
ROBOCUT
Scheduling and Configurator

MASTER’S THESIS

JONATHAN SKOVHUS ANDERSEN & DAN GADENSGAARD

Department of Mechanical and Manufacturing Engineering

Aalborg University, Denmark

Department of Mechanical

and Manufacturing Engineering

Manufacturing Technology

Fibigerstræde 16,

DK-9220 Aalborg Ø

Tlf: +45 9940 7117

Fax: +45 9940 7110

http://www.m-tech.aau.dk

Title:
ROBOCUT

Semester Theme:
Master’s Thesis

Project Period:
01.02.2011 - 07.06.2011

Authors:

Jonathan Skovhus Andersen

Dan Gadensgaard

Supervisors:
Morten Kristiansen
Ewa Kolakowska

Publications: 4.

Number of Pages: 138 + appendix
blankbl ankbl (18 blank pages)

Finished: 07.06.2011

Synopsis:

This thesis is a part of the ROBOCUT research
project. The project’s vision is to develop a
new laser cutting technology, that relies on a
multibeam principle in order cut remotely.

This thesis is split into two parts. Part I focuses
on scheduling of the laser cutting process.
A cutting job is divided into a set of cutting
tasks. Methods for scheduling these tasks in
order to minimize process time is evaluated.
Possible methods are: Use of dispatching rules
or combinatorial optimization. The dispatching
rules can be used to construct a path that is used
as input for an improvement heuristic. Using
combinatorial optimization is only possible for
up to around 25 tasks because of computation
time.

Part II defines a methodology for modularizing

a production unit and preparing it for configu-

ration. The output of this methodology is used

to develop an online configuration system using

ASP.NET C#.

Preface

This thesis is written by Jonathan Skovhus Andersn and Dan Gadensgaard during the
spring semester 2011. The work was carried out as a part of the 10th semester of the
Manufacturing Engineering and Technology candidate programme at Aalborg University,
Aalborg, Denmark. The overall theme of the project is "Technologically innovative
business creation", and the overall purpose of the project follows the curriculum of
the candidate programme in which it is stated that the students are expected to:

� Be able to acquire new knowledge required to solve an industrial or scientific
problem within manufacturing engineering and technology.

� Be able to demonstrate engineering and/or scientific skills within the line
of specialization and to display their ability to perform engineering and/or
scientific work.

� Be able to work independently with a project on a specific problem within their
field of interest on the highest possible level within their specialization.

The project is documented by a main report, appendix, list of references and
an enclosed CD. The main report consists of two main parts that can be read
independently, as well as a conclusion.

References are presented according to the Chicago Method, which in the text are
indicated as [x, year] where ”x” is the author’s surname and ”year” is the year of
publication. If multiple references are used, these will be printed [x, year], [y, year].
References with specific page numbers are indicated as [x, year, p. a-b]. If referring to
an author who published several articles in the same year, the first material is declared
with an ”a” after ”year”. The other publications of the same author are then given b,
c, d... depending on the order of its appearance in the report.

The reference list generally specifies as follows:

Surname, first name. Year. Title. Publishing / URL.

Graphs, formulas and tables are numbered sequentially, with chapter number and
then figure number, e.g. ”Figure 4.1”. In the appendices letters indicate chapters.

III

On the last page a CD is enclosed. This is also divided into two main parts,
containing:

� Literature

� The report in PDF.

� Part I

– MATLAB scripts for nearest neighbor and dispatching rule schedulers.

– Gecode source code and executables for combinatorial optimization.

– Visual C# project and source code for ROBOCUTAddIn.

� Part II

– PVM model and Product Model Manager software.

– ASP.NET and Visual C# source code for ROBOCUT Configurator.

� Pictures from visit at Ib Andresen A/S.

IV

Contents

1 Introduction 1

1.1 The ROBOCUT Project . 2

1.2 Scope of this Project . 6

2 Problem Formulation 9

I Scheduling System 11

3 Introduction 13

3.1 Integrated Planning and Scheduling . 14

3.2 Introduction to Scheduling . 16

3.3 Scheduling Definitions and Notations . 17

3.4 Related Work . 18

4 The Scheduling Problem 21

4.1 Usage Scenarios . 21

4.2 Scheduling the RLC Process for Roll Forming 23

4.3 Mathematical Description of the Problem 24

4.4 Assumptions and Approach . 25

5 Dispatching Rule Scheduler 29

5.1 Basic Dispatching Rules . 30

5.2 Composite Dispatching Rules . 35

5.3 Summary . 41

V

6 Combinatorial Optimization 43

6.1 Running Time of Algorithms . 43

6.2 The Travelling Salesman Problem . 44

6.3 Software . 51

6.4 Implementation . 53

6.5 Results . 55

6.6 Summary . 63

7 Scheduling Interface 65

7.1 Framework . 65

7.2 Requirements . 67

7.3 The Robocut Add-In . 68

7.4 Summary . 71

8 Discussion 73

II ROBOCUT Configurator 77

9 Introduction 79

9.1 Notation . 80

10 Identifying Modular Architecture 83

10.1 Clarifying the Task . 85

10.2 Establishing Function Structures . 91

10.3 Working Principles and Variants . 95

10.4 Selecting and Evaluating modules . 100

10.5 Embody Modular Architecture and Framework 101

11 Software Requirements 111

11.1 Scope . 112

11.2 Product Perspective . 112

VI

11.3 Specific Requirements . 113

11.4 Summary . 115

12 Software Design Specification 117

12.1 Architecture . 117

12.2 Database Design . 120

12.3 User Interface Design . 124

13 Verification and Validation 127

13.1 Presentation of Configurator . 127

13.2 Validation Testing . 128

13.3 Defect Testing . 131

13.4 Summary . 132

14 Discussion 133

III Conclusion 135

15 Conclusion 137

Summary 138

Bibliography 141

IV Appendix 149

A Ib Andresen Industri A/S A-1

A.1 Roll forming . A-2

A.2 ROBOCUT potential in the roll forming process A-4

A.3 Visits at Ib Andresen . A-6

A.4 Problems associated with punched holes A-7

A.5 CAD data . A-7

VII

A.6 Changeover . A-8

A.7 Software for defining holes . A-8

A.8 Controlling the laser cutting process . A-8

A.9 Setup of Laser . A-8

B Scheduling Constraints B-1

B.1 Description of Constraints . B-1

C Gecode Source Code C-1

D Functional Structure Diagrams D-1

D.1 RLC ahead of or inside the roll forming mill at IAI D-2

D.2 RLC after the roll forming mill at IAI . D-3

D.3 Robotic RLC at Grundfos . D-4

D.4 Station RLC at Grundfos . D-5

D.5 Robotics RLC of holes in car bodies at Volvo D-6

E Requirements E-1

E.1 Functional Requirements . E-1

E.2 Non-Functional Requirements . E-2

F User Manuals F-1

F.1 Installing and running the ROBOCUT Add-in F-1

F.2 Using the ROBOCUT Add-in . F-2

F.3 User Manual for ROBOCUT Configurator F-7

VIII

CHAPTER 1
Introduction

As laser was discovered in 1960 it was said to be ”a solution looking for a problem”
[Steen and Mazumder, 2010, p. 51]. The tool was so different from anything that
had ever been seen that the current thinking had not caught up with the possibilities.
Today a laser is associated with precision, quality and speed. Desktop laser printers,
DVD’s, a laser scanner at the supermarket are examples of everyday appliances where
the use of lasers is taken for granted.

The history of laser technology actually starts way back in 1917 when Albert
Einstein established the theoretic foundations for the laser1 and the maser2. Albert
Einstein showed that stimulated emission - the basis for generating laser radiation - is
an everyday occurrence. His discoveries lead to considerable investments in research
and in 1960 Theodore Harold ”Ted” Maiman (1927-2007) invented the first working
ruby laser [Steen and Mazumder, 2010, p. 2].

The military soon got the idea that a death ray would be handy in any battlefield
and this lead to huge increase in research funding. Many of today’s lasers were
quickly developed during the 1960s hidden in research laboratories and military
establishments [Steen and Mazumder, 2010, p. 3]. However something interesting
happened in the beginning of the 1970s. Enthusiasts from the automotive industry
realized the lasers potential for material processing [Ion, 2005, p. 1].

Actually, the first ”demonstration” of laser material processing appeared in the 1964
film Goldfinger. The scene showed innovative thinking and industrialists quickly
realized that ruby laser pulses might be suitable for drilling. Ruby laser welding were
used in fabrication of the first Apollo lunar sample return containers in 1969. The
first commercially available CNC soldering machine based on a 50 W CO2 laser was
produced in 1976 [Ion, 2005, p. 20].

In the early 1980s industrial CO2 lasers with higher power and better reliability
were built. Especially the development of the fibre-optic cable meant that higher
powers could be transmitted without using complicated mirror systems. It also gave
the possibility of mounting a laser on a robot [Ion, 2005, p. 25].

In the 1990s the CO2 laser technology was still preferred for cutting and welding

1Acronym for Light Amplification by Stimulated Emission of Radiation.
2Acronym for Microwave Amplification by Stimulated Emission of Radiation.

1

1.1 The ROBOCUT Project

tasks. In 1997 a 4 kW CW Nd:YAG lasers was marketed, which provided direct
competition with the leading CO2 lasers. The automotive industry started replacing
the CO2 lasers with the Nd:YAG lasers for complex cutting and welding operations. At
the end of the decade a 10 kW CW3 Nd:YAG4 unit was commercially available. Diode
lasers were also investigated during the 1990s as a substitute for CO2 and Nd:YAG.
However there were problems with the thermal load and a lot of cooling were needed.
In the late 1990s a 6 kW infra-red diode laser were commercially available [Ion, 2005,
pp. 28-29].

Around the turn of the new millennium, compact and energy efficient diode-
pumped solid-state lasers started to appear. This new type of lasers opened a whole
new world of possibilities. They are small enough to mount directly onto robots and
have better properties than lamp-pumped lasers all-round [Ion, 2005, pp. 31-32].

History have showed that the production industry have had a huge impact on
the development of laser technology. Industries are good at realizing were there is
a potential for developing and implementing new production technologies. This is
also why it is very certain that new laser sources will continue to be developed and
made more compact, efficient and cheaper. The ROBOCUT project can be considered
an attempt in taking a large step forward in making processing more efficient, cheaper
and more reliable. The project mainly aims at developing a laser cutting technology
that will outperform the state-of-the-art laser cutting technologies. This thesis is a part
of building the theoretical foundations for the ROBOCUT project.

1.1 The ROBOCUT Project

This section will present the basic idea behind the ROBOCUT project. This presentation
will not go through the technical details as they will be mostly irrelevant for the
remainder of the report. The main focus will be to explain the concept. For further
technical information about the ROBOCUT project see [The Danish National Advanced
Technology Foundation, 2010]. Furthermore the expected business potential of the
project will be presented.

The vision of the ROBOCUT project is to develop a new laser cutting technology that
will outperform state-of-the-art laser cutting. This will be made possible by effective
Remote Laser Cutting (RLC), i.e. without assist gas. Because the process uses no assist
gas, no mechanical device will have to follow the cutting point. The remote laser
cutting technology relies on a multi-beam principle, see Figure 1.1(b). Traditional laser
cutting is carried out with a single beam and assist gas.

3Continuous Wave
4Neodymium-Doped Yttrium Aluminium Garnet

2 1 Introduction

1.1 The ROBOCUT Project

Articulated robot

 H
IG

H
 P

O
W

ER
FI

BE
R

LA
SE

R

DOE

(a) Robot mounted with laser.

x

Laserbeam
intensity

y

0.1 mm

Cutting
direction

Melt beam

Barrier beam

Lid beam

x

Laserbeam
intensity

y

0.1 mm

Cutting
direction

Melt beam

Barrier beam

Lid beam

(b) Laser beam intensity pattern.

Figure 1.1: Illustration of ROBOCUT-concept [The Danish National Advanced
Technology Foundation, 2010, p. 3, Figure 1].

Figure 1.1(b) shows the beam intensity pattern. The idea is to generate vapor
pressure on the molten material at the most appropriate places in the kerf using a
barrier beam. This will create a optimum melt flow away from the cut kerf. The simple
approach of focussing a round beam to a small spot will not create an optimum melt
flow without assist gas. When remote cutting with a simple round beam there will
also be an uncontrolled melt ejection towards the laser beam.

The core of the ROBOCUT technology is therefore being able to construct a beam
intensity pattern like the one shown in Figure 1.1(b). The beam originates from the
fiber laser source and is passed through an optical cable to the scanner head consisting
of an advanced optical system with a specially designed artificial hologram, also
known as a Diffractive Optical Element (DOE), see Figure 1.2.

Besides the primary objective of developing a new RLC technology, a secondary
goal of the ROBOCUT project is to study the use of the laser beam intensity pattern
principle for improving the existing Remote Laser Welding (RLW).

The objective behind the ROBOCUT project is mainly to develop and integrate
the ROBOCUT technology into the scanner head. The project also consists of
other fundamental elements like establishing laboratory facilities, theoretical process
simulation, simulation of flow patterns, optimizing laser beam pattern and so on.
Currently the following projects are in progress:

� IPU and KUKA are developing the DOE. A PhD project is supporting this

� A PhD project is modeling the laser cutting process

� AAU is setting up laboratory facilities for testing

1 Introduction 3

1.1 The ROBOCUT Project

Fiber Laser Source

Collimating Optics

DOE in rotary
bracket

Focusing optics

Scanning-system

Focus point

Figure 1.2: Close-up of the principle for the scanner head optics [Olsen, 2011, p. 1].

1.1.1 Business Potential

Laser cutting is a market that has been growing steadily for the last 30 years. The
growth in the market has unfortunately been drastically reduced by the global crisis in
2008, as seen in Figure 1.3. The graph shows that the industrial laser market survived
the dot-com recession of early 2000 almost without any downturn in revenues. The
recession of 2008-2009 was however more global and devastating for the industrial
laser market.

0.0

0.5

1.0

1.5

2.0

1986 2000 2009

$
Bi

lli
on

Figure 1.3: Industrial laser revenues - 1986-2009. [Belforte, 2010, p. 2, Figure 1].

Table 1.1 shows that no industrial laser category escaped the recession. Overall the
revenues for all types of industrial lasers decreased 30% in 2008. This is a record for
the industry [Belforte, 2010, p. 2]. However Table 1.1 also shows that the projected

4 1 Introduction

1.1 The ROBOCUT Project

revenue for 2010 shows an increase in the revenue. The CAGR5 for industrial laser
revenues over the past 15 years is 12.8%. At this rate the revenue should return to the
2008 level by 2012.

Laser 2008 2009 EST % Change 2010 Proj. % Change

CO2 1091 669 -39 723 8
Solid State 394 340 -14 365 7
Fiber 213 169 -21 190 12
Other 60 53 -12 58 9
Total 1758 1231 -30 1336 9

Table 1.1: Global industrial laser revenues ($ Million) [Belforte, 2010, p. 2, Table 1].

The growth in the industrial laser market is a consequence of the continuous
improvement in productivity of the process. There is no indication that the
development of laser processing is about to stall and laser cutting will take over more
and more market shares from conventional sheet metal operations such as cutting,
nibbling and punching. The ROBOCUT technology has the potential to outperform
state-of-the-art laser cutting technology and thus totally dominate this market in the
future. There is also a growing market for efficient 3-dimensional laser cutting in
the car industry. On longer term, a market for high speed laser cutting in trimming
of body components after press forming will also emerge [The Danish National
Advanced Technology Foundation, 2010, pp. 4-5].

A thorough analysis of the potential revenue by the ROBOCUT technology has been
made by the ROBOCUT stakeholders. Figure 1.4 shows the estimated revenue.

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

20
10

Eu
ro

Licence
DOEs
Optics

20
11

20
20

20
19

20
18

20
17

20
16

20
15

20
14

20
13

20
12

Figure 1.4: ROBOCUT annual revenue estimate [The Danish National Advanced
Technology Foundation, 2010, p. 6, Figure 5].

As it can be seen, the revenue depends highly on the licence which means that
obtaining a patent protection of the ROBOCUT-invention is crucial. It will also be
important to ensure that competitors will respect the patent rights. However if

5Compound Annual Growth Rate

1 Introduction 5

1.2 Scope of this Project

the ROBOCUT project succeeds in obtaining patent protection it has a great earning
potential. The market has recovered from the crisis and will continue to grow for
many years to come.

1.2 Scope of this Project

This thesis focuses on establishing some of the theoretical foundations of the
ROBOCUT project. The thesis objectives are divided into two parts:

� Scheduling of the laser cutting process.

� Development of a ROBOCUT configurator.

The scope and content of each of these parts are presented below.

1.2.1 Part I: Scheduling of the Laser Cutting Process

One of the possible advantages of the new RLC technology is that it allows for
programming any desired cutting operation without risking collisions between the
laser optics, the workpiece or clamping devices. Because the detailed positioning and
focusing of the laser beam is handled by the fast moving optical system in the scanner
head, the RLC technology can also offer a significant decrease in cycle times when
compared to conventional laser technology. At the same time the potential advantages
of the technology is also its main challenge because of the added complexity in terms
of planning and programming the process.

For this reason one of the main challenges of the ROBOCUT project is the effective
transformation of cutting paths from CAD data into motions of the process equipment.
Among others this entails a detailed path planning for the movement of the process
equipment and generation of the necessary machine code. This is an area that have
already been widely covered for conventional laser cutting, and as a result standard
software is available for doing this. But because of the added complexity introduced
by the RLC technology these are not directly transferable. For this reason it is
necessary to carry out some research to identify some solutions for carrying out the
path planning for RLC effectively.

An important part of path planning is to determine in which order the individual
cuts should be carried out. This also known as the discipline of scheduling, which
deals with the allocation of tasks to limited resources with the purpose of optimizing
in terms of some objective(s). In this case the tasks consists of the cuts that needs to be
carried out, while the resource is the RLC process and the objectives are related to the
part and process requirements.

6 1 Introduction

1.2 Scope of this Project

Part I of this thesis tries to identify some methods of scheduling the RLC process.
This is carried out based on an example case at Ib Andresen Industri A/S. The reader
is referred to Appendix A for a description of the company and their manufacturing
processes.

1.2.2 Part II: Development of a ROBOCUT Configurator

The new RLC and RLW technology developed through the ROBOCUT project is widely
applicable to many different production scenarios. This is also expressed through the
very diverse application scenarios that the participating and supporting companies
have in mind.

The fact that the RLC and RLW technology has such a wide application must be
kept in mind during the development of the technology. That is, the technology
must be developed to ensure that it is as generally applicable as possible, without
compromising the cost and performance of the technology. This is a challenge, as the
RLC and RLW technology is going to be comprised of a lot of subsystems working
together to fulfill the overall expected functionality. At the same time, the needs and
requirements for these subsystems will differ between different application scenarios.
This raises the need for further examining the possible application scenarios with the
objective of identifying the subsystems that possibly can make up the RLC and RLW
process. Because the subsystems can be considered as separate modules, this also
gives rise exploring the idea of developing a configurator for the RLC/RLW process.
This is the subject of Part II.

Product configurators are used extensively for configuring products online. In the
future we may instead imagine that configurators also are used for producers to buy
production systems. Because the ROBOCUT technology has potential to be used in
many production scenarios it may be a suited technology for such a production system
configurator.

The objective is to develop a configurator that will clarify the capabilities of the
technology in different production scenarios. The purpose of the configurator will be
elaborated in Part II.

1 Introduction 7

1.2 Scope of this Project

8 1 Introduction

CHAPTER 2
Problem Formulation

This thesis is a part of the ROBOCUT project. The overall objective of this thesis is to
help establish some of the theoretical foundations for the ROBOCUT project. Issues
that needs research have been identified and this thesis will focus on some of those
issues.

The project objectives can be divided into two elements with the following
problems:

� Scheduling of the laser cutting process.

– What methods are best for scheduling remote laser cutting and how can
they be applied?

– How can an interface be developed for defining a scheduling problem and
visualizing scheduling results?

� Development of a ROBOCUT configurator.

– What methodology can be used to prepare a production unit for configura-
tion and how can it be applied to a remote laser cutting/welding produc-
tion unit?

– How can a configurator for a remote laser cutting/welding production unit
be developed and deployed?

The structure of the thesis is divided into two parts. Part I focuses on the scheduling
of the laser cutting process and Part II focuses on the development of the configurator.

9

10 2 Problem Formulation

PART

I
SCHEDULING SYSTEM

11

12

CHAPTER 3
Introduction

As previously mentioned, the vision of the ROBOCUT project is to develop a new
Remote Laser Cutting (RLC) and Remote Laser Welding (RLW) technology, by
utilizing a cutting head with focussing optics and scanning mirrors for rapid and
precise positioning of a laser beam with a micro pattern. The technology has a great
potential for increasing the flexibility of laser cutting while at the same time decreasing
the cycle time, by offering faster laser beam positioning and cutting speeds than
conventional laser cutting. To take full advantage of the technology however, it is
important to ensure an effective planning and transformation of the cutting tasks into
movements of the equipment.

Experience from robotic Remote Laser Welding (RLW) has shown that a lack of
effective programming techniques of the equipment means that it is not profitable
for lot sizes below 100.000 pieces per year [Hatwig et al., 2010, p. 327]. Thus, this is
an area that still needs to be researched, to fully take advantage of both RLW and RLC
technologies.

Before being able to program a laser cutting process it is necessary to plan and
schedule the process. This is done by first identifying the cutting tasks (e.g. start point,
end point, geometric data) along with the process parameters and constraints (e.g.
cut speeds, laser power, max/min cut angle etc.). The identified cutting tasks then
needs to be scheduled to obtain a feasible cut sequence, while satisfying the identified
process parameters and constraints. The result from the planning and scheduling can
then be used for programming the process equipment.

This part of the thesis will focuses on researching different techniques for the
planning and scheduling of the cutting tasks for RLC. The research is conducted based
on the industrial application of the RLC technology.

The following section presents a proposal for the composition of an integrated
planning and scheduling system for the RLC process. This then leads to an
introduction to scheduling before describing the definitions and notations used
throughout the remainder of this part. Finally, the last Section presents some related
work carried out in the field of RLC and RLW.

13

3.1 Integrated Planning and Scheduling

3.1 Integrated Planning and Scheduling

The planning and scheduling of the RLC process becomes a complex and daunting
task for a human process planner even with just a few simple cutting shapes. For this
reason a planning and scheduling system that can be fully integrated with a system
for effectively programming the equipment is essential.

This section will present a proposal of a possible general system for programming
the RLC process with integrated planning and scheduling. The proposed system
is used as a means for identifying the inputs and outputs for the planning and
scheduling. The system is shown using the Integrated Definition for Function
Modeling (IDEF0) methodology [Federal Information Processing Standards, 1993].

The top level technical outside view of the RLC Program Generation System is
illustrated by the A-0 diagram in Figure 3.1.

The system takes the geometric data of the part and the cutting tasks as an input
in the form of a CAD data file. The RLC program generation system then transforms
these data to some machine code for the equipment (e.g. cutting head, robot, etc.)
and a visual illustration along with an estimated process time. To do this, the
system utilizes a process planner (i.e. a human operator) along with some planning,
scheduling and CAD/CAM software as the executing mechanisms. In order to ensure
that the system outputs a feasible and valid solution for the RLC process, the system
uses the process constraints as the controlling mechanism. A decomposition of the

TITLE:NODE: NO.: 1A-0 Generic RLC Program Generation System

A0

RLC Program
Generation

CAD Data

CAD/CAM
or similar

Process
constraints

Machine Code

Estimated process time

Purpose: Identity functions and information for automating a program generation system for a remote laser
cutting process.

Viewpoint: Technical outside.

Human
process
planner

Planning
software

Scheduling
software

Visual Illustration

Figure 3.1: Top-level IDEF0 diagram of the scheduling system.

14 3 Introduction

3.1 Integrated Planning and Scheduling

top-level technical outside by one level is shown in the A0 diagram in Figure 3.2. As
it can be seen the system consists of four main functions.

In the first main function, Process Planning, the cutting process is planned
by transforming the CAD data into separate cutting tasks and possible process
parameters. The human process planner analyzes the part and the cut geometries
based on experience and process constraints to determine if the cuts are possible to
perform. Depending on the process setup and scenario, a software for aiding the
process planning might be used, or in some cases perform the planning autonomously.

After the initial process planning, the second function, Scheduling & Optimization,
the identified and sequenced cutting tasks are scheduled and optimized based on the
process parameters and constraints. This function is carried out autonomously by a
scheduling scheduling software. As an output, the function returns a scheduled task
sequence and an estimated process time, the latter being a system output.

Based on the CAD-data, information about cutting tasks and the task sequence,
the system is able to generate the appropriate programs for the process equipment in
the third step, Program Generation. As the previous step, this step is also performed
autonomously by a CAD/CAM1 software or similar, with the process parameters and
process constraints as the controlling mechanisms. The generated machine code is
then returned as a system output, ready for transferring to the appropriate equipment.

In case simulation and/or visualization is desired for verification and communica-
tion purposes, this is handled by a fourth function, Simulation & Visualization. This
function operates based on the same data as the Program Generation function, but also
uses the generated machine code. As output the function returns some visual illus-
tration of the results (e.g. graphs, animations, images). The software used for the
simulation and/or illustration is also some CAD/CAM software, and in some cases
the same software can be used for both program generation and simulation in which
case these two functions essentially merges to one.

As it was mentioned earlier, this thesis does not focus on developing the entire
RLC Program Generation System. Instead, the steps concerning the process planning
and scheduling are mainly considered. The last step concerning the simulation and
visualization of the results will also receive some attention, but only in terms of
illustrating and verifying the obtained scheduling results.

1CAM: Computer Aided Manufacturing

3 Introduction 15

3.2 Introduction to Scheduling

TITLE:NODE: NO.: 2A0 Generic RLC Program Generation System

A1

Process Planning

A2

Scheduling &
Optimization

A3

Program
Generation

A4

Simulation &
Visualization

Process constraints

CAD Data
Process parameters

Cutting
tasks

Machine Code

Human
process
planner

Scheduling
Software

Task
sequence

Planning
software

CAD/CAM or similar

Visual
illustration

Estimated
process time

Figure 3.2: IDEF0 A0 diagram showing an overview of the complete scheduling system.

3.2 Introduction to Scheduling

The discipline of scheduling deals with the allocation of limited resources to the
processing of tasks with the purpose of optimizing in terms of one or several
objectives. Examples of objectives are to minimize the cycle time, lateness or idle-time
[Pinedo and Chao, 1999, p. 2].

The discipline of scheduling is used in a wide range of manufacturing and service
industries. The main purpose of scheduling is to minimize the production time and
costs. This is done by calculating when to make what, with which staff and on
what equipment. In other words scheduling aims to develop the best schedule while
satisfying certain timing and sequence conditions.

This is a very general definition of scheduling and it should be noted that scheduling
is applicable to a wide range of problems. Some common scheduling applications are
[Pinedo and Chao, 1999, pp. 2-5]:

An auto-mobile assembly line. The objective is to maximize throughput by sequenc-
ing the cars in a way that balances the workload at each station over time.

A production plan for a paper mill. The objective is to maximize production while
minimizing inventory costs.

A reservation system. The objective is to maximize the number of days the cars are
rented out.

16 3 Introduction

3.3 Scheduling Definitions and Notations

Scheduling nurses in a hospital. The objective is to develop shifts assignments that
meet all daily requirements and satisfy the constraints at a minimal cost.

The examples underline how used and important scheduling is. Scheduling will often
have a noticeable impact on system performance. Even though the examples give the
impression that scheduling are used for developing production plans or developing
shifts assignments it can also be used for process optimization. This part of the thesis
deals with such a process optimization - scheduling of the laser cutting process.

Scheduling of the laser cutting process will aim at sequencing and timing individual
parts of a cutting job. The problem is to develop an algorithm or heuristic that
will effectively schedule the individual tasks while ensuring that no constraints are
violated. This problem is complicated by the new process capabilities in remote laser
cutting.

Scheduling can be difficult to perform and implement. The technical difficulties
resembles those from combinatorial optimization. The problems are generally
related to the modelling of the real-world scheduling problems and the retrieval and
management of information. Even though it is difficult to overcome these problems it
is often worth the effort in terms of increased efficiency.

3.3 Scheduling Definitions and Notations

Typically planning and scheduling operates on the two levels: Production planning
and master scheduling and shop order planning and scheduling. These operates with
medium- to long-term planning for an entire organization and short-term planning
and scheduling of the production line, respectively [Kolakowska, 2010, p. 8]. In
the latter case, the theories of scheduling are applied for the allocation of limited
resources to the processing of jobs, where a job is defined as a single operation or a
set of operations [Pinedo and Chao, 1999, p. 12]. Typical examples of this may be
allocation of packages to delivery vehicles at a shipping company, allocation of rooms
for lectures at a university, or jobs to machines in a workshop [Pinedo and Chao, 1999,
p. 2].

As mentioned previously this thesis deals with process planning and scheduling,
which is a lower level than the above mentioned examples. In turn, this means that the
scheduling problem concerns the allocation of tasks (set of operations) of a single job
on a particular machine (i.e. the RLC head). Based on this, the following definitions
and notations will be used throughput the remainder of this part:

A cutting job, J, is defined as a single part containing a set of cuts.

3 Introduction 17

3.4 Related Work

A cutting task, j, is defined as a geometry with connected cutting paths. This means
that the cutting of a hole, a single line (i.e. no connected cut paths), and a series
of connected paths are defined as individual cutting tasks. The reason for this is
due to the difference in cutting angle (as described in section B.1) when cutting
while the cutting head and/or part moves relative to each other.

Processing time, Pj, is defined as the time that cutting task j takes to cut.

Release date, RD j, is the time at which cutting task j is released for cutting. That is,
the earliest time at which the cutting task can be commenced.

Due date, DD j, is the time at which cutting task j needs to be finished.

Completion time, C j, is the time at which task j has been completed. Identifying the
maximum completion time Cmax = max(C1, . . . ,C j) will yield the time at which
all the cutting tasks have been completed. Put in other words, Cmax is the time of
completion of the last cutting task, and is therefore also known as the makespan
[Pinedo, 2009, p. 28].

3.4 Related Work

Even though the technological idea behind the RLC and RLW technology developed
through the ROBOCUT project is new, the idea of RLC and RLW is not, as seen in
Tahmouch et al. [1997] and Antonova et al. [2000]. In addition remote laser welding
systems and scanner heads are already available, like the KS Roboscan remote laser
welding scanner head available by KUKA [Kuka Systems GmbH, 2011]. For these
reasons some work has already been carried out in relation to the scheduling of RLW
and RLC, although it is has only been possible to find a limited amount, some of which
will be presented here.

One of the main challenges with the application of the RLC and RLW processed is
the lack of sufficiently effective programming methods. The work done in this area
has primarily focused on the programming of robot based RLW and RLC. To ensure a
cost-effective programming of these systems it should be carried out as autonomously
as possible, however this has proved difficult because of the kinematic redundancy
that is introduced by the scanner head. To overcome this problem, Stemmann and
Zunke [2006] successfully studied the use of the Generalized Traveling Salesman
Problem (GTSP) (introduced by Srivastava et al. [1969]). In short this approach seeks
to subdivide the welding tasks into smaller clusters (or working areas), and then find
the shortest possible route through them. Each of these clusters is composed of a set
of points, and exactly one has to be visited.

A similar approach is used by Reinhart et al. [2008], where the problem is also

18 3 Introduction

3.4 Related Work

divided into subtasks first and then afterwards the optimal path between the subtasks
is found using the conventional Traveling Salesman Problem (TSP) (described later in
Section 6.2). In this paper they also propose the use of augmented reality as a tool for
visually showing the resulting paths onto the part itself by projection. Later on this
approach has been extended by Hatwig et al. [2010] to form a complete concept for
automated path planning of robotic RLW and RLC.

Instead of focussing on the task and path planning with the objective of obtaining
the shortest possible path, Zaeh et al. [2010] describes another possible objective. This
objective concerns the minimization of thermal distortions of the part that is cut or
welded, by changing the sequence of the task in terms of their thermal contribution.
This is possible within the working area of the scanner head without a significant
reduction of the cycle time, because of the fast positioning and focussing of the
laser beam by the scanner head. A test implementation of this approach showed a
significant decrease in part distortions, and thus marks another advantage facilitated
by the RLW and RLC technology, that is made possible through careful path planning
and scheduling.

