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1. Introduction 
 

Wireless communication systems can be found all around the world today. 
Their enormous growth in last few decades greatly changed our life and today it is 
impossible to imagine world and people’s life without them. One of first well known 
inventions in wireless communications was telegraph and it used sound and light 
signals to transmit the message. Discovery of electromagnetism and radio waves 
was crucial to development of wireless communications. Today, there is a huge list of 
systems which utilizes radio waves. Without radio and television broadcasting 
systems it is almost impossible to imagine our life. Mobile phones are actually one of 
fundamental tools for business today, and for communication as well. WLAN 
(Wireless Local Area Network) networks gradually replacing wired networks in 
universities, campuses, companies and even in homes. WLAN networks are 
connecting devices (e.g. PC, laptop) with access point, which usually provides them 
access to the internet. 

In wireless communication there are two main types of systems considering 
the way of data transmission. First one for data transfer uses one carrier and is 
modulated by signal which contains information. Such system is called single-carrier 
system. It is mostly used in AM and FM radio broadcasting systems, in analog 
television broadcasting systems, in old generations of cellular systems (1G, 2G and 
3G) and many others. First generation of cellular wireless systems (used mostly for 
mobile communication systems) used analog signals for data transmission and their 
speed was 9.2 kbit/s. First generation was replaced by second generation of cellular 
wireless systems. It was first generation of cellular networks which used digital signal 
for data transmission. To improve quality of the signal, speech coding was also 
introduced what was not possible in analog system. Besides, this generation 
provided some additional services such as caller ID.  In GSM system, the best known 
2G system, speed was 20 to 150 kbit/s. Third generation of cellular wireless systems 
is called 3G and has data rates 1-2 Mbit/s. 3G generation of cellular wireless systems 
can provide much more services than 2G systems, such as Internet access and 
video mobile calls, and as mentioned above, data rate is several times higher. 
However, during the huge expansion of Internet and technology in general, demands 
for services and data rates were increased. The most recent generation of cellular 
wireless systems is 4G. This system is still developing, but once when it would be 
fully developed and adopted there are expected data rates between 100 Mbit/s and 
1Gbit/s. The most known 4G system today is IEEE 802.16, known also as WiMAX 
and is used for mobile internet access.  

Systems of fourth generation for data transmission use the second one 
system which is called multi-carrier system. This system uses two or more carriers for 
data transfer, instead of one as aforementioned systems. Each of those carriers is 
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modulated by one conventional digital modulation such as BPSK or QAM. The most 
known such system is called OFDM (Orthogonal Frequency Division Multiplexing). 

The main imperfections of single-carrier systems are its vulnerability to 
fading caused by multipath propagation and to changes of channel frequency 
response. To cope with those problems, we can use multi-carrier system, e.g. OFDM. 
OFDM occupies  almost same bandwidth as single-carrier system, but can cope with 
aforementioned problems more effective. Also, OFDM has a higher spectral 
efficiency than single-carrier systems. To increase robustness against intersymbol 
interference to each OFDM symbol is added a guard interval. It is filled with cyclic 
prefix which is a copy of last part of OFDM symbol, as shown in figure 1. It will be 
explained in more detail in further text.  

 

 

Figure 1 – OFDM symbol and cyclic prefix 

 

Beside these advantages, OFDM also has some disadvantages. OFDM is 
very sensitive to carrier frequency offset and to sampling frequency offset. Also, it 
has a high PAPR (Peak-to-peak average ratio), and is vulnerable to synchronization 
problems (e.g. frame start detection). All of these problems can be solved using a 
certain algorithms which are implemented in the receiver. In this thesis focus will be 
on synchronization and coarse carrier frequency offset. Since there is several 
existing algorithms to solve this problem, in this thesis will be analyzed some of these 
methods to see which method is the best and most reliable. There are two main 
types of methods to estimate frequency offset and to detect start of the OFDM 
symbol. One of them is guard interval based (GIB) method and it is used in 
broadcasting systems such as DVB-T (Digital Video Broadcasting – Terrestrial). 
Second one is preamble based method which is used systems like WLAN systems 
and in fourth generation of cellular networks (4G systems). Difference between these 
two methods will be explained in next chapter. 

 

 

 



5 

 

2. OFDM  
 

In this chapter will be described some OFDM basics which are necessary for 
understanding of problem with which this thesis deals. As mentioned in first chapter, 
OFDM is a system which utilizes two or more carriers for data transmission. In FDM 
(Frequency Division Multiplexing) systems spectra of each subcarrier does not 
overlap with spectrum of adjacent (or some other) subcarrier. Also, there are guard 
bands between each subcarriers. Spectra of OFDM subcarriers are overlapped but 
still there is no Inter-carrier Interference (ICI) because of orthogonality property. 
Spectrum of OFDM signal is shown on figure 2.1. It is obvious that OFDM system will 
occupy considerable less bandwidth than FDM system. 

 

 

Figure 2.1. – OFDM signal spectrum 

 

Carriers will be orthogonal if the center of their spectrum is located in zeros of 
other’s carriers spectrum. Condition to be meet to achieve orthogonality is that carrier 

spectra must be spaced for frequency ��or integer multiplier of ��. �� can be 

calculated as �� = 1/�� where �� is a duration of one symbol on each modulated 

carrier, and also duration of OFDM symbol. As mentioned in chapter 1, each 
subcarrier in OFDM system is modulated by one of standard digital modulation such 
as QAM or PSK. 
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2.1. Technique of obtaining OFDM signal 

 

In figure 2.2. is shown block scheme of typical OFDM transmitter.  

 

 

Figure 2.2. – Block scheme of OFDM transmitter 

 

Serial data stream modulated by QAM or PSK modulation is converted in 
parallel data stream. One symbol in each data stream is brought on the IFFT block. 
After performing Inverse Fast Fourier Transform, on IFFT output is digital signal 
which has same number of samples as number of IFFT bins, and it is actually one 
OFDM symbol. Duration of OFDM symbol is determined by number of IFFT bins and 

sampling period �s .OFDM symbol can be described by  

 

s�	
 = � �

���


��
∗ ���п�


� , 	 = 0,1,2, … , �� − 1
 

 

where �
 is BPSK or QAM modulated signal, k is index of each subcarrier, n is a 

sample index, and N is a number of samples per symbol and also number of IFFT 
block points. Since above enclosed equation is actually IFFT, it is obvious that input 
signal in OFDM transmitter represents frequency domain samples. After IFFT block 
signal is divided in real and imaginary part. Each of them is now transformed from 
digital to analog signal, and then in mixer multiplied by signal which has frequency 
equal to frequency we want to transpose OFDM signal. Both signals are then 
summed and transmitted. Transmitted signal can be described by 

 

���
 =  ��
 cos�2п�#�
 − $��
 sin�2п�#�
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where I is in-phase, and Q is quadrature component. I contains real part of OFDM 
symbol, and Q contains imaginary part of OFDM symbol before transposition. Also, 
as can be seen from figure 2.2. there is phase difference between signals which 
transpose OFDM baseband signal onto desired frequency. 

 In figure 2.3. is shown block scheme of OFDM receiver. Received signal in 
receiver is first multiplied by same signals as in transmitter in order to transpose it to 
baseband and to get real and imaginary part of OFDM signal. Received signal after 

multiplication with signal of certain frequency in first mixer (multiplied by cos�2п�#�
) 

can be described by 

 

���
 = 1
2  ��
 + 1

2  ��
 cos�2п ∗ 2�#�
 

 

and on output of other mixer, where signal is multiplied by sin�2п�#�
, by 

 

�(��
 = 1
2 $
��
 − 1

2 $
��
 cos�2п ∗ 2�#�
 
 

It is obvious that signal after multiplication contains one high-frequency component 
which is unwanted. This component is removed by low-pass filter. After that, filtered 
signal must be amplified by 2 and then transformed into digital signal by A/D 
convertor. After conversion, signal is again converted from serial to parallel stream 
and brought to input of FFT block and after Fast Fourier Transform is performed, 
signal is again converted into serial stream. Such signal is then demodulated and on 
demodulator output bit stream which contain information.  

 

 

Figure 2.4. – OFDM receiver block scheme 
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During transmission of OFDM signal through the channel, signal can be 
affected by many effects. One of them is multipath propagation. The best explanation 
of multipath propagation is to say this is a channel with many paths (not just one such 
as in ideal condition). Each path does not have equal propagation time of signal 
through it. Some signal components will come in receiver before some other. 
Consequence of this effect will be Intersymbol Interference (ISI) because each 
OFDM symbol will be affected by preceding symbol. It is illustrated in figure 2.5. [6]. 
During the multipath propagation channel frequency response will not be ideal and so 
channel impulse response will not be ideal, as illustrated in figure 2.5. Symbol length 
will be enlarged by channel impulse response length and that will affect succeeding 
OFDM symbol and cause Intersymbol Interference and loss of information.  

 

 

Figure 2.5. – Illustration of Intersymbol Interference 

 

 To avoid this, guard interval is introduced. Guard interval is a free space 
between OFDM symbols. That space is filled by last part of OFDM symbol and is 
called cyclic prefix. To avoid Intersymbol Interference, length of guard interval must 
be larger than propagation time in the channel. Otherwise, Intersymbol Interference 
will be present. Illustration of guard interval influence is shown on figure 2.6. [6]. 

 

Figure 2.6. – Guard interval influence 



 

2.2. MATLAB simulation model

 

Since it is necessary to perform certain simulations, M
developed to this purpose. 
performed some simulations. 
affect transmitted OFDM signal. 
one. In every paragraph problem 
of simulation to see how did each parameter affected OFDM signal. 

This simulation model
For timing synchronization this standard utilizes short preambl
same symbols. Two short preambles are used,
preamble, so in total there is 
short preamble is used. Long
two symbols. 

Figure 

 In MATLAB 802.11a model are not included all specifications of 802.11a 
standard. FEC and convolution coder are not included in system since the aim is just 
to check whether is received
MATLAB is shown on figure 
system.  

 

simulation model 

Since it is necessary to perform certain simulations, MATLAB
developed to this purpose. Communication channel is never ideal, 
performed some simulations. There are a lot of parameters in channel 
affect transmitted OFDM signal. In each simulation all parameter will be ideal, except 
one. In every paragraph problem will be presented, and then will be enclosed results 

did each parameter affected OFDM signal. 

