
φ 

S

T

Tree

PE

Sequence PredictionSorting Pruning
EventsCollapsing

O

E

VC

Frederik Frandsen (ffrand09@student.aau.dk)
Mikkel Hansen (mfha09@student.aau.dk)

Peder Sørensen (psoere09@student.aau.dk)
Aalborg University, Denmark

June 9, 2011





Aalborg University
Department of Computer Science

TITLE:
Sequence Tree Prediction

PROJECT PERIOD:
February 1st, 2011
June 9th, 2011

PROJECT GROUP:
f11d620a

GROUP MEMBERS:
Frederik Frandsen
Mikkel Hansen
Peder Sørensen

SUPERVISORS:
Yifeng Zeng

NUMBER OF COPIES: 5

TOTAL PAGES: 93

SYNOPSIS:

In this report we look at sequence predic-
tion in the context of predictive text. We
propose a method called Sequence Trees
and define it formally. We also imple-
ment and test several optimizations to
improve the space and time complexity
of our method. Sequence trees are fi-
nally evaluated using two other methods
n-grams and classification trees as bench-
mark methods on the domain of predic-
tive text.

The sequence tree predictor’s accu-
racy within the predictive text domain
is better than its classification tree and
n-gram counterparts. While its space re-
quirement is a limiting factor the method
requires significantly less space than clas-
sification trees. The n-gram predictor
uses even less space, but also has a
lower prediction accuracy than sequence
trees. Using the suggested optimizations
we however achieve both high prediction
and low spacial requirements in the do-
main of predictive text.





CONTENTS

1 Introduction 7
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Predictive Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Ambiguous Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Report Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Sequence Prediction Theory 15
2.1 Events and Systems of Events . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Sequence Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Sequence Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Sequence Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Predicting Sequences of Events . . . . . . . . . . . . . . . . . . . . . 17
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Related Techniques for Prediction 21
3.1 Classification Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 N-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Sequence Tree Construction 35
4.1 Sequence Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Sequence Tree Insertion . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Sequence Tree Construction . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Tree Collapsing - Lossless Tree Size Reduction . . . . . . . . . . . . . 39
4.5 Sequence Tree Subtree Removal . . . . . . . . . . . . . . . . . . . . . 42
4.6 Tree Pruning - Lossy Tree Size Reduction . . . . . . . . . . . . . . . 43
4.7 Sequence Clustering - Preprocessed Sequence Generalization . . . . . 48
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Sequence Tree Prediction 51
5.1 Sequence Tree Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Tree Sorting - Prediction Speed Improvement . . . . . . . . . . . . . 53
5.3 Distribution Sampling - Probabilistic Selection . . . . . . . . . . . . . 55
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5



6 Modeling N-grams with Sequence Trees 57
6.1 N-gram and Sequence Tree Relation . . . . . . . . . . . . . . . . . . . 57
6.2 Converting N-grams to Sequence Trees . . . . . . . . . . . . . . . . . 57
6.3 Formal Proof - Sequence Trees can model any N-gram Predictor . . . 58
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Sequence Predictor Tests 65
7.1 Testing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Test Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3 Test Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4 Sequence Tree Optimizations . . . . . . . . . . . . . . . . . . . . . . . 71
7.5 Spatial Requirement Testing . . . . . . . . . . . . . . . . . . . . . . . 79
7.6 Accuracy Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.7 KSPC Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Conclusion 89
8.1 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 93

6



CHAPTER

ONE

INTRODUCTION

Sequence learning is the task of learning through the observation of sequences. Many
of the tasks we ourselves perform rely on some form of sequence learning; Even
simple tasks can be seen as sequence learning. Walking for examples is a sequence
of lifting each leg in the correct order to maintain balance and move forward. Sun et
al.[17] state that humans often acquire skills by way of studying sequential actions,
this can include the above example of walking or complex tasks such as playing an
instrument. Anderson[1] argues that problem solving and reasoning often requires
sequential learning as well. Intuitively, some machine intelligence tasks could also
be more efficiently learned or directly require some form of sequence learning.

Such machine intelligence tasks include inference, planning, reasoning, natural
language processing, speech recognition, financial engineering, DNA sequencing and
other examples given by Sun & Giles[19]. All of these different tasks give rise to
four related categories that are all aspects of sequence learning:

• Sequence prediction
Here previously seen elements of a sequence are used to predict the next ele-
ments of that sequence.

• Sequence generation
Here previous sequence elements are used to generate the next elements of
that sequence.

• Sequence recognition
Here elements of a sequence are examined to decide if the sequence complies
with some criteria.

• Sequential decision making
Here a sequence of actions are selected to complete a goal.

For this project we focus on sequence prediction and recognition. We attempt
to recognize sequences by looking at their elements and the order of these elements
in each sequence, and when a sequence is recognized we can return an identifying
label of that sequence. Each such label is an abstraction over an entire sequence of
elements, and will be described further later.

7



We propose the use of sequence trees for storing ordered sequence elements and
identifying labels of that sequence. The details of the sequence tree prediction
method and where it differs from other prediction solutions will be detailed through-
out this report.

First a general definition of sequence trees will be given, along with prediction
accuracy improvements and methods for improving space and time requirements of
the method. We will then test sequence trees in the domain of mobile device pre-
dictive text to determine whether sequence trees are viable as a sequence prediction
method.

1.1 Related Work

There are many approaches to sequence prediction, and most of these are classical
methods such as using neural networks, hidden Markov models and reinforcement
learning as explained by Sun & Giles[19].

Frandsen et al.[5] applied action trees, a method that sequence trees are inspired
by, to prediction of an opponent’s moves in computer games, and using sequences
of player actions revealed itself to be a valid approach to prediction. Initial tests
showed action trees to perform better than multilayer perceptrons and naive Bayes
classifiers within this opponent modeling domain, but action trees’ performance
outside this domain has not yet been examined. Furthermore, the test data used
proved insufficient in size for covering the complete state space of the video game
opponent modeling domain.

Other methods similar to sequence trees is classification trees described by Ko-
havi et al. in [10] and Jensen et al.[9], also known as decision trees in some literature
such as Tom Mitchell[14]. This method is already used in many fields such as botany,
medicine, computer science and psychology. An example of the use of classification
trees is SPATTER by Magerman[13], a tool for natural language processing that
analyzes English written sentences to derive phrases, verbs, nouns and their overall
structure. Another example of natural language processing by Ezra Black et al.[4]
is grammatical tagging, where they use classification trees to predict whether some
word in a written sentence is a noun, verb or other category, based on adjacent
words in the sentence.

Another method that shares some of the properties of sequence trees is n-grams.
N-grams have previously been used for predictive text, by Bickel et al.[3] where
n-grams are used to predict sentences. Another approach to predictive text using
n-grams has been done by Jon Hasselgren et al.[6], where bi-grams were used to
disambiguate the predictions of the next word based on the previous. Additionally,
n-grams have been compared to classification trees by Häkkinen and Tian[7] for
use in identifying the language of short sentences and names. More generally n-
grams has applications within natural language prediction and speech recognition,
handwriting recognition etc.

Several predictive text methods have already been developed and are in wide-
spread use today, such as the T9 dictionary disambiguation for writing text on
mobile phones examined by MacKenzie [11]. Another approach also examined by
Mackenzie is LetterWise [12]. LetterWise is a unique approach for predictive text

8



using prefix based disambiguation, i.e. using the probability of seeing a letter based
on the previous letter. Many of the common predictive text approaches are however
closed source and it is not possible to gain information on their inner workings.

A few open source predictive text solutions exists such as Presage[2] are also
publicly available, but not all of these are in a widespread use. There has been
much work done on predictive text for mobile phones as well, but most of this
research is done internally by phone companies and is not available in public. There
are however some benchmarks available on how these predictors perform, such as
those given by MacKenzie[11].

1.2 Predictive Text
Today many computer programs with user input make use of prediction to im-
prove operation efficiency and user experience. Several web browsers such as Google
Chrome, Internet Explorer, Mozilla Firefox and more all use prediction, or auto
completion, when users input website addresses.

Similarly, many online or offline search engines such as Google Search, Windows
Search and more use prediction to provide search results to the user more quickly.
Programmer’s development environments such as Visual Studio and Eclipse also
make use of autocompletion to assist users in designing programs faster.

These examples and many more fall within the domain of predictive text; that
is, generation of text from some input by way of prediction. One example of such
could be a user intending to write ”house” in an online search engine. So far only
the letters h, o and u have been given as input, but the search engine may already
be able to provide a range of suggested words to the user, such as ”hour”, ”hound”
and ”house”.

The quality of the suggested words depends on the text prediction method used;
in this case ”house” was only suggested as the third word rather than the first.
Another better text prediction method might have been able to suggest ”house” as
the first word rather than the third. The user now has to cycle through the two
other suggested words to reach ”house” and complete his or her search query.

The best text prediction method is then the one which allows the user to input
information in the system in the shortest amount of time or effort. A measurement
of such writing efficiency is keystrokes per character, as presented by MacKenzie[11]:

Definition 1. Key-Strokes Per Character (KSPC)
KSPC is the number of keystrokes required, on average, to generate a character of
text for a given text entry technique in a given language.

The basic way to calculate KSPC, given by MacKenzie [11], for writing a word
is:

KSPC =

∑
w (Kw ∗ Fw)∑
w (Cw ∗ Fw)

(1.1)

Where Kw is the keystrokes needed to write word w, Cw is the number of char-
acters in w, and finally Fw is the frequency of w in a word corpus. We will use two
permutations of this equation in Section 7.7.1 to represent keypad and touchscreen
input methods.

9



For regular "qwerty" keyboards the KSPC is 1 for writing sentences of lower
case letters, as there is a button for each letter. However, mobile phones and other
devices might designate one button to multiple letters in the alphabet to reduce
keypad size, which results in ambiguous text input. A high KSPC is a sign of an
ineffective input method. A KSPC below one means that the input method predicts
some of the characters in the words written.

1.3 Ambiguous Input
On most mobile devices there is only a limited number of space for keyboard buttons.
Most phones usually only have nine buttons to use for writing text. Each letter is
encoded to a number on the device, depending on the language. An illustration of
this can be seen in Figure 1.1.

DEFABC

GHI JKL MNO

PQRS TUV WXYZ

1 2 3

4 5 6

7 8 9

_
* 0 #

Figure 1.1: An illustration of a mobile phone. The keyboard is only 12 buttons,
with the alphabet distributed over the buttons as shown.

This "numberfied" mapping of 26 letters onto a mobile phone’s 9 number buttons
produces ambiguous text input; now one button may correspond to three or four
different letters. One of the most simple solutions to selecting between several letters
per button is multi-tap disambiguation where a button has to be pressed multiple
times in order to get a specific letter. An example could be a user attempting
to write ”cow” in a mobile phone text message. The user would, when using the
multi-tap input mode, have to input the number sequence 2226669 to write ”cow”,
which is significantly more troublesome than simply writing ”cow” on a "qwerty"
keyboard. This multi-tap method thus reduces the speed at which one can write
text considerably.

Furthermore, consecutive identical letters from the same encoding group need
to be separated using another keystroke or by waiting for a timeout to pass. For
instance, writing the word ”oops” using multi-tap would require the keystroke se-
quence 666_6667_7777, where each underscore is the user waiting for a timeout or
pressing an additional special key.

This rudimentary multi-tap text input system can have a high KSPC (often
above 2) for most input tasks. If we return to the word "oops", we can find the

10



KSPC using Equation 1.1. If we count the number of keystrokes in the "oops"
example above, we need 13 keystrokes when we count the underscore as an additional
keystroke. We divide the amount of keystrokes with the size of the word, which is
four. The calculation can be seen in equation 1.2, where we have set the frequency
to one.

Koops × Foops
Coops × Foops

=
13

4
= 3.25 (1.2)

As the calculation show, and as was intuitively true multi-tapping is not very efficient
as we need to press more than three keys for each character. One solution to the
low efficiency of multi-tapping is dictionary disambiguation; when a number key is
pressed the system suggests a range of words from a dictionary that it predicts is
what the user is typing.

Returning to the previous ”cow” example, after inputting the numbers 2, 6 and
9 several words might be possible, such as ”boy”, ”any”, ”coy” and ”cow”. A pre-
diction method might here suggest ”cow” as the first disambiguation of the number
sequence 269, while another may choose ”coy”. This disambiguation combined with
automatic word completion can in many cases bring the user’s KSPC near or even
below 1.

Most if not all modern mobile devices use some method to disambiguate input
when the user writes text, as it greatly improves the speed that one can write
messages over basic multi-tap input. One such established method is called T9 and
is found on a very large number of mobile phones. MacKenzie [11] has found the
predictive text method T9 to have a KSPC of 1.0072.

As stated above predictive text is mostly researched closed source, and only a
few open source projects exists. Thus there is little public knowledge on how to
create predictive text methods, and what approaches are effective. We believe that
sequence prediction is a very good approach to predictive text as text is highly
sequential in nature. It would be interesting to see whether a sequential prediction
method would be able to predict written text with high accuracy.

1.4 Project Goals
In this report we develop and examine sequence trees, an approach to general se-
quence prediction. We will define sequence trees within a general domain and later
perform experiments using this method in the domain of predictive text; this test
domain offers easily interpretable test data which will allow for rapid testing.

With regards to testing we wish to see whether sequence trees can offer significant
improvement to text prediction compared to two existing methods used in sequence
prediction: classification trees and n-grams. When comparing these three methods
we will test the following aspects:

• Prediction accuracy

• Space requirements of the predictor.

• Average number of Key-Strokes Per Character needed to complete a range of
words on a simulated mobile phone keypad.

11



Prior to this method comparison we will explore the initial performance of se-
quence trees, and possible means of optimizing this prediction method, as it is still
largely untested and may have room for further performance improvements. The
main areas of optimization to be explored and tested are:

• Sequence tree storage space reduction.

• Sequence tree prediction speed increase.

We propose several optimizations for each of the two areas in the report and
test to see whether the optimizations are effective at improving our sequence tree
prediction method.

1.5 Report Overview

We now provide a general overview of this project and the chapters included in this
report:

• Chapter 2 (Sequence Prediction Theory)
Here we examine the general area of sequence prediction, and define existing
and new concepts needed for describing the sequence prediction methods used
in this report.

• Chapter 3 (Related Techniques for Prediction)
Next we go into detail describing classification trees and n-grams, the two
prediction methods we will compare with the sequence tree prediction method.
We also describe how the two methods are used specifically as text predictors.

• Chapter 4 (Sequence Trees Construction)
This chapter describes sequence trees, the sequence tree construction algo-
rithm, together with four optimizations, tree collapsing, tree pruning and fi-
nally clustering to reduce the size of the constructed predictors.

• Chapter 5 (Sequence Trees Prediction)
The next chapter explains how prediction is done using sequence trees. In the
chapter we propose two optimizations to the prediction method, tree sorting,
and distribution sampling to increase prediction speed and prediction distri-
bution respectively.

• Chapter 6 (Modeling N-grams with Sequence Trees)
Here we look at similarities between sequence trees and n-grams, along with
how n-grams can be modeled with the new sequence trees method. We also give
a formal proof showing that sequence trees can any model n-gram predictor.

• Chapter 7 (Sequence Predictor Tests)
Next we describe our method of testing and the range of tests performed on
sequence trees, along with their results and discuss their significance along
with the observed performance of sequence trees.

12



• Chapter 8 (Conclusion)
Finally we provide a summary of the project and our findings on sequence
trees and their use as sequence predictors, along with suggestions for further
improving the sequence trees prediction method.

13



14



CHAPTER

TWO

SEQUENCE PREDICTION THEORY

In this chapter we will first describe sequence prediction and recognition in general.
These definitions will then be used to describe labeling, event sequence prediction
and event sequence distribution. These will be used in later chapters when describing
sequence trees along with n-grams and classification trees.

2.1 Events and Systems of Events
To discuss our sequence prediction method we will need a number of definitions
how we can perform a prediction. In this section we define events which are the
elements we predict on, and a system of events that produces the sequences we wish
to predict. Lastly we define sequences of events produced by a system.

Definition 2. An Event
An event is a possible action that can be observed within a system. In addition to
events that can be observed we use the special event φ making the initial state of the
system prior to any events happening.

Such an event can be anything that makes sense in the current domain. Within
the domain of chess strategy prediction one event could be "Rook D2 to D4". In
the domain of predictive text events could correspond to letters in the case of word
prediction and full words when predicting sentences. An event is not very interesting
to predict on if it is not the part of a larger system, however. We define a system of
events as in Definition 3.

Definition 3. Event System
An event system is a system that produces a number of observable events. We write
the set of possible events in a system as E = {φ, e1, ..., en} for any finite n.

Within chess strategy prediction the event system describes all possible chess
moves as events, including for instance the "Rook D2 to D4" event. We will only
discuss systems with finite sets of events in the following, and now move on to event
sequences produced by event systems.

Definition 4. Event Sequence
S = {s1, ..., sj} is an ordered sequence of events where s1, ..., sj ∈ E.

15



An example event sequence for chess strategy prediction is {"Pawn E2 to E3",
"Rook D2 to D4"}, and an example event sequence for predictive text is {"h", "o",
"u", "s", "e"}. For the sake of brevity we will in the following often write such a
letter sequence as simply "house". With events and event sequences now defined we
move on to general sequence prediction.

2.2 Sequence Prediction
Sequence prediction is the concept of predicting the most likely next events in a se-
quence given the previous events in that sequence. Our definition of general sequence
prediction is inspired by that of Sun & Giles[18]:

Definition 5. Sequence Prediction
General prediction on a sequence S = {si, ..., sj} where 1 ≤ i ≤ j ≤ ∞ is to predict
the next k ≥ 1 events sj+1, ..., sj+k for that sequence.

{si, ..., sj} → {sj+1, ..., sj+k}

In this definition a prediction with i = 1 will be based on all the prior events of
sequence S, and a prediction with i = j is based on only the prior event sj. Generally
a prediction would only provide the next event sj+1 of sequence S, but the following
events sj+2, ..., sj+k from the previous definition can also be predicted if we base our
next prediction on a previous prediction; this is called open-loop prediction.

An example within predictive text of this open-loop prediction is predicting the
letters "se" from the letter sequence "house", where i = 2, j = 3 and k = 2. In this
case the letters "ou" from "house" will be used to predict the next letter "s". We
then perform another prediction on the letters "us" producing the letter "e". Thus
after two prediction iterations we have the predicted letter sequence "se".