3 Introduction 19

3.4 Related Work

20 3 Introduction

CHAPTER 4
The Scheduling Problem

The RLC technology is applicable to a number of different production scenarios.
Depending on the scenario, the process requirements and constraints changes
accordingly. In effect, the planning and scheduling problem also changes according
to the scenario. As a result, it is not possible to develop a generic planning and
scheduling of the RLC process. For this reason the planning and scheduling of the
RLC process will conducted based on a specific scenario: RLC in the roll forming
lines at Ib Andresen Industri A/S (IAI), which is described in Appendix A.1. The
knowledge and experience obtained through this scenario can then be used for other
possible usage scenarios.

The following will provide an introduction to the general scheduling problem
of the RLC process, by first presenting the possible usage scenarios along with
some scheduling related considerations, followed by a description of the process
constraints. Section 4.2 presents the scenario that is considered for scheduling in this
thesis. After this the scheduling problem is mathematically described along with a
summary of assumptions. Section 3.4 comments on related work in this area.

4.1 Usage Scenarios

Part Movement

Scanner Head Movement

Figure 4.1: Illustration of the possible usage scenarios. It is possible to move the scanner
head relative to the part, move the part relative to the scanner head or move both. Note that
a laser will only feed a single scanner head - two are shown here for illustration purposes.

21

4.1 Usage Scenarios

As it was described in Section 1.1, the RLC process will utilize a scanner head with
focussing optics and scanning mirrors for precise positioning of the laser beam onto
the parts to cut. As it is also illustrated by Figure 4.1, this makes the scanner head
capable of cutting shapes from a static position. At the same time, the scanner head
offers increased flexibility for cutting operations while moving. In addition, the parts
to be cut may also be both static and moving relative to the scanner head. Hence the
possible usage scenarios can be divided into the main scenarios:

Static Scanner Head, where the head is mounted in a static position above the part to cut.

Static parts: This is the scenario all the holes to cut can be contained within the
possible cutting area of the scanner head. This could be the case when cutting
smaller parts (like the workpiece shown in Figure 1.1), where an ordinary die
press could prove infeasible. In terms of scheduling, this is the simplest case, as
the scheduling problem basically reduces to finding the cutting sequence with
the shortest possible processing time.

Moving parts: If the holes cannot be confined within the possible cutting area, if the
parts need to be cut while moving continuously or for other process requirement
reasons (e.g. cutting angles, part interference, etc.) it might be necessary to move
the part relatively to the scanner head (the right part of Figure 4.1). The cutting
of holes in the metal strip before roll forming line is an example of this. This is
also the example considered in this thesis. In these cases the scheduling problem
could include objectives like minimizing the process time and part movement,
while satisfying part requirement constraints (see section B.1). In the case of a
continuously moving part, the holes also needs to be cut within a certain time
frame. Also, the possible move speed and acceleration of the part needs to be
taken into account.

Moving Scanner Head, where the head is mounted on a robotic manipulator or similar for
moving the scanner head relative to the part.

Static parts: In many cases it might be easier to move the scanner head relative to
the part, instead of moving the part. For instance when laser cutting car parts,
or when laser cutting in large metal sheets (like the existing CNC laser cutting
process). The scheduling of these cases is almost identical to that of a static head
and moving part, only in this case the speed and accelerations that needs to be
considered are those of the scanner head.

Moving parts: If the parts to laser cut are so large that a robot is not able to reach
all of the cutting areas, the part might need to move as well. This could be the
case when laser cutting car bodies as they move down the production line. In

22 4 The Scheduling Problem

4.2 Scheduling the RLC Process for Roll Forming

some cases the part might have to move continuously, even though it is possible
to reach all cutting areas. This is the most complex scheduling problem, the
scheduler needs to take the movement, velocities, accelerations, and possible
interferences of both the part and the scanner head into account, while satisfying
the part requirements constraints as well as objectives like minimizing the
process time and/or total movement, etc.

4.2 Scheduling the RLC Process for Roll Forming

Because the RLC technology is applicable to different scenarios, the process planning
and scheduling will be conducted based on the industrial application of the RLC
technology in the roll forming lines at IAI. A description of roll forming and the
potential of using RLC in the roll forming process is given in Appendix A.

The scenario considered is based on a typical part produced by the roll forming
process (Figure A.5). Instead of pre-punching the holes, this scenario assumes that the
holes will be cut using the RLC process instead. Thus, the usage scenario considered is
the Static scanner head - Moving parts (as described in section 4.1). The resulting cutting
process is illustrated by Figure 4.2.

Laser cutting head

Moving direction (x)

Cut holes

Laser beam

Metal strip

Uncut holes

Cutting area

Figure 4.2: The RLC process with static mounted scanner head for cutting holes in a metal
strip prior to roll forming.

The scanner head is placed in a fixed position above the moving metal strip. The
metal strip passes underneath the scanner head at a constant velocity, while the holes
are cut on the fly by the laser beam. The planning and scheduling problem thus consists
of transforming the holes into cutting tasks and a feasible solution that can be used for
programming the scanner head. IAI has expressed that they would want to know at
what maximum velocity the part may move in order for it to be possible to laser cut
on the fly.

4 The Scheduling Problem 23

4.3 Mathematical Description of the Problem

Since the case considered deals with the pre-cutting of holes ahead of roll forming,
the first step towards planning and scheduling is to ensure that cutting the holes will
not cause any problems (described in Section A.2), during the roll forming process.

As the laser beam is only able to (or restricted to) a certain cutting area, the
individual holes needs to be cut within a certain time window, that is the time from
which the hole enters the cutting area to the time the hole exits the cutting area. In
addition the process time should also be minimized, since a faster processing time
for cutting holes in turn increases the possible conveyor speed of the metal strip, and
thus the total throughput of the roll forming mill. The two time constraints depend
on both the conveyor speed of the metal strip, the cutting speed and the move speed of the
laser beam by the scanning mirrors in the scanner head.

While satisfying the time constraints described above, the scheduling might also
need to take the cutting angles into account. In case a part has requirements for
a maximum and/or minimum cutting angle this constraint needs to be applied.
When cutting in thick sheet metal strips, it might be necessary to apply a constraint
concerning the maximum cutting angle as well. For a detailed description of these
and other possible constraints, the reader is referred to Appendix B.1.

4.3 Mathematical Description of the Problem

This section focuses on describing the problem of optimizing the time it takes to laser
cut a part. The actual cutting time cannot be optimized but the time the beam needs
to move from one point to another while not cutting can be minimized.

In order for it to be possible to describe this optimization problem mathematically
some assumptions are made. First of all focus is on laser cutting in two dimensions.
This is equivalent to laser cutting in sheet metal.

A cutting job is divided into a series of tasks. A task is defined to be a line segment
or closed shape. Figure 4.3 shows an example of a cutting job where the grey dashed
lines is indicating what needs to be cut. In the Figure the star is a task, the ellipsis is a
task and so on. The following assumption is now made: When the laser starts cutting
a task it will finish cutting this task before moving on to another task.

Each task has a predefined point where the cutting starts (and ends if it is a closed
geometry). At the moment the location of this point is not commented. An example of
the current optimization problem can be illustrated using Figure 4.3 where the arrows
illustrates how the laser moves from one task to another while not cutting.

The start point for each task is predefined and thus the combinatorial problem is
reduced to finding the shortest route between point one, two, three and four for the

24 4 The Scheduling Problem

4.4 Assumptions and Approach

1

2

3

4

Figure 4.3: Illustration of random laser cutting job.

example job in Figure 4.3. In a more mathematical sense the optimum path is given
by ordering the points p1, ..., pn such that ∑

i=1
n−1 d(pi, pi+1) is minimum, where d is the

distance between pi and pi+1. For two points p = (x,y) and p′ = (x′,y′) in the plane the
distance between them is of course d(p, p′) :=

√
(x− x′)2 +(y− y′)2. An order of the

points can be represented by a permutation, i.e. a bijection π : {1, ...,n}→ {1, ...,n}.

Which permutation is best of course depends on the placement of points and
other constraints. One instance of the problem can however be considered a list of
points in the plane, i.e. the coordinates of points. Thus the problem can be stated
mathematically as follows (inspired by [Korte and Vygen, 2002, p. 1]) :

Laser Cutting Problem

Instance: A set of points p1, ..., pn ∈ R2.
Task: Find a permutation π : {1, ...,n}→ {1, ...,n} such that

i=1

∑
n−1

d
(

pπ(i), pπ(i+1)
)

is minimum.

The problem is now formulated mathematically and the task is to find a permutation
such that the distance travelled is minimized. By making this mathematical
description it is realized, that in order to minimize the total process time for the laser
cutter, the distance travelled must be minimized. Remember that this statement is valid
under the assumptions made in the beginning of this section. If we were considering
cutting in three dimensions minimizing the distance travelled may not minimize the
process time.

4.4 Assumptions and Approach

A number of assumptions has been made in order to state the laser cutting problem
mathematically. This section will summarize these assumptions.

The assumption are listed in a bulleted list. Each bullet point identifies an important
assumption. The sub bullet points identifies the assumptions on which the important
assumptions depend.

4 The Scheduling Problem 25

4.4 Assumptions and Approach

� A cutting task can be represented with a process time and a point.

– Once a cutting task is started it is finished before moving on to another task.

– All tasks are closed geometries are therefore the task starting point is also
the task end point.

� Minimizing the distance travelled is the same as minimizing the process time.

– The cutting speed and movement speed is constant. Acceleration is not
considered.

– Cutting is done only in two dimensions

� The part moves it moves at a constant speed.

4.4.1 Defining the Cutting Tasks

The start points for tasks are, for the sake of implementation simplicity, always placed
in the direction of the part movement. This is illustrated by Figure 4.4 where an
example of a scheduled path is shown on the example part. Figure 4.4 also shows
that tasks are numbered in the opposite direction of the part movement direction.

1

2

5

10

137 11

14

159

3

4

12
6

8

16

17

18

19

21

20
0

Tour: 0 -> 2 -> 1 -> 4 -> 7 -> 9 -> 5 -> 3 -> 6 -> 8 -> 10 -> 12 -> 14 -> 20 -> 18 -> 16 -> 11 -> 13 -> 15 -> 17 -> 19 -> 21
Part movement direction:

Figure 4.4: Illustration of scheduled path.

Each of these points are associated with their respective process times, defined by:

Pj =
Cl j

vcut
(4.1)

Where Cl j is the length of the cut path of task j and vcut is the cutting speed.

26 4 The Scheduling Problem

4.4 Assumptions and Approach

4.4.2 Due Date and Release Date

As previously mentioned, each of the cutting tasks needs to be executed within a
certain time window. In addition it is only possible to cut a task when it is fully
inside the cutting area (see Figure 4.2). To take this into account each cutting task
is associated with a due date and a release date. Figure 4.5 shows how they they are
calculated.

Figure 4.5: Illustration of cutting area along with Due Date and Release Date.

The due date, DD, and release date, RD, are calculated based on the placement of
the tasks at the time t = 0. Because of the assumption of a constant conveyor speed it is
only necessary to calculate the due date and release date once. If the conveyor speed
was varying the due and release would need to be calculated at other time instances
as well.

In Figure 4.5 the term xmin, used to calculate the due date, is equal to the x-value of
the start point of the hole (task), while the term xmax, used to calculate the release date,
denotes the x-value of the opposite end of the hole (task). To better understand the
calculation, consider the following example. A cutting task located at xmin = 500mm
with the hole ending at xmax = 700mm, a cutting area of CA = 600mm and a conveyor
speed of vconveyor = 50mm/s yields the following results:

DD[s] =
500mm
50mm/s

= 10s (4.2)

RD[s] =
−600mm+700mm

50mm/s
= 2s (4.3)

The result of Equation 4.2 and 4.3 should be interpreted this way: From the time the
job is started (t = 0), the task must be finished after ten seconds and the cutting cannot
start until after two seconds has passed. In the case that xmax < CA the release date
yields a negative result. This simply indicates that the task is inside the cutting area at
t = 0.

4 The Scheduling Problem 27

4.4 Assumptions and Approach

28 4 The Scheduling Problem

CHAPTER 5
Dispatching Rule Scheduler

In some cases, a scheduling problem may be easily and efficiently solved using
existing algorithms [Pinedo and Chao, 1999, p. 28]. When this is the case, the problem
can be solved in polynomial time, meaning that even large instances of the problem can
be solved in a reasonable amount of computation time. Of course this all depends on
the particular objectives and constraints of the scheduling problem.

Unfortunately, this is rarely the case, as optimal solutions often cannot be found
within polynomial time. In these cases the optimal solution may be found only by a
complete enumeration off all the possible solutions of the problem. These scheduling
problems, referred to as NP-Hard problems, requires a large amount of computer time
that increases exponentially with the number of tasks that is to be scheduled [Pinedo
and Chao, 1999, p. 28].

For small instances of a scheduling problem this may not impose a problem.
However for large instances the computation time involved becomes so significant
that it may not be available. To overcome this problem, some general purpose
methods are used instead to find a feasible solution that is acceptable, but not
necessarily ensures optimality. In return, these methods requires a significantly
smaller amount of computation time, thus making them applicable to much larger
problem instances.

In this chapter, some of the general purpose methods will be applied to the RLC
scheduling problem. This is done with the objective of studying the applicability
and usability of the schedules obtained by the faster general purpose methods. In
the following section, some basic dispatching rules are explained and applied to the
RLC scheduling problem. Section 5.2 then combines some of these into composite
dispatching rules which is then applied to the RLC scheduling problem. Finally, the
results obtained by dispatching rules are summarized and discussed in Section 5.3.

The MATLAB script for the implementations in this chapter can be found in the
folder Part I/Basic Dispatching Rules (MatLab) on the enclosed CD.

29

5.1 Basic Dispatching Rules

5.1 Basic Dispatching Rules

A basic dispatching rule is a rule that is used to select the next job from a set of jobs
waiting for processing on a machine. This is done by prioritizing each of the jobs
according to some defined attributes. These may be attributes of the particular job,
machine, or time depending on the objective(s) of the rule [Pinedo and Chao, 1999,
p. 29]. In the RLC scheduling problem, the dispatching rules are used to prioritize
and select the individual cutting tasks of a part for remote laser cutting. For more
information about the rules, the reader is referred to [Pinedo and Chao, 1999, pp. 30-
31]

In what follows a three basic dispatching rules will be applied to the RLC problem
that was introduced in Section 4.2. To test the results obtained through the dispatching
rules, they are tested using the parameters shown in Table 5.1 for the RLC process.

Remote laser cutting
Cutting speed 30 m/min = 500 mm/s
Movement speed 470 m/min = 7833 mm/s

Table 5.1: Process data used for testing the dispatching rules.

Notice that the conveyor speed is not listed in Table 5.1 since this parameter is
actually a variable. While the possible cutting and movement speeds depend on the
RLC process and scanner head capabilities respectively, the possible conveyor speed
will depend on the scheduled sequence. Thus, an additional objective of scheduling
with dispatching rules, is to find the maximum possible conveyor speed.

First the Earliest Due Date (EDD) and Minimum Slack (MS) rule that has the
maximum lateness as an objective are applied. Next, the SST rule will be applied,
as setup time between cutting tasks (i.e. positioning of the mirrors) depends on the
order at which the cutting tasks are scheduled.

5.1.1 Earliest Due Date First

As the name implies, this dispatching rule simply chooses the task in the queue that
that has Earliest Due Date, with the objective of minimizing the maximum lateness of
the tasks, which is defined by [Pinedo, 2009, p. 29]:

Lmax = max(L1, . . . ,L j) (5.1)

30 5 Dispatching Rule Scheduler

5.1 Basic Dispatching Rules

where L j is the lateness of task j, given by:

L j =C j−DD j (5.2)

The rule is applied to the RLC scheduling problem by calculating the due dates for the
individual cutting tasks (i.e. holes) of the part based on their position and the travel
direction and speed of the metal strip. The resulting cut path from the EDD rule is
seen in Figure 5.1.

Travel distance: 3242 mm

Figure 5.1: Resulting cut path for EDD rule with a conveyor speed of 180 mm/s.

In this case, the rule has been applied a conveyor speed of 180 mm/s. Changing
the conveyor speed however will not affect the result as this will simply scale all due
dates by the same factor.

As it can be observed, the EDD rule returns a schedule that forces the laser to travel
back and forth between the holes on each side. Even though this is a valid schedule,
it will most likely not yield the shortest cycle time. Based on the scheduled path, the
total cycle-time is 3278ms, which is equivalent to a maximum possible conveyor speed
of around 185mm/s.

5.1.2 Minimum Slack First

The Minimum Slack (MS) rule also has the objective of minimizing the lateness of the
tasks (Equation 5.1, like the EDD rule. However, while the EDD rule only considers
the due date of the tasks, the MS rule also takes the processing time into account by
prioritizing the tasks according to the slack of each task, i.e. time until the task needs
to be started in order to finish on time. Thus, the MS uses the following expression

5 Dispatching Rule Scheduler 31

5.1 Basic Dispatching Rules

[Pinedo and Chao, 1999, p. 30]:

S j = max(DD j−Pj− t,0) (5.3)

Where t is the current time and S j is the slack, DD j is the due date and Pj is the
processing time of task j. Equation 5.3 is the conventional version of the MS rule.
When a task needs to be started at exactly time t or it is late, the MS rule will return
its minimum value of zero. This can actually impose a problem if two (or more) tasks
are late, in which case they both will have zero slack. In this situation the order of the
tasks will have to be chosen either according to some other criteria or randomly, even
though one of the tasks might be more late than the other. For this reason, the MS rule
is modified to allow for a negative slack.

S j = DD j−Pj− t (5.4)

This simple modification means that tasks are only chosen randomly when they have
an equal slack (or negative slack), hence giving priority to the jobs that are the most
late.

The best obtainable path (i.e. the fastest possible), by applying the modified MS rule
to the scheduling problem, is shown in Figure 5.2.

Travel distance: 3405 mm

Figure 5.2: Resulting cut path for MS rule with a conveyor speed of 172 mm/s.

Comparing the path obtained using the MS rule, with that of the EDD rule in
Figure 5.1 it is easily observed that only the first part of the paths differ from each
other. The reason is that the cutting tasks with the largest processing time are among
the first tasks, while the remaining tasks are similar in processing times. This also
demonstrates the characteristic of the MS rule, that when tasks have equal due dates
and processing times it basically reduces to the EDD rule.

The cycle time for the scheduled path shown in Figure 5.2 is 3300ms, equivalent of

32 5 Dispatching Rule Scheduler

5.1 Basic Dispatching Rules

a maximum conveyor speed of 184mm/s which is about the same as the EDD rule.
However, in practice the conveyor speed will be limited to 172 mm/s when applying
the MS rule. The reason for this is that the task pertaining to the large center hole is
scheduled as the first task when the conveyor speed is above 172 mm/s. Because of
it’s long processing time it will cause the two tasks concerning the two small holes on
the left to be delayed and unable to finish in time.

Contrary to the EDD rule, the path obtained using the MS rule will change as the
cutting speed and conveyor speed is changed. By considering equation 5.4 it can be
deducted that as the cutting speed is increased (decreasing the processing times) or
the conveyor speed is lowered (extending the due dates) the MS rule approaches the
EDD rule. This is considered to be an advantage, as this rule adds a dynamic behavior
to the scheduling problem, thus changing the schedule according to the tightness of
the due dates. More about this follows in section 5.2.1.

5.1.3 Shortest Setup Time First

Each time a specific cutting task has has finished, the laser beam needs to be moved
(repositioned) some distance to the next cutting task. Obviously this operation takes
some time, and as no cutting is carried out during this time, it can be considered as
a setup time. Furthermore, since the tasks are not equally spaced the total setup time
will depend on the sequence of the tasks. This is also known as sequence-dependent
setup times [Pinedo and Chao, 1999, p. 34].

Since the objective of the scheduling problem, described in Section 4.3, is to find a
valid solution with the minimum total distance traveled, the Shortest Setup Time (SST)
rule is applied next to take the sequence-dependent setups into account. As the name
implies this rule selects the next task based on which has the minimum setup time,
with the objective of minimizing the makespan, Cmax (see Section 3.3). Because the
setups are sequence dependent, it is necessary to calculate a setup matrix, like the
example shown in Table 5.2.

To task:
1 2 3 . . . n

Fr
om

ta
sk

: o 2 4 1 · · · s0n

1 - 5 2 · · · s1n

2 5 - 2 · · · s2n
...

...
...

...
. . .

n sn1 sn2 sn3 snn

Table 5.2: Sequence-dependent setup matrix.

The sequence-dependent setup matrix shows the setup time, sl j necessary when
going from the previously executed task, denoted by l, to the next task, denoted by j.

5 Dispatching Rule Scheduler 33

5.1 Basic Dispatching Rules

In the given example this means that it takes five seconds to go from task one to task
two. Notice in Table 5.2 that the that "o" is a dummy task, used to indicate the setup
times for the first task in the sequence.

Applying the SST rule to the scheduling problem, yields the path shown in Figure
5.3. Notice that as in the case of the EDD rule, the path obtained by the SST rule does
not change with the conveyor speed.

Travel distance: 1955 mm

Figure 5.3: Resulting cut path for SST rule with a conveyor speed of 180 mm/s. The red
circles indicate the limiting tasks in terms of the possible conveyor speed.

The cost of the path is 1287mm and 1450mm shorter than the EDD and MS rules,
respectively. This is also seen by the cycle-time of the path of 3114ms, which is
equivalent to a maximum possible conveyor speed of around 194mm/s. Hence, the
SST rule yields the best result so far in terms of cycle time and cost.

Unfortunately this is not possible in practice, as the obtained path has some
problems in terms of the two tasks marked by red circles in Figure 5.3. The problem
with these tasks is that they are both placed in the sequence at a time that causes them
to become late in terms of their due dates.

5.1.4 Summary

The application of the basic dispatching rules to the scheduling problem provided a
means for obtaining a schedule with a single objective.

The results obtained by applying the EDD and MS rule to the scheduling problem
provided two similar ways of obtaining a schedule for the maximum lateness
objective. While the EDD rule provided the shortest solution path, it was only
marginally shorter than the MS rule. At the same time the MS rule introduced
a dynamic behavior by changing the solution according with changing cutting-,

34 5 Dispatching Rule Scheduler

5.2 Composite Dispatching Rules

moving- and conveyor speeds. Even though both of these rules provided some
reasonable and valid solutions they produced a path that was not smooth and seemed
to have a high cost (total travel length).

By taking the sequence-dependent setups into account, the SST rule provided a
means of obtaining a path for the makespan objective. This yielded the fastest solution
path in terms of the cycle time, while also providing a smoother and lower cost path
than the EDD and MS rules. The tradeoff for this success however was problems with
finishing all of the tasks before there designated due dates.

In summary the paths obtained by focussing on the two separate objectives each
offer some advantages and disadvantages. In an effort to obtain even better results,
the next section will study some methods for combining the basic dispatching rules
into some dispatching rules with multiple objectives.

5.2 Composite Dispatching Rules

In many cases, including the current scheduling problem, there are more than one
objective for the scheduling problem. In such cases the basic dispatching rules, which
are only able to satisfy a single objective at a time, are not useful. Instead, some more
elaborate rules which are able to take several parameters and objectives into account
in order to find a reasonable schedule are needed.

One way of obtaining these more complex rules is to combine the basic dispatching
rules to form what is known as composite dispatching rules. In a composite dispatching
rule each of the basic rules that it is composed of is given its own scaling parameter
that determines its share of contribution to the total dispatching rule expression
[Pinedo, 2009, p. 445]. The exact composition and structure of the composite
dispatching rules depend on the nature and type of scheduling problem, and this is
also an area which has been researched [Pinedo and Chao, 1999, p. 32].

The following section will study and apply one such composite dispatching rule
to the scheduling problem in an attempt to obtain a better solution than possible with
basic dispatching rules. Note that the composite dispatching rules will also be applied
using the same process parameters from Table 5.1, as well as the objective of finding
the fastest possible conveyor speed.

5.2.1 Apparent Tardiness Cost with Sequence Dependent Setups

In this case the composite dispatching rule Apparent Tardiness Cost with Sequence
Dependent Setups (ATCS) is studied further. This rule is used, as this offers a
combination between the MS and SST rules that both showed some good results and

5 Dispatching Rule Scheduler 35

5.2 Composite Dispatching Rules

characteristics in terms of their respective objective functions. In addition, the ATCS
rule also includes the Weighted Shortest Processing Time (WSPT) rule that provides the
ability to prioritize the individual tasks in terms of their processing times by giving
them weights [Pinedo and Chao, 1999, p. 30].

The ATCS rule uses the following expression to calculate a priority index for each
of the remaining tasks [Lee et al., 1997, p. 46]:

I j(t, l) =
w j

Pj︸︷︷︸
WSPT

exp
(
−

max(DD j−Pj− t,0)
K1P

)
︸ ︷︷ ︸

MS

exp
(
−

s jl

K2s

)
︸ ︷︷ ︸

SST

(5.5)

Where j is the task index, l is the index of the task just executed, w j is the task weight,
K1 and K2 are scaling or look-ahead parameters, sl j is the sequence-dependent setup
time (from Section 5.1.3), P is the average processing time and s is the average setup
time.

As it can be seen, Equation 5.5 is composed of the WSPT, MS and SST rules. The
WSPT term favors the tasks with a high weight and low processing time. In this case
however all of the tasks will recieve an equal weight of one, as they are all equally
important. The MS rule, that gives high priority to the tasks with the least amount of
slack, is scaled by the look-ahead parameter K1. Finally, the SST rule, that discourages
long setup times, is scaled by the look-ahead parameter K2. Notice that the WSPT is
exponentially discounted twice by the MS and SST rules. The reason for this is that the
use of an exponential decay function has been found to perform better than a linear
decay function [Ow and Morton, 1989, p. 182].

Determining the values of the two look-ahead parameters, K1 and K2, depends
on the specific problem instance as they perform a scaling which must be adjusted
according the scale of the processing times, due dates and setup times. As it turns out
this is not an easy task and for this reason the determination of optimal values for the
look-ahead parameters has been a subject of research, as seen in Chen et al. [2010] and
Lee et al. [1997].

In this thesis two different approaches to the determination of the look-ahead
parameters will be studied. The first approach, described in the following section,
is the determination of the parameters based on the work done by Lee et al. [1997]
where the values are calculated based on statistics of the applied task set. This is then
followed by a simple trials approach, where the ATCS rule is applied with a range of
different values for K1 and K2 respectively, followed by an evaluation to identify the
best of the calculated solutions.

36 5 Dispatching Rule Scheduler

5.2 Composite Dispatching Rules

Determining the look-ahead parameters using statistics

In this approach a set of task specific factors (statistics) are calculated first, and from
these the K1 and K2 parameters are then calculated. The first factor is the due date
tightness factor, τ [Pinedo, 2009, p. 446]:

τ = 1− DD
Cmax

(5.6)

Where DD is the average due date. If the due dates are loose τ will be close to zero,
and conversely a value of one will indicate tight due dates. Next is the Due Date Range
factor, R [Pinedo, 2009, p. 446]:

R =
DDmax−DDmin

Cmax
(5.7)

When the difference between the due dates are large the value of R will be high, while
a low value will indicate that the due dates are close to each other. Notice that both
Equation 5.6 and 5.7 uses the makespan, Cmax. As the makespan depends on the
scheduled sequence, this needs to be estimated. In this case the following simple
approximation is used [Pinedo, 2009, p. 447]:

Ĉmax =
n

∑
j=1

p j +ns̄ (5.8)

Where n is the number of tasks. This estimate of the makespan can then be used in
Equation 5.6 and 5.7 instead of the actual value. The third and final factor to calculate
is the setup severity factor, η [Pinedo, 2009, p. 447]:

η =
s
P

(5.9)

If the setup times are generally small compared to the process times η is small, and
conversely it will be large when the setup times are large compared to the process
times.

Once the three factors described above has been calculated, the values of K1 and K2

can be calculated using the rules [Pinedo, 2009, p. 447]:

K1 = 4.5+R for R≤ 0.5

K1 = 6−2R for R≥ 0.5 (5.10)

K2 =
τ

2
√

η

By using the above calculations of the look-ahead parameters, the ATCS rule is applied
to the scheduling problem, yielding the path shown in Figure 5.4.

5 Dispatching Rule Scheduler 37

5.2 Composite Dispatching Rules

Travel distance: 1730 mm

Figure 5.4: Resulting cut path for the ATCS rule using the statistically determined look-
ahead parameters with a conveyor speed of 162 mm/s. The resulting values of K1 and K2
are 4.042 and 0.121, respectively.

By comparing this result with the result obtained with the one from the MS and
SST rules in Figures 5.2 and 5.3 respectively, it can be seen that the path does indeed
combine the smooth path from the SST rule while ensuring that the designated due
dates of the tasks are satisfied. At the same time, the resulting cycle time of the path is
3085ms, equivalent to a conveyor speed of around 196mm/s which is the fastest so far.

However, the path was obtained with a conveyor speed of 162mm/s and as soon
as the conveyor speed was raised above this threshold the path was changed to a
less feasible path with some late cutting tasks. This is a direct result of the statistic
calculation of the look-ahead parameters that changes as the conveyor speed is
changed. It also indicates that the look-ahead parameters are not optimally selected
for this specific set of tasks. Instead, the path obtained at the conveyor speed of
162mm/s could be used to obtain the conveyor speed of 196mm/s.

In addition to this some additional issues relating to the composition of the rule
was observed. At certain ranges of conveyor speeds the ACTS rule would show the
complete different behavior than it was expected to. In such cases the rule suddenly
seemed to choose the longest setup times, while disregarding the due dates. This
behavior is illustrated by Figure 5.5, where the ATCS index is plotted as a function of
the conveyor speed. The ACTS indexes on Figure 5.5 are calculated for determining
the first task in the sequence. As it can be seen by Figure 4.4, task 0 is located in the
far left side of the part while task 21 is located in the opposite end (far right). Thus, as
the cutting starts from the left to the right (and the movement of the part is from the
right to the left), there is no doubt that the first task in the sequence should be task 0.
However, as it is seen on the graph in Figure 5.5, task 21 receives a higher index within
certain ranges of the conveyor speed. Specifically, this happens around 135mm/s and
50mm/s.

38 5 Dispatching Rule Scheduler

5.2 Composite Dispatching Rules

1E-216
1E-186
1E-156
1E-126

1E-96
1E-66
1E-36
1E-06
1E+24
1E+54
1E+84

1E+114
1E+144

10 30 50 70 90 110 130 150 170 190

C
al

cu
la

te
d

In
de

x

Conveyor Speed [mm/s]

ATCS - Task 0

ATCS - Task 22

Figure 5.5: The calculated ATCS for tasks 0 and 21 as a function of the conveyor speed.
The index is for the first task in the sequence, with fixed cutting- and movement speeds.

By a closer inspection this behavior is result of the use of the exponential
discounting of the MS and SST rule, respectively, that was discussed previously.
Around a conveyor speed of 135mm/s, the value of the parameter K2 changes sign
inside the exponential SST term (see Equation 5.5), causing a major shift in the index
values. This shift is, as it is also seen by Figure 5.5, much more significant for task 21
because this task has a larger setup time than task 0. At a conveyor speed of 50mm/s,
the value of the parameter K1 that changes sign inside the MS exponential term (see
Equation 5.5), again causing a major change of the index values. Again, the change is
largest for task 21 as this also has much more slack than task 0.

In summary, there are two general issues with this approach to the determination
of the look-ahead parameters. First of all, the parameter values does not yield a good
solution for the higher conveyor speeds, even though a better solution is clearly found
at a lower speed. Secondly, the ATCS calculation does not show the desired behavior
for all possible conveyor speeds. For these reasons, the determination of the look-
ahead parameters using task specific statistics does not seem feasible. Instead, this
motivates the identification of another approach to determining the optimal parameter
values.