This simulation model represents simulation of 802.11a standard for 
For timing synchronization this standard utilizes short preamble which consists of four 

o short preambles are used, and also cyclic prefix to each 
so in total there is ten same symbols. To estimate frequency offset 

Long preamble is used for channel estimation. 

 

Figure 2.7. – Preambles in 802.11a system 

 

802.11a model are not included all specifications of 802.11a 
standard. FEC and convolution coder are not included in system since the aim is just 

received data accurate or not. Block scheme of system made in 
n on figure 2.8. This system also represents complete OFDM 
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Figure 2.7. – Model of simulation system in MATLAB 

 

 In channel are introduced various disturbances, as will be explained in further 
text. First, we will assume that sampling frequencies in transmitter and receiver are 
same. Also, channel does not introduce any noise and has only one path (i.e. no 
multipath propagation). Parameter to be changed is frequency offset introduced in 
the channel. Depending on frequency offset there will be considered accuracy of 
timing metric. It will be illustrated by constellation diagram. 

Constellation diagram in transmitter is shown in figure 2.9. It will be a 
reference for comparison. Same constellation diagram should be also in receiver in 
ideal conditions.  
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Figure 2.9. – Constellations in transmitter 

 

As can be seen from the picture, 16-QAM modulation is used. In figure 2.10. 
and figure 2.11. is shown constellation diagram when there is present frequency 
offset in channel. Frequency offset is 0.01 rad in figure 2.10, and -0.01 rad in figure 
2.11. 
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Figure 2.10. – Constellations in receiver for frequency offset of 0.01 rad 

 

Figure 2.11. – Constellations in receiver for frequency offset of -0.01 rad 
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As can be seen on the picture, constellation diagram is not ideal any more. It 
is now rotated, either to left or right side, depending on sign of frequency offset value. 
But, there is still no error in transmission since the constellations are still within the 
bounds of each QAM symbol. 

It is obvious that even a very little frequency offset can cause severe 
problems. To solve this problem, frequency offset estimator is used. Frequency offset 
is calculated as  

 

∅ = arg-.��
/ 

 

Limitation of this estimator is that it can estimate accurately frequency offset 
just if it is within the interval [-π π]. If frequency offset is out this interval, constellation 
diagram in receiver will be as shown in figure 2.12.  

 

Figure 2.12. – Constellations for frequency offset of 3.2 rad 

 

As expected considering theory, if absolute value frequency offset of each 
carrier is bigger than π, then there will be a huge bit error rate. For the case shown in 
figure 2.13., after transformation of QAM signals to bits, bit error rate is 0.5466, i.e. 
54.66% of received bits are not valid.  
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To solve this problem, another algorithm is used. As mentioned earlier in text, 

total frequency offset can be represented by 0 = 2 ∗ 1 + 2 where q is an integer 

number which represents phase ambiguity and 2 = �
4 ∗ arg-.�5
/ is a phase offset 

within [-π π] interval. Aim of algorithm is to estimate q, because then we will avoid 

phase ambiguity. Algorithm can be found in [3] (equation 18). Using this algorithm for 
same  frequency offset as in figure 2.11., constellation diagram in receiver is shown 
in figure 2.12. 

 

Figure 2.13. – Constellations in receiver during presence of frequency offset 
larger than π after compensation 

 

At the end, it is good to say that beside the channel, LP filter in receiver also 
introduces some frequency offset since frequency response of filter is not ideal. This 
frequency offset is almost negligible.  
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 After there were considered effects which are consequence of frequency 
offset, now there will be considered effects of sampling frequency offset. All other 
effects such as channel frequency response and carrier frequency offset introduced 
in the channel will be ideal there. If sampling frequencies in transmitter and receiver 
are same, constellation diagram in receiver will be same as in figure 2.8. As shown in 
figure 2.14., it can be seen that if sampling frequency in receiver is larger than 
sampling frequency in transmitter than each OFDM symbol window will contain data 
from succeeding OFDM symbol. Otherwise, if sampling frequency in receiver is lower 
than sampling frequency in transmitter, than one OFDM symbol window will not 
contain all information from the certain OFDM symbol. 

 

 

Figure 2.14. – OFDM symbol drift due sampling frequency offset 

 

If sampling frequency in receiver is larger than in transmitter, constellations will be 
same as in figure 2.15. 
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Figure 2.15. – Constellations during the sampling frequency offset 

 

 Sampling frequency in figure 2.15. is 20.004 MHz. Sampling frequency offset 

is represented by 6 = ��7 − �
/� where � is ideal sampling period and �7 is 

sampling period in receiver. In this case, sampling frequency offset is 0.0002 (200 
ppm) what is actually small value (Bit Error Rate is in this case 0.0135), but as can be 
seen, it causes a significant BER. During presence of sampling frequency offset 
problem is OFDM symbol drift [5]. Due to limitations in MATLAB and in hardware 
(lack of memory in laptop) it was not possible to simulate lower sampling frequency 
offset. 

Simulation of Matlab model is performed to show effects of multipath 
propagation. This Matlab model is made according to 802.11a standard. In this 
standard duration of one OFDM symbol is 3.2 us and guard interval length is 0.8 us 
and sampling frequency is 20 MHz. Since it is necessary to make digital to analog 
conversion (D/A conversion) of signal, and in Matlab it is not possible, analog signal 
is represented by 50 times larger sampling frequency, i.e. it has 50 times samples 
more than digital signal in receiver. It must be considered during modeling multipath 
channel, because number of samples of guard interval in transmitter must be 
multiplied by 50, and that is maximum allowed length of multipath channel. In next 
figure is shown constellation diagram in receiver when multipath propagation is 
present. Length of channel is lower than length of guard interval. 
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Figure 2.16. – Constellations in receiver during multipath propagation 

 

Figure 2.17. – Constellations in receiver (channel impulse response is longer than 
GIB) 
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 In figure 2.18. is shown constellation diagram when channel impulse response 
is longer than guard interval. It is obvious that BER is present since certain 
constellations are not within their bounds. As guard interval is longer, robustness to 
multipath propagation problems is increased, but data rate will suffer, i.e. it will be 
lower.  

 After this simulations now will be performed some other simulations. First, 
there will be performed simulation where will be considered Bit Error Rate depending 
on signal to noise radio in the channel. All other parameters which were changed in 
earlier simulations will be ideal in this case. According to figure 2.17., it is obvious 
that for ratios under the 30 dB Bit Error Rate is present.  

 

 

Figure 2.18. – Bit Error Rate depending on signal to noise ratio 

 

 Since channel is not ideal and there is always added noise to signal during the 
transmission which changes channel frequency response. It is possible to estimate 
channel frequency response using long preamble and then compensate received 
signal. It is possible to estimate channel frequency response just on the frequencies 
of carriers and that is actually only what is needed. Channel estimation can be 
described by 
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8�9
 =  ;�9

<�9
 

 

where 8�9
 is estimated channel frequency response, ;�9
 is received data after 

Fast Fourier Transform is performed, <�9
 is sent data, and 9 is index of each 

subcarrier. Sent data <�9
 is defined by standard and is known in receiver. In case 

of 802.11a standard it is long preamble. After channel is estimated, to compensate 

signal, each received OFDM symbol is divided by 8�9
. Compensation of signal is 

never ideal, but can significantly repair received signal affected by various 
disturbances in the channel. 
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3. Synchronization in OFDM systems 

 

When receiver detect OFDM (and any other signal) first step to do is to 
determine start of the frame which contains two or more OFDM symbols. There is a 
certain number of methods for but there will be analyzed and discussed two of them. 
One method is based on preamble, which is actually one OFDM symbol divided in 
two identical halves. Other method is cyclic prefix based (also, often denoted as GIB 
– Guard Interval Based) and it uses cyclic prefix to detect start of the frame. Also, 
those methods at the same time perform a coarse frequency offset estimation. This 
also will be analyzed in the further text. Since Guard Interval Based method is 
designed and used in broadcast systems, there will be introduced some modifications 
to be able to use this method for other wireless systems which are not broadcasting 
systems. 

For better understanding, there will be enclosed and explained some 
equations which represents effects we are analyzing here. OFDM symbol can be 
described by  

 

s�	
 = � �

���


��
∗ ���п�


� , 	 = 0,1,2, … , �� − 1
 

 

where �
 is BPSK or QAM modulated signal, k is index of each subcarrier, n 

is a sample index, and N is a number of samples per symbol and also number of FFT 
block points. If signal is affected by carrier frequency offset, then signal can be 
represented in receiver by  

 

=�	
 = s�	
 ∗ ��п� >
� 

 

where 0 is a carrier frequency offset. If we also introduce and timing offset 

then signal will be represented by  

 

=�	
 = y�	 − @
 ∗ ��п� >
� 
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where @ is unknown integer delay of OFDM signal. y is convolution result of 

channel impulse response and original signal, so it can be represented by 

 

A�	
 = � ℎ�9
 ∗
C��


��
 s�	 − 9
 

where ℎ is a channel impulse response, and D is length of channel. Because 

received signal must be almost same as a sent signal to get an accurate data, it is 
necessary to apply some methods and algorithms in order to repair received signal. 
Two above mentioned methods and their variants will be described in next two 
chapters. In further chapters they will be analyzed in terms of computational 
complexity and implementation to use as less as possible resources of available 
platform. Also, there will be considered and other properties. Probability of errors of 
each method, variances and mean square errors of each method depending on 
signal to noise ratio introduced in communication channel. Since idea is to analyze 
methods based on two different basic principles, for analysis will be chosen best 
versions of each method.  

 

 

Preamble based method GIB based method 

Schmidl and Cox Moving Average 

Ren Method Exponentially Moving Average 

Modified Schmidl and Cox  

Sliding Window Method  

Autocorrelation Method  

Correlation Based Estimator  

Double Autocorrelation Method  

 

Table 1 – List of methods 
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3.1. Preamble based synchronization method 

 

To detect start of the frame, this method uses a preamble. Preamble is, as 
mentioned before, OFDM symbol divided in two halves containing identical data. In 
order to determine start of the frame, correlation of these two halves is performed. 
The aim is to detect a peak in correlation result, i.e. to find the highest value in result. 
Since there are many versions of this method some of them will be briefly described 
in this chapter and advantages and disadvantages will be considered.  

