen [17], decoupling can be assumed if Eq. (4.4) is ful-
filled.

ωn (1+a ζn) < ωn+1 (1−a ζn+1) , where a ≈ 2−3 (4.4)

Eq. (4.4) is applied in the two limit cases, when a = 2 and a = 3 as shown Eq. (4.5). Only the
separation of the first three modes is controlled.

a = 2 ω1 = 2π ·8.3 Hz , ζ1 = 0.0177 ω2 = 2π ·9.4 Hz , ζ2 = 0.0169︸ ︷︷ ︸
ω1 (1+a ζ1) < ω2 (1−a ζ2) ⇔ 53.99 < 57.07

ω2 = 2π ·9.4 Hz , ζ2 = 0.0169 ω3 = 2π ·11.0 Hz , ζ3 = 0.0196︸ ︷︷ ︸
ω2 (1+a ζ2) < ω3 (1−a ζ3) ⇔ 61.06 < 66.41

a = 3 ω1 = 2π ·8.3 Hz , ζ1 = 0.0177 ω2 = 2π ·9.4 Hz , ζ2 = 0.0169︸ ︷︷ ︸
ω1 (1+a ζ1) < ω2 (1−a ζ2) ⇔ 54.92 < 56.07

ω2 = 2π ·9.4 Hz , ζ2 = 0.0169 ω3 = 2π ·11.0 Hz , ζ3 = 0.0196︸ ︷︷ ︸
ω2 (1+a ζ2) < ω3 (1−a ζ3) ⇔ 62.06 < 65.05

(4.5)

Eq. (4.5) reveals that modal decoupling can be assumed for the first three modes of vibration, as
the inequality in Eq. (4.4) is fulfilled in every case.

4.5 Damping Ratio Determination from Logarithmic Decrement Method

The half-band width method used in Section 4.4 is a rather imprecise method for determination
of the damping properties of a structure. This is due to the fact that the method is very dependent
on the quality of the Fast Fourier Transform of the acceleration signal, which itself is very sensitive
to e.g. noise. However, this might be the best solution at hand.

Nevertheless, it has also been attempted to find the damping ratios of the three first modes by
means of the logarithmic decrement method. Again, impact tests are used, where the damping
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ratio of the first and third mode is found using the tests measured on the underside of the floor,
while the damping ratio of the second mode is found using a test from the upper side of the floor.

Application of the logarithmic damping method requires an acceleration signal with a free
decay, where the oscillations are performed with the natural frequency matching the specific
mode of interest. But the acceleration signals from the impact tests are first of all quite noisy,
and secondly, the signal contains oscillations with numerous frequencies. In order to prepare
the acceleration signal for a logarithmic decrement analysis, a bandpass filter is applied to the
time series, which is done in the MATLAB-file Bandpass_filter.m. The procedure is explained in
relation to the damping ratio of the first mode.
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Unfiltered acceleration signal

Figure 4.13: Unfiltered acceleration signal.
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Filtered acceleration signal, 1st mode

Figure 4.14: Filtered acceleration signal.

In Figure 4.13 and Figure 4.14, the unfiltered and filtered acceleration signal is shown, re-
spectively, for an impact test where measurements are made on the underside of the deck. In
Figure 4.14, oscillations with a frequency in the neighbourhood of the first natural frequency of
8.3Hz have been filtered out of the original signal, see Figure 4.17 in comparison with Figure 4.16.
After the bandpass filter is applied, the free decay is analyzed by means of the logarithmic decre-
ment method as shown in Figure 4.14.

The method works by calculating the logarithmic decrement δi by the ratio of the magnitudes
of subsequent peaks amax,0, amax,i , . . . , i = 1,2, . . . on the filtered acceleration signal. amax,0 is the
magnitude of the first peak. The relationship given in Eq. (4.6) is utilized [17]:

δi = 1

i
ln

(
amax,0

amax,i

)
⇔ i δi = ln

(
amax,0

amax,i

)
= ln(Ra) (4.6)

This relationship can be plotted for the used peaks in the analysis, and the logarithmic decrement
can be estimated through the slope of a least square regression line. The method is illustrated in
Figure 4.15 for the first mode.
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Figure 4.15: Linear regression of logarithmic decrement.
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As seen from the figure, the fit of the regression line is rather close for the first mode, and
this is also the case for the two remaining modes. From the found logarithmic decrement δ, the
damping ratio ζ is found, see Eq. (4.7).

ζ=
δ

2π√
1+

(
δ

2π

)2
(4.7)

It should be mentioned that the acceleration signals of the impact tests are influenced quite much
by higher frequencies, which cannot be explained from a structural point of view. This is seen
from Figure 4.16, where a large concentration of energy is observed at higher frequencies. These
higher frequencies seem to dominate the acceleration response immediately after the impact,
after which the lower frequencies get excited.
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Figure 4.16: FFT plot of original signal.
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Figure 4.17: FFT plot of filtered signal.

The explained procedure is applied for the three first modes, and the results can be seen in
Table 4.3. The shown bandpass filter intervals refer to frequency cut-off limits.

MODE BANDPASS FILTER INTERVALS [Hz] DAMPING RATIO ζ [%]

1 6.89–8.96 1.24
2 8.97–9.74 2.06
3 10.69–11.38 1.60

Table 4.3: Results of logarithmic decrement analysis.

The acceleration signals available for the logarithmic decrement analysis were not optimal.
This is due to a relatively high amount of noise at higher frequencies than interesting in this
assessment. Therefore, the results of the logarithmic decrement analysis serves merely as a refer-
ence case to the damping ratios from the half-band width method. As seen, the results from the
two methods are of the same order of magnitude.

According to Bachmann et al. [3], the found damping ratios seem realistic for this kind of
construction. For prestressed concrete constructions, he states an interval of 1% to 3% for the
damping ratio.



Chapter 5

Tuning of Models

To make it possible to get applicable responses in both the analytical model and the ABAQUS model
of the deck, these are tuned to meet the results from the conducted experiments. This means that it
is attempted to tune the models so they approach the same natural frequencies which are detected in
the experiments. If it is not possible to tune the models to obtain the same natural frequencies, the first
frequency is prioritized, then the second, and so on.

d d d

The natural frequencies which have been computed, and the target frequencies estimated from
the experiments, are listed in Table 5.1.

COMPUTED FREQUENCIES [Hz]

MODE
ANALYTICAL PLATE MODEL ABAQUS MODEL TARGET

(author’s derivation, Eq. (2.19)) (full deck – shell model) FREQUENCY [Hz]

1 6.72 7.62 8.3
2 7.39 8.58 9.4
3 9.24 10.80 11.0
4 12.64 14.09 12.7

Table 5.1: Computed natural frequencies and target frequencies.

This chapter describes how the models which are intended to be used for the response in-
vestigation are tuned, and which limitations they each produce in comparison with the real be-
haviour detected in the experiments.

For both models, it has shown that the material parameters are the most appropriate to tune.
The geometry is considered quite accurate, and the attempts to change the boundary conditions
has shown that the initially chosen boundary conditions are in good agreement with the series
of natural frequencies. However, the geometry is indirectly tuned in the analytical model as the
bending stiffness E I which is tuned is the product of a material parameter E and a geometrical
parameter.

5.1 Analytical Model

As seen in Table 5.1, the natural frequencies of the analytical solution are generally lower than the
targets. The fourth mode seems to be almost equal to the target.

As illustrated in Chapter 3, only the mode number in the y-direction changes for the first six
modes, whereas the mode number in the direction of the ribs remains at 1. This indicates that
the rigidity in the x-direction is much larger than the rigidity in the y-direction. Therefore, the
bending stiffness of the ribs is the main contributor to the modal stiffness for the first mode. As
only the mode number in the y-direction increases for the next modes, the intervals between the
frequencies of these modes are determined by the plate rigidity.

The parameters that have been changed to tune the analytical model are therefore the bend-
ing stiffness of the ribs E I , and the flexural stiffness of the plate D . The used E I takes the stiffness
of the prestressed cables into account. With the first natural frequencies as first priorities, the

45



46 Chapter 5. Tuning of Models

bending stiffness of the ribs has been changed from E I = 1.63×109 Nm2 to E I = 2.44×109 Nm2.
Here, it has not been distinguished between tuning of E and I . The flexural stiffness of the plate
has been changed from D = 3.70×107 Nm to D = 7.56×107 Nm, which results in the natural fre-
quencies: 8.30, 9.40, 12.30, and 17.42Hz. The first two natural frequencies are equal to the targets,
but the third and fourth deviate with approximately 12% and 31%, respectively. The increase in
stiffness of both ribs and plate can explained by the additional constraints caused by the bound-
ary conditions, which are not perfectly simply supported.

The purpose of tuning the analytical model is to prepare a model based on modal decompo-
sition. It has been chosen that this model should be able to represent the behaviour of the first
three modes, and therefore the modal stiffness and modal mass of these three modes has been
calculated in accordance with Eq. (A.7) in Appendix A after the tuning, see Table 5.2.

Mode Modal Stiffness, k [×106 N/m] Modal mass, m [×103 kg]

1 269.1 98.95
2 345.2 98.95
3 591.1 98.95

Table 5.2: Modal stiffness and modal mass of the first three modes.

5.2 ABAQUS Model

Like the results of the analytical solution, the calculated natural frequencies in ABAQUS are also
lower than the detected ones in the experiments. Only the fourth natural frequency is higher, but
as this is the frequency that has been least accurately determined, and furthermore is the least
important, it is merely attempted to tune the model for the first three modes.

When the model is to be tuned, it seems most reasonable to change the parameters which
are considered of most uncertain precision. This means that the main parameter that has been
chosen for the tuning is Young’s modulus of concrete. It was initially set to Ec = 40GPa, but has
been altered to Ec = 48GPa, which gives the following four first natural frequencies: 8.30, 9.36,
11.79, and 15.39Hz. The results of the tuning of the Abaqus model are overall better than the
tuning of the analytical model. The first two natural frequencies are almost equal to the targets,
and the deviations of the third and fourth are approximately 7% and 21%, respectively. These
results are quite acceptable as the first three modes are of most interest. The change in Young’s
modulus is in good agreement with an article by Suikkanen, COWI [25], which states that the
dynamic modulus can be taken as 20% larger than the initial static modulus: Ec,dyn = 1.2 ·40GPa
= 48GPa. Young’s modulus of steel is kept unchanged at Es = 200GPa, as it seems to be the optimal
value.

The first two natural frequencies are very close to the targets, but the third, and especially the
fourth, do not converge by altering Young’s modulus.

Besides Young’s modulus, other opportunities to alter the model is the geometry and the den-
sity. However, as both parameters are considered quite accurate, and as it is difficult to predict
the change in frequencies due to an altered geometry, these are left unchanged.

5.3 Summary of Model Tuning

The parameters which have been changed are summed up in Table 5.3, and these values will be
used henceforth in the report.

Here it must be noticed that the tuning of E I in the analytical model does not corre-
spond to the tuning of Ec in the ABAQUS model. The tuned value of E I in the analytical solu-
tion corresponds to approximately E = 60GPa assuming that the same moment of inertia I =
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Original value Updated value

Analytical model
Bending stiffness of stiffeners, E I 1.63×109 Nm2 2.44×109 Nm2

Flexural stiffness of plate, D 3.70×107 Nm 7.56×107 Nm

ABAQUS model
Young’s modulus of concrete, Ec 40GPa 48GPa

Table 5.3: Tuned parameters.

4.079×1010 mm4 for the rib is used, see Appendix B. Therefore, the tuning of the two models can-
not be compared directly. However, this was also expected as the parameters such as moment of
inertia and boundary conditions are not exactly the same in the two models. The resulting natu-
ral frequencies due to the changes are seen in Table 5.4.

ANALYTICAL MODEL ABAQUS MODEL

MODE Frequency [Hz] Deviation [%] Frequency [Hz] Deviation [%]

1 8.30 0.0 8.30 0.0
2 9.40 0.0 9.36 −0.4
3 12.30 11.8 11.79 7.2
4 17.42 31.2 15.39 21.2

Table 5.4: Natural frequencies of tuned models and deviation from targets.

To illustrate the differences in the natural frequencies from the tuning, a plot of the results is
seen in Figure 5.1.
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Figure 5.1: Plot of tuning results.

A precise model seems to be difficult to achieve for more than the first 2–3 modes. The value
Ec should be carefully considered, and the stiffness of various kinds of reinforcement and pre-
stressed cables should be included in the calculation model.





Chapter 6

Load Scenarios for Response Analysis

In this chapter load scenarios are defined from which the response of the deck is analyzed. The load
is generated by jumping humans, and three different load areas are defined on the deck. The load
areas are defined in such a way that each of them should excite one of the three first modes.

d d d

The load scenarios defined in this chapter are based on the purpose of preparing a framework for
response analyses. The jumping frequencies fp are chosen in a region where it is known that it is
fairly easy to keep the pace, and where accuracy of parameters such as contact ratio and jumping
frequency has been investigated, see Appendix D. It is therefore elaborated that the control of
the serviceability is merely based on these scenarios, and that other load scenarios most prob-
ably can be found which are more critical. Hence, the chosen load scenarios serve foremost as
scenarios where reliable results are expected from the experiments.

The load areas, which form the basis for the response analysis, are defined in Figure 6.1. As
seen from the figure each load area is defined in order to excite one of the three first modes.
Clearly, the first scenario excites primarily the first mode, and also the third mode, whereas the
second mode should not be excited. The second and third scenario will excite all modes, but
primarily the one they are intended for.

Figure 6.1: Load scenarios.

At most 20 humans are assumed to jump at the same time evenly distributed within the de-
fined load areas, but also other intensities of jumping humans are examined in order to clarify
the effect of synchronization between the individuals, also known as the crowd reduction effect.
However, the number of people is only varied for the first scenario. It should be noticed that in
the third scenario, the load area is half the size of the other load scenarios. The reason for this
is that initially the jumping humans were divided in two equal sized groups to be placed in two
load areas in each end of the floor, however due to obstacles on the floor, only one of the load
areas was used, but the size was maintained, i.e. an area of half the size compared to the other
scenarios.
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On basis of the defined scenarios in Figure 6.1, the cases shown in Table 6.1 are examined
with respect to the response of the deck, and these serve as reference situations both for cal-
culation models and experiments. Hence, comparison between various calculation models and
experiments is based on the cases defined in Table 6.1. The jumping frequency of the humans
are varied through the various analyses, and generally it is attempted that one of the load com-
ponents should hit resonance. The chosen jumping frequencies fp means that the first natural
frequency coincides with the fourth load components of the jumping frequencies for Scenario
1 and 2. The third natural coincide with the fifth load component for the jumping frequency in
Scenario 3. To compare the response analysis in Chapter 8 with the results from the conducted
experiments, the masses of the participants in the experiments have been recorded. The sum of
these has been used to calculate an equivalent distributed load on the load areas. The average
weight and the equivalent load are shown in Table 6.1.

TYPE OF EXPERIMENT JUMPING HUMANS

AVERAGE
ACC.
POS.MASS WEIGHT LOAD

[kg] [N] [N/m2]

Control of serviceability limit state

Scenario 1, fp = 2.08Hz, 4 fp = 8.3Hz 20 76.5 750 600
AScenario 2, fp = 2.35Hz, 4 fp = 9.4Hz 20 76.5 750 600

Scenario 3, fp = 2.20Hz, 5 fp = 11.0Hz 20 76.5 750 1201

Parameter study of crowd reduction effect

Scenario 1,
fp = 2.08Hz, 4 fp = 8.3Hz

20 76.5 750 600

B
15 77.6 761 457
10 76.4 750 300
5 75.8 744 149

Parameter study of human damping effect

Scenario 1,
fp = 2.08Hz, 4 fp = 8.3Hz

5 + 5 passive 71.0 697 139
B5 + 10 passive 71.0 697 139

5 + 15 passive 71.0 697 139

Table 6.1: Average weights and loads from participants.

The designation “Acc. Pos.” refers to the position of the accelerometer in the experiments,
which have been performed to measure the response. As the accelerometers are attached to the
ribs, the accelerometer at Pos. B is attached to the 9th rib. Although the distance between the 9th

rib and the exact midpoint of the deck
(
x, y

) = (
Lx/2,Ly/2

)
is 600mm, these two terms are used

indiscriminately.
Generally, three main aspects are analyzed through both calculation models and experi-

ments. According to Table 6.1, the substance of them is described in greater detail:

• Control of serviceability limit state. The magnitude of acceleration is compared to the lim-
its given in Table 1.2. Assessment of the accelerations is based on the three load scenarios
defined in Figure 6.1 and Table 6.1, and for each mode the jumping frequency of the hu-
mans is adjusted to hit the natural frequency of the considered mode. As mentioned earlier
these scenarios do not necessarily represent the most critical scenarios, and therefore it is
stressed that this assessment cannot be seen as an conclusive control of the serviceability
limit state.

• Parameter study of crowd reduction effect. The so-called crowd reduction effect is investi-
gated by varying the number of jumping humans. Total synchronization of jumping hu-
mans is not achievable in practice, which means that the jumping load of a crowd of hu-
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mans is not proportional to that of a single human. In the calculation models, an expres-
sion which takes this into account is sought for, and this can be compared to the experi-
mental results.

• Parameter study of human damping effect. When passive humans are present on the floor,
while others are jumping, the passive humans will damp the vibrational response. This
effect is investigated by varying the number of passive humans.





Chapter 7

Load Models

Two different load models will be used in relation to the deck in Nordkraft, and these will be described
in the this chapter. The first load model is the codified Danish model given in the Danish National
Annex to Eurocode 1 [11]. The second model is suggested by Ellis & Ji [8]. Both models are assessed
by comparing jumping tests.

d d d

Generally, the two jumping load models are based on a Fourier series on the form given by
Eq. (7.1). F (t ) designates the load time history and has the unit of [kN/m2]. In the present case
considering a deck fixed against horizontal translations, only the vertical forces are considered.