Determining the look-ahead parameters through trials

Instead of determining the look-ahead parameters K1 and K2 from the statistics, this
approach determines the best possible values by through trials. Specifically the ATCS
rule is applied to the scheduling problem with a complete range of values for both
K1 and K2. This gives a large number of possible solutions, one for each possible
combination of K1 and K2 within their test range. The obtained solutions are then
post-processed to check their validity and identify the best possible solution. Hence,

5 Dispatching Rule Scheduler 39

5.2 Composite Dispatching Rules

this approach uses the following general steps:

1. Pre-processing and loading of the scheduling problem. This includes the loading of
data, calculation of processing times and due dates from the cut-, movement-
and conveyor speeds. The value ranges of K1 and K2 that should be tested is also
loaded at this point.

2. Calculation of the ATCS rule solutions for each combination of K1 and K2. In this
step, the ACTS rule is applied to the scheduling problem for each possible
combination of the K1 and K2 values within their respective test ranges (loaded
in step 1). The resulting solution sequences are then saved for post-processing.

3. Post-proces the obtained solutions and remove invalid solutions. For each of the
obtained sequences found in the previous step, are then checked for validity
in terms of satisfying all of the due dates. The sequences that pass this check are
then saved to a solution space.

4. Choose the best obtained solution. From the remaining sequences (if any) the
sequence with the lowest cycle time is chosen and returned as the solution to
the scheduling problems.

By applying the steps above to the scheduling problem, the solution space shown
in Figure 5.6 is obtained for test ranges K1 = [0.1,0.2, . . . ,10] and K2 = [0.1,0.2, . . . ,3]
yielding a total of 3000 solutions. These ranges have been selected based on some
initial trial runs, and may be necessary to change for other task sets than the current
scheduling problem. Identifying the smallest cycle time from the solution space in

0
2

4
6

8
10

0

1

2

3
3050

3100

3150

3200

3250

3300

K1
K2

C
yc

le
 ti

m
e

Figure 5.6: The resulting cycle time of the ATCS algorithm as a function of K1 and K2.
Only the valid solutions where all due dates are satisfied are shown.

40 5 Dispatching Rule Scheduler

5.3 Summary

Figure 5.6 yields the parameters K1 = 2.5 and K2 = 0.2 and the solution path shown in
Figure 5.7. The obtained path has a cycle time of 3081ms equivalent to a conveyor

Travel distance: 1695 mm

Figure 5.7: Resulting cut path for the ATCS rule using the trials approach with a conveyor
speed of 197 mm/s. The resulting values of K1 and K2 are 2.5 and 0.2 respectively.

speed of 197 mm/s. Comparing the path with the one shown in Figure 5.4 it is
observed that the two paths are very similar and are only deviate from each other
in the last part of the paths. Even so, the path obtained is slightly shorter and hence it
also has a lower cycle time.

Recalling the problems that was observed with the statistic determination of the K1

and K2 in the previous section, these are all avoided in this approach as their values
are selected strictly in terms of their performance. The tradeoff for using this approach
is the additional required computational time when compared to both the approach
using statistics, as well as the basic dispatching rules. In this case however this is not
an issue as the scheduling will not be required to be carried out online. At the same
time the calculation is still fairly quick, as the calculation time of the solution above is
around 1.5 seconds on a Intel CoreTM2 Duo Processor T7200 @ 2Ghz with one thread.
It should however be kept in mind that the calculation time depends on the ranges
and value intervals of the K1 and K2 parameters.

Based on the above, this approach offers a stable and fairly quick solution to
the scheduling problem with the objectives of minimizing the makespan and the
maximum lateness. It is however necessary to emphasize that the solution is not
necessarily optimal, even though it might offer a near optimal solution.

5.3 Summary

This chapter has investigated the composition and use of a dispatching rule scheduler
to solve the scheduling problem that was described in Section 4.2.

5 Dispatching Rule Scheduler 41

5.3 Summary

The use of basic dispatching rules was investigated first, and although some valid
solutions was obtained they were not good as a direct result of their inability to
satisfy multiple objectives. The MS rule introduced some dynamic behavior into the
scheduling problem in satisfying the due dates, but yielded a long path. Contrary to
this the SST rule produced a shorter path, but was not able to meet the due dates.

To combine the best of the MS and the SST rule, the composite ATCS dispatching
rule was studied next. To do this the ATCS rule introduced the two look-ahead
parameters K1 and K2 that determined the contribution from the MS and SST rule,
respectively. To determine the value of these parameters two approaches were
studied; using statistics and trials. The latter approach proved to be the most stable
approach while at the same time yielding the best overall solution for the scheduling
problem considered in this thesis. The tradeoff for the approach was an additional,
however insignificant, cost in computational time.

42 5 Dispatching Rule Scheduler

CHAPTER 6
Combinatorial Optimization

In contrast to scheduling with dispatching rules the problem of scheduling can
also be considered to be a problem of combinatorial optimization. Combinatorial
optimization is a topic that basically consists of finding an optimal solution from a
finite set of solutions [Schrijver, 2003, p. 1].

This chapter focuses contrary to Chapter 5 on finding such an optimal solution to
the laser cutting problem. Section 6.1 focuses on running times for algorithms and
argues that a simple enueration of all possible (n− 1)! permutations and looking the
best solution is not feasible. Section 6.2 describes the Travelling Salesman Problem,
which is a well known problem within the field of combinatorial optimization. The
Travelling Salesman Problem resembles the laser cutting problem and the methods of
solving this problem is therefore studied. Finally Section 6.2 sums up what solution
method will be used to tackle the laser cutting problem. Finally this chapter discusses
the software used and the implementation.

6.1 Running Time of Algorithms

A simple approach to solving the laser cutting problem is enumerate all possible
solutions and search for the best one. Finding the optimum solution this way is also
known as brute force search. An assessment of whether this approach is feasible is
needed.

If all permutations are calculated it will take at least (n− 1)! steps. This leads to a
calculation time that is proportional to (n−1)! which is clearly impractical. Putting the
direct solution of instances with 50 or so points is well out of reach of the combined
computing power of all the worlds’ machinery [Applegate et al., 2006, pp. 45-46]. This
makes it clear that polynomial time algorithms are preferred, also called good algorithms
[Edmonds, 1965]. Polynomial time algorithms has a computation time proportional to
O(nc) using the ”Bog O Notation”.

Table 6.1 shows the maximum input sizes solvable within one hour with different
types of algorithms. In (a) one elementary step is assumed to take one nanosecond
while (b) assumes a ten times faster machine.

43

6.2 The Travelling Salesman Problem

10n2 n3.5 2n n!

Case (a) 60,000 3,868 41 15
Case (b) 189,737 7,468 45 16

Table 6.1: Maximum input size solvable within one hour [Korte and Vygen, 2002, p. 7,
Table 1.2].

The table clearly shows the advantage of polynomial-time algorithms. They can
handle larger instances in reasonable time at the size of the solvable instances increases
considerably with machine power. The opposite is the case for exponential-time
algorithms.

The above shows that depending on the problem size focus is needed on the
concepts of polynomial-time algorithms and exponential-time algorithms. There
are problems where no polynomial-time algorithm exists, and there are problems
for which there exist no algorithms at all. The laser cutting problem described in
subsection 4.3 is equivalent to the famous ”Travelling Salesman Problem” (TSP) and
is known not to have an exact polynomial-time algorithm. However it is possible for
many problems of this kind to find approximate solutions in polynomial time. The
next section will look into how the TSP can be solved without using a brute force
search.

6.2 The Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is an NP-hard problem in combinatorial
optimization. The problem is almost identical to the laser cutting problem stated
mathematically in subsection 4.3 and it is thus of great importance when solving the
laser cutting problem. The definition of the TSP is simple: Given a list of cities and
their pair wise distances, the task is to find a shortest possible path that visits each
city exactly once and returning to the starting point [Applegate et al., 2006, p. 1].
Figure 6.1 shows an example of a 33-city TSP instance and solution. In fact the only
difference between the laser cutting problem and the TSP is, that the TSP tries to find
a Hamiltonian cycle1 in a graph with minimum cost where the laser cutting problem
tries to find a Hamiltonian path2 in a graph with minimum cost.

1A Hamiltonian cycle (or Hamiltonian circuit) is a cycle in an undirected graph which visits each
vertex exactly once and also returns to the starting vertex.

2A Hamiltonian path (or traceable path) is a path in an undirected graph that visits each vertex exactly
once.

44 6 Combinatorial Optimization

6.2 The Travelling Salesman Problem

Figure 6.1: Optimal 33-city path in USA [Applegate et al., 2006, p. 15, Figure 1.10].

The problem was formulated as a mathematical problem in 1930 and is without a
doubt one of the most extensively studied problems in optimization [Korte and Vygen,
2002, p. 473]. The TSP has several applications in real life and is used as benchmark
for many optimization methods.

Because the TSP and the laser cutting problem are similar, it is useful to study how
to solve the TSP and then evaluate how, and to what extend, these solution methods
can be applied to the laser cutting problem. The solution methods are classified in
Section 6.2.1 after which the most important methods will be commented.

6.2.1 Classification of Solution Methods

When solving combinatorial optimization problems like the TSP it is very important to
distinguish between heuristics and algorithms. Unfortunately the use of these terms
is often used randomly in the literature. The definition used in this thesis is as follows:

An algorithm is a list of well-defined instructions for calculating a function. The
simplest is the exhaustive search that enumerates all possible solutions and
subsequently picks the best one.

A heuristic is an experience-based technique for problem solving. They speed up
the process of finding a solution, where an exhaustive search is impractical.
However there is no guarantee of finding an optimal solution or even a solution
of good quality.

This definition is not very precise as the difference between heuristics and algorithms
can be discussed. Hopefully the difference when solving the TSP is obvious to the

6 Combinatorial Optimization 45

6.2 The Travelling Salesman Problem

reader.

A selection of heuristics and algorithms is presented in Figure 6.2.

Heuristics

Tour
Construction

Improve-
ment

Nearest
Neighbour

Local Search

Exact
Algorithms

Brute Force
Search

Branch-and-
bound

Figure 6.2: Important heuristics and algorithms for solving the TSP, inspired by [Nilsson,
2003].

A path construction heuristic is often used for generating an initial path that is used
as input for an improvement heuristic. An example of a path construction heuristic
and a path improvement heuristic is presented next along with an introduction to
exact algorithms.

6.2.2 Path Construction

One of the first heuristics to determine a solution to the TSP is the nearest neighbour
algorithm. It is easy to implement and executes quickly, but rarely yields good
solutions. An implementation has been made in MATLAB that illustrates one of the
problems with this approach, see Figure 6.3. The problem is, that the algorithm can
sometimes cause you to ”paint yourself into a corner”, requiring long edges to get
back to the unvisited cities [Applegate et al., 2006, p. 104]. Figure 6.3 shows this issue
with the point in the lower right corner.

Figure 6.3: Nearest Neighbour search using MATLAB. The red dot marks the starting
point.

The nearest neighbour search algorithm is only of interest because of its simplicity.

46 6 Combinatorial Optimization

6.2 The Travelling Salesman Problem

The complexity of the nearest neighbour search is O(n2). By considering all vertices as
a possible starting point the complexity is O(n3) [Laporte, 1992, p. 242]. This heuristic
has been analysed in terms of performance and it is guaranteed to perform within
these bounds [Rosenkrantz et al., 1977, p. 565]:

Worst Case Performance:
Nearest Neighbour Solution

Optimal Solution
≤ 1

2
·
⌈

log(n)
log(2)

⌉
+

1
2

(6.1)

with n denoting the problem size (number of cities) and dxe denotes the smallest
integer greater than or equal to x.

Figure 6.3 constitutes a travelling salesman graph with ten nodes. According to
Equation 6.1 the length of the nearest neighbour solution is less than 250% of the
optimal solution length. This example clearly shows that the performance of the
nearest neighbour heuristic is far from optimal and cannot be used without a path
improvement heuristic in situations where the path length is critical.

Many other construction heuristics are available e.g. the insertion heuristic and the
patching heuristic [Laporte, 1992, pp. 242-243]. In fact the dispatching rules presented
in Chapter 5 can also be considered to be construction heuristics. The dispatching rule
Shortest Setup Time First (SST) corresponds to the nearest neighbour heuristic when
the setup times are considered proportional to the distance between the tasks. The
performance of the SST rule can in this case also be evaluated with Equation 6.1.

6.2.3 Path Improvement

Path improvement is often carried out using local search heuristics. The input
to these heuristics is an approximate solution made from one of the construction
heuristics. Then the heuristic systematically improves the solution by certain ”local”
modifications [Korte and Vygen, 2002, p. 485]. The basic structure of the heuristic is
to replace pairs of path edges by cheaper alternative pairs where available. The idea
of such an operation is shown in Figure 6.4.

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Figure 6.4: A local modification [Merz and Freisleben, 2001, p. 301].

This algorithm has shown to be effective and works well for instances with up to

6 Combinatorial Optimization 47

6.2 The Travelling Salesman Problem

100 points. It is simple to implement so it should be considered a possibility for the
laser cutting problem.

These local search methods were first introduced by Lin and Kernighan in 1973 and
they made a great improvement in the quality of paths provided by heuristic methods.
Even today these methods remain a key ingredient in many approaches for finding
quality paths [Applegate et al., 2006, p.104].

6.2.4 Exact Algorithms

In practice the brute force search is often carried out using a depth first search (DFS) or
breadth first search (BFS). Both methods are merely a way of looking through all nodes
in a search tree, see Figure 6.5.

a

b

ed

h i

c

f

j k

g

1

2

3

4

5

6 7

8

9

10

11

(a) Order in which nodes are visited in a
Depth First Search.

a

b

ed

h i

c

f

j k

g

1

2

4

8

5

9 10

3

6

11

7

(b) Order in which nodes are visited in a
Breadth First Search.

Figure 6.5: Methods of exhaustive search [Stefik, 1995, pp. 165-167]. Each node in the
search trees represents a feasible solution to the TSP. The numbers indicate the order in
which the nodes are visited.

In DFS the processor descends through the search tree by going deeper and deeper
until a node has no children. Then the search backtracks, returning to the most recent
node that has unvisited children.

The BFS searches through all nodes at a given level before checking children.
Comparing the performance of DFS and BFS is difficult as it depends very much on the
problem type and the search tree. However when the search tree is very large neither
approach is particularly good [Stefik, 1995, p. 170]. When the search tree is large it is
important to have guidance about which direction to go and Branch-and-Bound is an
example of how this can be done.

The branch-and-bound technique was invented in the late 1950s [Applegate et al.,
2006, p. 94]. It is used in a wide range of optimization problems. The technique

48 6 Combinatorial Optimization

6.2 The Travelling Salesman Problem

basically consist of enumerating all solutions and discarding large subsets of solution
candidates by using upper and lower bounds of the objective function.

Let us consider a TSP problem. A path can be represented as its incidence vector x of
length n(n−1)/2, with each component of the vector set at 1 if the corresponding edge
is a part of the path, and at 0 otherwise [Applegate et al., 2006, p. 83]. The distances
between cities are stored in a vector c. The vectors c and x are indexed by the pairs of
cities. Thus cT x gives the cost of the path. Letting Ψ denote the set of the incidence
vectors of all paths, the problem is to:

minimize cT x subject to x ∈Ψ (6.2)

The first tool in the branch-and-bound technique is a splitting procedure. The point is
to divide a given set of solution candidates into two or more smaller subsets. In this
case a vector α and numbers β′, β′′ with β′ < β′′ can be chosen such that each x ∈ Ψ

satisfies either αT x ≤ β′ or αT x ≥ β′′. The problem can now be divided into two sub
problems:

Thus there is two sub problems:

minimize cT x subject to x ∈Ψ and α
T x≤ β

′ (6.3)

and

minimize cT x subject to x ∈Ψ and α
T x≥ β

′′ (6.4)

This specific step is called branching. This is easy to remember when thinking
about how this step relates to the branch-and-bound tree. A branch-and-bound tree is
presented in the next section along with an example of solving the TSP using branch-
and-bound. The sub problems correspond to the nodes in the branch-and-bound tree
where the original problem is the root of the tree and each sub problem leads to a
branching step.

After branching a procedure computes a upper and lower bound for the minimum
value of cT x within the given subset of Ψ. This step is called bounding. The idea behind
branch-and-bound is to discard (called prune) nodes where the lower bound is greater
than the upper bound for some other node. Usually a global variable keeps track of
the minimum upper bound seen among the sub regions examined so far [Applegate
et al., 2006, pp. 94-95].

The branch and bound algorithm stop in two cases: When the set Ψ has been
reduced to a single element or when a solution is found that matches the lower
bound. Either way the branch-and-bound method will find the optimum solution.
An example of how the branch and bound algorithm can be used to solve an actual

6 Combinatorial Optimization 49

6.2 The Travelling Salesman Problem

TSP is shown next.

6.2.5 Example of Solving TSP Using Branch and Bound Algorithm

This section goes through an example that shows how to solve a five city TSP problem
using branch and bound. The reader should be aware that the branch and bound
method is not one well defined method and can be carried out in a number of ways.
The method used here was developed by Eastman in the late 1950s and early 1960s
[Lawler and Wood, 1966, p. 707]. The branch-and-bound tree for this example can be
seen in Figure 6.7.

The approach used by Eastman is to solve the assignment problem corresponding
to the TSP. The TSP problem is the same as the assignment problem with the added
constraint that the solution must be cyclic, i.e. no sub paths are allowed. If the optimal
solution to the assignment problem is cyclic then the solution for assignment problem
is the optimal solution for the corresponding TSP problem. If the solution is not cyclic
constraints are added until a cyclic solution is achieved.

Let us look at an example. Given the distance matrix in Table 6.2 the corresponding
assignment problem is solved. The assignment problem can solved in O(n3) time
[Korte and Vygen, 2002, p. 236]. For a detailed description of how the assignment
problem can be solved, the reader is referred to Korte and Vygen [2002]. Solving the
assignment problem yields the solution shown in Figure 6.6. Notice that this solution
has two sub-paths and is thus not a feasible solution to the TSP.

1
5

3

2

4

Figure 6.6: Solution to as-
signment problem with dis-
tance matrix given in Table
6.2. The cost is 33.

· → 1 · → 2 · → 3 · → 4 · → 5
1→ · - 10 8 9 7
2→ · 10 - 10 5 6
3→ · 8 10 - 8 9
4→ · 9 5 8 - 6
5→ · 7 6 9 6 -

Table 6.2: Example of distance matrix for five
city problem.

The optimum solution to the assignment problem is 33 and this acts as a lower
bound (LB) for the TSP. Now there is two sub-paths in the solution to the assignment
problem, one being 1−3−1 and the other being 2−4−5−2. In order to eliminate these
sub-paths we take the smallest sub-path and create two branches: one with x1−3 = 0
and one with x1−3 = 1. This is a way of saying that either x1−3 lies in the solution or
it does not. x1−3 denotes the line from one to three in Figure 6.6. This gives us two
new problem instances that can be solved like an assignment problem. The branch
and bound search tree is shown in Figure 6.7.

50 6 Combinatorial Optimization

6.3 Software

When the assignment problem is solved for x1−3 = 0 the cost is 34. Thus the lower
bond for this node is 34 and there is still two sub-paths. If x1−3 = 1 the lower bound is
also 34 with two sub-paths. In fact the solutions for x1−3 = 0 and x1−3 = 1 are the same.

When the assignment problem with the constraints x1−3 = 0 and x2−4 = 0 is solved,
it gives a feasible solution to the TSP with a value of 36. This value will then act as
an upper bound. All nodes with a lower bound more than 36 can now be pruned.
When we move on and solve the assignment problem with the constraints x1−3 = 0
and x2−4 = 1 we also get a feasible solution to the TSP but this time with a value of
34. As all remaining nodes are equal to or more than this new upper bound the search
has finished. This is because that branching from the node with the constraint x1−3 = 1
will only yield solution that are equal to or more than 34.

Ψ
33

1 5 3 1− − −
2 4 2− −

2 4 1x − =2 4 0x − =

1 3 0x − = 1 3 1x − =

1 3 5 1− − −
2 4 2− −34 34

36 34
1 5 4 2 3 1− − − − − 1 5 2 4 3 1− − − − −

1UB 2UB

currentLB UB≥

LB

Pruned

Two sub-tours

1 3 1
2 4 5 2
− −
− − −

Two sub-tours

Two sub-tours

Feasible solutions

Figure 6.7: Branch-and-bound tree.

6.2.6 Summary

Various solution methods for the TSP has been studied. The branch-and-bound
methods is considered the best method for finding optimum solutions. The rest of this
chapter will focus on solving the laser cutting problem by applying the branch-and-
bound method. Section 6.3 focuses on choosing the right programming framework
and software, Section 6.4 describes the implementation and Section 6.5 presents
results.

6.3 Software

This section will discuss what method of programming and software package are used
for implementing the solver. Firstly the programming methodology will be discussed
and afterwards a software package will be chosen.

6 Combinatorial Optimization 51

6.3 Software

The laser cutting problem is in fact a constraint satisfaction problem and therefore it
is natural to focus on constraint programming. These three approaches are considered:

� Programming a solver from scratch.

� Programming using a constraint logic language.

� Constraint programming via a separate library.

Programming a solver from scratch would be possible but the further implementation
of constraints would be impractical and cumbersome. Therefore this possibility is
discarded even though it has some pretty obvious advantages by not being tied to a
specific programming language.

Constraint logic programming (CLP) is an embedding of constraints in a host
language. Historically CLP emerged as a generalization of logic programming
[Rossi et al., 2006, p. 411]. CLP provides great power for modelling problems,
specifying search heuristics, experimenting with constraint solving techniques and
so on. However, CLP languages have significant drawbacks. The features of logic
programming must be learnt and understood before it is possible to model and write
solvers. There also exists some distinctive programming drawbacks [Rossi et al., 2006,
p. 445]. The difficulty of programming in CLP languages was actually identified as a
problem in [Sibbald et al., 1992]. Examples of some popular constraint logic languages
are B-Prolog, ECLiPSe, SICStus, Oz, GNU Prolog and Turtle.

The most common way of using constraint programming is probably using a
separate library. There are a lot of libraries available for free written in Java, C,
C++ and Python. Open source libraries are preferred in this project as they allow
modification of existing solvers. This rules out the solvers like the ILOG Solver which
has been the undisputed leader in performance from the mid 1990s an up to about 2005
[Kotthoff, 2010, p. 2]. The ILOG Solver still performs well but recent developments
such as Gecode and Minion competes well with ILOG in terms of performance and
memory usage.

Currently Choco, ECLiPSe, Gecode and Minion are under active development and
they are all open source. They are all good choices for solving constraint satisfaction
problems efficiently. Minion requires only an input file to run and no written code.
This way the solver is made fast by not being extensible or programmable. However
it would be a concern in this project as it makes the solver less flexible.

Gecode is selected for the further development of a solver to the laser cutting
problem. Gecode is chosen partly because it has showed good benchmark results
but also because it reportedly should have a large community. Benchmarking has
been carried out by Kotthoff [2010]. CLP was discarded because of the mentioned
drawbacks.

52 6 Combinatorial Optimization

6.4 Implementation

For an in depth documentation of Gecode the reader is referred to [Schulte et al.,
2011].

6.4 Implementation

This section describes the implementation of the solver used to find the optimal
solution to the laser cutting problem. The section explains what methods are used
to implement constraints but does not present a detailed guide to understanding the
source code which is found in Appendix C.

Remember that the implementation is based on the mathematical description given
in Section 4.3. This means that the solver finds a permutation of the points shown in
Figure 4.3 where each point corresponds to the start/stop point for a task. According
to the mathematical definition of the laser cutting problem the process time is reduced
by reducing the distance travelled when not cutting.

The following sections explains the implementation step by step.

6.4.1 Circuit Constraint

Gecode supports only one graph constraint: The circuit constraint. The solver is
therefore be based on this constraint.

The circuit constraint forms a Hamiltonian circuit which is a cycle in a graph
that visits each vertex exactly once and also returns to the starting vertex [Rossi
et al., 2006, pp. 180-181]. The circuit constraint is implemented by calling
circuit(home, c, x, y, z); where c is a cost or distance matrix, x defines the values
forming the circuit, y defines the cost of the edge for each node, z defines the total cost
of the edges in the circuit.

When using this constraint all that needs to be defined is the cost matrix c. The
process is shown in Equation 6.5 where the circuit constraint outputs a permutation
given the calculated distances as input.

x1 y1 z1

x2 y2 z2
...

xn yn zn

︸ ︷︷ ︸

Loaded vertices

→

d11 d12 · · · d1n

d21 d22 · · · d2n
...

dn1 dn2 · · · dnn

︸ ︷︷ ︸

Calculated distances

→{1, ...,1}︸ ︷︷ ︸
path

(6.5)

The circuit constraint only constructs the Hamiltonian cycle and is thus combined with
a minimize script that searches for the lowest value of z.

6 Combinatorial Optimization 53

6.4 Implementation

6.4.2 Hamiltonian Path

In Gecode there is a number of ways to implement variable constraints. It can be done
intuitive using expressions like this example: rel(home, z == 3*x-4*y+2);. This
section presents constraints that are implemented using such expressions.

Recalling that a solution to the laser cutting problem is a Hamiltonian path a
constraint is added that forces the vertex n to be before the final vertex 1. The
constraint relates to x in the circuit constraint that defines the values forming the
circuit.

The circuit constraint outputs the total cost of the path as z. z contains the cost of
the Hamiltonian cycle. A constraint is added that calculates a value, zpath, that is the
cost of the Hamiltonian path instead:

zpath = z−dn1 (6.6)

Equation 6.6 calculates the cost of the Hamiltonian path by subtracting the distance
from the final point to the start point from the cost of the Hamiltonian cycle. By
minimizing zpath the output of the solver is the optimum Hamiltonian path between
point 1 and n.

Due dates and release date are calculated using the formulas described in Section
4.4.2. Using the calculated due dates and release dates the following constraints are
applied:

C j < DD j (6.7)

C j−Pj > RD j (6.8)

Pj is subtracted from C j in the constraint regarding the release date because the entire
task needs to be inside the cutting area before the processing of the task may be started.

6.4.3 Input and Output

The coordinates of all vertices are given as input through the text file ”coordinates.txt”.
The columns in the text files are xmin, xmax, y, z and cut length. The cut length refers to
how many millimetres to cut. This is used to calculate the process time for the task.

In the file ”constants.txt” the conveyor speed vconveyor, cut speed vcut and move
speed vmove are specified. The move speed refers to the speed at which the laser beam
can be moved when not cutting. The numbers are all in mm/s.

The output of the solver is written to ”result.txt”. The file contains the final path
and the total distance. To improve system testing the solver will also output extended

54 6 Combinatorial Optimization

6.5 Results

results to ”resultsextended.txt” which contains start and finish time for all geometries
along with due and release dates. Furthermore this text file contains all feasible
solutions and not just the best. An example of the two text files are given in Table
6.3 and 6.4 (where just one solution is found):

0
2
1
4
7
5
3
6
8
9
Cost: 922

Table 6.3: Example of ”result.txt”.

Point Start Finish DD RD
0 0 324 10580 -19080
2 408 2695 14350 -14750
1 2746 3071 10580 -19080
4 3102 3448 17680 -11980
7 3507 3961 20165 -9360
5 3992 11855 19150 650
3 11927 12273 17680 -11980
6 12323 12777 20165 -9360
8 12827 13173 25130 -4530
9 13284 13630 25130 -4530
Cost: 922

Table 6.4: Example of ”resultex-
tended.txt”. All figures are given in
milliseconds.

A sample of the file "coordinates.txt" is shown in Table 6.5. Note that the terms xmin

and xmax are defined as described in Section 4.4.2. The file "constants.txt" contains three
lines with the cutting-, move- and conveyor speeds in mm/s, respectively.

xmin xmax y z Cut Length
11.6 18.4 -16.2 0.0 21.4
11.6 18.4 -158.9 0.0 21.4
87.0 105.0 -60.5 0.0 150.9
153.6 160.4 6.8 0.0 22.8

Table 6.5: Example of "coordinates.txt". All figures are given in millimeters. Only the
numbers written in verbatim is included in the file.

6.5 Results

This section will present the most significant results. The following implementations
will be discussed:

� Clean TSP (Hamiltonian Cycle)

– Analyse calculation time.

� Hamiltonian path

6 Combinatorial Optimization 55

6.5 Results

– Evaluate output with different end points.

� Hamiltonian path with due dates and release dates

– Evaluate with cutting and move speed of CO2 laser cutter.

– Evaluate with cutting and move speed of remote laser cutter.

The clean TSP solver will be used to analyse calculation time as a function of problem
size.

The results from the Hamiltonian path solver will show how the solver finds the
optimum path based on the defined start and end point. The presentation of the
implementation with due dates and release dates will show how the resulting path
is affected by the cutting, movement and conveyor speed. This will be done with the
process characteristics of a CO2 laser cutter and a remote laser cutter. The purpose
of this section is to demonstrate the capabilities of the solver and not necessarily to
evaluate different production scenarios.

6.5.1 Clean TSP (Hamiltonian Cycle)

The TSP is solved using Branch and Bound. The solver will be analysed with respect
to calculation time. This gives an indication of how the calculation time is dependent
on the problem size. The result is shown in Figure 6.8.

10 ms

132 ms
777 ms

3.3 s

5.8 min

8.2 hours

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

5 10 15 20 25 30

R
un

tim
e

[m
ill

is
ec

on
ds

]

Problem size

Figure 6.8: Runtime of clean TSP solver on Intel CoreTM2 Duo Processor E8400 @ 3.00
GHz with one thread.

Figure 6.8 shows that the runtime increases exponentially in terms of problem size
(note that the y-axis is logarithmic). It is difficult to solve problems with more than
30 points. It is important to note that it would be possible to improve the runtime by
using more threads with a multi core processor. Even though the use of more threads

56 6 Combinatorial Optimization

6.5 Results

would increase the computing power, it would only provide a small improvement in
terms of how big problems can be solved in a given time. This was also shown in
Table 6.1.

6.5.2 Hamiltonian Path

When generating a Hamiltonian path, the solver does not allow for an undefined
end point. How the selection of end point affects the result of the solver is therefore
evaluated. The geometry presented in Figure 4.2 is used to illustrate the results of the
solver.

Figure 6.9 shows different paths based on different end points. In the three cases the
same start point is used. It is interesting to observe how the path and travel distance
changes depending on the choice of end point.

Travel distance does not vary much between the three paths. The shortest path is
in Figure 6.9(c) where the path is allowed to follow the edge of the part. When the
starting and end point is in separate ends of the part, it is necessary for the path to
cross the part several times which gives a longer path.

It is possible to calculate all paths within ten seconds3, which is an acceptable
calculation time. These calculation times also agree well with the calculation times
for solving the TSP given in Figure 6.8.

The results in Figure 6.9 shows that the defined end point does not have a big
influence on the total travel distance.

3Using a Intel CoreTM2 Processor T5600 @ 1.83 GHz.

6 Combinatorial Optimization 57

6.5 Results

Travel distance: 1651 mm 100 mm

1

2

5

10

137 11

14

159

3

4

12
6

8

16

17

18

19

21

20
0

0 -> 2 -> 1 -> 4 -> 7 -> 9 -> 5 -> 3 -> 6 -> 8 -> 10 -> 12 -> 14 -> 20 -> 18 -> 16 -> 11 -> 13 -> 15 -> 17 -> 19 -> 21

(a) Illustration of how the points on the part are enumerated and the calculated path with end point 21.

Travel distance: 1658 mm

(b) Path with end point 20.

Travel distance: 1574 mm

(c) Path with end point 1.

Figure 6.9: Calculated path with predefined end point.

58 6 Combinatorial Optimization

6.5 Results

6.5.3 Hamiltonian Path with Due Dates and Release Dates

Before executing this solver, the process data must be specified. This is because the
movement of the part is now considered. The parameters presented in Table 6.6 is
used as input. The cutting speed and movement speed are based on information from
[The Danish National Advanced Technology Foundation, 2010] as well as a data sheet
on Kuka Systems GmbH [2011].

CO2
Cutting Speed 4 m/min = 67 mm/s
Movement speed 100 m/min = 1667 mm/s
Cutting area 600 mm
Delay 200 mm

Remote laser cutting
Cutting speed 30 m/min = 500 mm/s
Movement speed 470 m/min = 7833 mm/s
Cutting area 600 mm
Delay 200 mm

Table 6.6: Process parameters used for testing solver.