 

3.1.1. Schmidl and Cox method 

 

Probably the most simple method is Schmidl and Cox method [1]. This 
method uses two OFDM symbols with two identical halves. Each of them contains a 
PN sequence. In first symbol, data is contained just on even indexed carriers, and on 
odd indexed carriers are just zeros in order to reduce large amplitude changes. 
Halves will be identical in receiver, but there will be a phase shift caused by 
frequency offset. Second symbol contains two PN sequences, one on even, and one 
on odd indexed subcarriers in order to determine frequency offset. For timing 
synchronization, correlation of first symbol halves is performed. According to [1] it can 
be represented by 

 

.��
 = � =∗�� + E
 ∗ =�� + E + D

C��

F��
 

 

where = is received symbol and L is half of length of a OFDM symbol. 

Energy of second half of symbol is defined by 

 

H��
 = � =�� + E + D
�
C��

F��
 

 

Finally, timing metric is determined by  
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I��
 = .��
�

H��
� 

 

Start of the symbol corresponds to index � for which the value of I is 

maximum. Because of cyclic prefix presence while performing correlation, result of 
timing metric will contain a plateau and it leads to ambiguity since there will be 
probably more than one maximum value or difference between them will be quite 
small. 

To estimate carrier frequency offset both preambles are used. Since in 
simulation model in MATLAB developed for this purpose are two preambles which 
are not suitable for this method, there will be introduced some changes in preambles 
according to [1]. There should be zeros on odd subcarriers and PN sequence on 
even subcarriers of first preamble and this is not a case in first (short) preamble 
defined by 802.11a standard. Also, there is necessary to make some changes in 
second (long) preamble since there are no complex numbers as it should be 
according to [1]. Long preamble is used for channel estimation, but since it is not 
necessary to make here it will not cause any problems. Frequency offset can be 
estimated as 

 

∅ = arg-.��
/. 

 

If calculated phase difference ∅ is between –π and π frequency offset can 

be calculated by ∆� = ∅/πT. When received signal is multiplied by this offset, 

adjacent carrier interference is avoided. But there still could be present other 

frequency offset, and is equal to ∆� = 2z/T, where z is an integer. To calculate 

remaining frequency offset FFT must be performed. Let ��,
 be a FFT transform of 

first preamble, ��,
 FFT of second preamble, 0
 their ratio, and < = {−I, −I +
2, … − 2, 2, … , I − 2, I} indexes of even subcarriers. Integer number z is 

determined by maximum value of P�Q
 which is calculated as 

 

P�Q
 = | ∑ ��,
T�U∗ 0
∗��,
T�U
VW |�

2�∑ |��,
|�
VW 
�  
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3.1.2. Ren Method 

 

Carrier frequency offset is calculated by 2 = �
4 ∗ arg-.�5
/. 5 is sample 

which corresponds to correct starting sample. Since phase has a values between  –π 
and π (or 0 to 2π), range of this estimation is limited on interval -1 to 1. If frequency 

offset is bigger, it can be represented by 0 = 2 ∗ 1 + 2 where q is an integer 

number which represents phase ambiguity. Algorithm which calculates this number 

will be given in further text. Let =�	
 be a received signal which has certain 

frequency offset. This signal is multiplied by ����X>�/� and the result is =��	
. 

Received signal is compensated by 0. To compensate remaining frequency offset 

2 ∗ 1, signal =��	
 must be multiplied by unaffected preamble (multiplied by PN 

sequence), as  =��	
 = =��	
 ∗ Y�	
, where Y�	
 is original preamble. 1 is defined 

by maximum value of  which is defined as 

 

 �1
 = | � =��	
���∗ZX(�/�
���

���
|� 

 

where 1 = {− �
Z , … , −1, 0, 1, … , �

Z}. 

 

3.1.3. Sliding Window Method 

 

There are two modifications of Schmidl and Cox method. According to [2] 
first one is called Sliding Window Method. First modification is that half of signal 
energy is calculated over all samples instead of just last part of OFDM symbol.  

 

H��
 = 0.5 ∗ � =�� + E
�
���

F��
 

 

where N is number of samples in OFDM symbol. Second, and more 

important modification is averaging the timing metric. Second change is averaging 

timing metric over last �̂  samples what is a number of samples of cyclic prefix. 
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Timing metric I��
 calculated in the same way as in previous methods is averaged 

as 

I���
 = 1
�̂ + 1 ∗ � I�� + E


�

F���_

 

 

3.1.4.  Modified Schmidl and Cox Method 

 

This method is actually modified Schmidl and Cox method. In Schmidl and 
Cox method correlation is performed over two symbols of the short preamble, i.e. 
over 128 samples, since each symbol is 64 samples long. Because of presence of 
cyclic prefix, which is same as last part of the symbol, there will be a plateau in timing 
metric which can lead to ambiguity and decrease accuracy of timing metric. To avoid 
plateau, correlation will be performed at same time over all 160 samples of short 
preamble, including cyclic prefix. Each of two symbols has four equal parts, each of 
them 16 samples long. Cyclic prefix is also 16 samples long. Correlation is calculated 
as 

 

.��
 = � =∗�� + E
 ∗ =�� + E + D + `

CTa��

F��
 

 

where L is length of symbol, and G is length of guard interval. Energy is 
calculated as 

 

H��
 = 0.5 ∗ � =�� + E
�
��CTa
��

F��
 

 

Timing metric is calculated as ratio of these two results, as  

 

I��
 = .��
�

H��
� 

 



26 

 

Since in 802.11a system it is not possible to apply this method, some 
changes are introduced.  

 

3.1.5. Double Autocorrelation Method 

 

This method in order to detect start of the frame calculates two correlations, 
according to 

 

.���
 = � =∗�� + E
 ∗ =�� + E + �b

�c��

F��
 

 

.���
 = � =∗�� + E
 ∗ =�� + E + 2�b

�c��

F��
 

 

where �b is a length of each short symbol. Energy is calculated as 

d��
 = � |=∗�� + E
|�
�c��

F��
 

 

Each metric is calculated as 

 

I���
 = .���
�

d��
�  

 

I���
 = .���
�

d��
�  

 

Finally, timing metric is calculated as 

 

I = e=f@e��I� − I�
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In ideal conditions, this method will detect start of the 9th short symbol. Start of the 9th 
short symbol corresponds to maximum value of result after subtracting two metrics. 

 

3.1.6. Correlation Based Estimator 

 

This method does not include a timing metric, so it will be only considered for 
frequency offset estimation. Frequency offset in this method is calculated in 
frequency domain, so it is necessary to perform FFT. Let P be preamble in frequency 
domain. After FFT is performed, correlation in frequency domain is calculated as 

 

H�5
 = � .�∗ ∗ .��V

�/���

����/�
 

 

where 5 is integer frequency offset and is determined by maximum value of H�5
. 

Fractional frequency offset is calculated as  ∅ = arg-.��
/  where .��
 

is correlation of preamble, and ∅ is fractional frequency offset multiplied by π. 

 

3.1.7. Autocorrelation method 

 

This method is used just for coarse estimation of frequency offset. 
Correlation is calculated as 

 

g = � =∗�9
 ∗ =�9 + 16

�i


��
 

 

Let |K| be 

 

|g| = � |=�9 + 16
|�
�i


��
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Frequency offset is calculated as 

 

k = − 2
l arg � g

|g|
 
 

 

3.2. GIB based method 

 

As stated before, this method for timing and carrier frequency offset 
estimation uses a redundant part of OFDM symbol called guard interval (cyclic 
prefix). Similarly as in preamble based method, aim is to detect a peak in result of 
correlation. In [4] are presented some versions of timing synchronization. One is 
called MA (Moving Average) and is represented by 

 

.��
 = � H�{m∗�E
 ∗ m�E − �
}
n

F�n�CT�
 

 

in time instant d. c is quantized received signal, N is length of OFDM symbol 

and L is length of cyclic prefix. Second method is Exponentially Moving Average and 

is represented by  

.��
 = � wn�
H�{m∗�E
 ∗ m�E − �
}
n

F��
 

 

w is a weight factor.  

 Algorithm which calculates a carrier frequency offset is presented in [4]. It will 
be enclosed in further text. Carrier frequency offset and timing estimation are not 

independent. Let frequency offset be 5. It is calculated as 

 

5 = �e	�� ∑  @{m�9
 ∗ m∗q
�q�CT� �9 − �
}
∑ H�{m�9
 ∗q
�q�CT� m∗�9 − �
}  
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4. Simulations 

 

In this chapter will be presented results of simulations for each method. As it 
is mentioned earlier in the text, each method is applied to the 802.11a standard. 
Specifications of 802.11a standard can be found in [7]. There are in first subchapter 
analyzed methods to estimate coarse frequency offset and in second one methods to 
estimate start of the frame. Every method is analyzed in terms of mean squared 
error, variance and for timing synchronization also in terms of probability of accurate 
detection. 

 

4.1. Frequency offset methods 

 

There are two types of simulations performed for frequency offset methods. 
First one is to see the estimation range for each method, and the second one is to 
measure accuracy of each method by calculating mean squared error and variance. 
During the measurement of mean squared error and variance, it was assumed that 
start sample is already known because in this measurement it was not aim to 
measure timing synchronization. Also, it was the aim to measure mean squared error 
and variance considering signal to noise ratio. Since for signal to noise ratio for 
above the 30 dB, measurement was performed in range of 0 to 30 dB. Methods 
analyzed for frequency offset are shown in table 2: 

 

Method Range 

Schmidl and Cox method -π to π 

Autocorrelation method -15.75 to 15.75 

Correlation Based Estimator -π to π 

GIB based method -π to π 

Ren Method -20 to 20 

 

Table 2 – Methods used for coarse frequency offset estimation 
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As described in previous chapter, Schmidl and Cox method and correlation 
based method are methods just to estimate frequency offset if it is larger than π. 
They are calculate frequency offset after Fast Fourier Transform is performed. To be 
able to estimate frequency offset those methods need to have special content of 
preamble. As shown in this chapter after performed simulations it is obvious that 
those methods can not calculate frequency offset larger than π using preamble in 
802.11a system.  

Range of other three methods is shown at figure 4.1. 

 

 

Figure 4.1. – Estimation range for each method 

 

At figure 4.1. it can be seen that Renn method has ability to estimate largest 
frequency offsets. Frequencies are not normalized, there are shown real frequencies 
in radians. Range of each frequency is measured on range -20 to 20 radians. 

