DATA-DRIVEN RESOURCE MANAGEMENT IN REAL-TIME
STRATEGY GAMES

DION CHRISTENSEN, HENRIK OSSIPOFF HANSEN, LASSE JUUL-JENSEN,
KASPER KASTANIEGAARD

DAT6, Machine Intelligence

February 2011 — June 2011

Dion Christensen, Henrik Ossipoff Hansen, Lasse Juul-Jensen, Kasper
Kastaniegaard: Data-driven Resource Management in Real-time Strategy
Games, DAT6, Machine Intelligence, © February 2011 — June 2011

SUPERVISORS:
Yifeng Zeng

LOCATION:

School of Information and Communication Technology
Department of Computer Science

Aalborg University

TIME FRAME:
February 2011 — June 2011

ABSTRACT

As more replay data from real-time strategy games becomes avail-
able, it might be possible to utilise a data-driven approach in order
to streamline resource management in this type of game. This thesis
studies the application of a data-driven approach in exploitative and
explorative resource management in real-time strategy games. Previ-
ous work by the authors is summarised, detailing an algorithm for
efficient gathering of resources. The algorithm provides an increase in
the amounts of gathered resources, and is shown to be more predict-
able than the built-in approach used by the test bed. Furthermore, the
thesis touches upon base expansion. Based on expert knowledge, 28
features that may be considered when expanding have been identified.
Using feature selection methods, subsets containing 15 features are
produced. A total of six different sets are tested using both artificial
neural networks and decision trees. No subset shows a significant per-
formance gain compared to the full feature set, indicating low noise of
the data. The decision models using the feature sets are able to predict
base expansions in replay data with a hit rate of up to 64.43%.

iii

Artificial intelligence is the study of how to make
real computers act like the ones in the movies.

— Anonymous

Intelligence is what you use when you don’t know what to do.

— Jean Piaget

ACKNOWLEDGMENTS

We thank Bo Hedegaard Andersen for his enthusiasm and cheerful com-
pany during the project period. We would also like to thank Grace
Goodchild for her input on the various English language curiosities we
encountered throughout the scope of the project.

CONTENTS

1 INTRODUCTION
1.1 Real-time Strategy Games
1.1.1 Choice of Real-time Strategy Game
1.2 Related Work
1.2.1 Resource Gathering
1.2.2 Expansion Strategies
2 PROBLEM STATEMENT

I EFFICIENT RESOURCE GATHERING

3 INTRODUCTION

4 ALGORITHM

4.1 Resource Gathering Domain
4.2 Algorithm Definition
4.3 Travel Function
COMPLEXITY ANALYSIS

[0 XV |

EXPERIMENTAL RESULTS
DISCUSSION AND FUTURE WORK

II DATA-DRIVEN EXPANSION STRATEGIES
INTRODUCTION
THEORY OF DECISION MODELS
9.1 DecisionTrees
9.1.1 Decision Tree Learning
9.2 Artificial Neural Networks
9.2.1 Artificial Neuron
9.2.2 Activation Function
923 Learning
93 Summary
10 DATA EXTRACTION
10.1 Feature Proposition
10.2 Data Extraction Approach
10.2.1 Replay Format
10.2.2 Broodwar API.,
11 FEATURE SELECTION THEORY
11.1 Sequential Forward Selection
11.2 Sequential Backward Selection
11.3 Sequential Forward Floating Selection
12 FEATURE SELECTION EXPERIMENTS
12.1 Implementation of Feature Selection Methods
12.1.1 Data Set Used for Experiments
12.2 Feature Set Performance
12.2.1 Sequential Forward Selection

g Ul Ul Ul R R R

11
13
13
14
16
19
21

23

25
27
29
29
30
33
33
33
35
36
39
39
42
42
43
45
46
46
47
49
49
49
50
50

vii

viii

CONTENTS

12.2.2
12.2.3

Sequential Backwards Selection
Sequential Forward Floating Selection

123 Summary

13 FEATURE SELECTION EVALUATION
13.1 Using Artificial Neural Networks
13.2 Using Decision Trees
13.3 Further Testing
13.4 Results o ool

13.4.1
13.4.2

Artificial Neural Network Results
Decision Trees Results

13.5 Scenario o

14 DISCUSSION AND FUTURE WORK

14.1 Future
14.1.1
14.1.2
14.1.3
14.1.4
14.1.5
14.1.6

14.1.7

IIT APPENDIX

Work
Predicting Expansions
Dealing with Unknown Game States
Player Modelling
Alternative Decision Models
Use in Full Scale Real-time Strategy Games . . .
Alternative Performance Measures for Feature
Selection,
Improving Feature Selection Methods

FULL LIST OF FEATURES

=

TRACE OF SEQUENTIAL FORWARD FLOATING SELECTION

HIGH RESOLUTION COLOUR FIGURES

BIBLIOGRAPHY

LIST OF FIGURES

Figure 1.1
Figure 1.2
Figure 1.3

Figure 3.1

Figure 4.1

Figure 6.1
Figure 6.2
Figure 9.1
Figure 9.2

Figure 10.1
Figure 13.1

Colour figures are presented in Appendix C in higher resolution.

function.

An excerpt from a StarCraft match.
An excerpt from a Wargus match.
An excerpt from Open Real-Time Strategy (ORTS).
The screenshot is taken from the official ORTS
website.
Screenshot showing the lower left corner of the
official StarCraft: Brood War map Astral Balance.
(i) None of the agents have moved. A is assigned
to my, B to my, C to m,. (ii) A is done using m;,
B is gathering my, C starts gathering m,. (iii) B
is done using mj, A is moving to D, C is still
gathering m,. (iv) C is done using m;, A is still
moving to D, B is moving to D. (v) A delivers
to D and is assigned to m;, B is still moving to
D, C is moving to D. (vi) B delivers to D and
is assigned to mj, A is moving to m,, C is still
moving to D.
Comparison of the two methods, showing the
amount of minerals gathered over time.
Comparison of the standard deviation of the two
methods. o L
A simple decision tree showing a connection
between resources, food, army size and victory.
A neural network modeling the binary AND

An example containing expansion sites.
A visual representation of the scenario.

LIST OF TABLES

11

29

Table 4.1

A sample trace for the scenario in Figure 4.1.
From the left is the current time, the action of the
affected agent, the current state of both resource

site queues and the amount of gathered resources.

17

ix

Table 12.1 Trace of the Sequential Forward Selection method

using the feature set containing 28 features. 50
Table 12.2 Trace of the Sequential Backwards Selection method
using the feature set containing 28 features. 51
Table 12.3 Partial trace of the Sequential Forward Floating
Selection method using the feature set contain-
ing 28 features., 52
Table 12.4 Overview of the obtained feature sets. A check-
mark (v') denotes that the specific feature is
included in a featureset.. 53
Table 13.1 Results for each set chosen by feature selection
using Artificial Neural Networks (ANNs). 58
Table 13.2 Results for each set chosen by feature selection
using decision trees. 59
Table 13.3 Results for choosing at random, used as a baseline
for comparison. L L 60
Table 13.4 Training times for ANNs and decision trees, in
seconds. 60
Table 13.5 Running times for ANNs and decision trees, in
seconds. 60
Table 13.6 Table containing the game state representation
of the scenario. 62
Table A.1 Summary of the 28 features used in the thesis,
including the full name, the domain of the fea-
tures as well as a short description. 72
Table B.1 Full trace of the Sequential Forward Floating
Selection method using the data set containing
28 features. 75
LIST OF ALGORITHMS
1 Resource gathering algorithm 15
2 The decision-tree learning algorithm. Figure 18.5 in
Russell and Norvig [13, page702] 31
3 Learning with backpropagation 36
4 The Sequential Forward Selection Algorithm 46
5 The Sequential Backward Selection Algorithm 47
6 The Sequential Forward Floating Selection Method . . 48

ACRONYMS

ACRONYMS

ANN Artificial Neural Network

BWAPI BroodWar Application Programming Interface
BWTA BroodWar Terrain Analyzer

DLL Dynamic Link Library

GPL GNU Public License

MAE Mean Absolute Error

ORTS Open Real-Time Strategy

PFS Perceptron Feature Selection

RTS Real-Time Strategy

SBS Sequential Backward Selection

SFFS Sequential Forward Floating Selection

SFS Sequential Forward Selection

el

INTRODUCTION

The problem domain of this thesis is the feasibility of utilising machine
intelligence methods for gathering resources and choosing expansion
locations in Real-Time Strategy (RTS) games, using a data-driven ap-
proach. An increasing availability of replay data has made RTS games
interesting with regard to data-driven approaches. The work done
in the area of resource gathering mentioned in this thesis is a re-
production of previous work done by the authors, Christensen et al.
[5, 6]

This introduction will act as preliminary reading for understanding
the problem domain, and will give a brief introduction to related
work within the field of research. Preliminary reading specific to
resource gathering will be presented in Chapter 3 and preliminary
reading specific to choosing expansion locations will be presented in
Chapter 8.

The exploration of the problem domain in this chapter is concluded
with the problem statement in Chapter 2.

1.1 REAL-TIME STRATEGY GAMES

In a typical RTS game, two or more players battle each other for map
domination by issuing real time commands to multiple units [11].
Some units will be workers, others will be combat units. Worker units
are used to build structures and collect the resources needed to build
new units and structures. Combat units are used to battle opponents in
order to destroy their units and structures to ensure control of the map.
Units are usually split up in a range of different types, e.g. airborne,
ground and naval, each with their own strengths and weaknesses. In
order to win a match in an RTS game, a player needs to make sound
strategic decisions, and sustain a healthy income of resources in order
to finance their army. A player usually needs to secure other resources
than those immediately available. In order to secure new resources,
a player needs to seek out a strategic location while maintaining the
financial backbone for setting up a defensive perimeter.

1.1.1 Choice of Real-time Strategy Game

In order to facilitate experiments, an RTS game must be chosen as test
bed. This section will present RTS games commonly used for research
purposes, and will be concluded with a selection of the RTS game to
be used as a test bed throughout the thesis.

INTRODUCTION

1.1.1.1 StarCraft: Brood War

StarCraft is an RTS game developed by Blizzard Entertainment, re-
leased in 1998. It is, at the time of writing, considered the best selling
strategy game of all time [4] and it is very popular in eSports tour-
naments. In Korea, professional StarCraft players are in some sense
comparable to professional athletes; idolised by fans and receiving
six digit pay checks [9]. Late in 1998, a popular expansion pack, Star-
Craft: Brood War, was released, adding new content to the game. A
screenshot of StarCraft: Brood War can be seen in Figure 1.1.
StarCraft and its expansion are closed source, but implementation
of artificial intelligence methods in the games can be achieved using
Dynamic Link Library (DLL) injection using the tool Chaoslauncher?.
Loadable modules can be built using BroodWar Application Pro-
gramming Interface (BWAPI)*> and BroodWar Terrain Analyzer (BWTA)3.
These tools give developers the ability to view and control units in
StarCraft, facilitating artificial intelligence research within the game.

Figure 1.1: An excerpt from a StarCraft match.

1.1.1.2 Wargus

Wargus* is a modification of Warcraft II to make it compatible with
the open-source cross-platform Stratagus engine>. Wargus requires a
copy of Warcraft II for models and sounds. Opposed to Warcraft II, a
player can make adjustments to in-game units, for example increasing
their firepower, using the Lua scripting language. Wargus is written in

1 http://winner.cspsx.de/Starcraft/
2 http://code.google.com/p/bwapi/

3 http://code.google.com/p/bwta/

4 http://wargus.sourceforge.net/

5 http://stratagus.sourceforge.net/

http://winner.cspsx.de/Starcraft/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwta/
http://wargus.sourceforge.net/
http://stratagus.sourceforge.net/

1.1 REAL-TIME STRATEGY GAMES

C++, and since the source is freely available, the game is completely
open to artificial intelligence research. A screenshot of Wargus can be
seen in Figure 1.2.

Figure 1.2: An excerpt from a Wargus match.

Wargus has previously been used for research purposes; Chan et al.
[3] use Wargus to test an online planner which uses means-ends
analysis to pick the best sequence of actions to reach some specified
resource goal. Their experiments show that the planner performs at the
same level as a competitive human player, and perform significantly
better than state of the art planning algorithms.

1.1.1.3 ORTS

ORTS® is a programming environment developed specifically for re-
search on RTS games. The developers of ORTS state that commercial RTS
games are closed source, and only offer implementation of research
Al by hacking the games in some way. The source code for ORTS is
freely available, licensed under GNU Public License (GPL), and the
developers encourage researchers to consider ORTS as test bed for their
research. A screenshot showing ORTS can be seen in Figure 1.3.

The developers state that commercial RTS games have security issues,
in that games are simulated in full on a peer-to-peer basis, making
it possible for malicious players to access the full game state. ORTS is
designed as a server/client architecture, where only the individually
visible parts of the game state are sent to the game clients.

ORTS is made in C++ and implements a homebrewed scripting
language to define the game scenarios playable in the engine [2]. It
is considered platform independent, and is known to run without
problems on both Linux and Windows. Buro [1] motivates the research
of artificial intelligence in RTS games, and suggests that researchers
both use and contribute to the ORTS development.

6 http://skatgame.net/mburo/orts/

3

http://skatgame.net/mburo/orts/

4

INTRODUCTION

Figure 1.3: An excerpt from ORTS. The screenshot is taken from the official
ORTS website.

1.1.1.4 Own Real-time Strategy Game

An RTS game could be created specifically for the work done in this
thesis. In this way, there would be full control over what happens, and
agents would be easier to implement. It would, however, require a
large workload. Since the focus of this thesis is not the development
of an RTS game, this seems impracticable.

1.1.1.5 Summary

In this section, four choices of RTS games have been presented. Due
to the popularity of StarCraft, the possibilities made available by
Chaoslauncher and BWAPI, and the great amounts of data available,
StarCraft is deemed the most interesting test bed, and subsequent
sections of this thesis will revolve around StarCraft. Additionally,
StarCraft is non-colliding in terms of agents gathering resources, which
makes research on resource gathering a less complex problem to deal
with.

The popularity of StarCraft facilitates the use of data-driven ap-
proaches, due to an increasing amount of available data. The data is
obtainable through replays made available on websites such as iCCup?,
where thousands of replays are open for download, indicating that
StarCraft is very prominent in terms of replay data.

7 http://www.iccup.com/

http://www.iccup.com/

1.2 RELATED WORK

1.2 RELATED WORK

Previous work on resource gathering and expansion strategies in
RTS games are limited. This section contains related work on both
resource management and expansion strategies, and an evaluation of
the usefulness of the work.

1.2.1 Resource Gathering

Wintermute et al. [15] create an agent for controlling a player in the
open source RTS engine, ORTS. The agent utilises Soar® which is a
decision-making framework for developing intelligent agents that
must choose actions in some specialised environment.