The cutting areas are based on estimates and can change for any given production
scenario. In this case the cutting area is almost the same as the length of the part.

Another process characteristic that needs to be specified is at what time the laser
cutter begins cutting. The laser cutter could begin immediately after the first task is
fully within the cutting area. However this may not be realistic since the laser cutter
may have a job to complete before. Therefore a ”delay” is introduced. A delay of
200 mm means that the part is 200 mm from the end of the cutting area as the laser
cutting starts. This is illustrated in Figure 6.10.

Part movement direction:

1

2

5

7

9

3

4

6

8
0

Delay: 200 mm

Cutting Area: 600 mm

End of
cutting area

Figure 6.10: Illustration of delay in relation to the part and cutting area.

6 Combinatorial Optimization 59

6.5 Results

The delay is important to ensure that the solver will find solutions for the problem
when using due dates and release dates. It is however important to look at the delay
to ensure that a scheduling result can be used for continuous cutting. This is discussed
later.

Next the results from the solver are presented. First the process characteristics of a
CO2 laser is used.

Scheduling for CO2 Laser Cutter

The start and end point seen in Figure 6.9(a) is used. Figure 6.11 shows a set of process
settings that yields a feasible solution.

-20000

-10000

0

10000

20000

30000

40000

0 5 10 15 20 25

Cutting Due Date Release Date

Process Settings

Cutting Speed: 4 m/min
Movement Speed: 100 m/min
Cutting Area: 600 mm
Conveyor Speed: 20 mm/s
Delay: 200 mm

Travel Distance: 1651 mm
Process Time: 22,672 ms
Tour: 0 -> 2 -> 1 -> 4 -> 7 -> 9 -> 5
-> 3 -> 6 -> 8 -> 10 -> 12 -> 14 -> 20
-> 18 -> 16 -> 11 -> 13 -> 15 -> 17 ->
19 -> 21

Ti
m

e
[m

s]

Figure 6.11: Chart showing scheduling results with CO2 laser cutting process data.

Figure 6.11 shows due and release dates for each task as well as a column showing
start and finish time for each task. The total travel distance for this solution is 1651 mm.
From this it is concluded that the due dates and release dates are not influencing the
path as the path is optimal. It is shown in Figure 6.9(a) that the optimum path length
to this problem is 1651 mm. From the scheduling solution a total process time will be
22.7 s is estimated.

The process settings affects the due dates and release dates. As seen in Figure
6.11, the due and release dates can be represented as lines. The process settings are
listed below along with a description of how they affect the due date and release date
lines. The only process settings that does not affect the due and release dates are the
movement and cutting speed.

Cutting Area affects the release date. An increase in cutting area will shift the release
date line downwards.

Delay shifts both the due date and release date line by ∆delay/vconveyor.

60 6 Combinatorial Optimization

6.5 Results

Conveyor Speed has a bit more complex effect. With respect to the due date line
an increase in conveyor speed will lower the line and the slope of the line. An
increase in the conveyor speed will essentially have the same effect on the release
date line. Note however that the negative release dates will be less negative as
the conveyor speed is increased, see an example of this in Figure 6.12.

-20000

-10000

0

10000

20000

30000

40000

0 5 10 15 20 25

Cutting
Due Date Release Date

Ti
m

e
[m

s]

Process Settings

Cutting Speed: 4 m/min
Movement Speed: 100 m/min
Cutting Area: 600 mm
Conveyor Speed: 20/27 mm/s
Delay: 200 mm

Travel Distance: 1651 mm
Process Time: 22,672 ms
Tour: 0 -> 2 -> 1 -> 4 -> 7 -> 9 -> 5 ->
3 -> 6 -> 8 -> 10 -> 12 -> 14 -> 20 ->
18 -> 16 -> 11 -> 13 -> 15 -> 17 -> 19
-> 21

-

-

Due Date Release Date

Conveyor Speed 20 mm/s:

Conveyor Speed 27 mm/s:

Figure 6.12: Chart showing how the conveyor speed affects the due date and release date
line. Both conveyor speeds yields the same path in this example.

Finally, the maximum conveyor speed is estimated by increasing the conveyor
speed, until the solver is unable to find a feasible solution to the problem. The
conveyor speed is increased to 29 mm/s. It is not possible to increase the conveyor
speed further without violating a due date constraint. The cutting area is reduced
as much as possible without violating a release date constraint. This gives the result
shown in Figure 6.13.

-10000

-5000

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

Cutting Due Date Release Date

Process Settings

Cutting Speed: 4 m/min
Movement Speed: 100 m/min
Cutting Area: 470 mm
Conveyor Speed: 29 mm/s
Delay: 200 mm

Travel Distance: 1743 mm
Process Time: 22,727 ms
Tour: 0 -> 3 -> 2 -> 1 -> 4 -> 9 -> 7
-> 5 -> 6 -> 8 -> 10 -> 12 -> 14 -> 20
-> 18 -> 16 -> 11 -> 13 -> 15 -> 17 ->
19 -> 21

Figure 6.13: Chart showing cutting with CO2 laser cutter at highest possible conveyor
speed and smallest possible cutting area. The delay is 200 mm.

6 Combinatorial Optimization 61

6.5 Results

Firstly it is noticed that the path has changed. The travel distance has increased from
1651 mm to 1743 mm. Thus the solver no longer returns the path with the optimum
travel distance as this solution would violate the due date and/or the release date
constraint. Figure 6.13 shows that task five is limiting the conveyor speed in this
scenario. Task five is seen in Figure 6.9(a). Thus, it can be concluded that if task
five had a lower cut length the conveyor speed could be increased.

The scenario scheduled in Figure 6.13 assumes a 200 mm delay. If the laser cutter is
to cut parts continuously using this schedule it needs to be able to start cutting the next
part with a delay of minimum 200 mm as well. If this is not possible the path found
cannot be used. In the case shown in Figure 6.13 the difference between the finish
time and the due date of the last task is 4293 ms. With a conveyor speed of 29 mm/s
this gives a distance of about 124 mm which is not as large as the delay of 200 mm. This
indicates that the laser cutter would not be able to commence the cutting of the second
part in time. Thus is a conveyor speed of 29 mm/s optimistic.

Scheduling for Remote Laser Cutting

Scheduling with the process data for a remote laser cutter yields the result shown in
Figure 6.14.

Cutting Due Date Release Date

Process Settings

Cutting Speed: 30 m/min
Movement Speed: 470 m/min
Cutting Area: 600 mm
Conveyor Speed: 170 mm/s
Delay: 200 mm

Travel Distance: 1651 mm
Process Time: 3,054 ms
Tour: 0 -> 2 -> 1 -> 4 -> 7 -> 9 -> 5
-> 3 -> 6 -> 8 -> 10 -> 12 -> 14 -> 20
-> 18 -> 16 -> 11 -> 13 -> 15 -> 17 ->
19 -> 21

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 5 10 15 20 25

Figure 6.14: Chart showing scheduling results with remote laser cutting process data.

It is obvious that the shapes of the curves are almost identical to Figure 6.11. The
paths are identical and the travel distances are therefore also the same. If the conveyor
speed is increased and the cutting area is lowered we get the result shown in Figure
6.15. The same ratio is achieved between cutting speed and conveyor speed as we did
earlier with the CO2 laser cutter process data. This means that the cutting area for
remote laser cutter will be 470 mm like the CO2 laser cutter case.

62 6 Combinatorial Optimization

6.6 Summary

-2000

-1000

0

1000

2000

3000

4000

0 5 10 15 20 25

Cutting Due Date Release Date

Process Settings

Cutting Speed: 30 m/min
Movement Speed: 470 m/min
Cutting Area: 470 mm
Conveyor Speed: 220 mm/s
Delay: 200 mm

Travel Distance: 1722 mm
Process Time: 3,063 ms
Tour: 0 -> 3 -> 2 -> 1 -> 4 -> 7 -> 9
-> 5 -> 6 -> 8 -> 10 -> 12 -> 14 -> 20
-> 18 -> 16 -> 11 -> 13 -> 15 -> 17 ->
19 -> 21

Figure 6.15: Chart showing cutting with remote laser cutting at highest possible conveyor
speed and smallest possible cutting area. The delay is 200 mm.

From the results it can be concluded that remote laser cutting with the used process
parameters can be carried out with a conveyor speed of more than 170 mm/s.

6.6 Summary

A solver for laser cutting problem is successfully implemented using Gecode. The
implementation has given insight to the possibilities of scheduling processes like laser
cutting. Especially the limits of the solving techniques have been uncovered. It is clear
that if a problem instance contains more than around 25 points the branch-and-bound
technique is no longer feasible because of the exponential calculation time as seen in
Figure 6.8. In these cases in would be worth looking into construction, improvement
heuristics and dispatching rules.

6 Combinatorial Optimization 63

6.6 Summary

64 6 Combinatorial Optimization

CHAPTER 7
Scheduling Interface

Recalling the proposed Generic RLC Program Generation System from Section 3.1, the
scheduling and optimization problem only constitutes a part of the overall problem of
converting customer specified CAD-data into machine code and instructions for the
production equipment and personnel. Another important part, as it is also seen on
Figure 3.2, is the process planning where, among other things, the data and parameters
of the scheduling problem is defined. Likewise, there is an also an important step
afterwards concerning simulation and visualization of the acquired scheduling results
for verification purposes. These two parts together constitute what is defined as the
scheduling interface.

This chapter will describe a prototype scheduling interface for the human process
planner which allows for both the definition of the cutting tasks , process parameters
and visualization (but not simulation) of the results acquired from the scheduling
software that was developed the two previous chapters.

7.1 Framework

In order to develop a proper interface for the scheduling system, it is necessary to
identify and define the overall functional framework of the interface. This is important
in order to make an initial decision about what the interface should be composed of.

In this case, the framework is identified by considering the Generic RLC Program
Generation System seen in Figure 3.2 as well as considering how the interface can
interact with the schedulers that were developed through the two preceding chapters.
This yields the framework depicted in Figure 7.1.

CAD Data
Scheduling interface

Textfile, Add-in or stand-
alone application

Scheduling Results
Visual or textual

Scheduler
Dispatching rule scheduler

and/or Combinatorial optimization

Figure 7.1: Flowchart describing the general framework of the scheduling interface.

65

7.1 Framework

The interface acts as the human process planners link between the CAD-data and
the scheduler, as well as providing a means of showing the results obtained from
the schedulers to the process planner. Based on this basic framework three different
interface solutions were identified as described below.

Text files: The simplest interface for the schedulers would be to use formatted text
files as the interface only. In this case the process planner would need to
manually type in the necessary information pertaining to each cutting task into
a text file. This entails that the process planner uses a drawing or some CAD
data of the cutting geometries in order to extract this information. The scheduler
is then pointed to this text file upon execution and will then afterwards return
a the resulting scheduled sequence in a text file. The process planner can then
verify the scheduled path by inspecting the text file.

Stand alone application: Instead of having the process planner extracting the infor-
mation from the CAD-data and then manually typing in this information into
text files, this approach instead uses an application that is able to semi-automate
parts of the process. The ideas is to have an application that is able to load a
CAD file and then aid the process planner in the definition of the cutting tasks.
Once the tasks have been defined the application passes this on to the scheduler,
which may be an external application (i.e. MATLAB script, Gecode executable,
etc.) or even completely integrated into the application. Once a result has been
obtained, the application could also provide a visual presentation of the results
and/or carry out a simulation for verification.

Add-in to CAD-application: Given that the parts and the cutting geometries are
commonly designed using some CAD-software, this solution proposes that the
definitions of cutting tasks are carried out inside this CAD-environment. This
can be done by incorporating the scheduling interface through an Add-In1. Like
the case with the stand-alone application, this could also provide a means of
visually showing the results obtained by the scheduler for verification.

Of the above solutions, the interface consisting of text files is the one that presents
the least preferable solution, as it requires the most work from the process planner.
Furthermore, this solution is also the one that is likely to induce the most errors
because the information have to be extracted from the CAD-data and typed in
manually. For a small number of cutting tasks this is a manageable task, however
this can quickly change as the number of tasks begin to increase. In addition, it
is also difficult, and in most cases impossible, for the process planner to verify the
scheduling results strictly by inspecting a text file. From these issues it is evident that

1Add-In: An application that extends the functionality of larger applications.

66 7 Scheduling Interface

7.2 Requirements

a software application for aiding and semi-automating parts of the process offers the
best solution.

The question is then which of the stand-alone or the add-in application solution
can be preferred over the other. This depends on whether the view of consideration is
taken in terms of software development or in terms of usability for the process planner.

In terms of implementation the stand-alone application is the preferred choice,
as this entails the development of a single application capable of reading CAD file
formats that is supported by most CAD applications (e.g. IGES, STEP or DXF).
Conversely, the development of an add-in entails the development of an add-in for
each of the supported CAD-applications, each having separate API’s2. The advantage
of developing a single add-in is, that is requires less work than the development of
a stand-alone application as much of the needed functionality (e.g. environment for
visualizing the 3D part) is already present in the CAD application and can be accessed
through the API.

Taking the view of usability for the process planner, the add-in is the preferred
choice as this incorporates the interface into the CAD-environment that the process
planner presumably is accustomed to. At the same time this could also prove to be
a more flexible solution, as changes made to the design of the part and the cutting
geometries could be taken into account inside the CAD environment automatically.
By using a stand-alone application the process planner would have to get accustomed
with a new application, but more importantly there could also be problems and
restrictions pertaining to the CAD-formats. It should be mentioned that some CAD
applications might not offer the possibility of creating a custom add-in, in which case
the stand-alone application is the only real solution.

In the case of the example at IAI it was chosen to develop a prototype add-in. The
reason being that this offered the best solution in terms of the needed development
time. At the same time, the functional ideas and requirements for both the add-in and
the stand-alone application would be roughly the same. Thus, an add-in for the CAD-
application, Autodesk Inventor 2011, used at IAI offers a great demonstration vehicle
for testing the idea.

7.2 Requirements

Prior to the development of the prototype, the basic functional requirements for the
add-in were identified.

2API: Application Programming Interface is a standard and specification for the interaction between
applications.

7 Scheduling Interface 67

7.3 The Robocut Add-In

Define cutting tasks, by choosing the cutting geometries and specifying the direction of
part movement.
As it was described in Section 4.4 a cutting task is defined by a point and a
process time. Thus, it is necessary to define the direction of the part movement
to place and orientate the coordinate system in which the points of the tasks are
defined. To define the points, and calculate their corresponding process times,
each of the cutting shapes (i.e. holes) also needs to be selected. In addition, the
user should have the ability to see the holes that have been selected, and only be
able to select closed geometries.

Specify process parameters, by entering the cutting, conveyor and move speeds.
To calculate the due dates of the tasks as described in Section 4.4.2 as well as
the movement time between tasks (setup time), the three process parameters:
Cutting, move and conveyor speeds also needs to be specified.

Export cutting tasks and parameters to scheduler, by exporting to formatted text files.
Both of the schedulers, developed in Chapters 5 and 6, uses text files as an input.
For this reason the information needs to be exported into the two formatted
text files: "coordinates.txt" and "constants.txt". Samples of these text files are
presented in Section 6.4.3.

Run scheduler, by referring the user to the scheduler executable/script.
When the tasks have been exported to the text files the user also needs to be able
to execute the scheduler.

Import and visualize results, by drawing the scheduled path onto the part.
Once the scheduler has been executed the results needs to be visually presented
to the user inside the CAD application for verification purposes. Thus, the add-
in needs to parse the file ”results.txt”, shown previously in Table 6.3. Once the
results are parsed, the scheduled path should be shown on the part, while also
showing some relevant textual information. In case multiple solutions have been
found it should also be possible to "scroll" through them to visually inspect and
compare them so the process planner has the ability to choose the best solution.

7.3 The Robocut Add-In

Based on the functional requirements described in the previous section, the prototype
"Robocut Add-In" for Autodesk Inventor 2010 was developed. The add-in was
developed using the programming language Visual C# and Microsoft Visual Studio
2008 with templates from the Autodesk Inventor SDK Developer Tools [Autodesk Inc.,
2011].

68 7 Scheduling Interface

7.3 The Robocut Add-In

The resulting add-in is seen in the screen shot in Figure 7.2, where the example part
used in chapters 5 and 6 is loaded showing the defined cutting tasks and a loaded
result from the scheduler. The add-in is fully integrated into the Inventor application,
and will (once installed) startup together with Inventor, and can be accessed from a
button on the toolbar (top right on Figure 7.2).

As it can be seen, the add-in provides an interface for both defining the cutting tasks
by defining the movement direction and the cutting shapes (holes) as well as to define
the cutting-, conveyor- and move speeds. Furthermore, the add-in can refer the user to
the scheduler executable and import the results once they are available. In the shown
example a total of eight results have been loaded. Due to some technical issues, it was
not possible to implement a function for executing the schedulers from the add-in.
Instead the user is lead to the folder containing the scheduler and the exported input
files, so the user can run the scheduler manually before returning to using the add-in.

During the development of the add-in, an additional idea for an additional
functionality of the interface arose. There are some problems associated with the
pre-cutting of holes, described in Appendix A.2,that needs to be taken into account
during the design phase and process planning phase. As an example some parts are
impossible to roll form if holes are to close to bend lines, or they may cause some
undesirable changes of the parts shape and quality. The idea was then to incorporate
a functionality for checking that all of the holes can be cut without causing any
unwanted defects.

To test this idea, an additional function that checks the selected holes against a
simple rule that is entered by the operator was incorporated. As an example, the rule
that the distance to the nearest bend line should be at least four times the sheet metal
thickness was entered into the system [Halmos, 2006, p. 9-15]. Using this rule, the
add-in was detected that the slotted holes (like #10) were too close to the bend lines.
As it turns out these holes in fact did cause problems during the roll forming process
at IAI [Mathias Theil Petersen, 2011].

The Visual C# project and source code for this add-in can be found in the folder Part
I/Inventor Add-in on the enclosed CD.

7 Scheduling Interface 69

7.3 The Robocut Add-In

Figure 7.2: Screen shot showing the Robocut Add In inside the Autodesk Inventor
Environment. After defining the cutting direction, the bendlines and the holes that should
be cut, the scheduler can be executed and the results visualized.

70 7 Scheduling Interface

7.4 Summary

7.4 Summary

In this Chapter an add-in for Autodesk Inventor 2011 was developed as a scheduling
interface prototype. The developed prototype demonstrates how the cutting tasks and
parameters can be effectively defined within the CAD-Environment that the human
process planner is accustomed to. In addition, it also visualizes the results on the part,
thus easing the process of verification.

As a downside, the solution of using an add-in is that entails that one has to
be developed for each of the different CAD applications that the users of the RLC
technology will have. In addition, the Add-in also offers little possibility of extending
the functionality to include simulation as well, as this requires some elements that can
not be guaranteed to be present in the CAD applications (e.g. robot dynamics).

7 Scheduling Interface 71

7.4 Summary

72 7 Scheduling Interface

CHAPTER 8
Discussion

The laser cutting problem has been solved using mainly two approaches in this
chapter. The first approach presented in Chapter 5 applied the general theory of
dispatching rules. Using the basic dispatching rules showed to return some paths
that were not able to satisfy multiple objectives. To overcome this problem the
combination of basic dispatching rules into composite dispatching rules were studied,
specifically the ACTS rule was studied. This demonstrated the difficulties of both
the construction and especially the choice of parameters for the scaling of individual
terms of composite dispatching rules.

The ATCS rule was applied using two approaches were studied for determining
the scaling parameters; statistics and trials. The latter approach showed some good
results, however with an additional cost in computation time. Even so, this calculation
time was still significantly lower than that of combinatorial optimization. This
however is based on a fixed search space of the parameters for a specific task set.
As the search may change with the task set, the necessary computation time will also
change. In addition to this the search space this was determined through trial runs.
Together this means that that there is a possibility of improving the trials approach
by introducing some optimization techniques for first determining the search space
and then carry out a targeted search (e.g. Steepest Descent, Least Square, etc.) for the
optimal parameters. This could yield some improvement both in terms of the obtained
solutions (by fine tuning the search space) but also in terms of reduced computation
time (through a targeted search).

In terms of the results obtained through the dispatching rule scheduler, they were
obtained based on the due dates, processing times and setup times only. In effect,
the dispatching rules did not take the release date, which is calculated based on the
possible cutting area, into account. For this reason the solutions obtained by the
dispatching rule scheduler are only valid for large cutting areas. Thus to obtain some
results that are realistic in terms of the actual cutting area of the scanner head, the
release dates should also be taken into account in the basic dispatching rules like it
was done for combinatorial optimization.

The combinatorial optimization presented in Chapter 6 applied the mathematical
theories of combinatorial optimization in order to find the optimal solution to the

73

laser cutting problem. This approach showed to be effective for the example part
used, which contains 22 tasks. A study of the calculation time however showed that
this approach is not scalable. If this approach is used for parts containing more than
around 25 tasks, there are two options. The first possibility is to divide the tasks into
groups. In this way the optimum path between the groups can be calculated followed
by finding the optimum path between the tasks in each groups. The second possibility
is to use a heuristics that can handle the high number of tasks.

Which of these two approached is then preferable? Both approaches have potential
to yield quality paths. If heuristics are used it can be concluded the that path
construction heuristics cannot be trusted to yield quality paths alone. Note that
construction heuristics also covers dispatching rules. This problem can be overcome
by implementing an improvement heuristic. Improvement heuristics can provide
quality paths for large problems. But implementing an effective improvement
heuristics is difficult and there are countless ways to tackle the problem.

If the tasks are divided into groups the branch-and-bound method implemented
can be used for finding and optimal path within each group. Solution methods to the
Generalized Traveling Salesman Problem (GTSP) can find the optimum path between
the groups. Finding optimal paths between groups of tasks has been successfully
used in Stemmann and Zunke [2006] for robot scheduling with shorter cycle times as
a result. If using this approach for solving the laser cutting an algorithm that divides
the tasks into groups is needed.

The most straightforward approach for solving large instances based on the work
done in this thesis would be to divide the tasks into groups and focus on implementing
the GTSP for obtaining the optimal path between the groups. Finding optimum
solutions to the GTSP using branch-and-bound is possible. It is however uncertain
how large problem sizes a branch-and-bound solver would be able to handle when
solving the GTSP. Using exact algorithms the GTSP has been solved for instances with
up to 89 groups and 442 nodes in the literature [Pop et al., 2010, p. 63]. If it turns out
that the branch-and-bound solver cannot solve the GTSP within an acceptable time it
could be solved using heuristics.

A crucial function still needs to be implemented in the final branch-and-bound
solver. If at some point during the process the laser cutter does not have any
geometries to cut in the cutting area the solver will not return any solutions. The solver
should allow the laser cutter to ”pause” until a new task has entered the cutting area
and then start cutting.

Currently the branch-and-bound solver minimizes the cost of the path while
ensuring due dates and release dates are met. A number of other constraints could
be implemented like the cutting angle. Adding additional constraint could however
cause problems. If one the imposed constraints cannot be met the solver will not

74 8 Discussion

output any solutions. The solver cannot inform about what constraints are not met
and the user is therefore struggling blindly in order to find out what constraints or
process parameters are causing problems. The more constraints are added the more
difficult it will be to see why the solver cannot find any feasible solutions.

8 Discussion 75

76 8 Discussion

PART

II
ROBOCUT CONFIGURATOR

77

78

CHAPTER 9
Introduction

The ROBOCUT technology has potential to be used in countless production scenarios.
This potential can only be utilized if producers are aware of the existence of the
technology and understand its capabilities. This part of the thesis will focus on
developing a production system configurator that should convey information about
the ROBOCUT technology to producers.

Online product configurators systems are used extensively on the internet to allow
customers to add and change functionalities of a core product. The core product could
be a BMW car, a bicycle, a computer etc. These online product configurators can be
considered an implementation of mass customization.

The concept of mass customization was coined in the early 2000s and is the method
of ”providing high volume products that are individually customized to meet the
specific needs of each customer” [Davis and Heineke, 2005, p. 31]. A very important
part of the evolution of mass customization is the advances in technology, especially
the internet. Producers are able to provide customers with easy to use online
configurators that can be directly coupled with the production system. The technology
has had a great influence on the development of mass customization.

Mass customization among other tendencies has increased the need of flexibility
and responsive productions. The trend today in order to meet this need is Recon-
figurable Manufacturing Systems (RMS). The concept of RMS is to modularize man-
ufacturing system components, controllers, machine tools, etc. This modularization
should then facilitate the possibility of tailoring one specific module configuration for
each company’s production needs [Jørgensen et al., 2010, p. 1]. This modularization
should also make is possible to quickly adjust production capacity and functionality
in order to meet sudden changes in the market [Bi et al., 2008, p. 974].

In order to construct a configurator for the ROBOCUT technology a production unit
based on the ROBOCUT technology is defined along with a clear definition of modules
and their interfaces. This is a way of considering the ROBOCUT technology in context
of the RMS paradigm. This is done in Chapter 10.

Developing the configurator software is a process that involves a set of activities
and results that in the end produce the software product. The scope of the thesis does

79

9.1 Notation

not allow for a documentation of all steps. The four fundamental process activities
that are common to all software processes are showed in Figure 9.1.

Software
specification

Software
development

Software
verification and

validation

Software
evolution

Chapter 9:
”Software Requirements”

Chapter 10:
”Software Design

Specification”
Chapter 11:

”Verification and
Validation”

Figure 9.1: The four fundamental process activities associated with software development
[Sommerville, 2006, p. 8].

Figure 9.1 shows that the activities in ”Software specification” is covered in Chapter
11, ”Software development” is covered in Chapter 12 and ”Software verification and
validation” is covered in Chapter 13. Each chapter gives an introduction to the
software process it covers.

”Software evolution” is not covered in this thesis as it refers to the process of
modifying software to adapt it to changing customer and market requirements. In
order words software evolution deals with the development that takes places after the
software is deployed and taken into use.

9.1 Notation

This part of the report will frequently refer to modules and variants. Figure 9.2
shows the notation used in this thesis. A production system consists of one or more
production units that consist of one or more modules that is of a specific variant. The
vertical lines to the right of the diagram indicate the cardinality.

80 9 Introduction

9.1 Notation

Production
System

Variant 1
(KUKA KR 60-3)

Variant 1
(ABB IRB 4600-60)

Variant n
(...)

Module 2
(Robot)

Module 1
(Scanner Head)

Module n
(…)

Production Unit 1
(Stamping)

Production Unit 2
(Remote Laser

Cutting)

Production Unit n
(…)

1

1..*

1

1..*

1

1

Figure 9.2: Relationship between modules and variants with indication of cardinality.

9 Introduction 81

9.1 Notation

82 9 Introduction

CHAPTER 10
Identifying Modular Architecture

The identification and design of the modular architecture for configuration of the
RLC/RLW production unit is based on the methodology presented in Pahl et al.
[2007] for the design of modular products. The five step methodology, seen in
Figure 10.1, have been modified by changing the scope of the first four steps to fit
the modularization of a production unit, and by changing the fifth step from being
a preparation of the modular product layout to instead being a preparation of the
modular architecture for deployment.

Step 1: Clarifying the Task
 - Gather customer demands
 - Interpret and rank customer needs
 - Indentify overall function variants

Step 2: Establishing Function Structures
 - Divide overall function variants into a minimum
 number of similar and recurring subfunctions.

Step 3: Search for Working Principles and Variants
 - Identify modules for implementation of the
 subfunctions.
 - Identify possible module interfaces.

Step 4: Selecting and Evaluating Modules
 - Evaluate modules and interfaces in terms of user
 needs and technical criteria.
 - Select most favorable modules.

Ite
ra

te
 fo

rw
ar

ds
 a

nd
 b

ac
kw

ar
ds

 b
et

w
ee

n
st

ep
s

Step 5: Embody Modular Architecture and Framework
 - Closely define possible module combinations and
 constraints.
 - Identify relations between costumer demands
 and possible module choices.

Identification of m
odular architecture

Preparing for
deploym

ent

Figure 10.1: The methodology used for identifying and preparing the modular architecture
of the production unit for configuration.

The following will explain each individual step of the methodology based on Figure
10.1.

In Step 1: Clarifying the Task, the overall functionality of the production unit is
defined. By gathering information from the potential customers (manufacturing
companies) of the production unit, some possible uses and functional demands for

83

the RLC/RLW production unit are also identified. This information is then interpreted
into specific functional needs and ranked in terms of importance.

The overall function is then divided into a number of generic subfunctions in Step 2:
Establishing Function Structures. This should be done based on the customer demands,
while trying to identify a minimum amount of subfunctions that are similar and/or
recurring. Also, the subfunctions should be identified such that they can be combined
as easily as possible to implement the required overall functionality.

Overall Function

Material flow’

Energy Flow’

Signal Flow’

Material flow

Energy Flow

Signal Flow

Subfunction

Auxilary
function

C
o

m
p

le
x

it
y

Figure 10.2: Functional Modeling Method. Functions are described as the conversion of
materials, energy and signals. The overall function is divided into subfunctions to create a
function structure. Notice that a subdivision of a function decreases the level of complexity
[Pahl et al., 2007, p. 32].

To better understand the breaking down in functions carried out in the first two
steps, the graphical functional modeling method presented in Pahl et al. [2007] is
used. The method, illustrated on Figure 10.2, defines a function as the conversion
of materials, energy and signals and describes it based on its inputs and outputs [Pahl
et al., 2007, p. 30]. A similar approach is also proposed by Ulrich and Eppinger [2004],
however this is less detailed.

A search for possible module types for implementation of the identified subfunc-
tions is then carried out in Step 3: Search for Working Principles and Variants. While
performing this search, the possible interactions and relations between the individual
modules (subfunctions) should also be explored. It is important to note that as the
functional needs specified by the customers will vary, it might not be possible to se-
lect a single module type for a given subfunction capable of satisfying the needs in all
cases. In such cases, multiple possibilities for the same subfunction should be chosen,
ensure that the entire possible scope of customer needs and requirements is covered.

In Step 4: Selecting and Evaluating Modules, a search and selection of specific module
variants is carried out based on the identified module types, as well as the functional
needs. The module variants are selected by evaluation against the functional needs
and requirements found in step one.

84 10 Identifying Modular Architecture

10.1 Clarifying the Task

Finally, in Step 5: Embody Modular Architecture and framework the selected module
variants are put together to form a modular architecture. In this last step the possible
combinations of the module types and variants are defined. As some of the module
types and variants might be incompatible, or some combinations simply makes no
sense, the constraints and possible combinations are also defined. Once the possible
combinations have been clarified, the modules are related to the customer demands
with the objective of determining how the individual modules can be chosen to form
a complete configuration.

During the execution of these five stages, new knowledge and information can make
is likely to make it necessary to iterate forwards and backwards between the stages.

10.1 Clarifying the Task

Prior to beginning the identification of the modular architecture, it is necessary to gain
a more detailed overview of the task. This entails a description of the overall expected
functionality of the production unit (in this case the RLC/RLW production unit), as
well as gathering and interpreting customer demands to specify goal functionalities
and specifications.

10.1.1 The Basic Functionality

The ROBOCUT project aims at developing a new remote laser cutting and welding
process. Thus, this is the overall functionality of the production unit, as depicted in
Figure 10.3.

Remote Laser Cut/
Weld Part

CAD data

Electricity

Part

Heat

Cut/Weld Part

(Scrap)

Figure 10.3: The overall functionality of the remote laser cutting/welding production unit.

As input, the function gets a part (material) along with the CAD data (signal)
about the part and the cut/weld path and finally some electricity (energy) to perform
the cut/weld. The function (i.e. RLC/RLW) then converts these inputs, yielding a
cut/welded part (material) and heat (energy). In case the function has performed a
cut, the function will also return some scrap (material).

The RLC/RLW production unit is going to be used in different application
scenarios. This means that the subfunctions and function structures will change,

10 Identifying Modular Architecture 85

10.1 Clarifying the Task

depending on the customers (manufacturing companies), while still having the same
overall functionality.

As described in Section 4.1, the RLC/RLW production unit consists of the scanner
head for positioning and focusing the laser beam source coming from a high power
fiber laser. Because the scanner head will have some limited working area, it may need
to be moved around the part to extend the working area as well as to reach different
surfaces of the part. On the other hand it is also possible that the part needs to be
moved instead. It might even be the case that both the scanner head and the part
needs to be moved relative to each other.