Accuracy of each method is determined by mean squared error and 
variance. Mean squared error is shown at figure 4.2. 
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Figure 4.2. – Mean squared error of each method 

 

Figure 4.3. – Variance of each method 
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According to these figures, it is obvious that Renn Method has the best 
performances in terms of mean squared error and variance. It means that this 
method is actually the most accurate, i.e. it has least deviation from real frequency. 

 

 

4.2. Timing synchronization methods 

 

In simulations of timing synchronization methods there were performed three 
types of simulation. First one is measuring mean squared error, second one variance, 
and third one determines probability of accurate detection of start of the frame. As in 
frequency offset methods, mean squared error, variance and probability of accurate 
detection performances were measured considering signal to noise ratio. Range of 
signal to noise ratio was from 0 to 40 dB. Above 40 dB there are negligible 
differences. Mean squared error of each method is shown in figure 4.4. 

 

 

Figure 4.4 – Mean squared error 
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Figure 4.5. – Variance of each method 

 

Figure 4.6. – Probability of accurate detection of each method 
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According to measurements shown on figures 4.4 and 4.5. the smallest 
mean squared error and variance has Modified Schmidt and Cox method. Also, 
according to performed measurements shown in figure 4.6., this method has the 
largest probability of accurate detection. 
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5. Architectural design 
 

This chapter deals with implementation of one part of receiver which 
performs timing synchronization and coarse estimation frequency offset. As it is 
mentioned before, according to results of measurements, two methods chosen for 
implementation are Renn Method for coarse frequency offset and Modified Schmidt 
and Cox method. In further text there will be more about platform chosen for 
implementation. To implement whole system, there will be derived signal data flow 
graph and precedence graph. After that, next step is scheduling, i.e. time is 
introduced into precedence graph (defining which operation is performed in each 
clock cycle).  

 

5.1. Platform for implementation 

 

There are several options for implementation of this part of 802.11a receiver. 
ASIC (Application Specific Integrated Circuits) are integrated circuits which performs 
some specific task. They can contain elements such as multipliers, adders, registers, 
etc. These integrated circuits are fixed-wired and they are not reconfigurable. It is 
suitable for mass production, because huge amounts of money must be invested in 
devices which produce them.  

Other very popular platforms for realization of DSP algorithms are DSP 
processors and FPGA (Field Programmable Gate Array). Digital Signal Processor is 
actually special type of microprocessor which is adapted to perform repeatable 
mathematical operations. Speed of DSP processor is limited by its own frequency 
(clock rate). Also, other limiting factor is number of certain elements, such as adders 
and multipliers because if processor contains just one adder, than in each clock cycle 
there can be performed only one multiplication, but if there are more multipliers (e.g. 
4) then in one clock cycle there can be four multiplications. Digital Signal Processors 
are usually programmed in C language, but they can also be programmed in 
assembler because then you have bigger control on processor resources. 

FPGA, as its name says, is a field of programmable gates. It consists many 
programmable components called logic blocks. They contain many logic gates such 
as AND, OR and XOR, distributed RAM memories which can be used as memory or 
for some logic function. Other significant parts that FPGA contains are multipliers, 
block RAM memories, configuration logic, and wiring. FPGA is programmed by 
connecting each logic gates in logic blocks, and logic blocks with multipliers and 
block RAM. It is usually programmed in some hardware description language, and 
probably most popular such language is VHDL (Very high speed integrated circuits 
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Hardware Description Language). FPGA platform is reconfigurable, as well as DSP 
processors. 

It is obvious that ASIC is not suitable for implementation in this project 
because there is going to be made just one device, and it is not for mass production. 
Other two options are DSP processors and FPGA and there are many elements 
which determine which one should be chosen for implementation. If there is high 
sampling rate required (above a few MHz) then FPGA is a lot better choice. It 
contains more adders and multipliers and can perform more operations 
simultaneously. This system has according to 802.11a standard sampling rate of 20 
MHz what is relatively high sampling rate, so FPGA is in this terms much better 
choice than DSP. Also, there are not a lot of conditional operations and that is one 
more reason to choose FPGA. DSP has advantage if there is used floating point 
arithmetic but it is not case here. Everything will be implemented in fixed-point 
arithmetic.  

There are several FPGA development kits (development boards). Which will 
be chosen, it will depend on analysis in further text.  

 

5.2. Algorithmic specifications 

 

As already is known, algorithm to be implemented is  

 

.��
 = � =∗�� + E
 ∗ =�� + E + D + `

CTa��

F��
 

H��
 = 0.5 ∗ � =�� + E
�
��CTa
��

F��
 

I��
 = .��
�

H��
� 

 

for timing synchronization, and for coarse frequency offset  

 

 �1
 = | � =��	
���∗ZX(�/�
���

���
|� 
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∅ = arg-.��
/. 

 

To be able to start to calculate coarse frequency offset, start sample must be 
determined already. It is calculated over 160 samples and that means that 160 
samples must be stored in buffer or memory. Since all time new samples are going 
in, memory should be organized as FIFO (First In First Out). Also, it must have two 
separated places, one for real, and one for imaginary values since samples are 
complex numbers.  

To multiply those numbers there must be performed four multiplications. In 
general, we can write first complex number as 

 

=� = �� + rA� 

and second one as 

 

=� = �� + rA� 

 

Expression for multiplication can be written also as 

 

. = �� ∗ �� + r��A� + r��A� − A�A� 

 

There are four multiplications and three additions to be performed to multiply two 
complex numbers. Between two consecutive samples, there need to be executed 
multiplications of 80 complex numbers. Also, there must be executed 79 additions to 
calculate correlation. Since per one multiplication of complex numbers there must be 
executed four multiplications and three additions, that means that between two 
consecutive samples must be executed 320 multiplications and 319 additions and it 
is really too many operations just for correlation. To reduce it, there will be introduced 
some changes in the way of calculating correlation. Two consecutive correlations, 

.��
 and .�� + 1
 there are 159 same samples used for its calculation. To reduce 

complexity of calculation, to calculate new correlation result of previous correlation 

will be used. We can denote .��
 for old correlation result (the one already 

calculated) and .�� + 1
  for new correlation result. First one is calculated as 
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.��
 = =∗��
 ∗ =�� + D
 + =∗�� + 1
 ∗ =�� + 1 + D
 + ⋯ + =∗�� + D − 1

∗ =�� + 2D − 1
 

 

Second (new) correlation can be calculated as 

 

.�� + 1
 = =∗�� + 1
 ∗ =�� + D + 1
 + =∗�� + 2
 ∗ =�� + D + 2
 + ⋯
+ =∗�� + D
 ∗ =�� + 2D
 

 

It is obvious that new correlation can be calculated executing just two multiplication of 
complex numbers and two additions instead of 80 multiplications and 79 additions. If 
old intermediate results are stored in other buffer, it can be reduced to just one 
multiplication of complex numbers and two additions because there is not necessary 

to execute one more multiplication of complex numbers (to multiply samples =��
 

and =�� + D
 which has already been calculated before). In total, it is in first case 

eight multiplications and additions, and in second case, when buffer is used to store 
old results, it is just four multiplications and five additions. Since sampling rate of 
system is relatively large, and FPGA contains enough memory resources, what is not 
case with multipliers, second option will be chosen.  

 Also, there must be calculated an energy of a signal. There is also necessary 
to have 160 samples to calculate this and there is also necessary to calculate 79 
additions and 80 multiplications of complex numbers. This multiplication is just 
squaring, multiplying complex number with itself. To reduce complexity, same 
principle will be applied as for calculation of correlation. As mentioned before, since 
FPGA has enough memory resources, another 160 intermediate results will be stored 
in certain buffer. After correlation and energy are calculated, next to calculate is 
normalized correlation. To calculate this, there is only need to execute one division. 
Since there is no dedicated divider in FPGA, one must be made. That what is 
mentioned in this paragraph would significantly increase computational complexity of 
device. 

 Finally, after all above mentioned operations are executed, there is just  to 
determine starting point of the frame. Threshold is equal to 0.5, so any result of 
normalized calculation lower than threshold is not important. After result of 
normalized correlation bigger than 0.5 is detected, it will be stored in buffer. If new 
result of normalized correlation is bigger than 0.5 and than previous result, then this 
result will be stored in the buffer. This process will be repeated until result of 
correlation is smaller than 0.5. The biggest among all results bigger than 0.5 is the 
starting sample. When correlation with value bigger than 0.5 is detected, even more 
samples than 160 must be stored. That is because after the biggest result (starting 
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sample) there still can be more results with value bigger than 0.5 and it is necessary 
to check. This is relatively small number of samples above 160 which need to be 
stored (memory size will be specified later).  

 

Second part of receiver calculates coarse frequency offset after start of the 
sample is already found. First there must be calculated angle. It can be calculated as 
arctangent function. To implement this, there are two main opportunities. One is 
CORDIC algorithm and second one is look-up table.  

CORDIC (Computer Rotation Digital Computer) algorithm is iterative 
algorithm which adds certain angle to starting vector. For example, if we want to 
compute arctangent of complex number =� = �� + rA� it is calculated as 

  

�FT� = �F − AF�F ∗ 2�F 
 

AFT� = AF + �F�F ∗ 2�F 

 

QFT� = QF − �F ∗ arctan �2�F
 

 

where �F = u 1, AF < 0
−1, AF ≥ 0x . i is number of iterations and by i accuracy of result is 

determined. Results of operation arctan �2�F
 are stored in look-up table. Input 

argument in look-up table is just number of iteration i. It can be seen that accuracy is 
strongly dependent about number of iterations and also, about word length. Since 
word length will be fixed for whole system, main role in accuracy will have a number 
of iterations. Number of iterations is limited by clock frequency of device and 
maximum sampling frequency. In further text there will be discussed accuracy of 
CORDIC algorithm depending on number of iterations. Sampling frequency of system 
is 20 MHz, and it is relatively high frequency.  

 Other solution to calculate arctangent is to use just look-up table. For certain 
input complex numbers (i.e. its real and imaginary parts) one output is produced. 
Look-up table is actually a memory which is addressed by ratio of real and imaginary 
part of complex number and their sign. In memory are stored results for each input 
combination. Accuracy of this way of calculating arctangent function depends on 
memory size, i.e. of number of stored results.  

 If we chose to calculate arctangent function by CODRIC algorithm, it will 
occupy less resources, but it will take more clock cycles to calculate result. Look-up 
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table calculates result in just one clock cycle, but it will occupy a lot of memory size. 
Since sampling clock frequency of 802.11a system is large, look-up table is naturally 
better choice because of speed of calculation, but CODRIC algorithm is necessary 
because knowing number of iterations facilitates compensation of frequency offset. 