We can also perform probabilistic sequence prediction instead of deterministic se-
quence prediction. In our sequence prediction definition we only return one sequence
as a prediction, but we can instead calculate a distribution p({sj+1, ..., sj+k}|{si, ..., sj})
describing the probability of {sj+1, ..., sj+k} being a prediction for {si, ..., sj}. Where
the probability can be calculated according to the general chain rule:

p({sj+1, ..., sj+k}|{si, ..., sj}) = p({sj+k}|{si, ..., sj, sj+1, ..., sj+k−1})·
...·
p({sj+2}|{si, ..., sj, sj+1})·
p({sj+1}|{si, ..., sj})

(2.1)

2.3 Sequence Recognition
Another aspect of sequence learning we will use is that of sequence recognition. In
short, this is determining if a sequence is legitimate based on some criteria. Our
definition of general sequence recognition is also inspired by that of Sun & Giles[18]:

Definition 6. Sequence Recognition
General recognition of a sequence S = {si, ..., sj} is determining if S is legitimate
or not, where 1 ≤ i ≤ j ≤ ∞.

{si, ..., sj} → yes or no

16



At first glance sequence recognition has little to do with prediction, however we
can in fact turn it into sequence prediction by basing our recognition on predictions.
In other words, we can say that {si, ..., sj, sj+1} → yes if and only if the predicted
sj+1 is the correct prediction. Thus we answer yes for legitimacy for sequences with
predicted events sj+1, sj+2, ... only if all these predicted events match the actual
events sj+1, sj+2, ... for the given sequence.

Sequence recognition is here again defined as deterministic, but similar to se-
quence prediction we can perform probabilistic sequence recognition as well. In
this case we calculate the distribution p({si, ..., sj}) describing the probability of
{si, ..., sj} being a legitimate sequence.

2.4 Sequence Labelling
The last thing we need to define before we introduce event sequence prediction is
the concept of sequence labels and labeled event sequences. A label can be viewed
as the solution to training data in supervised learning schemes, and a labeled event
sequence is then an event sequence with an assigned label. The task will then be to
assign an event sequence with a fitting label l ∈ L where L is the set of all possible
labels in the domain.

These labels and solutions are domain specific; in our domain of predictive text
a label for the letter sequence "house" observed during training could simply be the
word "house" itself, but in other domains a more abstract label may be necessary. In
chess strategy prediction, for instance, it may be more informative to label a sequence
of moves observed during training as the "Sicilian Defense" opening strategy rather
than listing each move in sequence. The exact definition of a labeled event sequence
is given in the following:

Definition 7. Labeled Event Sequence
A labeled event sequence Sl = ({si, ..., sj}, l) is an event sequence with an associated
label l ∈ L, where 1 ≤ i ≤ j ≤ ∞.

Consider as an example a labeled event sequence for chess strategy prediction
({"Pawn C7 to C5", "Pawn D7 to D6", ...}, "Sicilian Defense"), with the label being
"Sicilian Defense". Only the first two moves are shown in this example for the sake
of brevity. Other sequences of chess moves corresponding to a "Sicilian Defense"
strategy also exist, and a given chess strategy predictor should be able to label these
sequences as a "Sicilian Defense" as well.

2.5 Predicting Sequences of Events
With all of the prior definitions in place we can now provide our definition of event
sequence prediction. It is based on the general sequence recognition described earlier,
with some events sj+1 to sk in the recognized sequence being predictions instead of
actual events.

Definition 8. Event Sequence Prediction
Event sequence prediction is a mapping from an event sequence S = {si, ..., sj, sj+1, ..., sj+k}
to a label l ∈ L where 1 ≤ i ≤ j ≤ ∞ and k ≥ 1. {si, ..., sj, sj+1, ..., sj+k} → l

17



Returning to the "house" predictive text example, two labels "house" and "shoe"
could have been observed during training; in this case the label "house" would
resemble the predicted sequence "house" more than the "shoe" label and therefore
be selected as the label for that sequence. In the domain of predictive text one way
to calculate the resemblance of two labels is given as:

Definition 9. Resemblance measurement of text
For text strings we measure resemblance as the number of identical characters in
each position in the strings.

Given tree strings "house", "mouse", and "more" we can calculate which are
more similar. Both "house" and "mouse" has identical characters at four positions,
"more" only has two characters at the same positions with the other words. We can
then say that "house" resembles "mouse" more than it does the word "more".

For a given deterministic event sequence prediction on sequence S the predictor
only returns one label l ∈ L. Which label l ∈ L the predictor should return de-
pends on which label most closely resembles sequence S. This is largely up to the
implementation, but can be thought of as creating a recognizer for each label l ∈ L
answering yes or no according to the following:

Definition 10. Event Sequence Label Recognition
Event sequence S = {si, ..., sj, sj+1, ..., sj+k} with label l is legitimate if and only if
l resembles S more than any other label in L.

(S, l)→
{
yes if l resembles {si, ..., sj, sj+1, ..., sj+k} more than any other l ∈ L
no otherwise

As stated earlier selecting the label that most closely resembles a given sequence
is up to the implementation. This selection may not always be easy to imple-
ment, and is what per our definition quickly separates good event sequence predic-
tors from bad event sequence predictors. For the "house" predictive text example
it might be easy to have the predictor select the "house" label for a predicted
"house" letter sequence, but it may prove more difficult to determine if the chess
moves {"Pawn E2 to E3", "Rook D2 to D4", ...} resemble the "Sicilian Defense" la-
bel more than the "Spanish Opening" label.

Whenever S may potentially resemble multiple candidate labels Lc ⊆ L equally
well, the event sequence predictor must still select only one label l ∈ Lc. Which
label to select is up to the prediction method employed, but one way of resolving
this conflict is to select the candidate label l ∈ Lc that has appeared most frequently
during predictor training.

Event sequence prediction can also be made probabilistic instead of determin-
istic. If so, instead of returning a single label l ∈ L for the predicted sequence we
calculate a distribution p(l|{si, ..., sj, sj+1, ..., sj+k}) for each label l ∈ L describing
the probability of the predicted sequence resembling label l. These probabilities
depend on how much each label resembles the given sequence, which is again up
to the implementation just as in the deterministic case of selecting only one label
l ∈ L.

Having these distributions for the labels in L can be useful for instance when
wanting to list the most probable words when a user is typing letters within a
predictive text system, rather than only the single most probable word.

18



2.6 Summary
We have now defined events and event sequences, along with general sequence pre-
diction and recognition. We have from this created definitions for labeled event
sequences and event sequence prediction. For all prediction and recognition defini-
tions we have also briefly described how they can be made probabilistic rather than
deterministic. In the next chapter we make use of these definitions when describing
two existing approaches to sequence prediction.

19



20



CHAPTER

THREE

RELATED TECHNIQUES FOR PREDICTION

In this chapter we will discuss two different methods for predicting sequences. We
will look at classification trees, a prediction method that has been used in many areas
among them data mining and machine intelligence, and also n-grams as they have
been used to predict natural language, which is our test domain. These methods
will be used as comparisons to sequence trees when they are tested in Chapter 7.

3.1 Classification Trees
In this section we will look at a classification method called classification trees; in
data mining literature it is also known as decision trees as described by Mitchell[14].
The method is a widely used type of classifier that uses a tree structure to classify,
where internal nodes are tests leading to labels in leaf nodes that classify a given
data instance.

Some of the strengths of classification trees is that their underlying model of
the data is easy to visualize and interpret, and the classifier is able to handle both
discrete and numeric data without requiring the trained data to be preprocessed or
be presented in a specific format.

Classification trees classify data by walking from root node to leaf nodes. At
each node a predictor variable will be evaluated and the next edge to follow defined
by the outcome of the evaluation, leaf nodes are all labeled with a class label and a
data instance is classified as the label of the reached leaf node.

The intuition behind classification trees is to have the most defining attributes
near the root of the tree, such that in principle only a few variables may be needed
to classify a data instance, making classification quite fast in some cases.

The classification tree learning algorithms we will discuss are divide and conquer
algorithms using greedy search that uses information gain as a heuristic to choose
good tree structures. We will first discuss the basic learning algorithm ID3 that
forms the core mechanics of the later C4.5 algorithm that will be used for testing in
Chapter 7.

The definition of classification trees that we use is from the lecture notes of
Manfred Jaeger[8], where sp(a) is the state space of predictor attribute a.

Definition 11. Classification Tree

21



A classification tree T is a classification model for a class variable c given attributes
A where:

• Internal nodes are labeled with predictor attributes a ∈ A;

• The outgoing edges of an internal node for attribute a are labeled with (subsets
of) the states in sp(a), such that each state of a appears in exactly one label.

• Each leaf is labeled with a state from sp(c).

To create a classification tree consider the data presented in Table 3.1. This table
contains a sample dataset of observations of weather, temperature and the number
of participants, and whether or not they play football. These observations can be
used for determining whether or not it is time to play football in similar situations.
Each row in the table is an instance of the situation which is to be classified. Each
column is a predictor variable or class variable and its state in a given instance.

A dataset for a classification tree is said to be noise free if there is not two
identical instances with differing class variable values. Classification trees can be
used to classify datasets with missing attributes, but we will not go into details on
this subject. Both of these situations obviously lessens the chance to classify the
class variable correctly.

Predictor attributes Class variable
Instance Weather Temperature Participants Playing Football
1 Sunny Warm◦ Many Yes
2 Rainy Cold◦ Many No
3 Rainy Warm◦ Few No
4 Cloudy Cold◦ Many No
5 Cloudy Warm◦ Many yes

...
...

...
...

...

Table 3.1: A sample dataset for a classification tree to determine whether or not
someone is playing football.

3.1.1 Classification Tree Learning Basics

To create a classification tree the first step is to find the attribute that will give
the most information. This is calculated using the information gain, the expected
reduction of entropy caused by knowing the value of the attribute. To calculate this
the entropy for each attribute must first be found. Entropy is used as a measure
of information impurity. Given a probability distribution P we can calculate its
entropy as described by Michell[14]:

Entropy(P ) = −
n∑
i=1

pi · log2(pi) (3.1)

The information gain for a set S of data instances and an attribute a can then be
calculated as shown in Equation 3.2, where Sv ⊆ S is the subset of S with attribute
value v.

22



Gain(S, a) = Entropy(S)−
∑

v∈V alues(a)

|Sv|
|S|

Entropy(Sv) (3.2)

For each attribute the information gain can be computed and the attribute with
the highest information gain will be chosen as the current predictor attribute. If
we use the data instances from Table 3.1 denoted as SFootball, we can calculate the
information gain for each attribute using the formula from Definition 3.2. We will
show the information gain calculation for the weather attribute. First we insert the
weather attribute in the information gain equation, shown in in equation 3.3.

Gain(SFootball,Weather) = Entropy(SFootball)− (2
5
× Entropy(WeatherCloudy)

+ 2
5
× Entropy(WeatherRainy)

+ 1
5
× Entropy(WeatherSunny)

(3.3)
We need to calculate the entropy of the weather attribute of the whole set of data
instances shown in table 3.1. In equation 3.4 we consider the probability distribution
of the class variable’s value in the weather attribute.

Entropy(SFootball) = −(25 × log2(
2
5
) + 3

5
× log2(

3
5
))

Entropy(SFootball) = −(25 ×−1.32) +
3
5
×−0.74))

Entropy(SFootball) = 0.97
(3.4)

The next step is to calculate, the entropy of the different values in the weather
attribute. The first is the rainy value of the weather attribute. The calculation is
shown in equation 3.5. For all cases of rainy weather the class variable is no thus
the entropy will be zero.

Entropy(WeatherRainy) = −(0× log2(0) + 1× log2(1))
Entropy(WeatherRainy) = −(1× 0)
Entropy(WeatherRainy) = 0

(3.5)

The next value to calculate, in equation 3.6 is cloudy weather, in this case we have
an equal distribution between playing and not playing football, and thus we will
have an entropy of 1.

Entropy(WeatherCloudy) = −(12 × log2(
1
2
) + 1

2
× log2(

1
2
))

Entropy(WeatherCloudy) = −(12 ×−1 +
1
2
×−1)

Entropy(WeatherCloudy) = 1
(3.6)

The final value of weather is sunny, calculated in equation 3.7, as with rainy all data
instances with sunny has the same class variable value and we again get an entropy
value of 0.

Entropy(WeatherSunny) = −(0× log2(0) + 1× log2(1))
Entropy(WeatherSunny) = −(1× 0)
Entropy(WeatherSunny) = 0

(3.7)

Combining all these results into the information gain equation we get an infor-
mation gain of 0.57, as shown in equation 3.8.

23



Gain(SFootball,Weather) = 0.97− (2
5
× 0) + 2

5
× 1) + 1

5
× 0)

Gain(SFootball,Weather) = 0.57
(3.8)

The information gain from weather and the two other predictor variables can be
seen in Table 3.2

Predictor variable Information Gain
Weather 0.57
Temperature 0.17
Participants 0.42

Table 3.2: The information gain for each predictor attribute when finding a candi-
date for the root node from the data in table 3.1

The values in Table 3.2 show that the most gain is from evaluating the weather
attribute first, this will be used as root node. For each value that the weather
attribute can attain an edge is created, for both sunny and rain these instances only
lead to a single classification thus a leaf node is appended with the classification.
For the edge with the cloudy value the process of calculating information gain must
be done again, on the remaining predictor attributes and the data instances that has
a weather attribute value of cloudy. To conclude the example and the classification
tree learning we next select temperature as it classifies the remaining data instances
completely and then tree learning is complete. The resulting classification tree can
be seen in Figure 3.1.

Weather

TemperatureNoYes

Sunny Rain Cloudy

Yes No

Warm Cold

Figure 3.1: A classification tree for the data instances in Table 3.2

When the classification tree is finally constructed we can use it to classify new
data instances, one of these is shown in Table 3.3

24



Predictor attributes
Instance Weather Temperature Participants
1 Cloudy Warm Many

Table 3.3: An unclassified data instance for the football example

To classify this new data instance consider the classification tree in figure 3.1.
The root node is weather, thus we will look at this variable first, the value is cloudy
and go along the cloudy edge. As we have not reached a leaf node we need to consider
another predictor variable temperature, the value of this, in the data instance is
warm, using the corresponding edge we reach a leaf node with the label Yes, which
is the classification of the new data instance.

A more advanced method of classification tree learning is the algorithm C4.5 a
descendant of ID3. An implementation of the C4.5 algorithm called J48 will be used
as a basis for the classification tree learning used in the tests described in Chapter 7.
In the following sections we will describe the C4.5 algorithm.

3.1.2 Classification Tree Learning via C4.5

The C4.5 algorithm has several improvements over the basic classification tree algo-
rithm described above. The algorithm uses a more complex heuristic for its greedy
search called the splitting criterion, which takes account for missing data and im-
proves on predictor attributes with many possible values, as this poses an issue in
the previous method. Additionally to reduce the danger of overfitting, and to reduce
the tree size the algorithm includes a post-pruning technique. We describe the C4.5
algorithm explained by Kohavi & Quinlan[10].

C4.5 Classification Tree Learning

The C4.5 algorithm works in two steps, first the classification tree is built, and
then the tree is pruned to reduce the tree size while maintaining an acceptable
classification accuracy.

As before we initially consider the full set of data instances, used as training cases,
defined as S. An individual data instance sj ∈ S is denoted as sj = (a0, ..., ak, cj),
where ak is the value of attribute k and cj is the value of the class variable for
instance sj.

In the C4.5 algorithm there are a number of different tests that can be done on
the values of predictor attributes. These tests, defined as B = (b1, ..., bt), partition
the cases in the training set S into t parts.

The algorithm considers at each step a subtree Ti ∈ T , where T is the full tree,
created from the partition Si of the training set S. The root node is T0 with a
partition S0 = S.

At each step the C4.5 algorithm creates the subtree Ti. At this creation step
there are two options based on the current training set Si:

1. Ti is created as a leaf node labeled as cj if all the training cases in Si have the
same class value cj, or

25



Temperature 14◦ 16◦ 29◦ 32◦ 35◦

Go Outside no no no yes yes

Table 3.4: Attribute discretization example; the threshold is 32◦ celcius.

2. Ti is created as a classification subtree, created from a new partition of S
according to some new test B.

In the first case with a leaf C4.5 only needs to label the new node with the
class value. In the second case a candidate test must be found that best divides the
training set S based on one attribute a of the attributes in the training instances.

Candidate Test Types

As mentioned before the C4.5 algorithm has different types of candidate tests that
can be used based on the type of the values in attribute a:

1. If a is a discrete attribute with z values, one of two test types exists in C4.5:

(a) The first is a "a = ?", or "a has what discreet value?" test. This test
has z outcomes, one for each attainable value of a. This is the same as
described in the basic learning method described in section 3.1.1.

(b) The second test is a "a ∈ G?", or "a is in which grouping?" test with 2 ≤
g ≤ z outcomes, where G = {G1, ..., Gg} is some partition of the values
of a. Choosing the best partition G for this test relies on the splitting
criterion. Using the data instances from Table 3.1 and the predictor
variable weather we can group cloudy and rainy into a single group called
bad weather, using this we will end up with only two discrete values of
the weather predictor attribute.

2. Lastly if a is a numeric attribute, another type of test exists in C4.5:

• a "a ≤ θ", or "is a less than or equal to θ" test with a discrete binary
true/false outcome, where θ is some constant threshold. Possible thresh-
olds are found by sorting the known values of a, and identifying where
the class attribute value changes between any two adjacent values of a as
exemplified in Table 3.4. Choosing the best of these thresholds relies on
the splitting criterion to be discussed below.

Splitting Criterion

At each subtree several test candidates can arise, as with the basic tree learning
method we must find and choose the predictor variable where we gain the most in-
formation. However in C4.5, we must not only find the highest information gain, we
may also have to find the best grouping G of discrete variables and the best threshold
θ for numeric values. Choosing the best of these candidates, as well as choosing an
attribute value partition G and threshold θ, relies on the splitting criterion. What
we wish to do is to find the best test candidate, and to do this it may be necessary

26



Weather

TemperatureYes

Good Weather Bad Weather

No Yes

<32 >=32

Figure 3.2: A sample classification tree that may be constructed using the c4.5
algorithm

to find the partition G or threshold θ that maximize the splitting criterion. To find
the best candidate test, a greedy search for the candidate maximizing the splitting
criterion heuristic is performed.

The splitting criterion is based on the information gain as defined in Defini-
tion 3.2 but uses a more complex equation, as the original method used to calculate
information gain favors splits that have many outcomes. Another improvement to
the calculation of information gain is to consider missing values during training.

When the best candidate test has been found the current subtree Ti will be
labeled with the candidate test predictor attribute and an edge for each possible
outcome of the candidate test. In the case of our grouping of the weather predictor
attribute’s values into good weather and bad weather we would create two edges
and have to consider two new subtrees.

The training instances S0 is then split into smaller sets for each new subtree,
where the instances corresponds to the test outcome of the edges leading to the new
subtrees. In our example we have one set with all cases where the weather predictor
attribute is good weather and another set where it is bad weather.