The agent uses a human-inspired mechanism for selecting inform-
ation, referred to as an attention system. In this system, the position
and size of a rectangular view field determines which information is
currently available, and a focus point chooses which parts of the view
tield should currently be attended.

Wintermute et al. [15] state that ORTS is a minimalistic RTS game
engine that does not implement abstract command features e.g. at-
tacking and gathering resources. Most commercial RTS games provide
these features. In order to provide Soar with a human-level interface,
the most common commands are implemented through the use of
finite state machines.

Resource gathering is handled through a dedicated coordinator
which utilises the high level commands of the human-level interface.
The coordinator works by using simple learning through discovering
poorly performing gathering routes and switching workers in these
routes to potentially better performing ones. The coordinator does not
take collisions between workers into account. This is instead handled
reactively when two workers are about to collide.

The agent implemented by Wintermute et al. [15] performed well
for the resource gathering competition at AIIDE 2006, even though
it made no attempts at calculating the optimal solution. Reactive
heuristics in combination with a simple learning approach performed
well enough to win the competition, collecting 28% more resources
than their closest competitor.

1.2.2 Expansion Strategies

Weber and Mateas [14] use case-based reasoning for selecting build or-
der strategies using the open source Warcraft I modification, Wargus,
as test bed. They affirm that RTS players perform constant reconnais-
sance in order to counter the strategy of their opponent and argue
that scouting is vital in RTS games.

8 http://sitemaker.umich.edu/soar/home

http://sitemaker.umich.edu/soar/home

INTRODUCTION

They developed a method which performs scouting through a heur-
istic and use the intelligence gathered for identifying similar game
states. A strategy that has been shown successful against a similar
game state is then selected as a response. In order to decide how
well one strategy fares against another, several scripts representing
different strategies were created and each script was tested by running
it against the other scripts.

The case-based selection method was tested against several other
Als, including the built-in AI of Wargus. Experiments were performed
with both perfect and imperfect information. The results indicates a
better win rate for perfect information.

The primary useful points from Weber and Mateas [14] are that
scouting for information is important for winning an RTS game. Though
no experiments are done against human players, the experiments in-
dicate that there is a connection between observable actions of the
opponent and the future actions of this opponent, making strategy
prediction a valid method for computerised opponents, at the very
least. It is possible that human players are not predictable to the same
degree as the scripted opponents used for this paper. However, it
would be interesting to examine which human player strategies (if
any) could be predicted from a collection of reference data.

PROBLEM STATEMENT

The scope of this thesis is data-driven resource management in RTS
games, with a focus on games where agents collecting resources cannot
collide with each other, game states cannot be fully observed, and
expansions are needed to provide a sufficient flow of resources.

Resource management may be split into two categories; exploration
and exploitation. Exploration deals with discovering or creating new
resource gathering opportunities. Exploitation deals with collecting
resources and optimising the use of the resource sites that have been
claimed.

The categories have been synthesised into two tasks, i.e. resource
gathering—the act of amassing resources from the resource sites that
have been obtained—and base expansion-the act of creating expansions
in order to gain access to new resources and further facilitate the
collection of resources. In order to efficiently expand to new locations
in the game environment, some decision model is needed.

This thesis summarises previous work by the authors, and deals
with the problem domain of choosing expansion locations, using a
data-driven approach. This may be done by identifying and utilising
the features that are considered significant by human players, when
choosing expansion locations.

StarCraft: Brood War will be used as test bed for any proposed
solutions of both the problem of resource gathering and expansion
strategies.

Part 1

EFFICIENT RESOURCE GATHERING

INTRODUCTION

In RTS games, a player usually does not take direct control of the
agents that have been assigned to gather resources. When an agent
is ordered to gather resources, the agent will move to the resource
site, gather an amount of the resources, return to the nearest resource
deposit, and then continue to gather resources until a different order is
issued. The build-in method used for gathering resources in StarCraft
and StarCraft: Brood War is designed in this way.

In StarCraft, a standard game map contains several clusters of
resource sites as seen in Figure 3.1. The crystals seen in the lower left
and top right corners, along with the geyser to the right of the crystals
in the lower left corner represents the two collectable resources of
StarCraft.

Figure 3.1: Screenshot showing the lower left corner of the official StarCraft:
Brood War map Astral Balance.

Players of the game are able to build new resource deposits at will,
and they start out with one close to a cluster, like the building in the
lower left corner in Figure 3.1.

To avoid agents colliding with each other in the small area between a
resource deposit and a cluster of resources, the mechanics in StarCraft
is designed to disable collisions for agents gathering resources. As
soon as an agent is given an order other than collecting or delivering
resources, i.e. to move to a specific area, collisions are re-enabled for
that agent.

11

12

INTRODUCTION

Only one agent is allowed to gather from a resource site at a time. If
a resource site is occupied when an agent arrives to gather resources,
the agent will go to an unoccupied resource site in the cluster, or wait
until the resource site is available. Choosing a different resource site
may lead to the appearance of an agent regretting its previous goal in
order to choose a new goal. This behaviour will, in some cases, result
in the agent leaving a resource site that is becoming available shortly
for a resource site that will be occupied shortly, thus wasting time on
travelling. Waiting for availability may cause an agent to waste time
waiting instead of moving to another resource site. Any time spent not
moving to the correct resource site, or waiting for the wrong resource
site, causes a loss compared to the optimal behaviour. Furthermore,
the erratic movement may cause the resource income rate to spike or
drop—when an agent chooses a new path-making it difficult to predict
the amount of resources available at a later point in time.

To avoid these problems, direct control can be applied to the agents,
where the future availability of the resource site is considered before
moving. Since units gathering resources in StarCraft do not collide
with one another, focus may be kept solely at scheduling.

ALGORITHM

This chapter introduces the domain of resource gathering formally,
and describes an algorithm for resource gathering in this domain. The
algorithm utilises a queuing system by using recorded travel times.
These are then used for distribution of agents, in order to increase
income.

4.1 RESOURCE GATHERING DOMAIN

Given a set of agents A = {ai[i =1,...,n} and a set of resource sites
M = {m;lj = 1,..., 1} located in a two-dimensional Euclidean space,
each site m; having an attached amount of resources 7 € Z7", choose
a subset S C G of gathering tasks G = A x M x T, where T is a set of
time indices in the domain, such that the total amount of resources
R = 2}21 1 is gathered in a minimal time mt.

All agents have a fixed maximum capacity for carrying resources, i
and will collect 14 = min(ry, 7;) from a site before needing to unload
their cargo at a resource deposit D. The time required for the actual
gathering is a constant time C. For each site m; there exists exactly one
resource site queue Qj containing the agents that will gather from this
resource site next. A resource site queue is defined as a totally ordered
set of agents Q; = {an € Alh =1,...,z;}, Vah € Q; = an & Qx
where j # k, such that each agent is assigned to at most one resource
site queue at a time. When an agent has finished gathering, it is
removed from the queue. The first element a; € Q; is the agent that
may use the resource site first.

Let mt be the total time that is required to execute every gathering
task s;; = (ai, m;) € S. Specifically, a gathering task s; ; ¢ is completed
in a round-trip time rtt;; after agent a; travels from D to a site m;,
potentially waits in line, collects resources and returns to D.

Equation 4.1 shows a calculation of the round-trip time, which
aim to minimise by optimising efficient resource gathering through
scheduling.

ity = tth; + max [0, 7t — tth ;] + C+tt] . (4.1)

where tt}D,j is the time required for the agent a; to travel from depot
D to the resource site m;. rt; is the remaining time for site m; to
become available after all agents in queue Q; have completed their
work. Thus, the time agent a; would wait in line is the remaining time
for the queue to become empty, rt;, minus the time that has already

13

14

ALGORITHM

been spent on traveling. The constant collecting time C is also added
along with the travel time to return to the resource deposit tt},D.

By using resource site queues, it is possible to determine the best
site to send agents to, in order to minimise the time required for the
agent to return to D with an amount of resources. Equation 4.2 states
the remaining time for an agent h in queue Q; to finish gathering
the resource m;. cy, refers to the remaining collection time of the hth
agent in the queue, ay, € Qj where 0 < ¢y, < C. Bear in mind that ¢y,
is exactly C in every case other than the first agent in the queue.

tt%j-i-ch forh=1 (4.2)
— 2 . (42
rt]h_] +max |0, tt%,j — r’c}‘_1 +C forh>1

h
rtj

The required time for agents ahead of a given agent for finishing
the collection of resources from a resource site, is included in the
recursive definition of rt)h. The total time of Qj is therefore rt; = thzj,
meaning the time required for the last agent in Q; to finish gathering
the resource.

The time required for an agent to finish gathering is dependent
on the time required for the preceding agent, as gathering cannot
occur before the preceding agent has completed gathering. The time
required for the first agent in the queue, rt]] does not depend on any
preceding agents, so only the travel time and the remaining gathering
time needs to be included.

4.2 ALGORITHM DEFINITION

An algorithm was developed as a practical utilisation of equations
4.1 and 4.2. Minimising the round-trip time for an agent will cause
the agent to always pick the resource site that will allow for the
fastest delivery of an amount of resources in a greedy fashion. The
main mining algorithm can be seen in Algorithm 1, along with the
procedure Work(Q,a).

The algorithm is run every time an agent needs to be assigned to a
resource site queue.

In line 2, the algorithm iterates through every agent that is not
currently assigned to a queue. Lines 3-10 iterates through the set of
resource site queues to find the queue that requires the least amount
of time for the agent to return with a deposit, and then adds the agent
to the queue. tt;,D is the travel time of the agent a;, from the resource
site in the given iteration to the resource deposit.

The procedure Work(Q,a) accepts a queue Q and an agent a as
parameters and returns the total time spent on traveling to the re-
source site, waiting in line and gathering from the resource site. The
procedure works by recursively calculating the time required by the

4.2 ALGORITHM DEFINITION

Algorithm 1 Resource gathering algorithm

=

=
Q

=Y
i

12!
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

e PN v B W N

Declarations
Q1,...,Qq : Resource site queues.
ttl : Travel time from resource site x to resource deposit.
time + o
for all a; ¢ J;_, Q; do
forx=1...1do
A+ Qx U{ai} .
if Work(A, ai) +tt, p < time then
time « Work(A, a;) + tt
best < x
end if
end for
Quest + Quest U{ai}
end for

Parameters
Q: Resource site queue containing a.
a: Agent.
Returns
Time until a is removed from Q.
Declarations
z = |QJ : Number of elements in Q.
p =hwhere a =an, € Qand 1 < h < z: Position of a in Q.
tt}),j : Travel time from resource deposit to resource site j.
procedure Work(Q, a)
w0
if p =1 then
return ttbj +C
end if
forh=1...p—1do
w <+ w+ Work(Q, an)
end for
ifw> ttbj then
W= w—ttp
else
w0
end if
return ttbj +w+C
end procedure

15

16

ALGORITHM

@ @ ()
5O [| Co [0

(i) (iii)

@ @ @

® @ @& ® |® g
© @@D D

(iv) v) (vi)

Figure 4.1: (i) None of the agents have moved. A is assigned to m;, B to
myp, C to m,. (ii) A is done using m;, B is gathering m, C starts
gathering m;. (iii) B is done using mj, A is moving to D, C is
still gathering m,. (iv) C is done using m;, A is still moving to
D, B is moving to D. (v) A delivers to D and is assigned to m;, B
is still moving to D, C is moving to D. (vi) B delivers to D and is
assigned to mj, A is moving to m;, C is still moving to D.

agents ahead in the queue (lines 17-18) in order to calculate the time
spent waiting in line.

Since the time spent on traveling is included in the return value in
line 25, the travel time has to be subtracted from the waiting time in
lines 20-24. ttp; is the travel time from the resource deposit to the
resource site to which the argument queue, Q belongs.

Consider the scenario in Figure 4.1 in which three agents, A, B and
C must gather resources from m; and m; by transporting resources
from these positions to the resource deposit D. The actions of the
agents resulting from applying Algorithm 1 to this scenario can be
observed in Table 4.1. Each queue is initially empty and each agent is
initially not assigned to a resource site.

The first three rows in the trace display each agent being assigned to
their first resource site. The algorithm takes the distance to be travelled
into account for each agent as well as the remaining time for agents
that have already been assigned to a resource site. When agents return
to D, Algorithm 1 is run again, to assign the agents to their next
resource site. Over the course of a session, each agent may be assigned
to different resource sites, depending on their availability.

4.3 TRAVEL FUNCTION

As mentioned in Chapter 2, the test bed of the algorithm is StarCraft:
Brood War. In this game, agents do not move at a constant speed.

Table 4.1: A sample trace for the scenario in Figure 4.1. From the left is the
current time, the action of the affected agent, the current state of
both resource site queues and the amount of gathered resources.

4.3 TRAVEL FUNCTION

Time Action Queues Resources

0 A move to m, Qm, =10 0
sz = {A}

o B move to m; Qm, ={B} o
sz ={A}

o C move to m; Qm, ={B} o

sz = {A/ C}

190 A move from m; Qm, ={B} o}
sz = {C}

206 B move from m; Qm, =0 0
sz = {C}

270 C move from m; Qm, = 0

Qm, =0

280 | A deliver & move to my Qm, = 8
sz = {A}

314 | B deliver & move to my Qm, ={B} 16
Qm, ={A}

17

18

ALGORITHM

An agent, given a movement order while standing still, will first
accelerate towards a maximum speed and decelerate before reaching
its destination.

Since StarCraft: Brood War, is closed source, access to the algorithms
used for path finding and acceleration in the game is restricted. To
compensate for this, travel times are measured and stored. Every time
an agent moves between the resource deposit and a resource site, the
time of the travel is recorded. Information on the travel is saved in a
lookup table, including the starting position, the destination and the
time spent travelling. As the function will only be used to decide the
travel time between a resource deposit and the stationary resource site,
the amount of starting position/destination pairs is limited, making
this approach possible.

Whenever another agent is moving in a path equal to a recorded
path, the original estimate of the time needed for travelling is used and
potentially revised. Given enough data, all possible paths an agent
may use when mining resources is known for a specific map.

The information is gathered offline by using the resource gathering
algorithm, where the travel function is defined as a function that
returns a previously calculated value. If no data matching the source
and destination exists, the function returns a low value to allow the
agent to take the path and thereby gather previously unknown data.

It should be noted that this approach necessitates that the environ-
ment is either static or that changes does not influence the travel times.
This is not the case in StarCraft: Brood War, as new travelling paths
may become available when resource sites are depleted. Depleting a
resource site causes the area previously blocked by the resource site to
become passable. This does not impact the experiments performed for
this thesis as the experiments do not run long enough for any resource
site to become depleted. In general, due to the nature of resource
gathering in StarCraft: Brood War, the resource sites will often deplete
at approximately the same time, making the influence of the variable
environment negligible.