After calculating arctangent function, there must be calculated remaining 
frequency offset, if it exists. By calculating arctangent function, we are only able to 

estimate frequency offsets in range of -l to l. If frequency offset is bigger, than 

more operations must be executed. First, received short preamble must be multiplied 

by original short preamble as =��	
 = =��	
 ∗ Y�	
, where Y�	
 is original 

preamble and =��	
 is received preamble. Both preambles contains a complex 

numbers. As mentioned before, to multiply two complex numbers three additions and 
four multiplications are needed. Considering that preamble is 160 samples long, it will 
take too much time to calculate all that. Other option is to perform 160 multiplications 
of complex numbers simultaneously.  

1 , integer frequency offset is defined by maximum value of  which is defined 

as maximum index of  �1
 calculated as 

 �1
 = | � =��	
���∗ZX(�/�
���

���
|� 

 

As it can be seen from above formula, there are also a lot of multiplications needed to 
calculate additional frequency offset. It is possible to realize only if clock frequency is 
really high. All these multiplications and additions must be executed within duration of 
one sampling period.  

 

 

 

 

 

 

 

 

 

 



 

5.3. SDF and Precedence graph of algorithm
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Output of correlator is 
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Figure 5.3. 
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in correlator. Results will be stored and new sample will be added to result, as well as 
old will be subtracted from result. Structure of this part is similar to correlator, except 
there are less delay elements, and there is no need to calculate conjugate complex 
value, i.e. to change sign of imaginary part of complex number. Data flow graph is 

Figure 5.3. – Part for calculating energy of signal

 

As correlator, this part as a result also produces  real and imaginary part of 
In order to reduce complexity of energy calculation, there are two registers which 

can store 160 samples of input signal. Last one is subtracted from r
registers located after adders and first one is added to result and stored in register which 
works as First In First Out memory (FIFO). One adder is actually subtractor. It actually 
executes addition except it converts sign of one input parameter, as in correlator as well. 
Precedence graph of this part is shown on figure 5.4.  
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energy of received signal in order to 
calculate normalized correlation. Within this, it is needed to calculate squared value 

To calculate squared value of complex number it is only 

Principle is similar as in calculating autocorrelation. According to formula 
written above, between two samples there should be executed many additions and 

lex multiplications), but there will be used same principle as 
in correlator. Results will be stored and new sample will be added to result, as well as 
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Figure 5.4. 

Four multiplications are executed at same clock cycle. In next clock cycle there 
are calculated two additions of results, and afterwards, there are in next two cycles 
calculated subtraction of oldest sample from already stored result and after that new 
result is added to result stored in accumulator. Adders which are located in part with two 
clock cycles, are actually two adders each. In first clock cycle one calculates subtraction, 
and one calculates addition. Possible sharing of units will be discussed in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. – Precedence graph of energy calculator

 

Four multiplications are executed at same clock cycle. In next clock cycle there 
are calculated two additions of results, and afterwards, there are in next two cycles 
calculated subtraction of oldest sample from already stored result and after that new 

ult is added to result stored in accumulator. Adders which are located in part with two 
clock cycles, are actually two adders each. In first clock cycle one calculates subtraction, 
and one calculates addition. Possible sharing of units will be discussed in
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Precedence graph of energy calculator 

Four multiplications are executed at same clock cycle. In next clock cycle there 
are calculated two additions of results, and afterwards, there are in next two cycles 
calculated subtraction of oldest sample from already stored result and after that new 

ult is added to result stored in accumulator. Adders which are located in part with two 
clock cycles, are actually two adders each. In first clock cycle one calculates subtraction, 
and one calculates addition. Possible sharing of units will be discussed in further text.  



 

After correlation and energy of received signal are calculated, next step is to 
calculate their quotient. Since correlation result and energy result are complex 
numbers, in order to get real numbers it is necessary to calculate
is obtained by squaring real and imaginary part of each complex number and then 
adding them to each other. 
needed for each complex number. By each multiplier is calculated squa
real and imaginary part of complex number and adder to calculate a sum. There 
cannot be used simplified 
each of them can be negative. 
Divider will be here represented as a block and its structure will not be considered. 
Digital division is based on Newton
to the peak detector which is described in further text. 
division by divider consumes three clock cycles. 
on figure 5.5.  

Figure 5.5. 

Precedence graph is shown on figure 5.6. 
consumes three clock cycles to execute division. 

 

After correlation and energy of received signal are calculated, next step is to 
calculate their quotient. Since correlation result and energy result are complex 
numbers, in order to get real numbers it is necessary to calculate modules of them. It 
is obtained by squaring real and imaginary part of each complex number and then 
adding them to each other. In order to achieve this, two multipliers and one adder is 
needed for each complex number. By each multiplier is calculated squa
real and imaginary part of complex number and adder to calculate a sum. There 
cannot be used simplified solution without squaring real and imaginary part since 
each of them can be negative. Such squared values are brought to input of divider. 
Divider will be here represented as a block and its structure will not be considered. 
Digital division is based on Newton-Raphson method. Output of divider is connected 
to the peak detector which is described in further text. Also, it will be assumed that 
division by divider consumes three clock cycles. Data flow graph of this part is shown 

 

 

Figure 5.5. – Data flow graph of divider and belonging devices

 

Precedence graph is shown on figure 5.6. It is assumed that divider 
consumes three clock cycles to execute division.  
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After correlation and energy of received signal are calculated, next step is to 
calculate their quotient. Since correlation result and energy result are complex 

modules of them. It 
is obtained by squaring real and imaginary part of each complex number and then 

In order to achieve this, two multipliers and one adder is 
needed for each complex number. By each multiplier is calculated squared value of 
real and imaginary part of complex number and adder to calculate a sum. There 

solution without squaring real and imaginary part since 
Such squared values are brought to input of divider. 

Divider will be here represented as a block and its structure will not be considered. 
Output of divider is connected 

Also, it will be assumed that 
Data flow graph of this part is shown 
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– Precedence graph of divider and belonging devices
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of divider and belonging devices 



47 

 

Next part to be discussed is peak detector. It on its inputs normalized 
correlation result is coming. Since correlation results which are coming on detector’s 
inputs can be negative, first step is to calculate absolute value of results. To perform 
this, sign of result must be checked. If the most significant bit is equal to 1, it means 
that result is negative and must be calculated absolute value of it. It can be obtained 
by executing inversion operation on a result, and after that adding ‘1’ to result 
obtained by previous operation. There is needed one device to perform inversion of 
the bits operation and one for addition. Also, it is required before that to check if it is 
necessary to make this operation. If using concurrent statements in VHDL language, 
it is possible to execute all these operations in just one clock cycle.  

Calculating of absolute value of complex number is done as 

 

|r| = yRe�r
� + Im�r
� 

 

Since it would be too complex to implement calculation of squared root of 
number, it can be easily approximated with  

 

eYY=~� = |Re�r
| + |Im�r
| 
 

After calculation of modulo operation, it is necessary to sum real and imaginary part 
to check correlation result and compare it with threshold. Since there is not root 
squared operation performed, threshold will not be 0.5 any more. It will be squared 
root value of 0.5.  

Finally, third step is to determine start of the frame. If result of correlation is 
bigger than threshold, than it will be compared to result which is already stored in the 
buffer. To do this, there must be used comparators. Comparator compares stored 
result and new one, and if new one is bigger, it will be stored into buffer. Otherwise, 
old one will stay in the buffer. 

If there is already stored one result of correlation, and if the most recent 
signal is not bigger than threshold, that means that starting sample corresponds to 
index of sample stored in the buffer.  

Signal data flow graph of peak detector is shown on figure 5.3. 
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of result of correlation. Depending on value of mo
executed calculation of abs
buffer and it will stay there for one 
the case when one result is
period do calculate absolute value of re
positive result is stored in the buffer. Operation
conditional.  

Nodes C and D calculate
absolute value of the negative number repre
necessary to invert all bits 
by concurrent statements in VHDL language, both operation
can be implemented in one clock cycle. 

Node E executes addition of real and imaginary part of re
result with the threshold. That mean
compares result of operation 
signal will be generated on the output. 

Finally, node F ha
signal is bigger than threshold, than it mu
the buffer. If new result is bigger than already 
one. Otherwise, old one w
result with its index, and ne
determined.  

Precedence graph of peak detector i

 

 

Figure 5.3. – SDF of peak detector 

A and B represents a check units for sign of input value
doing this for real parts, and other one for imaginary part

ult of correlation. Depending on value of most significant bit, there 
solute value, or if number is positive, res

tay there for one sampling period. Buffer is nece
s negative, and one positive, it will take one more 

olute value of result with negative sign. During that time, 
tored in the buffer. Operations executed in the

C and D calculates absolute value of negative re
olute value of the negative number represented in two’s complement, it i

 of input signal and add 1 to it. If inversion i
in VHDL language, both operations (addition and inver

can be implemented in one clock cycle.  

addition of real and imaginary part of res
hold. That means one more comparator i

ult of operation with threshold. If result is bigger than thre
ill be generated on the output.  

Finally, node F has a task to determine index of starting 
hold, than it must be compared to already 
bigger than already stored result, it will be replaced by ne
will still be stored in the buffer. If there i

index, and new sample is smaller than threshold, 

Precedence graph of peak detector is shown on figure 5.4. 
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Figure 5.4. – Precedence graph of peak detector 

 

ly there can be performed two same operations. Checking are real and 
itive or negative can be executed in same time. Al

time can be executed calculations of absolute value if input real and imaginary part
are not positive. After that, addition of real and imaginary 

executed. It can receive a data directly from input if result of correlation i
hich calculates absolute value of input data. 

ource can be executed by multiplexer which is controlled by finite 
ed later.  
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olute value of input data. Selection of 
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In order to calculate frequency offset, arctangent function must be executed. 
CORDIC algorithm is already described above, but because its high computational 
complexity, and also consuming a lot of resources, arctangent function will be 
calculated using look-up table. Before calculating it, one division must be executed. 
Argument of arctangent function is ratio of imaginary and real part of complex 
number, according to  

 

∅ = arctan � @�=

H��=

 

 

Calculation of ratio is not only thing which is necessary to determine frequency offset. 