F (t ) =G

(
1.0+

∞∑
i=1

αi Ci sin
(
2πi fpt +ϕi

))
(7.1)

where

G Static weight of humans per unit area [kN/m2].

Ci Crowd reduction factor for the i th jumping load component. This is an empirically determined
factor, which is only used in connection to the Eurocode-model, as it takes into account the
synchronization of jumping people.

αi Fourier coefficient of the i th jumping load component. αi is stated in relation to the relevant
load model, and is originally estimated from jumping experiments.

ϕi Phase lag for the i th jumping load component. The determination of ϕi is stated in connection
to the relevant load model.

fp Jumping frequency of persons.

A typical representation of a jumping load from one human can be seen in Figure 7.1, which
shows a part of a jumping load time history. Jumping loads are characterized by the fact that
during a time period tc, the jumping human is in contact with the ground, where a relatively high
impact is applied on the deck. During the rest of the jumping load period Tp, the human is in the
air.
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Figure 7.1: General representation of jumping load.

Jumping loads should be considered a specific case of human-induced loads, amongst for
example walking or running. For all types of human-induced loads it should be considered if
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the load sources, i.e. the humans, are only influencing the load or also the dynamic properties
of the construction, i.e. altering mass, damping, and stiffness properties. Nevertheless, experi-
ments show that jumping loads should not be considered to alter the dynamic properties of the
construction [9]. This assumption is based on the fact that all humans in a specific crowd are
jumping. Standing humans on the deck will definitely alter the dynamic properties of the con-
struction.

7.1 Eurocode Load Model

The load model given in the Danish National Annex to Eurocode 1 is a general model, which
can also be used for other human-induced loads than jumping. In order to model a specific
load type, the phase lags ϕi can be varied freely as no specific values are given in the code [11].
Instead it is stated that the most critical values of ϕi should be used, but this procedure will not
necessarily show a time history, which is representative for a specific load type. Therefore, in
order to replicate a given human-induced load, a (F (t ), t )-plot should be used to make a visual
check, see Figure 7.1.

The load model given in the Danish National Annex only takes into account the first three
load components, i.e. i = 1,2,3. This means that the summation term in Eq. (7.1) should only
include three terms. The relevant parameters to define the load model is given in Table 7.1.

ACTIVITY G fp α1 α2 α3 ρ1 ρ2 ρ3
[kN/m2] [Hz]

Free possibility for movement,
e.g. fitness center

0.5–4.0 0.5–3.0 1.6 1.0 0.2 1.0 0.3 0.03

Reduced possibility for move-
ment, e.g. grand stands with
seating

0.5–4.0 0.5–3.0 0.4 0.25 0.05 1.0 0.1 0.01

Walking. Humans are not walk-
ing in pace.

Should be assessed 1.6–2.4 0.4 0.1 0.06 0 0 0

Table 7.1: Parameters in load model from Danish National Annex to Eurocode 1 [11].

With respect to the phase lags ϕi , they are chosen in a way so the sinus curves corresponding
to each of the three first load components have a positive peak at the same position. Therefore,
the phase lags for the Eurocode model is chosen as: ϕi = {0 −π/2 π} for i = 1,2,3. This princi-
ple is illustrated in Figure 7.2, which shows the sinus curve for each of the three first modes with
the corresponding Fourier coefficients αi as amplitudes.
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Figure 7.2: Sinus curves of three first load components
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As movements of humans in the sports hall are unrestricted, the values in the first row of
Table 7.1 must be used. According to the guidance in the National Annex, the jumping frequency
fp should be chosen within the stated interval, and when choosing a value for fp, the lowest
natural frequency of the construction f1 should be kept in mind. A value, where resonance is
obtained for one of the load harmonics, i.e. i fp = f1, should be chosen for fp. This could be a
critical situation. Likewise, a situation where the maximum value of fp is used should also be
considered. Here, this corresponds to a jumping frequency at fp = 3Hz. It should be pointed out
that the load model does not take into account that humans are not able to jump with the exact
same frequency during a load time history, see Appendix D.

The crowd reduction factor Ci , which is used in Eq. (7.1), is deduced from the situation, where
N persons contribute to the load effect Xi of the i th load harmonic. Each person is assumed to
contribute with the load Fi , j :

Xi = a1Fi ,1 +a2Fi ,3 + . . .+aN Fi ,N (7.2)

The coefficients a j , j = 1,2, . . . , N are the load influence factors and depend on the relative influ-
ence of the corresponding load Fi , j . Thus, a load Fi , j from a jumper is more critical when it is
applied mid-span on a plate than near a support. Therefore, the values of a j are calculated from
the relevant shape function Φ(x, y) with its maximum value normalized to unity. The loads Fi , j

are assumed to be distributed with a coefficient of variation VFi and correlation coefficients ρi .
Values for ρi are given in Table 7.1. From this the coefficient of variation of the load effect Xi is
deduced from statistics [2] as given in Eq. (7.2):

VXi =VFi

√
ρi + 1−ρi

N
η (7.3)

where η=

1

N

N∑
j=1

a2
j(

1

N

N∑
j=1

a j

)2 (7.4)

In accordance with the definition of a j , the factor η takes into account the type of load distri-
bution on the specific construction, and thereby that the load effect from a person is dependent
on the position of the person. As a special case, η= π2/8 for load harmonic components, which
are in resonance with the first natural frequency f1 [11]. Based on this, the so-called “effective”
number of persons contributing to the load effect can be defined as: Ne = N /η, and therefore,
from Eq. (7.3), the crowd reduction factor is defined in the following way:

Ci =
√
ρi + 1−ρi

N
η

=
√
ρi + 1−ρi

Ne

(7.5)

When using the load model given by Eq. (7.1) together with the parameters given in the Danish
National Annex, Table 7.1, the crowd reduction factor Ci and thereby also η must be determined
for each load case. Results for this method is shown in Chapter 8.

In addition to the load model of Eq. (7.1), a simplified procedure is also described in the Dan-
ish National Annex. This simplified procedure can be used with a minimum knowledge about
the dynamical properties of a given construction, and from this the response can be estimated.
Application of the simplified procedure is described in Section 8.1. In the simplified Eurocode
procedure only Scenario 1 is considered, but also with jumping frequencies at fp = 2.77Hz and
fp = 3.00Hz besides fp = 2.08Hz as stated in Table 6.1. This is due to recommendations in the
Danish National Annex for a full serviceability limit state control [11].
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7.2 Ellis & Ji Load Model

The load model proposed by Ellis & Ji [8] is like the Eurocode load model based on representing
the jumping load by means of a Fourier series. To get the Ellis & Ji load model on the same form
as the general expression in Eq. (7.1), the derivation shown in Eq. (7.6) is performed.

F (t ) =G

(
1.0+

∞∑
i=1

ai cos

(
2πi

Tp
t

)
+

∞∑
i=1

bi sin

(
2πi

Tp
t

))

=G

(
1.0+

∞∑
i=1

αi Ci sin
(
2πi fpt +ϕi

)) (7.6)

where

G Static load of person per unit area [kN/m2].

Ci Crowd reduction factor for the i th harmonic jumping load component. The crowd reduction
factor is not specifically defined for the Ellis & Ji model, as it originally is designed for a single
person. Hence, the following is assumed, Ci = 1.

αi Fourier coefficient for the i th harmonic jumping load component, given as αi =
√

a2
i +b2

i .

ϕi Phase lag for the i th harmonic jumping load component. ϕi = tan−1
(

ai
bi

)
if bi > 0, and ϕi =

tan−1
(

ai
bi

+π
)

if bi < 0.

fp Jumping frequency of persons, fp = 1/Tp.

Unlike the Eurocode load model, no fixed Fourier coefficients are given for the Ellis & Ji load
model. Instead, the Fourier coefficients αi and the phase lags ϕi are determined based on the
contact ratio, see Eq. (7.7),

cr = tc

Tp
(7.7)

The meaning of the contact ratio can be seen in Figure 7.1. When the contact ratio of a jumping
human is determined, it is used in Eq. (7.8) from which the Fourier coefficients and phase lags
can be found as seen in connection with Eq. (7.6).

when 2i cr = 1 i = 1,2,3, . . .

then ai = 0

bi = π

2

otherwise

ai = 0.5

(
cos((2i cr −1)π−1)

2i cr −1
− cos((2i cr +1)π−1)

2i cr +1

)

bi = 0.5

(
sin((2i cr −1)π)

2i cr −1
− sin((2i cr +1)π)

2i cr +1

)

(7.8)

The load model by Ellis & Ji is not limited when it comes to the number of considered load com-
ponents as seen from Eq. (7.8), where i = 1,2,3, . . . . This is another difference compared to the
Eurocode load model. Of course, the number of considered load components should be limited
to a reasonable value in order to reduce the needed computations. However, the number of im-
portant load components is dependent on the contact ratio cr. For example, different Fourier
coefficients found from the Ellis & Ji model is seen in Figure 7.3 as a function of contact ratio.
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Figure 7.3: Fourier coefficients for Ellis & Ji load model.

A low contact ratio, e.g. cr = 1/4, means that more Fourier coefficients are relevant as their
mutual magnitude is only slowly decreasing with the load component i . Also, lower contact ratios
in general give higher Fourier coefficients, which from a physical point of view is obvious as the
force from the jumper to the plate must be transferred in a shorter time interval. The situation
is opposite at high contact ratios, where the few first Fourier coefficients are of importance, and
afterwards a quick decrease in the magnitude is seen.

The matter of contact ratios is treated in an experiment with a single human jumping at dif-
ferent frequencies. A description and data treatment can be found in Appendix E.

In the following chapters 6 load components will be included for the Ellis & Ji load model.

7.2.1 Crowd Reduction Effect due to Modified Contact Ratio

When more persons are jumping simultaneously, the load amplitude will not scale linearly with
the number of persons as they are not perfectly synchronized. The load amplitude per person can
be reduced by increasing the contact ratio when the number of persons increase. An increase in
the contact ratio cr reflects that the persons do not have the exact same contact time, and hence
the amplitude of one person is not scaled with the number of persons, but slightly reduced in
comparison. Furthermore, as seen in Figure 7.3, a reduction in contact ratio also reduces the
higher load components more than the first two load components. This difference in reduction
for the different load components is also in agreement with reduction factor from the Eurocode
load model.

To determine how to alter the contact ratio when the number of persons is changed, a Monte
Carlo simulation has been conducted with the experimental results achieved in Appendix D and
Appendix E. This means that both the accuracy of the jumping period Tp, and the contact ra-
tio cr are implemented as stochastic variables in the load calculation, where both variables are
assumed normal distributed. To ease the computations, the two variables are assumed uncorre-
lated, which is probably unlikely to be true. The jumping frequency for the simulation is chosen
to be fp = 2Hz ⇒ Tp = 0.5s, and the standard deviation is found in Appendix D to be STp = 0.037s.
The simulation is run with the mean contact ratio of cr = 0.46 calculated in Appendix E with the
corresponding standard deviation Scr = 0.03.

To achieve replicable results for the (N ,cr,eq) relation, it showed that it was necessary to make
a simulation of n = 10,000 jumps for each N . The simulation was conducted with the MATLAB

script SimulationOfCrowds.m. A comparison of the amplitude per person for 20 persons from
the simulation and the reference for one person is seen in Figure 7.4.
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Figure 7.4: Comparison of average load amplitude per person for N = 20.

To calculate the amplitude per person, the amplitude functions from each person has been
calculated, added to each other, and divided with the number of persons. The equivalent contact
ratio is then calculated with the relation between contact ratio and the normalized maximum
force (Kp = Fmax/G) stated by Ellis & Ji [8], see Eq. (7.9).

cr = π

2Kp
(7.9)

The resulting (N ,cr,eq) relation with a fitting curve for a contact ratio of cr = 0.46 is seen in
Figure 7.5.
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Figure 7.5: (N ,cr,eq) relation with fitting curve for a contact ratio of cr = 0.46

The best fitting curve was found to be in the following form given by Eq. (7.10).

cr,eq = cr,max − 1

β ·N
(7.10)

For a contact ratio of cr = 0.46, the equivalent contact ratio can be calculated by Eq. (7.10) with
cr,max = 8/7 · cr ≈ 0.526, and β = 15.8. The fitting curve is in good agreement with the simulation
results as the square of the correlation coefficient is R2 = 0.9975.
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This means that for the number of persons used in the experiment, the equivalent contact
ratios are as listed in Table 7.2.

PERSONS EQUIVALENT CONTACT RATIO

N cr,eq

5 0.513
10 0.519
15 0.522
20 0.523

Table 7.2: Contact ratios for crowds.

As the crowd reduction is introduced through an increased contact ratio, the reduction fac-
tor in the load function in Eq. (7.6) is omitted, and the crowd reduction is implemented in the
amplitude function αi (cr,eq), so the load function becomes as seen in Eq. (7.11).

F (t ) =G

(
1.0+

∞∑
i=1

αi (cr,eq)sin
(
2πi fpt +ϕi

))
(7.11)

Although the load per person is reduced, it is still expected that the result of the simulation is
overestimating the load. This is probably due to the fact that the simulation is based on the jump-
ing accuracy of one person jumping alone on a steel plate, and may not represent the jumping
accuracy at scenario with more persons jumping on a floor simultaneously. However, the values
of the equivalent contact ratios found from this simulation will be used for the load calculation
for the corresponding number of jumping persons in the following.





Chapter 8

Response Analysis

Based on the preceding analyses of the dynamic properties of the construction and the two presented
load models, the structural response can be analyzed. At first, a simple procedure from Eurocode
for practical design purposes is applied. Hereafter an analytical solution to the governing differential
equation of motion is used. Next, Newmark time integration is applied, which also makes it possible to
model passive humans on the deck. Finally, the results from the ABAQUS model is presented as this
is the most advanced model as well as the experimental results.

d d d

8.1 Simplified Eurocode Procedure

When the response of a construction is wanted, the load model in Eq. (7.1) must be used together
with a suitable dynamic model, which defines mass, stiffness, and damping properties of the
construction. However, a simplified method is given in the Danish National Annex, which makes
it possible to estimate an equivalent static load and structural acceleration to be used in practical
design without having a complete dynamic model. In order to use this simplified method, the
following should be fulfilled for the specific structure [13]:

1. The deflection due to static human loads has the same sign all over the structure.

2. Vibrations from one mode shape only.

3. The considered mode shape generally has vertical movements only, and they have the same
sign all over the structure.

4. The considered mode shape is not coupled with any other shapes.

5. The structure has linear-elastic response behaviour.

6. Three load components are important.

Obviously, in the case of the TTD deck construction it is only reasonable to assume that assump-
tion (5) is fulfilled in a general sense. If only the first mode shape is considered, also assumption
(1), (2), and (3) is fulfilled, however, due to the closely spaced modes, more than the first mode
shape are expected to influence the response for the deck, which cannot be considered in the
simplified procedure.

Keeping these reservations in mind, the response of the deck is still estimated using the sim-
plified method from the Danish National Annex to compare its result to more complicated ap-
proaches. The calculation is based on the first vibration mode. The simplified method is based
on a spectral approach, and due to the findings in Hansen and Sørensen [13], an equivalent static
load Gs can be estimated by:

Gs =G (1+kF) (8.1)
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where kF = a

√√√√ 3∑
i=1

(αi Ci Hi )2 (8.2)

Eq. (8.2) defines the load response factor kF, where a is a response distribution factor depend-
ing on the number of dominating load components. When one load component dominates the
response, a = 1, and otherwise, a = 1.5. Hi is the structural response factor for the i th load com-
ponent as given in Eq. (8.3):

Hi = 1√√√√(
1−

(
i fp

f1

)2
)2

+
(
δs +δp

π

i fp

f1

)2
(8.3)

In Eq. (8.3) damping is introduced through the logarithmic decrement. According to the Danish
National Annex, δs is the structural damping, and a value of δs ≈ 0.05 can be used for prestressed
concrete. Likewise, δp is the human-induced logarithmic damping decrement, and a value of
δp = 0.02 can be used to make a conservative estimate [13]. The total logarithmic decrement is
thusδ= 0.07, which corresponds to a damping ratio of ζ= 1.114%. These values can be used, if no
better suggestions are at hand. The relationships given in Eq.(8.4) exists between the logarithmic
decrement and damping ratio [17].

δ= 2π
ζ√

1−ζ2

ζ=
δ

2π√
1+

(
δ

2π

)2

(8.4)

However, the damping ratio of the first mode has been estimated by measurements, where a
value of ζ = 1.77% was found, see Table 4.2, which corresponds to a logarithmic decrement of
δ= 0.11. Results for both values will be used in order to asses the influence of damping.

Besides the equivalent static load Gs, which can be used to asses the ultimate limit state, the
acceleration of the structure is the most important parameter when it comes to assessing the
serviceability limit state. According to the Danish National Annex [11], the standard deviation
of the structural acceleration due to vertical dynamic loads can be determined as in Eq. (8.5).
During vibration the numerical value of the acceleration is varying between 0 and a maximum
value. Therefore, the magnitude of the acceleration can either be indicated by the maximum
acceleration during an oscillation amax or the standard deviation σa . According to the Danish
National Annex [11], the standard deviation σa is used and this value should be compared with
the limits given in Table 1.2.