COMPLEXITY ANALYSIS

The time complexity of Algorithm 1, given k resource sites and n
workers is as follows: At a given run of the algorithm, the loop starting
in line 2 is run a maximum of n times (when no workers have been
assigned to a queue). In each of these loops, the loop starting in line 3
is run k times. Finally, in each of these inner loops, at most 2 calls are
made to procedure Work(Q,a), as seen in lines 5-6. This makes for a
worst case scenario of n- k-2 - f(n), where f(n) is the time complexity
of procedure Work(Q,a), given the maximal possible size of a queue,
n.
Other than the loop starting in line 17 of procedure Work(Q, a), the
execution time of the lines in procedure Work(Q,a) can be bound
by a constant factor, since the structure of the rest of the algorithm
consist solely of if/else statements. The complex part of procedure
Work(Q,a) is the recursive call in line 18. To keep the algorithm simple,
no unnecessary optimisations have been made, making the running
time

0 forn =1

f(n) = .
211 forn>1

By using simple optimisations, keeping a local variable for the
result of the call to procedure Work(Q,a) in lines 5-6 of Algorithm 1
and using dynamic programming for the result of the recursive calls
in procedure Work(Q,a), the complexity can be brought down to
n-k-n=n?-k= 0(n?).

19

EXPERIMENTAL RESULTS

The algorithm was implemented and the performance of it compared
with the built-in resource gathering method in StarCraft: Brood War.
Both methods were used, whilst creating 18 agents on the map Astral
Balance. Each time an agent was created—or had performed a gathering
task—it was assigned to a resource site queue using the algorithm. For
the purpose of the test, the tenth agent was ordered, upon creation, to
construct a supply depot next to the resource depot to allow for the
construction of an additional 8 agents. In order to ensure fairness, all
tests were performed in the upper right corner, even though the differ-
ence of starting positions for players is usually considered negligible.
The starting position is next to a mineral cluster consisting of eight
mineral fields, each holding 1,500 minerals.

The performances of both methods are measured by evaluating two
properties: the average cumulative amount of resources collected by
agents over the course of 8,000 frames, as well as a standard deviation
of gathered resources during this time frame.

4000

=
72} ~
= =~
Q 3000 | =7
o -
— 72 =
< _
3 2000 | //
= 7
- -
_
1000 | e
= -
0 — _ T T T T T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Frames
—— Our algorithm — — Built-in method

Figure 6.1: Comparison of the two methods, showing the amount of minerals
gathered over time.

Figure 6.1 shows a comparison between the two methods with
regards to the total amount of collected minerals during the course of
8,000 frames.

The graph shows the average amount of minerals collected at dif-
ferent time intervals during experimental runs of StarCraft: Brood
War. The graph is based on data from 10 runs. Clearly, the proposed
algorithm increases the income of the player compared to the built-in
method. Furthermore, the trend of the curve for the proposed al-
gorithm is easier to recognise than the curve of the built-in method,

21

22

EXPERIMENTAL RESULTS

indicating a higher predictability. The predictability is further elab-
orated in Figure 6.2, depicting the standard deviation in the course
of the 10 runs. The figure shows that the standard deviation of the
minerals collected by both methods grows as time passes. There is a
clear tendency that the deviation of the built-in method grows faster
than that of the proposed algorithm.

50
40 |

30

Total resources

20

: ik

0 1000 2000 3000 4000 5000 6000 7000 8000
Frames
= Our algorithm Built-in method

Figure 6.2: Comparison of the standard deviation of the two methods.

DISCUSSION AND FUTURE WORK

Experiments show that Algorithm 1 provides an increase in the
amount of resources gathered compared to the built-in method of
StarCraft. Furthermore the experiments show that the algorithm is
more predictable. The predictability can be used to predict the amount
of resources collected within a specific time frame.

The increased predictability of income using Algorithm 1 makes
it eligible for use in other aspects of an RTS game. An example is to
develop a scheduler for construction of, for example, military units.
By using the algorithm, it is possible to predict the time at which point
the scheduled production line is finished. The algorithm enables the
possibility of acquiring an accurate estimate of the gain from utilising
resource sites from other areas in the game world. This is interesting
for RTS games in which new resource deposits may be created by a
player.

The algorithm is general in the sense that it can be applied for RTS
games having the following rules.

* Several resource sites are present

* A resource site contains several units of the resource

¢ Agents move between a resource site and a resource deposit
* Only one agent may use a resource site at a time

The algorithm is greedy in the sense that each agent makes decisions
that allow for the fastest mineral gain for itself, but not necessarily the
best for all agents in a team. It might be beneficial to run the algorithm
over a group of agents by having them act as a team and optimising
the group income instead of the individual income over time.

Notice that the algorithm depends on the implementation for com-
puting travel times, potentially necessitating a consideration of agent
collisions. In some RTS games, the travel time is less significant, due
to the distance from a resource site to a resource deposit, the number
of agents or other game specifics. In RTS games similar to StarCraft:
Brood War we expect to observe similar performance of the proposed
algorithm.

The simple approach to calculating travel times, presented in Sec-
tion 4.3, only works in a static environment which, in our case, is
ensured by not running the game long enough for any resource site to
deplete. In essence, this keeps the environment static. For a travel time
function to work in a dynamic environment, an approach complying
with environmental change is needed.

23

24

DISCUSSION AND FUTURE WORK

The travel time between positions must either be known or it must
be possible to estimate this value. A general algorithm for calculating
travel time has not been presented, as the value is very dependent
on the environment. If the value of the travel time is not exact, the
algorithm does not guarantee the lowest round-trip time for an agent.

Part II

DATA-DRIVEN EXPANSION STRATEGIES

INTRODUCTION

As mentioned in Chapter 2, the scope of this thesis is resource man-
agement using a data-driven approach. This part of the thesis focuses
on base expansion. Chapter 2 states that it is important to expand in
order to facilitate the exploitation of resources other than those in the
immediate area.

A decision model can be used to model the task of choosing a
satisfactory location for base expansion. A variety of decision models
exist that may be used to model this problem. The overall theme of this
thesis is data-driven resource management, and the chosen decision
model should conform to this. The goal is to mimic the actions of a
human player choosing a location for base expansion.

A set of input features is needed in order to construct a decision
model that is able to determine sound locations for base expansion.
These features can be determined through expert knowledge. Though
a large number of features may be found, the significance of these may
not be easy to identify. Features of low significance may introduce
noise to the model. The removal of these features is likely to make the
decision model less prone to approximation errors.

There exist a number of methods, which can be used to remove fea-
tures of low significance, called feature selection methods. In this case,
the features that should be removed are those which do not contribute
to the estimation of relevant expansion locations. The reduction of
features provides a less complex structure of a decision model. In the
case where the values of some features are estimates, the removal of
these is likely to result in a more deterministic decision model output.

Chapter 9 contains the theory of two decision models applicable
for the task of choosing an expansion location. Chapter 10 deals with
selecting the initial feature set, using expert knowledge. Chapter 11
describes the theory of three different feature selection methods for
choosing a set of the most significant features. Chapter 12 deals with
the implementation of the three feature selection methods and the
initial performance of the attained feature sets. In Chapter 13 the
attained feature sets are evaluated. Chapter 14 contains a discussion
on the work done in this part of the thesis along with suggestions for
future work.

27

THEORY OF DECISION MODELS

This chapter covers the theory of two common decision methods,
utilised to solve the problem of choosing a satisfactory location for
base expansion. The chapter explains the structure of both methods,
how they are trained and how they are used to make decisions. The
two decision methods are compared using test scenarios in Chapter 13.

9.1 DECISION TREES

Decision trees represent a function, mapping a vector of attribute
values to a single output value [13]. The non-leaf nodes represent the
attribute values, while the edges from each of these nodes are labelled
with the possible values of the particular attribute. Figure 9.1 shows a
decision tree with three attributes; Resources, Food and Army size. The
tree is a model, classifying the outcome of an RTS game, given the state
of the aforementioned attributes. A path from a root node to a leaf
node represents a particular game state, while the leaf node represents
the outcome.

Starting with the root node, a decision tree is used by evaluating
the variable of a node and following the corresponding label to the
next node. This is performed until a leaf node is reached. The reached
leaf node is then the output of the decision tree. As an example,
given 400 resources, 10 food and an Army size of 12, by following the
corresponding edges of the tree (left, left, right), the leaf node Win
is reached, indicating a victory. This relation is, evidently, a crude
simplification of reality and serves only as an example.

A % A& PN

}i/ﬁ}{‘ ki/ﬁ}

Figure 9.1: A simple decision tree showing a connection between resources,
food, army size and victory.

ms
5 ozo»

29

30

THEORY OF DECISION MODELS

Decision trees are easy to read. The simplistic nature of the trees
makes them fast and efficient to evaluate. The problem of learning
an optimal decision tree is, however, known to be NP-complete [7],
necessitating training solutions that approximate the optimal decision
tree for large problems.

9.1.1 Decision Tree Learning

This section describes decision tree learning and is based on Rus-
sell and Norvig [13, Pages 697-704]. The complete set of all possible
decision trees made from a set of attributes is very large, making
it infeasible to iterate all combinations to find the tree that most
closely resembles a given function. Since it is not always possible to
simply construct the decision tree with expert knowledge, a learning
algorithm is necessary.

A tuple (X,y), where X is a vector of attribute values and y is the
target output, is called an example. Using the decision tree learning
algorithm described in Russell and Norvig [13, page 702] it is possible
to create a decision tree using a set of examples. The learning function
can be seen in Algorithm 2.

The general idea of the learning function is to generate the tree
through recursive depth-first traversal, starting with the root node.
The set examples is initially the full set of examples and is reduced at
each level when split by an attribute test until a stopping criterion is
reached. attr is the set of attributes that have not yet been used for a
test and is initially the full set of attributes. Each call to the learning
function generates a single node where parentExamples contains
the examples used by the parent node. The first call to the learning
function generates the root node, making parentExamples initially
empty.

Lines 2-9 in Algorithm 2 contains the stopping criteria of the learn-
ing algorithm:

1. If examples has become empty, there are no examples for this
path in the tree. In this case, the target output with the highest
occurrence in parentExamples is returned, as that is considered
most likely to be the correct output.

2. If the elements of examples all have the same target output y,
then the output for every sub-path of this path yields the same
output. When this is the case, there is no point in creating a sub
tree. Instead a leaf node is generated by returning the target
value of examples (which are all the same).

3. If attributes is empty, there are no attributes left to use for
constructing further nodes. In this case, it is not possible to
create a sub-tree even though the members of examples may

9.1 DECISION TREES

Algorithm 2 The decision-tree learning algorithm. Figure 18.5 in Rus-
sell and Norvig [13, page 702]

1:

[
Q

[
[

12!
13:
14:
15:
16:
17:
18:
19:

Parameters

examples : Remaining examples.

attr : Set of attributes not yet tested.

parentExamples : Set of examples used by the current parent
node.

Returns

A decision tree.

Declarations

PLURALITYVALUE(examples) : Accepts a set of examples and re-
turns the target output y with the highest occurrence.
IMPORTANCE(a, examples) : Accepts an attribute a and a set of
examples. Returns a value indicating the gain from using a for
splitting examples.

function TREELEARN(examples, attr, parentExamples)

if examples is empty then
return PLURALITYVALUE(parentExamples)

end if

if all examples have the same target output y then
return y

end if

if attr is empty then
return PLURALITYVALUE(examples)

end if

A < arg max IMPORTANCE(a, examples)
acattr
tree < a new decision tree with root test A

for all states vi of A do
exs < {e:e € examples and e.A = vy}
subtree «+— TREELEARN(exs, attr\A, examples)
add a branch to tree with label (A = vy) and subtree
end for
return tree
end function

31

32

THEORY OF DECISION MODELS

not share the same target output. The target output with the
highest occurrence in examples is returned as this is correct in
the majority of observed cases.

Lines 11-12 of Algorithm 2 finds the best attribute A for the cur-
rent examples, through the Importance-function discussed in Sec-
tion 9.1.1.1. A tree is then generated with A as root. Lines 13-17
iterates through all possible states of A, and for each state adds a
branch to tree by calling TreeLearn recursively, using the examples
belonging to the state, the remaining attributes and examples as the
parent examples.

9.1.1.1 Importance Function

The importance function is required for the decision-tree learning
algorithm to determine which attribute should be used at a node to
split the example set. The desired attribute is the attribute that will
provide the largest information gain or predictive power. An often
used measure for unpredictability is called entropy. For the sake of
simplicity, assume that all target outputs are binary.

Entropy B of a binary random variable with q probability of being
true, is calculated as:

B(q) =—(q-log2(q)+(1—q)log2 (1—q)) .

meaning high entropy for probability 0.5 and low entropy for probab-
ility values 0 and 1. An attribute, A, may be evaluated by observing
the amount of entropy left after testing the attribute. The remaining
entropy is:

d
Remainder (A) = Z (pk+nkB < Pk)) .
s\ ptn Pk + Nk

where d is the number of states of A, py is the number of positive
examples for state k and ny is the number of negative examples for
state k. The difference between the entropy before testing attribute A
and after, is the reduction in entropy or information gain:

Gain (A) = B (p> — Remainder (A) .
p+n
Information gain is a valid choice for the Importance-function in
Algorithm 2, as the goal is to reduce entropy by the use of attribute
tests.

0.2 ARTIFICIAL NEURAL NETWORKS

0.2 ARTIFICIAL NEURAL NETWORKS

ANNs are inspired by the biological networks of neurons found in the
brain. ANNs may be used for solving problems without the need for
constructing an elaborate model of the environment. An ANN consists
of a layer of input nodes connected to layers of connected artificial
neurons where each connection has an associated weight, which is
updated through training. This section will refer to both artificial
neurons and input nodes as nodes. ANNs are used by providing input
values for the input nodes, propagating this information throughout
the network and reading the output.

9.2.1 Artificial Neuron

An artificial neuron is a conceptual part of a neural network which
encapsulates a function. An ANN contains at least one layer of one or
more artificial neurons where the outermost layer is referred to as the
output layer. Layers between the layer of input nodes and the output
layer are called hidden layers. Connections between layers depend on
the network type but for a feedforward network each layer is totally
connected with the preceding layer.

The input of an artificial neuron is the output of each node having
a directed connection to the particular artificial neuron. A common
propagation function for artificial neurons is the weighted sum of the
inputs.

inj = Zwi,j -outy . (9.1)
i€l

where in; is the network input for the artificial neuron j, in this case
calculated by the weighted sum. I is the set of all nodes in a network
and w; ; is the weight from an input node or artificial neuron, i, to
the artificial neuron denoted as j. Weights between nodes that are not
connected may be considered zero or non-existent. out; is the output
of the node i, meaning it is the calculated output when i is an artificial
neuron and merely the input value when 1i is an input node.