The algorithm will then evaluate the next subtrees, created from the test results
of the weather test, until there are created no new subtrees, i.e. we arrive at the fist
option, that the class variable has the same value for each data instance in Si. A
sample classification tree where the grouping and discretization we have discussed
above may look as depicted in figure 3.2

When the learning of the tree is finished the classification tree may be very large
and over fitted to the training data, the C4.5 algorithm therefore incorporates as a
final step a pruning technique that we will now discuss.

27



Classification Tree Pruning

Post pruning is used both to reduce the classification tree size, but also to avoid
overfitting the classifier on the training data. If all instances of the training data
are predicted correctly, there may be a risk of the classifier having lost its ability to
generalize. In this case the classifier is likely to drop in accuracy when predicting
on untrained data. The C4.5 algorithm makes use of post pruning after the full
classification tree has been constructed. This post pruning relies on estimating the
true error rate of the classifier, which will be explained in the following.

This post pruning is done by evaluating each subtree T in the classification tree
in a bottom-up pass. Such a subtree T can be seen in Figure 3.3 as explained by
Kohavi & Quinlan[10].

B

T1*

b1

T2*

b2

Tf*

bf

Tt*

bt

... ...

Figure 3.3: Example subtree T for C4.5 classification tree post pruning

In that figure, B is the test performed for the currently evaluated subtree T with
outcomes b1, ..., bt, and T ∗1 , ..., T

∗
t are other already pruned subtrees. The subtree

can be modified in three different ways, what modification that is chosen is based
on which of the three gives the least error in classification. The three options are:

• Do not prune subtree T

• Replace subtree T with the label L with the most frequent class in T

• Replace subtree T with subtree T ∗f that is the most frequent outcome of test
B

When bottom-up post pruning has completed for the root node of the classifi-
cation tree there are no more subtrees to prune and the C4.5 pruning algorithm is
done. The classification tree has now possibly been both reduced in size and made
more general, reducing overfitting and allowing the classifier to better predict on
untrained data.

One should note that since this is a form of post pruning the classification tree
can grow quite large before pruning is begun depending on the training data, and this
unpruned classification tree may require substantial amounts of storage compared
to that required by other prediction methods.

3.1.3 Using Classification Trees to do Event Sequence Pre-
diction

To use classification trees for event sequence prediction sequences are encoded as a
number of predictor attributes a1, ..., an where n is the number of events in the largest

28



known sequence. Each predictor attribute corresponds to the event at position i in
the sequence, such that ai = si. If a sequence during training is shorter than n, the
remaining predictor attributes will contain a blank data symbol. During prediction
these predictor attributes contain the ’?’ symbol to describe missing information
instead.

This data structure may not be optimal for classification trees as there will be
a large number of predictor attributes with a sizable number of values, up to the
alphabet size in our domain, but is the best way to have a similar way of using
each event in the sequence as is done with sequence trees. It is also this data
structure that requires a more complex classification tree algorithm as there exists
many cases of unknown values in the data instances, which C4.5 takes into account
when constructing the tree.

Sequence labels fit neatly into the definition of the class variable used in classifi-
cation trees, each instance has a single class variable with a value, which we use as
the label.

To do sequence prediction using classification trees we construct the tree using
the structure mentioned above. This results in a tree structure ordered by the most
defining position in the sequence. A sample tree can be seen in Figure 3.4, here
the most influential position in a sequence is position 2, where we have two possible
values, a and b.

Position 2

Position 1Position 3

a b

Figure 3.4: A possible Classification tree made using sequences

When a tree is built a sequence can be predicted by inputting a data instance
with a number of events such as {a, b, ?, ?} as the subsequence of {a, b, c, d}. The
classification then as per normal does its classification on the predictor attributes,
and returns a label.

Having discussed classification trees and the C4.5 algorithm classification trees
are based on we now move on to describe the second prediction method we will use
as benchmark for our sequence tree prediction method n-gram predictor.

29



3.2 N-grams

N-grams are a method of inferring correlations between elements in a sequence. N-
grams have been used in various statistical analysis techniques and are not limited to
prediction. They have also been used with success in the context of natural language
processing.

Within language processing n-grams have been used to suggest alternatives to
misspelled words, they have been used to identify which language a text is written
in, and even to generate sentences on the fly in the "Dissociated Press" GNU Emacs
text editor command as described by Stallman[16].

N-grams use the n prior elements in a sequence to determine the probability of
the next element, similar to how sequence prediction is described in Definition 5
of Chapter 2. It is in effect a n-order Markov model. The probability of the next
element occurring is calculated in equation 3.9.

P (sj+1|sj, ..., sj−n+1) (3.9)

Strictly, an n-gram algorithm keeps track of the frequency of each sequence rather
than the probability. An example 3-gram will keep track of the number of times
each sequence consisting of 3 elements is seen. For prediction the sequence would
give a distribution of all the possible options after the sequence.

By using frequency instead of probability one can optimize the data structure
used to store N-grams. Frequencies also have the advantage of being easier to update.

In our discussions we will use Definition 12 to describe the n-gram prediction
method:

Definition 12. N-gram prediction method
An n-gram predictor contains a list of n-grams which are triples consisting of the
following elements

({sj−n+1, ..., sj}, sj+1, ω)

Where

• {sj−n+1, ..., sj} are the n previous events in a sequence,

• sj+1 is the prediction, and

• ω is the frequency of this prediction occurring.

As can be seen n-grams are three-tuples consisting of the previous n events, the
predicted event and the frequency of that prediction occurring when the previous
events have been observed. An n-gram predictor is then a list of such n-grams.

With this definition we can use n-grams as a prediction method. There are
two steps we must do, firstly we must find n-grams in training data. Consider the
sentence:

Ich bin ein Berliner

Using a 3-gram model this sentence would be divided into:

30



3-grams {({?,?,?},Ich,1),
({?,?,Ich},bin,1),
({?,Ich,bin},ein,1),
({Ich,bin,ein},Berliner,1),
({bin,ein,Berliner},∅,1)}

When we have found a number of n-grams to predict with we can then look at
other sequences and consider the n last events of the sequence and use the learned
n-grams to suggest a prediction. A new sequence could be "Ich" we consult the
learned n-grams and we can convert this sequence to a sequence and find it among
the learned n-grams and see what is the most probable next event. in this case we
will ofcouse create the sequence {?, ?, Ich}, looking among the learned n-grams we
can see that there can only be one outcome namely the event "bin". This is one of
the simplest methods to predict using n-grams but a way of improving prediction
accuracy for n-grams when frequencies are low is to use hierarchical n-grams.

3.2.1 Hierarchical N-grams

Hierarchical N-grams effectively have several N-grams working in parallel with an in-
creasingly larger window size. For example a hierarchical 3-gram will have a 1-gram,
2-gram and 3-gram processing the same data. When constructing a hierarchical N-
gram from a sequence it is registered in all the N-grams.

Again consider the string:

Ich bin ein Berliner

A hierarchical 3-gram model would divide the string into the following n-grams:

3-grams {({?,?,?},Ich,1),
({?,?,Ich},bin,1),
({?,Ich,bin},ein,1),
({Ich,bin,ein},Berliner,1),
({bin,ein,Berliner},∅,1)}

2-grams {({?,?},Ich,1),
({?,Ich},bin,1),
({Ich,bin},ein,1),
({bin,ein},Berliner,1),
({ein,Berliner},∅,1)}

1-grams {({?},Ich,1),
({Ich},bin,1),
({bin},ein,1),
({ein},Berliner,1),
({Berliner},∅,1)}

Table 3.5: Hierarchical n-grams example

31



When predicting on a hierarchical N-gram you first look up the prediction for
the n’th gram. If there have been sufficient examples of the n’th gram it uses this
prediction. If this is not the case n-gram n-1 is examined following the same criteria.
If none of the n-grams have sufficient examples a random prediction can be returned.

What constitutes as sufficient of course depends on the application. There is
no single correct threshold value for the number of entries required for making a
confident prediction. It is to some extent a matter of trial and error, but it can be
common to simply use a small threshold value of 3 or 4 occurrences.

3.2.2 Open-loop N-gram Predictions

An issue with n-grams is that it predicts a single next element. In the previous
example it was only possible to infer the next element, but for predictive text we
wish to predict sequences of letters, based on a sequence of previous letters. We can
accomplish this by using recursive n-grams to do open-loop prediction.

Recall that we in Section 2.2 mentioned open-loop prediction; recursive n-gram
prediction can be seen as a case of this. Instead of predicting only the next event
in the sequence, recursive n-grams predict a whole sequence of events by basing its
next prediction on a previous prediction:

{sj−n+1, ..., sj} → sj+1

{sj−n+2, ..., sj+1} → sj+2

...

{sj−n+k, ..., sj+k−1} → sj+k

All steps included this amounts to what was shown in Definition 5 for sequence
prediction, where 1 ≤ i ≤ j ≤ ∞ and k ≥ 1:

{si, ..., sj} → {sj+1, ..., sj+k}

In both situations previous events, either {sj−n+1, ..., sj+k−1} or {si, ..., sj}, are
used as a basis for predicting the next events {sj+1, ..., sj+k}. Also in both situations
the natural number k ≥ 1 dictates when to stop prediction. For predictive text this
can be when a full word has been produced.

We determine when a full word has been produced when the next n-gram predic-
tion is a terminal symbol. In our implementation the terminal symbol is whitespace,
as this is a natural terminator for words. If the letter t is given as input, our n-gram
predictor will return the following:

Step Output Found n-gram
1 ”t” ({?, ?, t}, h, 1)
2 ”th” ({?, t, h}, i, 1)
3 ”thi” ({t, h, i}, s, 1)
4 ”this” ({h, i, s},_, 1)
5 ”this_”

32



When a whitespace is predicted we terminate the prediction process. This en-
ables us to predict full words. Additionally, as this prediction process might produce
an infinite string in some cases, we terminate the process after a maximum number
of steps to avoid infinite recursion.

Next we describe in more detail how we can use such recursive n-grams to do
event sequence prediction within the predictive text domain. This includes how to
translate predicted letter sequences into word labels.

3.2.3 Using N-grams to do Event Sequence Prediction

In this section we describe n-grams as we use them for text prediction. In this domain
we use 3-grams to predict a word label based on a sequence of letters, similar to
how we earlier in this chapter used classification trees to predict word labels based
on letter sequences.

To do word prediction with n-grams we use the recursive n-grams method de-
scribed above, and once a terminal whitespace symbol _ is predicted as the next
symbol the complete string that has been constructed so far is returned as a word
label.

An example is to have the trigram method predict the word "house" based on the
letters "ho" and the previously observed words "house" and "hound" with frequency
10 and 5 respectively. The 3-grams resulting from training are as follows:

({?, ?, ?}, h, 15) ({?, ?, h}, o, 15) ({?, h, o}, u, 15)
({h, o, u}, s, 10) ({h, o, u}, n, 5) ({o, u, s}, e, 10)
({o, u, n}, d, 5) ({u, s, e},_, 10) ({u, n, d},_, 5)

As per recursive n-gram prediction the most likely successor of "ho" is the
3-gram ({?, h, o}, u, 15), and following this the most likely successor of "hou" is
({h, o, u}, s, 10), followed by ({o, u, s}, e, 10) and ({u, s, e},_, 10). This produces
the word "house" as was originally intended.

When a terminal symbol is predicted a translation from the predicted sequence to
a word label is done using a dictionary lookup. This dictionary provides a mapping
from a predicted sequence to a word label, and each lookup is done as an additional
step after prediction has finished.

This makes the n-gram predictor only predict labels rather than generating new
previously unseen words, although generation of new bogus words is quite possible.
It was an amusing feature of the n-gram predictor to have it generate nonsensical
words during early prediction testing, but for the sake of method comparison we
ultimately had to conform it to producing labels similar to the classification trees
method and sequence trees explained in the coming chapter.

3.3 Summary

The two methods classification trees and n-gram prediction that we will use as
benchmarks for our own sequence prediction method have now been described. For
classification trees we will use the J48 algorithm in Weka which is an open source

33



implementation of the C4.5 algorithm described in the chapter. In the case of n-
grams we will use open-loop prediction via recursing n-grams and then convert these
to labels such that we will have output from n-grams that is comparable to that of
the other two predictors in the test chapter later. We will now proceed to introduce
our own prediction method called sequence trees, specifically the tree construction
algorithm and several optimizations for this process.

34



CHAPTER

FOUR

SEQUENCE TREE CONSTRUCTION

In this chapter we will define sequence trees, as well as the algorithm for sequence tree
construction. We introduce the construction algorithm and discuss four optimiza-
tions to this construction method that we will test in Chapter 7. The optimizations
we propose are to collapse nodes in the sequence tree to losslessly compress the size
of the sequence tree, the second is to use tree pruning to create an approximate tree
with lower size, finally we propose to cluster the training data and select candidates
to represent clustered sequences thus reducing the training data.

4.1 Sequence Trees

Sequence trees are a sequence prediction method that uses supervised learning.
With sequence trees we attempt to define a generalized sequence prediction method.
The idea behind sequence trees is to use trees to define a simple representation of
recognizable sequences and their predictions. The training and prediction time is
quick, but the method has an issue with a large spatial requirements, so we will
later introduce suggestions for reducing these requirements.

In sequence trees a path from root to leaf node corresponds to a sequence of
events found in the modeled system. The root node represents the event from which
all initial events occur; this node contains a special event φ signifying no event.
Internal nodes corresponds to events possible to occur given their parents. Each
leaf node in the sequence tree has a label node appended, these labels define the
classification of the paths leading to the leaf node.

We define sequence trees in Definition 13 below.

Definition 13. Sequence Trees
A sequence tree is a directed acyclic graph (N,L,E) where

• N , is a finite set of nodes, each representing an event.

• Nφ ∈ N is the root node, containing the empty symbol φ.

• L, is a set of labels appended to the leaf nodes of the sequence tree.

35



• E, is a finite set of directed edges defined as (N × (N ∪ L),N), representing
the node, its child node and the frequency of seeing the child node given its
ancestor nodes.

Sequence trees follow a standard tree structure with leaves at the end of each
branch. In our case these leaves are used as labels describing the sequence of events
leading to them. Edges connect nodes to other nodes or labels and are annotated
with the frequency of the next event occurring when all the previous events have
occurred.

To give an example of such a sequence tree, consider the sequence tree in Fig-
ure 4.1. The nodes of the tree are defined as N = {φ,A,B,C}, which gives us three
internal nodes and the root node. The labels of the tree are L = {1, 2}. Lastly
the edges to connect them all are E = {(φ → A, 3), (A → B, 2), (A → C, 1), (B →
1, 2), (C → 2, 1)}.

A

B C

1 2

2 1

12

φ 

3

Figure 4.1: A small sequence tree

More advanced examples of sequence trees and their use for prediction will be
given later. With the general definitions complete we will now introduce sequence
tree sequence insertion that is an essential part of the construction of sequence trees.

4.2 Sequence Tree Insertion

For most tree-based data structures data insertion is one of the most common oper-
ations. Sequence insertion is no different and is a basic operation on sequence trees
that is used extensively. One difference remains, however, as sequence insertion for
sequence trees takes an entire sequence of events as input rather than single events,
as is common for other tree-based data structures.

36



Using such event sequences rather than single events allows sequence tree inser-
tion to account for the ordering of sequence events when updating the tree structure;
insertion of single events actually makes little sense when concerned with sequences,
as use of the ordering of events is an essential part of sequence trees.

Insertion of an event sequence can be seen described in Algorithm 1. The new
sequence is inserted as a path in the tree, one event at a time, with previously
missing events being added as new nodes with connected edges when necessary.

Algorithm 1: Sequence Tree Insertion Algorithm
Input: A sequence tree T , a labeled event sequence s
Output: The updated sequence tree T

1 currentNode← root ∈ T
2 foreach event and label x ∈ s do
3 edge← Find edge leading to x ∈ currentNode
4 if edge does not exist then
5 edge← Create new edge
6 edge.child← Create new node containing x

7 Increment frequency of edge
8 currentNode← Node pointed to by edge

9 return T

The insertion algorithm is very basic in its method of adding data to the model.
It simply iterates through the labeled event sequence and adds new nodes when
needed while continuously updating the frequencies in the tree. This simplicity
comes at the cost of relatively large spatial requirements as we are not making any
inference on the data given; the data is simply stored in the sequence tree data
structure. This however makes for a very quick insertion speed.

The quick insertion speed can be seen by the time complexity of the algorithm
that is only O(l), where l is the maximum length of a sequence. At the point of
insertion the algorithm makes no effort to do any reduction or inference on the data;
instead we keep this separate and we will later show several methods that perform
operations on the tree to reduce size, as well as to improve prediction speed and
accuracy.

With insertion of a sequence into a sequence tree covered we move on to sequence
tree construction that makes heavy use of this insertion.

4.3 Sequence Tree Construction

To construct a sequence tree from sequential data the data is first converted into
labeled event sequences and then given as input to Algorithm 2 which describes
sequence tree construction as a series of labeled event sequence insertions. These
labeled event sequences are thus the training set for the sequence trees classifier.

What follows is an example using the construction and insertion algorithms to
construct a sequence tree. Initially the sequence tree only consists of the root node
containing φ. Using Figure 4.2 as an example we will construct a sequence tree

37



Algorithm 2: Sequence Tree Construction Algorithm
Input: A set of labeled event sequences S
Output: A constructed sequence tree T

1 T ← Create empty sequence tree
2 Create empty rootNode ∈ T
3 foreach labeled sequence s ∈ S do
4 T ← InsertionAlgorithm(T, s)

5 return T

consisting of the labeled event sequences ({A}, 1), ({B,B}, 2) and ({B,A}, 3) as
our dataset.

To construct the sequence tree we start in the root node, and consider the first
sequence ({A},1). We check whether the event in the sequence exists as a child
node. If it does we walk down the edge towards it. If it does not exist such a node
is created and connected to the current node, and we walk towards the new node.
As the event A does not exist in the tree we create a new node containing it and
give the edge leading to it a frequency of 1. This process is repeated in the child
node, where it checks whether the next event is present in the tree, and create it if
it is not. This is continued until the end of the sequence for each event and label
in the labeled event sequence. With ({A}, 1) we have processed the whole sequence
and only need to add the label 1, this is done in the same almost the same manner
as before with the creation of a new node where we now append the node with the
label instead of an event.

The process is then repeated for the next labeled event sequence ({B,B}, 2)
resulting in the sequence tree as seen in Figure 4.2 step 3. And lastly with the
sequence ({B,A}, 3) added to the tree, note that we here did not add a new node
B to the tree as it already existed, instead the frequency of the edge leading to the
existing node was simple incremented.

Once all labeled event sequences from the training data have been inserted the
resulting tree T is returned and is ready to be used for prediction. As stated previ-
ously sequence tree construction is just a series of insertion operations, and as such
sequence tree construction shares its low time complexity.