Since it is known that arctangent function will only produce results between – π/
2, π/2  and results must include range between – π, π, it will be obtained by 

checking sign of real and imaginary part. If both are positive, result is in range  0π/2, 

if real is positive, and imaginary negative, result is in range π/2, π, if both are 

negative then result is in range π, 3π/2, and finally if real is negative and imaginary 

positive, result is in range – π/2, 0. As it is said before, there will be used Look-up 

table to calculate value of arctangent function. Look-up table is actually memory, 
which is addressed by certain input arguments, and depending on it produces some 
output. It is obvious that memory must be addressed by three signals. One of them is 
quotient of imaginary and real part of complex number, and other two are signs of 
real and imaginary part. All these signals can be merged in one signal and depending 
on its value, certain output is produced. Memory need to store all values of unit circle, 

i.e. values in range 0, 2π. Since frequency offset calculated in this part is used to 

compensate frequency offset, it must be multiplied by received preamble. It is 

obtained by multiplying signal by ����X>�/�. Complex exponential function is usually 

calculated as sum of sine and cosine with same argument as complex exponential 
function. To calculate sine and cosine, dual-port look-up table must be used. How it 
works in case of sine and cosine, it will be discussed in further text. Also, 
multiplication of received preamble and exponential function will be considered later, 
in more details. Procedure is same as multiplication of this result with original 
preamble. Data flow graph of all these parts is shown on figure 5.5. Multiplier and 
Look-up table are simplified and more about it will be discussed later. 

 

 

 

 



 

Figure 5.5. –

Scheme is simplified because multiplier represents 
four multipliers and two adders. One delay element is actually Look
calculates arctangent function, 
Third one contains precalculated values of one part of argument of exponential 
function. In first multiplier it is multiplied by calculated frequency offset, and in second 
one result is multiplied by recei
5.6. 

Figure 5.6. –

 

Possible variants of implementation will be discussed at chapter which deals 
with scheduling.  

 

 

– Data flow graph of frequency compensator

 

Scheme is simplified because multiplier represents complex multiplier which contains 
four multipliers and two adders. One delay element is actually Look
calculates arctangent function, and other has stored samples of received preamble. 
Third one contains precalculated values of one part of argument of exponential 
function. In first multiplier it is multiplied by calculated frequency offset, and in second 
one result is multiplied by received preamble. Precedence graph is shown on figure 

 

 

– Precedence graph frequency compensator

Possible variants of implementation will be discussed at chapter which deals 
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Data flow graph of frequency compensator 

complex multiplier which contains 
four multipliers and two adders. One delay element is actually Look-up table which 

and other has stored samples of received preamble. 
Third one contains precalculated values of one part of argument of exponential 
function. In first multiplier it is multiplied by calculated frequency offset, and in second 

ved preamble. Precedence graph is shown on figure 

Precedence graph frequency compensator 

Possible variants of implementation will be discussed at chapter which deals 



 

 

After received preamble i
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with same indexes must be multiplied and then 
is shown on figure 5.3. 

Figure 5.3. – D

 

As in correlator, there are four multiplication
one complex multiplication. 
multiplied by original unaffected 
320 samples, 160 for real, and 160 for imaginary part of complex number. Al
is one buffer needed to store unaffected preamble 
in which is stored unaffected preambl
elements in signal data flow
They represent a buffer where re
graph shown in figure 5.3. i
of 160 complex multiplication
one. 

Precedence graph derived from 
figure 5.4. 

After received preamble is compensated by frequency off
multiplied by original unaffected preamble, as it is mentioned before. 

t be multiplied and then stored. Simplified precedence graph 

 

 

Data flow graph of multiplier of unaffected preamble and 
received preamble 

in correlator, there are four multiplications and two adder
one complex multiplication. Samples of received preamble which need to be 
multiplied by original unaffected preamble are stored in a buffer w

, 160 for real, and 160 for imaginary part of complex number. Al
tore unaffected preamble which has same capacity a

tored unaffected preamble. These memories are repre
w graph. On the output there are also two delay element
here results of multiplications are stored. 

n in figure 5.3. is actually simplified graph because it repre
of 160 complex multiplications. To represent all, there should be 160 figure

Precedence graph derived from simplified signal data flow graph
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Figure 5.4. – Precedence graph

 

As in correlator, there are at least four multiplications executed in same time 
as well as two additions after multiplications are executed. 

 

Part which will be discussed 

this equation 

 

 �

 

This part will be considered in two separate parts. One is part which calculates part of 
the formula related to exponential functions. This includes calculating input argument 
of exponential function and calculating result of exponential function. Exponent
function can be calculated as sum of sine and cosine with same input argument for 

sine and cosine as for exponential function. Part of equation 

cosine is represented as 

  

���∗ZX(�

 

As it can be seen, cosine part of complex exponential function represents real, and 
sine part represents imaginary part. It those all multiplications and divisions will be 
calculated for each argument, it will significantly increase complexity of the system. 

is known that 4l, 1, 	 and N are constants. Taking this into account, 

Precedence graph of multiplier of unaffected preamble and 
received preamble 

As in correlator, there are at least four multiplications executed in same time 
o additions after multiplications are executed.  

Part which will be discussed in this part which calculates  

�1
 � | � =��	
���∗ZX(�/�
���

���
|� 

This part will be considered in two separate parts. One is part which calculates part of 
the formula related to exponential functions. This includes calculating input argument 
of exponential function and calculating result of exponential function. Exponent
function can be calculated as sum of sine and cosine with same input argument for 

sine and cosine as for exponential function. Part of equation ���∗ZX(�

/� � cos�4l1	/�
 � j ∗ sin�4l1	/�
 

t can be seen, cosine part of complex exponential function represents real, and 
sine part represents imaginary part. It those all multiplications and divisions will be 
calculated for each argument, it will significantly increase complexity of the system. 

and N are constants. Taking this into account, 
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of multiplier of unaffected preamble and 

As in correlator, there are at least four multiplications executed in same time 

 �1
 according to 

This part will be considered in two separate parts. One is part which calculates part of 
the formula related to exponential functions. This includes calculating input argument 
of exponential function and calculating result of exponential function. Exponential 
function can be calculated as sum of sine and cosine with same input argument for 

X(�/� by sine and 


 

t can be seen, cosine part of complex exponential function represents real, and 
sine part represents imaginary part. It those all multiplications and divisions will be 
calculated for each argument, it will significantly increase complexity of the system. It 

and N are constants. Taking this into account, 4l1	/� can 
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be calculated before and stored in memory and addressing memory with certain 

parameters (in this case 1 and 	). It is necessary to mention that 1 and 	 are 

vectors with constant numbers as it can be seen from formula mentioned before in 
the text. This solution is much better than calculating all time input arguments for sine 
and cosine especially because there are always same results present. It will 
consume more memory and storage resources than if it would be calculated 
constantly, but it will not use any adder or multiplier for calculations which are more 
complex than storage elements. To get results of sine and cosine there will be used 
procedure called Direct Digital Synthesis (DDS). It uses Look-up tables which are 
actually memories. They are dual-port memories, which contains data which 
represent amplitudes of sine and cosine wave. They are generating it on their outputs 
depending on input which is actually address. So, it can be seen that in this 
procedure argument of sine and cosine is address and depending on it there will be 
produced certain output which represent amplitude, i.e. sine and cosine value of 
certain argument. Accuracy of sine and cosine is determined by amount of data 
stored in memories. As memory is larger, it is more accurate, as well as data length 
of argument because it need to be able to address all memory locations. Only one 
address is needed to get result of sine and cosine and how it is obtained will be 
discussed in further chapters. Also, it is just required to store first quarter of sine in 
memory in order to get full period of sine and cosine. It will also be explained in 
further chapters. Data flow graph of this part is not shown as other parts because it 
contains only two storage elements. First storage element contains already 

calculated constants for each 1 and 	. With these values output is controlled and 

those values are generated by finite state machine what will be discussed in further 
chapters. Output of this storage element is controlling output of Look-up tables which 
are producing sine and cosine signals.  
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This part multiplies result of multiplications of unaffected preamble and received 
preamble with exponential function as it is shown in formula above. Calculation of 
argument of exponential function is discussed in previous paragraph. After 
multiplication of each element with certain result of exponential function, they must be 

summed and squared. This process must be repeated for each 1 where 1 =
{− �

Z , … , −1, 0, 1, … , �
Z}. It means that this process must be repeated 81 times. It 

will consume a lot of clock cycles obviously, and how much, it will be discussed in 
next chapter. After all operations are executed, there must be found biggest result, 

i.e. index 1 for which result is biggest. Signal data flow graph is shown in figure 5.5. It 

is simplified because each multiplier in this case represents one complex 
multiplication. It has a same structure as devices shown in figures 5.1 and 5.3.  

 

 

 

 

 

Figure 5.5. – Data flow graph 

 

Results are stored in buffers (real and complex part) and they are multiplied for 
certain q. Then they are summed and it is iterative process so there is one iteration 
loop. It can be solved on different way, but it will be discussed in scheduling chapter. 
Next step is to calculate squared value. Multiplier’s inputs are connected on same 
line and result of this operation is brought to comparator. It is compared here to old 
results and the biggest one (and its index) is stored and later used for compensation.  

Precedence graph is shown in figure 5.6. 

 



 

From precedence graph are ommited delay and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. – precedence graph 

 

From precedence graph are ommited delay and storage element
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torage elements. 
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5.4. Scheduling, allocation and assignment 

 

Scheduling is process of scheduling all operations in the cycles. It means 
that to each operation must be assigned a certain amount of time to execute. 
Depending on operation type, it can consume one or more clock cycles to perform 
the task. Allocation is process which defines type and number of hardware resources. 
This includes various functional units (adders, multipliers, multiplexors), storage 
elements such as buffers and ROM memories, and buses (connectivity elements). 
Scheduling and allocation can be made by a sort of transformation of precedence 
graph as shown in figure 5.5. 

 

Figure 5.5. – Transformation of precedence graph to architecture 

 

Numbers on the lines are: 

1. Scheduling 

2. Allocation 

3. Assignment 

4. Control design 

In this chapter, scheduling and allocation are going to be discussed. There are two 
ways to do this and it depends on constraints. If there is a limited amount of 
resources available, than first to be done is allocation and after that scheduling. Aim 
is to compose such architecture that as less as possible time is needed to execute all 
required operations. Second case is when system is time constrained. In this case, 
scheduling is first what must be done, and next step is than allocation. Aim is to use 
as less as possible resources to create device which is available to execute all 
required operations in given time.  