9.2.2 Activation Function

The output of an artificial neuron is rarely just the result of the propaga-
tion function, as a network modelled this way is not more expressive
than a network without hidden layers. This is because a propagation
function is a linear function and the application of a linear function
on another linear function is also a linear function. Using a non-linear
activation function for determining the output of an artificial neuron
makes non-linearity possible, resulting in a more expressive network.

33

34

THEORY OF DECISION MODELS

The output of an artificial neuron using an activation function, g,
becomes

out; = g(iny) .

where in; is the artificial neuron input described in Equation 9.1.
Equation 9.2 is an example of an activation function; this particular
function is a step function. A step function returns one specific value
when the input is less than the threshold of the function and another
value when the input is higher than the threshold. In Equation 9.2 the
threshold value is one half and the possible outputs are one and zero.

o (t) = 0 fort< 0.2)

1 fort>

Nl= N—

In the case of a binary activation function, an artificial neuron is
sometimes said to fire when the output is one and to not fire when the
output is zero. Using a binary activation function causes the changes
in weights and input to reflect rather coarsely, as a small change may
push the activation function beyond the threshold, causing a large
change in the output.

The activation function does not have to be binary, as another func-
tion returning a value that scales non-linearly with the input is also
acceptable. Popular activation functions include the Sigmoid function:

1

o T4et

The Sigmoid function produces a value between zero and one, based
on the input. The property of the Sigmoid function compared to a
binary function is that a small change in the weight or input has only
a small effect on the output.

The suitability of an activation function depends on the problem
being solved. A binary activation function may be preferable when
dealing with a problem area with hard limits, such as learning the
binary AND function. Binary logic functions have well defined outputs
with hard limits for each set of input as the result is always either true
or false.

Figure 9.2 shows an ANN consisting of two input nodes as well
as a single artificial neuron which have learned the binary AND
function. The activation function being used is the step function from
Equation 9.2. The inputs of the network is a vector of two numbers
that is either one (true) or zero (false). The weights adjust the value
from the inputs such that the threshold is reached when and only
when both inputs have the value one. A network with all the inputs
connected directly to the outputs is called a single-layer network or a
perceptron network [13].

P(t)

0.2 ARTIFICIAL NEURAL NETWORKS

.03

/\Nx-

Figure 9.2: A neural network modeling the binary AND function.

9.2.3 Learning

A strong feature of ANNs is their ability to approximate a function
by learning. This is usually done by changing the weights of the
edges in the network, influencing the output of the network. There are
several methods for learning, though this section will only describe
supervised learning. In supervised learning, the network is instructed
through the use of input/output vectors, where the outputs are the
desired responses to the particular inputs. A pair of two vectors x,y

where y is the target response of input x will be referred to as a sample.

A popular method for supervised learning is the backpropagation
method. With this method, the difference/error of the expected output
and the actual output propagates backwards through the network. In
order to apply backpropagation, the outputs of all neurons are first
calculated, given x as the network input. The error at each artificial
neuron, j, in the output layer is calculated as

Aj =g’ (iny) (yj —out;) .

where A; is the error at neuron j, g’ is the derivative of the activation
function g, and y; is the j " component of the output vector, meaning
the target output of artificial neuron j. (y; — outj) is the difference

between the current output of artificial neuron j and the target output.

The general idea is that by multiplying this value with the derivative
of the activation function applied to the artificial neuron input, the
error becomes dependent on the amount of impact a change in the
artificial neuron input will have.

The error for each artificial neuron, i not in the output layer, is
calculated as

Ai = 9/ (iﬂ.i) Zwi,j . A]’ .
j

so that the error of an artificial neuron depends on the error of every
other artificial neuron that is influenced by this artificial neuron. The

35

36

THEORY OF DECISION MODELS

weight, w; ; is included as a factor in this, such that the amount of
error propagating back depends on the amount of error, the artificial
neuron is responsible for.

When the A-values for all artificial neurons in the network have
been calculated, each weight is updated as seen in Equation 9.3 where

wy ; is the new value of wy ;.

1)

« is the learning rate, which is usually a value between zero and one.
The learning rate determines how much will be learned from updating
the weights using this sample. Note that a single iteration of weight
updates, using a sample x,y, is not guaranteed to adjust the network
in a way, where the correct output will be achieved for the input vector
x. The purpose of the update is to have the network approach the
correct function. This is achieved by several iterations of learning as
seen in the simplified algorithm, Algorithm 3.

Algorithm 3 Learning with backpropagation

1: while Stopping criterion is not reached do

2 for all Input/output pair (x,y) do

3 Calculate outputvector given x as input
4 Calculate A-values by backpropagation
5 for all Weight w do
6: Update w using A
7 end for
8 end for
9: end while

As it is visible in the algorithm, several examples are used for
instructing the network. The criterion used as predicate for the while-
loop depends on choice. It may be as simple as a fixed run of 10,000
iterations or it may be that the network must provide correct output
for some percentage of test-data. There is no criterion that can be said
to be the best as it will often depend on the network and the size of
the problem.

9.3 SUMMARY

Decision methods have been successfully applied for selection of
strategies [14, 12]. Randall et al. [12] utilises ANNs in the ship battle
RTS game DEFSIM. Each ship is equipped with an ANN and tasked
with making cooperative strategic decisions, including choosing des-
tinations and targets to attack. To achieve victory, it is necessary for
friendly ships to move in groups to maximise their collective firepower,
requiring the ships to predict where other friendly ships will move.

9.3 SUMMARY 37

As stated in Section 2, the scope of this thesis is data driven re-
source management. The use of replays should facilitate sufficient
data for training decision models and enable the models to mimic the
behaviour of human players.

DATA EXTRACTION

In order to create a decision model for choosing expansion locations,
it is necessary to determine a set of features that potentially influences
what location a player chooses for expansion. The idea formed in this
chapter uses a set number of features determined by expert knowledge.
The features are to be used for a data-driven approach, based on
data extracted from several StarCraft replays. Chapter 11 focuses
on selecting relevant feature subsets based on the data extracted
in this chapter, while Chapter 12 focuses on the finalised decision
model, based on the extracted and refined feature subsets. Some of
the features proposed in this chapter are based on previous work by
the authors [6].

10.1 FEATURE PROPOSITION

It may be argued that several factors are involved in choosing expan-
sion locations. Such factors may include the amount of resources a
location has to offer, as well as the possibility of meeting an opponent
while traveling to the location. Some factors might not be obvious
at first, since it is hard to include the human theory of minds, i.e.
that players starts to think about how the opponent thinks, and the
recursion that may follow.

The goal of this chapter is to propose a list of features a player may
consider, when picking a location for expanding. These features are
to be used to accurately predict how desirable an expansion location
is. In turn, the model might be used to predict where an enemy is
expanding. The features presented in this section are based on expert
knowledge by the authors, and some features may be irrelevant. The
goal has been to make a list that is as exhaustive as possible, and then
select a subset of these features using feature selection (see Chapter 11).

For a summarised version of the features presented here, as well as
their domain, see Appendix A.

Features relative to the location itself

AMOUNT OF GAS The amount of gas available on site.
AMOUNT OF MINERALS The amount of minerals available on site.

NUMBER OF CHOKEPOINTS The number of chokepoints in the area.
A chokepoint is a connection between two regions. A region is a
partition of the map containing no static obstacles, such as rivers,

39

40 DATA EXTRACTION

hills and cliffs. In general, the fewer chokepoints in an area, the
less entrance points exist for enemy ground units.

PRESENCE IN SHORTEST PATH BETWEEN ENEMY/OWN BASE A key

point to surviving and making surprise attacks on the enemy
is to remain hidden for as long as possible. If an expansion is
placed in an area that needs to be passed through on the way
between two opposing base locations, there is a chance that the
expansion will be discovered. On the other hand, the area may
also be a key strategic position to put up main defences, given
that it is the only route between two opposing base locations.

DISTANCES FROM BASES TO THE SITE Various distances from both
own and enemy bases to the site. The lower the distance from
the nearest enemy base, the faster the opponent can bring rein-
forcements to invading forces. In the same way, the lower the
distance from the nearest ally base, the faster reinforcements can
be brought to the defenders. The distances are split up in four
categories:

OWN/ENEMY FLYING DISTANCE The flying distance from the
nearest enemy/ally base to the site.

OWN/ENEMY GROUND DISTANCE The ground distance from
the nearest enemy/ally base to the site, taking into con-
sideration the environmental obstacles that may be on the
way.

OPEN SIDES IN THE AREA In StarCraft, every map has a fixed size
on both axes, with an impenetrable wall that no units may pass.
In effect, an area close to one or more of these axes has fewer
sides to defend from enemy forces.

MAP POSITION A map position is 1 out of g positions. The rectan-
gular map is divided into 9 equally sized cells, being either
north-west, north, north-east, west, middle, east, south-west,
south or south-east.

Features relative to the map and general status of the map

NUMBER OF OWN/ENEMY EXPANSIONS The number of enemy ex-
pansions and the number of own expansions may reveal some-
thing about the status of the match. Roughly speaking, the more
expansions a player has, the higher their income and hence the
better their position in battle.

NUMBER OF POSSIBLE EXPANSIONS Every map in StarCraft is dif-
ferent. The amount of sites to set up a base for resource gathering
varies from one map to another. This number may directly affect
the importance of other factors like the number of own/enemy

10.1 FEATURE PROPOSITION

expansions, since two expansions on a map with 16 expansion
sites might be less important than the same on a map with four
expansion sites.

HIGHEST PRESENCE IN SHORTEST PATH In order to determine the
significance of the presence in the shortest path between enemy
and own base, a normalisation factor is needed. The choice for
this feature is the highest presence possible between the choices
of expansions.

GAME TIME IN FRAMES The amount of time that has passed since a
match began may be important for several reasons. For example,
since defensive structures require time and resources to build
and maintain, an early expansion may increase the income of
a player, but will leave both the initial base and the expansion
vulnerable until defences have been set up.

BEST NUMBER OF GAS/MINERALS The highest number of gas/min-
erals possible for all choices of expansions. Both may be used as
normalisation factors for other features.

OWN/ENEMY RACE Each race in StarCraft has its own strengths and
weaknesses, so the presence of different enemy and ally races
may prove an important factor when deciding where to expand.

MAP sIZE The dimensions of the map may affect the pace of the
game; a small map is likely to make early attacks viable, while a
large map may encourage the construction of large armies.

OWN/ENEMY AIR UNITS The number of own/enemy air units may
affect the accessibility of areas, and in turn influence the desirab-
ility of these areas.

Features based on various scores (own/enemy)

StarCraft has various statistics for each player in the form of scores,
indicating how well they are doing. The preferred expansion sites of a
player may depend on whether they have the upper hand in a match
or are fighting for survival.

UNIT sCcORE Each unit is given a score in StarCraft. The score de-
pends on their price and their place in the tech tree. The unit
score is the accumulated score of all previously constructed
units.

BUILDING SCORE Each building is given a score in StarCraft. The
score depends on their price and their place in the tech tree.
The building score is the accumulated score of all previously
constructed units.

41

42

DATA EXTRACTION

RAZING SCORE When a player eliminates an enemy building, a score
is gained. The razing score is the accumulated score for all
buildings eliminated by a player.

10.2 DATA EXTRACTION APPROACH

This section provides a description of the approach used for data
extraction. The replay format of StarCraft and the limitations created
by this format is described in Section 10.2.1. The framework utilised for
extracting data—as well as the approach-is described in Section 10.2.2.

10.2.1 Replay Format

The replay format of StarCraft contains all static information about
the map, along with the names and races of the players in the match.
The representation of the events of a match is an ordered set of actions
performed by each player, along with the time of each action relative
to the start of the match. Anything that happens during the match that
is not a player-made action is not contained within the replay format.

Each action can be thought of as a representation of a decision made
by a player. As an example, imagine a player deciding to construct a
supply depot. The player selects a worker unit, chooses a building to
construct, as well as a location. When this has been done, the worker
unit will move to the location and attempt to construct the building.
The player actions of this example are the selection of the worker
unit, and the command to construct a supply depot at a particular
destination.

Depending on the state of the game at the time of this action se-
quence, as well as other actions being performed, the construction
of the supply depot may either fail or succeed. If part of the build
site is blocked when the worker arrives at the destination, the build
will fail-as will the build if the worker is destroyed by an enemy, or
if the worker is given a new command. The success or failure of an
action is not in itself an action performed by a player, meaning that
this information is not included in the replay data. Other commands
are no different, in that no information is provided indicating whether
the command has succeeded or failed.

When a replay is executed through StarCraft, the initial state of the
game is known. Using the initial state, the player events and the game
engine, StarCraft is able to simulate a match completely. The way
StarCraft simulates replays does not facilitate skipping to a specific
time in the match. Every action up until a specific point in time must
be executed one frame at a time.

As the raw replay data lacks the information of certain interesting
events—such as the destruction of units—it is infeasible to use the raw
replay files for extracting data, as it would require complete knowledge

10.2 DATA EXTRACTION APPROACH

of the closed StarCraft game engine. An alternative is to use the game
engine of StarCraft to run the replays and extract data in real time,
which is the approach used in this thesis.

10.2.2 Broodwar API

BWAPI' is an open source framework for creating Al modules for
StarCraft: Brood War. Through the use of DLL injection, this framework
makes it possible to subscribe to in-game events. Events are fired in
both live games and replays, and it is possible to access static map
data as well as iterate through units to gain additional information.

The implementation of the data extraction method involves saving
a vector of feature data, for every possible build site, every time an
expansion is being constructed by any player within the game. Each
vector contains information specific to the build site as well as the
overall state of the game and most important, whether the build
site was chosen for expansion or not. This is indicated by the vector
containing the value BUILD when the vector represents the build site
that was chosen for this game state and NOTBUILD when the build
site was not chosen for this game state.

Figure 10.1: An example containing expansion sites.

The points A through F in Figure 10.1 represents positions that are
lucrative for expanding. The cross and the square represents existing
bases for player one and player two respectively. At the beginning
of the match, both players are assigned one base each. First player
one is considered; a vector of feature data is constructed for the build
site, E as this is the position of player one’s base. This vector contains
the value BUILD. For each potential build site a vector is generated,
each containing the value NOTBUILD. In this example a vector is
generated for each of the following expansion sites: A, C,D, F. The
vector for expansion site E has already been made, but note that no
vector is made for expansion site B. The reason for this is that B is not
considered a valid expansion site, because there already is a base on
that position. Any occupied expansion site is ignored, regardless of
whether the owner is the current player or an enemy.