10.1.2 Customer Specific Functional Requirements

Different customer needs and application scenarios will lead to different subfunctions
and function structures (e.g. some customers need a subfunction for moving the
part while others do not). For this reason it is necessary to examine the needs and
requirements of some potential customers for the RLC/RLW production unit. This
also provides a better understanding of the different possible usage scenarios of the
production unit. This survey also serves the purpose of identifying the different
and overlapping needs and requirements that the production unit should be able to
perform.

In this case, the primary customers are the manufacturing companies working
with the machining and shaping of metals. These companies are a part of the metal
products industry. In Denmark these counted around 3200 with a total revenue of
more than 54 billion DKK in 2008 [Danmarks Statistik, 2011]. This, together with
the business potential described in Section 1.1.1 makes for a large, but also diverse,
customer segment.

Gathering and identifying the customer needs is a process in itself, and it is
important to ensure that it is carried out as good and effectively as possible in order
to capture all explicit as well as hidden needs of the customers. A structured five-
step approach to ensure this is proposed by Ulrich and Eppinger [2004]. In this case
however, three customers are already involved in the development of the RLC/RLW
process. Thus, their needs and requirements for the production unit have already been
described through the ROBOCUT project. For this reason those needs are used, instead
of carrying out the structured five-step approach.

In what follows, a total of five application scenarios in the three companies are
briefly described. The application scenarios presented only represent the use of the
RLC production unit. This is because the needs collected through the ROBOCUT

project focuses solely on the RLC process, even though RLW is a part of the
project. However, this is assessed not to be a problem, as the functional needs and

86 10 Identifying Modular Architecture

10.1 Clarifying the Task

requirements of the RLC and RLW production units is expected to be similar. It is also
important to note that the needs have been collected with a different goal in mind,
than that of identifying a modular architecture of the RLC/RLW production unit. As a
result, some information about the intended applications of the RLC/RLW production
unit are lacking. For this reason it has been necessary to fill in the gaps by making an
assessment of the expected application scenarios. On a final note the requirements
have not been ranked in terms of their importance, as the methodology prescribes,
because of an insufficient level of detail in the available information. Instead the
requirements are all assumed to be equally important, with some exceptions that are
marked as soft specifications.

10.1.3 Ib Andresen Industri

As described in Appendix A.2, Ib Andresen Industri A/S (IAI) wants to use the RLC
process for the cutting of holes on the fly in the roll forming lines. IAI has two possible
usage scenarios of the RLC process in mind; (1) Ahead of or inside the roll forming
mill and (2) after the roll forming mill.

Cutting of holes on the fly ahead of or inside the roll forming mill

This scenario is the one that was also treated in Part I. IAI wants to place the RLC
scanner head in between sets of rolls, as sketched in Figure 10.4.

Scanner HeadLaser Source

Laser Beam

Figure 10.4: Close-up of a set of rolls in a roll forming mill at Ib Andresen Industri. The
scanner head could potentially be placed in between a set of rolls to perform the cutting on
the fly.

As it was explained in Section 4.2, a metal strip passes underneath the scanner head
continuously while the scanner head cuts the holes. The scanner head can be statically
mounted or moved sideways across the strip. This depends on the size of the scanner
heads working area as well as the width of the metal strip, or more correctly the
maximum width between cut geometries. Besides cutting top-down, as the case on

10 Identifying Modular Architecture 87

10.1 Clarifying the Task

Figure 10.4, IAI also wants the possibility of mounting the scanner head pointing in
other directions (e.g. from the sides or upside down) [IPU, 2011, pp. 7-8].

Cutting of holes after the roll forming mill

Due to some problems related to the cutting of some holes ahead of roll forming,
described in detail in Appendix A.2, IAI could also find use of the RLC process after
the roll forming mill. In this application, the part has been roll formed, like the
example given in Figure A.5 in Appendix, and is about to be cut to length. Thus, the
holes to cut are not necessarily located in a single plane as the case described above.
In turn this means that the scanner head needs to move around the part in order to cut
holes in different surfaces of the part (or even around corners) [IPU, 2011, pp. 7-8].

IAI’s needs and requirements:

Based on the described application scenarios, IAI’s technical and functional require-
ments for the RLC process can be summarized as shown in Table 10.1.

Process-specific requirements:

Material: Stainless steel up 3 mm in thickness.
Cut tolerances: ±0.1 mm.
Cutting rates: ≈ 15 m/min.

* Scanner head cutting field: 250x100 mm.
Positioning of scanner head: with a precision of ±0.2 mm.

Functional requirements:

Placement of scanner head between rolls.
Adjustable for cutting from all angles.
Cutting in one plane from a static position.
Cutting around corners with movement of scanner head.

* On-the-fly cutting.
* Soft requirement

Table 10.1: IAI requirements for the RLC process [IPU, 2011, pp. 7-8].

10.1.4 Grundfos

The pump manufacturing company Grundfos A/S , located in Bjerringbro, Denmark,
is also interested in using the RLC process in their factories. For this reason they are
also involved in the ROBOCUT project. The exact application scenario(s), parts, and
cutting geometries they have in mind are unknown, but two possible scenarios have
been identified.

88 10 Identifying Modular Architecture

10.1 Clarifying the Task

Robotic RLC of metal parts

Grundfos plans to mount the scanner head on a robot, like the situation seen in Figure
1.1(a) [IPU, 2011, pp. 5..6]. In this way, the scanner head performs the detailed
positioning of the laser beam while the robot moves it in a smooth path around the
part to cut. This will give the advantage of an increased speed, when compared to the
conventional robotic laser cutting (see Figure 10.5), where the robot needs to perform
the detailed positioning of the laser beam as well.

It is assumed that the part also needs to be moved in a plane, by an XY-table during
the cutting process. There is a possibility, that the parts will remain stationary during
the cutting process, in which case the parts will only need to be loaded somehow -
either manually or automatically, so that situation should also be kept in mind. To ease
the programming of the robot, Grundfos wish to have the control of the scannerhead
(i.e. focus and position of the laser beam) fully integrated into the robot controller. In
addition Grundfos would like the weight of the scanner head not to exceed 40 kg, to
limit the necessary size of the robot.

Cutting of holes at a station

Because of the RLC’s capability to cut holes within some working area from a static
position, it drastically reduces the spacial requirements. This makes it possible to
integrate a small station for laser cutting smaller parts into a continuous production
line. As Grundfos has many such lines producing smaller parts for pumps, it is
assumed that they could also use the RLC process as a station in a production line.
To further explain, it is assumed that the scanner head is statically mounted and that
the part is placed beneath it, then cut, and then passed on for further processing down
the production line. In this case both the scanner head and the part remains stationary
during the process.

Process-specific requirements:

Material: Stainless Steel 0.5 - 2.5 mm in thickness.
Repeatability (absolute tolerance): ±0.05 mm.

* Cutting Rates: 100 m/min in 1 mm stainless steel.
Scanner head cutting field: 200x200 mm.
Cutting angle: Minimum 45◦ but preferably 60◦.

Functional requirements:

** Movement of part in a plane.
Movement of scanner head with robot.
Robot-controller integration of scanner head.
Scanner head weight maximum 40 kg.

** Cutting from static position.
* Soft requirement ** Assumed requirement.

Table 10.2: Grundfos requirements for the RLC process [IPU, 2011, pp. 5-6].

10 Identifying Modular Architecture 89

10.1 Clarifying the Task

Grundfos requirements

Based on the above described application scenarios, as well as the requirements stated
by Grundfos [IPU, 2011, pp. 5..6], the technical and functional requirements for the
RLC process can be summarized as shown in Table 10.2.

10.1.5 Volvo

The car manufacturer, Volvo Car Corporation (VCC), is also a part of the ROBOCUT

project, as they wish to utilize the RLC process for hole cutting on pre-painted car
bodies, and possibly other parts. Currently the laser cutting of holes is performed with
the conventional robotic laser cutting process, as it is seen on Figure 10.5. VCC plans
to move the laser cutting of certain variant specific holes (e.g. holes for accessories)
from the body shop to the assembly line, and this should be made possible by the
increased flexibility offered by the RLC process [Volvo Car Corporation, 2011].

(a) (b)

Figure 10.5: The current robotic laser cutting at Volvo [Volvo Car Corporation, 2011].

As indicated on Figure 10.5(a) the scanner head will presumably be mounted on a
robot, as a car body can be considered a rather complex part with some hard to reach
areas. It is also assumed that the part (i.e. car body) will remain stationary during the
cutting process, as also indicated by Figure 10.5(a).

In this application scenario the cutting quality and the accuracy of the process are
important, however there is one additional functional requirement that needs to be
taken into account and that is the removal of scrap. When cutting holes in a car body,
it is important to ensure that the scrap from the cutting process is not trapped inside
hollow sections. In the current process seen up close in Figure 10.5(b) this is handled
by a suction nozzle placed beside the cutting nozzle of the laser cutting head. In this
way, the scrap metal is sucked out of the cut hole. This approach however is not

90 10 Identifying Modular Architecture

10.2 Establishing Function Structures

possible with the RLC process as the cut is performed remotely. In turn, some other
means of scrap removal needs to be engineered for the application of RLC at VCC.

Volvo requirements

As VCC has not specified any technical requirements, the requirements for the
application scenario described above can be summarized as shown in Table 10.3:

Functional requirements:

Part always stationary during cutting.
Movement of scanner head with robot.
Scrap-removal functionality.

Table 10.3: VCC’s requirements for the RLC process.

10.1.6 Technical Goal Specifications:

Besides the functional and Process-specific requirements specified by the companies
(customers), there also exists some technical goal specifications for the RLC and RLW
technology that has been specified in the ROBOCUT project. These specifications are
listed in Table 10.4.

Technical specifications:

Laser Power: 2 - 4 kW.
Beam Wavelength: 1.06 - 1.09 µm
Beam Quality: 1.0 - 1.2 M2

Fiber Diameter: 20 - 50µm
Effective focal length: 200 - 300 mm.
Cooling: Water cooling.
Working area: 100 x 100 x 100 mm.
Maximum beam travel speed: 90 m/min.

Table 10.4: Preliminary ROBOCUT specifications [Olsen, 2011, p. 6].

10.2 Establishing Function Structures

For each of the five application scenarios described in the previous section, a
decomposition of the overall function into a number of subfunctions and function
structure is performed. The goal for performing this decomposition is to identify a
generic function structure that is applicable to all of the possible application scenarios,
such that the minimum amount of subfunctions and thus modules can be identified
[Pahl et al., 2007, p. 500].

10 Identifying Modular Architecture 91

10.2 Establishing Function Structures

Conventionally the division of the overall function into subfunctions is performed
in a very detailed manner, in order to identify subfunctions that should form a single
module [Pahl et al., 2007, p. 503]. In this case however the production unit will consist
of modules that are already defined or available, but haven’t been identified yet. Put
in other words, it is not possible to control the composition of the individual modules.
Instead the general subfunctions should be identified in a way such that it is possible
to find existing modules (in Section 10.3) to carry them out.

As previously described, the functional modeling approach shown in Figure 10.2 is
used to visualize the function structure. Two of the five scenarios will be described
here in detail, to demonstrate the division into subfunctions and function structure.
The reader is encouraged to review Appendix D, where all of the function structures
can be found in a larger format.

10.2.1 Function Structure for RLC ahead of or inside the roll forming mill
at IAI

Based on the description given in section 10.1.3 the function structure diagram seen in
Figure 10.6 was constructed. Recall that the case under consideration is also the one
that was described in Section 4.2.

Position and focus
Laser beam

Laser Beam
Position Control

Position data

Fiber Laser
Source

Focused Laser
Beam

Heat

Control

Program

Electricity

Strip Position
Start/Stop

Create Laser Beam
Source CoolingLaser control Heat Heat

1 DOF Part
Feeding

Start/Stop

Laser Cut Holes

Heat
Cut Part

Scrap

Static Mount

(Static) Force

Pre-Processing
(Scheduling,

planning, etc.)

CAD-data

Metal Strip

Figure 10.6: Functional structure for RLC of holes ahead of or inside the roll forming mill
at IAI.

Going from left to right, a program for the process controller is constructed through
some software, like the RLC/RLW program generation system described in Section
3.1. Once created, the program (signal) is passed on to the process controller for
continuous execution for as long as the current part needs to be produced. Through
the controller’s execution of the program, the position and focus of the laser beam,

92 10 Identifying Modular Architecture

10.2 Establishing Function Structures

the laser source and the movement of the metal strip is controlled, based on their
respective feedback signals.

The function Create Laser Beam Source, representing a fiber laser, creates and returns
a laser source (energy) according the signal received from the controller. This function
will also return some excess heat, which is handled by the Cooling function.

To use the laser source, it needs to be positioned and focused first, handled by the
function Position and Focus Laser beam, representing the scanner head. This function
also creates some excess heat that is passed on to the Cooling function. In the current
case the scanner head needs to be mounted in a static position, done by the Static
Mount function. Notice that the force transferred from this function only represents
a static force (from gravity), and that it is included to follow the functional modeling
method.

Simultaneously, the function 1 DOF Part Feeding, representing the roll forming mill,
moves the metal strip, while returning the position to the controller. The moving metal
is then passed on to the function Laser Cut Holes, where the laser cutting process takes
place. The result is a metal strip with holes that are cut as specified by the CAD-data,
along with some scrap metal and excess heat.

10.2.2 Function Structure for Robotic RLC at Grundfos

The function structure diagram for the first Grundfos application scenario, described
in section 10.1.4, is seen in Figure 10.7.

Position and focus
Laser beam

Laser Beam
Position Control

Laser beam
Position data

Fiber Laser
Source

Focused Laser
Beam

Heat

Control

Program

Electricity

Part position
Start/Stop Create Laser Beam

Source CoolingLaser control Heat Heat

2 DOF Part
Positioning

Metal Part

6 DOF
Positioning

Force

Position
control

Position data

Heat

Part Position Control

Pre-Processing
(Scheduling,

planning, etc.)

CAD-data

Metal Part
Laser Cut Holes

Heat
Cut Part

Scrap

Figure 10.7: Functional structure for robotic RLC at Grundfos.

By comparing Figure 10.7 with Figure 10.6 it is apparent that this and the previous
application share some common functions. In this case however the scanner head

10 Identifying Modular Architecture 93

10.2 Establishing Function Structures

needs to be moved by a robot, represented by the function 6 DOF Positioning. The
movement is performed based on a control signal from the controller which in turn
receives a feedback signal with position data.

In this case, the part also needs to be moved in a plane. This is performed by the
function 2 DOF Part Positioning. Again, this is performed based on a control signal
coming from the controller, and a feedback signal with the current position of the part
is also returned to the controller.

10.2.3 Generic Function Structure

Observing the function structures in Figures 10.6 and 10.7 it can be seen that the two
separate applications share some common functions. This is also expected, as the fiber
laser and the scanner head are always necessary independently of the application
scenario. The surrounding system however will change for different application
scenarios.

By comparing all the function structures, found in Appendix D, the generic function
structure seen in Figure 10.8 was composed.

Position and focus
Laser beam

Laser Beam
Position Control

Position data

Fiber Laser
Source

Focused Laser
Beam

Heat

Control

Program
Part Position/Ready

Start/Stop Create Laser Beam
Source CoolingLaser control Heat Heat

Part

Force

Position
Control

Position data

Heat

Part Position/Loading Control

Electricity

Pre-Processing
(Scheduling,

planning, etc.)

CAD-data

Part Laser Cut/Weld
Part

Heat
Cut Part

Scrap
Part Loading/

Positioning

Static Mount/
PositioningEssential

Optional

Customer-Specific

Figure 10.8: Generic functional structure of the RLC process.

Each of the subfunctions has been classified as being either Essential, Optional and
Customer-Specific functions [Pahl et al., 2007, p. 496]. Notice that some functions have
two classifications. The essential functions, as the name implies, is always a part of
the RLC production unit contrary to the optional functions. Customer-specific means
that it varies significantly between customers and applications. That is, there is a
significant difference in the working principle. There is also a possibility that these
functions are completely supplied by the customer (like the roll forming mill at IAI
that moves the part).

94 10 Identifying Modular Architecture

10.3 Working Principles and Variants

As seen on Figure 10.8, only the three functions Static Mount/Positioning, Controller
and Part Loading/Positioning varies significantly between customers and applications,
and they are all essential modules as well. Hence these functions is the most important
in customizing the RLC production unit to the individual customer. For the same
reason these functions are chosen to be individual modules, even though they might
affect each other. In addition to this, the optional Pre-processing function will be
included as a part of the Controller module, as they are related. The reason being
that the pre-processing software and its requirements may change with the choice
of controller since they have different capabilities and attributes (e.g. programming
language and software).

The three functions Position and focus Laser beam, Create Laser Beam Source and Cooling
are all essential functions that does not vary significantly in their working principle,
as will be explained in Section 10.3. For this reason, these functions will be modified
for the individual customer and application together, as a single module.

Notice that the Laser Cut/Weld Part function is not considered a module, as this
merely represents the process taking place.

To summarize the modules identified from the functional structure of the RLC
production unit are repeated and named below:

� Static Mount/Positioning: Movement of scanner head.

� Part Loading/Positioning: Movement of part.

� Control and Pre-processing: Controller.

� Create Laser Beam Source, Cooling and Position and focus Laser beam: Fiber Laser and
Scanner Head (with DOE).

10.3 Working Principles and Variants

With the generic function structure identified, the search for different possible
working principles for each of the identified subfunctions can be carried out. In this
case the working principles are defined as existing components that can carry out
the subfunctions, either alone or in combination with other components. The search
will be carried out for each module separately, such that working principle(s) for all
subfunctions of a module are identified together.

10 Identifying Modular Architecture 95

10.3 Working Principles and Variants

10.3.1 Movement of Scanner Head

By considering the function structures in Figures 10.6 and 10.7, as well as Figures D.1
through D.5 it is observed that the functional requirements spans from no movement
to movement with six degrees of freedom (DOF).

(a) 1-axis linear (b) 2-axis linear (c) 3-axis linear

(d) 4-axis linear (e) 5-axis linear (f) 6-axis robot

Figure 10.9: The found working principles for moving the scanner head.

Based on this observation, as well as the functional requirements and specifications
given in Section 10.1.2, the working principles shown in Figure 10.9 were identified
for the movement of the scanner head:

Static Mount, i.e. no movement. In this case the scanner head will be mounted either
using a stand-alone bracket designed for this purpose, or through a bracket
integrated into the scanner head itself.

Linear modules, for movement in up to five DOF. In case the shape to cut/weld lies on
a plane, but exceeds the working area of the scanner head, the scanner head can
be moved in either one (a) or two (b) DOF. For parts with geometries in planes
with different orientations, up to three (c) or four (d) DOF are typically needed.
Finally, for the complex geometries, with convex/concave surfaces, as much as
five (e) DOF are needed. It is important to note that none of these modules
represent absolute choices. Hence, five DOF may be chosen even though only
two DOF are needed.

Robot, for complex movement in six DOF. In come cases a linear movement of the
scanner head is not possible or insufficient, thus needing a movement in six

96 10 Identifying Modular Architecture

10.3 Working Principles and Variants

DOF with a robot (f). For instance, this is the case for the car body seen in
Figure 10.5(a), where some cuts/welds might lie inside the car body, making
them practically unreachable for linear modules. Generally, the robot is more
agile in its ability to reach the same position in different ways. Though, it should
be noted, that the sixth DOF is actually redundant, since the scanner head has
two internal DOF with a rotary symmetric working area. In case the robot has
an insufficient reach it can be combined with a linear gantry, allowing the robot
to traverse alongside the part.

It is important to note that the working principles have been selected by screening
the possibilities available from suppliers, and only choosing those that is able to
satisfy the functional and technical requirements and specifications that were found
in Section 10.1.2. As an example, the movement of the scanner head with a fever
DOF robot were also investigated as supplementary choices to the linear modules in
Figures 10.9(c) and 10.9(e). It turned out that that these types of robots are generally
not able to carry the expected weight of the scanner head (up to 40 kg) or are intended
for other applications than cutting and/or welding.

All of the working principles described above are available in many varieties from
different suppliers, except for the static mount, thus a further selection of specific
variants needs to be carried out in the next stage.

10.3.2 Movement of Part

This module covers both the movement of the part during cutting/welding, as well
as the case where it only needs to be moved into position. The application scenarios
show that the possible working principles of this particular module are many and that
this module in many cases will be delivered by the customer. This is the case for the
loading of the car body at Volvo and for the movement of the metal strip by the roll
forming mill at IAI.

There is however still some cases where the movement or loading of a part needs
to be delivered as a part of the RLC production unit, so for this reason some possible
working principles for these cases are presented below:

Part Loading, placing the part in position either automatically or manually. Even if the
part needs to be stationary during the cut/weld, it will still need to be placed
underneath the scanner head. This can be done either manually, or with some
autonomous mechanism that is integrated with the production lines. This could
be something like a rotary table sketched in Figure 10.10(b).

Linear, for simple movements of the part in a plane. For the cases where the part needs
to be moved in a plane, this can be done linearly with either an x- or xy-table, as

10 Identifying Modular Architecture 97

10.3 Working Principles and Variants

sketched in Figure 10.10(a). Alternatively, the rotary table in Figure 10.10(b) can
also be used in this regard.

Robot, for complex movement of parts. This is assessed to rarely be the case for the
cutting of parts, since is easier and sufficient, in most cases, to only move the
scanner head. However, for welding tasks a robot might be needed to accurately
position parts together for welding. Another possibility is that a part needs
to be moved from one station/conveyor to another by a robot, thus making it
reasonable to perform the cut/weld operation as a step of the moving process,
essentially saving a mechanism for moving the scanner head at a separate
station.

(a) xand xy-table (b) Rotary table

Figure 10.10: Linear working principles for moving the part.

Because there is a big diversity in the functional requirements for this module, a
full search of possible working principles and their variants has not been carried out.
In order to identify and fully define the working principles that should be offered
for this module, a more thorough analysis and search would have to be carried out.
Because of the limited timeframe of this thesis, this has not been possible. Instead, the
three general working principles merely offers a suggestion to some possible working
principles.

10.3.3 Laser Source, Cooling and Scanner Head

As it was described in Section 10.2.3, a total of three components are needed to create,
focus, and position the laser beam for cutting or welding, together making up a single
module.

The working principle for the laser has already been defined through the ROBOCUT

project, as the only laser capable of meeting the beam quality requirements is a single
mode (SM) fiber laser.

The scanner head is also defined through the ROBOCUT project. There is one
variable however, because it is quite possible that there will be some difference

98 10 Identifying Modular Architecture

10.3 Working Principles and Variants

between a scanner head for cutting and welding respectively. The difference might
just concern the DOE, described in Section 1.1, for the creation of the laser beam
intensity pattern, however this is unknown at this point. Even though it is unknown,
it is assumed that there will be some difference in the scanner head for cutting and
welding applications, respectively, and thus they are defined as two distinct working
principles.

Both the laser and the scanner head will need some form of cooling. In some
cases the fiber lasers offer their own integrated cooling solution in the form of air
conditioning [IPG Photonics Corporation, 2011], and in other cases the lasers rely on
an external cooling system [Rofin-Sinar Laser GmbH, 2011]. Because it is not possible
to find detailed information about laser cooling systems, this will not recieve more
attention. Instead it is assumed that the fiber laser is delivered with a suitable cooling
system that has the capacity to cool the scanner head as well.

10.3.4 Controller and Software

The functionality of the controller and software module depends on the choices made
for the movement of the scanner head and movement of the part. In terms of the
controller there is basically three options:

PC Controller, to control the scanner head and/or the linear modules. The control of
the scanner head can be handled by a pc controller with a user interface and
control panel near the process. In case some additional equipment for moving
the part and the scanner head has been chosen, these can also be controlled by
this controller.

Robot Controller, to control the robot. When a robot is chosen, a robot controller
is automatically needed to control it. In this case it is useful to integrate the
control of the scanner head into the robot controller instead of using another
controller. Doing so will ease the programming of the process, as it is then
handled in one language and some issues concerning the synchronization
between controllers and programs can also be avoided. In case some additional
equipment needs to be controlled, special attention should be paid to the robot
controllers capabilities to do so, as they have some limitations to the number of
external axes that can be controlled.

Robot and PC Controller, for additional monitoring and control. Even though a robot
controller is available, it could prove insufficient in some cases. For instance
if the process needs monitoring with sensor readings, vision, etc. and/or a
user control panel with process information and control. In this case, a PC
controller could be used as a front-end controller to the robot controller. The

10 Identifying Modular Architecture 99

10.4 Selecting and Evaluating modules

robot controller would still control the movements of the robot and the scanner
head, however based on the commands coming from the PC controller.

Apart from the options above, it is possible that the customer has a controller or wishes
another variety than what is available. For this reason the customer should also have
the choice to deliver the controller.

The creation of programs for the controller based on the CAD-data can be handled
through the customers own solution, either manually by an operator or through
some third party CAD/CAM software. In case the customer does not have a
satisfying solution, some additional pre-processing software can be delivered with
the production unit:

CAD Add-in, for an integrated solution. It is assumed that most of the customers
of the RLC production unit have a CAD system for designing the parts and
the required cuts/welds. Hence, a solution, like the one presented in Chapter
7, with an add-in for the CAD system could be used. This would offer an
integrated solution, as the designers would be able to both design and deploy
the RLW/RLC process from the same CAD-system.

Stand-Alone, for a separate high-level solution. As there is a lot of different CAD-
systems, it is unlikely that an add-in can be delivered for all of them. In such
cases a stand-alone application is needed to program the cut/weld paths. This
application will operate on a higher-level than the add-in as it will not include
parts design, but will only concern the cut paths as it will operate with standard
CAD formats.

10.4 Selecting and Evaluating modules

With the required modules and their working principles identified, some specific
module variants can be selected based on an evaluation against the functional and
technical requirements.

The selection is carried out by choosing a couple of suppliers for each of the
modules, and then select the variants according to the identified working principles
found in the previous section and the requirements that was found in Section 10.1.2.
In reality, the selection would be carried out through acquiring offers from different
suppliers, and then enter agreements with those that offer the best solutions.

At this point it should be mentioned that a selection of variants for the movement of
part module is not carried out. This is because of the vast amount of possible working
principles and varieties that exist for this module. Hence, the specific module variants
should not be selected until the working principles of the module have been identified.

100 10 Identifying Modular Architecture

10.5 Embody Modular Architecture and Framework

For reasons of reference, the suppliers of the module variants that have been used
are listed in Table 10.5:

Suppliers of linear module for movement of scanner head:

Adept [Adept Technology, Inc., 2011]
Güdel [Güdel AG, 2011]
Schunck [Schunk GmbH & Co., 2011]

Suppliers of robots for movement of scanner head:

ABB Robotics [ABB Group, 2011]
KUKA Roboter [KUKA Roboter GmbH, 2011]
Fanuc Robotics [Fanuc Robotics GmbH, 2011]

Suppliers of fiber lasers:

IPG Photonics [IPG Photonics Corporation, 2011]
Rofin-Sinar Laser [Rofin-Sinar Laser GmbH, 2011]

Table 10.5: The chosen suppliers of module variants.

10.5 Embody Modular Architecture and Framework

With all of the module variants are selected, it quickly becomes difficult to keep track
of all the possible combinations between module types and variants. For this reason
the modules and their information needs to be structured to give an overview. This
will be done by organizing the module variants in a Product Variant Master (PVM).

10.5.1 Product Variant Master

The PVM model, seen in Figure 10.11, consists of a part-of and a kind-of model,
respectively. In the part-of structure, all of the modules and parts that makes up the
product are listed. In case a module or part has different variants, this is modeled
with a kind-of structure, which contains all the possible variants. Taking a bicycle as
an example, the part-of structure would contain a frame, tires, gear, seat, etc. and the
kind-of structure could contain different types of frames (e.g. standard, mountain,
city), tire types and sizes, and so on.

As indicated on Figure 10.11, it is also possible to include relations between modules
and parts. This is done by drawing the relation together with a description of the
relation. In the bike example a possible relation could be that a standard frame puts a
limit on the possible tire types and sizes.

Altogether, this provides an overview of the product structure, while also providing
an overview of the variants for each module and their relations. For more detailed
information about PVM, the reader is referred to Hvam et al. [2008].

10 Identifying Modular Architecture 101

10.5 Embody Modular Architecture and Framework

X Y [x ,x ,...,x]

Attribute Numbers Possible
values

Limitations/
relations

Module or unit

Part

Part

Part Part type

Module type

Module

Part

Generic “part-of” stucture
(aggregation)

Generic “kind-of” stucture
(generalisation/specialisation)

1 2 n

Figure 10.11: The Product Variant Master [Hvam et al., 2008, p. 60].

To construct the PVM the free application Product Model Manager (PMM) by Incore
Systems Aps [2011] is used. Figure 10.12 shows a screen shot from the PMM
application.

Figure 10.12: Screenshot from the Product Model Manager application used to create the
Product Variant Master.

The PMM is a simple an easy to use application, however it is also quite limited.
That is, it is not possible (at least not directly) to export the information and relations
of the PVM to use with other software, e.g. as a back-end for an online configuration
system. If this kind of functionality is needed, there are other commercially available
applications like the Configit Product Modeler by Configit A/S [2011].

The full PVM model containing all of the selected modules can be found on the

102 10 Identifying Modular Architecture

10.5 Embody Modular Architecture and Framework

enclosed CD together with a copy of the PMM application in the folder Part II/Product
Variant Master.

10.5.2 Identify Configuration Relations

When all of the module variants have been selected, and the full range of possible
configurations has been identified through the PVM model, the next step is to
determine how a specific configuration is chosen based on requirements specified by
the customer. Put in other words, it is necessary to determine which information
is needed from the customer (i.e. questions to ask) in order to select a suitable
configuration to match the customers needs and requirements.

There are some considerations to take into account when determining which
information is needed, and especially in relation to how the information is obtained
from the customer. First of all, it must be considered what information the customer is
readily able to provide, which is directly related to the customer segment that is aimed
for. Another consideration is the amount of information requested from the customer.
Generally more information will yield a better opportunity to obtain a close match
between the needs and requirements of the customer and the configured production
unit. On the other hand the customer should not be overburdened with questions and
information requests. To recap, there is a balance between making an exact match and
requesting to much information.

With this in mind the information needed from the customers were identified. This
was done by first investigating the attributes of the modules and variants, while trying
to identify some common general attributes that could be used to distinguish and
prioritize them. These general attributes were then translated into questions to be
answered by the customer.

The result of this process is illustrated through Figure 10.13, where all of the
identified questions are listed on the left side, Customer Specified Requirements, while
the general attributes of the modules are listed on the right side, Module Attributes. As
it can be observed, the questions have been bundled together according to the module
and the attributes that they are primarily related to. In case the questions or attributes
have some secondary relations, meaning that they have an impact on other modules
or questions, this is shown by a dotted arrow.

Through the customer specified requirements (questions), the module attributes
and the primary and secondary relations between them, respectively, provides a
general framework for prioritizing and choosing the most suitable module variants
for the customer. As Figure 10.13 only provides the broad overview, the following
section will go through the basic idea behind choosing each of the modules based on
the specified customer requirements.

10 Identifying Modular Architecture 103

10.5 Embody Modular Architecture and Framework

M
ov

em
en

t o
f S

ca
nn

er
 H

ea
d

Prioritize speed [Yes / No]
Cut / Weld Geometry

Tolerance [+- x mm]

Planar

Direction [Vertical / Horizontal]
Bounding Box Size [L × W mm]

3D Planar

3D Complex
Direction [Vertical / Horizontal / Both]
Bounding Box Size [L × W × H mm]

Bounding Box Size [L × W × H mm]

M
ov

em
en

t o
f P

ar
t

Part

Tolerance [+- x mm]

Planar
Bounding Box Size [L × W mm]

3D Planar

3D Complex
Bounding Box Size [L × W × H mm]

Bounding Box Size [L × W × H mm]

Weight [x kg]

Application
Cutting

Welding
Material
Speed [v mm/s]
Penetration Depth [t mm]

Material [Steel, aluminium, ...]
Speed [v mm/s]
Thickness [t mm]

Scanner Head Control
Robot Controller Integrated
Separate Controller

Fi
be

r L
as

er
 &

 S
ca

nn
er

 H
ea

d
C

on
tr

ol

Control PC [Yes / No]

Repeatability [+- x mm]
Movement [None, X, XY,...]
Type

Linear [Make, Model]
Axes [No.]
Speed [v mm/sec]

Robot [Make, Model]

Strokelength(s) [x mm]
Controller[Make, Model]

Axes [No.]
Speed [v deg/sec]
Reach [x mm]
Controller [Make, Model]

None - Static

Robot Gantry [Make, Model]
Speed [v mm/sec]
Travel length [x mm]

M
ovem

ent of Scanner H
ead

Externally Supplied

Repeatability [+- x mm]
Movement [None, X, XY,...]