σa = ka
(
2π fp

)2 up (8.5)

up is the deflection due to the static human load G , and is thus found from a traditional static
analysis. ka is the acceleration response factor determined as:

ka =
√√√√1

2

3∑
i=1

(
i 2αi Ci Hi

)2 (8.6)

In the considered cases, where the simplified approach has been used, the deflection from static
human load up is found using beam theory. A beam cross section according to half a TTD element
including concrete topping is assumed, which is a conservative assumption as plate effects are
disregarded. The load G in Table 7.1 on the assumed beam is recalculated from a area load to a
line load by the width of half a TTD element.
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The static deflection up is taken as the maximum deflection under static human loading. The
principle of virtual work is utilized. A virtual point load δQ = 1 is applied at the position of the
wanted deflection, and the product of load and deflection constitute the outer work. The inner
work is found as the integral of the product of a virtual moment field δM(x), and the real curva-
ture given as κ(x) = M(x)/E I . The used expression is given in Eq. (8.7).

δQ ·u =
∫
α

M(x)

E I
δM(x)d x +

∫
β

M(x)

E I
δM(x)d x +

∫
γ

M(x)

E I
δM(x)d x (8.7)

α, β, and γ are the lengths shown in Figure 8.1. A MATLAB-script, Simplified_EC.m, has been
written, which calculates u at numerous positions along the length Lx and finds the maximum
deflection up. In accordance with the predefined scenarios in Table 6.1, only Scenario 1 are ex-
amined for the simplified Eurocode model as only one mode can be addresses in this method.
Acceleration values are taken from the midpoint of the deck, see Figure 8.2.

In both cases, E I = 2.44×109 Nm2 is used in the calculations according to the tuned values
found in Chapter 5. In all calculations it is assumed that the weight of one human can be set
to 0.75kN. Three different jumping frequencies fp have been used. The resonance frequency-
case is defined so the third load component hits the natural frequency, 3 · fp = f1 , whereas the
maximum frequency-case is defined from the maximum allowable jumping frequency given in
Table 7.1. These two cases are mandatory according to the Danish National Annex. The last situa-
tion, the reference frequency-case, is defined so the fourth load component would hit the natural
frequency, 4 · fp = f1. However, as the fourth load component is disregarded in the Eurocode load
model, the reference frequency-case serves merely as a reference situation.

Figure 8.1: Beam problem when using principle of virtual work.

Figure 8.2: Load
area and output point
of acceleration val-
ues.

Results from the simplified procedure of the Danish National Annex are given in Table 8.1 for
a logarithmic decrement of δ = 0.07, and in Table 8.2 for a logarithmic decrement of δ = 0.11.
This corresponds to the suggested value in the Danish National Annex and the measured value,
respectively.

The resonance situation is seen to be the most critical as the third load component hits the
first natural frequency exactly, and therefore a large dynamic amplification is found. However,
the acceleration is still found acceptable as σa = 6.80 % and σa = 4.39 % of g . The case with
maximum jumping frequency is less critical. Finally, the reference situation using a jumping
frequency at fp = 2.08Hz is not critical at all according to this simplified model as the fourth load
component is disregarded in the Eurocode model. The magnitude of the dynamic amplification
is most easily seen from the load response factor kF, and the acceleration response factor ka .

The values in Table 8.1 and Table 8.2 are based on the static human load of G = 600N/m2.
Therefore, the influence of a varying G , and thus number of humans, is examined in Figure 8.3
and Figure 8.4. The size of the load area is maintained. By comparison of the two graphs, it is
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PARAMETERS

α= γ= 5.65 m, β= 5.00 m
RESONANCE MAXIMUM REFERENCE

FREQUENCY FREQUENCY FREQUENCY

Lowest natural frequency f1 [Hz] 8.30 8.30 8.30
Static human load G [kN/m2] 0.60 0.60 0.60
Number of persons N 20 20 20
Crowd reduction factor Ci , i = 1,2,3 (1.00,0.58,0.30) (1.00,0.58,0.28) (1.00,0.58,0.28)

Structural response factor Hi , i = 1,2,3 (1.13,1.80,44.9) (1.15,2.09,5.64) (1.07,1.33,2.28)

Deflection from static load up [mm] 0.13 0.13 0.13

Jumping frequency fp [Hz] 2.77 3.00 2.08

Contribution from 1st component (α1C1H1)2 3.24 3.39 2.91
Contribution from 2nd component (α2C2H2)2 1.09 1.47 0.60
Contribution from 3rd component (α3C3H3)2 7.24 0.10 0.02
Response distribution factor a 1.0 1.5 1.5
Load response factor kF 3.40 3.34 2.82

Equivalent static load Gs [kN/m2] 2.64 2.60 2.29

Contribution from 1st component
(
12α1C1H1

)2
3.24 3.39 2.91

Contribution from 2nd component
(
22α2C2H2

)2
17.36 23.49 9.56

Contribution from 3rd component
(
32α3C3H3

)2
586.30 8.09 1.35

Acceleration response factor ka 17.42 4.18 2.63

Stadard deviation of acceleration σa [% of g ] 6.80 1.92 0.58
Maximum acceleration amax [m/s2] 0.94 0.27 0.08

Table 8.1: Results from simplified procedure, δ= 0.07, Eurocode recommendation.

PARAMETERS

α= γ= 5.65 m, β= 5.00 m
RESONANCE MAXIMUM REFERENCE

FREQUENCY FREQUENCY FREQUENCY

Lowest natural frequency f1 [Hz] 8.30 8.30 8.30
Static human load G [kN/m2] 0.60 0.60 0.60
Number of persons N 20 20 20
Crowd reduction factor Ci , i = 1,2,3 (1.00,0.58,0.30) (1.00,0.58,0.28) (1.00,0.58,0.28)

Structural response factor Hi , i = 1,2,3 (1.12,1.80,28.2) (1.15,2.09,5.56) (1.07,1.33,2.28)

Deflection from static load up [mm] 0.13 0.13 0.13

Jumping frequency fp [Hz] 2.77 3.00 2.08

Contribution from 1st component (α1C1H1)2 3.24 3.39 2.91
Contribution from 2nd component (α2C2H2)2 1.08 1.47 0.60
Contribution from 3rd component (α3C3H3)2 2.87 0.10 0.02
Response distribution factor a 1.0 1.5 1.5
Load response factor kF 2.68 3.34 2.82

Equivalent static load Gs [kN/m2] 2.21 2.60 2.29

Contribution from 1st component
(
12α1C1H1

)2
3.24 3.39 2.91

Contribution from 2nd component
(
22α2C2H2

)2
17.34 23.45 9.53

Contribution from 3rd component
(
32α3C3H3

)2
232.20 7.87 1.33

Acceleration response factor ka 11.24 4.17 2.62

Standard deviation of acceleration σa [% of g ] 4.39 1.91 0.58
Maximum acceleration amax [m/s2] 0.61 0.27 0.08

Table 8.2: Results from simplified procedure, δ= 0.11, measured value.
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seen that the damping is quite important. Due to this simplified procedure, the change in loga-
rithmic decrement from δ= 0.07 to δ= 0.11 means that G can be increased from approximately
1kN/m2 to 1.6kN/m2, before a critical situation occur at fp = 2.77Hz. Also, only the situation at
fp = 2.77Hz is affected by the change in damping, while at the two remaining frequencies, the
response is almost unchanged. This is also seen by comparing Figure 8.5 and Figure 8.6.

0.5 1 1.5 2 2.5 3 3.5 4

0

5

10

15

20

25

30

Static human load  G  [kN/m2]

 σ
a  [

%
 o

f g
]

 

 

f
p
 = 2.77 Hz

f
p
 = 3.00 Hz

f
p
 = 2.08 Hz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5
Humans/m2

Figure 8.3: Variation of σa with G , δ= 0.07.
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Figure 8.4: Variation of σa with G , δ= 0.11.
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Figure 8.5: Variation of amax with G , δ= 0.07.
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Figure 8.6: Variation of amax with G , δ= 0.11.

The figures reveal that if a jumping frequency at fp = 2.77Hz is chosen, large accelerations
can be expected, but at other frequencies, where resonance is not achieved, the accelerations
seem less critical unless for a very dense crowd. However, it should be mentioned that a natural
boundary exist due to the number of people per square metre, and with a very dense crowd it
must be expected that the synchronization between people suffers.

8.2 Analytical Solution of Differential Equation

The Eurocode load model and the load model by Ellis & Ji are used in connection with an an-
alytical solution to the governing differential equation of a single degree of freedom system. In
connection with the analytical solution, modal decomposition is utilized, and it is assumed that
the response is governed by the three first modes of vibration of a plate model.
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8.2.1 Modal Decomposition and General Solution

When assuming that the response is governed by the three first modes of vibration, the displace-
ment u(x, y, t ) at an arbitrary point on the plate can be found as stated in Eq. (8.8) [18]. This
principle also holds for the velocity v(x, y, t ) = u̇(x, y, t ) and the acceleration a(x, y, t ) = ü(x, y, t ).

u(x, y, t ) =
3∑

n=1
Φ1n(x, y) qn(t ) (8.8)

where

Φ1n (x, y) Shape function of nth mode. Φ1n = sin
(
π x

Lx

)
sin

(
nπ

y
Ly

)
.

qn (t ) Modal coordinate.

The shape function Φ1n(x, y) is used to specify a position, where the response is wanted. It
should be noticed that in the formulation of the shape function, only variation of the sine term
is possible in the y-direction, as the three first modes corresponds to one, two, and three half
sine waves in this direction, e.g. see Figure 3.10. Each mode is considered as a single degree of
freedom system (SDOF system) using the corresponding modal mass mn , modal stiffness kn =
ω2

nmn , modal damping cn = 2ζnωnmn , and modal force f1n(t ). Three SDOF oscillators have been
depicted in Figure 8.7 representing the three first modes of vibration.

Figure 8.7: SDOF systems.

The modal coordinates qn(t ) are found using a solution of the differential equation of a SDOF
system. This differential equation is given in Eq. (8.9).

mn q̈n +2ζnωnmn q̇n +ω2
nmn qn = f1n(t ) (8.9)

where

qn Modal coordinate of the nth mode.
mn Modal mass calculated from Eq. (A.7) in Appendix A.
ζn Modal damping ratio. These are found in Chapter 4 from a measured acceleration signal.

ωn Natural frequency of the nth mode, target values given in Table 5.1.
f1n (t ) Modal load of time varying forcing function F (t ).

The time series of the modal load f1n(t ) is calculated with Eq. (8.10a) and the stationary modal
load g1n from the physical static load G with Eq. (8.10b). By this, the modal load takes the position
of the load on the deck in relation to the mode of interest into account.

f1n(t ) =
∫

Lx

∫
Ly

Φ1n(x, y) F (t ) d yd x (8.10a)

g1n =
∫

Lx

∫
Ly

Φ1n(x, y) G d yd x (8.10b)
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The complete solution of Eq. (8.9) consists of the transient or complementary part, which is
dependent on the initial conditions, as well as the stationary or particular solution, which is force
dependent. According to Nielsen [17], the complementary and particular solution can be stated
as in Eq. (8.11). Again, the solutions are stated in modal coordinates indicating one solution for
each mode.

qn(t ) = qn,com(t )+qn,par(t ) is constituted of
qn,com(t ) = An,com e−ζnωn t cos

((
ωn

√
1−ζ2

n

)
t −Ψn,com

)

qn,par(t ) = g1n

kn
+

I∑
i=1

∣∣Xn,i
∣∣cos

(
ωp,i t −Ψn,i ,par

) (8.11)

where

An,com,Ψn,com Integration parameters found from initial conditions, see Eq. (8.12).
kn Modal stiffness, found as kn =ω2

n mn or alternatively as in Eq. (A.7) in Appendix A.

ωp,i Circular forcing frequency for the i th load component.∣∣Xn,i
∣∣ Force amplitude, see Eq. (8.13) and Eq. (8.14).

Ψn,i ,par Phase, see Eq. (8.13) and Eq. (8.14).
i , I Index of load component and total number of load components.

According to the considered load components in each load model, I = 3 for the Eurocode
model, and I = 6 for the Ellis & Ji model. The integration parameters An,com and Ψn,com to use
in the complementary solution is found from the initial conditions: q0,n(0) = q̇0,n(0) = 0, see
Eq. (8.12). As seen, Eq. (8.12) has two equations with two unknowns, and this system of equa-
tions is solved for each mode n. This problem is treated in the MATLAB-file Newmark_analytical_

3modes.m.

q0,n = g1n

kn
+

I∑
i=1

∣∣Xn,i
∣∣cos

(
Ψn,i ,par

)+ An,com cos
(
Ψn,com

)

q̇0,n =
I∑

i=1

∣∣Xn,i
∣∣ωp,i sin

(
Ψn,i ,par

)+ An,com

(
ωn

√
1−ζ2

n

)sin
(
Ψn,com

)− ζn√
1−ζ2

n

cos
(
Ψn,com

)
(8.12)

The force amplitude
∣∣Xn,i

∣∣ and phase Ψn,i ,par in the particular solution are found as given in
Eq. 8.13. Calculations can be found in Newmark_analytical_3modes.m.

∣∣Xn,i
∣∣= ∣∣Fn,i

∣∣
mn

√(
ω2

n −ωp,i
)2 +4ζ2

nω
2
nω

2
p,i

Ψn,i ,par = tan−1

(
2ζnωnωp,i

ω2
n −ω2

p,i

)
+θi

(8.13)

The parameters
∣∣Fn,i

∣∣ and θi are found from the two used load models. Here, it must be consid-
ered that Eq. (8.11) and Eq. (8.13) assume a forcing function forig(t ) of the form given by Eq. (8.14).
By rewriting the original form of the forcing function,

∣∣Fn,i
∣∣ and θi can be defined in relation to

the two load models. It should be noticed that index i in Eq. (8.14) is shifted to index m, so this is
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not confused with the imaginary number i .

forig(t ) = g1n +
I∑

m=1
Re

(∣∣Fn,m
∣∣ e−iθm e iωp,m t

)

= g1n +
I∑

m=1
Re

((
cos(θm)− i sin(θm)

)(
cos(ωp,m t )− i sin(ωp,m t )

))

= g1n +
I∑

m=1

∣∣Fn,m
∣∣(cos(θm)cos(ωp,m t )+ sin(θm)sin(ωp,m t )

)

= g1n +
I∑

m=1

∣∣Fn,m
∣∣cos

(
ωp,m t −θm

)

= g1n

(
1+

I∑
m=1

∣∣Fn,m
∣∣sin

(
ωp,m t +

(π
2
−θm

)))

(8.14)

By comparing the last result of Eq. (8.14) with the general expression of the load model given by
Eq. (7.1), the following identifications can be made:

∣∣Fn,i
∣∣= g1nαi Ci and θi = π

2 −ϕi , as the index
is shifted back from m to i .

8.2.2 Results from Analytical Solution

The results of the analytical solution are presented for the two load models. In the analytical
approach all scenarios defined in Table 6.1 have been considered except from the situations with
passive persons. Therefore, this gives two main issues to be considered:

• Control of serviceability limit state with resonance jumping for three first modes.

• Parameter study of crowd reduction effect.

Only the stationary response is considered, as the transient response is quickly dissipated. To
illustrate this, the transient response of Scenario 1 with 20 jumping humans is shown in Figure 8.8
for the Eurocode load model. The shown acceleration signal is taken from the middle of the plate,
i.e.

(
x, y

)= (
Lx/2,Ly/2

)
.
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Figure 8.8: Transient motion calculation from Eurocode load model.
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As seen, an initial impact on the floor will be almost totally dissipated within approximately
3 seconds, whereafter the stationary motion will be dominating. This situation is illustrated in
Figure 8.9, where the complete solution with both the transient and stationary response included
is compared against the stationary response. Again, the acceleration at

(
x, y

) = (
Lx/2,Ly/2

)
in

Scenario 1 with 20 jumping humans is used, but only for the Ellis & Ji load model.
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Figure 8.9: Comparison of solutions.

Obviously, the transient response is only of importance during the first few seconds of the
time series, and becomes ignorable as the total time series lasts at least 30 seconds as in the ex-
periments. Henceforth, the transient response is disregarded, and only values for the stationary
response are shown.

Control of Serviceability Limit State

The calculated maximum acceleration values and root-mean-square values are plotted for the
two load models in Figure 8.10 and Figure 8.11, respectively. These results can be used to evaluate
the serviceability limit state.
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Figure 8.10: amax and arms for the Eurocode model.

Here, it should be kept in mind that the Eurocode model takes the crowd reduction effect into
account by the factor Ci , whereas in the original Ellis & Ji model, the load is not reduced due
to the crowd reduction effect, and thus Ci = 1 for all load components. Therefore, in order to
incorporate the crowd reduction effect in the model by Ellis & Ji, an equivalent contact ratio cr,eq

is used as explained in Section 7.2.1. With 20 jumping humans, N = 20, an equivalent contact
ratio of cr,eq = 0.52 is found.
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Figure 8.11: amax and arms for the Ellis & Ji model.

The found acceleration response for the two load models are very different. The accelerations
from the Eurocode model are in an approximate sense only 10% of the accelerations from the El-
lis & Ji load model. This pronounced difference is due to the fact that the Eurocode load model
only takes the three first load components into account, whereas four is needed for the load to
reach resonance for the chosen jumping frequenct. As seen from Figure 8.11, an equivalent con-
tact ratio reduces the accelerations with approximately 18% for the two first scenarios, and with
40% for the third scenario.

Parameter Study of Crowd Reduction Effect

The acceleration response as a function of weight of jumpers is shown in Figure 8.12. The weight
corresponding to the number of jumpers in Table 6.1 is marked with a square. Again, two sets of
results have been shown for the Ellis & Ji load model, as one of them uses the equivalent contact
ratio given in Eq. (7.10).
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Figure 8.12: Scenario 1, response with varying number of humans jumping.

In Figure 8.13 the acceleration signals for 20 and 5 jumping humans are shown using the Ellis
& Ji model with an equivalent contact ratio. Comparing the maximum accelerations at 0.15m/s2

and 0.56m/s2, respectively, it is obvious that the increase in acceleration is not linearly propor-
tional with the number of people. Although, the reduction at 20 jumping humans is not signifi-
cant as a value of 0.60m/s2 could be expected without taking the crowd size into consideration.