 In this project, system is time constrained. It is because sampling frequency of 
system is already given by system specification standard.  



 

Scheduling of correlator i

 

 

As it is mentioned in previou
simultaneously, and two addition
cycle is needed. Before multiplication
part and it consumes one clock cycle. 
executed. 

 Scheduling of energy calculator is sh
similar to scheduling of correlator, except it does not contain 
one imaginary part which consumes one clock cycle. 

correlator is shown on figure 5.6. 

Figure 5.6. – Scheduling of correlator 

mentioned in previous chapter four multiplications
o additions. To execute each of these operation

Before multiplications, there must be changed a 
one clock cycle. So, in four clock cycles everything can be 

Scheduling of energy calculator is shown on figure 5.7. It is actually very 
similar to scheduling of correlator, except it does not contain part to change sign of 
one imaginary part which consumes one clock cycle.  
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Figure 

According to figure 5.6. the
realize correlator. Four multiplier
executed in same time. Als
in each clock cycle. Sharing of re
there is necessary to introduce one more regi
addition. Beside this, as can be 
needed. Two buffers which ha
samples to calculate correlation function, are needed. Another t
samples capacity in order to 
reduces computational complexity of correlation, a
Two registers need to be able to 
result of correlation. Finally, all multiplier
their output to store the re
functional and storage element

Table 5.2. – Number of functional unit

 

Figure 5.7. – Scheduling of energy calculator 

 

According to figure 5.6. there are four multipliers and four adder
realize correlator. Four multipliers are required because four multiplication

so, four adders are also required to execute t
haring of resources, in this case adders would be po

ary to introduce one more register which will store re
can be seen on figure 5.1., there are some 

hich has capacity of 80 samples, whose purpo
to calculate correlation function, are needed. Another two buffer
capacity in order to store 160 result of additions. Their pres
computational complexity of correlation, as it is explained in chapter 5.1. 

need to be able to store just one sample of real and one of imaginary 
ult of correlation. Finally, all multipliers and adders has to have one regi

tore the result of additions and multiplications. Total number of 
torage elements for correlator is in table 5.2. 

Type Amount 

Multiplier 4 

Adder 4 

Register 10 

Buffers 4 

Number of functional units and storage element
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As in previous chapter is mentioned, after energy calculator and correlator, next 
device in datapath is divider and belonging devices which calculated squared vaules 
of results of those two parts. Scheduling is shown on figure 5.8.

 

Figure 5.8. –

 

Devices used in this part are listed in table 5.3.

 

Table 5.3. – Number of functional units and storage elements in divider

 

 Scheduling of peak detector i
comparators. They are checking i
data will be sent to the buffer or to the node
Nodes C and D are calculating ab

As in previous chapter is mentioned, after energy calculator and correlator, next 
device in datapath is divider and belonging devices which calculated squared vaules 
of results of those two parts. Scheduling is shown on figure 5.8. 

 

 

– Scheduling of divider and belonging parts

Devices used in this part are listed in table 5.3. 

Type Amount 

Multiplier 4 

Adder 2 

Register 7 

Divider 1 

 

Number of functional units and storage elements in divider

 

cheduling of peak detector is shown on figure 5.7. Node
. They are checking is the sign bit ‘0’ or ‘1’, and depending on thi
ent to the buffer or to the nodes C and D. It consumes
D are calculating absolute value of correlation result. The
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As in previous chapter is mentioned, after energy calculator and correlator, next 
device in datapath is divider and belonging devices which calculated squared vaules 

Scheduling of divider and belonging parts 

Number of functional units and storage elements in divider 

Nodes A and B are 
ign bit ‘0’ or ‘1’, and depending on this result, 

s one clock cycle. 
ult. These nodes are 



 

containing inverter and adder. To invert 
time of inverter. In total, one cycle i
adder and it takes one clock cycle to execute operation, and al
of operation with threshold 
of element is). Node F is finally checking i
stored result. It takes one clock cycle. Depending on re
be written in buffer, as its index. Other

Figure 5.7. 

Referring to a scheduling of each 
devices will be used to each part.
resources as part of assignment proce

 Peak detector must contain t
correlation. Depending on re
calculates absolute value 
discussed in next chapter. Al
to comparator. One clock cycle i
value, two adders are needed. On their input
inversion of each bit. To execute thi
case of previous adders, regi
adder (and register) is required to execute addition of real and imaginary part
output of adder there will be a connected a comparator 

containing inverter and adder. To invert signal it takes only as much a
time of inverter. In total, one cycle is needed to execute this operation. Node E i

one clock cycle to execute operation, and also it compare
 (also as in previous case, it takes as much a
finally checking is result of correlation bigger than alre

one clock cycle. Depending on result of compari
index. Otherwise, old data will remain at the buffer.

 

Figure 5.7. – Scheduling of peak detector 

 

 

cheduling of each device, there must be determined 
ed to each part. Also, there will be considered po

ignment process. 

t contain two comparators to check sign bit of re
correlation. Depending on result, data will be send to buffer or to node C or D 

 It will be controlled by finite state machine, 
. Also, to store data temporally, one register mu

One clock cycle is required to execute this. To calculate ab
are needed. On their inputs there must be a device 

ion of each bit. To execute this operation, one clock cycle i
, register must be on its output to store re

required to execute addition of real and imaginary part
ill be a connected a comparator which generate
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Table 5.3. – Functional unit

 

After start sample is determined, frequency offset must be calculated. In figure 5.8. 
scheduling of this part as well as frequency compensator will be shown. 
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Functional units and storage elements in peak detector

After start sample is determined, frequency offset must be calculated. In figure 5.8. 
of this part as well as frequency compensator will be shown. 

 

 

Figure 5.8. – Scheduling of frequency compensator
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After start sample is determined, frequency offset must be calculated. In figure 5.8. 
of this part as well as frequency compensator will be shown.  

Scheduling of frequency compensator 
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Since delay elements (memories and registers) must be omitted from precedence 
graph as well as from scheduling, one clock cycle is added to divider because it 
consumes three clock cycles to execute division, and one cycle is added because 
one clock cycle is needed to get arctangent function result depending on result of 
division and signs of input arguments. As it is said in previous chapter, one complex 
multiplication must be executed because calculated frequency offset must be 

multiplied by constant 2l	/� which is stored in one memory, and second 

multiplication must be executed to get result of multiplication of received preamble 
and exponential function which compensates frequency offset. As it will be explained 
later, exponential function is calculated as sum of sine and cosine. Here it will be 
assumed that all 160 results are generated in same time, i.e. it consumes just one 
clock cycle to calculate sine and cosine depending on its result. Also, one clock cycle 
is added to first multiplier because it is needed to calculate sine and cosine by look-
up tables which are modeled as delay elements and they are omitted from 
precedence graph and scheduling.  

Scheduling of multiplier of unaffected preamble and received preamble will be 
considered in more ways. All 160 complex multiplications can be executed in same 
time. This will require 640 multipliers and 320 adders, but it will consume only two 
clock cycles to execute 160 complex multiplications. One complex multiplication can 
be realized by less than four multipliers and two adders, but it will require additional 
registers to store intermediate results. Saving on resources is not obtained, but time 
of execution has been prolonged. Scheduling of this part using 320 adders and 640 
multipliers is shown on figure 5.8.  

 

 

 

Figure 5.8. – Scheduling with 640 multipliers and 320 adders 

 

In contrast, if there will be used only four multipliers and two adders to execute 160 
complex multiplications. It will consume 320 clock cycles. Scheduling of this case is 
shown in figure 5.9. 
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Figure 5.11. – Scheduling of fully parallel solution 
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Figure 5.11. – Scheduling of fully serial solution 
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Other solution is fully serial and is considered in this paragraph. It will use one 
complex multiplier (i.e. four multipliers and two adders) to calculate product of 

Each complex multiplication 
consumes 2 clock cycles. There are two clock cycles needed to get a first result of 
multiplications, so there is in total required 161 clock cycle to get results of all 
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implementation it means that it will consume 12960 clock cycles to calculate sum of 

for which sum is biggest. One cycle is 

needed for comparison and one is needed for storing value, as in fully parallel 
implementation. Scheduling of fully serial solution is shown on figure 5.12. 

There can be also considered third solution which can be called mixed 
implemented as fully serial, and some 

which are implemented as fully parallel. Since last three parts are same in fully serial 
and fully parallel solution, there are just two combinations for mixed solution. One is 
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to use part for multiplication from fully parallel solution and additions from fully serial 
solution. Second one is to use addition part from fully parallel solution and part for 
multiplications from fully serial solution.  Resources vs. time diagram is shown on 
figure 5.12. It includes all cases, fully parallel, fully serial and two solutions for mixed 
solution.  

  

Figure 5.12. – Time vs. resources diagram of all solutions 

 

In total, for fully parallel solution there are needed 25269 adders, 642 multipliers, 

one comparator, one register to store temporal result, one to store index 1, two 

registers to store multiplication results of original and received preamble and 
multiplication of other parameters, mentioned when describing previous device. In 
fully serial solution, everything is same as in fully parallel solution except number of 
adders and number of multipliers. In this solution there are used six multipliers and 
five adders. Other two mixed solutions also have all same as in previous cases 
except number of multipliers and adders. One solution has 25269 adders and six 
multipliers, and other one has 642 multipliers and five adders. 
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5.5. Control design 

 

To describe function of device, there have been used signal data flow graph 
and precedence graph. After scheduling, there are known all devices which must be 
used to realize this device, and connections between them as well. However, it is not 
enough for device to perform its function. All these functional units, storage elements 
and buffers and their work must be controlled. This is obtained using finite state 
machine (FSM). Finite state machine consists of a set of a states, a set of transitions 
from one state to another, and set of outputs. There are two main types of finite state 
machines: Mealy and Moore. Mealy machine produces certain output depending on 
current state of machine and input value. In contrast, Moore machine output depend 
just on current state. Mathematically, it can be represented as 

 

〈S, I, O, n: SxI  → S, o: SxI  → O〉 
 

S is a set of the states, O is a set of the outputs, and I is set of inputs. n represents 
next state logic (calculates next state depending on current state and input), and o is 
output logic which calculates output depending on current state and input. This is in 
the case of Mealy machine. In case of Moore machine, it can be represented as 

 

〈S, I, O, n: SxI  → S, o: S  → O〉 
 

because output depends just on current state, not on input also. General scheme of 
finite state machine is shown on figure 5.8. 