The time complexity for constructing a sequence tree using Algorithm 2 is O(|S|l)
where |S| is the number of sequences and l is the maximum length of a sequence,
which is a quite low complexity allowing sequence trees to be trained on large
datasets. In the domain of predictive text the alphabet size and sequence length
is limited, but the number of sequences can vary a lot given different dictionaries.
However, the size of the dictionary is not a factor in the lookup speed. The low time
complexity comes at the price of a high space complexity.

The worst case space complexity of sequence trees is when the tree is full; in
other words when the tree contains every possible combination of sequences of some
finite length l equal to the depth of the tree.

The space complexity of a sequence tree is O(|N |+ |E|) where |N | is the number
of nodes in the tree and |E| is the number of edges. Edges are included in the calcu-
lation as they store information about the frequency of a transition. The maximum

38



φ 

A B

B

11

1

φ 

A

1

φ 

A B

B A

21

11

φ 

1 1

2

1

2 3

1 1

1

1

1 1

Step 1 Step 2 Step 3 Step 4

Figure 4.2: Construction of a sequence tree, using the labeled event sequences
({A},1), ({B,B},2) and ({B,A},3).

number of nodes for storing all sequences of finite length l is |N | = |X|l+1 − 1, and
the maximum number of edges is |E| = |X|l+1 − 2, where X is the alphabet of the
event system. Thus in total the space complexity is O(|X|l)

With the basic construction of sequence trees covered we will now turn our
attention to methods that can reduce the spatial requirements. First we will cover
three different lossless tree collapsing methods to reduce tree size.

4.4 Tree Collapsing - Lossless Tree Size Reduction

In this section we experiment with collapsing of sequence tree nodes to reduce tree
size, looking at collapsing of paths, collapsing of subtrees and combining of labels.

In short, path collapsing can be done when a path in the sequence tree has no
branches, because once prediction has reached such a path then no matter what
input comes after the current the prediction will always provide the same label
reached by that one non-branching path.

Collapsing of subtrees is similar and is a more general collapsing method; here
entire subtrees of the sequence tree will be collapsed if all paths in such a subtree
reach the same label.

For label combining we create only one leaf for each different label and have tree
paths point to these rather than having duplicate identical tree leaves such that
multiple identical labels do not take up more storage space than necessary. All of
these three collapsing methods will now be described.

4.4.1 Collapsing Paths

The first collapsing method we look at is path collapsing, which is a way to reduce
the size of sequence trees by collapsing paths where we observe no branching, i.e.

39



where we have no doubt on the path’s resulting label.

φ 

A

B

1

1

1

1

C

1

2

1

Collapse path

φ 

A

B

1

1

1

1

C

1

2

1

1

Figure 4.3: An example of path collapsing where the noce B is removed

An example of this can be seen in Figure 4.3. In the figure there is no uncertainty
after node A that the resulting label will be 1 in all cases. Therefore it is possible
to collapse the path to label 1 bottom-up to the closest branching point in the tree.
This means that the node B will be removed and a link from node A to the label
will be created instead, which can be seen to the right in the figure.

In essence we use the knowledge that A is a prefix of all event sequences leading
to label 1. This method of collapsing paths can also be applied to entire subtrees
leading to a single type of label. This optimization can be seen as finding prefixes
for event sequences with the same label since, given a set of event sequences, if there
there exists a prefix that is unique for a subset of sequences identified by a single
label we can substitute the sequences containing the prefix with the prefix itself to
identify them.

There is a special case when a path is collapsed internally in the sequence tree.
To keep the distance between branches consistent we need to keep a skip value
for collapsed nodes. The skip value represents the number of events in the input
sequence that must be skipped before being able to continue to a new child node in
the tree.

An example of this can be seen for the sequence subtree in Figure 4.4, where
node B is removed and its child nodes are connected to parent node A. We store
a skip value for each node such that when we collapse internally we will know how
many events we need to consume before resuming tree traversal. In the example we
give A a skip value of 1, signifying that after reading event A from input the next
input event must be consumed before continuing with prediction.

Using these skip values allows for internal path collapsing without losing im-
portant information in the sequence tree, while still allowing for space requirement
reduction.

40



A

1

2

B

C D

2

1 1

1 1

Collapse 
Path B

A

1

2

C D

2

1 1

1 1

1 1

Figure 4.4: Example of internal path collapsing with a skip value inserted in node
A after node B has been removed

4.4.2 Collapsing Subtrees

As we saw in Section 4.4.1 we are able to collapse non-branching paths to reduce
tree size. We expand on this concept and also look at how it is possible collapse
entire subtrees of the sequence tree. To do this the subtree that we wish to collapse
must for all paths result in an identical label.

Consider Figure 4.5 as an example. Whenever the first event in a sequence is A
then there is no uncertainty in the resulting label prediction, as all possible paths
from this point result in a prediction of label 1. Hence it is possible to collapse the
subtrees below node A into a single label.

Collapsing these subtrees results in the second sequence tree in Figure 4.5, and
a considerable reduction in tree size without any loss of prediction accuracy when
predicting labels, as we still retain the original frequencies of the sequence tree; after
we have collapsed it the probabilities of reaching label 1 have not been altered.

4.4.3 Combining Labels

One last way we have looked at to reduce tree size is to combine the same labels of
different paths into a single combined label. Instead of having duplicate labels we
make all paths leading to an identical label refer to a single instance of that label.
An example of this combination can be seen in Figure 4.6.

This allows for lossless sequence tree size reduction by making paths with iden-
tical labels refer to the same label instead of duplicates, only removing redundant
information from the tree. This can potentially result in great size reductions for
domains with many sequences leading to only a few labels. In the domain of chess,
for instance, many different sequences of chess moves can all lead to the same "Si-
cilian Defense" opening strategy, and pointing all these sequences to the same label

41



A B

BA

φ 

63

61 2

1

1

1 2

2

B

2

BA

φ 

63

63

1 2

Collapse 
Subtree

Figure 4.5: Example of a sequence tree where paths leading to the same label are
combined into a single label

can result in a great size reduction.
With collapsing paths, collapsing subtrees and combining labels methods covered

we will continue on and look at tree pruning as a lossy way to reduce the spatial
requirements. However first we need to define subtree removal as this is an essential
part of the tree pruning algorithm.

4.5 Sequence Tree Subtree Removal

Apart from sequence insertion, sequence trees also have the possibility to remove
data once the tree has been constructed through sequence subtree removal. This
is for example used to prune the sequence tree, which we will discuss later in Sec-
tion 4.6.

Note that this is different from removal of individual sequences from a sequence
tree. Sequence removal is not of much use as one could simply have left out the
sequences during construction, whereas subtree removal alters the sequences making
it useful for more advanced tree manipulations such as those of tree pruning.

The procedure for removing subtrees from a constructed sequence tree can be
seen in Algorithm 3.

Nothing happens if the node n to remove is the root node of sequence tree T or
does not exist in the sequence tree, as the removal of such a node does not give a
valid sequence tree. Otherwise the frequency for node n’s parent edge is subtracted
from all ancestor edges leading from sequence tree T ’s root to node n. If any of these

42



A B

BA

φ 

63

61 2

1

1

1 2

2

B

2

C

2

3

2 A B

BA

φ 

63

61 2

2

1

1

2

B

2

C

2

3Combine 
labels

Figure 4.6: Example of a sequence tree where duplicate labels have been combined
into a single joint label

edges’ frequencies become 0 the edge is removed, resulting in all its child nodes and
edges being removed as well.

An example of this can be seen in Figure 4.7 where the node n to be removed
is the node B which is the root of sequence subtree Tsubtree consisting of nodes
N = {B,C,D} and the labels L = {1, 2}. As can be seen the frequency of node B’s
parent edge has been reduced and propagated up through the full sequence tree T
after subtree removal has been carried out.

A case to note is when subtree removal causes a path in the sequence tree to no
longer have any label assigned. This occurs when a parent has only one child node
and this node is removed. In this case all ancestors who lead only to that node are
removed from the sequence tree as well.

Figure 4.8 shows an example of this happening where the node n to be removed is
B which is the root of Tsubtree consisting of nodes N = {B} and the labels L = {1, 2}.
Step 1 of subtree removal makes the path leading to node B invalid, and therefore
node A and its parent edge with frequency 3 are removed in step 2 as well.

As with the insertion algorithm the time complexity of the subtree removal al-
gorithm is O(l) where l is the maximum depth of the sequence tree. This allows for
quick altering of the tree for use with pruning algorithms.

With subtree removal covered we can now proceed and discuss tree pruning.

4.6 Tree Pruning - Lossy Tree Size Reduction

Following the three collapsing methods we now look at tree pruning, another way
of reducing tree size. Tree pruning, contrary to the lossless collapsing, is however
a lossy compression method and will to varying extents result in loss of prediction
accuracy. Tree pruning techniques are often used in classification trees to reduce

43



Algorithm 3: Sequence Tree Subtree Removal
Input: A sequence tree T , root node n of subtree Tsubtree to remove
Output: A sequence tree T , without Tsubtree

1 if n /∈ T then
2 return T

3 frequencyToReduce← Frequency of edge pointing to node n
4 currentNode← n
5 while current 6= RootNode ∈ T do
6 parentEdge← Get parent egde of currentNode
7 Reduce frequency of parentEdge with frequencyToReduce
8 if Frequency of parentEdge = 0 then
9 Remove parentEdge from parent of currentNode’s children

10 currentNode← parent of currentNode

11 return T

both the size of the tree and also the chance of it being overfitted to the training
data.

The general premise of tree pruning is that if a label or path through the sequence
tree is highly unlikely, it may not have a large effect on the accuracy of the sequence
tree, and can therefore be removed from the tree. For sequence trees we have
investigated three different pruning methods; a brute force pruning method, a low
frequency pruning method and a size to frequency ratio pruning method.

4.6.1 Brute Force Pruning

Brute force pruning, the first method to do pruning, follows a method similar to
the one used by classification trees in Section 3.1.2; first the initial accuracy of the
sequence tree must be measured. Afterwards a test is done for each node in the
tree starting bottom-up to try to remove the node, and see whether or not it affects
the accuracy of the model. If the removal of the node reduces accuracy by less
than a certain threshold, the node can safely be removed and the tree size reduced.
However this method is very time consuming and is as its name suggests somewhat
of a brute-force method.

4.6.2 Pruning Sequences With Low Frequencies

The second approach is to simply remove sequences with low frequencies in the
training data, but the improvement from this is not guaranteed to be a good im-
provement. If several low frequency sequences share most of their events they would
follow the same path in a sequence tree and their probability may not warrant their
removal. Consider the sequences "Cowboy" and "Cowboys", "Cowboy" may be a
very frequent word whereas "Cowboys" is much less frequent. However as the two
words share so many event it would give very a little spatial reduction to remove
"Cowboys". Other paths could have nothing in common with other sequences mak-
ing them more ideal candidates to remove. However the method is incapable of

44



A B

CA

φ 

67

62 5

2

1

2 3

3

Remove 
subtree

A

CA

φ 

62

62

1

2

3

C

1

2

D

2 3

Figure 4.7: Simple example of the subtree with node n = B being removed

making such distinctions and as such this is more of a preprocessing of the training
data than an actual pruning method, but it can also be performed after the tree
has been constructed and will result in a tree size reduction as is expected with tree
pruning.

4.6.3 Size Ratio Pruning

The third method we have considered, size to frequency pruning, is a more complex
pruning method that uses the structure of the sequence tree and the frequency of the
different paths in the tree to influence what should be pruned in the sequence trees.
Consider two sequences with unique labels; if a single sequence was removed the
accuracy would be decreased by 1

2
. However if the removed sequence only appeared

1
100

of the times in the training data, the loss of accuracy overall would only be 1%.
Using this notion a pruning algorithm could be one that iterate through a se-

quence tree and remove all paths that have a low frequency, but also looks at the
gain of pruning a certain path. This ratio of path length to frequency will be the
threshold that determines if a path is pruned or not. Consider at a node in a se-
quence tree we have two edges both with the same low frequency; one edge leads
to a subtree that has a total of 6 nodes while the edge leading to the other subtree
only consists of 2 nodes.

Clearly pruning the largest subtree will result in a smaller sequence tree but it
would do so without a bigger loss in accuracy than pruning the other edge. A more
efficient pruning algorithm is thereby one that can take into account the size of the
subtrees it prunes.

We propose Algorithm 4 as a method to pruning sequence trees based on size to
frequency pruning described previously. The method uses a threshold to determine
what subtrees to prune where the threshold describes the ratio between the size of a
subtree and the frequency of the edge leading to the subtree. So when specifying the

45



B

CA

φ 

63

63

2

2

3

Remove 
subtree

Step 1

C

φ 

6

3

6

1

1

CA

φ 

63

6

3

Remove 
subtree

Step 2

Figure 4.8: Subtree removal with its root node B being removed resulting in a whole
path being removed

threshold you are in essence specifying how infrequent a path has to be in contrast
to the size reduction you gain by removing it.

The algorithm performs a top-down iterative breadth-first search for any edges
to subtrees with ratios at or below the given threshold and removes these subtrees.
As stated this ratio is simply the frequency for such an edge divided by the number
of nodes in the subtree led to by this edge. This means that that the more frequent
the sequence is the longer it must be to be pruned in this approach.

D E

BA

φ 

63

61 2

21

1 2

3

C

F

1 2

3

4

5

G

1

1

Prune

(a) Not pruned (b) Pruned

D E

BA

φ 

62

61 2

21

1 2

2

C

F

1 2

3

4

5

G

1

1

Figure 4.9: Example of a sequence tree being pruned with a threshold value of 1
2

As an example of the pruning algorithm consider Figure 4.9. When we want to
prune the sequence tree we must specify a threshold value. In this example we only
want to prune subtrees if for each occurrence we remove at least two nodes. The
threshold is defined as threshold = frequency

subtreeSize
, in this example we use a threshold of

1
2
. Having decided on a threshold value we move on to pruning the sequence tree.

46



Algorithm 4: Sequence Tree Pruning Algorithm
Input: A sequence tree T , threshold value t
Output: A pruned sequence tree T

1 initialize openSet
2 initialize newSet
3 openSet add← root ∈ T
4 while openSet != empty do
5 foreach node n ∈ openSet do
6 foreach edge e ∈ n do
7 subtreeSize ← Get subtree size of e.childNode
8 ratio ← e.frequency

subtreeSize

9 if ratio <= t then
10 SubtreeRemovalAlgorithm(T , e.childNode)

11 else
12 newSet add← e.childNode

13 openSet ← newSet
14 empty newSet

15 return T

We start by going through the tree in a top-down manner starting with the
root node. Each of the subtrees leading from the root node is then examined, we
calculate the subtree size by counting the total number of nodes the subtree consists
of, including both internal node and leaf nodes. This results in subtree sizes of 5, 2
and 5 following the edges from left to right. For each subtree we then calculate the
ratio between the frequency of the subtree and the size. This gives the ratios 3

5
, 6

2

and 3
5
respectively. As none of these are below our threshold value of 1

2
we do not

remove any of them. Each child of the root node is examined in a similar fashion
following the same procedure until the whole sequence tree is traversed and pruned.
A case where the sequence tree will be pruned is when considering the subtree below
node A, the subtree path to D has from this point a pruning ratio of 1

2
. We then

remove this subtree using the subtree removal algorithm explained in section 4.5.

Using a threshold value of 1
2
the sequence tree in Figure 4.9 is reduced from 13

nodes to 8 nodes, almost a 40% reduction in size. Assuming we wanted to test the
accuracy of the sequence tree with the same sequences we used to construct it we
would go from 100% accuracy to 83% accuracy. So in this example by pruning with
a threshold value of 1

2
we get a 40% reduction in size but only a 17% loss in accuracy.

Following tree pruning we proceed to describe clustering of event sequences.
This is the final method we explore for reducing sequence tree size, and is essen-
tially what was discussed in the low frequency pruning method, but is performed as
preprocessing of the training data before the sequence tree is constructed.

47



4.7 Sequence Clustering - Preprocessed Sequence
Generalization

Clustering could be used to group similar sequences in the training set together. If
such a generalization can be made, representative sequences from these clusters can
be used as substitutes for the original sequences when constructing the sequence
tree, thus reducing the size of the tree.

Several clustering methods exist with different strengths and weaknesses, and
from these we will be focusing on hierarchical agglomerative clustering, as it is
quickly implemented and we can change the resolution of our generalizations.

4.7.1 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering methods follow a basic approach described by
Tan et al.[20], and the method we use shown in Algorithm 5 is no different. Each
input sequence is seen as a cluster of one sequence, and these clusters are then
merged together one step at a time until only a desired number of clusters remain.

Algorithm 5: Agglomerative sequence clustering
Input: Sequences S, desired number of clusters t.
Output: Clustered sequences S.

1 Assign a cluster to each sequence in S.
2 Compute the initial proximity matrix.
3 repeat
4 Merge the two closest clusters in S.
5 Update the proximity matrix.
6 until number of clusters n ∈ S ≤ t;
7 return clustered sequences S.

The use of a proximity matrix is a dynamic programming optimization to speed
up the clustering process; once the distance or proximity between two clusters i and
j has been calculated the result is stored in the matrix at position (i, j) for later use
without needing a recalculation.

When sequences have been clustered together a representative sequence of each
cluster can be found, such as by taking the medoid sequence of each cluster. These
representatives are then the only sequences that will be used in constructing the
now smaller tree.

The notions of closest clusters and cluster proximity have intentionally been left
unexplained as these greatly affect the quality of the clustering method. In the
following we first describe complete-linkage, our linkage criteria of choice for deter-
mining closest clusters, followed by describing our distance metric used to calculate
sequence proximity.

4.7.2 Complete-Linkage Criteria

For the complete-linkage criteria two clusters A and B are considered closer than A
and C if the maximum distance between a sequence from A and B is smaller than

48



the maximum distance between sequences from A and C.
Complete-link clustering thus compares the distance between the furthest se-

quences in two clusters, making the method prefer elliptical clusters over non-
elliptical clusters and making it more robust to noisy data than other linkage criteria
such as single-link.

A
B

C
D

E

F

Figure 4.10: Complete-link clustering example

An example of complete-link clustering can be seen in Figure 4.10 where the
distance metric is simply euclidean distance between two points in a 2D coordinate
system. Clusters are grouped together one closest pair at a time, such as A and B,
then C and D, and so on until all points are contained in one cluster.

4.7.3 Sequence Distance Metric

Distance between two sequences can rarely be measured in the same way as distance
between points in euclidean space. Sequences only have events at different positions
in the sequence and an associated label, and thus only these can be used to measure
distance between sequences.