In all presented results, the relatively large difference between the Eurocode results and the
Ellis & Ji results is noticeable. A comparison of the displacement plots shown in Figure 8.14 for
Scenario 1 illustrates the situation.
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Figure 8.13: Comparison of accelerations.
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Figure 8.14: Comparison of displacement plots.

For the displacements calculated with the Eurocode load model, no dynamic effects can be
observed. Instead, the displacement curve has the same shape as the load curve, where each
“bump” corresponds to the humans hitting the deck. On the contrary, the displacement curve
calculated with the Ellis & Ji load model shows clear dynamic effects, as oscillations are per-
formed between each load impact.

8.3 Newmark Time Integration

Newmark time integration is used as a supplement to the analytical solution of the differential
equation. Again, modal decomposition is assumed as described in Section 8.2.1, and Newmark
time integration is used to solve the equation of motion in modal coordinates, Eq. (8.9). However,
as the results for the analytical solution and Newmark time integration are completely similar,
when making calculation for control of the serviceability limit state and the parameter study of
crowd reduction effect, these results are not presented again. Instead, the Newmark time inte-
gration will focus on: Parameter study of human damping effect.

Passive persons can be modelled in various ways. In the literature numerous suggestions
are given, for example rigid mass attachment, mass-spring systems, and mass-spring-damper
systems have been suggested to model the presence of passive humans on a construction. It is
now accepted that a mass-spring-damper model is the most appropriate model [22]. Based on
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this, SDOF systems are added on top of the structural systems shown in Figure 8.7. The principle
is shown in Figure 8.15, where each extra system models a passive human.

A dynamic description of the passive human system must be applied, and here a model by
Zheng and Brownjohn [22] is used. They state approximate parameters of the fundamental fre-
quency and damping ratio of a human to fh = 5.24Hz and ζh = 39%. The modal mass of a passive
human is calculated from the assumed mass of a single person G1 = 75kg. By use of the shape
function Φ1n(x, y), the position of the passive human can be chosen freely over the floor, see
Eq. (8.15).

mhn =Φ1n(x, y)G1 (8.15)

The modal stiffness khn and modal damping coefficients chn for the human SDOF model can
be determined from Eq. (8.16).

khn = (
2π fh

)2 mhn (8.16a)

chn = 2ζh
(
2π fh

)
mhn (8.16b)

When more passive people are present on the floor, the dynamic model can be expanded corre-
spondingly by adding more SDOF systems, see Figure 8.15.

Figure 8.15: First vibration mode with passive humans.

As indicated in Figure 8.15, each passive human can have its own set of dynamic parameters,
which are not only dependent on their position on the floor, as in reality the weight, frequency
and damping ratio will vary from person to person. These parameters can be a complex study
to identify, why the weight of a single person is assumed to be constant at G1 = 75kg, and the
parameters suggested by Zheng and Brownjohn are assumed to apply for all persons. With the
dynamic models put up, the system can be described by the matrix formulation:

Mn q̈n +Cn q̇n +Kn qn = f1n(t ) (8.17)

For the nth of the three first modes, and with j passive humans, the matrices of Eq. (8.17) are
given as:

Mn =


mn 0 · · · 0

0 mh1n · · · 0
...

...
. . .

...
0 0 · · · mh j n

 Cn =



cn + ch1n +·· ·+ch j n −ch1n −ch2n · · · −ch j n

−ch1n ch1n 0
. . . 0

−ch2n 0 ch2n
. . .

...
...

. . .
. . .

. . . 0
−ch j n 0 0 0 ch j n


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Kn =



kn +kh1n +·· ·+kh j n −kh1n −kh2n · · · −kh j n

−kh1n kh1n 0
. . . 0

−kh2n 0 kh2n
. . .

...
...

. . .
. . .

. . . 0
−kh j n 0 0 0 kh j n


f1n(t ) =


f1n(t )

0
0
...
0

 qn =


qn

qh1n

qh2n
...

qh j n



The motion of the system can now be solved using Newmark time integration which is de-
scribed in more detail in Appendix F. It should be noticed that only the modal coordinate qn ,
which describes the motion of the structure, is used in the modal superposition given by Eq. (8.8)
to find the response of the deck. The other degrees of freedom, which describes the motion of
each individual person, serves merely as auxiliary degrees of freedom.

For the sake of simplicity, it is assumed that all passive humans are placed at the same point.
This means that for Scenario 1, all passive humans are assumed to be placed in the middle of the
deck, and therefore, the shape functionΦ1n

(
Lx/2,Ly/2

)
is used to calculate the modal mass of all

passive humans according to Eq. (8.15).

8.3.1 Results from Newmark Time Integration

The time step is chosen to ∆t = 1/5500 in order to minimize period elongation, and the param-
eters of the Newmark algorithm (γ,β) are set to

( 1
2 , 1

4

)
, thus introducing no numerical damping

[18], see Appendix F.

Parameter Study of Human Damping Effect

The calculated maximum and root-mean-square accelerations with passive humans on the floor
can be seen in Figure 8.16. The calculations are based on 5 jumping humans, while the passive
humans are varied according to 0, 5, 10, and 15. As seen in the figure, attenuation of the accel-
eration level is not seen for the Eurocode load model, but is present for the Ellis & Ji load model.
Here, the acceleration level with 15 passive humans is only ≈ 83% of the value with 0 passive
human. The results from the Eurocode load model is not affected, as no appreciable dynamic
effects are present, see also Figure 8.14. As a consequence, the added damping from the passive
humans is not influencing the response, which is primarily governed by the stiffness properties
rather than the inertial and damping properties.
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Figure 8.16: Acceleration with passive humans, 5 jumping humans.

The modal damping ratios have been calculated with passive humans present on the deck. An
impact load is assumed to excite the system, and the logarithmic decrement method is applied
to the free decay for each mode, respectively. The modal damping ratios calculated from the
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Figure 8.17: Variation of modal damping ratio.

logarithmic decrement method can be seen in Figure 8.17. The position of the passive humans is
reflected in the increase in modal damping ratio.

Figure 8.18 shows two examples of acceleration signals with a free decays for the first mode
with 0 and 15 passive humans. The decay is seen to be more rapid for 15 passive persons than for
0 passive persons.
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Figure 8.18: Examples of acceleration signal with free decay.

8.4 Response Analysis in ABAQUS

A response analysis in ABAQUS can give very useful results if it can be validated that the model has
the same dynamic behaviour as the floor behaves in reality. Therefore, the scenarios described
in Chapter 6 has been modelled in this section to compare the results from ABAQUS with the
experiments, albeit the analyses with passive humans have been omitted from this analysis. All
scenarios have been analyzed with loads according to both Ellis & Ji and Eurocode.

Besides the material properties determined in Chapter 5 after tuning, damping is also used
as a material parameter. The mean damping ratio found in Section 4.4 to be ζ = 1.8% is used in
ABAQUS for all modes as structural damping for the materials. Abaqus uses direct integration of
the equations of motion at specific time steps. The integration is performed in physical coordi-
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nates opposed to the modal coordinates used in the model decomposition method. The ABAQUS

file for the response analyses is found on the Appendix CD as ShellExcite.cae.

8.4.1 Load and Time Series

The jumping load according to Ellis & Ji can be applied in ABAQUS as a periodic Fourier series.
The Fourier series is defined by a load magnitude and direction F (x, y, z), and a time varying
amplitude function Q(t ). As the load is applied only in the vertical direction, the load can be
expressed as stated in Eq. (8.18).

F (z, t ) = F (z) ·Q(t ) (8.18)

In ABAQUS, the shell model is assembled by means of merging the meshes of both shell elements
and beam elements. Therefore, the load must be applied to elements. This means that the ele-
ments which are closest to the regions defined in Chapter 6 are selected. The load is then applied
in the load module as a pressure corresponding to the load distributed on the area of the chosen
elements as stated in Eq. (8.19).

F (z) =

N∑
j=1

G j

A
(8.19)

where

G j Weight [N] of human number j .
A Area of the chosen elements in ABAQUS [m2].

As an example, the elements chosen for Scenario 2 are shown in Figure 8.19.

Figure 8.19: Chosen elements for Scenario 2.

When comparing the load series with the Ellis & Ji model in Eq. (7.6), G is the magnitude
declared in the load module, and the rest of the expression is the amplitude time series. The
amplitude time series is defined in ABAQUS as shown in Eq. (8.20).

Q(t ) = a0 +
I∑

i=1
ai cos(iωp t )+bi sin(iωp t ) i = 1,2, . . . , I (8.20)

It is seen from Eq. (7.6) that a0 = 1, and since ωp = 2π/Tp, the coefficients ai and bi are equal to
the coefficients in Eq. (7.8):

a0 = 1 , ai =
(

cos((2i cr −1)π−1)

2i cr −1
− cos((2i cr +1)π−1)

2i cr +1

)

bi =
(

sin((2i cr −1)π)

2i cr −1
− sin((2i cr +1)π)

2i cr +1

) (8.21)
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In ABAQUS, a0 is called the initial amplitude, and the coefficients ai and bi must be typed into
a table with the calculated values. With a jumping frequency of 2.08Hz, the coefficients and
corresponding amplitudes αi for 1 person (cr = 0.46) and for 20 persons (cr = 0.52) are compared
in Table 8.3:

1 PERSON (cr = 0.46) 20 PERSONS (cr = 0.52)
i ai bi αi ai bi αi

1 0.2054 1.6191 1.6319 −0.1086 1.5310 1.5341
2 −0.7865 0.2019 0.8120 −0.5818 −0.0830 0.5862
3 −0.0410 −0.1034 0.1113 −0.0101 0.0467 0.0486
4 −0.1225 0.0673 0.1397 −0.1119 −0.0326 0.1161
5 −0.0343 −0.0472 0.0583 −0.0091 0.0247 0.0268
6 −0.0361 0.0339 0.0495 −0.0433 −0.0196 0.0473

Table 8.3: Fourier coefficients for 1 person and 20 persons.

The jumping load according to Eurocode has been calculated as a time series according to
Chapter 7 in MATLAB with ftEurocodeAbaqus.m and imported as tabular data in ABAQUS as the
amplitude function, Q(t ).

A comparison of how well a certain time step describes the jumping load has been used to
choose the time step. To simulate a sufficiently accurate load, the smoothness of a plot of the
load amplitude calculation is considered. A comparison of plots of the load amplitude with time
steps of 0.1s and 0.01s can be seen in Figure 8.20, where it is seen that a time step of 0.1s does
not yield an accurate load time series.
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Figure 8.20: Comparison of load plots for time steps of 0.1s and 0.01s.

From a comparison of different time steps, it has been chosen that the response analysis will
be performed with a time step of ∆t = 0.02s, which equals a sampling frequency of 50Hz.

To choose the total time for analysis, the response seen in the analytical solution in Figure 8.9
has been considered. When the initial conditions have damped out, the motion becomes har-
monic with the same frequency as the load. This means that the results can be considered repre-
sentative when the initial condition are damped out, and the response motion reaches a steady
state. From the analytical solution, a total time of ttot = 5s has been chosen.

To be able to compare the results with the experiments, data is collected from the bottom side
of each rib at x = Lx/2. This provides the acceleration time history on the mid-span of each rib,
i.e. 18 acceleration time histories.

8.4.2 Results from ABAQUS

Before the maximum and root-mean-square accelerations are determined, the acceleration time
history is considered. It is consistent that large accelerations occur immediately after the load is
applied. These large accelerations are most probably due to too large time steps, as this actually is
the build-up period. As these accelerations are not expected to be representative for the scenario,
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these initial data are omitted. The principle is shown for the acceleration at rib 9 in Scenario 1 in
Figure 8.21.
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Figure 8.21: Acceleration at rib 9 in Scenario 1.

The accelerations are seen to be consistent after approximately 2s with a more smooth signal,
and therefore it is chosen that the maximum and root-mean-square accelerations will be found
for the time period 2s ≤ t ≤ 5s, which corresponds to considering the stationary response only.

Control of Serviceability Limit State

The result data from ABAQUS has been treated with HistoryData.m to calculate the accelerations
at the 18 ribs. The largest amax and arms accelerations for all of the 18 ribs are shown in Fig-
ure 8.22, and therefore no specific position for the output is stated. Generally, the largest value of
amax and arms is found underneath each load area using the Eurocode load model, but this is not
necessarily true for the Ellis & Ji model. An equivalent contact ratio cr,eq are used in the Ellis & Ji
load model.
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Figure 8.22: Acceleration results for Scenarios 1–3.

The maximum acceleration and maximum root-mean-square acceleration, which is found in
Scenario 2 with the Ellis & Ji load model, are amax = 0.32m/s2 and arms = 0.12m/s2, corresponding
to 3.3% and 1.2% of g , respectively.

As the above-mentioned results are maximum values for all 18 measuring points in the model,
it is not certain that these results can be compared directly with the analytical solution and exper-
iments. Therefore, the maximum accelerations and root-mean-square accelerations for Scenario
1, measured at the measure point at rib 4, have been found. These are seen Figure 8.23.
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Figure 8.23: Acceleration results measured at rib 4.

The results shown in Figure 8.23 are the accelerations which are to be compared with the
results from the analytical solutions and experiments. The acceleration results from rib 4 are
therefore listed in Table 8.4.

a [m/s2] ELLIS & JI EUROCODE

Scenario 1
amax 0.14 0.02
arms 0.07 0.01

Scenario 2
amax 0.23 0.12
arms 0.09 0.05

Scenario 3
amax 0.28 0.09
arms 0.08 0.04

Table 8.4: Acceleration results at rib 4.

Parameter Study of Crowd Reduction Effect

Also the cases where different number of persons are jumping in the jumping area from Scenario
1 have been analyzed. The maximum and root-mean-square accelerations for N = 5, 10, 15, and
20 persons in load area 1 are seen in Figure 8.24. The results using the Ellis & Ji load model show
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Figure 8.24: Acceleration results for different number of jumping persons.

that the accelerations increase proportionally with the load inside the same area. If calculations
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had been included for e.g. one and two persons, the slope of the graph in Figure 8.24 is expected
to be steeper for fewer persons, but as the equivalent contact ratio is almost equal for N = 5,10,15,
and 20, the results show an almost linear increase. As for Scenario 1–3, the maximum accelera-
tions calculated with the load model from Eurocode are approximately of the same magnitude as
the maximum root-mean-square acceleration calculated with the Ellis & Ji load model.

8.5 Response from Experiments

In connection with the assessment of the floor response when subjected to human jumping
loads, a third series of experiments was performed at Nordkraft. The tests were laid out to fit
the scenarios described in Table 6.1 and in total 36 experiments were planned:

• Control of serviceability limit state: 3×5 tests, Scenario 1, 2, and 3 with 20 jumpers.

• Parameter study on crowd reduction effect: 4×3 tests with 5, 10, 15, and 20 jumpers.

• Parameter study on human damping effect: 3×3 tests with 5, 10, 15, passive humans and 5
jumpers.

8.5.1 Preperation of Measurements

The set-up used for the experiments was the same as used for the second tests series, in the sense
that the measurements were done from underneath the floor and with the same equipment. The
accelerometer position were varied as indicated in Figure 6.1 where “Pos. A” is sometimes men-
tioned as “4th rib” and “Pos. B” can be referred to as “Midpoint” or “9th rib”.

The actual data treatment was taken a bit further as the measured signal was run through
a Butterworth lowpass filter of order 8 with a cut-off frequency of 20Hz. The Butterworth filter
passes through lower signal frequencies, while it at a specific frequency starts to scale and even-
tually fully remove remaining frequency contributions. The effect of the filter is shown in Figure
8.25, where a signal with integer frequency components of equal magnitude is generated and
its frequency components shown. In the underlying figure, the signal has been filtered and its
frequency components are shown.
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Figure 8.25: FFT plots showing frequency passing, scaling, and cut-off.
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From Figure 8.25 it can be seen that frequency components up until approximately 17Hz
passes through the filter nearly untouched. On same note frequency components over 30Hz are
fully removed. This was found suitable for the treatment of the data as no scaling of the first three
vibration mode components was wanted and the high frequency components are eliminated.
Figure 8.26 shows the effect of the filter order.
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Figure 8.26: Effect of filter order.

It is evident that the removal of higher frequency components can reduce the magnitude of
the measured maximum accelerations, but as it was chosen to focus on the first three modes,
the filtering was initialized for better comparison possibilities with the other analysis methods.
This means that all presented FFT plots are generated from filtered signals, whereas in many
acceleration plots the unfiltered values are also included to illustrate the effect of the filter and the
acceleration contributions from high frequency components. An example of a measured signal is
shown in Figure 8.27 where two zoom-ins are also shown to illustrate the effect of the Butterworth
filter.

When analysing the measurement signals, the used time windows are dependent on the in-
dividual signal. For every signal a matching time window is specified, so that the output values
are calculated from a steady state response only. In the MATLAB-files which processes the data, it
can be chosen whether to use the specified time windows or full signals.
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Figure 8.27: Full measurement signal, zoom-in on both raw and filtered signal.

8.5.2 Results from Experiments

In the following, the results from the experimental response analysis is presented. Firstly the
control of serviceability limit state experiment results are presented where after the results from
the two parameter studies are shown.