 

Figure 5.8. – Finite state machine 
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In this figure is shown Mealy finite state machine. If it would represent Moore state 
machine, than input should not be connected to output.  

 Device in this project actually consists of two independent parts, since certain 
amount of time is just one active, and after that certain amount of time other part is 
active. So each part and its state machines will be considered independently. Only 
connection will be activation of second part by first part.  

 There will be one state machine for correlator and peak detector, as well as for 
energy calculator since it performs similar operations in same time as correlator. 
Those three subparts makes first independent part. Finite state machine of this part 

need to have three states. First state, which will be denoted as s� is when device is 

turned on, i.e. it starts to work and in this state machine stays only once. While there 
are not 160 samples processed, it will be assumed that initial 160 samples exist and 
they are equal to zero. Finite state machine will change its state when 160 samples 
are processed by correlator. Obviously, there is one counter needed. This state is 

denoted as s�. That is because peak detector does not need to perform any 

operation if there are not enough samples processed. In this state finite state 
machine will activate peak detector. It will stay in this state as long as peak detector 
detect start of the frame. After that, correlator and peak detector do not need to 

perform any function and becomes idle (this state will be denoted as state s�). All this 

can be described by using ASM chart (Algorithmic State Machine chart). It can be 
considered as one way to design finite state machine, and also it can be considered 
as less formal version of finite state machine. Unlike finite state machine, algorithmic 
state machine includes also variables used in datapath.  

 It is mentioned that correlator and energy calculator are executing their 
functions in same time, and they and their variables can be analyzed in same time. 
Possible units, register and bus sharing will be considered later. State machine which 
controls correlator and energy calculator has three states. Last state is when those 
devices are idle. Variables in datapath are same during first two states. Changing of 
state actually does not have any influence on correlator and energy detector because 
it only activates peak detector after 160 samples are processed. Only difference will 
be that there will no more be initial samples, which has values equal to zero. In 
correlator and energy calculator samples are all the time coming in, being processed, 
and going out, just several of them will be taken to analyze correlator and energy 
calculator. According to precedence graph and data flow graph of correlator, there 
are four input variables. One variable, which is not on graphs, is control variable and 
its purpose is to change state. It is actually output of one counter which is counting 
how many samples are processed. Input variables in correlator can be denoted a1, 
a2, b1, and b2. a1 can be considered as real part of first complex numer, a2 as 
imaginary part of first complex number, and b1 and b2 as real and imaginary part of 
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second complex number. Imaginary part of one complex number must have sign 
changed. Meanwhile, other variables are stored in registers for one clock cycle since 
one clock cycle is needed to execute this operation. This variable can be denoted as 
b2’. Outputs of the multipliers are calculated in next clock cycle and they can be 
denoted as m1, m2, m3, and m4. Outputs of adders which has inputs outputs of 
multiplier can be denoted as d1 and d2. There are two more adders in this device. 
Inputs in first ones are variables d1 and d2, and some old results which are 
calculated 160 clock cycles before, and they can be denoted as d3 and d4. There is 
actually subtraction performed, as it is described in previous chapter. Results of 
subtraction can be denoted as e1 and e2. Then it is added to result already stored in 
register, as it is described in previous chapter. Those variables can be denoted as e3 
and e4 and their result as f1 and f2. Life time analysis of variables is shown in table 
5.4. 

 

 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 

a1, a2, b1, 
b2 

X X     

b2’  X     

m1, m2, 
m3, m4 

  X    

d1, d2, d3, 
d4 

   X   

e1, e2, e3, 
e4 

    X  

f1, f2      X 

 

Table 5.4. – Life time analysis of correlator variables 

 

In this analysis only one set of variables is used, i.e. only one sample is considered. 
All these variables are present during first two states of finite state machine. To get a 
better view, equations will be written in table 5.5. 
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m1=a1*a2 m2=a1*b1 m3=a1*b2’ m4=b1*b2’ 

d1=m1+m3 d2=m2-m4 e1=d1-d3 e2=d2-d4 

f1=e1+e3 f2=e2+e4   

 

Table 5.5. – Equations in correlator 

 

 

Table 5.5. is enclosed here because it can produce a good view in similarities 
between correlator and energy calculator. Unlike correlator, energy calculator has 
just two inputs, but it has also four multipliers as correlator. Energy calculator 
calculates in first step squared value of complex number, so some multipliers has 
same inputs. Some inputs are also same as inputs in correlator. Let’s take that a1 
and a2 are same as in correlator. Equations in energy calculator are shown in table 
5.6. 

 

M1=a1*a1 M2=a1*a2 M3=a1*a2 M4=a2*a2 

D1=M1+M2 D2=M3+M4 E1=D1-D3 E2=D2-D4 

F1=E1+E3 F2=E2+E4   

 

Table 5.6. – Equations of energy calculator 

 

Similar as in case of correlator, with M1, M2, M3, and M4 are denoted outputs of 
multiplier. D1 and D2 are outputs of adders, E1 and E2 are next two adders which 
actually execute subtractions, and finally F1 and F2 are adders that add this value to 
final result. Life time analysis is shown in table 5.7. 
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 Cl1 Cl2 Cl3 Cl4 Cl5 

a1, a2 X     

M1, M2, 
M3, M4 

 X    

D1, D2, 
D3, D4 

  X   

E1, E2, 
E3, E4 

   X  

F1, F2     X 

 

Table 5.7. – Life time analysis of energy calculator 

 

From first table it can be seen that two multipliers has same input variables, and it 
means output also. Obviously, one multiplier from energy calculator can be obtained. 
Only one more bus must be added to output of multiplier to connect it to adders. Also, 
one multiplier of correlator and one in energy calculator has same inputs (and also 
output). Since correlator and energy calculator executes their operations in same 
time, one multiplier from one of this devices can be omitted and instead of it used 
certain multiplier in other device, i.e. share it. It is just necessary to add one more bus 
to connect multiplier’s output of one device to adder’s input of other device. Also, 
some adders could be shared as well. I.e. when variables D1-D4 are calculated, 
those adders can be used to calculate variables F1 and F2 in energy calculator. 
Hurdle can be if immediately after that addition is executed, new samples are coming 
on adder’s inputs because then it cannot be used for other variables. This analysis is 
not actually real life time analysis since it is made depending on clock cycles, and not 
depending on states since there are only two active states in this case.  

Divider and its belonging parts has also similar structure to correlator and energy 
detector. It has four multipliers. Both inputs in each multiplier are same since aim is to 
calculate squared value of it. Those variables can be denoted as r1, i1, r2 and i2. 
Results of multiplications are inputs of two adders. Outputs can be denoted as a1 
and a2. These values are not same values as those in correlator. Those values are 
inputs in divider. It is possible that divider uses multipliers and adders from correlator 
or energy calculator only in the case that clock frequency is high enough, i.e. there 
are no need for other data to be processed by correlator or energy calculator. If 
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certain data is processed in same time by correlator or energy calculator and divider, 
there is not possible to share functional units (in this case adders and multipliers). 

As it is said earlier, state machine which controls this part has three states. They are 
controlled by two signals. One is output of the counter which generates signal when 
160 samples are processed. Second one is output of peak detector. When peak is 
detected, it transforms finite state machine in third state, in which is actually device 
idle. State diagram is shown on figure 5.9. 

 

 

 

Figure 5.9. – State diagram of first part 

 

Signal which comes out from the counter is denoted as ‘c’, and signal which comes 
out from peak detector is denoted as ‘p’. 

Second part of device deals with frequency offset estimation and it consists of 
three main parts. First one calculates frequency offset, and compensates affected 
preamble with it. Second part multiplies result of this part with unaffected (original) 
preamble. Third part finally determines index q for which value I(q) is biggest. In 
frequency offset estimator first part is first which executes its function, second is 
second, and third executes it as last one. First part contains one divider, buffer which 
stores received preamble, one buffer which has precalculated values for argument for 
exponential function and look-up tables in order to calculate sine and cosine. First 
part of receiver has already finished its function so its devices can be used later for 
some other function. Divider is needed in first part of frequency estimator, and it is 
not used any more so this functional unit can be shared. It also contains two sets of 
multipliers. One set multiplies frequency offset by constants stored in memory, and 
other is set of complex multipliers which multiplies received preamble by exponential 
function, i.e. by sine and cosine with same arguments. When it is calculated, than 
second part must be activated. It multiplies earlier calculated result by original 
preamble. It uses same set of multipliers as part which multiplies received preamble 
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by exponential function. So, another functional unit can be shared. Result can be 
stored in register which earlier stored received preamble since it is not necessary any 
more. This result also must be multiplied by exponential function in the third part. 
Again, there are needed look-up tables to generate sine and cosine which are used 
instead of exponential function. Same type of complex multiplier is used, and is 
shared by all three parts of the frequency estimator. 
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6. Conclusion 
 

This paper deals with acquisition methods of OFDM system. Those methods 
has a purpose to detect start of the frame or symbol, and also to estimate 
frequency offset. All these operations are done before FFT (Fast Fourier 
Transform). Some facts known even before have been proven through some 
simulations made in MATLAB. It was proven that OFDM signal is very sensitive to 
sampling frequency offsets between receiver and transmitter, and also to carrier 
frequency offset introduced in channel or during frequency mismatch of oscillators 
in receiver and transmitter. Sensitivity is proven also to synchronization, and it 
was a deal of one part of this paper. There were analyzed methods for timing 
synchronization and for frequency offset estimation. There were chosen several 
methods and some of them had both, and timing estimation and frequency offset 
estimation. Timing synchronization was analyzed separately from frequency 
offset. Criteria of choosing methods was that they must be applicable to 802.11a 
standard. Parameters which were analyzed were probability of accurate detection, 
variance and mean squared error. In frequency offset analysis probability was not 
considered, but other parameter which was considered was range of estimation. 
Renn method showed best results according to all parameters, especially in range 
of estimation.  

In architectural design attention was paid to using as less as possible 
resources but that all timing constraints are satisfied. Significant reduction of 
complexity in the correlator was obtained with one accumulator which stores old 
results, and just with two adders (one addition and one subtraction) calculates 
new result of correlation instead of calculating multiplications and additions 
among all 160 received samples. Time of calculation is significantly saved here. In 
second part of device, there are several parts which are executing their function 
one after another in a row. Every part uses some very complex elements which 
are same or similar, so it can be shared between them since those parts do not 
need them at same time. There is made significant reduction of resource usages. 
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