1 http://code.google.com/p/bwapi/

43

http://code.google.com/p/bwapi/

44

DATA EXTRACTION

The result of this approach is a set of feature vectors, where one of
the features reveals whether the game state represented by the other
features resulted in placing an expansion at the particular expansion
site or not.

FEATURE SELECTION THEORY

This chapter introduces three methods for selecting the most influen-
tial features observed in a domain; Sequential Forward Selection (SFS),
Sequential Backward Selection (SBS) and Sequential Forward Floating
Selection (SFFS). Feature selection methods are useful when construct-
ing decision models, as the implicit simplification of a model may
increase the overall performance. If learning needs to be applied to
a model, reducing the number of input features is likely to result
in faster training time. The feature selection methods discussed in
this section are sequential, as they iteratively add or remove features
in a feature set. Sequential feature selection methods are the most
commonly used methods for feature selection [8].

The methods always yield the same solution given the same input
and a non-stochastic performance measure of feature sets. The forward
method starts with an initially empty feature set, and adds the most
influential features, while the backward method starts with the full set,
and removes the least influential feature. SFFS is a further development
of the srs method that potentially explores more permutations of
features, by allowing features to be removed from the set after they
have been added.

All three methods require a performance function that accepts a set
of features and evaluates the performance of this set. The choice of
performance function depends on the domain. The methods do not
examine all possible subsets of the features, nor do they guarantee the
optimal solution. An exhaustive search of all subsets requires a search
through 2% permutations, where k is the total number of features.

Feature selection methods have previously been applied in the
game domain. Yannakakis [16] uses SFS and Perceptron Feature Selec-
tion (PFS) to select a minimal subset of the most influential features
from a set of 71 features, in order to make an accurate model of user
preferences in a game. Yannakakis [16] reiterates that SFS is commonly
used, since it yields high performance with minimal feature subsets
in a wide range of feature selection problems [17, 18]. The PFS method
is similar to SBS with a slight change. Instead of looking at the per-
formance of the feature set, a perceptron is used, with an input for
each feature. The perceptron is then trained, and the features with a
weight below some threshold are removed. This continues until no
weights are below the threshold. Yannakakis [16] shows that SFS yields
a higher performance than PFs.

45

46

FEATURE SELECTION THEORY

11.1 SEQUENTIAL FORWARD SELECTION

This section explains how the SFS method is used to perform feature
selection. The method works by starting with the empty set, and
adding the most influential feature one at a time, until some stopping
criterion is satisfied.

Let X be an initially empty set of features, and let x; denote the ith
feature in X. Let D be the set of features not added to X, and let d;
denote the it" feature in D. Let the performance function J(X) accept
a set of features and return a value indicating the performance of the
set. Selection of the most influential features, using SFS is described in
Algorithm 4

Algorithm 4 The Sequential Forward Selection Algorithm

while Not Stopping Criterion do
Xpbest < 1do}
for all d; € D\{dy} do
if J(XU{di}) = J(XUxXpest) then
Xbest < {di}
end if
end for
X+ XU Xbest
D« D\Xbest
end while

Algorithm 4 describes how the method runs until some stopping
criterion is met, and iteratively adds the most influential feature. The
element d; in D with the highest performance when combined with
X is added to X and removed from D. Examples of stopping criteria
include a decrease in performance or simply a maximum number of
selected features.

11.2 SEQUENTIAL BACKWARD SELECTION

This section explains the SBS method which, given a feature set, iterat-
ively removes a feature until some stopping criterion is met.

Let X be an initially full set of features, and let x; denote the ith
feature in X. Let the performance function J(X) accept a set of features
and return a value indicating the performance of the set. Selection of
the most influential features using SBS is described in Algorithm 5.

Algorithm 5 describes how the SBS method runs until some stopping
criterion is met, by iteratively removing the worst feature from the
set. The worst feature is the feature that, when removed from the set,
provides the best performance of the new set. The feature is identified
and removed, and the remaining set is evaluated.

11.3 SEQUENTIAL FORWARD FLOATING SELECTION

Algorithm 5 The Sequential Backward Selection Algorithm

while Not Stopping Criterion do
Xworst < {XO}
for all x; € X\ {xo} do
if I(X\ {Xi}) P>](X\xworst) then
Xworst < {Xi}
end if
end for
X % X\XWOTSt
end while

11.3 SEQUENTIAL FORWARD FLOATING SELECTION

This section explains the SFFS method proposed by Pudil et al. [10].
The SFFs method is an extension of the SFS method. SFFS allows already
included features to be excluded, if they are later deemed less im-
portant given a new context. The method floats between subsets of
the full feature set by adding and removing features. This allows for
measuring the performance of a potentially greater amount of subsets
than the SFS method.

Let X be an initially empty set of features, and let x; denote the it
feature in X. Let D be the features not added to X, and let d; denote
the ith feature in D. Let the performance function J(X) accept a set
of features and return the performance of the feature set. The SFFS
method is expressed as pseudo-code in Algorithm 6

In lines 2-9 of Algorithm 6, the method locates the feature belonging
to D that will yield the highest performance when added to X. When
the feature has been found, the two sets are updated accordingly. In
lines 10-18, the method locates the least influential feature in X, and if
this is not the feature just added, removes the feature by updating the
sets accordingly. If a feature was removed and X contains more than
two features after this operation, the method will call the procedure,
FurtherExclusion, in line 20, which potentially excludes additional
features, if the performance of X is increased by doing so.

The procedure FurtherExclusion in Algorithm 6 excludes features
in an iterative manner. Line 26 ensures that this procedure will remove
features until there is no gain in removing features, or until the set
contains only two features. Lines 29-37 locates the feature which, when
removed, will increase the performance of X the most, and update the
sets accordingly.

47

48 FEATURE SELECTION THEORY

Algorithm 6 The Sequential Forward Floating Selection Method

1: while Not Stopping Criterion do

2 Xbest < {dO}
3: for all d; € D\{do} do
4 if J(XU{di}) > J(XUxpest) then
5: Xpbest < 1di}
6: end if
7 end for
8: X < XUXpest
9: D < D\xpest
10: Xworst < {Xo}
11: for all x; € X\ {xo} do
12: if J(X\{xi}) = J(X\xworst) then
13: Xworst < {Xi}
14: end if
15: end for
16: if (Xpest # Xworst) then
17 X X\Xworst
18: D < D UXworst
19: if |X| > 2 then
20: FurTHEREXcLUsION(X, D)
21 end if
22: end if

23: end while

24: procedure FURTHERExCLUSION(X, D)

25: T < true

26: while |X| > 21 do

27: Xworst < 0

28: T < false

29: for all x; € X do

30 if JOX\ {x4)) > T(X\xworst) A J(X\ {xi}) > J(X) then
31 Xworst < {Xi}
32: T < true

33: end if

34: end for

35: if r then

36: X = X\Xworst
37: D < D UxXwporst
38: end if

39: end while
40: end procedure

FEATURE SELECTION EXPERIMENTS

This part of the thesis has presented several tools and techniques
that may contribute in solving the problem of constructing a decision
model for expansion strategies in RTS games. This chapter describes
how to utilise the tools and techniques presented to attain reduced
feature sets. This is achieved through experiments, in which three
different feature selection methods are applied to a set of features. The
goal of the experiments is to generate a decision model for each feature
selection method of less complexity—and ideally better prediction—than
the decision model using the full feature set. Chapter 13 describes
evaluation scenarios using the reduced feature sets attained in this
chapter.

12.1 IMPLEMENTATION OF FEATURE SELECTION METHODS

Three different feature selection methods have been implemented for
these experiments, all of which are described in Chapter 11. All imple-
mentation and experiments are made using MATLAB'. Implement-
ation of the feature selection methods all use ANNs to evaluate sets
of features. This is done by training an ANN using backpropagation,
where each input node corresponds to a feature from the specified
feature set. The network is evaluated using Mean Absolute Error (MAE)
as the performance measure. MAE for an ANN is defined as:

1 &
MAE = n;lai—til .
=

where n is the total number of entries, a; is the actual value output by
the ANN for an entry i and t; is the target value expected for an entry
i. The lower the MAE is for a given feature set, the better the feature
set is perceived. Normal settings are used for the ANNs as defined by
MATLAB. All three implementations have been set to select feature
sets containing a total number of 15 features.

12.1.1 Data Set Used for Experiments

A large data set containing samples of the extracted features has been
assembled as described in Chapter 10. The data set contains a total
of 28 features with 81.844 entries of data. The data is divided into

1 http://www.mathworks.com/products/matlab/

49

http://www.mathworks.com/products/matlab/

50

FEATURE SELECTION EXPERIMENTS

60% training data, 10% validation data and 30% testing data. The
validation data is used for measuring performance during training.
During feature selection, division of the data into the three categories
is handled by the MATLAB implementation using random division.

12.2 FEATURE SET PERFORMANCE

This section details the performance of each feature set gained through
experiments with the three feature selection methods. A full trace is
given for each method, containing added/removed features, along
with the corresponding MAEs of the given feature set at specific itera-
tions of the method.

12.2.1 Sequential Forward Selection

Table 12.1 shows the full trace of running SFS on the sample set,
selecting 15 features from the full feature set. As it can be seen, the
MAE exhibits an overall decrease as more features are added, which
means an increase in performance.

Table 12.1: Trace of the Sequential Forward Selection method using the fea-
ture set containing 28 features.

Iteration Feature added MAE
OwnGroundDistanceNormalized 0.1577993

[y

2 EnemyGroundDistanceNormalized 0.1464801
3 GameTime 0.1405489
4 NumberOfOwnExpansions 0.1353540
5 NumberOfPossibleExpansions 0.1340203
6 OpenSides 0.1324332
7 NumberOfGas 0.1340026
8 OpponentUnitScore 0.1304485
9 CurrentPresencelnShortestPath 0.1296689
10 OpponentRazingScore 0.1309179
11 OwnPFlyingDistanceNormalized 0.1294599
12 NumberOfEnemyExpansions 0.1269970
13 NumberOfChokepoints 0.1272868
14 EnemyFlyingDistanceNormalized = 0.1243576
15 BestResources 0.1270499

12.3 SUMMARY

12.2.2 Sequential Backwards Selection

Table 12.2 shows the full trace of running SBS using the sample set,
removing 13 features to yield a feature set of 15 features. As it can
be seen, as with SFS, the MAE exhibits an overall decrease. The end
performance is slightly better than that of SFs.

Table 12.2: Trace of the Sequential Backwards Selection method using the
feature set containing 28 features.

Iteration Feature removed MAE
1 EnemyFlyingDistanceNormalized 0.1273334
2 HighestPresenceInShortestPath 0.1405049
3 MapPosition 0.1296795
4 OpponentRazingScore 0.1297889
5 OwnAirUnits 0.1347829
6 Race 0.1316123
7 OpenSides 0.1290031
8 OpponentUnitScore 0.1303906
9 GameTime 0.1393028
10 BestGas 0.1276848
11 MapSize 0.1323159
12 BestResources 0.1296734
13 OpponentAirUnits 0.1256307

12.2.3 Sequential Forward Floating Selection

Table 12.3 shows a partial trace of running SFFS using the sample set,
selecting 15 features from the full feature set. The trace shows the
iterations in which a feature is added without later being removed, as
well as the MAE for the feature set at that point. For a full trace see
Appendix B.

12.3 SUMMARY

Through experiments, a feature set for each of the three feature se-
lection methods has successfully been found. Table 12.4 shows the
difference between the three feature sets, as well as a performance
comparison of the feature sets. A checkmark (\/) denotes that the spe-
cified feature is included in a feature set. The performance measure
used in this chapter is MAE, being the average distance between the
target value and the actual value. Table 12.4 shows that the difference
between the MAE of the three methods is relatively low. While MAE as

51

52

FEATURE SELECTION EXPERIMENTS

Table 12.3: Partial trace of the Sequential Forward Floating Selection method
using the feature set containing 28 features.

Iteration Feature added MAE

1 OwnGroundDistanceNormalized 0.1573412

5 EnemyGroundDistanceNormalized 0.1480936
43 NumberOfGas 0.1277823
50 HighestPresenceInShortestPath 0.1277823
51 NumberOfOwnExpansions 0.1277823
58 OwnFlyingDistanceNormalized 0.1279682
60 BestGas 0.1279682
64 NumberOfEnemyExpansions 0.1279682
65 OpponentAirUnits 0.1279682
68 NumberOfPossibleExpansions 0.1279682
72 OpponentBuildingScore 0.1279682
77 OpenSides 0.1279682
78 OwnUnitScore 0.1279682
79 NumberOfMinerals 0.1279682
8o BestMinerals 0.1279682

a performance measure generally shows how well a model performs,
it does not necessarily reveal how accurate the model is.

Table 12.4 also contains a custom feature set. This feature set is
based solely on expert knowledge by the authors. A performance
of the feature set is not given, since no feature selection has been
performed in order to produce the set. Furthermore a set containing
only the features common to the other feature sets is tested. This
feature set is also shown in Table 12.4. As with the custom set, there is
no performance listed with the common feature set, since no feature
selection was applied.

A detailed performance review of all feature sets—including Custom,
Common and Full-can be found in Chapter 13.

12.3 SUMMARY 53

Table 12.4: Overview of the obtained feature sets. A checkmark (\/) denotes
that the specific feature is included in a feature set.

SFFS Custom Common

NumberOfGas
NumberOfMinerals
NumberOfChokepoints
NumberOfPossibleExpansions

NumberOfOwnExpansions

v
v
v
v

AR

NumberOfEnemyExpansions

AN NN NN

CurrentPresencelnShortestPath
HighestPresenceInShortestPath

GameTime

DN N N N NN Y

N
AN

BestMinerals

BestGas

BestResources

OpenSides
OwnFlyingDistanceNormalized
OwnGroundDistanceNormalized

EnemyFlyingDistanceNormalized

DN N N NN Y N N N N N

DN N N NN
AN

EnemyGroundDistanceNormalized

NNENENENRN

Race
MapPosition
OpponentAirUnits v
OwnAirUnits
MapSize
OpponentUnitScore v
OpponentBuildingScore
OpponentRazingScore v
OwnUnitScore

OwnBuildingScore

DN NN

OwnRazingScore

Performance of feature set (MAE) 0.1270499 0.1256307 0.1279682 N/A N/A

FEATURE SELECTION EVALUATION

Feature selection methods have been evaluated so far solely by using
MAE-obtained by evaluating logged data from replays—as detailed in
Chapter 12. The focus of this section is the utilisation of the proposed
feature sets for predicting player expansions. This is achieved through
the use of decision models, which are evaluated through various
methods.