Control of Serviceability Limit State

The main purpose of the third round of experiments was to investigate if the deck construction
in fact was able to conflict with the limits of the serviceability in the mentioned scenarios. This
meant that the measurements had to be taken from a position where all modes were detectable.
For this reason the accelerometer was attached to the midpoint of the fourth rib from the north-
ern side, marked “Pos. A” in Figure 6.1. From the illustration of the assumed vibration mode
shapes of the first three modes, it is seen, that this position provides measurements close to the
maximum of the second and third mode, whereas accelerations caused by the first mode only
enters with a value of,ΦLy (4.2m) = 0.57% compared to its maximum value. If the vibrations mea-
sured in connection with Scenario 1 are dominated by vibrations at the first mode, a scaling with
this value could perhaps correspond to measurements taken at “Pos. B”. However, this scaling
is not likely to be possible when looking at a full signal containing vibrations caused by several
vibration modes.

The three test scenarios were planned so each would focus on a worst case exciting frequency
and position of the load. The tests were conducted with 20 jumpers and five repetitions for each
scenario. The data is treated in Cases.m. In Figure 8.28 the results are presented. For each sce-
nario six kinds of data points are marked. The amax and aBut,max values represent the absolute
maximum acceleration value measured throughout both the measured and the filtered signal,
respectively. X(amax) and X(aBut,max) show the average peak acceleration values while the arms

and aBut,rms show the calculated root-mean-square values.
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Figure 8.28: Measured accelerations from Scenarios 1, 2, and 3.

To study the contents of the signals in more detail, FFT analysis is also applied to the mea-
surements. The resulting plots can be seen in Figures 8.29 to Figure 8.31.
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Figure 8.29: FFT plot of Scenario 1 tests.
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Scenario 2

Figure 8.30: FFT plot of Scenario 2 tests.
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Figure 8.31: FFT plot of Scenario 3 tests.

From the plots, it can be seen that the largest contributor to the accelerations measured in
Scenario 1 is the vibrations at the first natural frequency, 8.3Hz. Furthermore it can be noted, that
the fifth load component is able to hit in the outer rim of the third mode. For Scenario 2 and 3, the
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FFT analysis reveals that the accelerations originate more from the first three load components,
rather than being dominated by resonance contributions, as it was sought by applying jumping
frequencies which at integer multipliers would match the modes frequencies. It is suspected that
since the measurements were taken almost directly under the load area for Scenario 2 and 3,
the data reflect some local deformation effects due to the orthotropic nature of the deck. The
local deformations might interfere with the assumption of how the deck reacts to the human
jumping loads in the analytical methods, where it is only able to deform corresponding to the
chosen vibration modes. For this reason, the FFT plot of the Scenario 1 tests is compared with a
corresponding FFT plot of a test series with the accelerometer position placed under the jumpers,
“Pos. B”, see Figure 6.1.
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Figure 8.32: Scenario 1, influence of measurement po-
sition.
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Figure 8.33: Scenario 1, scaled influence of measure-
ment position.

Figure 8.32 clearly shows that when taking measurements from directly beneath the jumpers,
the amplitude of the lower harmonics are much higher than when measured at the 4th rib. To
compare the data further, the signals measured at the 4th rib are scaled by the use of the assumed
half sine mode shape to be of same magnitude as if measured at the midpoint. The resulting FFT
comparison plot can be seen in Figure 8.33. Here it is seen that the magnitude of the accelera-
tions generated at 8.3Hz are now of similar magnitude, whereas the contributions from the lower
harmonics are still much lower than if taken from “Pos. B”.

For the sake of completeness the values at 8.3Hz are listed in Table 8.5, where it can be seen
that the vibrations at 8.3Hz can be scaled using the assumed mode shape to quite good agree-
ment.

ACCELERATION [m/s2/H] 4th rib 4th rib scaled Midpoint

Test repetitions

1 0.0279 0.0487 0.0420
2 0.0291 0.0507 0.0388
3 0.0234 0.0408 0.0485
4 0.0232 0.0405
5 0.0309 0.0539

Mean value 0.0269 0.0469 0.0432

Table 8.5: Comparison of 8.3Hz FFT acceleration values.

Parameter Study of Crowd Reduction Effect

The first of the parameter studies to be performed was on the effect of adding additional jumpers.
The jumping area was the same as for the Scenario 1 tests and the measurements were taken
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from “Pos. B”. Four series, with 5, 10, 15, and 20 jumpers, were performed with three tests in
each. The tests are done in order to assess the crowd reduction factor as stated in the Eurocode
model and the one derived by the authors. The measurements are treated with Npersons.m and
are visualized in Figure 8.34. From the figure it can be seen that the accelerations increase as more
jumpers are added, an the magnitude of the slope of increase in accelerations, can be commented
through a comparison with the other analysis methods. It can be noted, that it seems that the
three tests with 10 jumpers seem to have a good coordination compared to the succeeding 15
jumpers, who do not attain a significant increase in accelerations, if any.
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Figure 8.34: Accelerations when adding jumpers.

Parameter Study of Human Damping Effect

The second parameter study was on the effect of passive humans. The data is treated with
Passive.m and the results are shown in Figure 8.35, where a slight reduction in accelerations
is seen from the root-mean-square values as more passive humans are added. For further com-
ments, these results will be compared in Chapter 9 with the assessments done numerically.
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Figure 8.35: Accelerations when adding passive humans.

It can be concluded that there is a significant difference between the filtered signals and the
raw signal when it comes to maximum values. As it is not obvious to determine what causes the



8.5.2. Results from Experiments 85

higher frequency contributions, it is for the further comparisons and conclusions chosen to use
the filtered signal values to ensure that only the modelled vibration modes contribute. However,
it is seen that the root-mean-square values are not very sensitive to the filtering, indicating that
the average amplitude of acceleration is caused by the lower vibration modes. Also it is noted
that there is quite a significant difference on the acceleration magnitude throughout the signals,
making the average peak values much lower than the absolute peaks. This indicates that the
coordination in between the jumpers varies a lot throughout the jumping session.

As an elaborating experiment, an additional test were done in a slightly different manner
compared to the previous tests. The test scenario consisted of five jumpers who jumped con-
tinuously throughout the duration of the test. Present on the deck were also five passive humans
who, one by one and in an even interval left the deck. The filtered, measured acceleration signal
can be seen in Figure 8.36.
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Figure 8.36: Measured acceleration signal from extra experiment.

From Figure 8.36 several things can be noted. First off, the magnitude of the acceleration
amplitude seems to generally increase throughout the test duration. This is expected as damping
is removed whenever a passive human leaves the load area. Secondly, the peak accelerations
are seen to vary a lot over the signal, and individual maximum peaks at e.g. 4 passive humans,
around 25 seconds in, reach similar magnitudes as peaks after all passive humans have left the
deck at approximately 50 seconds in. This underlines the effect of synchronization of jumpers.
The precise timing on when each passive human left the deck is not fully known, but in Figure
8.37 the signal is cut at 9 seconds where the jumpers are assumed to have found the rhythm and
the deck has had time to build up response. From here, one passive human leaves the deck every
9 seconds whereafter the jumpers continue to jump for another 9 seconds without any passive
humans present on the deck.
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Figure 8.37: Measured acceleration signal from extra experiment.
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In every interval a value of the average arms is calculated together with the average of the
acceleration peaks X(apeak) and a line is drawn though the points to illustrate the increase in
acceleration magnitude during the experiment. This is illustrated in Figure 8.37. The processing
of the extra test is carried out in Extra.m.



Chapter 9

Comparison of Response Analysis Methods

In the following chapter, results from the presented methods are compared and assessed. The com-
parison of the results is based on the three different aspects defined in Table 6.1.

d d d

As not all methods consider all three aspects, the methods defined in Table 9.1 are compared for
each of the three aspects, respectively.

ASPECT METHOD

Control of serviceability limit state Simplified Eurocode Procedure
Analytical Solution of Differential Equation
ABAQUS

Experiments

Parameter study of crowd reduction effect Analytical Solution of Differential Equation
ABAQUS

Experiments

Parameter study of human damping effect Newmark Time Integration
Experiments

Table 9.1: Plan of results comparison.

It should be kept in mind that the analytical solution of the differential equation and New-
mark time integration gives completely similar results for the two first aspects, and therefore,
Newmark time integration is not mentioned here. Plots for the following three sections are made
by the MATLAB-script Comparison_response_methods.m.

9.1 Control of Serviceability Limit State

Comparisons are done for output values and measurements at the mid-point of the deck,
(
x, y

)=(
Lx/2,Ly/2

)
, and at the 4th rib, where the accelerometer was attached during some experiments,(

x, y
) = (Lx/2,17.4 m). For all experimental results, the previously described Butterworth filter

has been applied. The filtered results are used instead of the unfiltered values, as high frequency
contributions are not present in the calculation models, only in the experimental results.

Comparisons of amax and arms values taken at the mid-point are shown in Figure 9.1 and
Figure 9.2, respectively. Results for the simple Eurocode procedure is shown only in connection
with Scenario 1 as the two remaining scenarios are not considered in this method. Likewise, only
direct measurements from the experiments are available at the mid-point is found for Scenario
1, where the results of the five test series are plotted.

Results obtained from the Eurocode load model are significantly lower than the experimental
results for Scenario 1. This indicates that resonance has not been achieved. Furthermore, good
agreement can be seen between the analytical solution and the ABAQUS solution when using the
Eurocode load model. This agreement is remarkable when comparing the analytical solution and
ABAQUS solution for the Ellis & Ji load model, where considerable deviation is seen. As previously

87
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touched upon, the Eurocode model gives merely a static response without dynamic effects for
this deck construction, and this might explain the good agreement between the analytical so-
lution and ABAQUS solution, because the two models predict static response in the same way.
On the contrary, the dynamic effects are calculated very differently in the analytical solution and
ABAQUS solution.
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Figure 9.1: Comparison of amax values at mid-point,
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It is noticeable that for Scenario 2, the analytical solution yields quite low accelerations. This
is due to the shape function of the second mode used in the modal decomposition, which is
zero at the mid-point. Therefore, the second mode, which is excited in Scenario 2, cannot be
measured at the mid-point.

The results of the simple Eurocode procedure are relatively scattered. The accelerations
found for fp = 2.08Hz, which is the jumping frequency used in the other methods in Scenario
1, are in good agreement with the analytical solution and ABAQUS solution using the Eurocode
model, and hence underestimates the accelerations compared to the experimental results. The
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accelerations for the jumping frequencies fp = 2.77Hz and fp = 3.00Hz are shown for the sake of
completeness, as they are not directly comparable with the remaining results.

Comparison of amax and arms values taken for the 4th rib is shown in Figure 9.3 and Figure 9.4,
respectively. Opposite at the mid-point, experimental results is present for all three scenarios,
with five results for each scenario.
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Figure 9.3: Comparison of amax values at 4th rib,
(
x, y

)= (Lx/2,17.4 m).
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Figure 9.4: Comparison of arms values at 4th rib,
(
x, y

)= (Lx/2,17.4 m).

Again, results using the Eurocode load model are similar for the analytical solution and
ABAQUS solution, and the previously mentioned argument is assumed to apply as well. The
ABAQUS solution with the Ellis & Ji load model seems to be in good agreement with the exper-
imental results, especially for the amax values.

By comparison of the two graphs it seems likely that the Eurocode load model gives the closest
fit to the experimental results, when the arms values are wanted, whereas the Ellis & Ji load model
is preferable when estimating amax values.
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9.2 Parameter Study of Crowd Reduction Effect

Comparison of amax and arms values for analyses regarding the crowd reduction effect are shown
in Figure 9.5 and Figure 9.6. For the experimental results, both absolute maximum values are
shown as well as mean values of the peak values during a time series. The absolute maximum
values are in relatively good agreement with the ABAQUS solution using the Ellis & Ji load model.
Gradually, as more humans participate in the jumping, a more gentle slope of the graphs would
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Figure 9.5: Comparison of amax values at mid-point,
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be expected due to the crowd reduction effect. However, this trend is not pronounced in any
case, only for the solutions using the Eurocode load model and the experimental results, the
slope is slightly falling. Results from the Ellis & Ji load model seem to form a straight line and
hence, the used equivalent contact ratio cr,eq takes the crowd reduction effect into account in
a quite conservative manner. Also, the conclusion from the crowd reduction effect study might
be that a greater number of humans should be used in the investigation if used for tuning. The
experimental results, which contains measurements with 5 to 20 jumping humans, are not clear
enough to suggest a general expression for the crowd reduction factor.

9.3 Parameter Study of Human Damping Effect

A comparison of amax and arms values for results regarding the human damping effect is shown
in Figure 9.7 and Figure 9.8. The results are obtained with 5 jumping humans and with 0, 5, 10,
and 15 passive humans.

The damping effect of humans is evident for results using the Ellis & Ji load model due to
the negative slope, whereas no damping effect can be observed for results from the Eurocode
model. As previously mentioned, resonance is not achieved using the Eurocode model, and the
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acceleration is merely a result of a static reaction. Therefore, added damping will not have any
influence.

The characteristic “jump” in the experimental results from 0 to 5 passive humans is due to
different jumping humans in two different test series. The results for 0 passive jumping humans
are the same as for the parameter study of the crowd reduction effect. As such, the results are not
directly comparable, but the relatively large difference illustrates that very different results might
be obtained with different groups of jumping humans. As the weight of the two jumping crowds
were approximately the same, it is obvious that the jumping crowd, where passive humans are
present, achieved a significantly better synchronization.

Besides the results for 0 passive humans, good agreement between the Newmark solution and
experimental results is seen. This is opposite other results obtained from the analytical solution,
and hence Newmark solution, where these seem to overestimate the accelerations. This might be
explained from the number of jumping humans. Also in the study of the crowd reduction effect,
the analytical solution was in closer agreement with the experimental results for a few jumping
humans than for more jumping humans. This might indicate an amplitude dependency, which
is not taken into account by the analytical solution and Newmark solution.

9.4 Limitations of Modal Decomposition Method

From the comparison of maximum and root-mean-square accelerations in the preceding sec-
tions, it is obvious that results from the analytical solution (and Newmark solution) deviates sig-
nificantly from the ABAQUS solution when using the Ellis & Ji model. This observation is treated
in the following two sections.
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9.4.1 Changed Jumping Frequency

A comment is made on the modal decomposition method, which is used in connection with the
analytical solution of the differential equation and Newmark time integration. In both methods,
it is assumed that a load component of the forcing frequency fp hits the resonance frequency
exactly, i.e. i fp = f1n . For the first and second mode, n = 1 and n = 2, the jumping frequency fp

is adjusted so the fourth load component hits resonance, i = 4, while for the third mode, n = 3,
the jumping frequency is adjusted, so the fifth load component hits resonance, i = 5. This is a
conservative assumption, which is particular pronounced when the damping is low.

The calculated response is very sensitive with respect to the used jumping frequency, which
is illustrated in Figure 9.9. Here, the dynamic amplification factor D is plotted for the three first
modes, which have been considered in the modal decomposition technique. The dynamic am-
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Figure 9.9: Dynamic amplification.

plification factor D is given by Eq. (9.1) and represents the amplification of response due to dy-
namical effects compared to the pure static response [17]. The dynamic amplification factor D
is equivalent to the structural response factor Hi defined in Eq. (8.3) for the simplified Eurocode
procedure.

D
(
ζn , i fp, f1n

)= 1√√√√(
1−

(
2πi fp

2π f1n

)2
)2

+4ζ2
n

(
2πi fp

2π f1n

)2
(9.1)

As seen from Figure 9.9, just small deviations from the resonance frequencies give a significantly
smaller dynamic amplification factor and thereby acceleration. To illustrate the sensitivity in
the analytical solution and Newmark time integration with respect to the forcing frequency, this
parameter is slightly changed away from resonance.

According to Appendix D, it is assumed that the standard deviation of a human’s jumping
frequency within a time series can be set to S fp = 0.15. Using this value, the jumping frequency fp

is increased by 1
2 S fp for each scenario. A reduction could as well be used, but due to the symmetry

of the dynamic amplification curves in Figure 9.9, the results are approximately the same. The
increased jumping frequencies are shown in Table 9.2 in comparison with the original jumping
frequencies. Obviously, even a small change in the jumping frequency fp will accumulate on the
higher load components. The change in acceleration level due to the change in forcing frequency
is illustrated in Figure 9.10. This graph corresponds to Figure 9.4 from the comparison of results,
where only the analytical solution and ABAQUS solution using the Ellis & Ji load model is shown.

Obviously, a slight change of forcing frequency away from resonance gives a significant drop
in response for Scenario 1 and Scenario 2, but a small increase for Scenario 3. This increase is
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MODE ORIGINAL/INCREASED LOAD COMPONENT ORIGINAL/INCREASED

JUMPING FREQUENCY RESONANCE FREQUENCY

n fp i i fp

1 2.08Hz / 2.16Hz 4 8.30Hz / 8.62Hz
2 2.35Hz / 2.43Hz 4 9.40Hz / 9.70Hz
3 2.20Hz / 2.28Hz 5 11.0Hz / 11.38Hz

Table 9.2: Original and increased jumping frequencies.
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Figure 9.10: Comparison of acceleration from original and increased jumping frequency.

probably due to the fact that the fourth load component of the increased jumping frequency at
i fp = 4 · 2.28 Hz = 9.12 Hz is closer to resonance for the second mode at 9.4Hz than the fourth
load component of the original jumping frequency.

In relation to this, it might be of importance that the chosen jumping frequencies fp of the
three scenarios in Table 6.1 have been adjusted due to the target natural frequencies shown in Ta-
ble 5.1, and these values have also been adopted in the modal decomposition method. However,
the natural frequencies found from the ABAQUS model deviates slightly from the target values,
see Table 5.4, and hence resonance is not as pronounced in the ABAQUS model compared to the
analytical solution using modal decomposition. The same arguments might apply to the experi-
mental results as well in case that the natural frequencies have not been estimated totally correct,
which is very likely.

9.4.2 Effect of Calculation Scheme

Differences in the actual natural frequencies between the used models in connection with the
chosen jumping frequencies can potentially change the obtained results significantly. Neverthe-
less, this might not be the only reason for the deviating results obtained by the analytical solution
and ABAQUS solution with Ellis & Ji, as the same force input has been used in the two methods.