Type

Linear [Make, Model]
Axes [No.]
Speed [v mm/sec]

Robot [Make, Model]

Travel length(s) [x mm]
Controller [Make, Model]

Axes [No.]
Speed [v deg/sec]
Reach [x mm]
Controller [Make, Model]

Part Loading [Manual, Automatic]

Maximum Payload

Max Part Size [L × W × H mm]

M
ovem

ent of Part

Fiber Laser [Make, Model]
Output Laser Power [P kW]
Operating Modes [CW, QCW,...]
Wavelength [w nm]

Fiber Laser &
 Scanner H

ead

Scanner Head
DOE [Cut, Weld]

Cooling
Capacity [C kW]

C
ontrol

Robot Controller [Make, Model]
External Axes [No.]

Controller [Make, Model]

Externally Supplied

Control PC

External Axes [No.]

Externally Supplied

CAD-Plugin

Pr
e-

Pr
oc

es
si

ng Stand-Alone
CAD-Plugin

Pre-Processing

Stand-Alone

Customer Specified Requirements Module Attributes

Externally Supplied

Externally Supplied

Option / Possibility Required / Necessary Relational Impact IdenticalDirect Impact

Figure 10.13: Configuration Relations.

104 10 Identifying Modular Architecture

10.5 Embody Modular Architecture and Framework

10.5.3 Choosing the Movement of Scanner Head

The choice of module variant for the movement of scanner head depends mainly on
the cut/weld shape size, and whether it is defined in planes or in more complex
shapes. Note that the cut/weld shape is defined as the path in space that the laser
beam needs to travel in order to complete the cut or weld.

As seen in Figure 10.13, there are basically four basic module variants for the
movement of scanner head module: None, Linear, Robot and Externally supplied. The
latter type is only applicable if the customer chooses to supply the movement of the
scanner head. In order to determine which of these basic variants are most suitable,
a simple classification of the possible cut/weld geometries has been made, illustrated
by Figure 10.14.

(a) Planar (b) 3D Planar (c) 3D Complex

Figure 10.14: The three basic classifications of the cut/weld geometries. The dotted lines
indicate example geometries/paths.

The idea behind this classification is that the customer chooses the classification that
best fits the expected application scenario. Besides this, the customer needs to specify
the Bounding Box Size of the shape, i.e. the size of the smallest box that can hold the
complete shape inside. Based on these inputs and the working area of the scanner
head, it is possible to estimate a suitable module variant.

Besides identifying the needed movement of the scanner head, it is also necessary to
make sure that the movement is done within the tolerances specified by the customer.
Note that the tolerances are defined by the summed tolerances of the scanner head,
the movement of part module, as well as the part loading/movement module.

In case speed is a priority to the customer, this can be specified to suggest the fastest
solution within the given specifications.

10.5.4 Choosing the Movement of Part

This choice depends highly on both on the cut/weld shape and the chosen module
for movement of scanner head, as it is also indicated by the relation arrows on Figure
10.13. To further explain, consider the case where a robot has been chosen for the

10 Identifying Modular Architecture 105

10.5 Embody Modular Architecture and Framework

movement of scanner head, but parts of the cut/weld shape is outside its reach.
In this case the part might need to be moved, rotated or turned around. For the
reasons discussed in Section 10.3.2, this is a very complex choice with a lot of if’s
and unknowns, and thus it has not been possible within the time frame of this thesis
to identify an approach for carrying out this choice. Instead, the customer can specify
if the part needs to be loaded or moved, and then assess and choose a suitable module
variant.

Provided, that it was possible to suggest a suitable module variant, this would also
have to take the weight and size of the part into account. The tolerance of the part
movement should also be taken into account, as described in the previous section.
Related to this, a tightly specified tolerance of the cut/weld, might make a movement
of both the scanner head and the part impossible. In this case another solution needs
to be found, where either the scanner head or the part moves. In the worst case
scenario this could be an indication that the RLC production unit is not suitable for
that particular application.

10.5.5 Choosing Laser source, Scanner Head and Cooling

As it was discussed in Section 10.3.3 it is only possible to create a laser beam of the
required quality by using a single mode fiber laser. This simplifies the choice of
the laser, as this reduces the problem to estimating the required size of the laser (i.e.
required laser power). Also, recall that the cooling system is assumed to be delivered
along with the fiber laser. The choice of scanner head is also simple, as it only depends
on whether the customer needs cutting of welding of parts.

The estimation of the laser power depends on whether the customer needs cutting
or welding. Depending on the application the laser power is estimated as described
in the two following sections.

Estimating Required Laser Power for Cutting

The required power for laser cutting depends on a lot of different variables. For
the case of conventional melt and blow laser cutting, the required laser power among
others depend on the cut kerf width, speed, melting point, density, etc. [Steen and
Mazumder, 2010, p. 157]. In case of remote laser cutting process, the required process
will most likely depend on more variables, like the laser beam pattern for instance.

As there is no experimental data available on the performance of the remote laser
cutting technology, a simplified model for the required laser power for conventional

106 10 Identifying Modular Architecture

10.5 Embody Modular Architecture and Framework

laser cutting is used [Steen and Mazumder, 2010, pp. 157-158]:

E =
P

t · v
⇔ P = E · t · v (10.1)

Where E is the severance energy in J/mm2, P is the laser power in watts, t is the thickness
in mm and v is the cutting speed in mm/sec.

The severance energy is determined first, based on the expected potential of the RLC
technology. According to [The Danish National Advanced Technology Foundation,
2010, p. 3, Figure 2b] it is expected that the cutting of 1 mm thick stainless steel can be
carried out by a 3000 watt single mode fiber laser at a rate of 90 m/min. Inserting this
in function 10.1 yields:

E =
3000

1 ·1500
= 2

This provides the necessary severance energy for stainless steel only. In order to
estimate the needed power for other materials, an estimation of the severance energies
for other materials is needed. To do this, it is assumed that the relation between
severance energies for different materials are the same for remote laser cutting and
conventional melt and blow cutting. Based on this assumption, the severance energies
was estimated from the information about severance energies for different materials
given in [Steen and Mazumder, 2010, p. 159]. The estimated severance energies are
listed in Table 10.6.

Material: Estimated E

Stainless Steel 2
Mild Steel 1.54
Titanium 2.14
Aluminum 2.14
Copper 4.6
Brass 3.4
Polyethylene 0.78
Polypropylene 0.46

Material: Estimated E

Polystyrene 0.38
Nylon 0.38
ABS 0.38
Polycarbonate 0.38
PVC 0.3
Epoxy 0.54
Glas 3.08
Silica 18.46

Table 10.6: The estimated severance energies for different materials.

Based on the severance energies and equation 10.1 it is possible to estimate the
required laser power, from information about material, thickness and required cutting
speed. At this point it should be noted that the cutting speed will never be able to
exceed 90 m/min, as this has been defined as the maximum obtainable moving speed
for the cutting head [Olsen, 2011, p. 6]. As an example a customer could specify that a
laser cutting of 1.5 mm aluminum plate at a rate of 50 m/min is needed, thus requiring

10 Identifying Modular Architecture 107

10.5 Embody Modular Architecture and Framework

a laser power of:

P = 2.14 ·1.5 ·833 = 2674W (10.2)

It must be emphasized that this is an estimation that is based on the simplified melt
and blow model and the assumption that relations between severance energies of
materials for conventional laser cutting. Once the RLC process has been completely
developed, the actual performance and required laser power needs to be determined
through experiments.

Estimating Required Laser Power for Welding

Just as it was the case for laser cutting, the required power for laser welding also
depends on many different parameters including weld width, penetration depth,
reflectivity, melting point, etc. [Steen and Mazumder, 2010, p. 211]. Again, as it was
the case for cutting, it is possible that there are some additional variables pertaining
to the new remote laser cutting technology.

Unfortunately there is no simplified model for estimating the required laser power
for welding. Some detailed models does exist, but they require data that is not
readily available for the customer [Steen and Mazumder, 2010, p. 211]. Instead, the
estimation will be based on experimental data, as it will also be the case when the
RLW technology has been developed. Experimental data for the welding of X100 steel
with a fiber laser from in Quintino et al. [2007] is used. A graph representation of the
date is shown in Figure 10.15.

y = 1.55x + 1.7833

y = 1.25x + 1.65

y = 1.1285x + 1.07

y = 0.808x + 0.09

y = 0.5x + 0.1667

y = 0.41x ‐ 0.78

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9

P
en
et
ra
ti
o
n
 D
ep
th
 [
m
m
]

Laser Power [kW]

Fiber Laser Welding

X100 Steel

30 50 100

300 500 800

Figure 10.15: Penetration depth as a function of the laser power at different speeds (given
in cm/min) for X100 steel [Quintino et al., 2007].

As it is seen from Figure 10.15 there is linear relation between the laser power and

108 10 Identifying Modular Architecture

10.5 Embody Modular Architecture and Framework

the penetration depth for each of the different welding speeds. Hence, a linear fit is
applied to each of the speeds, to extract the line equations. Unfortunately, there is not a
clear tendency in the correlation between the slopes of the lines, making it impossible
to carry out an interpolation for obtaining data at other weld speeds. For this reason,
it is only possible estimate the required laser power for the speeds shown on Figure
10.15.

Again, it is emphasized that this is estimation cannot be considered as correct, but
merely represents guess as well as a possible method for carrying out an estimation
based on experimental data. Once the RLW technology has been completely
developed, experiments should be conducted to obtain data (similar to what is used
in this section) corresponding to the actual capabilities of the RLW process.

It was only possible to find data for fiber laser welding of X100 steel, and therefore
the customer is not provided any other choices of material at this point.

10.5.6 Choosing Controller and Software

The choice of controller depends on the choices made for the movement of the scanner
head and the part. If a robot has been chosen for either of these modules a controller
is already included in the setup. In this case the customer can decide to integrate the
control of the scanner head into the robot controller, or instead choose a PC controller
to control the scanner head separately. As previously discussed, the customer could
also choose to integrate the control of the scanner head into the robot controller, and
then choose the PC controller for additional process monitoring and control (Section
10.3.4).

If no robot has been chosen, the customer has the choice between buying a PC-
controller or supplying a controller for controlling the scanner head and possibly other
equipment (i.e. if linear modules has been chosen).

In terms of the software this is a completely optional choice. This module is also
not directly related to any other modules, except that the software is used to provide
program code for the controller.

10 Identifying Modular Architecture 109

10.5 Embody Modular Architecture and Framework

110 10 Identifying Modular Architecture

CHAPTER 11
Software Requirements

Software requirements specification defines what a software implementation is
supposed to do before it is actually built. It may seem obvious to do this, but many
projects are nevertheless delayed, because the development begins before the project
team has clearly defined the requirements for the software.

When a project team starts on a new software project the spirits are often high.
Programmers are often tempted to dive in and begin building the software when they
have a feeling of what the software should do. And actually it is not very surprising:
Programmers often have advanced programming skills without ever having to figure
out and write down requirements in a systematic way. Programmers often develop
their skills by building software that they intend to use themselves. In such case
the programmer knows intuitively what the software is supposed to do from the
beginning of the project.

Most software is however built to meet the needs of a customer or user of some sort.
In order to fulfil the needs of the user the behaviour of the software must be planned
before the software is built. This is where Software Requirements Engineering comes
to play. Software Requirements Engineering deals with developing an accurate and
complete definition of the functionalities and behaviour of the software that servers
as the basis for software development [Greene and Stellman, 2005, Section 6.3].

Software Requirements Engineering often focuses on writing a Software Require-
ments Specification (SRS) document that contains the complete description of the be-
haviour of the software. For the development of the ROBOCUT configurator a separate
SRS document will not be written as the software to develop is not that comprehen-
sive. Instead this chapter contains the information that would normally be contained
in an SRS document. The IEEE standard ”Recommended Practice for Software Re-
quirements Specifications” [IEEE, 1998] is used as a guide line. The standard describes
the content and qualities of a good SRS and presents several sample SRS outlines.
However it does not identify any specific method, nomenclature, or tool for preparing
an SRS. The reader would benefit from looking in the standard before reading the rest
of this chapter.

111

11.1 Scope

11.1 Scope

The software product to be produced is the ”ROBOCUT Configurator”. The ROBOCUT

Configurator will enable users to configure a production unit for remote laser cutting
using the ROBOCUT technology. The configurator will focus (as much as possible)
on user requirements rather than letting the user select variants freely. The software
should give proper recommendations if there exists a preferable choice for the user.

One of the main objectives is that the configurator is developed as a web site in
order to reach as many users as possible.

The goal is not to make a system that works as a shop but instead provide the user
with insight into the possibilities of remote laser cutting. Therefore the user will not
submit actual orders but inquiries instead. It can be considered a non-binding inquiry
for more information on the configured system.

The potential users of the ROBOCUT configurator are companies that are interesting
in using remote laser cutting or welding. The configurator is not meant to be a tool
for a ”ROBOCUT sales assistant”, but should be used directly by employees at the
interested companies.

11.2 Product Perspective

This section shortly puts the ROBOCUT configurator into perspective with other
related products.

A large number of configurators already exist. A common feature of these
configurators is that they let users add and/or change functionalities of a core product.
A good example is the Apple Stores Mac Pro Configurator, see Figure 11.1.

Figure 11.1: Apples Mac Pro configurator system, seen on 26/04/2011 at store.apple.com.

The ROBOCUTConfigurator will be different from these configurators in the sense

112 11 Software Requirements

11.3 Specific Requirements

that it will hide modules that conflicts with the users requirements for the system. The
ROBOCUT Configurator is also very different in the sense that it does not configure a
product but a production system.

11.3 Specific Requirements

This section presents specific requirements for the software. They should reflect the
needs of customers or users. As the ROBOCUT configurator is a research project the
software is not ordered by a customer. For this reason the requirements cannot be
developed in corporation with a customer as it would normally be the case.

The specific requirements are often classified into two or three categories. Based on
the scope of the software to develop in this thesis the requirements are categorized
into functional requirements and non-functional requirements. This section also contains
design constraints that can be imposed by hardware limitations, other standards, etc.

The distinction between these categories of requirements may not be as clear cut
as the definitions given below in the respective sub sections might suggest. The
categories are just a mere tool of keeping requirements organized [Sommerville, 2006,
p. 118].

Only a selection of the requirements is presented here. The rest can be found in
Appendix E.

11.3.1 Functional Requirements

The functional requirements defines the fundamental actions that must take place in
the software when processing the inputs and generating the outputs. The functional
requirements can vary a lot in level of detail. It is important to avoid imprecision in
the requirements as this will cause problems when developing the software [Greene
and Stellman, 2005, Section 6.3.1.1].

The functional requirements can be classified into sub-functions or sub-processes
[IEEE, 1998, p. 16]. This will not be done here as the number of requirements generally
is fairly small.

11 Software Requirements 113

11.3 Specific Requirements

Name FR-1: Letting user specify requirements.
Summary The user shall be able to define requirements for each module.

The user specified requirements will then determine what
variants are presented to the user.

Rationale The user may not be aware of the variants available and what
their abilities are. Therefore the configurator shall focus on the
user requirements and determine the suitable variant(s) for the
user.

Table 11.1: Functional Requirement 1.

Name FR-2: Submitting an inquiry.
Summary When the user has configured the desired system, the user should

be able to submit an inquiry.
Rationale The configurator should not be a sales tool but a tool for in-

forming about the possibilities of using the ROBOCUT technology.
Therefore the user cannot ”buy” a configured system but instead
send an inquiry. An inquiry is a request of more information on
the configured system and is unbinding for the user.

Requirements This requires an account system so the details can be coupled
with each submitted inquiry.

Table 11.2: Functional Requirement 2.

11.3.2 Non-Functional Requirements

The non-functional requirements are not directly concerned with the specific functions
in the software. It does not relate to what the software is supposed to do but
instead how it does it. This can contain characteristics like how easy the software
is to use, how quickly it executes, how reliable it is, error handling, etc. The non-
functional requirements are often much less specific and can therefore be difficult to
verify. Therefore they are often tested subjectively [Greene and Stellman, 2005, Section
6.3.1.2].

Name NFR-1: Updating displayed variants in real time.
Summary The displayed variants of a module are (as far as possible)

updated continuously according to the requirements specified by
the user.

Rationale If the displayed variants are updated continuously it will enable
the user to see the direct effect of changing a requirement.

Requirements This will require the use of a technology that supports partial web
page updates. Suitable technologies are AJAX, flash and others.

Table 11.3: Non-Functional Requirement 1.

114 11 Software Requirements

11.4 Summary

Name NFR-2: Always showing all selected variants.
Summary It should always be clear to user what variants of what module

variants have been selected.
Rationale This requirement will ensure that the user always has an

overview of the selected variants of modules. It will also help
the user to see what variants of modules are still missing before
the user can send an inquiry.

Table 11.4: Non-Functional Requirement 2.

11.3.3 Design Constraints

Design constraints refer to some limitation on the conditions under which the software
is developed. Design constraints are often imposed by the technology used, available
time to develop, overall budget and so on. The design constraint in Table 11.5 relates to
the technology used. The available time and overall budget will not receive attention
here as they are clearly defined by this project being a 10th semesters Master’s Thesis.

Name DC-1: Web Application Framework.
Summary In order to convey the need for the configurator to function in

an online environment with partial web site updates the web
application framework ASP.NET 4.01 is used.

Rationale ASP.NET 4.0 allows for quick web site development with
integrated database support. It furthermore allows use of a full
featured programming language such as C#. ASP.NET is widely
used on the internet and seems to be the obvious choice.

Requirements The development will be carried using Microsoft Visual Studio
2010. For database handling Microsoft SQL Server Management
Studio 2008 will be used. A web host supporting ASP.NET 4.0
and SQL Server 2008 is also needed for publishing the web site
online.

Table 11.5: Design Constraint 1.

11.4 Summary

The functional requirements, non-functional requirements and design constraints
have been stated. The number of requirements are relatively few which is a
consequence of the limited time frame and resources available. Nevertheless these
requirements provide a good guideline for specifying the design in Chapter 12.

11 Software Requirements 115

11.4 Summary

116 11 Software Requirements

CHAPTER 12
Software Design Specification

The software development process covers the design and programming of the
software. The chapter will not discuss the actual implementation (source code) but
will instead serve as a Software Design Specification (SDS). The SDS is normally
a separate document that describes and defines the software in order to meet
the functional and non-functional requirements set in the Software Requirements
Specification [Pressman, 2001, p. 358]. The software is then implemented based on
the SDS. An SDS is especially important when managing large software development
projects where many people are involved.

12.1 Architecture

Complex software systems are often decomposed into sub-systems. The process of
identifying these sub-systems and establishing a framework for sub-system control
and communication is known as architectural design [Sommerville, 2006, p. 242].
In other words the architecture of a software can be understood as the highest-level
breakdown of a system into parts.

The choice of architecture is essential as it often determines the limits of the software
in terms of functionality, usability, performance, reuse and so on [Sommerville,
2006, p. 242]. Each architecture has pros and cons and the difficult part is to
choose the best architecture for the desired application. The risks of choosing
a poor architecture includes unstable software, the system is unable to support
future business requirements or it is difficult to deploy or manage in a production
environment [Microsoft, 2009, p. 4].

Before developing the architecture of the software it is very important to understand
architectural styles1 and that they can be used to describe different aspects of the
same system. Architectures can mainly be divided into two styles:: Structure and
deployment. A combination of structural and deployment architectural styles is often
used when building public web application. The structural architecture separates
the concerns while a specific deployment architecture might be needed for security

1Architectural styles are sometimes referred to as architectural patterns.

117

12.1 Architecture

reasons, e.g. 3-tier2.

The focus will be on defining the structural architecture for the configurator. The
deployment architecture is usually studied for larger projects only.

12.1.1 Structural Architecture

The online configurator is developed using ASP.NET 4.0 in C#. Even though the
architecture of a software almost never can be limited to a single architectural style,
an online software like this is often described using layers.

Layered architecture refers to partitioning the functionalities of the application
into stacked groups. The online configurator will have a layered architecture as
seen in Figure 12.1. The functionalities within each layer are related and a layer
may only interact with layers directly above it or below it. The cross cutting
functionalities however span the layers and includes authentication, validation,
exception management, etc [Microsoft, 2009, p. 64].

BROWSER
Rendering

Client
Web Application

Web Server

C
R

O
SS

-C
U

TT
IN

G

Se
cu

ri
ty

O
pe

ra
tio

na
l M

an
ag

em
en

t

C
om

m
un

ic
at

io
n

DB1 DB2 DB3

...DATA
SOURCES

Internet

ADO.NET

PR
ES

EN
-

TA
TI

O
N

LA

YE
R

UI Components

BU
SI

N
ES

S
LA

YE
R Business

Workflow
Business
Entities

D
A

TA

A
C

C
ES

LA

YE
R Data Acces

Components
Data Helpers/

Utilities

Figure 12.1: Structural architecture of online web configurator. With inspiration from
[Microsoft, 2009, Figure 1, p. 278].

2A 3-tier application is an application program that is organized into three major parts, each of which
is distributed to a different place or places in a network.

118 12 Software Design Specification

12.1 Architecture

Remember that the layers of an application may reside on the same physical
computer. Of course the client and web server are not the same physical computer,
but the layers within the web server may all reside on the same physical computer.
The layers are merely a way of organizing code.

The three layered architecture (Presentation Layer, Logic Layer and Data Access
Layer) is a fairly generic way of describing the structural architecture of a web
application. However it is important to keep this separation of code in mind when
developing the application. Each layer has a responsibility [Microsoft, 2009, p. 58]:

Presentation layer contains the user oriented functionality. This is the layer that
manages the user interaction with the system and is thus the bridge between
the user and the logic layer.

Business layer implements the core functionality of the system. This is where
information is handled and functions are called.

Data access layer provides the access to databases. The data access layer often
consists of generic interfaces that the components in the business layer can use.

For each layer the configurator will have some specified characteristics.

Presentation Layer

For the presentation layer the configurator uses master pages to simplify development
and to implement a consistent UI across all pages. This will drastically reduce
development time.

For increased interactivity and background processing the web site will use AJAX3

technology. AJAX is a group of interrelated web development methods used on the
client side that enables exchanging data asynchronously between browser and server
to avoid full page reloads [Holzner, 2006, p. 1]. The asynchronous interaction between
the presentation layer and business layer will also increase the responsiveness of the
application and enable satisfaction of non-functional requirement 1, see Table 11.3,
which concerns the updating of variants in real time.

Another important aspect of the presentation layer is user input validation. The
application will use data validation techniques to protect the system from meaningless
input.

3Acronym for Asynchronous JavaScript and XML.

12 Software Design Specification 119

12.2 Database Design

Business and Data Access Layer

Because the configurator is a relatively small software project there is not much focus
on separating the business and data access layer. However one very important
aspect of the business layer is authorization. This is important for security and
reliability. ASP.NET has built-in functionality for implementing security in web
applications. This is important for satisfying non-functional requirement 6, see Table
E.8, concerning a user account system.

Concerning the data access layer there is a number of technology considerations.
The configurator will mostly only require support for basic queries4 and parameters,
so the ADO.NET objects can be used directly. ADO.NET is a data access technology
for the .NET framework that hides all underlying database code for the programmer.
In some cases custom database code is necessary. The architecture of ADO.NET will
not be presented here.

12.2 Database Design

The configurator reads data from a database as the modules and variants are presented
to the user of the system. The structure of the data is a very important part of software
design as it will have a huge influence on how the business and data access layer can
be programmed.

The design process of the database is as follows (inspired by Microsoft [2011]):

� Determine the purpose of the database.

� Find and organize the information required - Gather all of the types of
information that should be stored in the database.

� Divide the information into tables and specify relationships - Divide the
information items into major entities or subjects. Each subject then becomes a
table. Look at each table and decide how the data in one table is related to the
data in other tables.

� Decide what stored procedures are needed and how they should be constructed
- Stored procedures are often needed to simplify operations.

When the designing takes places it is an iterative process meaning that one may begin
at step one again in order to refine the design once the last step has finished. In this
thesis the design process is presented as one cycle.

4A database query is a piece of code (a query) that is sent to a database in order to get information
back from the database. It is used as the way of retrieving the information from database.

120 12 Software Design Specification

12.2 Database Design

12.2.1 Determine the Purpose of the Database

The database will be used for storing information about user accounts, inquiries and
modules. ASP.NET has a membership feature that provides secure credential storage
for application users. This membership feature is used, however some additional
information than what is stored by the membership feature is needed like first name,
last name, address, phone number, etc.

12.2.2 Find and Organize the Information Required

Table 12.1 and 12.2 shows the information needed about users and inquiries.

UserId (identifies each user)
Username
Password
E-mail address
Name
Address
Phone number
Position
Company
CVR-number

Table 12.1: Information needed about
users.

SystemID (identifies each inquiry)
UserId
All selected variants of modules
Submit date and time

Table 12.2: Information needed for
each inquiry.

Apart from these data the database should also contain details about all variants.

12.2.3 Divide the Information into Tables and Specify Relationships

The relationship between the tables can be stated in an entity relationship diagram
(ERD) which is an abstract and conceptual representation of the data. Several
notations for making such diagrams are available. Crow’s Foot Notation will be used
here. A short introduction to the symbols are presented, but for further information
on the subject the reader is referred to [Halpin, 2000].

Figure 12.2 shows the relation between the most important tables concerning user
accounts, inquiries and module variant information. The database diagram should be
read top down and the aspnet_Applications table is at the top. This table enables use
of the same database for several web sites as all user accounts will be associated with
a specific application ID. In this case there is only one entry in the table as only one
application is used.

A number of tables already exist as a part of the ASP.NET membership system. The

12 Software Design Specification 121

12.2 Database Design

tables contain information about user name, password (encrypted), email, last login
date and so on. Most central is the aspnet_Users table that contains the unique user
ID and a user name. It is recommended not to edit or change the tables associated with
the ASP.NET membership system, so in order to store additional data about the users
the table UserAddresses is created. Furthermore a table named Orders will contain
the inquiries from the customers.

The relationship between aspnet_Applications and asp_Users shows that an
application can hold zero to many users. For each user there is an entry in the
UserAddresses table that stores additional user information.

For each user there is zero to many orders (or inquiries) that each has a unique
system ID. The Orders table contains the title of each variant of module that the
customer has selected along with a submit date that tells when the inquiry has been
submitted.

The tables within the blue area contains product information about all the different
modules and variants available. These tables do not have any relation with the Orders
table. The tables containing variant information should be used on the web site to
display information to the customer about variants. There is no need for a relation
between the Orders table and the tables containing variant information. The dashed
lines indicates that the Gantry in Orders corresponds to an entry in the Gantry table.
The reason behind the two dashed lines to the Movement table is that this table is used
for both Movement of Scanner Head and Movement of Part.

122 12 Software Design Specification

12.2 Database Design

UserAddresses

PK,FK1 UserId

 UserName
 FirstName
 LastName
 Address1
 Address2
 City
 Region
 Postcode
 Country
 Phone
 Position
 Company
 CVR

aspnet_Users

PK UserId

FK1 ApplicationId
 UserName

LoweredUserName
 MobileAlias
 IsAnonymous

LastActivityDate

aspnet_Applications

PK ApplicationId

ApplicationName
LoweredApplicationName

 Description

Tables containing
variant information

Tables concerning
inquiries/orders

Tables concerning
user accounts

FiberLaser

PK Title

 Power
 Wavelenght
 image
 Thickness
 Description

Orders

PK SystemID

FK1 UserId
 Username
 ScannerHeadType
 PartLoading
 PCController
 SubmitDate
 Software
 FiberLaser
 MovementOfScannerHead
 MovementOfPart
 RobotController
 Gantry

Gantry

PK Title

 Repeatability
 Speed
 TravelLengthMin
 TravelLengthMax
 Description

Software

PK Title

 Description

Movement

PK Title

 Type
 Speed
 NumerOfAxes
 Movement
 Repeatability
 image
 Description
 Controller
 Reach
 Mountingposistions
 Weight
 Strokelengthmax
 Strokelengthmin
 Brake

Control

PK Title

 ExternalAxes
 image
 Description

Zero or more One and only one
PK: Primary Key
FK: Foreign Key

Figure 12.2: Entity relationship diagram (only showing selected tables).

12 Software Design Specification 123

12.3 User Interface Design

12.3 User Interface Design

The user interface is probably the most important element of a computer-based
system or product. If the interface is poor it could cause an otherwise well-designed
application to fail completely.

Designing an appealing and functional user interface is difficult as it has as much
to do with the study of people as with technology issues. Many considerations take
place during the interface design and mainly three rules are kept in mind. These are
also known as the ”golden rules” [Pressman, 2001, p. 402]:

1. Place the user in control.

2. Reduce the user’s memory load.

3. Make the interface consistent.

These rules receives attention throughout the user interface design. It is important
to decide how the functionality should be split across independent pages. This is
shown in a navigation map seen in Figure 12.3.

Default.aspx

Welcome
message.

Admin.aspx

View and edit:
Variants and
user accounts.
View and delete
inquiries

Settings.aspx

View and edit:
own account.
Delete own
account.
View and delete
own inquiries.

About.aspx

Information.
Send feedback if
logged in.

Configuration.aspx

Select variants.
Send inquiry.

Login.aspx

Login.

Register.aspx

Create account.

Figure 12.3: Navigation map of web site.

The navigation map shows the main functionality in each page and the navigation
possibilities from the default page. The most important page is of course
”Configuration.aspx” that contains the configurator. The navigation map shows that
all pages except the registration page can be reaches from the default page. The
registration page can only be reached from the login page. The rest of this section
focuses on the user interface design on the ”Configuration” page.

The goal of the user interface design is to define a set of interface objects and
their screen representations that enables a user to interact with the software in an

124 12 Software Design Specification

12.3 User Interface Design

appropriate manner. Designing the interface is an iterative process that entails
implementation and interface validation. In this process, sketches of the interface is
made prior to the actual implementation. The final sketch for the user interface is
depicted in Figure 12.4.

RoboCut ConfiguratorRoboCut Configurator

Movement of PartMovement of Scanner Head

Home Configuration Admin Info About

Logo Here

ControlFiber Laser

Variant type 1

Variant type 2

Fiber Laser Source

User Spcefied
Requirements

Details

Details of
selected variant

Image of
selected

variant here

Variants

Requirement 1

Requirement 2

...

Send Inquiry

Variant 1

Variant 2

Variant 3

Variant 1

Variant 2

Variant 3

...

...
Always visible

[Log Out]

Setup:

Fiber Laser: None
Control: None
...

Figure 12.4: Final sketch for user interface.

Figure 12.4 shows the interface of the configuration page. The modules are placed
as separate tabs in order to place the user in control. The user does not have to select
the variants in any specific order. The body of each tab contains three columns: ”User
Specified Requirements”, ”Variants” and ”Details”. The system sorts and displays
variants according to the user specified requirements. When the user selects a variant,
the details of that variant will be displayed in the details column. In order to make the
interface consistent, this basic layout with three columns is used for all four modules.

Reducing the user’s memory load refers to the fact that the more a user has to
remember, the more error-prone the interaction with the system will be [Pressman,
2001, p. 404]. To ensure that the user remembers what variants have been selected,
a panel containing this information is present at the lower right corner of the screen
while using the configurator. The panel also informs the user about the modules that
still needs to be selected before an inquiry can be sent. Furthermore, a send inquiry

12 Software Design Specification 125

12.3 User Interface Design

button will always be visible.