13.1 USING ARTIFICIAL NEURAL NETWORKS

ANNs have been used during feature selection and is also used for
evaluating the final feature sets. For each of the final feature sets,
an ANN is trained with the features specified by the set. The ANN is
evaluated and the performance of the ANN is considered a measure of
the particular feature set.

Whenever a game state for a specific expansion site is evaluated
through an ANN, the output is a number signifying the likelihood of
the site being the current target of a player’s expansion. The target
data for training has an output of 1.0 for sites observed to be built
upon and an output of 0.0 for sites that were not chosen when another
was.

The result of this approach is that all game time values the network
has been trained with results in at least one build action. In other
words, the network has been trained to determine where a player will
build their expansion, given that they are building one at the given
state provided as input to the network. The network is not trained to
determine when a player will construct an expansion-this is considered
a separate concern.

The ANNs are trained with MATLAB, using the collected data. 60%
of the data is used for training, 10% for validation and 30% for testing
the resulting network. Contrary to Chapter 12, division of data is not
randomly chosen by MATLAB, but is divided manually in order to
secure consistent tests.

13.2 USING DECISION TREES

The feature sets are also evaluated using decision trees. The purpose
is to gain a broader view of the feature sets by evaluating the sets with
another decision model. The reason for using decision trees is that it
is a fairly well-known, simple and accessible method.

55

56

FEATURE SELECTION EVALUATION

The decision trees are trained with MATLAB using the same data
as used for training ANNs. Training and validation data is combined,
resulting in 70% of the data being used for training and 30% for testing
the resulting trees. The output is classified as one or zero, indicating
whether the expansion site is chosen or not. Note that decision trees
do not output continuous values; data is instead used to identify a
correct leaf node which contains the value to output.

For comparison purposes, the decision trees and ANNs are tested
using the same performance measures.

13.3 FURTHER TESTING

In order to evaluate the feature sets from Chapter 12, the feature sets
are used for training several ANNs and decision trees.

The decision models constructed using the feature subsets provided
by the feature selection methods are evaluated in various ways. The
following methods of evaluation have been chosen:

MEAN ABSOLUTE ERROR Using the same evaluation method as
used for the feature selection performance function, introduced in
Chapter 12.

HIT RATE The hit rate is the amount of correctly identified expan-
sion sites, given that only the site with the highest network output
is considered. Using this method, the values of the network output
for the incorrect sites does not matter as long as the network output
for the correct site is higher than the values of all other sites being
considered.

Consider the sample in Table 13.1a. S is a potential expansion site
along with the state of the game at the moment of consideration.
Net(S) is the network output for S and Target(S) is the actual/correct
data that has been observed. The sample counts as a hit when measur-
ing hit rate, as the network output for the correct expansion site, S, is
higher than the network output for all other possible expansion sites.
The sample in Table 13.1b is considered a miss, as S¢ has the highest
network output, yet S7 is the correct expansion site. If the samples
from Table 13.1a and Table 13.1b is the complete sample set, then the
hit rate is 5 = 50%.

Formally, for each possible build-site b; € B, the probability of
choosing b; as the build-site is calculated as

1 for out(b;) = maxout(b)
P(bi) = beB :
0 for out(b;) # maxout(b)
beB
Meaning that if the network output of b;, out(b;), is the highest
output for all possible build-sites, the probability of choosing b is one,

13.3 FURTHER TESTING

Net(S) | Target(S) Net(S) | Target(S)

Sq 0.2 0 Sy 0.2 0
S5 0.9 1 Se 0.7 o
S3 0.2 o] Sy 0.6 1
S4 0.5 0 Sg 0.1 0

(a) A sample in which the network (b) A sample in which the network
output closely approximates the output is far from the target
target. data.

and if this is not the case, the probability is zero. The hit rate is the
percentage of correctly identified build sites using this method. Note
that in the cases where there is more than one possible expansion site
yielding the maximum value, it is considered a conflict, which will be
counted as a miss as it is not possible to identify the correct expansion
site.

DISTRIBUTION The distribution is the amount of correctly identified
expansion sites on average, given that the normalised network output
for an expansion site is treated as the probability for choosing that
particular expansion site. The difference from the hit rate is that when
calculating the distribution, the difference between network outputs
matter.

In the sample of Table 13.1a, the correct expansion site is S,, the
distribution for the sample is W = 0.5. Even though S, is
the highest network output for the sample, it is not considered a total
hit, as the probability for choosing this expansion site is 50% when
using the distribution. The distribution for the sample in Table 13.1b is
m = 0.375, so even though S7 is not the highest network
output, there is still a 37.5% chance of selecting S7 as the expansion
site. If the samples from Table 13.1a and Table 13.1b is the complete
sample set, the distribution is m = 43.75%.

The distribution is calculated as follows:

For each possible build-site b; € B, the probability of choosing b; as
the build-site is

out(by)
> out(b)

beB

P(bi) =

Where out(b;) is the network output for expansion site b; and B
is the set of all possible expansion sites. In this approach, the output
value for the correct build site is normalised with the total output for
all available expansion sites.

57

58

FEATURE SELECTION EVALUATION

Table 13.1: Results for each set chosen by feature selection using ANNs.

Feature Set Hit Rate | Distribution | MAE
SFS 62.60% 51.46% 0.1182
SBS 64.66% 51.24% 0.1146

SFFS 64.43% 48.55% 0.1193
Common 60.61% 43.13% 0.1361
Custom 62.47% 49.22% 0.1232
Full Feature Set | 64.26% 53.03% 0.1136

13.4 RESULTS

This section will present and discuss test results for ANNs and decision
trees.

13.4.1 Artificial Neural Network Results

The results of the experiments using ANNs can be seen in Table 13.1.
The first column is the feature set used during the training of the ANN,
e.g. the feature set marked as SFS is the feature set resulting from the
SFS feature selection method. The remaining columns pertain to the
evaluation methods discussed in Section 13.3.

All feature sets described in Chapter 12 are included in Table 13.1,
as well as the results for random values and the full feature set for
comparison. The MAE values are lower than the ones presented in
Chapter 12. This is because the output layer of the ANNs has been
limited to provide only output values in the range 0.0 < output < 1.0.
This change makes the possible distances obtainable through MAE
lower, but still has the same overall significance.

When using ANNs, the full feature set has the potential to be at
least as good as any subset of the full feature set. The weights for any
non-influential feature may be set to a zero value or near-zero value,
meaning that the feature will have little or no influence on the result.
However, during training of the ANN, the weights of non-influential
features are not always reduced sufficiently, which may result in some
amount of noise.

As it can be observed in Table 13.1, the most reduced feature sets are
performing close to that of the full feature set. This indicates that the
exclusion of the features not chosen by the feature selection algorithms
have not significantly reduced the performance of the ANNs. Still,
ANNs based on the features from the two smallest sets, Custom and
Common, have the worst hit rates at 62.47% and 60.61% respectively.
This, coupled with the relatively low distribution and high MAE values,
suggests that the methods lack some of the important features that

13.4 RESULTS

Table 13.2: Results for each set chosen by feature selection using decision

trees.
Feature Set Hit Rate | Distribution | MAE

SFS 43.54% 48.72% 0.1053

SBS 44.17% 49.54% 0.1076

SFFS 44.74% 49.59% 0.1050
Common 45.53% 47.89% 0.0990
Custom 43.87% 49.23% 0.1061
Full Feature Set | 44.47% 49.79% 0.1068

are included in the other methods. Custom covers 11 features, while
Common covers only four.

13.4.2 Decision Trees Results

Using the same feature sets as in Section 13.4, Table 13.2 contains the
results by the decision trees. The hit rate is lower than that of the ANNs
while the distribution is about the same. One reason for this might
be that the feature sets were selected using ANNs and the selected
features are better suited for that type of decision model. A reason
that may be considered more likely is that the number of possible
outputs for the decision tree is limited. Each leaf node maps to exactly
one output, limiting the range of outputs to no more than the number
of leaf nodes. Note also that the values of the leaf nodes are always
either one or zero. Because of this, conflicts are likely to occur. The
percentage of conflicts using the decision trees is on average 37.42%,
while the average percentage of conflicts when using ANNs is less than
0.003%.

In general, the results of the decision trees based on the various
feature sets are very similar, with a span between the highest and
lowest hit rate of 2.01%. Oddly enough, the tree based on the fewest
features, Common, has the highest hit rate and lowest MAE, conflicting
directly with the results of the ANNs. This may be due do coincidence,
based on the low span between highest and lowest hit rate, or due to
the high amount of conflicts using decision trees. If there is a pattern
in the conflicts, the fact that fewer features are included in the Common
feature set may influence the end result. Another reason may be the
simplified structure of the decision trees, when compared to ANNs. For
simplicity, all decision trees have been trained with binary splitting on
each feature, so some of the more complex connections between the
variables are possibly lost.

In order to form a baseline for comparison, a random approach,
shown in Table 13.3, has been evaluated as well. During the evalu-

59

60

FEATURE SELECTION EVALUATION

Table 13.3: Results for choosing at random, used as a baseline for comparison.

Hit Rate | Distribution | MAE

Random | 14.71% 14.70% 0.4980

Table 13.4: Training times for ANNs and decision trees, in seconds.
SFS | SBS | SFFS | Full | Custom | Common
ANNs | 173.1 | 186.7 | 261.1 | 233.0 115.9 69.2

Trees 2.7 5.6 4.4 7.7 3.8 1.9

ation of the random approach, instead of using a trained network, a
function returning a random value in the range zero to one is used.
The purpose is to discover which rates it is possible to reach using
only random chance. Note that the hit rate for the random approach
is around 15%. This is due to the fact that for each expansion created,
several expansion sites were not chosen and so the chance of getting
a hit depends on the amount of possible expansion sites. The per-
formance of the random baseline indicates that the ANNs and decision
trees trained using feature sets are performing at a higher level than
would be expected, if there was no connection between the choice of
expansion site and the selected features.

Table 13.4 and Table 13.5 shows average training and running times
for ANNs and decision trees, given various feature sets. In spite of
the substantial difference in training times between the two methods,
every ANN was trained in less than five minutes. Since training occurs
offline, such training times are deemed fully acceptable.

The average running times also shows a substantial difference
between the two methods. Since the methods only need to be run every
time a base location is needed, and since it can be run asynchronous
with the game, the running times of both methods are useable in live
gaming sessions.

13.5 SCENARIO

This section describes a scenario in StarCraft in which a decision
model is used to predict the expansion location of a player. The section
contains reasoning based on experience for whether or not the output

Table 13.5: Running times for ANNs and decision trees, in seconds.
SFS | SBS | SFFS | Full | Custom | Common
ANNSs | 0.069 | 0.068 | 0.069 | 0.068 0.068 0.069

Trees | 0.003 | 0.003 | 0.003 | 0.002 | 0.003 0.002

13.5 SCENARIO

of the decision model is sound. As a complete human analysis of a
neural network containing 10 hidden nodes and 15 features is a very
complex job, this section is based primarily on the opinions of the
authors.

The scenario has been chosen from one of the replays in the set, used
during testing. In this scenario, two players compete on a map which
supports up to four players. This section covers a single expansion
decision of player A. The game state representation for each possible
expansion site at the time of expansion can be seen in Table 13.6. Each
column maps to an expansion site and each row represents a feature
with the exception of the last row which displays the output value of a
neural network trained with the feature set found by sBs in Chapter 12.
As SBS is used for this example, all features that are not in the SBS
feature set have been omitted.

Figure 13.1 shows an overview of the game at the moment of the
expansion. Player A has two bases marked A, while player B has three
bases, marked B. As it can be observed on Table 13.6 player A has
not destroyed any of player B’s buildings, however, player A performs
active scouting and therefore knows the location of player B’s three
bases.

The last row in Table 13.6 shows that, according to the decision
model, player A’s highest preference is Site 2, with an output value
of 0.5279. This is also the actual location chosen by the player. Site 2
and Site 5, are both rated significantly higher than the remaining sites.
By observing their values in relation to the other sites, it would seem
that variables representing distances are an important factor. From
the authors’ perspective, it seems like a sound strategy to construct
expansions close to existing bases when possible. Doing so makes it
possible to construct the expansion swiftly, as the worker required
to construct the resource deposit need not travel very far. Bases that
are closely clustered are usually also easier to defend due to low
travelling distances for allied forces. A low distance also facilitates
moving workers from one site to another at a minimal risk. Both
flying distance and ground distance seems important; however, the
data indicates that ground distance is the more important of the two.
Testing shows that the minerals of sites also influence the choice of
expansion site, but due to the relatively similar values for the sites of
this particular map, the influence is negligible.

The variables pertaining to the general game state, such as Num-
berOfOwnExpansions, OwnUnitScore and OwnRazingScore may in-
fluence the impact of other variables, however since this scenario
covers only a single expansion choice, such connections may be diffi-
cult to deduce.

61

FEATURE SELECTION EVALUATION

62

g

m zb€oo ofooo gtsoo tgboo Lgbto 9grroo 69to0 6250 glToo mdmo pPpoN
o 0 0 0 0 0 0 0 0 0 a100g3uIZE UM
chm 00£T 00£T 00tT 00fz o00fz o0ofT 00€e 00€T 00€T a100g3uTpIMguMmQ
§ 086E 0S6¢ 0S6E 056 056 0S6¢ 0S6E 0S6E 096¢ 2I02GHUNUMO
M Gree Gree Sree Sree Gree Gree Gree Sree Sree a100g3urprmgiusuodd
8 1/9l0 €860 T0TS'0 TEIS0 TTllo TS0S0 I 6€L6'0 z@Ylo | paziewrzoNedUR)SI((TPUNOIDAWSUY
mo.n 9¢9Z'0 tg4i6r0 ggos'0 95150 06050 S19Z'0 12660 Yobtbo I POZI[eULION[2OUR]SI(PUNOINHUMO
£ zgzlo Y9960 6V6L0 VYriSo Lez€o Llilo 1 g66£'0 1gQTi0 POZI[EULIONDUR)SI([SUIA]JUMO
m 005€T 00SE€T 009ET 00SET 00SET 00SET 00SET 00SET 00&ET STRIDUTIAISIY
mc 0 o) 14 14 0 o) o) o 0 3 J3S93I0YSU[IDUSIIJIUDLIND)
£ € € € € € € € € € suorsuedXxgAwWaugjOIdqUINN
.mo 4 4 4 4 4 4 T 4 4 suorsuedXxgqumOJOIqUINN
.m 14" 14¢ 14" 14! 14" 141 14¢ 14! 14! suorsuedxga[qrssoJFOIRquUNN
m [4 [4 4 4 4 4 I 4 I syurodayoyDHyOIRquNN
WM 0050I 000TI Z0S$6 L0oS6 000TI 00SO0I O00SET 000CI 00SET S[RIUTIAIFOQI2qUINN]
& 000§ 0008 Z6I9 T6b19 0005 0005 0005 0005 000§ senjORqUNN
m 69)1g goNg LG 9oyg Saug btoyg €95 TANg I Ag

2

13.5 SCENARIO 63

Figure 13.1: A visual representation of the scenario.