Searching for another reason, an erroneous formulation of the modal decomposition tech-
nique used in the analytical solution and Newmark time integration could also explain the devi-
ations. Therefore, in order to exclude this option, an analysis is run in ABAQUS, where modal de-
composition is assumed as in the analytical solution and Newmark time integration. The ABAQUS

solutions, which have been obtained so far, have used so-called direct integration of the equa-
tions of motion for each time step. This means that the equation of motions are solved for each
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time step. A comparison is shown in Figure 9.11, which is equivalent to Figure 9.3 and Figure 9.4
excluding experimental results.
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Figure 9.11: Comparison of modal decomposition techniques.

As seen from Figure 9.11 close agreement is found between the ABAQUS solution with modal
decomposition and the analytical solution indicating a correct formulation of the analytical so-
lution. Hence, the differences might instead be explained due to limitations in the modal decom-
position technique compared to the more advanced direct integration. This can be supported by
[5] in which it is stated that modal decomposition techniques generally yields inaccurate results
if used in connection with shock loading. Human jumping loads might be considered as a series
of shock impacts.



Chapter 10

Critical Serviceability Scenarios

In this chapter it is examined whether the chosen load scenarios will cause acceleration levels which
exceed the limits given in Eurocode. As stated in Chapter 9, it is found that ABAQUS yields the best
results and is therefore used in the following to evaluate the acceleration levels. Also the acoustic
problem from the vibrations in the theatre hall is brought up for discussion with regard to a possible
solution proposal.

d d d

10.1 Prediction of Acceleration Levels

The human perception of different acceleration levels is, as explained in Section 1.4, different
from person to person, and no detailed list of acceleration limits is available. Therefore, the limits
proposed in Eurocode are considered. The acceleration limits given in Eurocode state, that for
the purpose of the floor in this project, the root-mean-square acceleration should be kept under
10% of g .

As the data available for extrapolation is based on the chosen load scenarios in Chapter 6, it
is merely investigated whether scenarios with the same jumping frequencies fp = 2.08, 2.20, and
2.35Hz can give rise to a serviceability problem.

The ABAQUS model using the Ellis & Ji load model is used for the analysis. This model has
shown to yield quite accurate results for the amax. However, the arms-values seem to be overesti-
mated by this model. As the amax results match the results of the experiments and the arms results
are underestimated, it is assumed that the model is correct but that the synchronization of the
jumpers in the experiments was of varying quality, which was also observed visually during the
experiments.

To produce a method to predict possible critical serviceability scenarios, an examination of
the arms for different load areas and load per unit area has been performed, where the load area
is centered on the floor. The principle of the analyses is seen in Figure 10.1.

Figure 10.1: Principle of analyses with different load areas.

It was found in Section 8.4 that the largest acceleration at the 18 ribs was found in Scenario
2, i.e. with a jumping frequency of fp = 2.35Hz, which has its fourth load component to coin-
cide with the second eigenmode of the deck. This is also the case when the jumpers are placed
centered at the mid-point of the floor, which is probably due to the fact that the ABAQUS model
predicts that the third eigenmode is present at 11.79Hz ≈ 4·2.35Hz. Hence, the analyses regard-
ing possible critical serviceability scenarios are conducted with this jumping frequency.

95
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As shown in Section 8.4, the arms results will scale linearly with the load per unit area in
ABAQUS for five persons or more, as the equivalent contact ratio approach a maximum quickly
in the conducted simulation, see Figure 7.5. This will add uncertainty to the extrapolation, how-
ever the linearity is accepted in the following, as scenarios involving less than five persons are not
expected to be critical. Besides that, it is unknown how the equivalent contact ratio will change
for large areas, i.e. it is not known whether the visual contact with larger groups will improve or
worsen the ability to keep the same synchronization. Hence, this load model is used, keeping the
uncertainties in mind.

Also the load area has been altered with its center at the mid-point of the floor. The arms

will not scale linearly with the load area as loads near the boundary conditions will have smaller
influence than loads at the mid-point. Therefore, several ABAQUS analyses have been run at the
same load per unit area with the ABAQUS file AccLimit.cae. The dependency of the maximum
arms of the deck with the load area as a percentage of the total area A with 940N/m2 is seen in
Figure 10.2.
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Figure 10.2: arms for different load areas with 940N/m2.

With the linearity between arms and load per unit area, and the fitted curve in Figure 10.2, a 3D
plot has been made to present a visual representation of possible critical serviceability scenarios.
The calculation for the prediction of acceleration levels is found in LimitPrediction.m. The plot
is seen in Figure 10.3, where points that exceed the Eurocode arms-limit are marked with brown
colour.

Figure 10.3: arms as a function of load area and load per unit area.

As seen in Figure 10.3, a dense crowd on a large area of the floor will most probably result in
accelerations that exceed the limit stated in the Danish National Annex. E.g. if the whole floor is
occupied with one person per m2, or 2 persons per m2 on an area of 25% of the total floor area,
it is likely that the acceleration limit is exceeded. However, it must be kept in mind that that this
model might overestimate the arms for larger crowds.
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To stress the importance of which load model is used, an analysis has been performed with
the Eurocode load model with 1500N/m2 on the whole floor, which corresponds to the maximum
arms in Figure 10.3. The result of the analysis was arms = 5.46% of g , which is approximately 27%
of the result using the Ellis & Ji load model, and would not mean that the acceleration limit in
Eurocode is reached.

Although the results in Figure 10.3 give rise to the conclusion that the serviceability limits can
be exceeded at scenarios that might occur in the sports hall, the results are based on extrapo-
lations that induce great uncertainties to the prediction. Therefore, no final conclusion can be
deduced, besides that there are possible serviceability problems with regard to the vibrations of
the deck. To verify whether the results in this section are in agreement with the real response of
the floor, further experiments should be performed with larger crowds, so a better understanding
of the crowd reduction factor can be achieved.

10.2 Acoustics Solution Proposal

Though it was found in the previous matter, that an overstepping of the serviceability accelera-
tion values is not very likely to happen during daily uses, two issues regarding the acoustics in the
theatre hall were in fact observed during the experiments. Bearing in mind, that the cause of the
authors’ interest in the floor construction, which the project has revolved around, was awaken
due to these noise issues in the theatre, a solution proposal with regard to the acoustics in the
theatre is given in the following. It was concluded, that a TMD solution had to be designed based
on ABAQUS modelling as to much uncertainties on the evaluated effect of the TMD were associ-
ated with using the modal decomposition method. Also it could be concluded that probably at
least three modes had to be damped by TMDs, making the design even more complicated. Due
to this fact, it was chosen to accept the vibrations of the deck and try to remove the sources of the
noise by other means. The acoustic issues are:

• Transmission of impact sounds straight through the floor construction.

• Noise generation in lighting equipment caused by vibrations in the deck.

Even though the authors are not educated as acoustics experts, the two problems are assessed.
The transmission of sound straight through the floor caused by impacts such as jumping humans
or balls being hammered into the floor is assumed to be reduced by applying an additional ceiling
solution. Several firms provide ceiling sheets solutions, which both reduces transmission through
the sheets and reflections from within the room. This kind of ceiling solution in combination with
sound insulation between the ribs is assumed to be able to limit the direct sound transmission,
see Figure 10.4.

Figure 10.4: Sketch of sound proofing solution pro-
posal.
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Both the suggested new ceiling solution and the fact that the noise generated from the light-
ing equipment is caused by vibrations in the TTD elements indicates that the steel frames, from
which the lighting hangs, need to be detached from the ribs. At the moment the steel frames are
able to be attached to any given rib, giving the users of the theatre high flexibility when it comes
to design of the lighting set-up. This is also taken into account in the suggested solution.

As the ribs will no longer be available for attaching the steel frames, an alternative method
where abutments are built into the wall is suggested. The idea is to extend the steel frames so
they span the 16.3m across the theatre hall and support them on wheels, making the position of
the frame customizable throughout the length of the hall. Alternatively, if the steel frames are not
able to span 16.3m from a load bearing point of view, a HEB 300 steel beam has been estimated to
be able to carry the lighting rig in the same manner as the ribs do at this moment. The advantage
of the set-up with only the steel frames is an increase in elevation of the lighting equipment,
which was a concern of the theatre management when regarding a new ceiling design. A sketch
of the proposed solution is shown in Figure 10.5.

Figure 10.5: Sketch of lighting rig attachment solution proposal.
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Conclusion

The dynamic analysis of the deck in Nordkraft has been divided into two parts. At first a frequency
analysis is performed in order to describe the dynamic properties of the structure. Thereafter a
response analysis has been performed, where the vibrational response is found due to human-
induced jumping loads and compared to the limit values given in the Danish National Annex to
Eurocode. In both parts, analytical, numerical, and experimental methods are compared.

Frequency Analysis

Regarding analytical methods, plate models seem to be preferable in comparison with beam
models for determination of natural frequencies as well as mode shapes. Beam models are only
able to model the first vibration mode with sufficient precision, but are generally not good at
predicting more vibration modes. This is due to the fact that the natural frequencies of the deck
are spaced relatively close, and this is best modelled with a plate model. The deck has clear
orthotropic stiffness properties due to the ribs of the TTD elements, and this should be incorpo-
rated in the used plate models. Also, modelling of the boundary conditions of the deck should be
considered carefully as these have vital influence of the found natural frequencies.

In numerical modelling of the deck, plate models are also preferable compared to beam mod-
els, but also the distinction between a shell model and a solid model should be considered. Re-
sults for the two element types are relatively alike, but due to the heavy computations in relation
to solid elements, the shell model seems to be sufficient in most cases.

In order to estimate the natural frequencies of the construction, experimental measurements
have been performed on the deck by means of an accelerometer. A Fast Fourier Transform anal-
ysis of the measured acceleration signal has been used to find distribution of accelerations with
respect to frequency. From the measurements, the natural frequencies seem to be detectable
with relative good accuracy, whereas the obtained damping properties are more uncertain. Both
the half-band width method and the logarithmic decrement method have been used to estimate
damping properties of the deck structure.

Young’s modulus of concrete Ec is relatively uncertain when used in dynamic calculations.
Comparing with experimental measurements, a value of Ec = 48GPa gives the best agreement
with respect to natural frequencies when used in the numerical model. Young’s modulus must
be even bigger when used in an analytical model to get comparable natural frequencies. This
is probably due to the fact that boundary conditions and plate effects not are modelled equally
in numerical and analytical plate models. In the same manner, the stiffness of various kinds
of reinforcement being prestressed cables or ordinary rebar should be included in a calculation
model.

Response Analysis

The acceleration response has been assessed using two different load models for human-induced
jumping loads. The simplest load model is the codified Danish load model, Eurocode-model,
where three load components are included considering the energy content at integer multiplier
frequencies of the jumping frequency. The other load model suggested by Ellis & Ji is used with
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six load components included. To establish realistic scenarios for the loading, three different load
areas are defined on the deck in which humans are supposed to jump.

The two load models are used in connection with analytical solutions of the equations of mo-
tions, where modal decomposition is assumed to apply. In the modal decomposition technique,
the three first vibration modes are used as these are the most relevant in connection with reso-
nance from load components achieved with the chosen jumping frequencies at approximately
2.0Hz. The load models are also used in a numerical shell model similar to the one used in the
frequency analysis.

By comparing results from analytical and numerical methods with the experimental mea-
surements, the numerical model using the Ellis & Ji load model gives the best agreement with
the experimental results. Generally, it is observed that the Eurocode-model is less precise in the
investigated load scenarios in this report. This can be explained by the number of included load
components in the load model as resonance cannot be achieved for any of the first three load
components for the chosen jumping frequencies. As a comment to this, due to the guidelines in
connection with the Eurocode-model, a jumping frequency higher than fp = 3.0Hz should not
be investigated, and hence resonance cannot be achieved for constructions with a fundamental
frequency higher than 9.0Hz. For this specific construction it is obvious that a load model with
only three load components is not suitable for most of the normal jumping frequencies and more
load components should be considered to investigate possible resonance phenomena.

Experimental results reveal that synchronization between the jumping humans is very impor-
tant for the magnitude of the applied jumping load and hence acceleration response. A suitable
way of taking this crowd reduction effect into account in the Ellis & Ji-model for six load compo-
nents has been sought for, however total success has not been achieved. The Eurocode-model
already suggests one method for reducing the total load due to the crowd reduction effect, but
this is only applicable for the three first load components. Nevertheless, the crowd reduction
effect should in some manner be addressed in a calculation model.

Finally, by using the numerical method together with the Ellis & Ji load model, it is found
that unacceptable accelerations can be generated by human jumping loads. E.g. assuming the
deck fully occupied by humans with a intensity of minimum 750N/m2, corresponding to approx-
imately one human per square metre, the limit acceleration may be exceeded. Here, uncertainty
of the crowd reduction effect should be kept in mind, as this seems to be quite conservatively
estimated. On the contrary, using the same jumping frequency and intensity of jumping humans
with the Eurocode-model, the magnitude of vibrations are found acceptable.

In all performed analyses it is found crucial to consider the used input parameters carefully.
The calculated acceleration is dependent on relatively many assumptions, which makes the final
results quite sensitive towards choices made throughout the analysis process. In addition to this,
it is important to remember that the accelerations measured in the experiments are measured
from the underside of the deck. Therefore, these accelerations are not necessarily representing
what is felt by humans on top of the deck.
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Appendix A

Energy Methods

In this appendix, the application of two related approximative procedures is described. First,
Rayleigh’s fraction for estimating frequencies of a structure is touched upon. Hereafter, an ex-
tension of this method, the Rayleigh-Ritz method, is briefly described. Generally the Rayleigh
fraction only determines the natural frequency for the chosen mode shape, whereas also other
frequencies can be estimated by the Rayleigh-Ritz method. The methods are so-called energy
methods, where the results rely on the formulation of potential and kinetic energy of the system.

Both methods are applicable to both single degree of freedom systems, discrete systems, and
continuous systems. The starting point of the methods is Rayleigh’s principle, which can be for-
mulated in the following way [21]:

“The frequency of vibration of a conservative system vibrating about an equilibrium
position has a stationary value in the neighbourhood of a natural mode. This sta-
tionary value, in fact, is a minimum value in the neighbourhood of the fundamental
natural mode.”

In other words, the result of Rayleigh’s fraction and the Rayleigh-Ritz method will always yield
a frequency, which represents an upper bound to the natural frequency, which is estimated.

A.1 Rayleigh’s Fraction

Because the deck considered in this project is a continuous system, the properties of Rayleigh’s
fraction will be explained based on a general continuous system. However, the arguments and
approximations related to Rayleigh’s fraction are the same no matter the number of degrees of
freedoms in the system. When using Rayleigh’s fraction, the first step is to assume a shape func-
tion to describe the mode of vibration, which is designated u(x, y, t ). The assumed mode of vi-
bration can be stated as shown in Eq. (A.1).

u(x, y, t ) =Φ(x, y)cos(ωt ) (A.1)

The function Φ(x, y) is the mode shape of the evaluated mode, and if for instance the plate is
simply supported, the mode shape for mode m in the x-direction and n in the y-direction might
be stated as:

Φ(x, y) = sin

(
mπ

x

Lx

)
sin

(
nπ

y

Ly

)
(A.2)

Hereafter, the potential energy U and the kinetic energy T are formulated for the considered
structure. The expressions for the energies of beams, isotropic plates, and orthotropic plates are
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given in Eq. (A.3a), (A.3b), and (A.3c), respectively [4, 27, 6].
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Orthotropic plate:
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If beams, which is the simplest case, are considered, the second sine function in Eq. (A.2) can be
disregarded. To evaluate the maximum energies, the expressions for energy levels for a beam,
Eq. (A.3a), are considered:

U = 1

2
E I

∫
Lx

(
∂2u

∂x2

)2

d x = 1

2
E I

∫
Lx

(
∂2

∂x2Φ(x, y)cos(ωt )

)2

d x

⇒ Umax = 1

2
E I

∫
Lx

(
∂2Φ

∂x2

)2

d x (A.4)
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Assuming that no energy is lost, the maximum potential energy Umax and kinetic energy Tmax

can be equated, and hence derive an expression for the circular frequency for the chosen mode
shape:

Umax = Tmax ⇒ ω=
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(A.6)

As the 1
2 from the energies cancels out, this fraction is also recognized as the ratio between modal

stiffness and modal mass. This procedure also applies to plates.

The assessed deck in the report can be considered to consist of both a plate and stiffen-
ing beams. Therefore, the modal stiffnesses and modal masses are summed for the beams,
i = 1,2, . . .18, and the plate, and the shape function in Eq. (A.2) is used. The calculation of the
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natural frequencies is presented in Eq. (A.7).
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A.2 Rayleigh-Ritz’s Method

Rayleigh’s fraction can be extended into the Rayleigh-Ritz method by choosing several shape
functions instead of just one and performing a minimization process of the natural frequency.
Therefore, the displacement field of the Rayleigh-Ritz method can generally be stated as in
Eq. (A.8).

Φ(x, y) = a1φ1 +a2φ2 +a3φ3 + . . .+apφp + . . .+aPφP (A.8)

The functions φ1, φ2, φ3, . . . ,φP should be linear independent functions, and each term must
satisfy the boundary conditions of the plate problem. The constants a1, a2, a3, . . . , aP must be
determined such that the expression in Eq. (A.8) reassembles the wanted modes as closely as
possible.

When a linear combination of shape functions have been proposed as in Eq. (A.8), this ex-
pression is substituted into Rayleigh’s fraction, Eq. (A.6). Then, the problem is solved by differen-
tiating the squared circular frequency (ω2 = k/m) with respect to each of the unknown constants
a1, a2, a3, . . . , aP and equating each term to zero, Eq. (A.9).