Another very important aspect of the user interface is to provide the user with help
in an intuitive and easy way. Small question mark icons are placed around the website.
Clicking on a question mark brings up a pop-up window that gives the user help and
information.

126 12 Software Design Specification

CHAPTER 13
Verification and Validation

The developed configurator must be tested to ensure that it fulfils the requirements
presented in Chapter 11. Verification and validation represents this task.

The terms verification and validation are often confused. In this thesis the following
definition is used [Sommerville, 2006, p. 516]:

’Validation: Are we building the right product?’
’Verification: Are we building the product right?’

Verification and validation is performed using various testing techniques that
depends on the nature of the software project. For the configurator, validation is
carried out using validation testing, which should verify that the software built is what
the customer ordered. This means testing that the software meets the requirements in
Chapter 11.

The verification is carried out using defect testing, which should reveal defects in the
system rather than simulating its operational use.

Before testing results are reviewed, Section 13.1 presents the user interface of the
configurator.

13.1 Presentation of Configurator

Figure 13.1 shows a screen shot of the final user interface implemented according to
the design specification in Section 12.3. The numbers in the figure are used to identify
specific user interface components.

The reader is encouraged to visit the web site and try the configurator at
http://109717.testdom.dk/. The web site is online at least until 21st of June 2011.
The source code can be found in the folder Part II/Configurator on the enclosed CD.

127

13.2 Validation Testing

5 4

3

1

2

Figure 13.1: Screen shot of user interface (using Google Chrome 11.0.696.71).

Screen shots of all pages is shown in Appendix F.3 along with a brief description.

13.2 Validation Testing

The validation testing is carried out based on each requirement. Each test will be
marked with a Passed, Partly passed or Failed as result. Some of the tests regarding
non-functional requirements are based on a subjective assessment. The screen shot
in section 13.1 is used as reference for some of the tests. The results of the validation
testing are summarised in Table 13.1.

128 13 Verification and Validation

13.2 Validation Testing

Requirement Result Summary

FR-1: Letting user spec-
ify requirements. Point
1 in user interface.

Passed The user is able to specify requirements for
all modules. However the user does not al-
ways get a chance to understand how the
specified requirements affects the variants dis-
played. Thus, if the user has misunderstood a
requirement the configurator will possibly dis-
play wrong variants to the user. This could be
avoided by letting the user know how the spec-
ified requirements affects the displayed vari-
ants.

FR-2: Submitting an in-
quiry. Point 2 in user
interface.

Passed The user can submit an inquiry by pressing
the button. The button is always visible and
the user can therefore press the button before
having acutally configured a system. In this
case a pop-up shows the user what modules
must be selected before an inquiry can be sent.

FR-3: Selecting variants
in random order. Point
3 in user interface.

Passed Using the tab panel, the user can switch be-
tween modules at any time. The tab panel will
always save the state of each tab so that require-
ments does not have to be specified again when
returning to a previously visited tab.

FR-4: View and edit
user info and pending
inquiries.

Partly
Passed

The user is able to view and edit user account
info. The user is able to delete inquiries if they
are no longer of interest. However, it is not
possible for the user to edit inquiries once they
are submitted. If the user should be able to edit
inquiries the system should check that the new
variants chosen by the user are compatible. The
administrator is able to modify all inquiries.

FR-5: Notifying user
upon successful in-
quiry with inquiry
ID.

Passed Once an inquiry is successfully submitted an
email is sent to the users email address contain-
ing the unique system ID. The system will warn
the user if the mail was not successfully sent, in
which case it is most likely to be caused by the
user specifying an invalid email during the user
account creation.

Table continued on next page

13 Verification and Validation 129

13.2 Validation Testing

Requirement Result Summary

FR-6: Showing details
of selected variant.
Point 4 in user inter-
face.

Passed When the variant details are shown in the right
column until the user selects another variant.
This means that even though the user changes
requirements leading to the selected variant not
being displayed in the mid column, the right
column will still display the same details.

NFR-1: Updating dis-
played variants in real
time.

Passed Asynchronous requests are sent to the server
using AJAX as the user specifies requirements.
The displayed variants are updated accord-
ingly.

NFR-2: Always show-
ing all selected vari-
ants. Point 5 in user in-
terface.

Passed A panel is displayed in the lower right corner of
the screen containing all modules and selected
variants. Because the panel may block the
visibility of the actual site the user is able to
move the panel to the left side of the screen as
well.

NFR-3: Warn user
immediately with in-
formative text when
selecting incompatible
variant of module.

Partly
Passed

The system will warn the user if an incompati-
ble variant is selected. For instance, if the user
selects an ABB controller for a KUKA robot.
It was not possible however to incorporate all
possibilities in the configurator. The user is for
example able to choose a KUKA robot with a
KUKA controller for movement of the scanner
head while selecting an ABB robot for moving
the part. It would be a smarter choice to select
robots of same brand for compatibility.

NFR-4: Management of
variants.

Passed The administrator is fully able to add, edit and
delete variants using the admin page.

NFR-5: Usability (by
target user commu-
nity).

Passed Deciding whether or not the help and informa-
tion present on the web site is adequate is dif-
ficult. Help and information is often one of the
things that is mostly focused on during the soft-
ware evolution process and it is thus passed for
now.

NFR-6: Security. Passed Using the ASP.NET membership system means
that the user account system is fully secure and
sensitive information is stored safely.

Table continued on next page

130 13 Verification and Validation

13.3 Defect Testing

Requirement Result Summary

NFR-7: Accessibility. Passed The accessibility of the configurator is very
good. The website is online and all modern
browsers are able to view and render the
website.

Table 13.1: Validation testing results.

The results of the validation testing are overall positive. Not all tests were fully
passed, but this is also due to the fact that a system like this should be able to evolve
based on actual user feed back. This is also way the web site has incorporated a feed
back function that allows a logged in user to submit feedback from the ”About”-page.

The validation tests does overall show that the system conforms to the requirements
in Chapter 11.

13.3 Defect Testing

For large software developments a test plan that draws up the approach for defect
testing is defined. In the case of the online configurator this is not necessary because
it is relatively easy to test most scenarios for defects without a systematic plan.

The defect testing is concerned with discovering undesirable system behaviour.
This is why the test cases used are deliberately designed to expose defects, which is
also why they often do not reflect how the system will normally be used [Sommerville,
2006, pp. 538-539].

It should be noted that the defect testing of the configurator actually consists of
unit, integration and system testing. Unit testing is carried out while the system is
developed and consists of testing individual units of code - preferably the smallest
units of code possible. The integration testing occurs after unit testing and verifies
that modules of code work together in the expected way. In system testing all software
and hardware components are tested together. This just shows that testing is carried
out during the development of the software.

The defects discovered in the defect testing process are shown in Table 13.2.

13 Verification and Validation 131

13.4 Summary

Title: Misses selection of scanner head Severity: Low
Description: The type of scanner head is selected when the user presses ”Select
Scanner Head for Cutting” or ”Select Scanner Head for Welding” in the requirements
column in the Fiber Laser tab. Sometimes selecting of scanner head fails. This means
that the user will have to press ”Select Scanner Head for Cutting” or ”Select Scanner
Head for Welding” a second time in order for the scanner head to actually be selected.

Title: Scroll position lost Severity: Low
Description: The system updates the ”Selected Setup” panel in the lower right corner
every second in accordance with the variants the user has selected. If the user scrolls
while the panel is updated the user may experience that the scroll position on the page
”jumps” to another location on the page. This defect causes no problem but can be an
annoyance for the user. This problem is caused by asynchronous update of the box
showing selected variants every second.

Title: Browser compatibility Severity: Medium
Description: The cost of using new technologies is that out dated browsers will not
be able render the web site properly. Several issues has been spotted with the layout
and slider controls when using older versions of Microsoft Internet Explorer.

Table 13.2: Results of defect testing.

Table 13.2 shows that not many defects were discovered in the defect testing process.
Of course this does not mean that the software is free of defects or that it will behave as
specified in all circumstances. A famous quote by Edsger Dijkstra says, that ”program
testing can be used to show the presence of bugs, but never to show their absence!”
[Dijkstra et al., 1972, p. 6]. This quote very much states a crucial fact of software
testing: Software could be testing for years and still not be 100% free of defects.

Fortunately the configurator is a relatively small software system and there is a
limited amount of functions to test. Based on this, it is assessed that the system does
not contain any severe bugs.

13.4 Summary

The conducted tests have shown that the software conforms the requirements
specified in Chapter 11. The final acceptance tests are often carried out both by
developers and the end user. The end user determines whether the software is ready
for release. Unfortunately the time scope of the project did not allow for an end user
test which is necessary before the software is ready for release. However it is advisable
to revise the requirements and design specification before conducting end user tests.

132 13 Verification and Validation

CHAPTER 14
Discussion

A method for identifying the modular architecture of a RLC production unit was
presented in Chapter 10. A method for identifying a modular architecture for a
production system was not available. Therefore a modified version a method intended
for the design of modular products was used. How suited the modified method
is for identifying the modular architecture can be discussed. The contents of step
5, ”Embody Modular Architecture and Framework”, is in particular unclear. This
was a contributing factor for the weak understanding of how customer specified
requirements and modules could be coupled.

The fact that it was not possible to clearly identify the coupling between customer
specified requirements and modules is reflected in the implementation of the
configurator. The concept of the configurator is to display module variants based
on user specified requirements. There are two approached for continuing the
development of the configurator: Either the configurator should not display variants
based on user requirements or the coupling between user requirements and modules
should be studied further.

A way of avoiding displaying variants based on user requirements could be to let
the user select a production scenario before moving to the actual configurator. Then
only modules and variants applicable to that specific production scenario should
be taken into consideration. In this way the configurator would also be more user
friendly as some modules and options can be hidden.

No matter what approach is taken for further development of the configurator
several issues need to be addressed. Especially these issues need attention:

� The capabilities and specifications of the ROBOCUT technology need to be fully
defined.

� Getting experience with the RLC process in practice.

� A better understanding of the coupling between user specified requirements and
feasible modules/variants is needed.

� More resources for programming. Preferably software engineers.

133

The capabilities and specifications of the ROBOCUT technology should be in place
within a couple of years. The prospects of getting feedback from companies using
RLC in real production scenarios are longer. It is however important for establishing
knowledge about what production scenarios are best suited for the RLC process. This
experience could be used to develop a more simple configurator as described above.

The configurator could also be directed against another group of users: Sales
consultants. The sales consultants may use the configurator for advising customers
over phone. This would again demand less from the configurator in terms of coupling
between customer specified requirements and modules as the sales consultants should
be trained in using the configurator.

The ROBOCUT configurator has shed some important light over what processes
are important when modularising a production unit for configuration. The task
remains to make more advances and sophisticated configurators while not sacrificing
an intuitive user friendly experience. The ROBOCUT configurator might be so
complex that more advanced technologies are needed in order to provide this. New
technologies like 3D browser rendering might be necessary.

134 14 Discussion

PART

III
CONCLUSION

135

136

CHAPTER 15
Conclusion

Scheduling of the laser cutting process

Part I of this thesis focused on scheduling the laser cutting problem. The work was
based on a scenario at IAI concerning the use of RLC in a roll forming line. The
scheduling problem was solved using two different approaches: Applying general
theory of dispatching rules and combinatorial optimization. The two approaches
solves the problem in two fundamentally different ways. Dispatching rules constructs
a path by using a heuristic approach while combinatorial optimization searches for
optimum solution.

The dispatching rules have a very low computation time and can handle very large
problem instances. However it was difficult to construct the dispatching rules in such
a way that it performs consistent with different parts and production parameters. In
order to improve the performance composite dispatching rules were constructed. This
resulted in a better performance but still not consistent.

Based on this, the dispatching rules alone cannot be considered a suitable method
for scheduling a laser cutting job for this reason. There are however plenty
of possibilities of combining dispatching rules with improvement heuristics or
optimization techniques. Improvement heuristics are known to perform well for large
problem instances and this could be an interesting field for further study.

A solver that finds the optimum path using a branch-and-bound method was
successfully implemented. The computation time when using this approach increases
exponentially with the problem size. As a result the maximum solvable problem size
with this method was around 25 nodes. This is not sufficient since Ib Andresen have
parts containing well over 250 holes. A way of using the branch-and-bound solver for
larger problem sizes would be to divide the nodes into groups. The optimum path
between the groups following by finding the optimum path within each group.

This concludes that both the dispatching and the combinatorial optimization
approach can be used to schedule the laser cutting problem. Based on the work in this
thesis the branch-and-bound method can be directly applied to small parts containing
less than 25 holes.

An Add-in has been developed for the CAD software Autodesk Inventor that

137

enables a user to define cutting tasks, run the scheduler and view the resulting path.
The Add-in serves to define scheduling problems in the form of tasks and constraints.

Development of a ROBOCUT Configurator

A methodology for designing modular products was modified by changing the scope
to fit modularization of a production unit. This methodology was applied to the
remote laser cutting production unit.

The output of the methodology was used as input for developing a configura-
tor. The configurator focuses on translating user specified requirements into recom-
mended variants of predefined modules. The relationship between requirements and
variants identified by the methodology proved to be inadequate for developing the
complete configurator. This is partly because the relationship between requirements
and variants proved to be very complex due to the countless amount of application
scenarios. It is also due to the fact that the methodology did not focus enough on
this part. Creating new methodologies is an iterative process and it should be rede-
fined to have more focus on identifying these complex relationships. Identifying these
relationships is difficult because it has not been done before.

It is advised that any further work on the configuration of production units focuses
on refining the methodology. This should include a better description of the relation
between requirements and variants. The can be done by limiting the number of
targeted application scenarios.

Another possibility is to change the concept of the configurator so it does not focus
on user specified requirements. This could be done by presenting the user with a
predefined set of application scenarios to choose from before using the configurator.
The configurator would then be based on the chosen production scenario.

The idea of developing a configurator for a production system is new and
interesting. This is why more research is needed on how to prepare production units
for configuration. Configurators for production units will also benefit from advances
in internet technology. Three dimensional rendering of modules could for example
help build more intuitive configurators for complex systems.

138 15 Conclusion

Summary

This master thesis is a part of the ROBOCUT research project. The project’s vision is
to develop a revolutionary new laser cutting technology, ROBOCUT, which relies on
a multi-beam principle, where the cutting process is performed with a complex laser
beam pattern rather than a traditional single round laser beam.

The thesis focuses on two separate parts. Part I focuses on scheduling of the laser
cutting process, while Part II defines a methodology for modularizing a production
unit and preparing it for configuration.

Scheduling of the laser cutting process

The RLC problem is researched based on a roll formed part from Ib Andresen. A
solution of the scheduling problem using the basic dispatching rules is attempted first,
however as they are only able to construct a path in terms of a single objective they do
not yield some feasible solutions. In an effort to improve the solutions, it is attempted
to combine the basic dispatching rules into composite dispatching rules that are able
to handle multiple objectives. Doing so does increase the performance of the obtained
solutions, however the composite dispatching rules prove to be difficult to compose in
a way that will yield consistent results across different problem instances. In addition
these methods did not guarantee an optimal solution.

In order to achieve optimal solutions, a combinatorial optimization scheduler is
explored and implemented next. The implementation uses branch and bound to find
the optimal solutions. This can be done for up to 25 nodes with a computation time
around 6 minutes. The solutions obtained through combinatorial optimization is then
analyzed in terms of the fastest obtainable on-the-fly cutting of the example part. From
this it is concluded that an on-the-fly cutting of the example part using the remote laser
cutting can be carried our at a speed of around 200 mm/s.

To ease the use of the scheduler, an interface for the CAD application Autodesk
Inventor 2011 is developed. This allows a user to easily define the cutting tasks for
scheduling, then carry out the scheduling using the developed scheduler and then
finally to get a visual presentation of the results. This demonstrates a possible solution
to an integrated planning and scheduling system, using the existing applications that

139

the users are accustomed to.

Development of a ROBOCUT Configurator

With the overall objective of developing a configurator for the remote laser cutting
and welding production unit, the second part starts with the identification of a
modular architecture. As the idea of developing a configurator for a production
has seemingly not been done before, a method for the identification and design of
modular products is adapted to fit the modularization of a production unit. By
applying this method a modular architecture is identified based on five possible
application scenarios of the remote laser cutting and welding technology. The
modular architecture is however lacking in terms of fully defining and limiting the
number of possible combinations of modules.

Finally, the identified modular architecture is used as a basis for the development of
an online configurator. The configurator allows a costumer to specify the requirements
for the process, and based on this the configurator presents a number of suitable
solutions. In the end, the developed configurator is assesed to function well and
according to specifications, however it still needs a further development.

140 15 Conclusion

Bibliography

ABB Group (2011, June 2nd). Abb robotics. http://www.abb.com/product/us/

9AAC910011.aspx.
PDF on the CD: [ABB.com] Webpages.pdf.

Adept Technology, Inc. (2011, June 2nd). Adept pythin linear modules. http:

//www.adept.com/products/robots/linear-modules/python/general.
PDF on the CD: [Adept.com] Webpages.pdf.

Antonova, G., G. Gladush, A. Krasyukov, F. Kosyrev, and N. Rodionov (2000). The
mechanism of remote cutting of metals by CO2-laser radiation. High Temperature 38,
477–482.
PDF on the CD: [Tahmouch et. al 1997] Cutting by high power laser at long
distance.pdf.

Applegate, D. L., R. E. Bixby, V. Chvátal, and W. J. Cook (2006). The Traveling Salesman
Problem - A Computational Study. Princeton University Press.
ISBN: 978-0-691-12993-8.

Autodesk Inc. (2011, February 14th). Autodesk - Developer Center - Autodesk Inven-
tor. http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=1079044.
PDF on the CD: [Autodesk.com] DeveloperWebpages.pdf.

Belforte, D. A. (2010). The worst is over - industrial laser market recovers. Industrial
Laser Solutions for Manufacturing 25.
PDF on the CD: [Belforte 2010] The Worst Is Over - Industrial Laser Marked
Recovers.pdf.

Benhamou, F. and N. Jussien (2006). Trends in constraint programming.
PDF on the CD: [Benhamou 2006] Trends in constraint programming.pdf.

Bi, Z. M., S. Y. T. Lang, W. Shen, and L. Wang (2008). Reconfigurable manufacturing
systems: the state of the art. International Journal of Production Research 46, 967–992.
PDF on the CD: [Bi 2008] Reconfigurable manufacturing systems - the state of the
art.pdf.

141

http://www.abb.com/product/us/9AAC910011.aspx
http://www.abb.com/product/us/9AAC910011.aspx
http://www.adept.com/products/robots/linear-modules/python/general
http://www.adept.com/products/robots/linear-modules/python/general
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=1079044

Chen, J. Y., M. E. Pfund, J. W. Fowler, D. C. Montgomery, and T. E. Callarmand (2010).
Robust scaling parameters for composite dispatching rules. IIE Transactions 42, 842–
853.
PDF on the CD: [Chen et al. 2010] Robust scaling parameters for composite
dispatching rules.pdf.

Configit A/S (2011, May 5th). Configit Webpage. http://www.configit.com.
PDF on the CD: [Configit.com] Webpages.pdf.

Danmarks Statistik (2011, June 2nd). Gf2: Generel firmastatistik efter branche og
enhed. http://www.statistikbanken.dk/statbank5a/default.asp?w=1024.
PDF on the CD: [Statistikbanken.dk] MetalcompaniesDK 00-08.xls.

Davis, M. M. and J. Heineke (2005). Operations Management: Integrating Manufacturing
and Services. McGraw-Hill Irwin.
ISBN-13: 978-0-07-111408-0.

Dijkstra, E. W., O.-J. Dahl, and C. A. R. Hoare (1972). Structured Programming.
Academic Press Inc. (London) Ltd.
ISBN: 0-12-200550-3.

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics 17.
PDF on the CD: [Edmond] Paths, Trees and Flowers.pdf.

Fanuc Robotics GmbH (2011, June 2nd). Industrial robots. http://www.

fanucrobotics.de/en/Products/A_Industrial-Robots.aspx.
PDF on the CD: [Fanucrobotics.de] Webpages.pdf.

Federal Information Processing Standards (1993). Publication 183 - integration
definition for function modeling (IDEF0). http://www.idef.com/IDEF0.htm
PDF on the CD: [FIPS 183] IDEF0.pdf.

Greene, J. and A. Stellman (2005). Applied Software Project Management. O’Reilly Media,
Inc.
ISBN: 0-596-00948-8.

Grundfos A/S (2011, June 2nd). Fakta om grundfos koncernen. http://www.

grundfos.dk/web/homedk.nsf/CoverPages/About+us.
PDF on the CD: [Grundfos.com] Webpages.pdf.

Güdel AG (2011, June 2nd). Modules: Linear one- and multi-axis portals. http:

//www.gudel.com/modules/.
PDF on the CD: [Gudel.com] Webpages.pdf.

Halmos, G. T. (Ed.) (2006). Roll Forming Handbook. CRC Press.
ISBN: 978-0-8247-9563.

142 Bibliography

http://www.configit.com
http://www.statistikbanken.dk/statbank5a/default.asp?w=1024
http://www.fanucrobotics.de/en/Products/A_Industrial-Robots.aspx
http://www.fanucrobotics.de/en/Products/A_Industrial-Robots.aspx
http://www.idef.com/IDEF0.htm
http://www.grundfos.dk/web/homedk.nsf/CoverPages/About+us
http://www.grundfos.dk/web/homedk.nsf/CoverPages/About+us
http://www.gudel.com/modules/
http://www.gudel.com/modules/

Halpin, T. (2000). Entity relationship modeling from an orm perspective: Part 3.
Journal of Conceptual Modeling (13).
PDF on the CD: [Halpin 2000] Entity Relationship modeling from an ORM
perspective Part 3.pdf.

Hatwig, J., G. Reinhart, and M. Zaeh (2010). Automated task planning for industrial
robots and laser scanners for remote laser beam welding and cutting. Production
Engineering 4, 327–332.
PDF on the CD: [Hatwig et. al 2010] Automated task planning for robots and laser
scanners.pdf.

Holzner, S. (2006). Ajax for Dummies. Wiley Publishing, Inc.
ISBN-13: 978-0-471-78597-2.

Hvam, L., N. H. Mortensen, and J. Riis (2008). Product Customization. Springer-Verlag.
ISBN: 978-3-540-71448-4.

Ib Andresen Industri A/S (2011, February 18th). IAI’s Webpage. http://www.iai.dk.
PDF on the CD: [IAI.dk] Webpages.pdf.

IEEE (1998). IEEE Recommended Practice for Software Requirements Specifications.
PDF on the CD: [IEEE 1998] Recommended Practice for Software Requirements
Specifications.pdf.

Incore Systems Aps (2011, May 5th). Incore Systems Webpage. http://www.

incoresystems.dk.
PDF on the CD: [Incoresystems.dk] Webpages.pdf.

Ion, J. C. (2005). Laser Processing of Engineering Materials. Elsevier Butterworth-
Heinemann.
ISBN: 0-7506-6079-1.

IPG Photonics Corporation (2011). High Power Fiber Lasers for Industrial Appli-
cations. http://www.ipgphotonics.com/Collateral/Documents/English-US/HP_

Brochure.pdf.
PDF on the CD: [IPG] HPLasersBrochure.pdf.

IPU (2011, January 11th). Slides from: Robocut teknisk møde wp4.

Jørgensen, S. N., K. Nielsen, and K. A. Jørgensen (2010). Reconfigurable manufactur-
ing systems as an application of mass customisation.
PDF on the CD: [Joergensen et al 2010] Reconfigurable Manufacturing Systems as
an Application of Mass Customisation.pdf.

Kalpakjian, S. and S. R. Schmid (2006). Manufacturing Engineering and Technology.
Pearson Prentice Hall.
ISBN: 0-13-148965-8.

Bibliography 143

http://www.iai.dk
http://www.incoresystems.dk
http://www.incoresystems.dk
http://www.ipgphotonics.com/Collateral/Documents/English-US/HP_Brochure.pdf
http://www.ipgphotonics.com/Collateral/Documents/English-US/HP_Brochure.pdf

Kolakowska, E. (2010). Integrated Planning and Scheduling in Fully Automatic Robot
System.

Korte, B. and J. Vygen (2002). Combinatorial Optimization - Theory and Algorithms.
Springer-Verlag.
ISBN: 3-540-43154-3.

Kotthoff, L. (2010). Constraint solvers: An empirical evaluation of design decisions.
Computing Research Repository.
PDF on the CD: [Kotthoff 2010] Constraint solvers: An empirical evaluation of
design decisions.pdf.

KUKA Roboter GmbH (2011, June 2nd). Kuka robotics. http://www.kuka-robotics.
com/en/.
PDF on the CD: [KUKA.com] Webpages.pdf.

Kuka Systems GmbH (2011, June 2nd). Laser remote welding. http://www.

kuka-systems.com/en/branches/technologies/Remote+Laser+welding/.
PDF on the CD: [KUKA Systems] KS Roboscan brochure.pdf.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and
approximate algorithms. European Journal of Operational Research 59, 231–247.
PDF on the CD: [Laporte 1992] The traveling salesman problem An overview of
exact and approximate algorithms.pdf.

Lawler, E. L. and D. E. Wood (1966). Branch-and-bound methods: A survey. Operations
Research Vol. 14.
PDF on the CD: [Belforte 2010] The Worst Is Over - Industrial Laser Marked
Recovers.pdf.

Lee, Y. H., K. Bhaskaran, and M. Pinedo (1997). A heuristic to minimize the total
weigted tardiness with sequence-dependent setups. IIE Transactions 29, 45–52.
PDF on the CD: [Lee et al. 1997] Heuristic to minimize total weighted tardiness with
setups.pdf.

MacDonald, M. and M. Szpuszta (2005). Pro ASP.NET 2.0 in C# 2005. Springer-Verlag
New York.
ISBN-13: 978-1-59059-496-4.

Mathias Theil Petersen (2011, February 21th). Recieved mail concerning parts and
contact info.
PDF on the CD: [IAI 21-02-2011] Mail concerning parts.

Merz, P. and B. Freisleben (2001). Memetic algorithms for the traveling salesman
problem.
PDF on the CD: [Merz 2001] Memetic algorithms for the traveling salesman.pdf.

144 Bibliography

http://www.kuka-robotics.com/en/
http://www.kuka-robotics.com/en/
http://www.kuka-systems.com/en/branches/technologies/Remote+Laser+welding/
http://www.kuka-systems.com/en/branches/technologies/Remote+Laser+welding/

Microsoft (2009). Microsoft application architecture guide.
ISBN: 9780735627109
PDF on the CD: [Microsoft 2009] Microsoft Application Architecture Guide.pdf.

Microsoft (2011). Database design basics.
PDF on the CD: [Microsoft 2011] Database Design Basics.pdf.

Nilsson, C. (2003). Heuristics for the traveling salesman problem. Theoretica Computer
Science Reports.
PDF on the CD: [Nilsson 2003] Heuristics for the Traveling Salesman Problem.pdf.

Olsen, F. O. (2011, April 11th). Optiksystem til robocut.
PDF on the CD: [Flemming Olsen 2011] Optiksystem til ROBOCUT.pdf.

Ow, P. S. and T. E. Morton (1989). The single machine early/tardy problem.
Management Science 35, 177–191.
PDF on the CD: [Peng and Morton] Single Machine Early-Tardy Problem.pdf.

Pahl, G., W. Beitz, J. Feldhusen, and K.-H. Grote (2007). Handbook of Constraint
Programming - A Systematic Approach, 3rd ed. Springer-Verlag London.
ISBN: 978-1-84628-318-5.

Pinedo, M. and X. Chao (1999). Operations Scheduling with Applications in Manufacturing
and Services. Irwin/McGraw-Hill.
ISBN: 0-07-289779-1.

Pinedo, M. L. (2009). Planning and Scheduling in Manufacturing and Services - Second
Edition. Springer Dordrecht Heidelberg London New Work.
ISBN: 978-1-4419-0909-1.

Pop, P. C., O. Matei, and C. Sabo (2010). A new approach for solving the generalized
traveling salesman problem. In Hybrid Metaheuristics, pp. 62–72.
PDF on the CD: [Pop 2010] A new approach for solving the generalized.pdf.

Pressman, R. S. (2001). Software engineering: A practitioner”s approach.

Quintino, L., A. Costa, R. Miranda, D. Yapp, V. Kumar, and C. J. Kong (2007). Welding
with high power fiber lasers - a preliminary study. Materials and Design (28), 1231–
1237.
PDF on the CD: [Quintino et al 2007] Welding with high power fiber lasers.pdf.

Reinhart, G., U. Munzert, and W. Vogl (2008). A programming system for robot-
based remote-laser-welding with conventional optics. CIRP Annals - Manufacturing
Technology 57(1), 37 – 40.
PDF on the CD: [Reinhart et. al 2008] Programming system for RWC.pdf.

Rofin-Sinar Laser GmbH (2011). Operating Manual - Rofin FL 0XX Fiber Laser.

Bibliography 145

Rosenkrantz, D. J., R. E. Stearns, and I. Philip M. Lewis (1977). An analysis of several
heuristics for the traveling salesman problem. Siam Journal on Computing 6, 563–581.
PDF on the CD: [Rosenkrantz 1977] An analysis of several heuristics for the
traveling salesman problem.pdf.

Rossi, F., P. van Beek, and T. Walsh (2006). Handbook of Constraint Programming.
Elsevier.
ISBN-13: 978-0-444-52726-4.

Schrijver, A. On the history of combinatorial optimization (till 1960). Discrete
Optimization.
PDF on the CD: [Schrijve] On the history of combinatorial optimization.pdf.

Schrijver, A. (2003). Combinatorial optimization: polyhedra and efficiency.
PDF on the CD: [Schrijver 2003] Combinatorial optimization: polyhedra and
efficiency.pdf.

Schulte, C., G. Tack, and M. Z. Lagerkvist (2011). Modeling and Programming with
Gecode.
PDF on the CD: [Schulte 2011] Modelling and programming with Gecode.

Schunk GmbH & Co. (2011, June 2nd). Linear modules. http://www.dk.schunk.com.
PDF on the CD: [Schunk.com] Webpages.pdf.

Sibbald, P. R., H. Sommerfeldt, and P. Argos (1992). Overseer: a nucleotide sequence
searching tool. Bioinformatics/computer Applications in The Biosciences 8, 45–48.

Sommerville, I. (2006). Software Engineering (Eight Edition). Addison-Wesley
Publishers.
ISBN: 7-111-19770-4.

Srivastava, S., S. Kumar, R. C. Garg, and P. Sen (1969). Generalized traveling salesman
problem through n sets of nodes. CORS Journal 7, 97–101.
PDF on the CD: [Srivastava et. al 1969] GTSP.pdf.

Steen, W. M. and J. Mazumder (2010). Laser Material Processing - Fourth Edition.
Springer-Verlag.
ISBN: 978-1-84996-061-8.

Stefik, M. (1995). Introduction to knowledge systems.
ISBN: 1-55860-166-X.

Stemmann, J. and R. Zunke (2006). Robot task planning for laser remote welding. In
H.-D. Haasis, H. Kopfer, and J. Schönberger (Eds.), Operations Research Proceedings
2005, Volume 2005 of Operations Research Proceedings, pp. 729–734. Springer Berlin
Heidelberg.
PDF on the CD: [Stemmann and Zunke 2006] Robot Task Planning for RLW.pdf.

146 Bibliography

http://www.dk.schunk.com

Stone, R. B., K. L. Wood, and R. H. Crawford (2000). A heuristic method for identifying
modules for product architectures. Design Studies 21(1), 5 – 31.
PDF on the CD: [Stone et. al 2000] HMIMPA.

Tahmouch, G., P. Meyrueis, and P. Grandjean (1997). Cutting by a high power laser at
a long distance without an assist gas for dismantling. Optics & Laser Technology 29,
307–315.
PDF on the CD: [Tahmouch et. al 1997] Cutting by high power laser at long
distance.pdf.

The Danish National Advanced Technology Foundation (2010). Appendix 1: Project
objective and content. http://www.hoejteknologifonden.dk.
PDF on the CD: [Højteknologifonden] Robocut Ansøgning Appendix 1.pdf.

Ulrich, K. T. and S. D. Eppinger (2004). Product Design and Development- Third Ed.
McGraw-Hill Irwin.
ISBN: 0-07-247147-8.