We propose the following distance metric for finding the distance between two
sequences.

d(S1, S2) =

min(|S1|,|S2|)∑
i=1

{
1 if {si|si ∈ S1} 6= {si|si ∈ S2}
0 otherwise + ||S1| − |S2||

Given two sequences S1 and S2 to calculate the distance we compare events at
the same position in each sequence; if both events are equivalent the distance is zero,
otherwise for each non-matching event the distance increases by one. We do this for
every event in S1 and S2 summarizing the total difference. Additionally if the two
sequences are of different length, the length difference is added to the distance.

The distance method we propose is a general one but many different methods can
be used. One could have specific knowledge about a domain that can be incorporated
into the distance function to improve clustering. It is up to the implementer to decide
what method works best in their specific domain.

49



4.8 Summary
We have now described sequence trees, sequence tree construction and sequence
insertion. We have also described various space reduction optimizations for sequence
trees, including three collapsing methods, general tree pruning, and clustering of
sequences.

The collapsing methods can all help reduce tree space cost without loss of pre-
diction accuracy, and with a correct threshold the tree pruning method should be
able to reduce tree size with only minor loss of accuracy. Whether sequence clus-
tering is a useful method of space reduction remains to be seen, but all of these size
reductions will be further tested in Chapter 7.

In the next chapter we look into sequence tree prediction along with tree sorting
and distribution sampling, two optimizations for improving prediction speed and
accuracy of our sequence tree predictor.

50



CHAPTER

FIVE

SEQUENCE TREE PREDICTION

As the construction of sequence trees has been concluded in the last chapter we will
now describe how we use the constructed trees for sequence prediction. Furthermore
we will discuss two optimizations to the prediction method. The first is sorting the
sequence tree to do faster predictions, and the second is to use distribution sampling
to predict nodes, to be able to choose more broadly when predicting.

5.1 Sequence Tree Prediction

When predicting, sequence trees takes a partial sequence of events as input. In the
context of the previous definitions the input is the event sequence S = {s1, ..., sj} of
some length j. Using this input the sequence tree is traversed such that the nodes
on the path in the tree match the event sequence, and a label is returned as output.

when the event sequence is not long enough to be able to reach a leaf node, that
is if the length j is less than the depth of the tree, the algorithm will after tree depth
j select the edge with highest frequency until a label is reached. In Algorithm 6 this
prediction process can be seen.

Initially the algorithm starts at the sequence tree’s root node and looks at the
first event in its input event sequence. If an edge to a label exists in the current node
this label is selected as the prediction result. If no label edge is found the algorithm
looks for an edge to a node corresponding to the current event in the sequence. The
algorithm selects the next event in the input event sequence and continues until a
label is found or all events in the input sequence have been consumed. From here if
we have not reached a label the most frequent child label is selected if such a label
exists. This overrides the decision to walk towards the most probable label, but one
could argue that labels for sequences of lengths closer to that of the input sequence
are more likely predictions than frequent sequences that are much longer than the
currently input sequence. If no such label exists the algorithm keeps selecting the
most frequent child node until a label is found.

As a prediction example, consider the sequence tree already constructed in Fig-
ure 5.1. Given a sequence {A,B} we want to find a label corresponding to this
sequence. We start at the root of the sequence tree and check if there is a path
leading to the first event in the sequence, namely A. As we can see there exist such

51



Algorithm 6: Sequence Tree Prediction Algorithm
Input: A sequence tree T , an event sequence s
Output: The most probable label of event sequence s ∈ T

1 currentNode ← root ∈ T
2 foreach event x ∈ s do
3 if currentNode is a label then
4 return label ∈ currentNode
5 nextNode ← find node leading to x ∈ currentNode
6 if nextNode does not exist then
7 nextNode ← most frequent child of currentNode

8 currentNode ← nextNode

9 currentNode ← most frequent child label of currentNode
10 while currentNode is not a label do
11 currentNode ← most frequent child of currentNode

12 return label ∈ currentNode

a node, we follow the edge leading to this node. We then look at the next event
in the sequence, namely B. Again we find that there is an edge leading to such a
node, and again we follow the edge leading to that node. As all events in the event
sequence have been examined and we have not yet reached a leaf node we check to
see whether there is an edge leading to one. This is indeed the case as there is one
leading to leaf node with the label 2. So given the sequence {A,B} we predict the
label 2.

As can be seen we are able to find an exact path through the tree, by first going
from the root to the A node in Figure 5.1 step 1 and then to the B node in Figure 5.1
step 2 before finally reaching label 2. In this example the algorithm always finds
a node in the sequence tree matching the current event in the input sequence and
therefore never needs to go along the most frequent edges to reach a label.

A more interesting example is the case where the sequence we wish to predict is
{B,C}. Here we follow the nodes until reaching node C, as seen in Figure 5.2 step
2, but contrary to the previous example we cannot read a label at this point. To
resolve this we take the most frequent edge, the edge leading to node C and from
here we again take the most frequent edge thereby reaching the leaf node containing
the label 2.

Having described sequence prediction we now examine its time complexity to
estimate how much time a prediction requires.

The time complexity for sequence tree predictions is O(|X|l), where l is the
depth of the sequence tree and X is the event alphabet of the sequence tree. The
reason for including |X| is that whenever the most frequent edge must be found the
algorithm must search through all immediate edges to find the most frequent, and
in the worst case this amounts to |X| lookups at each level in the tree of maximum
depth l.

To give a concrete example of lookup time requirements we turn to Figure 5.2
from the previous prediction example. Here we add together all the node visits

52



CA B

BA

φ 

A C B

B

66

62 4

1 4 1

1

1

2 3

21

2 4

1

4 1

CA B

BA

φ 

A C B

B

66

62 4

1 4 1

1

1

2 3

21

2 4

1

4 1

Predicting AB step 1 Predicting AB step 2

Figure 5.1: Prediction example of the event sequence {A,B}

required when searching through the sequence tree during the same prediction. We
first find the node B matching the first input event, which brings visits to 1. Then
we find node C which is also a match for the second input event, bringing visits to
1 + 1. Both of these require only one visit each if event matching is implemented
as a hash function allowing for direct matching of an input event to a sequence tree
child node.

At this point we have no further input events to match nodes against and have
to start searching for the most frequent edges; here finding the next node C requires
visiting all three children to compare their frequencies before selecting the maximum,
bringing visits to 1 + 1+ 3. From here we can finally reach label 2 by another visit,
bringing the total visits to 1+1+3+1 = 6. In bigger examples the required visits of
course increase, but will always be bounded by the O(|X|l) time complexity based
on event alphabet size and sequence tree depth.

In this chapter’s remaining sections we present several techniques to improving
sequence trees with regards to the prediction speed and attempt to use distribution
sampling to get a more even distribution of predictions when using partial sequences.

5.2 Tree Sorting - Prediction Speed Improvement

A way to improve prediction speed is to sort the sequence tree. By sorting the tree
according to a specific set of rules it is possible to reduce the time complexity in
prediction time. This comes at an increased tree construction time, but prediction
speed for each prediction is increased.

53



CA B

BA

φ 

A C B

B

66

62 4

1 4 1

1

1

2 3

21

2 4

1

4 1

CA B

BA

φ 

A C B

B

66

62 4

1 4 1

1

1

2 3

21

2 4

1

4 1

CA B

BA

φ 

A C B

B

66

62 4

1 4 1

1

1

2 3

21

2 4

1

4 1

Predicting BC step 1 Predicting BC step 2 Predicting BC step 3

Figure 5.2: Prediction example of the event sequence {A,C}

We want to sort the tree so that the most frequent node is always in the leftmost
edge. With this knowledge it is possible when making a prediction to simply take
the leftmost edge without checking all child nodes to find the most frequent node.

A B

BA

φ 

63

61 2

21

1 2

4

C

A

3 1

3

4

5

A

3

3

AB

B A

φ 

6 3

6 12

2 1

12

4

C

A

31

3

4

5

A

3

3

Sort

(a) Unsorted (b) Sorted

Figure 5.3: Example of a sequence tree being sorted to improve prediction speed

Consider Figure 5.3 (a) where we have an unsorted tree and we want to make the
prediction with the empty sequence S = ∅. Using the normal prediction algorithm
as explained earlier in Section 5.1 a prediction on this tree would result in a total of
3 + 1 = 4 visits. The reason for needing three visits initially is that we must check
the frequency of each immediate child node edge to find the maximum, but from
here we only require one visit to reach the label.

Now consider Figure 5.3 (b) that is a sorted version of the same sequence tree.
We can observe that each node have the most probable child node in its leftmost
edge. When predicting with the same empty sequence S = ∅ again will result in a
total of 1 + 1 = 2 visits, cutting the number of visits in half.

54



This gives sorted sequence trees a time complexity of O(l) rather than the
O(|X|l), thus making prediction speed independent of input event alphabet size
making predictions much faster. The prediction speedup comes at the cost of longer
sequence tree construction time, however. When a lot of predictions are to be made
in the future the use of sorting can significantly speed up this process, but if new
data will be inserted in the sequence tree on a regular basis sorting may reduce
overall performance.

Another thing to note is that we sort leaf nodes with a higher priority than
internal nodes. So as discussed earlier in Section 5.1 we prioritize labels where the
length of the prediction sequence is the same. In Figure 5.3 this can be seen with
the sequences S1 = {C} and S2 = {C,A,A}.

Having discussed a method for prediction speed improvement we now look at a
way to potentially increase prediction accuracy by way of distribution sampling.

5.3 Distribution Sampling - Probabilistic Selection
One possible issue with the current implementation of the Sequence Tree traversal
method is that for a choice between two branches we will always choose the most
likely of the two. This can mean that in principle we will never use low probability
paths.

This can be a considerable drawback especially in cases where a branch contains
two edges of almost the same frequency, this will in practice mean that almost half
of our guesses will be wrong if we only choose the edge with highest frequency.
Another case is where there is a lot of edges in a branch which is dominated by a
single high frequency edge.

We will use a simple technique that in theory should in the long term give similar
prediction accuracy but allows for exploration of more less frequent paths. At each
branch instead of taking the most frequent path we instead calculate probabilities of
the paths in the branch and use these as partitions of the interval [0, 1]. We sample
a random number that determines which of the paths to take by which partition it
falls into.

A

CB

46

Figure 5.4: A branch with two edges

Consider a branching path with two children with frequencies 6 and 4, giving
us the 6

10
and 4

10
probabilities of each child node respectively, as seen in Figure 5.4,

we map these to [0, 0.6] and ]0.6, 1] respectively. We sample a random number
0.3213 which falls into the interval of partition 1 corresponding to edge 1, giving us

55



the next step in the path. Using this sampling technique should make our guesses
better reflect the probabilistic nature of the underlying sequence tree structure.

5.4 Summary
We have now described how sequence trees can be used for prediction of event se-
quences, along with how sorting the sequence tree can improve prediction speed and
how distribution sampling may improve prediction to make more balanced predic-
tions.

Of the two prediction optimizations the tree sorting method appears most useful;
every time the most frequent edge must be followed we can reduce the visits required
to just one. The distribution sampling method for selecting edges more evenly with
regard to their different frequencies may improve prediction accuracy with regards
to making prediction more diverse, but the method is nondeterministic in nature and
as such accuracy improvements are bound to fluctuate more than may be desired.

In the next chapter we take a closer look at sequence trees and compare them
to the n-gram predictor. As it turns out sequence trees are able to represent any
n-gram predictor, and we will provide proof of this.

56



CHAPTER

SIX

MODELING N-GRAMS WITH SEQUENCE TREES

In this chapter we discuss the relations between sequence trees and n-gram predic-
tors. We also describe how sequence trees can be used to model an n-gram predictor
by way of practical examples and a mathematical proof.

6.1 N-gram and Sequence Tree Relation
N-grams and sequence trees behave in a somewhat similar way. A sequence tree
could be seen as being comprised of several n-grams where the path through the
tree is the sequence of the n-gram and the leaf node is the prediction. The major
difference is that sequence trees combine different length histories to predict a label,
and also that the label definition is much more abstract than the type of prediction
used in n-grams as the prediction of n-grams must be of the same type as the events
in the sequence it describes. Using n-grams requires one to define a specific length
n, if there are less than n events n-grams cannot be used to predict on the sequence.
Sequence trees on the other hand has no such restriction on the label type and can
do prediction on any number of events up to the depth of the tree.

One can make use of open-loop n-gram prediction as described in Section 3.2.2
to predict full words. However the same method can also be applied to sequence
trees by using regular sequence tree prediction on the last n elements of the sequence
that must be predicted, and then recursively predict on the result.

In the sections below we will demonstrate that it is possible to convert any
n-gram predictor to an equivalent sequence tree.

6.2 Converting N-grams to Sequence Trees
We postulate that The structure of an n-gram predictor can be converted into an
equivalent sequence tree predictor; each n-gram can be created as a path from the
root of the sequence tree. If we consider the 3-grams possible to create from the
"Ich bin ein Berliner" example in Section 3.2. we can convert the n-gram models to
sequences and then construct a sequence tree as per usual with Algorithm 2.

To convert an n-gram predictor to a sequence tree recall the definition of an
n-gram predictor from Definition 12, where each n-gram of such a predictor is a

57



tuple
({sj−n+1, ..., sj}, sj+1, ω)

where we have that {sj−n+1, ..., sj} from the n-gram is the sequence with label sj+1

which occurs in the system with a frequency of ω. Recall that if we wanted to create
a 3-gram predictor for "Ich bin ein Berliner" it would contain the following 3-grams:

tri-grams {({?,?,?},Ich,1),
({?,?,Ich},bin,1),
({?,Ich,bin},ein,1),
({Ich,bin,ein},Berliner,1),
({bin,ein,Berliner},∅,1)}

These 3-grams can then be converted into labeled sequences for use in construct-
ing a sequence tree equivalent to the "Berliner" 3-gram predictor. The process for
doing this can be seen in Algorithm 7.

Algorithm 7: N-gram to sequence tree conversion
Input: An n-gram predictor G
Output: An equivalent sequence tree T

1 initialize sequenceList
2 foreach n-gram g ∈ G with g = ({sj−n+1, ..., sj}, sj+1, ω) do
3 for ω times do
4 sequenceList add← ({sj−n+1, ..., sj}, sj+1)

5 T ← SequenceTreeContruction(sequenceList)
6 return T

In the algorithm we create the sequence tree by converting each n-gram from
the predictor G to a labeled event sequence and insert each such sequences ω times
for each n-gram as input to the sequence tree construction algorithm explained in
Section 4.1. For the previous "Berliner" example this gives us an n-gram equivalent
sequence tree as seen in Figure 6.1.

The resulting sequence tree will have paths from root to leaf of length n. The
probabilities for each leaf is the probability for the same prediction in the n-gram
predictor. Additionally, in the constructed sequence tree each path may have multi-
ple labels for one path, since multiple n-grams with the same preceding events could
predict different future events.

Having given an introduction on how to convert n-grams to sequence trees we
move on to give a formal proof showing that it indeed is the case that any n-gram
predictor can be modeled by an equivalent sequence tree.

6.3 Formal Proof - Sequence Trees can model any
N-gram Predictor

In this section we prove how sequence trees can model n-gram predictors. We
determine this by examining the equivalence of these two prediction methods. First

58



φ 

Ich?

?

?

Ich

Ich

1 1

11

1 1

bin

1

bin

ein

1

1

Ich bin ein Berliner

1 1 1 1

bin

ein

Berliner

1

1

Ø

1

1

Figure 6.1: The resulting sequence tree from using the 3-grams from the example in
Section 3.2

we will give a definition of how two predictors can be equivalent with regard to their
input and output, and following this we show that any size n-gram can be converted
to an equivalent sequence tree. Lastly we show that n-grams can also be converted
to equivalent sequence trees regardless of the event alphabet size.

Together the two proofs show that we can model any n-gram predictor regard-
less of its degree n or event alphabet. Our notion of predictor equality is based
on the equivalence of the two methods’ prediction accuracy and not on structural
equivalence, and we define equality between two predictors in Definition 14.

Definition 14. Predictor Equality
Two predictors P1 and P2 are said to be equal if they for the same trained input
return the same output.

In this definition the two predictors are deemed equal if they on the same trained
input produce the same output. Thus we focus on the output or predictions, rather
than the structural equivalence of the two predictors when describing equivalence.
Using this definition we proceed to prove the following theorem:

Theorem 1. Any n-gram predictor can be modeled as a sequence tree predictor.

In essence we want to show that sequence trees can handle the same prediction
tasks as any n-gram predictor. To prove this theorem we divide the proof into two
parts:

1. We show that for any n ∈ N size n-gram we can make a conversion to an
equivalent sequence tree.

59



2. We show that the same holds for any finite E, with E being an event system.

Both proofs will be done using mathematical induction. In the first proof we
induce on the size of the n-grams used by the n-gram predictor, and in the second
proof we induce on the size of the event alphabet. We now begin with showing the
basis and inductive step for part 1 of the proof.

Proof. Any n-gram can be modeled by a equivalent sequence tree - Part 1.
The proof that a conversion exists for each natural number n n-gram predictor to
an equivalent sequence tree proceeds as follows.

Basis we show that our claim holds for n = 1. We disregard n-grams of size 0
as these make little sense; they would have n-gram predictors base their predicted
event on absolutely no previous events, making prediction impossible.
With n = 1 we have the following n-gram:

({x1}, xn+1, ω) (6.1)

Using Algorithm 7 we convert the n-gram to the equivalent sequence tree (N,L,E)
seen in the basis of Figure 6.2, where:

• N = {φ, x1}

• L = {xn+1}

• E = {(φ→ x1, ω), (x1 → xn+1, ω)}

φ 

x1

ω 

xn+1

ω

φ 

x1

ω 

xn+2

Xn+1

ω

Basis Inductive step

Figure 6.2: The sequence tree corresponding to the n-gram predictor of equivalence
proof part 1

The two predictors are equivalent; for any input for the n-gram predictor we either
find the matching n-gram or take the most frequent n-gram. In this case the n-gram

60



predictor will always, regardless of input give the output xn+1. The sequence tree
will for any input attempt to find a match for the first event, or if none is found
follow the most frequent edge, which also always outputs xn+1. Thus the two are
equivalent as defined in Definition 14. Next we proceed to the inductive step.

Inductive step we show that if n holds, then n+ 1 also holds.
Assume n holds for some unspecified value of n. It must then be shown that n+ 1
holds, that is:

({x1, x2, ..., xn+1}, xn+2, ω) (6.2)

Such an n-gram must have an equivalent sequence tree predictor. Using Algorithm 7
again we convert the n-gram to the sequence tree (N,L,E) seen in the inductive
step of Figure 6.2, where:

• N = {φ, x1, x2, ..., xn+1}

• L = {xn+2}

• E = {(φ→ x1, ω), (x1 → x2, ω), ..., (xn+1 → xn+2, ω)}

Using the same argumentation as in the basis step, the n-gram predictor will, if not
finding a matching n-gram, select the most frequent one. In the case of sequence
trees it selects matching nodes or traverses the most frequent path through the tree.
Thus when we extend the length of n-grams we will still always predict the same
output xn+2.