∂ω2

∂ap
=

m ∂k
∂ap

−k ∂m
∂ap

m2 = 0 p = 1,2, . . . ,P (A.9)

The system of equations may be rewritten as stated in Eq. (A.10).

∂k

∂ap
− k

m

∂m

∂ap
= ∂k

∂ap
−ω2 ∂m

∂ap
= 0 p = 1,2, . . . ,P (A.10)

By using Eq. (A.8) in the expressions for modal mass m and modal stiffness k and substituting this
into Eq. (A.10), these equations can be reformulated as a classic eigenvalue problem as shown in
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Eq. (A.11).
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The entries of each row in ΩΩΩ are obtained by ordering the terms of Eq. (A.10). The natural fre-
quencies are then found by setting det(ΩΩΩ) = 0. It is obvious, when looking at the dimension of the
matrix ΩΩΩ in Eq. (A.11), that the number of natural frequencies that can be determined is limited
by the number of functions φp chosen for the shape function Φ, and therefore, at most the P
lowest modes can be estimated from the Rayleigh-Ritz method.

For both procedures described, it is evident that the accuracy of the estimated frequencies
is improved by using shape functions, which are very close to the exact vibration shape of the
structure. However, simple functions like polynomials and trigonometric series, which are used
here, are preferable in order to minimize the complexity of the calculations.



Appendix B

Determination of Plate Rigidities

In this appendix the determination of the necessary plate rigidities entering the governing differ-
ential equation and various energy methods is described as well as other constants, which must
be found in order to treat the plate vibration problem by analytical methods.

In order to solve the 4th order differential equation of a vibrating orthotropic plate, the fol-
lowing plate rigidities, densities and moment of inertias must be found at first:

Dx Flexural stiffness in the x-direction.
Dy Flexural stiffness in the y-direction.
Dxy Torsional stiffness of an orthotropic plate.
H Effective torsional stiffness given by H = νD +2Dxy.
ρ Equivalent mass per unit area of orthotropic plate.
Jx Mass moment of inertia per unit area, in x-direction.
Jy Mass moment of inertia per unit area, in y-direction.

Using a method described by Iyengar [14], the plate rigidities and equivalent mass are found
via an approximate approach. In this method, the boundary conditions and mode shapes are
taken into account by use of beam eigenfunctions, i.e. functions describing the mode shape of
the plate in two perpendicular directions, and naturally the choice of functions must reflect the
given boundary conditions. Using beam eigenfunctions instead of plate eigenfunctions is an
approximation, thus, by a good choice of beam eigenfunctions, the error should be of minimum
importance [14]. An illustration of the orthotropic plate with designation of parameters is shown
in Figure B.1.

Figure B.1: Plate with stiffeners.

Generally speaking, the plate deflection in a given mode is assumed on the form given by
Eq. (B.1), where a beam eigenfunction Φm(x) describes the shape of the plate in the x-direction,
while a beam eigenfunction Φn(y) describes the shape in the y-direction. Amn is a constant. m
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and n refers to the mode of interest, and designates the number of half-sine waves in the x- and
y-direction, respectively.

u(x, y) = AmnΦm(x)Φn(y) (B.1)

The individual plate rigidities are obtained from the following formulae, Eq. (B.2). s and r are the
numbers of stiffeners in the x- and y-direction, respectively. Therefore, as only stiffeners in the
x-direction are present for the deck, s = 18 due to two stiffeners per TTD element, while r = 0. yi

and x j should be understood as the coordinate value at stiffener i and j , respectively.
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where

D Flexural stiffness of uniform unstiffened plate, D = Et 3/(12(1−ν2)).
t Thickness of uniform plate, t = 220mm.
E ,G Young’s modulus and shear modulus, respectively.
ν Poisson’s ratio, taken as ν= 0.2 for concrete.
Ii ,I j Moment of inertia of stiffeners in x- and y-direction.
Ip,i ,Ip, j Polar moment of stiffeners in x- and y-direction. As there are only stiffeners in the x-

direction, only Ip,i is relevant, which is calculated as Ip,i = Ii + Ii ,weak, where Ii ,weak is the
moment of inertia about an axis running through 0 on the x-axis in Figure B.3 [16].

µi ,µ j Mass per unit length of stiffeners in x- and y-direction.
ρ Density.

The application of these formulae is of course dependent of the chosen beam eigenfunctions
entering Eq. (B.1), which must reflect the considered boundary conditions. Likewise, the output
of the formulae is very dependent on the used moment of inertia. To illustrate this, two different
moment of inertias are used in the calculation of the plate rigidities, which are calculated using
the script Transformed_I.m. In Case 1, the moment of inertia is calculated taking into account
the prestressed lines in the TTD element. The area of the prestressed cables are multiplied by
ε = Es/Ec, where Es = 200GPa is Young’s modulus of steel, while Ec = 40GPa is Young’s modulus
of concrete. By this, an attempt is made to take into account the increased stiffness from the
prestressed cables. In Case 2, the prestressed cables in the rib stiffener are disregarded. In both
cases, the moment of inertia is calculated with respect to the combined neutral axis of the TTD
cross section plus 150mm concrete topping. The two different cases are shown in Figure B.2 and
Figure B.3, respectively. The shown moment of inertia will be used in the following calculations
whenever necessary. For an orthotropic plate, simply supported on all its boundaries, the beam
eigenfunctions shown in Eq. (B.3) might be used in accordance with Eq. (B.1).

Φm(x) = sin
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)
Φn(y) = sin
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)
(B.3)
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Figure B.2: Case 1.
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Figure B.3: Case 2.

The calculations of the plate rigidities are performed in Determine_plate_par.m and the re-
sults are shown for the two different cases of moment of inertia in Table B.1.

Case 1 Case 2

Dx 7.17×108 5.00×108 Nm
Dy 3.70×107 3.70×107 Nm
Dxy 1.60×108 1.15×108 Nm
H 3.27×108 2.37×108 Nm
ρ̄ 922.11 922.11 kg/m2

Table B.1: Plate rigidities, 1st vibration mode (m = 1, n = 1).

The mass moment of inertia is found using the expressions of Eq. (B.4) and Eq. (B.5). In the
calculations, a density of ρ = 2400kg/m3 is used for the whole cross section.
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(
h + t

2

)
1
2 (a +b)h +w t

(B.5)

It should be noted that Jx is found using an expression from [28] assuming that the rib stiffeners
have a rectangular cross section instead of an trapezoidal cross section. Averaging over the width
from top to bottom of the rib, the following geometric measures are defined: bc = 956.50mm and
bs = 121.75mm. The parameters used to determine the second moment of masses are defined in
Figure B.4.
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Figure B.4: Definition of parameters.

As earlier mentioned, the thickness of the plate t is taken as all layers until the floor layer when
calculating parameters regarding mass. Therefore, the mass moment of inertia is calculated with
a thickness of t = 300mm. The calculations of the second moment of masses per unit area can be
seen in Analytical_frequency_of_plate_model.xmcd, and the results are:

Jx = 315.6 kgm2

m2 Jy = 104.3 kgm2

m2



Appendix C

Fast Fourier Transformation

In this appendix the Fast Fourier Transform analysis method used for evaluation of the measured
acceleration response of the deck is described. The matter of the appendix is based on [1].

Consider any measured or generated response signal X (t ). It is presumed that the signal is
periodic in the interval T0, see Figure C.1.

Figure C.1: Arbitrary response function of time.

Any continuous periodic function can be decomposed into a number of harmonic compo-
nents by means of a Fourier series expansion, see Eq. (C.1).

X (t ) = a0 +2
H∑

i=1

(
ai cos

(
2πi

T0
t

)
+bi sin

(
2πi

T0
t

))

= a0 +2
H∑

i=1
(ai cos(ωi t )+bi sin(ωi t )) (C.1)

Here ai and bi are Fourier coefficients given by Equation C.2.

ai = 1

T0

∫ T0

0
x(t )cos(ωi t )d t

bi = 1

T0

∫ T0

0
x(t )sin(ωi t )d t (C.2)

for i = 0,1, . . . , H −1

An alternative way of writing the i th component of the signal is:

X (t ) = Ai sin(ωi t +φi ) (C.3)
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Here the estimation of the Fourier series terms is made by:

Amplitude Ai =
√

a2
i +b2

i

Phase angle φi = tan−1
(

ai

bi

)

Angular frequency ωi = 2πi

T0

Period Ti = 2πi

ωi

Frequency fi = 1

Ti

for i = 0,1, . . . , H −1

Therefore, having a series of response values with the sampling frequency fs , a discrete time
series is obtained. The total number of values H = T0 fs is equal to the number of Fourier co-
efficients. The Fourier coefficients are obtained by the use of the Fast Fourier Transform (FFT)
function in MATLAB. After determining the necessary parameters, an amplitude spectrum is pre-
sented in Figure C.2.

Figure C.2: Amplitude spectrum corresponding to the signal X (t ).

It should be noted that the presented spectrum has to be cut with the Nyquist frequency fN .
The Nyquist frequency is the frequency corresponding to where the first half of the total number
of values are present. The reason for this is that the determined coefficients (ai ,bi ) contains two
parts. The first half from 1 to H/2-1 is estimating the true components and the second part from
H/2 to H-1 is the aliasing components. The explained procedure can be found in the MATLAB-
script FFT.m.



Appendix D

Test of Jumping Accuracy

A series of jumping tests has been performed in order to test how precise a person can jump when
listening to a specific music beat. In this appendix, a statistical description of a person’s jumping
frequency is sought for. A person’s ability to follow a specific beat is of interest, for example in
connection with an experiment, where human-induced jumping loads are used. The results from
this appendix is used in a Monte Carlo simulation, which treats the synchronization between
numerous jumping people.

This question is tested with two persons, designated P1 and P2, via the set-up seen in Fig-
ure D.1. The experiment set-up consists of a steel plate, which is placed on two wooden sup-
ports. An accelerometer is placed on the plate by means of a magnet, and the output from the
accelerometer is sampled by a computer.

Figure D.1: Experiment set-up.

During the sampling of data, a piece of music was playing with a known overall beat fre-
quency, and for each frequency, P1 and P2 jumped on the plate in time with the music. It is
assumed that the beat frequency of the used music pieces is constant, otherwise variations in the
beat frequency of the music will influence the results. On the other hand, small variations in the
beat frequency might serve as a very realistic situation. It was attempted to find music pieces
with a very constant beat. For each frequency, the experiment was repeated 5 times for both P1
and P2. The tested frequencies are shown in Table D.1.

BEAT FREQUENCIES [Hz]

P1 / P2 1.5 1.9 2.0 2.1 2.5

Table D.1: Tested beat frequencies.

An example of a signal can be seen in Figure D.2. The signal exhibits a characteristic peak
each time the person hits the plate, and from the distance between these peaks, the period Tp of
the jumping cycle is calculated. Finally, the jumping frequency is found as fp = 1

Tp
. Thereby, a

value of the jumping frequency fp is found for each jump.
It should be noted that only peaks higher than a certain threshold have been used in the

analysis, so noise does not affect the results. This data treatment is done in the file Chi2goodness_
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Figure D.2: Example of acceleration signal from 1.5 Hz jumping test.

fit.m. For each test, a number of jumping frequencies are obtained, and one sample will be
regarded as the combination of the five test results within each frequency for each person. This
gives 10 samples in total. The total number of data values Ntot, the mean value X, and standard
deviation S for each of the 10 samples are shown in Table D.2.

BEAT FREQUENCY P1 P2

[Hz] Ntot [-] X [Hz] S [Hz] Ntot [-] X [Hz] S [Hz]

1.5 77 1.54 0.13 114 1.54 0.15
1.9 141 1.90 0.10 139 1.90 0.16
2.0 184 2.02 0.14 145 2.01 0.14
2.1 162 2.13 0.16 150 2.11 0.21
2.5 138 2.53 0.20 170 2.51 0.22

Table D.2: Characteristics of test samples.

Besides from describing the data by the mean value and the standard deviation, a chi-square
test for goodness of fit is performed [2]. This is done in order to estimate the statistical distri-
bution of the population from which the jumping samples are drawn. Before the chi-square test
is performed, the data samples must be defined specifically. By this is meant that some of the
jumping frequencies obtained from the data sampling might be erroneous, e.g. due to sampled
jumps in the start and end of each test, which were not in time with the music. It is not totally
clear how to define a limit, over which a data sample should be rejected. However, two different
cases are considered to illustrate this circumstance as illustrated by the two histograms shown
in Figure D.3 and Figure D.4 from the jumping test at 2.0 Hz of person P2. In Figure D.3 all data
samples within the region of: X±4 ·S are used, whereas in Figure D.4 only data within the region:
X ±2 ·S is used. X is the sample mean value, and S is the standard deviation of the total sample.

These two limits are applied on all of the 10 samples, and the chi-square test for goodness of
fit is performed. Two distributions are tested for, namely the normal distribution and lognormal
distribution. The steps in the chi-square test can be summarized in the following way.

1. The null hypothesis H0 and the alternative hypothesis HA are defined for both the test of the
normal distribution and the lognormal distribution. The null and alternative hypothesis
should be defined in such a way that if the null hypothesis must be rejected, the alternative
hypothesis must be accepted. The null and alternative hypothesis for the test of the normal
distribution are formulated as follow:
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Figure D.3: Histogram from 2.0 Hz jumping test for P2,
limit: X±4 ·S.
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Figure D.4: Histogram from 2.0 Hz jumping test for P2,
limit: X±2 ·S.

H0 The jumping frequencies can be characterized by a normal distribution, X ∼
N (µN ,σ2

N ), where µN andσN are estimated by means of maximum likelihood from
the sample data.

HA The jumping frequencies cannot be characterized by a normal distribution, X ∼
N (µN ,σ2

N ).

The null and alternative hypothesis for the test of the lognormal distribution are formu-
lated in a similar way:

H0 The jumping frequencies can be characterized by a lognormal distribution, X ∼
LN (µLN ,σ2

LN ), where µLN andσLN are estimated by means of maximum likelihood
from the sample data.

HA The jumping frequencies cannot be characterized by a lognormal distribution, X ∼
LN (µLN ,σ2

LN ).

The two pairs of hypotheses are tested on all of the 10 samples. It should be noticed that
rejection of the null hypothesis does not necessarily imply that the jumping frequencies
are not normal or lognormal distributed, but it could also be due to the fact that µN and
σN or µLN and σLN are incorrectly estimated. The maximum likelihood estimations of the
distribution parameters are obtained from a built-in MATLAB function.

2. The chi-square test is based on a comparison of the expected count Ei and the observed
count Oi within each interval of the tested histogram, see for example Figure D.3 or Fig-
ure D.4. The expected count is calculated from the assumed distribution function in the
null hypothesis, while the observed count naturally is given by the data sample. In the
chi-square test, the following test statistic is used:

χ2 =
k∑

i=1

(Oi −Ei )2

Ei

The value of the test statistic χ2 is compared with the critical value of the chi-square dis-
tribution χ2

α,k− j . α is the level of significance, and k − j is the degrees of freedom. k is the
number of discrete intervals in the tested histogram, and j is in this case 3. One degree of
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freedom is lost because the data sample is used to find the expected count, and further-
more two degrees of freedom are lost because µN and σN or µLN and σLN are estimated
from the data sample.

3. The level of significance is chosen to 5%.

4. When the level of significance is determined, the test statistic χ2 and the critical value
χ2
α,k− j can be calculated. The null hypothesis is accepted, if the test statistic χ2 is smaller

than the critical value χ2
α,k− j . Otherwise, the alternative hypothesis must be accepted.

In total, 40 chi-square tests for goodness of fit have been performed as two distributions have
been tested and for two different filtering cases of the samples as explained in relation to Fig-
ure D.3 and Figure D.4. The calculations are performed in Chi2goodness_fit.m and the results
are summarized in Table D.3 for person P1, and in Table D.4 for person P2. In the tables, the des-
ignations Xr and Sr are used for the mean value and standard deviation of the filtered samples,
i.e. after applying X ±4 ·S or X ±2 ·S to the total sample.

Frequency 1.5Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (76,8) N (1.54,0.112)
1.54 0.11

H0
LN (0.43,0.072) H0

X ±2 ·S, (74,7) N (1.53,0.102)
1.53 0.10

H0
LN (0.42,0.062) H0

Frequency 1.9Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (141,8) N (1.90,0.102)
1.90 0.10

H0
LN (0.64,0.052) H0

X ±2 ·S, (134,7) N (1.90,0.082)
1.90 0.08

H0
LN (0.64,0.042) H0

Frequency 2.0Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (183,11) N (2.02,0.132)
2.02 0.13

HA
LN (0.70,0.062) HA

X ±2 ·S, (172,8) N (2.00,0.102)
2.00 0.10

H0
LN (0.69,0.052) H0

Frequency 2.1Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (161,11) N (2.11,0.132)
2.11 0.13

H0
LN (0.75,0.062) H0

X ±2 ·S, (155,9) N (2.11,0.112)
2.11 0.11

H0
LN (0.74,0.052) H0

Frequency 2.5Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (137,12) N (2.52,0.172)
2.52 0.17

HA
LN (0.92,0.082) HA

X ±2 ·S, (135,12) N (2.51,0.152)
2.51 0.15

H0
LN (0.92,0.062) H0

Table D.3: Results of jumping tests for person P1.