DISCUSSION AND FUTURE WORK

This part of the thesis has touched upon the subject of utilising ma-
chine intelligence methods for choosing expansion locations in RTS
games, using a data-driven approach. The main idea is to mimic
human behaviour by collecting data from replays played by human
players. The test bed chosen for the thesis, StarCraft, has thousands
of replays available on websites such as iCCup’, facilitating data for
training decision models for choosing expansion locations. Using ex-
pert knowledge, 28 features that may be considered by players when
expanding, has been identified and sample data has been gathered
from the replays.

Communication with StarCraft has been achieved through DLL in-
jection, by using Chaoslauncher? along with BWAPI3 and BWTA#. Using
three feature selection methods, three sets of 15 variables were found.
Also added were a set containing the common features from the three
sets, a custom set containing the features considered most important
by the authors, and a full feature set. Two decision methods have been
used for implementing several decision models to allow an agent to
mimic the behaviour of human players when expanding, based on the
state of up to 28 features. ANNs were chosen, as they have previously
been proven successful in strategy prediction and decision trees were
added for comparison.

The six sets were used for training six ANNs and six decision trees.
Finally, a method returning a valid random output was used as a
baseline for comparison. No one feature selection method shows
substantially better results than the others. The results of the full
feature set indicate a low amount of noise among the data.

The best hit rate of 64.43% was achieved with an ANN based on the
features of SBS, while the lowest MAE, at 0.1136, was achieved with an
ANN based on the full feature set. The highest distribution of 53.17%
was achieved using a decision tree based on the custom feature set.

Every combination of features and decision models have a hit rate
higher than 50%, substantially better than the random baseline, having
a hit rate of 14.71%. Since data extraction and training is done offline,
and online use of the decision models is not computationally heavy,
the methods are useable in live gaming sessions.

1 http://www.iccup.com/

2 http://winner.cspsx.de/Starcraft/
3 http://code.google.com/p/bwapi/
4 http://code.google.com/p/bwta/

65

http://www.iccup.com/
http://winner.cspsx.de/Starcraft/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwta/

66

DISCUSSION AND FUTURE WORK

14.1 FUTURE WORK

This section covers possible directions for future work of the data-
driven expansion approach presented in this thesis, along with ideas
to speed up the various feature selection methods.

14.1.1 Predicting Expansions

The current decision models are trained for selecting the most likely
expansion site of a human player at the moment of the game state.
Using a method for approximating a future game state, the models
may be used for predicting where an opponent will expand. A similar
method may be applied for approximating the location of an already
placed expansion.

Analysing the amount of players expanding in certain time intervals
may help determine when an opponent is likely to expand, while
the state of the variables at the time of expansion may help make a
better approximation. Such information can in turn be used by an
agent to know where and when to scout for the opponent, and help
approximate the best locations to make expansions of its own.

14.1.2 Dealing with Unknown Game States

In general, many of the features that are used to feed the decision
models need to be collected or approximated in an online setting, if
the target game only allows for imperfect knowledge. Since accessing
the state of the features may require some degree of scouting, and
since the scouting method presented in this section relies on the state
of some variables itself, it may be beneficial to adopt a method for
approximating the initial values.

14.1.3 Player Modelling

As the decision models are currently tuned to make approximations
based on the behaviour of a generalised player model, it is possible
that a better performance may be gained from classifying individual
players. One way of doing so is the use of online learning through a
reinforcement learning technique. In this case, the output of decision
models may be used as a basis for initialising a Q-table for Q-learning.
The table may then be updated in the usual Q-learning style, using
whether or not the correct base location is targeted as reward.

14.1 FUTURE WORK

14.1.4 Alternative Decision Models

Decision models like Bayesian networks and influence diagrams,
handles actions under uncertainty more naturally than ANNs and
decision trees. These may be considered a solution to the problem
of imperfect knowledge. However, Bayesian networks and influence
diagrams requires some degree of expert knowledge to design, taking
away the advantage of the current decision models. Given a thorough
analysis of the problem domain-or the opinions of expert StarCraft
players—an influence diagram created and trained on the basis of the
same features as the ANNs, could make for some interesting comparis-
ons.

14.1.5 Use in Full Scale Real-time Strateqy Games

In a full scale RTS game, the information gained from scouting the
opponent and choosing expansion locations may be used by other
modules of an agent to gain knowledge on which base locations should
be defended and where to attack the opponent. In general, given the
great amounts of replay data available, a data-driven approach similar
to the one used for expanding may be used for strategy predictions,
along with counter strategies.

14.1.6 Alternative Performance Measures for Feature Selection

The current performance measure used for feature selection, presented
in Section 12.1, seeks to reduce the overall distance between the results
of the decision models and the actual data. One of the main uses of
the decision models is to estimate a good expansion location given a
set of features. As mentioned in Section 13.3, a logical way to choose
an expansion location is to pick the location with the features that
makes for the highest value in the decision model. A correct guess is
then considered a hit, while a wrong guess is considered a miss.

Using the hit rate of a decision model as the performance measure
when performing feature selection might help adjust the model to
increase the number of times a correct location is found.

14.1.7 Improving Feature Selection Methods

This section presents several ideas on reducing MAE and speeding
up execution of the chosen feature selection methods using expert
knowledge.

67

68

DISCUSSION AND FUTURE WORK

14.1.7.1 Modified Starting Sets

A natural way to improve a selection method is to modify the starting
sets using expert knowledge by either adding or removing-depending
on the method—features that are sure to be selected. As an example, if
n features are deemed significant and are added to the set, SFs will
be able to skip the first n iterations. Alternatively, to avoid depending
too heavily on the accuracy of expert knowledge, the features may be
partitioned into groups of varying importance. The groups may be
used for speeding up the feature selection methods by allowing each
iteration of the feature selection method to consider only features from
the best group most of the time. For example, using e-greedy selection;
with probability e choose from any group and with probability 1 —e
choose from the best non-empty group.

14.1.7.2 Feature Dependencies

Using expert knowledge, features that are related to one another may
be identified. The information may in turn be used to include related
features, every time a feature is identified for inclusion by a feature
selection method.

Part III

APPENDIX

FULL LIST OF FEATURES

Overview table for features included for feature selection. Some ranges
have approximated maximal values, less than the theoretical maxima.
As an example, NumberOfMinerals stems from a ‘'normal” maximum
of 50,000 - 8 = 400,000 even though the theoretical maxima is much
larger, and depends on the number of patches that can fit on the entire
map.

71

FULL LIST OF FEATURES

72

Table A.1: Summary of the 28 features used in the thesis, including the full

name, the domain of the features as well as a short description.

SUOT)EDO[9Seq UMO WOIJ 3dUe)SIp SUIA[J 3say3ny
0} PASI[EULIOU “SUOT}EI0] dSeq UMO WOIJ dUe)SIp SUIA[) 1S9MO']

dew

JO SOPIS WO} DUBJSIP 39S B Y}IM UOTLIO] UO SIPIS JO IOQUINN
S[eIauTw

+ sed jo junoure 3say3ny oY) ‘UoIILd0[Ise(J[qe[leAt AIdAd I0]

sed jo yunowre }say31y 9y} ‘UOT}LI0[dSe(Jqe[TeAr AIA 10
S[EJSUIW JO JUNOWE }say31Y 3} ‘Uoned0[aseq S[qe[reAe AIoAd 0]
}1€)S YDJew 90UIS SaUIely Ul swr) [ed130]

aseq paumo Aue 03 aseq Aweus Aue wory yyed

L2 [170]

N2 [¥°0]

N > [00000S ‘0]

N > [000001L ‘0]

N > [00000t 0]
N 2 [Ly9€8¥/11T 0]

POZI[eWIONOURISI([SUTALJUMO
sapiguad

S92INO0SIYISOg
sen))saqg
S[eIDUTIAISOg

QuwiL] dureq)

}S9}1I0US UI 9DUSIND0 }SaYSIY S} “UOT}ed0[oseq d[qe[IeA. AI9AS 10 N 2 [5Z°0] U1e J1S91I0YSU[9OUSSIIJISIYSTH
aseq

paumo Aue 03 aseq Awsua Aue woxj yjed 3S93I0YS UI 90UaINdd) N 2 [5Z°0] 1€ 3591 I0SUIOUISI JIUDIIND)

suorsuedxa juarmyd syusuodd(N 2 [6Z70] suorsuedxgAwaugjOIaquInN

suorsuedxa JuaLIND ,SIdAC[J N 2 [52°0] suotsuedxgumQOJOI2qUINN

dew uo suoryedso] uorsuedxa S[qISSOJ N 2 [027°0] suorsuedxga[qIssoJJORqUINN

UOI3aI 0} SADUBIIUS JO IdUINN] N2 [010] syurodasjoyyOIaqunN

UO[ES0[UO S[elaulN N > [00000% 0] S[EPUTAFOPqUNN

uoneoso[uo sep N > [000001 ‘0] seDjOqunN

uondrossq urewo(| auwreN

73

FULL LIST OF FEATURES

pakonsap asey
19herd oy s3urprmg srqenyea moy pue Auewr moy SuryedIpur 9100G

1aAerd Aq payeard s3urprmg jo I3uaIis paurquuod 3umnedrpur a100g
12Ae1d Aq pajyeard sjrun jo JY3uaI)s paurquuIod 3UrjedIpur 100G
paLonsap aaey

SaTwRUS S3UIp[Ing d[qen[ea Moy pue Auewr Moy SurjedIpur 91005
Sarwo

-ud Aq pajeard s3urp(mg Jo JYSUSIIS PAUIqUIOd SUTIedIPUT 9I100G

N > [0000€01 ‘0]
N > [00000t 0]
N > [00000€ ‘0]

N = [00008€2 0]

N 2 [0000S+T 0]

2100G3uIZRUMO
3100g3uTpIIMguUMO
dI00GUN UM

a100g3urzeyyuauoddp

a100g3urprmgiuauodd

SITWOUD AQ PajeaId sjun Jo JYSuaI)s paurquuiod JunedIpul 91005 N 2 [00000SE ‘0] a100GyuNusuodd
wpmmyday ‘dew Jo azIg N 3 [9£569 ‘9607 azigdey
s103dadrayur
Surjunod jou “punoid sy} Yoeye Ued Jey} SHUN Ie UMO JO IOqUINN] N 2 [001°0] SUNITYUMQ
s103daorayur Sur
-JUnod jou “punoid Y} yoejre Ued Jey} SHuN Ire AWUD JO IqUINN N 2 [002°0] syiunaryiuauoddp
syuerpenb 6 ur dn jipds st dewr ayy azoym ‘dewr uo uonIsog N 2 [8°0] uonyso Jdejn
124erd ayj jo aoer 3unaelg N 2 [2°0] BRI |
SUOT)EDO[3seq AWaua WOy ddue)sIp punoid 3say3ny oy
PISI[EWLIOU “SUOT}ed0] 9Seq AWDUS WOIJ 9dUR)SIP PUNoI3 3S9MOT ¥ D [I—]N[L70] POZI[EWLIONdUe)SI(JPUnoInAurouy
SUOT)EdO[dseq Awaua woiy ddue)stp SurA[y 3saySry
0} PISIEULIOU “SUOT}ED0] dSkq AUWSUS WOIJ adULISIP SUTIA[J 1S9MO] ¥ 2 [L0] pazieurioNPOUR)SI(SUTATJAwRuy
SUOT}Ed0[dseq UMO WO dUBISIP punoid 3saydy
0} PASI[EUWLIOU ‘SUOI}LI0] 3SEq UMO WOIJ ddURISIPp punoid 3somo ¥ 3 [1—] N [1 0] POZI[EWLIONDURISI([PUNOIDUMO)
uondrsy(g urewo(] uwreN

TRACE OF SEQUENTIAL FORWARD FLOATING

SELECTION

Table B.1: Full trace of the Sequential Forward Floating Selection method

using the data set containing 28 features.

19/8671°0 V/N suorsuedxga[qIssoJjOPquINN 6 61
ZS190€1°0 V/N PaZI[eWIONPIURISI(SUIA[IUMO 8 81
17G69671°0 PpazZIeuLIO N[O UR)SI([SUIA[JUMO syurodasjoyDjOIequINN Z L1
17S9671°0 U1eJ1SOH0YSUIOUDSIJISOYSIH SPUNITYUMQO L 91
17S9671°0 V/N a100g3urpymgiusuoddQ L 1
979€€€1°0 a100g3unzeyyusuodd senjOIRqUNN 9 P
979¢€S1°0 AI0DGIIUNUM(O ar0dg3urzeyyusuoddp 9 €1
979¢£€1°0 V/N pazI[ewIONoUR)SIQSWALIUMO 9 22
8Y9LTEL0 V/N 1B J1S9HI0YSUI2IUASAI 1Sy ST s I
0S0V/Z€1°0 senHjORquINN suorsuedxgumQOjOIquINN 14 [0} 8
0£0vLEL0 V/N senjOPquUINN v 6
LL618EL°0 senjORquUINN 2I00G)UNUMO € 8
LL6ISEL0 2100G3uUIp[MguUMQO senjOPquUInN € L
LL6ISEL0 V/N 210053uIp[mMguUmQO € 9
9¢60811°0 QwIIJdWen) PIZI[EULIONSIUR)SI([PUNOIDAWSUL 4 S
SHYZ6bL0 POZI[EULIONPdUR)SI([pUnoIn Awaug QuIL] auIen) 4 4
7LE7971°0 2100G3UIp[MguUM(PIZI[EWIONSIUB)SI(]pUunoInAweusg 4 €
££88911°0 V/N 210053uIp[MguUmQ 4 4
TIYELSL0 V/N PozZI[eWLION@IUR]SI(]PUNOIDUMQO I I
AVIN PpaAOwRI dINnjea] pappe ainjea] juno)) aInjesj UONRId}