We have now shown the first half of the inductive proof of the theorem than
sequence trees can model any n-gram predictor. In the following we prove the
second half of the theorem concerned with the size of the event alphabet used by
such predictors.

Proof. Any n-gram can be modeled by an equivalent sequence tree - Part 2.
The proof that there exists an n-gram to sequence tree conversion for any finite
event alphabet E where |E| = u proceeds as follows. Assume we have the following
n-gram predictor.

({x1, ..., xj, x1j+1, ..., xn}, xn+1, ω)

...
({x1, ..., xj, xuj+1, ..., xn}, xn+1, ω)

What is most interesting here are the events x1j+1 to xuj+1; the superscript 1 to u
signifies which symbol from the event alphabet E that event contains. The previous
events x1 to xj and the succeeding events xj+2 to xn may also contain any of the
symbols in E, but for this proof we only concern ourselves with the different symbols
for event xj+1, as the same proof can be made for any of the other events in the
sequence.

Given such an n-gram predictor we must show that no matter the size of |E| we can
convert that n-gram predictor to an equivalent sequence tree. First we prove the

61



basis.

Basis we show that our claim holds for u = 1.
With u = 1 we have the following n-gram:

({x1, ..., xj, x1j+1, ..., xn}, xn+1, ω) (6.3)

where x1, ..., xj, x1j+1, ..., xn ∈ E and |E| = 1.
We now convert the n-gram using Algorithm 7 to the sequence tree (N,L,E) seen
in the basis of Figure 6.3, comprised of the following:

• N = {φ, x1, ..., xj, x1j+1, ..., xn}

• L = {xn+1}

• E = {(φ→ x1, ω), ..., (xj → x1j+1, ω), ..., (xn → xn+1, ω)}

Xj

ω

Xj

ω

Xj+1Xj+1
1 Xj+1 Xj+1

ω ω

1 u u+1

Basis Inductive step

Figure 6.3: The sequence tree corresponding to the n-gram predictor of equivalence
proof part 2

The two predictors are equivalent; for any input for the n-gram predictor we either
find the matching n-gram or take the most frequent n-gram, similar to Proof 6.1.
Again the n-gram predictor will always, regardless of input give the output xn+1.
The sequence tree for any input attempts to find a match for the first event, and if
none is found it follows the most frequent edge instead, which again always results
in the output xn+1. Thus the two are again equivalent as defined in Definition 14.
Now we proceed to the inductive step.

Inductive step we show that if u holds, then u+ 1 also holds.
Assume u holds for some unspecified value of u. It must then be shown that u + 1
holds, given the following n-gram predictor:

({x1, ..., xj, x1j+1, ..., xn}, xn+1, ω)

...
({x1, ..., xj, xuj+1, ..., xn}, xn+1, ω)

({x1, ..., xj, xu+1
j+1 , ..., xn}, xn+1, ω)

62



where x1, ..., xj, x1j+1, ..., x
u
j+1, x

u+1
j+1 , ..., xn ∈ E and |E| = u+ 1.

This n-gram predictor must have an equivalent sequence tree predictor. Again we
convert the n-grams to the sequence tree (N,L,E) seen in the inductive step of
Figure 6.3, where:

• N = {φ, x1, ..., xj, x1j+1, ..., x
u
j+1, x

u+1
j+1 , ..., xn}

• L = {xn+1}

• E = {(φ→ x1, ω), ..., (xj → x1j+1, ω), ..., (xj → xuj+1, ω), (xj → xu+1
j+1 , ω), ..., (xn →

xn+1, ω)}

Using the same argumentation as in the basis step, the n-gram predictor will,
if not finding a matching n-gram, select the most frequent n-gram’s prediction as
output. The sequence tree predictor again selects matching nodes or traverses the
most frequent path through the tree. Thus when we extend the event alphabet size
we will still always predict the same output xn+1 for both the n-gram predictor and
its corresponding sequence tree.

Initially we suggested sequence trees and n-grams behave in a similar way. In
line with this we provided a method of constructing a sequence tree that can model
an n-gram predictor, where after we provided proof of these two predictors being
equivalent.

6.4 Summary
In this chapter we have shown some similarities between n-gram prediction and se-
quence trees. On the basis of these similarities we have attempted to prove our
theorem described in Theorem 1 that states that any n-gram predictor can be mod-
eled by an equivalent sequence tree predictor. With this interesting side note ex-
plored, the testing of our sequence prediction method sequence trees can begin in
the following chapter.

63



64



CHAPTER

SEVEN

SEQUENCE PREDICTOR TESTS

In this chapter we test sequence trees as a method used for predictive text. The
results are compared to similar tests done with classification trees and n-grams.
We use dictionary data gathered from the British National Corpus for training and
testing. We will first test the proposed sequence tree optimizations from chapter
4 and chapter 5 and reflect upon the results, and decide whether or not they will
be used when we then test the spatial requirements of the predictor methods, the
accuracy, and lastly the KSPC attainable by using the predictors to disambiguate
words. Finally all results from the tests are summarized in a single section.

7.1 Testing Method
In this section we describe how the sequence tree, n-gram and classification tree
predictors are tested. This is done via the spatial requirement, prediction accuracy
and keystrokes per character tests. Prior to this, however, we carry out a range of
sequence tree optimization tests to determine which parameters to use for sequence
trees when comparing our predictor with n-grams and classification trees. The full
range of tests is as follows:

• Sequence tree optimizations

1. Tree collapsing test

2. Tree pruning test

3. Sequence clustering test

4. Tree sorting test

5. Distribution sampling test

• Spatial Requirement testing

• Accuracy testing

• KSPC testing

1. Suggestion size selection

65



2. Keypad and touch KSPC comparison

3. Different dictionaries

Overall we perform sequence tree optimization tests to select which optimizations
to use for sequence trees. Then we perform the spatial requirement, accuracy and
KSPC tests. The procedure and reason for each of these tests is explained below.

The Optimization Tests

First we test the five different sequence tree optimization methods. This includes
testing of the three methods for tree collapsing, tree pruning and sequence clustering
to reduce the spatial requirements of sequence trees, as well as testing of tree sorting
to improve prediction speed, and testing of distribution sampling with regards to
prediction accuracy. In the end we decide on which of these optimizations to use to
optimize sequence trees for the remaining tests, based on the performance results
given here.

We perform these tests to ensure we only use those optimizations that benefit
sequence trees in the remaining tests when comparing our method with classification
trees and n-grams. If we do not do this we risk including optimizations that in the
end can prove detrimental to sequence trees performance in the test domain of
predictive text.

The Spatial Requirement Test

For spatial requirement testing we examine how dictionary size affects the spatial
requirements of each predictor, focusing mainly on how larger dictionaries cause the
different predictors’ underlying models to take up more space for training data and
information storage.

This is done to know how well the different predictors’ spatial requirements scale
depending on dictionary size. The lower the spatial requirements are the more
sequences can be included in the model and thereby overall prediction accuracy is
increased.

The Accuracy Test

Accuracy testing is where we compare the prediction accuracies of the three predic-
tion methods. We here give an overall evaluation of how each predictor performs
in different situations depending on how much information is given to the predic-
tor. In the worst case predictors are only given the first 10% of a word to base
their predictions on, and from here we go by 10% increments until predictors are
given all 100% of the word as input, in which case all predictors ideally should be
100% accurate. An example of this 10 increment predictor input could be the word
"house"; the first two tests with 10% and 20% of the word would only reveal "h" to
the predictor, and the next two for 30% and 40% would reveal "ho", then "hou" for
50% and 60%, "hous" for 70% and 80%, and finally "house" at 90% and 100%.

This accuracy testing with increasing amounts of input information gives us a
good idea of how well the different predictors perform, both in the early steps of

66



prediction where little to no information on the current intended word is available,
and in the late steps when nearly all of the intended word is known in advance.

The KSPC test

KSPC testing is where we finally evaluate how sequence trees perform compared to
n-grams and classification trees when used to suggest a list of words to the user for
predictive text messaging on mobile phones. This also includes how different list
navigation approaches can affect the KSPC rating, but the main focus is determining
how well sequence trees perform as a predictive text method.

KSPC testing is done because it provides information on how well each predictor
would perform in an actual usage scenario when the user is typing words into the
predictive text system.

Further details for each of these tests will be given as the tests are encountered
in this chapter. Having described the overall method of testing we next describe the
material we use as training data for the predictors during testing.

7.2 Test Material
All tests will be performed on dictionary data from the British National Corpus[15].
The BNC originally contains 938971 different words with assigned frequencies de-
rived from a combination of context governed meeting transcripts, regular demo-
graphic mobile text message conversations and various popular written texts, and
as such should cover most uses for predictive text. The different corpus are given
the following names within the test chapter:

• "all" contains all of the corpus words from the below corpus subsets

• "context" contains words taken from various subject governed meetings

• "demographic" contains words from day-to-day mobile text message conver-
sations

• "written" contains words from various popular written literature

Many of the words in either of the BNC are acronyms and there even exist ono-
matopoeia, words describing various sounds. Each word has an assigned frequency
where the most frequent is the word "that" with a frequency of 6187267. There are
however also a lot of rarely used words with frequencies at or near 1. We have chosen
to remove words with symbols and to force all letters to be lowercase to simplify the
tests.

We also ensure that all words are unique in the dictionaries. Thus a corpus of,
say, 100 words will hold 100 unique words, but with each unique word having an
assigned frequency the dictionary is actually larger if we also look at these repetitions
caused by word frequencies. Whenever we in the test chapter mention dictionary
size, we however always refer to only the number of unique words in that dictionary.

Finally we sort the corpus by word frequency to ensure that the most frequently
used words are listed first. For each of the coming tests we can then select the n

67



most frequent words from this corpus to use as training data. For testing, unless
stated otherwise, we will always use the "all" corpus. For the KSPC tests however,
in addition to testing with the "all" corpus we also test using the context governed,
demographic or written text subsets of the complete BNC to determine if different
word contexts affect the predictions.

In addition to choosing what context to derive our training data sequences from,
we must also decide how we wish to encode these sequences. In the case of predictive
text there are two different input types, alphabetic or "numberfied" text input, as
described in Section 1.3. Alphabetic input is straight forward to predict on, but
numeric input however adds an additional layer of indirection due to ambiguity.
With numeric input we must not only predict the next characters, but we must also
predict which character the user is inputting at each step when he or she presses a
number button on a mobile phone.

By way of a small test in this section we will now explore the loss in accuracy by
using numeric input as opposed to regular text input. The test has been performed
on a dictionary of 1024 regular or "numberfied" words, where we use the dictionary
as training and test set. We try to predict on only the full words in the dictionary, so
no predictions are made on partial sequences. In Figure 7.1 the effect of alphabetic
and numeric input on prediction accuracy can be seen.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sequence Tree Classification Tree N-gram

A
cc
u
ra
cy

Words

Numberfied words

Figure 7.1: Classifier accuracy on regular and numberfied dictionary

We measure prediction accuracy by how many of all predictions on the training
set are correct predictions. Thus if 64566 predictions are made in a prediction test
run and all 64566 are correct we will get an accuracy = 100%. One should note that
the number of predictions to perform is not the same as the number of words in the
training data; each word in the corpus has an assigned frequency, and prediction on
that word is repeated as many times as its frequency. This is done to make more
frequent words’ predictions mean more to predictor accuracy than predictions on
words that only appear rarely in the corpus. This prediction accuracy can be seen
in Definition 15.

Definition 15. Accuracy Quality Metric

68



Accuracy =

∑
w∈TestData

wfrequency ·
{

1 if prediction is correct
0 otherwise∑

w∈TestData

wfrequency

As per the definition we sum over each word in the test data, multiplying the
word’s frequency with 1 if its prediction was correct or 0 otherwise. This sum is
then divided by the summed frequency of all words in the test data, resulting in
a ratio of correct predictions over total predictions. Having defined this prediction
accuracy we now return to testing how numeric input affects prediction accuracy.

In all cases accuracy drops by between 3% and 7% for numeric input depending
on the prediction method used. As can be seen in Figure 7.1 sequence trees have
100% accuracy while using regular words, however on numberfied words the method
has a small decrease in accuracy. The drop of accuracy in sequence trees is caused
by words that have the same numberfied description; these words will have two or
more leaves for the exact same path in the tree, and witout more information the
two cannot be distinguished from each other. Therefore at some point sequence
trees produces a wrong prediction when it has to choose one of the two without
additional information available.

c

o

b

φ 

o

w y

φ 

2

6

9

2

2

1 1

1 1

1

1

1

1

2

Sequence tree without Mobile 
encoding

Sequence tree with Mobile 
encoding

cow boy cow boy

11

Figure 7.2: Sequence tree text reduction to mobile encoding

Consider as an example the sequence tree in Figure 7.2. In the first sequence tree
there are two distinct paths leading to both ”cow” and ”boy”. However when the
sequence tree is constructed using numberfied words, as is the case with the second
sequence tree in Figure 7.2, both labels now have the exact same path. This results
in an ambiguity that cannot be distinguished between without further information,
resulting in a lowered accuracy.

Regardless of the drop in accuracy, numeric input also most closely resembles
how input is given to predictive text systems on mobile phones. To have a test that

69



is close to how text input is on mobile devices we have chosen to use numeric input
in our tests. As described in this section using numeric input decreases the accuracy
of our predictions, but is a much more realistic test case when we use this to do the
accuracy and KSPC testing of the three prediction methods.

7.3 Test Implementations

In this section we briefly describe the implementation details of each of the three
predictors used in testing. This includes important details about sequence encoding
as well as parameters affecting sequence prediction for each of the three methods.

7.3.1 Classification Trees

The classification tree predictor uses the J48 classifier in the WEKA toolkit which
is an open source implementation of the C4.5 classifier described in Chapter 3.
Sequences are encoded as a range of individual events, with one event for each
position in the longest sequence from the training data. If a sequence given as input
during tree construction is shorter than the longest sequence all of its non-existing
events are represented by a special blank event. Later, during prediction, currently
unobserved events for a sequence to predict are instead encoded as the special "?"
Weka symbol rather than blank events. This is done since the predictor cannot know
for certain if the remaining events for the input word are letters or non-existing in
the case of words shorter than the longest word.

We use the default values of classification trees given by the J48 algorithm in
Weka. This includes a minimum number of two objects per leaf, in effect removing all
sequence that occur only once in the training data, as well as setting a confidence
factor of 0.25 for tree pruning. This confidence factor acts as a threshold where
smaller values will cause more aggressive pruning.

7.3.2 N-gram Predictor

The n-gram predictor has been implemented by using 3-grams of the previous letters
in a sequence as basis for prediction.

For our n-gram predictor we have chosen to use 3-grams, where we use three
events to make a prediction. Using only 2-grams we would only be able to store
676 unique combinations. With very large dictionaries that we wish to test on
65.000+ words this would probably not be enough to distinguish words efficiently,
therefore we have chosen to use 3-grams where we have 17576 distinct combinations.
Additionally we have opted not to use hierarchical n-grams as we use our special
definition of using "?" symbols when we otherwise would not have enough events to
construct a 3-gram i.e. the 3 first events of each sequence.

We use the open loop prediction method described in Section 3.2.2 which allows
us to predict whole words rather than just the next character. The three last events
in the sequences given as input are used to find a suitable n-gram to start the
prediction process, and then for each step the most probable events are selected and
used to make new predictions. The prediction process stops when a whitespace is

70



predicted, as we use this as a terminal symbol for full words. The n-gram predictor
additionally halts after either finding a number of suggestions or running for a
number of cycles to avoid infinite loops of prediction, and then outputs the most
probable complete words found. If the input sequence was numberfied the output
is then run through a dictionary to look for a word label matching the predicted
character sequence. This is needed for converting numberfied predictions into real
words.

7.3.3 Sequence Trees

The sequence tree predictor has been implemented according to the specifications
in Chapter 4 and Chapter 5. In our implementation each optimization method can
be applied separately or in any configuration to a sequence tree such that we can
measure the performance of them individually. So as an example we could choose
to sort and collapse paths in one configuration and in another use only sorting.

Only the optimizations selected during optimization testing in the next part of
this chapter will then be enabled for the predictor during the spatial requirement,
prediction accuracy and KSPC tests. In the following section we will test each of
these optimizations and determine which of them will be used for the remainder of
this test chapter.

7.4 Sequence Tree Optimizations

Following the test material and predictor implementation details we now proceed
to test the optimizations presented for sequence trees. We will test the following
optimizations:

• Collapsing methods

• Tree Pruning

• Clustering of sequences

• Sorting

• Distribution sampling

We will for each optimization conclude on their effect on predictor performance
and decide on which of the techniques to use in further testing depending on the
results.

7.4.1 Tree Collapsing Test

The first optimization test we will do is testing whether or not it is possible to gain a
reduction in size of sequence trees by collapsing paths, subtrees and combining labels
as described in Section 4.4. We expect that as the domain contain many distinct
sequences with little branching there may be many opportunities to collapse paths
in sequence trees. Collapsing subtrees and combining labels will not give much in

71



the domain, as all labels are unique. To calculate the reduction in size we define the
prediction space usage Definition 16.

Definition 16. Size definition
Sequence tree size: Ss = number of nodes in the tree

Size is measured by the number of nodes and used by the sequence tree to store
its underlying learned data structure.

The different collapsing methods have been tested on a dictionary size of 65536
words as both training and testing data. The results can be seen in Figure 7.3, and
the reduced sizes can be seen in Table 7.1. To recap the collapsing methods:

• Collapsed Paths
Collapsing paths that do not branch; i.e. when we are sure which node we will
be in after a number of steps.

• Collapsing Subtrees
Collapsing subtrees that lead to the same label; i.e. when all predictions inside
that subtree return the same label.

• Collapsing Labels
collapsing identical labels, such that multiple sequences refer to the same in-
stance of that label.

0

50000

100000

150000

200000

250000

No Collapsing Collapse Paths Collapse Subtrees Combining Labels

N
o
d
e
s

Figure 7.3: Sequence tree size using different collapsing methods

Of the different collapsing methods the only one to reduce the tree size in this
predictive text domain is collapsing non-branching paths. We manage a reduction
to 63.4% of the original size of the tree which is a significant improvement. As can
be seen in Table 7.1, collapsing subtrees, and combining labels does not give any
reduction.

72



Uncollapsed Collapsed paths Collapsing subtrees Combining labels
Size 100% 63.4% 100% 100%

Table 7.1: Sequence tree collapsing methods showing reduction as size of the original

0%

20%

40%

60%

80%

100%

120%

No Collapsing Collapse Paths Collapse Subtrees Combining Labels

A
cc
u
ra
cy

Accuracy

Reduction of original

Figure 7.4: The effect of collapsing on prediction accuracy.