The results shown in Table D.3 and Table D.4 are somewhat ambiguous. The mean values
of the samples are in all cases very close to the tested beat frequency. This shows that in an
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Frequency 1.5Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (112,9) N (1.52,0.112)
1.52 0.11

H0
LN (0.42,0.072) H0

X ±2 ·S, (110,8) N (1.52,0.102)
1.52 0.10

H0
LN (0.41,0.072) H0

Frequency 1.9Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (138,11) N (1.89,0.142)
1.89 0.14

HA
LN (0.64,0.072) HA

X ±2 ·S, (132,9) N (1.89,0.112)
1.89 0.11

HA
LN (0.64,0.062) H0

Frequency 2.0Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (145,10) N (2.01,0.132)
2.01 0.13

HA
LN (0.70,0.062) HA

X ±2 ·S, (137,8) N (2.01,0.102)
2.01 0.10

H0
LN (0.70,0.052) H0

Frequency 2.1Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (148,12) N (2.09,0.162)
2.09 0.16

H0
LN (0.74,0.082) H0

X ±2 ·S, (144,9) N (2.09,0.152)
2.09 0.15

H0
LN (0.74,0.072) H0

Frequency 2.5Hz (Data

points, intervals)
Distribution Xr [Hz] Sr [Hz]

Accepted
hypothesis

X ±4 ·S, (169,14) N (2.50,0.192)
2.50 0.19

H0
LN (0.92,0.082) H0

X ±2 ·S, (163,13) N (2.49,0.162)
2.49 0.16

H0
LN (0.91,0.062) H0

Table D.4: Results of jumping tests for person P2.

average sense, person P1 and P2 are able to jump with the same frequency, which they hear from
the music. Also, the standard deviations are fairly low, and naturally, the standard deviations
are lower for the (X ±2 ·S)-cases compared to the (X ±4 ·S)-cases due to the limited data. For a
frequency of 2.5Hz, especially for person P2, the highest standard deviation is found. Despite
that it is not obvious from the results of the 1.5Hz tests, it seemed more natural to jump at a
frequency around 2.0Hz, while the frequencies at 1.5Hz and 2.5Hz required more concentration
jumpers to keep in time with the beat.

When it comes to the results of the chi-square test for goodness of fit, it is harder to draw a
general conclusion. In some tests, the normal distribution seems to be the best fit, yet in other
tests the lognormal distribution exhibits the best fit. No tendency can be found. In this regard, it
should be mentioned that the outcome of the tests is very dependent on the chosen number of
intervals in the histogram as well as the limiting case (X±4 ·S) or (X±2 ·S), and as a consequence
no final conclusion can be drawn from the chi-square test towards the statistical distribution of
the jumping frequencies.

Two different cases of the tests results are shown in Figure D.5 and Figure D.6. For Figure D.5,
good agreement between the fitted lognormal distribution and the sample data is obtained. This
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is obviously due the fact that there are no “outliers” in the data set as seen from the histogram and
the standard deviation is relatively low. Conversely for Figure D.6, the fitted normal distribution
is distorted by a quite broad histogram on both sides of the mode of the sample. A comparison
of these two cases underlines the sensitivity of the chi-square test for goodness of fit.
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Figure D.5: Person P1, 1.5Hz, (X±4 ·S), LN (0.43,0.072).
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Figure D.6: Person P2, 1.9Hz, (X±4 ·S), N (1.89,0.142).

To obtain a better estimate of the distribution of jumping loads than achieved in this case,
longer jumping series should measured, and probably also different pieces of music should be
used. Nevertheless, the results show that a person is able to jump in time with a known frequency
from a piece of music, but in this process it should be expected that jumps, which are both of a
higher and lower frequency than the target frequency, occur. In relation to load modelling this
means that human jumping at e.g. 2.0Hz in reality consists of a narrow band of frequencies in
the neighbourhood of 2.0Hz.



Appendix E

Load Model Validation

In order to comment on the validity of the load models simulating the load generated by jumping
humans as suggested by Eurocode 1 [11] and Ellis & Ji [8], tests were performed in the labora-
tory. The tests are used to investigate the contact ratio as described by Ellis & Ji and compare the
Fourier coefficients and phases corresponding to each load component.

A set-up consisting of three force transducers with a very stiff steel plate on top was used for
the tests as seen in Figure E.1. The force transducers used for the tests are model C2 10kN pro-
duced by HBM capable of measuring up to 150kN with a nominal force of 10kN. The purpose of
the steel plate is to distribute the force from the jump to the transducers without any absorption
of force within the plate itself. Jumping on the set-up can be seen in Figure E.2.

Figure E.1: Set-up used for measuring jumping
force.

Figure E.2: Jumping on experiment set-up.

This tripod-like support condition makes the plate quite likely to tilt when the jumper hits
its outer positions. A tilt of the steel plate results in loss of connection to one of the transducers
and makes the plate slam back at the transducer subsequently, making the data signal quality
suffer. A full data signal can be seen in Figure E.3, and a zoom in on the signal after a small
plate impact can be seen in Figure E.4 to visualize the effect. All data from this study is treated in
Load_Validation.m.
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Figure E.3: Full jumping load data signal.
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Figure E.4: Effect on signal from plate impact.
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E.1 Contact Ratio

The contact ratio cr is a quantity used in the load model proposed by Ellis & Ji. It is given as the
ratio between the contact duration tc and the period of the jumping motion Tp. The load model
is based on that the jumping load can be described as semi-sinusoidal pulses as seen in Eq. (E.1).

F (t ) =
{

KpG sin(πt/tc) 0 ≤ t ≤ tc

0 tc < t ≤ Tp
(E.1)

where

Kp Fmax/G .
Fmax Peak dynamic load.
G Weight of the jumper [kN].

The contact ratio and the factor Kp are related as seen in Eq. (E.2), and hence the contact ratio
can be estimated by using the average peak data values and the weight of the jumper [8]. This is
the first method to estimate the contact ratio.

Kp = π

2cr
, cr = πG

2Fmax
(E.2)

Two other methods, besides the relation between the peak force and the jumper’s weight
given in Eq. (E.2), are used for estimating the contact ratio from the experiments. These de-
pend on more visual and geometric analysis of the signal. When analyzing the data obtained in
the laboratory, the period of the jumping motion is determined from the time interval between
each succeeding peak. The contact duration, which is needed to identify the contact ratio, can
however be estimated in several ways. The first method is based on defining a threshold close to
zero, but above the noise level of the force signal. The threshold is from experience set to 0.2kN.
Signal positions corresponding to each crossing of the threshold are searched throughout the sig-
nal, and tc is calculated as the time difference between each point. In Figure E.5 the relevant data
points such as Fmax, marked by red circles, and tc crossings, marked by red crosses, are illustrated
in a zoom in on the full signal for the sake of understanding. The contact ratio is by this method
calculated by averaging the values of tc and Tp, and using Eq. (E.3).

cr = tc

Tp
(E.3)
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Figure E.5: Relevant data points for signal analysis.

The final method of estimating the contact ratio is a geometric approach using the trigono-
metric properties of a sine curve. For any sine curve, the time difference between data points of
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half the peak amplitude will relate to the time difference at zero by the factor 1.5. This means that
a threshold at half the average peak amplitude value Fmax/2 can be introduced, and tc is then
calculated by multiplying the average value of the time between crossings of the threshold, as
illustrated in the previous method, by a factor of 1.5.

The contact ratio was estimated through a series of experiments with two persons jumping
for approximately 15s at both 2.0Hz and 2.1Hz, five times for each frequency. The results are
seen in Table E.1, where the method number refers to the estimation method, numbered in the
same order as introduced above.

PERSON AND

FREQUENCY
METHOD

CONTACT RATIO

1 2 3 4 5 Mean

P1 at 2.0Hz
1 0.45 0.47 0.46 0.47 0.43 0.46

0.47
0.43

 0.452 0.47 0.49 0.46 0.49 0.46
3 0.42 0.45 0.43 0.45 0.41

P1 at 2.1Hz
1 0.43 0.43 0.45 0.38 N/A 0.42

0.47
0.41

 0.432 0.47 0.47 0.49 0.43 N/A
3 0.41 0.42 0.43 0.36 N/A

P2 at 2.0Hz
1 0.47 0.48 0.48 0.45 0.43 0.46

0.49
0.44

 0.472 0.51 0.46 0.51 0.50 0.48
3 0.45 0.42 0.46 0.44 0.42

P2 at 2.1Hz
1 0.51 0.48 0.45 0.46 0.45 0.47

0.51
0.45

 0.482 0.53 0.51 0.50 0.50 0.50
3 0.48 0.46 0.45 0.44 0.43

Table E.1: Estimated contact ratios.

From the results it is seen that method two gives the highest contact ratio estimates. It is ob-
viously because it depends on the defined threshold; the higher the threshold, the lower contact
ratio. The first and third method, which both rely on the peak values Fmax, give quite similar
results. Also, it can be noted that the second jumper seems to have slightly higher contact ratio
than the first. Averaging all the tests, a general contact ratio for jumping at around 2Hz can be set
to cr = 0.46, which corresponds to a typical value for rhythmic exercise and high impact aerobics
[7].

E.2 Fourier Coefficients

Both the Eurocode load model and the model proposed by Ellis & Ji are based on representing
the jumping load by means of a Fourier series as shown in Eq. (E.4) and Eq. (E.5).

F (t ) =G

(
1.0+

∞∑
i=1

ai cos

(
2πi

Tp
t

)
+

∞∑
i=1

bi sin

(
2πi

Tp
t

))
(E.4)

=G

(
1.0+

∞∑
i=1

αi sin

(
2πi

Tp
t +ϕi

))
(E.5)

where

G Static load of person.

αi Fourier coefficient for the i th jumping load component, αi =
√

a2
i +b2

i .

ϕi Phase lag for the i th jumping load component, ϕi = tan−1
(

ai
bi

)
.

Tp Period of jumping motion.
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The Eurocode model provides three Fourier coefficients and leaves the determination of
phase lags to the user, whereas the Ellis & Ji model determines the factors ai and bi from the
contact ratio [8]. Initially the Ellis & Ji model was used on the form shown in Eq. (E.5) as one
would offhand think, that using the relations between αi , ϕi and ai , bi would make the choice
of formulation indifferent. The formulation given by Eq. (E.5) makes it possible to compare the
Fourier coefficients of both the models and was hence more convenient to use. When compar-
ing the force calculated by both models, inconsistency was experienced around certain values of
contact ratio, and it was chosen to investigate the importance of the formulation. In Figure E.6,
3D plots show the load as formulated by Equations (E.4) and (E.5) as function of contact ratio in
a small time interval.

Figure E.6: 3D plots of different load formulations.

As seen in the figure, the force calculated by Eq. (E.5) shows clear disjoints around certain
contact ratios. A further investigation of the formulation showed that caution should be taken
with the conversion of ai and bi to ϕi , ϕi = tan−1 (ai /bi ). It was found that a more appropriate
formulation could be used, namely ϕi = tan2−1 (−bi /ai ), where tan2 is a function that adds 180°
or π to ϕi whenever ai takes on negative values. Using this new relation between ai , bi and ϕi

indeed made the choice of formulation indifferent, and furthermore made the comparison of
Fourier coefficients possible.

Using the contact ratio previously determined to be cr = 0.46 for general jumping at around
2Hz, the Fourier coefficients from the Ellis & Ji model can be calculated using the relation,

αi =
√

a2
i +b2

i . Ellis & Ji suggest using the first 6 harmonic components to which the Fourier
coefficients at cr = 0.46 becomes: 1.63, 0.81, 0.11, 0.14, 0.06 and 0.05. These values are close to the
values given by the Eurocode for the first three components; 1.6, 1.0 and 0.2.

The Fourier coefficients from jumping can also be estimated from the performed experi-
ments. This is done by analyzing the FFT plots. In the models just described, the Fourier co-
efficients match discrete frequency values corresponding to integer multipliers of the jumping
frequency. In the case of an FFT plot of a measured signal, a number of data points will appear
around the wanted frequency, depending on the quality and resolution of the FFT signal. The
Fourier coefficient equal to a discrete frequency can be set to the sum of the data points in a de-
fined range around the peak. In the following, three data points are included around the first two
load components and two for the third. Due to the small magnitude of the higher components,
only the first three components are assessed.
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PERSON AND

FREQUENCY
i

FOURIER COEFFICIENT, αi

1 2 3 4 5 Mean

P1 at 2.0Hz
1 1.79 1.64 1.60 1.73 1.54 1.66
2 1.13 0.91 0.98 0.93 0.91 0.97
3 0.22 0.18 0.20 0.10 0.19 0.18

P1 at 2.1Hz
1 1.72 1.64 1.47 1.46 N/A 1.57
2 1.06 0.97 0.83 0.95 N/A 0.95
3 0.24 0.19 0.16 0.33 N/A 0.23

P2 at 2.0Hz
1 1.86 1.76 1.55 1.87 1.84 1.78
2 0.96 1.04 0.76 1.07 1.09 0.98
3 0.12 0.18 0.10 0.20 0.22 0.16

P2 at 2.1Hz
1 1.87 1.95 1.88 1.88 1.72 1.86
2 0.92 1.00 0.94 1.07 0.95 0.97
3 0 0.10 0.11 0.15 0.17 0.11

Table E.2: Estimated Fourier coefficients.

The Fourier coefficients estimated from the experiments are listed in Table E.2 and can now
be compared with with the values suggested by Eurocode and the model by Ellis & Ji. For the sake
of completeness the values by Ellis & Ji are calculated to match the contact ratios of each test as
listed in Table E.1.

CONTACT

RATIO
MODEL

FOURIER COEFFICIENTS

α1 α2 α3

– EC 1.6 1.0 0.2

0.43
Ellis & Ji 1.68 0.92 0.22
Experiment 1.57 0.95 0.23

0.45
Ellis & Ji 1.65 0.85 0.14
Experiment 1.66 0.97 0.18

0.47
Ellis & Ji 1.62 0.78 0.08
Experiment 1.78 0.98 0.16

0.48
Ellis & Ji 1.60 0.74 0.05
Experiment 1.86 0.97 0.11

Table E.3: Comparison of model and estimated Fourier coefficients.

As seen from the results, the measured jump forces from person P1 provide Fourier coeffi-
cient values closer to the values suggested by Eurocodes, and values calculated from the Ellis &
Ji model, than the forces measured from person P2. The values estimated from the experiments
are connected with a lot of uncertainty, as they depend a lot on the quality of the signal obtained
from the FFT analysis. Especially when bearing this in mind, the values obtained from P1 fit both
models very nicely. The coefficients obtained from P2 are on the other hand not in agreement
with the models. When detecting high α1 values, one would expect a low contact ratio, but the
contact ratio investigation of P2 jumps showed contact ratios near cr = 0.50. This lead to the
conclusion that if the experiments were to be used for determination of the actual Fourier coeffi-
cients, longer samples would be required, so that the FFT plot would achieve a higher resolution.
Nevertheless the obtained values support the models chosen for this project.





Appendix F

Newmark Time Integration

This appendix describes the Newmark time integration method used for solving the equations of
motion throughout the report. The matter of the appendix is based on [18] and [20].

The general Newmark time integration method is expressed by the following equations for
the unknown displacement vector u:

Mü j+1 +Cu̇ j+1 +Ku j+1 = F j+1 , j = 1, . . . ,n (F.1)

u j+1 = u j + u̇ j∆t +
((

1

2
−β

)
ü j +βü j+1

)
∆t 2 (F.2)

u̇ j+1 =
((

1−γ)
ü j +γü j+1

)
∆t (F.3)

Eq. (F.1) is the equation of motion at the time t j+1. Eq. (F.2) and Eq. (F.3) are approximate
Taylor expansions. The γ and β values show the approximation of the acceleration in the time in-
tervals, e.g. parameters (γ,β) =

( 1
2 , 1

6

)
indicates linear variation and (γ,β) =

( 1
2 , 1

4

)
indicate constant

acceleration in the interval, see Figure F.1.
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Figure F.1: Approximation of acceleration in the time intervals. (a) (γ,β) =
( 1

2 , 1
6

)
, (b) (γ,β) =

( 1
2 , 1

4

)
.

The process diagram of the Newmark algorithm is shown in Figure F.2. For the known ini-
tial displacement u0 and velocity u̇0 vectors, the load vector F, the system mass, stiffness and
damping matrices M, K, C are used to determine the initial acceleration ü0. Next n repetitions
is done for the chosen time step ∆t . In the loop predictors, the new displacement and velocity
are calculated, and from these a new acceleration is calculated. Finally, a new displacement and
velocity are estimated. The algorithm can be found in Newmark.m. The following items identify
the accuracy for the Newmark time integration.

• Truncation error: error caused by truncation of the digits

• Numerical stability: error related with dissipation of a given disturbance

• Period errors: error related with elongation or shortening of the period

• Numerical damping: error related with amplitude errors

The errors, except the first, are dependent of the chosen γ and β values. In this report, the
(γ,β) parameters are assumed to be

( 1
2 , 1

4

)
. Hereby, the algorithm is unconditionally stable despite

125
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Loop for j=0,1,…,n 

                           Input                                          ࢛ሶ ଴, ,଴࢛ ,ݐ∆ ,ߛ ,ߚ ,ࡲ ,ࡹ,ࡷ,࡯ ݊  
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Figure F.2: Newmark algorithm.

any time step, as it fulfils the condition of Eq. (F.4) [18].

1

2
≤ γ≤ 2β (F.4)

The relative period error is evaluated in Eq. (F.5).

∆T

T
= T̄ −T

T
=

(
1

96

(
12γ2 −36γ+11

)+ 1

2
β

)
κ2 +o(κ4) , κ=ω1 ·∆t (F.5)

Eq. (F.5) indicates that T̄ > T , which means that the solution will have period elongation, inde-
pendent of the chosen time step. The time step is chosen from reference [20]. It indicates that
good accuracy is obtained when the time step fulfils Eq. (F.6).

∆t = π

50ω1
≈ 1.7 ·10−3 (F.6)

Here the angular frequencyω1 corresponds to the first eigenmode. The numerical damping error
has no influence on the solution as the parameter γ is chosen to be equal to 1

2 . This means that
no amplitude errors are introduced.
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