75

TRACE OF SEQUENTIAL FORWARD FLOATING SELECTION

76

89189710 senjysag a100g3uTpIINgUMQO 41 Q€
89189710 SIUNITYUMQO syiunaryusuoddo 48 LE
89189710 PazIfewIoNadue)SI(SUIAJAwauy PpazZIeuIo N@OUe)IS[SUIALJUMO TI 9¢
89189710 saprguad S[eIUIAFOIqUINN] zI 19
89189710 SIOOSHUNUMO SIuUNITyumQO 41 149
89189710 dey sen)}sag zI ¢
8918971°0 syurodasoyDjOIequny pazIeuwioNdue)SI([SUTA[JAwaug 41 (43
89189710 V/N azigdey 41 1€
L20L0€L°0 2100g3uIp[mMgumQO sapiguad 11 o€
£7020¢€1°0 pazIfewIONdURISISUIA[{UMQO S[eISUIIAISO] I 6c
£20L0€1°0 uonso Jden suorsuedxgqumOjOPqUINN II QT
£70£0€1°0 V/N SR | 11 Lz
66180€1°0 d100g3uIZEUMQ uonso Jden o1 9z
66180€1°0 PazIewIoNadue)SI([SUIALJAwauy suorsuedxgAusugORquInN o1 Gz
66180€1°0 suorsuedxgumQjOIqUINN d100g3urZeUMQO or vz
66180€1°0 a100g3urprmgiuauodd PaZI[euLION2OUR)SI(JSUIA]JUMO 0T €e
66180S1°0 POZI[EWIONROUR)SI([SUIALJUM(PazZI[euIoNPouelsI([SuIA[JAusuyg o1 (44
66180€1°0 SIUNITVUMQO 2100g3uTpIINguUMQ oI 12
66180¢€1°0 V/N 2I00GIIUNUMO oI oz
AVIN POAOWIAI 2INJed] poppe 2Imes] juno) aInjed] UOLeId)]

77

TRACE OF SEQUENTIAL FORWARD FLOATING SELECTION

€78//71°0 a100g3urpmgiusuodd ar0og3unyusuoddp €1 LS
€78//71°0 PIZI[eWIONIUR)SI(JSUIA[JUMO 2I00GIU UM €1 9<
€78//71°0 aroog3urzeyyuouoddp YjeJ1S9310SUIadUDSaI JIULIIND) €1 qq
€78//71°0 azigdey a100g3urprmgiusuoddo €1 ¥s
€78//71°0 QIOOGHUNUMO a100g3urzeyyusuodd €1 €<
€78//71°0 ar0dguN3uauoddp azigdey €1 4
€78//71°0 syunaryjusuoddo suorsuedxgumQJORqUINN €1 19
€78//71°0 suorsuedxgumQOjORqUNYN YeJIS9}I0YSUIIUSSIJISOYITL] €1 oS
€7824T1°0 ey 2I00GUNUMO 3 6
€78//71°0 I J3S91I0YSUIOUDSILJIUSLIND) STUNITYUMQO €1 ol
€78//71°0 a10og3urprmgiusuodd ERIEN| €1 Ly
€78//71°0 azigdey S90INO0SAYISog €1 of
€78//71°0 S[RISUIIAISOG I JIS9}OSUIIDUISIJIUDLIND) €1 4
€78.LT1°0 S[EIDUTAOIRqUINN soprguadQ 3 a4
€78//71°0 YIeJIS91I0YSUIaOURSIJIUDIIND) senjOIqUNN €1 (34
€78//71°0 dI00GITUN UM a10og3urprmgiuauodd €1 (474
€78//71°0 2100g3uIpIIMgumQ a1oogiunyusuoddp €1 g
€78LLTL0 V/N 2I0OGHUNUMQ 3 o
8918971°0 senjORAqUNN I JIS9}HOYGUIDUISIIJIUDLIND) 4 6¢
AVIN POAOWIAI 9INJEd] poppe 2Injes] JUNOD) dINjed UOHEIdN]

TRACE OF SEQUENTIAL FORWARD FLOATING SELECTION

78

7896/71°0 YieJiSolIoySUIadUdSaIJIUSIIND) SIUNITYUMQ 14 4
7996/71°0 0By YIeJIS91I0YSU[IDUISIJIUD.LIN)) b1 17
7896/71°0 sapiguad a100gyunyusuoddp 14" €L
7896/71°0 2100G3uIZR UM a10og3urprmgiuauodd Y1 (A
7896/T1°0 SIUNITYUMQO ey vr 174
7896/71°0 S[RISUTIAIFOIqUINN] a100g3urprmgumO v1 ol
7896/71°0 dwIr dwen) 2100g3uIZE UM b1 69
7896/T1°0 ozigdey suorsuedxga[qIssoJjOIoquINN b 89
7896/71°0 2100G3uIZER UM azigdey Y1 L9
7896/T1°0 SI0OGIUNUMQO waures) b 99
7896/T1°0 syurodasoypjOrequInN spunaryusuoddo b 9
7896/71°0 $92IN0S9Y[3s9g suorsuedxgAwaugjOIOqUINN Y1 Y9
7896.T71°0 uontsogdey syurodayoyDjORqunN b €9
7896/71°0 suorsuedxgAweugyOqUNN 2100g3uIZEUMQ 14" z9
7896/71°0 suorsuedxga[qrssoJJOIdquINN S[EISUTAIFOIOqUINN] Y1 I9
7896/71°0 UIeJISOMOYSUIOIUISAI [ULIND) senysag 14 09
7896/71°0 arodgyrunuauoddp uonsoJden 14" 6<
7896.71°0 V/N PazZI[euIoNadueIsIq3uA[JumQO b 8¢
AVIN PaAOWIAI 2INJLd,] poppe aInjea] juno)) 2Injed UONEId}]

79

TRACE OF SEQUENTIAL FORWARD FLOATING SELECTION

7896/.71°0 V/N S[eIOUTIA}ISOg a1 0g
7896£71°0 aroogunuauoddo S[EISUTAFOIRqUINN] Y1 6L
896/71°0 SHUNITYUMQ QI0OGIUNUMO $1 Y
7896/71°0 YleJisaloySuladuasalJIUualLiny m@ﬁﬂmﬁmoﬁo V1 LL
7896/71°0 @HOUmmCJuﬁ—Am—CgO Y3e 1S9} 10YSUa0UasSaI JJUaLIny) 1 @h
IVIN PoAOWIDI 3INjed pappe amjes JunoD) aInjed UOTIeId)]

HIGH RESOLUTION COLOUR FIGURES

MENU

Mepu (Fio)

High resolution colour figure of Figure 1.2.

81

82 HIGH RESOLUTION COLOUR FIGURES

enopsyl Nest
4

High resolution colour figure of Figure 1.3.

High resolution colour figure of Figure 3.1.

Total resources

Total resources

4000

3000

2000

1000

50 |

40 |

30

20 |

10

HIGH RESOLUTION COLOUR FIGURES 83

7 ’
- -
~ —~
-
-
-
1 /
-
-
= ~
7
%
/
7/
—
— ~
P -
— - -
- =
— -
— P_I T T T T T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Frames
—— Our algorithm — — Built-in method
High resolution colour figure of Figure 6.1.
0 1000 2000 3000 4000 5000 6000 7000 8000
Frames
—— OQur algorithm - Built-in method

High resolution colour figure of Figure 6.2.

84 HIGH RESOLUTION COLOUR FIGURES

High resolution colour figure of Figure 13.1.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Michael Buro. Call for ai research in rts games. In In Proceedings
of the AAAI Workshop on Al in Games, pages 139-141. AAAI Press,
2004.

Michael Buro and Timothy Furtak. On the development of a free
rts game engine. In GameOn’NA Conference, pages 23—27, 2005.

Hei Chan, Alan Fern, Soumya Ray, Nick Wilson, and Chris
Ventura. Online planning for resource production in real-time
strategy games. 2007.

VG Chartz. Software totals. http://www.vgchartz.com/
worldtotals.php?genre=Strategy&sort=Total. [Online; ac-
cessed March 10th 2011].

Dion Christensen, Henrik Ossipoff Hansen, Jorge Pablo Cordero
Hernandez, Lasse Juul-Jensen, Kasper Kastaniegaard, and Yifeng
Zeng. A data-driven approach for resource gathering in real-time
strategy games. Accepted by ADMI-11, May 2011.

Dion Bak Christensen, Henrik Ossipoff Hansen, Lasse Juul-Jensen,
and Kasper Kastaniegaard. Efficient resource management in
starcraft: Brood war. Technical report, December 2010. Technical
report made as part of the DAT5 semester.

Laurent Hyafil and Ronald L Rivest. Constructing optimal binary
decision trees is np-complete. Information Processing Letters, 5(1),
May 1976.

A.Jain and D. Zongker. Feature selection: evaluation, application,
and small sample performance. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 19(2):153-158, February 1997.

Kelly Olsen. South korean gamers get a sneak peek at ’star-
craft ii’. USA Today Online, http://www.usatoday.com/tech/
gaming/2007-05-21-starcraft2-peek_N.htm, May 2007. [On-
line; accessed March 10th 2011].

P. Pudil, P. Novovicova, and]. Kittler. Floating search methods
in feature selection. Pattern Recognition Letters, 15(11):1119 — 1125,

1994.

Steve Rabin. Introduction to Game Development. CHARLES RIVER
MEDIA, INC., 10 Dower Avenue, Hingham, Massachusets, 1st
edition, 2005. ISBN 1584503777.

85

http://www.vgchartz.com/worldtotals.php?genre=Strategy&sort=Total
http://www.vgchartz.com/worldtotals.php?genre=Strategy&sort=Total
http://www.usatoday.com/tech/gaming/2007-05-21-starcraft2-peek_N.htm
http://www.usatoday.com/tech/gaming/2007-05-21-starcraft2-peek_N.htm

86

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Thomas Randall, Peter Cowling, Roderick Baker, and Ping Jiang.
Using neural networks for strategy selection in real-time strategy
games.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd
edition, 2009. ISBN 0136042597.

Ben G. Weber and Michael Mateas. Case-based reasoning for
build order in real-time strategy games. In Preceedings of the Fifth
Artificial Intelligence and Interactive Digital Entertainment Confer-
ence, 10/2009 2009.

Sam Wintermute, Xu Joseph, and John E. Laird. Sorts: A human-
level approach to real-time strategy ai. In Proceedings of the Third
Artificial Intelligence and Interactive Digital Entertainment Confer-
ence. The AAAI Press, 2007.

Georgios N. Yannakakis. Learning from preferences and selected
multimodal features of players. In Proceedings of the 2009 interna-
tional conference on Multimodal interfaces, ICMI-MLMI 09, pages
115-118, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-772-
1.

Georgios N. Yannakakis and John Hallam. Entertainment mod-
eling through physiology in physical play. Int.]. Hum.-Comput.
Stud., 66:741—755, October 2008.

Georgios N. Yannakakis, Manolis Maragoudakis, and John Hal-
lam. Preference learning for cognitive modeling: a case study
on entertainment preferences. Trans. Sys. Man Cyber. Part A, 39:
1165-1175, November 2009.

DATA-DRIVEN RESOURCE
MANAGEMENT IN
REAL-TIME STRATEGY
GAMES

RESUME

DION CHRISTENSEN, HENRIK OSSIPOFF HANSEN,
LASSE JUUL-JENSEN, KASPER KASTANIEGAARD

The thesis Data-driven Resource Management in Real-time Strategy Games intro-
duces ways to streamline resource management in real-time strategy games.
This is done using a data-driven approach, which has become possible due
to the increased availability of replay data for this gaming genre. The the-
sis is split into two parts, each dealing with a distinct aspect of resource
management: exploitative resource management and explorative resource
management. The real-time strategy game StarCraft: Brood War by Blizzard
Entertainment, is utilised as test bed for the work done in the thesis.

EXPLOITATIVE RESOURCE MANAGEMENT

Deals with the accumulation of resources and optimisation of the gathering
process for available resources. Gathering efficiency is increased by adopting
an algorithm for controlling agent behaviour. By utilising a simple queue-
ing system, predictability and income is increased in comparison with the
heuristic approach used by the test bed. The work on exploitative resource
management is a summary of previous work by the authors.

EXPLORATIVE RESOURCE MANAGEMENT

Deals with the discovery or creation of new resource gathering opportunities.
In traditional real-time strategy games, resource gathering opportunities are
created by the construction of expansions. In order to efficiently expand to
new locations in the game environment, some decision model is needed. The
aim of the models proposed in this thesis, is to mimic expansion behaviour
of human players, based on the decisions observed in replays. 28 potentially
influential features are identified using expert knowledge. Sample data is
extracted from replays, for use in training the decision models. Feature
selection is utilised in order to identify the most significant features. A
total of six different sets are tested using both artificial neural networks
and decision trees. Subsets show performance similar to the full feature set,
indicating low noise of the data. The decision models using the feature sets
are able to predict base expansions in replay data with a hit rate of up to
64.43%. Based on the test results, it seems feasible that the approach may
be utilised in a game scenario, for making sound choices of base expansion
sites.

	thesis
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Real-time Strategy Games
	1.1.1 Choice of Real-time Strategy Game

	1.2 Related Work
	1.2.1 Resource Gathering
	1.2.2 Expansion Strategies

	2 Problem Statement
	Efficient Resource Gathering
	3 Introduction
	4 Algorithm
	4.1 Resource Gathering Domain
	4.2 Algorithm Definition
	4.3 Travel Function

	5 Complexity Analysis
	6 Experimental Results
	7 Discussion and Future Work

	Data-driven Expansion Strategies
	8 Introduction
	9 Theory of Decision Models
	9.1 Decision Trees
	9.1.1 Decision Tree Learning

	9.2 Artificial Neural Networks
	9.2.1 Artificial Neuron
	9.2.2 Activation Function
	9.2.3 Learning

	9.3 Summary

	10 Data Extraction
	10.1 Feature Proposition
	10.2 Data Extraction Approach
	10.2.1 Replay Format
	10.2.2 Broodwar API

	11 Feature Selection Theory
	11.1 Sequential Forward Selection
	11.2 Sequential Backward Selection
	11.3 Sequential Forward Floating Selection

	12 Feature Selection Experiments
	12.1 Implementation of Feature Selection Methods
	12.1.1 Data Set Used for Experiments

	12.2 Feature Set Performance
	12.2.1 Sequential Forward Selection
	12.2.2 Sequential Backwards Selection
	12.2.3 Sequential Forward Floating Selection

	12.3 Summary

	13 Feature Selection Evaluation
	13.1 Using Artificial Neural Networks
	13.2 Using Decision Trees
	13.3 Further Testing
	13.4 Results
	13.4.1 Artificial Neural Network Results
	13.4.2 Decision Trees Results

	13.5 Scenario

	14 Discussion and Future Work
	14.1 Future Work
	14.1.1 Predicting Expansions
	14.1.2 Dealing with Unknown Game States
	14.1.3 Player Modelling
	14.1.4 Alternative Decision Models
	14.1.5 Use in Full Scale Real-time Strategy Games
	14.1.6 Alternative Performance Measures for Feature Selection
	14.1.7 Improving Feature Selection Methods

	Appendix
	A Full List of Features
	B Trace of Sequential Forward Floating Selection
	C High Resolution Colour Figures
	Bibliography

	resume