In our test data there cannot be two identical labels, as no two words are alike,
therefore in this particular domain these two collapsing methods cannot give a re-
duction in the tree size. In other domains where labels are more general these
reductions could possibly provide a significant reduction in tree size.

One situation where the other collapsing methods can aid in tree size reduction
is when common typos are included in the dictionary as well, for instance when
two words "wich" and "which" leading to the same label "which" are both in the
dictionary. Adding these typos will increase the dictionary size but also increase
the power of the predictive text method to let it be able to do some minor spelling
correction while predicting. In these cases performing path and subtree collapsing
the size increase can be minimized, as it may be possible to collapse typos and words
into smaller or fewer subtrees.

As previously argued collapsing does not affect the prediction accuracy, therefore
we have sampled the accuracy for collapsed sequences trees, the results can be seen
in Figure 7.4. The accuracy is at 100% for all cases of collapsing, which is the
same as for the uncollapsed sequence tree. We will use all the collapsing methods in
the remaining tests as they are quite lightweight to use and they reduce the size of
the sequence tree without changing the prediction accuracy. In the next section we
will test another method to reduce the tree size, this time however we will modify
the prediction accuracy as we will attempt to prune low frequency subtrees from
sequence trees and see what we can gain in size at the cost of prediction accuracy.

73



7.4.2 Tree Pruning Test

In this optimization test we will use the pruning technique from section 4.6. We will
measure both the reduction in size and how it affects the prediction accuracy, as the
optimization is not lossless in its precision. We expect pruning to drastically reduce
the size, however we cannot predict how it will reduce the accuracy of sequence
trees. We use the size ratio pruning technique where we prune a sequence if the
ratio between its frequency and its size is blow a certain threshold.

We have tested pruning on a dictionary size of 65536, used both as training and
testing set. We tested with a range of different threshold values to see the effect on
both accuracy and size. The results can be seen on Figure 7.5.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 10 15 30 100

Threshold

Accuracy

Percentage of
original

Figure 7.5: Sequence Tree Pruning with accuracy and reduced size as threshold
value increases

We can see that as the pruning threshold value is increased the size of the se-
quence tree drops significantly without a large loss in accuracy. The very low re-
duction in accuracy may be because of the dictionary data; short words like "as",
"is", and "in" all have high frequencies whereas longer words often have very low
comparable frequency. The high frequency words keep the accuracy up while the
low frequency words can be removed without much impact overall in the prediction
accuracy.

Consider the threshold value of 100. Recall from Section 4.6 this means that
we prune the tree every time an edge has a frequency to node ratio of 100:1. The
high ratio is due to the training data; as mentioned in Section 7.2 words may have
a frequency of over 6 million, and therefore a large threshold value is needed as the
dictionary contains entries with high frequencies for some words.

As can be seen a threshold value of 100 gives a reduction in accuracy of about
10%, however the tree size is reduced to a mere 13% of the original size. This
is possible in part due to the training data where a relatively small part of the
data represents the majority of occurrences, and this allows the pruning algorithm
to thin out the largest subtrees that do not affect the overall accuracy by a large
degree. Using the same pruning on other data sets with a more even distribution

74



Clusters cluster 1 cluster 2
Words Hello Big

Yellow Jig
Mellow Pig

Representative Yellow Jig

Table 7.2: An example of two clusters of words

of frequencies would surely not give this impressive results, however we see that
when this is not the case the pruning method proposed for sequence trees is highly
effective.

We will not use pruning in the remaining tests even though it shows very promis-
ing results. The reason for this is that pruning only produces an approximation of
the original sequence tree, this conflicts with the wish to compare the predictors on
the same training data and the same potential predictions. With pruning we will
not be able to explore the best possible accuracy achievable with sequence trees. In
the following section we will look at another lossy optimization to reduce the tree
size using clustering of sequences.

7.4.3 Sequence Clustering Test

In this final space optimization test we will experiment with using clustering to
reduce the size of sequence trees. If a suitable distance function and a way of
computing an average representative for each cluster could be found, then we expect
this optimization to be feasible.

However in predictive text clustering is not a good solution to reduce the tree
size. In the case of the dictionaries and word data we use in the tests clustering will
greatly reduce the accuracy of the sequence trees as we cluster the training data.

The problem is to create a candidate for each cluster; for words there obviously
does not exist an average word representative. To recap, if we used the distance
metric from Section 4.7, we calculate the distance between two sequences as the
number of events they differ by at each position in the sequence plus the difference
in length of the sequences. To exemplify how clustering does not work well using
text data consider the two clusters described in Table 7.2.

As the table shows if we choose a representative from each cluster we will get an
error of 2

3
for each cluster. This optimization results in roughly the same as reducing

the dictionary size to the number of clusters found, if a representative is picked from
each group.

We have tested the clustering optimization on a dictionary with 1024 words. As
anticipated the results, seen in Figure 7.6, are not very good. For a good compression
method we would like to have the size fall more than the accuracy when we cluster, as
is the case when we use pruning above. However clustering gives a very large amount
of error for small reductions in size. With 200 clusters the size of the sequence tree
is reduced to 37% but the accuracy is reduced to 10%, which is highly unacceptable.

Clustering can possible be used where the data has more similarities and each
sequence does not have a unique label. This is not the case in predictive text and
because of the poor results in our domain we will not use clustering for the remaining

75



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1024 900 700 500 400 300 200

Number of clusters

Accuracy

Percentage of
original

Figure 7.6: The effect of clustering training data on both size and accuracy of
sequence tree models

tests. The next optimization we will discuss is how to increase the speed of sequence
trees using sorting.

7.4.4 Tree Sorting Test

In this optimization test we will use sorting to increase the prediction speed. Without
this optimization we need to, when we have to predict a new node, go through all
child nodes to find the most frequent child. If we sort these such that the leftmost
node in the tree is the most frequent, we can reduce the number of visits per node
prediction greatly, as we can instead just choose the left most node in the tree. We
have tested sorting on a dictionary size of 16384 words, used both as training and
testing set.

We measure the time used to predict as the number of nodes that has to be
visited to make a prediction. Visits increase by one every time the sequence tree
classifier traverses a node in its tree. The number of visits summarized to a total
for all predictions on the test set and an average is calculated.

Recall that the time complexity for sequence tree predictions was O(|X|l), where
|X| is the event alphabet size and l is the maximum length of a sequence.

By sorting the tree we reduce the time complexity to O(l) as it is no longer
necessary to check each edge of a node at each depth level of the tree. There is a
catch, however, as the sorting algorithm is very time consuming. Therefore we have
limited dictionary size to 16384 words for easier and more rapid testing.

To see any improvement for this optimization the sequences that is used to
predict on must be of shorter length than the tree depth. The shorter the sequence
is the higher reward sorting gives us in terms of reduced amount of visits, compared
to linearly checking all children of a node. For this reason we have used the approach
described in Section 7.1 where we divide words into ten partitions of 10%, 20%, 30%,
..., 100% of the word length, which is used to predict on.

76



Unsorted, Uncollapsed Sorted Collapsed Sorted, Collapsed
Visits required 100% 51% 88% 43%

Table 7.3: Percentage of visits required for prediction after tree sorting or collapsing

After all predictions are done and the number of visits counted, the average
number of visits for the whole test can be calculated. In Figure 7.7 the amount of
node visits needed for predicting all words in a dictionary of 16384 words can be
seen, and in Table 7.3 the percentage of visits required after sorting and collapsing
can be seen. The two sorting tests with collapsing have been added to see whether
there is a synergy effect from using both optimizations at once.

0

20000

40000

60000

80000

100000

120000

Uncollapsed Collapsed

V
is
it
s

Unsorted

Sorted

Figure 7.7: Sequence tree node visits with and without sorting

On uncollapsed trees sorting gave a reduction to 51% of the original number
of visits. For the same sequence trees where the collapsing optimization has been
used we manage to reduce the number of visits to 49% of the collapsed tree’s original
number of visits. The reduction in the number of visits by sorting is quite impressive.
As we remove the need to check through each child to find the most frequent one
we reduce the number of visits drastically, as Figure 7.7 clearly shows. We will not
use sorting in remaining tests, as sorting does not have any effect on the spatial
requirements, accuracy or KSPC. However one should use sorting when prediction
speed is of importance.

The next optimization we will test is to use distributed sampling for altering the
prediction accuracy of sequence tree.

7.4.5 Distribution Sampling Test

In this final optimization test we will use distribution sampling to have the predic-
tions of our sequence trees better reflect the underlying distributions, as described
in Section 5.3. The distribution sampling is used when we reach a point where we
have to choose which way to go in the sequence tree.

77



When this happens we randomly sample one of the unknown children of the cur-
rent node based on their probability. With this optimization the prediction method
will sometimes choose another node than the most frequent child node contrary to
the usual sequence tree prediction method. The test is done on a dictionary size of
64566 words. In Figure 7.8 the results of the test can be seen.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
cc

u
ra

cy

Percentage of original sequence

Most frequent

Distribution

Figure 7.8: Sequence tree accuracy with most frequent or distribution selection with
increasing input information

For most frequent path selection we recorded the accuracy of the predictor when
always selecting the most probable path during prediction. For the distribution se-
lection we recorded the average accuracy of the predictor over 10 prediction runs
with the predictor selecting the next path according to distribution sampling. We
have several tests and calculate an average accuracy as the selection process is ran-
dom and may in some cases give some very bad results or very good results, and we
wish to know how it does in the average case. In both cases we tested prediction
with ten partitions at increasing percentages of 10% to 100% of the word size given
as input to the predictor.

When all letters are known in advance the most frequent approach reaches a
prediction accuracy of 100% whereas the distribution method does not. As can be
seen, however, distribution sampling can indeed improve prediction accuracy when
fewer letters are known in advance. Still, in this test distribution sampling only
improved accuracy by a few percent compared to simply always choosing the most
probable path.

Thus distribution sampling seems to mainly benefit prediction when few of the
word’s letters are known in advance. Finally, if distribution sampling is used when
producing a list of predicted words to the user, the list may change every time a
new prediction is made due to the random sampling involved.

Early on accuracy is improved by distribution sampling, but if this list of words
changes constantly during text input the user may become frustrated with a word
having different predictions at different times. As the results were not that impres-
sive, and having nondeterministic predictions may have some issues. Thus we have

78



chosen not to use this optimization in the remaining tests.

7.4.6 Optimization Selection Summary

We have tested all optimizations, and the collapsing methods are the only one that
will be used throughout the remaining tests as they reduces tree size without any
loss in accuracy. We have found that tree pruning can drastically reduce the size
of sequence trees at a very low reduction in accuracy. However we have chosen
not to use it in the tests where we compare sequence trees to classification trees and
n-grams because we want to explore the best accuracy possible using sequence trees.

As sorting does not effect spatial requirements, accuracy or KSPC we have chosen
not to use it in further test, however if a sequence tree was to be used for real
purposes rather than testing sorting should be used, as it results in a very large
speedup during prediction.

Clustering gave very poor results, reducing the accuracy of sequence trees with
only a minor spatial reduction. Lastly distribution sampling did not provide any
increase in accuracy and the nondeterministic outputs could be an issue.

As stated we will only use collapsing methods for the remaining spatial require-
ment, accuracy and KSPC tests. With these choices made we can begin testing to
see how our optimized sequence trees fare against classification trees and n-gram
predictors in terms of spatial requirements.

7.5 Spatial Requirement Testing
Now that all parameters are set for sequence trees we can begin to examine the
spatial requirements of the method. In this section we will test and measure how
much space each prediction method uses as the dictionary size grows. The spatial
requirements and growth for each method is key to having a good predictor; the
less space the method require allows it to be used in more cases. Also the more we
can compress data we can increase general predictive power of our three prediction
methods as larger dictionary sizes can be used as training data. The larger the
dictionary the more different words the predictors can recognize and predict.

It is therefore interesting to find the growth rate to see how large a dictionary
we can use as training data before the methods require too much memory to be
feasible.

We measure the size of sequence trees as described in Definition 16. To recap
the size of a sequence tree is the number of nodes in the tree. The sizes of classifi-
cation trees and n-gram predictors are measured as described in definition 17 and
18 respectively.

Definition 17. Classification Tree Size
Classification tree size: Sd = number of nodes in the tree

Definition 18. N-gram Predictor Size
N-gram predictor size: Sn = number of n-grams multiplied by n+ 1

The first test on the spatial requirements of the three predictors has been done
on dictionaries of sizes up to 1024 words and can be seen in Figure 7.9. The limit

79



of 1024 words is imposed by classification trees as for dictionary sizes above 1024 it
is simply intractable to train classification trees using Weka and the J48 algorithm
on our training data. We suspect that the very large number of information gain
calculations is part of the problem as well as the method continuing to construct a
tree until everything is completely classified, which obviously results in very large
trees, before pruning. Both of these takes up huge amounts of memory when training
on the dictionary data. The very low size restriction of classification trees severely
limits its usefulness, as most dictionaries contain vastly more words than 1024. We
will continue to compare sequence trees with classification trees in the following
tests even though we do not believe it is a realistic approach to doing predictive text
based on the results in this test.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000

Si
ze

 m
e

tr
ic

Dictionary size

Sequence Tree

Classification Tree

N-gram

Figure 7.9: Classifier spatial requirements with increasing dictionary size

As the first test stops at a very small dictionary size we have performed another
test with only sequence trees and n-gram prediction. The second test is depicted
in Figure 7.10. As it can be seen in both figures, Sequence trees and n-grams are
considerably smaller than classification trees on our test data. Classification trees
does not seem to handle the sequential data very well as the size rises drastically at
each dictionary size increase.

The other two algorithms can handle larger dictionaries much better. Both
predictors can to some extent reuse data to reduce the impact on size when new
sequences are added. Sequence trees reuse already created nodes when similar words
are found; two words such as "phone" and "phony" may reuse the nodes p, h, o,
and n. The n-gram predictor can also reuse already found n-grams; n-grams such as
({a, b, c}, b, 1) ({a, b, c}, c, 1) could reuse the sequence {a, b, c} instead of duplicating
it for each n-gram. These properties limit the growth of both sequence trees and
n-gram predictors significantly.

In the case of n-grams there need not be many words before the growth decreases,
as there are only so many three letter combinations to be found in common words.
As an can be seen from Figure 7.10 n-grams only seem to show a logarithmic growth.

We expected the growth to decrease over time with sequence trees as happens

80



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1000 2000 3000 4000 5000 6000 7000 8000

Si
ze

 m
e

tr
ic

Dictionary size

Sequence Tree

Classification Tree

N-gram

Figure 7.10: Classifier spatial requirements with larger dictionary sizes

with n-grams, however the training data may not contain enough repetitions to make
this happen for sequence trees. However the growth would always grow by at least
one node for each new sequence in sequence trees if that label has not been seen
before. Because of this the size growth of sequence trees will never be less than a
linear growth.

We can conclude that even though sequence trees have been optimized by collaps-
ing we may need to use lossy optimizations such as the described pruning algorithm
to make it small enough to compete with n-grams in size.

In the next section we will perform a test of the prediction accuracy of the three
predictors.

7.6 Accuracy Testing

We saw in the last test that sequence trees perform much better than classification
trees in terms of spatial requirements, but worse than n-gram predictors. In this
section we will look on the prediction accuracy of the three different prediction meth-
ods. The accuracy of the methods is of course paramount to being good predictors.
However in this test we will also look into how small partial sequences we need to do
a correct prediction, as the sooner each method can predict a word the better the
predictor. The test is performed on partial words as described in Section 7.1 with
10 partitions. The dictionary size is 1024 words, limited by classification trees. The
results of this test can be seen in Figure 7.11.

As expected the accuracy is very low on small percentages of the words. At 50%
of the full word written a large jump in accuracy is seen, where the accuracy is 67%
for classification trees and 63% for sequence trees while the accuracy of n-grams
cannot follow the two other methods reaching only 55% accuracy at this point. The
goal of the prediction methods is obviously to have a high accuracy with the shortest
amount of the original word.

When the full words are written we see that sequence trees will in 97% of the

81



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

A
cc

u
ra

cy

Percentage of original sequence

Sequence Tree

Classification Tree

N-gram

Figure 7.11: The accuracy of each method with incremental partitioning of words

cases suggest the correct words where classification trees will only recognize the full
words in 89% of the cases and 82% for n-grams. This is interesting in the way that
each predictor should be able to correctly distinguish fully written words. Most
of the inaccuracy in the case of 100% word length consists of words that have the
same representation of numberfied words as discussed in section 7.2; in this case it is
impossible without contextual knowledge to determine which of the possible labels
to select correctly in the case of sequence trees.

We can see in this test that sequence trees offer an acceptable level of prediction
based on incomplete words, with halfway written words predicted with 67% certainty
in the suggestion list. In the terms of predictive power the sequence tree algorithm
seems very good as a method for preditive text. In the next section we will begin to
examine another aspect of prediction in the domain of predictive text; the amount
of KSPC we can attain by using the three prediction methods.

7.7 KSPC Testing

In this section we will test the keystrokes per character we can achieve with the
three prediction methods sequence trees, classification trees, and n-gram prediction.
First we will discuss how we measure the KSPC during our tests. Then we will test
the KSPC for each predictor method on a single text corpus, and lastly we will use
different corpus to see whether the selection of words in the training data has an
influence on our methods’ effectiveness.

In the previous accuracy test only the most probable prediction were evaluated
when determining whether a prediction was correct or incorrect. When we measure
KSPC we will have a number of predictions; we call these suggestions. We define a
correct prediction when the correct word appears in the suggestion list.

When using the selection list and calculating KSPC we need to define how we
measure the extra keystrokes from selecting words in the suggestion list. To recap

82



the original equation to calculate KSPC from Section 1.2 see Equation 7.1:

KSPC =

∑
w (Kw ∗ Fw)∑
w (Cw ∗ Fw)

(7.1)

Here Kw is the keystrokes for word w, Fw is the frequency of w, and Cw is the
number of characters in w. All words have an additional space character appended
in the end.

In his paper MacKenzie[11] measures the number of keystrokes for predictive text
by the number of keystrokes to make the correct word first appear as a suggestion
and then how many keystrokes used to select it in the list. He also measures the
KSPC for a PDA, where the user can select any suggestion in the list by a single
operation instead of moving a cursor up and down in the list. This form of word
selection is equivalent to what is used in today’s touch screen phones, and we will
refer to this input method as touch selection.

In the KSPC tests we operate with two different modes of selecting words inspired
by MacKenzie; keypad and touch selection. Each represents a different approach
found on various mobile devices for word completion.

Keypad selection is where a list of suggestions appears, and the user must use
a keystroke to go up or down the list and finally use a keystroke to select the word
in the list. Touch selection is seen on modern smart phones etc. where the user
can select any suggestion in the list with one keystroke. We calculate these two
modifications of the original KSPC equation as shown in Equation 7.2 for keypad
selection, and touch selection is calculated as shown in Equation 7.3.

KSPCKeypad =

∑
w ((Kw + positionInList+ 1) ∗ Fw)∑

w (Cw ∗ Fw)
(7.2)

KSPCTouch =

∑
w ((Kw + 1) ∗ Fw)∑

w (Cw ∗ Fw)
(7.3)

Now the general setting for the KSPC test is detailed we still need to find a
suitable number of predictions to find for each word to fill the suggestion list. In
the following we will experiment with finding a good number of suggestions.

7.7.1 KSPC Suggestion Size

As discussed above we need to find a size for the suggestion list. The suggestion
list defines how many possible solutions are shown to the user when the methods
do a prediction. The size of the suggestion list affects how accurate a predictor has
to be. A very large number of suggestions will lower the KSPC as a predictor can
give multiple answers for a prediction, in effect increasing the chance of a correct
prediction.

A very large suggestion list is detrimental for the KSPC for keypad selection
however, as there may be many keystrokes needed to move through a large list ef-
fectively removing any advantage of predicting the word instead of writing it using
multi-tapping described in section 1.3. The KSPC of touch selection does not de-
grade as keypad selection does as the number of suggestions increases, as regardless

83



of the number of suggestions it only requires one keystroke to select any sugges-
tion. However we expect that at some point we will not gain enough benefit from
increasing the suggestion size as the suggestions at some point will have very low
probability and require additional computation time.

We would therefor like to know what size the suggestion list should have in the
KSPC. We have experimented with predicting with different sizes of the suggestion
list and calculated the average KSPC needed to complete a word. The result of this
test can be seen in Figure 7.12.

Of the two input methods keypad selection has the highest KSPC. The keypad
input mode needs to use keystrokes to move through the list and select the chosen
word, so the additional keystrokes made will negate much of the benefit from a
larger suggestion list. The KSPC of the touch input method falls drastically as the
list size increase because every word in the list is accessible and larger suggestion
lists can only improve the KSPC.

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30 35 40

K
SP

C

Suggestion size

Keypad

Touch

Figure 7.12: The suggestion list size versus the average KSPC

The KSPC falls quickly as the suggestion list is expanded to the size of up to five
suggestions. At higher numbers of suggestions the KSPC declines at a slower rate, as
the additional suggestions become more and more unlikely. At each increase of the
suggestion list there is also a small slowdown of the prediction process, which makes
very large suggestion lists less attractive. An additional point to note is that in real
case scenarios it may not be possible to display a very large amount of suggestions
on a mobile device.

Therefore we choose to use a suggestion size of 5 for the KSPC test in the next
section, as this seems as the best compromise between low overhead from additional
prediction candidates and the advantage of having several candidates. In the next
section we will use the results from this test to examine in detail the KSPC that we
can attain from our three prediction methods.

84



7.7.2 Keypad and touch KSPC comparison

As we have the found a suggestion list size to use we can now continue to experiment
to attain a good KSPC using Sequence trees, classification trees and n-grams. In
this test we use the test approach outlined in Section 7.1 where we divide words into
10 partitions. As discussed earlier in the spatial requirement test in Section 7.5,
classification trees cannot manage dictionaries larger than 1024 words.

As a result thereof we have done two KSPC tests, one constrained to a dictionary
size of 1024 where we look at both keypad and touch selection, and a second with
32785 words to see if KSPC is stable even with a larger dictionary. In the second
we only consider touch selection as the input method as we do not want to compare
the selection method but instead how the dictionary sizes affect KSPC. Both use a
suggestion list size of 5 words as found previously. In Figure 7.13 the average KSPC
can be seen for each prediction method for dictionary size 1024. The KSPC results
for sequence trees and n-gram predictors on the larger dictionary can be seen in
Figure 7.14

0

0,2

0,4

0,6

0,8

1

1,2

Sequence Tree Classification Tree N-gram

K
SP
C

Keypad

Touch

Figure 7.13: Average KSPC

Sequence trees and classification trees have a KSPC below one for both keypad
and touch selection. N-grams for keypad selection lie just above 1 KSPC, but
they can reduce the KSPC to under one using touch selection. As can seen in
Figure 7.13 using keypad or touch selection makes a significant difference in the
KSPC attainable. When we test sequence trees and the n-gram predictor on a much
larger dictionary we can see the KSPC rises only slightly; this is to be expected
as the ambiguity rises as more words are included in both methods. The larger
dictionary is roughly 3199% larger than the small dictionary, however the increase
in size only incurs a 4% and 9% increse in KSPC for sequence trees and n-gram
prediction respectively.

Overall the KSPC is quite acceptable; recall that the commercial T9 method for
predictive text had a KSPC of 1.0075 calculated by MacKenzie [11]. Additionally a
KSPC around one is very good considering that the methods both need to predict
and disambiguate keypad numbers into real words. As a final comparison we have

85



0

0,2

0,4

0,6

0,8

1

1,2

Sequence Tree N-gram

K
SP
C 1024 Word

dictionary
32758 Word
dictionary

Figure 7.14: Sequence tree and n-gram predictor KSPC test on large dictionary sizes

calculated the multi-tap KSPC for the same dictionary used for the KSPC test which
resulted in a KSPC of 2.35.

To make sure that the prediction algorithms perform equally well in terms of
KSPC regardless of the test data we will perform an additional experiment using
different dictionaries and then calculate the KSPC for sequence trees and n-grams.

7.7.3 Testing on Different Dictionaries

In the previous tests we have only used a single dictionary. In this test we would
like to see whether we can get as good KSPC results from a number of different
dictionaries, to see whether sequence trees can reduce KSPC in a general domain
rather than only in our full test dictionary.

Recall that we in Section 7.2 listed four different corpus: "all", "context", "de-
mographic" and "written". "context" contains context governed meeting words,
"demographic" contains words from regular text message conversations, "written"
contains words from popular written texts, and the "all" corpus contains all words
from the three corpus.

Each of these four corpus have been used as training data for sequence trees as
well as n-grams, and the resulting KSPC from each of these tests can be seen in
Figure 7.15. Since the tests were performed on dictionaries of 32785 as in the touch
and keypad comparison tests classification trees have been left out as they could not
handle more than 1024 word dictionaries.

As can be seen the KSPC for sequence trees only increases for the "demographic"
corpus, and only by 0.05 or less. KSPC vary slightly more for the n-gram predictor
as each corpus results in different KSPC, but again the KSPC vary only by less than
0.05. So overall these different corpus do not have much impact on the KSPC, which
indicates that sequence trees can be used for prediction within different domains of
predictive text without an adverse effect on prediction accuracy.

Following this comparison of the different predictors’ KSPC, as well as selection

86



0

0,2

0,4

0,6

0,8

1

1,2

Sequence Tree N-gram

K
SP
C

All

Context

Demographic

Written

Figure 7.15: KSPC for sequence trees and n-grams tested on a variety of different
dictionaries

of suggestion size and prediction on different predictive text corpus we now sum-
marize over the test chapter, refreshing the important results found for sequence
trees.

7.8 Summary

In this section we give a short summary of all the tests conducted throughout the
chapter.

• Sequence tree optimizations
The different optimization techniques to improve on sequence tree were tested.
We examined the results of collapsing, pruning and clustering techniques to
reduce the spatial requirements, where both collapsing and pruning showed
promising results, however clustering was not too successful in the domain of
predictive text. Furthermore we looked at how sorting was able to improve
prediction speed at the cost of more time to insert new data. Lastly we looked
at distribution sampling to see if it could improve accuracy, the results how-
ever showed that it did not make any significant improvement on prediction
accuracy.

• Spatial Requirement testing
We then tested the spatial requirements for classification trees, n-grams and
sequence trees. Classification trees showed severe limitations being only able
to handle a dictionary size of a maximum of 1024 words before running out
of memory. Both n-grams and sequence trees did not have these memory
limitations and were able to be tested on much larger dictionaries. When
comparing the methods classification trees had by far the largest memory
requirement and showed a linear growth, sequence trees showed a similar linear

87



growth although at a lower rate. Sequence trees performed well, however n-
grams showed only a logarithmic growth as the dictionary size grew resulting
in a very good spatial performance compared to the other prediction methods.

• Accuracy testing
The accuracy of the three methods was examined next by using partial se-
quences of the original sequences to test how well the methods could predict
at different partition sizes of the sequences. Classification trees showed a small
edge with partial sequences that only contained very small partitions of the
original sequences, however as more of the sequences were given, the better se-
quences trees performed in comparison with the other two methods. N-grams
showed decent results but the predictor was outperformed by both sequence
trees and classification trees.

• KSPC testing
Lastly we looked into KSPC as an indicator to measure the usefulness of the
methods in the domain of predictive text on mobile devices. We looked at
what suggestion size to use and settled on a suggestion list size of five, this
being the most realistic value to use on mobile devices and the lowest value
before increases in size gave diminishing returns on the reduction in KSPC.
In the main test KSPC was calculated for all methods with keypad and touch
selection. Classification trees and sequences showed almost identical results
with n-grams producing noticeably worse KSPC. Because of spatial limitations
of classification trees it was not possible to test it on larger dictionaries. N-
grams and sequences trees were tested with larger and different dictionaries to
verify that results were consistent and independent of the data used to train
on. The test showed only a small increase in KSPC as dictionary size grew and
only minuscule fluctuations in KSPC with regards to different dictionaries.

Following testing of our sequence trees predictor method we next conclude on the
project, summarizing the contents of the thesis as well as the key results of sequence
trees and suggestions for further improvement and usage of our new prediction
method.

88



CHAPTER

EIGHT

CONCLUSION

In this chapter we will give a summary of our project and conclude on our new
sequence prediction method called sequence trees within the context of predictive
text by comparing it to existing classification trees and n-gram predictors. After this
we will discuss what further work could be possible on the sequence tree predictor.

8.1 Project Overview

Initially in this report we provided basic information on the domain of predictive
text and ambiguous input inherent in mobile devices, as well as providing definitions
of sequence prediction and event sequences. Additionally we described classification
trees and n-gram predictors, two existing methods used for predictive text.

We next defined sequence trees within the general domain of sequence prediction,
including how sequence trees are constructed as a series of sequence insertions, as
well as how sequence trees can be used for prediction by returning a predicted label
for a given input sequence.

We also explained how sequence trees can be used to model n-grams, and proved
this using mathematical induction.

We then used a corpus of English words as training and testing data for running a
series of tests on sequence trees and its n-gram and classification tree counterparts,
looking at their spatial requirements, prediction accuracy and average keystrokes
per character required for completing words in a predictive text system.

8.2 Conclusion

As stated in the project goals we have looked at the following properties of sequences
trees:

• Prediction accuracy
We have achieved a high prediction accuracy with sequence trees; when we
know more than half of a sequence we can predict the correct sequence with
high accuracy. Sequence trees showed itself to be better at predictive text
than n-grams and just as accurate as classification trees.

89



• Space requirements of the predictor
Sequence trees use a limited amount of space, and this grows only linearly as
the training data increases in size. It uses much less space than classification
trees but more than n-gram predictors, however using the proposed pruning
technique we can reduce the size of sequence trees greatly without losing much
accuracy.

• Average number of KSPC needed to complete a range of words on
a simulated mobile phone keypad
We have showed that we can reduce KSPC with sequence trees below what
is possible on a qwerty keyboard without prediction, thus we can in average
predict words and speed up writing on mobile devices significantly. Sequence
trees and classification trees performed very well however as classification trees
could only be trained on very small dictionaries the method is not a valid
method. n-grams performed worse in terms of KSPC than the other predictors,
however it can as sequence trees be trained on very large dictionaries.

Among the sequence tree optimizations, clustering and some of the collapsing
techniques were not in use in the final tests, as they did not contribute positively to
the size or accuracy of the sequence trees in the domain of predictive text. We do
however believe in other domains that these optimizations may be useful.

Thus we can conclude that we have developed a sequence prediction method that
can recognize and predict sequences with high accuracy and low spatial requirements
in the domain of predictive text.

8.3 Further Work

The prediction method we described in this report works very well when predicting
words, however further improvements can still be made. We have reduced the size of
sequence trees using our optimizations, however this size reduction could be further
researched to make sequence trees even more viable in the context of predictive text
and mobile devices.

So far we have only tested sequence trees in the context of predictive text however
we believe that the method might be possible to extend in different domains involving
sequential data.

Sequence trees could also be made customizable to the user; as it is quite simple to
insert new sequences and update the frequencies of existing sequences, it is possible
to add new words to the sequences tree or change the frequencies on the edges as
the user writes messages using sequence trees.

Another topic of interest is extending the method to include more contextual
data to the predictions. In predictive text this could be the previous messages a
mobile device has received, such that when a user receives a message on a specific
topic the probabilities of some paths of the tree can change when he is writing a
response depending on the content of the previous message.

Some of the erroneous predictions were caused by identical sequences with two
or more labels. By having additional contextual information about words such as

90



that from previous messages it may also be possible to better determine which label
to return when predicting in this situation.

It could also be possible to create a multilayer sequence tree, such that the upper
layer predicts sentences and the lower layer predicts words. This allows for a fuller
text completion system and potentially even less KSPC needed for completing entire
sentences or messages.

All these new ideas however requires some time to test and implement as some
changes in the basic algorithms must be made to incorporate things such as con-
textual information in a sequence tree. All in all we believe that the sequence
prediction method may be further developed, but as we have seen it can already
compete with other predictors such as classification trees and n-gram predictors in
size and accuracy.

91



92



BIBLIOGRAPHY

[1] J. Anderson. Learning and Memory. John Wiley & Sons, 1995.

[2] Various authors. Presage http://presage.sourceforge.net/. Web, 2011.

[3] Steffen Bickel, Peter Haider, and Tobias Scheffer. Predicting sentences using
n-gram language models. Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2005.

[4] Ezra Black, Fred Jelinek, John Lafferty, Robert Mercer, and Salim Roukos.
Decision tree models applied to the labeling of text with parts-of-speech. In
Proceedings of the workshop on Speech and Natural Language, pages 117–121,
1992.

[5] Henrik O. Sørensen Peder S. Sørensen Johannes G. Nielsen Jakob S. Knudsen
Frederik K. Frandsen, Mikkel F. Hansen. Predicting player strategies in real
time strategy games. University Project at Aalborg University, 2010.

[6] Jon Hasselgren, Erik Montnemery, Pierre Nugues, and Markus Svensson. HMS:
A Predictive Text Entry Method Using Bigrams. In Proceedings of the Work-
shop on Language Modeling for Text Entry Methods, 10th Conference of the
European Chapter of the Association of Computational Linguistics, pages 43–
49. Association for Computational Linguistics, 2003.

[7] J. Häkkinen and Jilei Tian. N-gram and decision tree based language identifi-
cation for written words. In Automatic Speech Recognition and Understanding,
2001. ASRU ’01. IEEE Workshop on, pages 335–338, 2001.

[8] Manfred Jaeger. Mi course lecture notes. https://intranet.cs.aau.dk/
fileadmin/user_upload/Education/Courses/2009/MI/Slides/mi-E09-08.
pdf, 2009.

[9] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision
Graphs. Springer, 2007.

[10] Ron Kohavi and Ross Quinlan. Decision tree discovery. In Handbook of data
mining and knowledge discovery, pages 267–276. University Press, 1999.

93

http://presage.sourceforge.net/
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/MI/Slides/mi-E09-08.pdf
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/MI/Slides/mi-E09-08.pdf
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/MI/Slides/mi-E09-08.pdf


[11] I. Scott MacKenzie. Kspc (keystrokes per character) as a characteristic of
text entry techniques. Mobile HCI ’02 Proceedings of the 4th International
Symposium on Mobile Human-Computer Interaction, 2002.

[12] Scott I. Mackenzie, Hedy Kober, Derek Smith, Terry Jones, and Eugene Skep-
ner. LetterWise: prefix-based disambiguation for mobile text input. In UIST,
pages 111–120, 2001.

[13] David M. Magerman. Statistical decision-tree models for parsing. In In Pro-
ceedings of the 33rd Annual Meeting of the Association for Computational Lin-
guistics, pages 276–283, 1995.

[14] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[15] Oxford University Computing Services on behalf of the BNC Consortium. The
british national corpus http://www.kilgarriff.co.uk/BNClists/all.num.
gz. Web, 2011.

[16] Richard M. Stallman. GNU Emacs Manual: For Version 22, 16th edition. Free
Software Foundation, 2007.

[17] R. Sun, E. Merill, and T. Peterson. From implicit skills to explicit knowledge:
A bottom-up model of skill learning. Cognitive Science, volume 25 no 2, pages
203-244, 2001.

[18] Ron Sun. Introduction to sequence learning. In Ron Sun and C. Giles, editors,
Sequence Learning, Lecture Notes in Computer Science, pages 1–10. Springer
Berlin / Heidelberg, 2001.

[19] Ron Sun and C. Lee Giles. Sequence learning: From recognition and prediction
to sequential decision making. IEEEIntelligent Systems, p67-70, Jul-Aug 2001.

[20] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Addison-Wesley, 2006.

94

http://www.kilgarriff.co.uk/BNClists/all.num.gz
http://www.kilgarriff.co.uk/BNClists/all.num.gz

	Introduction
	Related Work
	Predictive Text
	Ambiguous Input
	Project Goals
	Report Overview

	Sequence Prediction Theory
	Events and Systems of Events
	Sequence Prediction
	Sequence Recognition
	Sequence Labelling
	Predicting Sequences of Events
	Summary

	Related Techniques for Prediction
	Classification Trees
	N-grams
	Summary

	Sequence Tree Construction
	Sequence Trees
	Sequence Tree Insertion
	Sequence Tree Construction
	Tree Collapsing - Lossless Tree Size Reduction
	Sequence Tree Subtree Removal
	Tree Pruning - Lossy Tree Size Reduction
	Sequence Clustering - Preprocessed Sequence Generalization
	Summary

	Sequence Tree Prediction
	Sequence Tree Prediction
	Tree Sorting - Prediction Speed Improvement
	Distribution Sampling - Probabilistic Selection
	Summary

	Modeling N-grams with Sequence Trees
	N-gram and Sequence Tree Relation
	Converting N-grams to Sequence Trees
	Formal Proof - Sequence Trees can model any N-gram Predictor
	Summary

	Sequence Predictor Tests
	Testing Method
	Test Material
	Test Implementations
	Sequence Tree Optimizations
	Spatial Requirement Testing
	Accuracy Testing
	KSPC Testing
	Summary

	Conclusion
	Project Overview
	Conclusion
	Further Work

	Bibliography