Volvo Car Corporation (2011, January 11th). Moving variant hole cutting from body
shop to final assembly.

Zaeh, M., J. Moesl, J. Musiol, and F. Oefele (2010). Material processing with remote
technology revolution or evolution? Physics Procedia 5(Part 1), 19 – 33.
PDF on the CD: [Zaeh et al. 2010] Material processing with remote technology -
revolution or evolution.pdf.

Bibliography 147

http://www.hoejteknologifonden.dk

148 Bibliography

PART

IV
APPENDIX

149

150 Bibliography

APPENDIX A
Ib Andresen Industri A/S

Ib Andresen Industri (IAI) is a danish family owned supplier company specializing in
machining of steel and metals in mainly coils, sheets and tubes. The company dates
back to 1967, were it was first founded by the civil engineer Ib Andresen. Since then
the company has grown to be an international supplier company with departments in
Denmark, Sweden, Norway, Hungary and Thailand, counting a total of 430 employees
and an annual revenue (for 2010) of around 500 million DKK. [Ib Andresen Industri
A/S, 2011].

The company has a corporate structure with five companies located in separate
countries, as seen on Figure A.1, with the corporate headquarters located in
Langeskov, Denmark. The company operates within four main business areas: Steel
Service Center (Coil working, Sheets from coils and coil slitting), Sheet and plate
working, Roll forming and Powder Coating. This project deals with the danish
company, which is divided into five subdivisions in accordance with the four business
areas, and specifically the project deals with the roll forming division as depicted by
Figure A.1.

Steel service
center

Sheet & plate
working

Roll
forming

Industrial
coatings

Ib Andresen
Industri A/S DK

Vejle Langeskov Langeskov Langeskov

Ib Andresen
Industri Hungary

Ib Andresen
Industri Thailand

Europrofil
Sweden

Europrofil
Norway

Ib Andresen
Holding A/S DK

Steel service
center

Langeskov

Figure A.1: The company structure of IAI, showing the five different companies and the
five subdivisions of the danish company [Ib Andresen Industri A/S, 2011].

The roll forming division in Langeskov is participating in the development of the
ROBOCUT technology with an implementation into their roll forming production lines
in mind.

A-1

A.1 Roll forming

A.1 Roll forming

This section will briefly introduce the concept of roll forming and the roll forming
process at Ib Andresen, before finally describing the potential problem areas of the
roll forming process where the ROBOCUT technology could prove beneficial.

A.1.1 What is roll forming

Roll forming, also known as contour-roll forming and cold-roll forming, is a
continuous forming process where a sheet metal strip is passed through a series of
rolls, each performing a small step (bend, fold, embossing, etc.) towards a desired
cross-section shape (profile), as illustrated by Figure A.2. The rolls are mechanically
driven and placed in a roll forming mill.

Roll Station #4

Roll Station #3

Roll Station #2

Roll Station #1

Roll Station #5

Roller die

Sheet metal

Figure A.2: Illustration showing the concept of roll forming. A sheet metal strip is
fed through a series of consecutive rolls to produce the desired profile (Photo courtesy of
CustomPartNet.com).

Roll forming can be used to produce a large variety of profiles with high complexity,
including enclosed shapes. Some typical products produced by the process include
tubes, frames for doors and windows, panels, business signs, girders, etc. The process
is capable of handling sheet thicknesses ranging from 0.125 mm to 20 mm. The speed
of the process varies according to the complexity and the sheet thickness, but they are
generally below 90 m/min [Kalpakjian and Schmid, 2006, p. 448].

The process is typically used for producing large quantities and/or long length
parts. The main reason being, that the setup of the process is expensive and time
consuming. In addition, the rolls are expensive to manufacture and design. Designing
and sequencing the rolls require a significant amount of experience, as a lot of different
factors like springback, tolerances, straightness and flatness, surface appearance,

A-2 A Ib Andresen Industri A/S

A.1 Roll forming

bending radius, number of necessary steps, etc. needs to be taken into account
[Halmos, 2006, pp. 5-4..5-18]. These considerations usually results in a flower diagram
as the one shown in Figure A.3, from which the contour rolls are then designed.

Figure A.3: A flower diagram showing the steps from metal strip (1) to the final profile
(10) [Halmos, 2006, p. 5-4].

A.1.2 Roll forming at Ib Andresen

The profile rolling process at Ib Andresen Industri (IAI) generally consists of ten
consecutive stations as depicted by Figure A.4. In what follows, numbers in braces
refer to the station number in Figure A.4.

1 2 3 4 5 6 7 8 9 10

Figure A.4: The profile rolling process at Ib Andresen. Stations are numbered according
to the processing sequence [Ib Andresen Industri A/S, 2011].

The roll forming process starts with the uncoiling of the metal strip to be roll formed.
This is done by the double uncoiler (1), that allows for uncoiling of a coil, while another
coil is loaded into the machine. Once a coil runs out, the double uncoiler switch
around the coils and commences the uncoiling of the next coil.

After the strip leaves the coil it is put through the flattener (2), to remove the
curvature from the strip. When a coil has run out, and the uncoiling of a new metal
strip has commenced, the end of the metal strips are welded together at the weld station
(3), to ensure a continuous flow. In case the metal strip needs to be pre-punched,
marked, coined, notched, etc. it is carried out by the press (6). Since this operation
requires that the metal strip is stagnant during the press action, it is fed by a press
feeder (5).

A Ib Andresen Industri A/S A-3

A.2 ROBOCUT potential in the roll forming process

To account for the disrupted flow caused by the press feeder and the press, the metal
strip travels through a free hanging loop with pit (4)(7) before and after the press, thus
acting like a material buffer. At this point the metal strip is ready to be roll formed,
and it is passed through the roll forming mill (8), where it is gradually formed to the
desired profile (Figure A.2), as described in the previous section.

Once the profile exits the roll forming mill, it is cut into pieces of the desired length
in the cut off press (9). To ensure the continuous flow, this is a flying die press, meaning
that the press follows the speed of the profile while performing the press action. After
the profiles has been cut into length they roll onto the run out table (10), where they are
handled and packed.

The roll forming division of IAI has 20 roll forming lines that follow the general
process described above, however they vary in size and configurations. They are able
to handle sheet metal thicknesses between 0.25 mm and 7.0 mm, widths ranging from
20 mm to 1000 mm, and lengths of the rolled parts between 150 mm and 16.000 mm [Ib
Andresen Industri A/S, 2011]. The parts are typically rolled at a speed of 60 m/min,
however the speed is typically reduced to 25 −30 m/min for parts with complex holes
(see Section A.8).

Parts are usually produced in batches, running for 1−11/2 weeks at a time. This is
due to the significant changeover time between different parts, which typically takes
between one and two working shifts (i.e. 8 - 16 hrs.).

A.2 ROBOCUT potential in the roll forming process

The parts produced by IAI using the roll forming process often have several holes of
varying size, location and shape. A typical part produced by IAI is seen in Figure A.5.

Figure A.5: A typical part produced by IAI using the roll forming process.

With the current roll forming process, all the holes of a part should ideally be pre-
punched by the press ahead of the roll forming mill. Unfortunately there is some

A-4 A Ib Andresen Industri A/S

A.2 ROBOCUT potential in the roll forming process

problems associated with the pre-punching of holes:

Pre-punching some holes may cause problems, because they may cause defects and
failures or even make the roll forming process impossible to carry out. There
are several limiting factors to the successful pre-punching of holes, including
hole size, shape and placement [Halmos, 2006, pp. 4-40]. The mechanical
properties, the quality, and the thickness of the sheet metal are important factors
as well [Halmos, 2006, pp. 10-33,11-3]. As an example, consider the part shown
in - Figure A.5, that is currently produced by pre-punching all of the holes.
According to IAI, the pre-punching of the slotted holes in the side and the notch
in the end presents a challenge with unwanted deformations.

Pre-punched holes may deform, as they pass through the roll forming mill [Halmos,
2006, p. 9-14]. The forming of the sheet metal often causes both longitudinal and
transversal distortions as well as changes in thickness, especially around bend
lines [Halmos, 2006, pp. 11-1..11-19]. As a result, a pre-punched hole needs to be
corrected according to the expected distortions when pre-punched (see Figure
A.6), making it difficult to maintain a reasonable tolerance of the holes in the
final parts.

It is difficult and expensive to post-cut holes, because this requires expensive tool-
ing and/or additional handling and processing. In case a hole is impossible
to pre-punch, there is basically two options for making the holes after the roll
forming mill. It is possible to develop some flying die cutting tools just before,
or as a part of, the cut-off press. This however is an expensive solution, as the
tools needs to be specially developed for every part. As another option the holes
needs to be cut in a separate process (e.g. by CO2 laser cutting), requiring addi-
tional handling and an increased lead time.

Press die tool limitations, determines the number of different shaped holes, that can
be created to a part. In some cases the number of different shaped holes in a
part might exceed what is possible to implement in a single die tool. In this case
the number of different shaped holes must be reduced, or the part may need to
be produced on a roll forming line with a larger press capable of producing the
holes.

Given the expected capabilities of the remote laser cutting technology developed
through the ROBOCUT project, it could offer a solution, or improvement, to the
problems just described. As mentioned in Section 1.1 the ROBOCUT project aims at
developing a laser cutting head capable of laser cutting remotely without the use of
assist gas. Because the laser cutting will be done remotely, the laser cutting head is
able to cut the holes from a static position. Because of this, the laser cutting head can
be conveniently placed both before and after the roll forming mill, but also in between

A Ib Andresen Industri A/S A-5

A.3 Visits at Ib Andresen

the rolls in the mill. In addition, the cutting head could be moved around the rolled
part after it exits the roll forming mill, enabling it to cut holes into the part from all
sides ”on the fly”. This is also possible with today’s laser technology, however at lower
speeds than the remote laser cutting technology is estimated to be capable of.

Thus the remote laser cutting head being developed by the ROBOCUT project has
the potential to solve the problems of pre-punching holes by cutting the holes during
or after the roll forming. At the same time, the difficulties regarding the deformation
of holes through the roll forming mill are removed, as these holes can be cut after roll
forming. Also, the limitations regarding the press die tool could be removed.

In addition to solving these problems, the ROBOCUT technology might also offer
other improvements like:

Increased process speed, because the need for pre-punching the holes using a press
is reduced, or even replaced by the remote laser cutting technology. Currently
the speed of the roll forming process is somewhat limited to that of the press.

Increased flexibility, since the laser cutting head could not only remove the previous
press die tool limitations, but also give the potential for a higher degree of
customization of the holes from part to part during production.

Lowered cost, because the remote laser cutting of holes after the roll forming mill
removes the current need for expensive tooling and/or extra processing and
handling.

A.3 Visits at Ib Andresen

The project group has worked together with Ib Andresen Industries (IAI) during the
project. This chapter will provide short summaries of the meetings with IAI. Reading
the summaries should give the reader a better understanding of how issues have been
discussed with the company and how helpful IAI have been.

Location: Ib Andresen Industries, Langeskov
Attending:

� Supervisor Morten Kristiansen

� Dan Gadensgaard

� Jonathan Skovhus

� PhD Student Martin Andersen

A-6 A Ib Andresen Industri A/S

A.4 Problems associated with punched holes

� Project manager at IAI Lars Hoffmann Pedersen

� Mechanical Engineering Student Matthias

Several topics were covered during the meeting and this chapter will roughly divide
them into sections.

A.4 Problems associated with punched holes

Several characteristics of the current production at IAI were discussed at the meeting.
Punching holes in the profiles before rolling can lead to problems if the holes are to
close to edges. The material tends to buckle around the hole. Another issue is that
holes punched before rolling tend to be more or less distorted after rolling. In order to
counteract this effect are punched so that after the distortion caused by rolling the hole
will get the desired geometry. Figure A.6 shows an example of a geometry punched
that will be square after rolling.

Figure A.6: Punched hole before rolling. The hole will be square after rolling.

A.5 CAD data

Part geometries are modeled using Autodesk - AutoCAD Inventor. Is has been
arranged that three part drawings will be handed to the project group along with
information on what production lines are used for producing the products. Some
floor plans will also be handed to the project group.

A Ib Andresen Industri A/S A-7

A.6 Changeover

A.6 Changeover

Due to long and expensive setup times the production lines will produce the product
for at least one to one and a half week at a time. A changeover will take about one
whole shift (eight hours).

It is estimated that a changeover time of one to one and a half hour is acceptable for
the laser cutter.

A.7 Software for defining holes

It is a problem that operators can not change program code. For example operators
rely on technicians for calibrating the placement of a punched hole. It would be
possible to make an interface for the machines with a GUI that would make it possible
for the operators the take care of small calibrations. This task

A.8 Controlling the laser cutting process

The speed of the profile can vary if holes in the profiles meet several mills at the same
time. How much the speed varies exactly is not known. This could be investigated
further since it is relevant as to whether the laser cutting process needs to take these
speed fluctuations into account.

Is has been suggested that the position of the profile along the mills could be
controlled using reference holes. The holes could be detected be a laser or a vision
system. At the moment the cutter has a precision of about 0.4 mm using a wheel to
measure the position of the profile.

The speed of the profiles are up to 60 m/min. The typical speed for profiles with
complex holes are 25 −30 m/min.

A.9 Setup of Laser

The rolling mills are divided into cassettes which can be moved individually. It has
been suggested that the laser cutting process could be dedicated into a singe cassette.
In this way the laser process could be moved to another location if wanted. There
could however be issues with safety.

A-8 A Ib Andresen Industri A/S

APPENDIX B
Scheduling Constraints

B.1 Description of Constraints

Knowing and understanding the constraints are utmost important for actually
modeling the RLC process for scheduling. The constraints will depend on many
different process characteristics, that changes on according to the type of setup
and application scenario as previously described. Therefore the constraints will be
described along with a description of the scenarios in which they are relevant.

B.1.1 Cut geometries inside closed geometries first

Figure B.1 shows a piece of sheet metal (bordered with the dashed line) with cutting
lines. The final part is shown to the right.

Figure B.1: Illustration of cutting lines for cutting a plate with holes.

In this example it is clear that the holes should be cut before the actual part is cut
free. This is to ensure that the sheet is fixed while the holes are cut. This process
constraint is independent of the setup and should therefore always be considered.

B.1.2 Minimize the process time

This is an important and always applicable constraint regarding a minimisation of the
process time.

This constraint of course relies on a number of other constraints like how a job and
task is defined. It is not possible to go further into details with this constraint now as it
is also a matter of what it is possible to actually model and implement. Remember that

B-1

B.1 Description of Constraints

these constraint only serve as a basis for actually modelling the process for constraint
optimisation.

B.1.3 Controlling the maximum/minimum cutting angle

When a geometry is laser cut remotely there will most likely be a cutting angle in
the material because the cutting head is not right above the cutting point. This is
illustrated in Figure B.2.

0°

Scanning mirror

Cutting angle

Figure B.2: Illustration of a straight and angled cut.

The cutting angle is dependent on the placement of the cutting head relative to the
cutting point. This means that it is possible to somewhat control the cutting angle
when it is possible to control the cutting head position relative to the cutting point.
This can be achieved by having a movable cutting head or movable part.

B.1.4 Controlling the difference in cutting angles

If the cutting head or part moves while cutting a closed geometry (e.g. a circle) the
cutting angle in the material when the cutting starts and ends might not be the same.
This could be a problem when cutting in thick sheet metal as Figure B.3 illustrates.
The red faces illustrates the cutting line.

Figure B.3: Illustration of a difference in cutting angle.

B-2 B Scheduling Constraints

B.1 Description of Constraints

If cutting a closed geometry the cut out may not actually be cut free and breaking
the cut out free may result in burrs. This constraint can be both a soft and hard
constraint. It is a hard constraint if a difference in cutting angles are not allowed and
a soft constraint if there is a preferred difference in cutting angles.

This constraint is only relevant when it is possible to control either the position of
the cutting head or part.

B.1.5 Satisfy limits of cutting head speed and acceleration

The cutting head can only move with a certain speed and acceleration that limits e.g.
how the cutting angles can be minimized. This is clearly a hard constraint that must
be satisfied. Of course it is only relevant if the cutting head is not stationary.

B.1.6 Cut geometries within the given time window

When dealing with cutting parts that are continuously moving there is only a certain
amount of time to cut a geometry before it is too late. This introduces a time window
for each geometry to be cut.

This process constraint is relevant when roll forming parts where material is
continuously fed to the roll mills, see section A.1 about roll forming.

B.1.7 Overview and classification of constraints

It is important to distinguish between hard constraints and soft constraints. Hard
constraints (as the name imply) are to be necessarily satisfied, while soft constraints
only express a preference of some solution. Soft constraints are often modelled using
cost functions. Table B.1 provides an overview and classification of the constraints.

Constraint: Hard Soft

Cut geometries inside closed geometries first X
Minimize the process time X
Controlling the maximum/minimum cutting angle X
Controlling the difference in cutting angles X X
Head and/or part speed and acceleration X
Cut geometries within time window X
Cutting holes before roll forming X

Table B.1: Overview of the constraints with classification of hard and soft constraints.

B Scheduling Constraints B-3

B.1 Description of Constraints

B-4 B Scheduling Constraints

APPENDIX C
Gecode Source Code

1 # inc lude <gecode / d r i v e r . hh>

2 # inc lude <gecode / i n t . hh>

3 # inc lude <gecode / minimodel . hh>

4 # inc lude <gecode / graph . hh>

5 # inc lude <gecode / search . hh>

6

7 # inc lude <a lgor i thm >

8 # inc lude <cmath>

9 # inc lude <iostream > / / I /O

10 # inc lude <fstream > / / f i l e I /O

11 # inc lude <iomanip > / / format manipu la t ion

12 # inc lude < s t r i n g >

13 # inc lude " i o . h "

14 # inc lude " windows . h "

15

16 using namespace Gecode ;

17 using namespace std ;

18

19 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ USE FOR READING COORDINATES FROM FILE ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

20 const char∗ coord ina tes = " coord ina tes . t x t " ;

21 const char∗ constants = " constants . t x t " ;

22

23

24 / / I n i t i a l i z e row and column counters .

25 i n t RowNumCoordinates = 0;

26 i n t ColNumCoordinates = 0;

27

28 i n t RowNumConstants = 0;

29 i n t ColNumConstants = 0;

30

31 / / Perform reading o f data f i l e i n t o 2D ar ray .

32 f l o a t∗∗ coord ina tesAr ray = ReadTable (coord inates , RowNumCoordinates , ColNumCoordinates) ;

33 f l o a t∗∗ constantsArray = ReadTable (constants , RowNumConstants , ColNumConstants) ;

34

35 /∗∗ /

36

37 const i n t PA_n = RowNumCoordinates ; / / Number o f po in t s

38 const i n t∗ PA_d = getDis tance (coord inatesArray , PA_n) ; / / Ca lcu la te d is tances

39 / / const f l o a t ∗ angle = getAngle (coord inatesArray , constantsArray , PA_n) ; / / Ca lcu la te angles

40

41 const i n t cu t t i nga rea = 400; / / The c u t t i n g area i s 500 [mm] i the x−d i r e c t i o n .

42 const i n t delay = 100; / / How f a r the pa r t i s from the due date l i n e i n [mm] .

43 const i n t vskaere = constantsArray [0] [0] ;

44 const i n t v f l y t = constantsArray [1] [0] ;

45 const i n t vconveyor = constantsArray [2] [0] ;

46 const i n t ymin = constantsArray [3] [0] ;

47 const i n t ymax = constantsArray [4] [0] ;

C-1

48 bool m u l t i p l e r e s u l t s = fa lse ;

49

50 / / / Problem ins tance

51 namespace {

52 class Problem

53 {

54 private :

55 const i n t _n ; / / < Size

56 const i n t∗ _d ; / / < Distances

57 public :

58

59 Problem (const i n t n , const i n t∗ d) : _n (n) , _d (d) / / / I n i t i a l i z e problem ins tance

60 {

61 }

62

63 i n t s ize (void) const / / / Return s ize o f ins tance

64 {

65 return _n ;

66 }

67

68 i n t d (i n t i , i n t j) const / / / Return d is tance between node \ a i and \ a j

69 {

70 return _d [i ∗_n+ j] ;

71 }

72

73 const i n t∗ d (void) const / / / Return d is tances

74 {

75 return _d ;

76 }

77

78 i n t max(void) const / / / Return est imate f o r maximal cost o f a path

79 {

80 i n t m=0;

81 for (i n t i =_n∗_n ; i−−;)

82 m = std : : max(m, _d [i]) ;

83 return m∗_n ;

84 }

85 } ;

86

87 Problem PA(PA_n , PA_d) ;

88

89 }

90

91

92 class TSP : public Min im izeScr ip t

93 {

94 protected :

95 Problem p ; / / / Problem ins tance to be solved

96

97 I n tVarAr ray succ ; / / / Successor edges

98

99 I n tVa r t o t a l ; / / / To ta l cost o f t r a v e l

100

101 I n tVa r tota lNoEndPoint ; / / The d is tance t rave led when not moving back to po in t 0

102

103 I n tVarAr ray t ime ; / / Array s t o r i n g when each po in t i s f i n i s h e d

104

105 I n tVarAr ray t imebegin ; / / Array s t o r i n g e a r l i e s t s t a r t t ime f o r each geometry

C-2 C Gecode Source Code

106

107 public :

108 / / / Ac tua l model

109 TSP(const SizeOpt ions& opt) : p (PA) , succ (∗ this , p . s i ze () , 0 , p . s ize ()−1) , t o t a l (∗ this , 0 , p .max ()) , to ta lNoEndPoint (∗ this , 0 , p .max ()) , t ime (∗ this , p . s i ze () , 0 , 3600000) , t imebegin (∗ this , p . s i ze () , 0 , 3600000)

110 {

111 r e l (∗ this , to ta lNoEndPoint == t o t a l − p . d (p . s ize ()−1 ,0)) ;

112

113 i n t n = p . s ize () ;

114

115 I n tA rgs c (n∗n , p . d ()) ; / / Cost mat r i x

116

117 for (i n t i =n ; i−−;)

118 for (i n t j =n ; j−−;)

119 i f (p . d (i , j) == 0)

120 r e l (∗ this , succ [i] , IRT_NQ , j) ; / / This r e l a t i o n s ta tes t h a t i f two po in t s have same coord ina tes they cannot be places a f t e r one another .

121

122

123 In tVarArgs costs (∗ this , n , I n t : : L i m i t s : : min , I n t : : L i m i t s : : max) ; / / Cost o f each edge

124

125 / / Enforce t h a t the successors y i e l d a tou r w i th approp r ia te costs

126 c i r c u i t (∗ this , c , succ , costs , t o t a l , opt . i c l ()) ;

127

128

129

130

131 / / c i r c u i t (home, c , x , y , z) ;

132 / / x : are cons t ra ined to the values forming the c i r c u i t

133 / / y : de f ines the cost o f the edge f o r each node

134 / / z : de f ines the t o t a l cost o f the edges i n the c i r c u i t

135

136 r e l (∗ this , succ [n−1] == 0) ; / / Forces rou te to l a s t po i n t i n coord ina te set before going back to po in t 0

137

138 / / F i r s t enumerate cost values , p r e f e r those t h a t maximize cost reduc t ion

139 branch (∗ this , costs , INT_VAR_REGRET_MAX_MAX, INT_VAL_SPLIT_MIN) ;

140

141 / / Then f i x the remaining successors

142 branch (∗ this , succ , INT_VAR_MIN_MIN , INT_VAL_MIN) ;

143

144 branch (∗ this , &TSP : : post) ;

145 }

146

147 void more (void)

148 {

149 i n t i = 0 ;

150 i n t t imetemp ;

151 i n t duedate ;

152 i n t re leasedate ;

153 do

154 {

155 i f (i < 1)

156 {

157 t imetemp = coord ina tesAr ray [0] [4] / vskaere∗1000;

158 / / cout << " \ tTime (" << i << ") : " << temp << " [ms] " ;

159 r e l (∗ this , t ime [i] == timetemp) ;

160 }

161 else

162 {

163 t imetemp += coord ina tesAr ray [i] [4]∗1000 / vskaere + p . d (i −1,succ [i −1]. va l ())∗1000 / v f l y t ;

C Gecode Source Code C-3

164 / / cout << " \ tTime (" << i << ") : " << temp << " [ms] " ;

165 r e l (∗ this , t ime [i] == timetemp) ;

166 }

167 i =succ [i] . va l () ;

168 }

169 while (i != 0) ;

170 / / cout << " \ t " << t ime << endl ;

171 for (i =0; i <p . s i ze () ; i ++)

172 {

173 duedate = coord ina tesAr ray [i] [0]∗1000 / vconveyor + delay∗1000/ vconveyor ; / / Due date [ms] = (x coord ina te [mm]) / (conveyor speed [mm/ s])∗1000

174

175 re leasedate = duedate − cu t t i nga rea ∗1000/ vconveyor + (coord ina tesAr ray [i] [1]− coord ina tesAr ray [i] [0])∗1 0 0 0 / vconveyor ; / / D e f i n i t i o n o f re lease date f o r each geometry [ms] = duedate [ms] − (cu t t i nga rea [mm]∗1000) / Conveyorspeed + (Lenght o f pa r t [ms])

176

177 r e l (∗ this , t ime [i] < duedate) ;

178 r e l (∗ this , t ime [i] − coord ina tesAr ray [i] [4]∗1000 / vskaere > re leasedate) ; / / For the re lease date the c u t t i n g t ime i s subt rac ted from the t ime i n order to get the t ime where the c u t t i n g o f a s p e c i f i c geometry s t a r t s .

179 }

180 / / p r i n t (cout) ;

181 }

182

183 s t a t i c void post (Space& Home)

184 {

185 s t a t i c _ c a s t <TSP&>(Home) . more () ;

186 }

187

188 v i r t u a l I n tVa r cost (void) const / / / Return s o l u t i o n cost

189 {

190 return to ta lNoEndPoint ;

191 }

192 / / / Const ruc tor f o r c lon ing \ a s

193 TSP(bool share , TSP& s) : M in im izeScr ip t (share , s) , p (s . p)

194 {

195 succ . update (∗ this , share , s . succ) ;

196 t o t a l . update (∗ this , share , s . t o t a l) ;

197 to ta lNoEndPoint . update (∗ this , share , s . to ta lNoEndPoint) ;

198 t ime . update (∗ this , share , s . t ime) ;

199 }

200 / / / Copy dur ing c lon ing

201 v i r t u a l Space∗
202 copy (bool share)

203 {

204 return new TSP(share ,∗ th is) ;

205 }

206

207 / / / P r i n t s o l u t i o n

208 v i r t u a l void

209 p r i n t (s td : : ostream& os) const

210 {

211

212 bool assigned = true ;

213 for (i n t i = 0 ; i < succ . s ize () ; i ++)

214 {

215 i f (! succ [i] . assigned ())

216 {

217 assigned = fa lse ;

218 break ;

219 }

220 }

221 i f (assigned)

C-4 C Gecode Source Code

222 {

223

224 i f (! m u l t i p l e r e s u l t s)

225 {

226 c l e a r T e x t F i l e (" r e s u l t . t x t ") ;

227 }

228

229 os << " \ tTour : " << endl ;

230

231 i n t i = 0 ;

232 do

233 {

234 os << (i == 0? " \ t " : " ") << i << (i == p . s ize ()−1? " \ n " : " −> ") ;

235 wri teAdd (" r e s u l t . t x t " , GetStrVal (i)) ;

236 i =succ [i] . va l () ;

237 }

238 while (i != 0) ;

239

240 wri teAdd (" r e s u l t . t x t " , " Cost : " + GetStrVal (to ta lNoEndPoint . va l ()) + " \ n ") ;

241 os << " \ t T o t a l d is tance moved : \ t " << tota lNoEndPoint << " [mm] " << endl ;

242

243 i = 0 ;

244 do

245 {

246 i n t s t a r t t i m e = t ime [i] . va l ()− coord ina tesAr ray [i] [4]∗1000 / vskaere ; / / Remember t h a t the t ime once a geometry i s cut i s given by t ime [i] .

247 i n t duedate = f l o o r (coord ina tesAr ray [i] [0] / vconveyor∗1000) + delay∗1000/ vconveyor ;

248 i n t re leasedate = duedate − cu t t i nga rea ∗1000/ vconveyor + (coord ina tesAr ray [i] [1]− coord ina tesAr ray [i] [0])∗1 0 0 0 / vconveyor ;

249

250 os << " \ tCT (" << i << ") : " << s t a r t t i m e << " , " << t ime [i] << " [ms] " << " \ t \ tDD : " << duedate << " [ms] " << " \ tRD : " << re leasedate << " [ms] " << ((t ime [i] . va l () > coord ina tesAr ray [i] [0] / vconveyor∗1000 + 3000)? " \ tOBS ! " : " \ tOK ") << endl ;

251 wri teAdd (" resu l tex tended . t x t " , GetStrVal (i) + " \ t " + GetStrVal (s t a r t t i m e) + " \ t " + GetStrVal (t ime [i] . va l ()) + " \ t " + GetStrVal (duedate) + " \ t " + GetStrVal (re leasedate)) ;

252

253 i =succ [i] . va l () ;

254

255 }

256 while (i != 0) ;

257

258 wri teAdd (" resu l tex tended . t x t " , " Cost : " + GetStrVal (to ta lNoEndPoint . va l ()) + " \ n ") ;

259

260 os << endl ;

261 }

262 else

263 {

264

265 }

266 }

267 } ;

268

269 i n t

270 main (i n t argc , char∗ argv [])

271 {

272 c l e a r T e x t F i l e (" r e s u l t . t x t ") ;

273 c l e a r T e x t F i l e (" resu l tex tended . t x t ") ;

274 wri teAdd (" resu l tex tended . t x t " , " Po in t \ t S t a r t \ t F i n i s h \ tDD : \ tRD ") ;

275

276 cout << "Number o f po in t s : " << PA. s ize () << endl ;

277 cout << " Coordinates : " << endl

278 << " \ txmin \ txmax \ t y \ t z \ tCut Length " << endl ;

279

C Gecode Source Code C-5

280 P r i n t M a t r i x (coord inatesArray , RowNumCoordinates , ColNumCoordinates) ; / / P r i n t s out the loaded coord ina tes

281

282 cout << " Constants : " << endl

283 << " V_skaere [mm/ s] : " << vskaere << endl

284 << " V _ f l y t [mm/ s] : " << v f l y t << endl

285 << " Conveyor speed [mm/ s] : " << vconveyor << endl << endl ;

286

287 i n t numberOfSolut ions = 0;

288 s t r i n g i npu t = " " ;

289 while (true) {

290 cout << "Number o f s o l u t i o n s to f i n d (0 = best s o l u t i o n) : " ;

291 g e t l i n e (c in , i npu t) ;

292

293 / / This code conver ts from s t r i n g to i n t s a f e l y .

294 s t r i ngs t ream myStream (i npu t) ;

295 i f (myStream >> numberOfSolut ions)

296 break ;

297 cout << " I n v a l i d number , please t r y again " << endl ;

298 }

299

300 cout << endl ;

301

302 i f (numberOfSolut ions != 1)

303 {

304 while (true)

305 {

306 cout << " Would you l i k e to save m u l t i p l e s o l u t i o n s to \ " r e s u l t s . t x t \ " ? Y /N: " ;

307 g e t l i n e (c in , i npu t) ;

308

309 i f (i npu t == "Y" | | i npu t == " y ")

310 {

311 m u l t i p l e r e s u l t s = true ;

312 break ;

313 }

314 else i f (i npu t == "N" | | i npu t == " n ")

315 {

316 m u l t i p l e r e s u l t s = fa lse ;

317 break ;

318 }

319 else

320 {

321 cout << " I n v a l i d i npu t − t r y again " << endl ;

322 }

323 }

324 }

325

326 cout << endl ;

327

328 SizeOpt ions opt ("TSP") ;

329 opt . s o l u t i o n s (numberOfSolut ions) ;

330

331 opt . i c l (ICL_DOM) ;

332 opt . parse (argc , argv) ;

333 / / opt . t ime (30∗1000); / / Time l i m i t f o r search i n [ms]

334 / / opt . mode(SM_GIST) ; / / S t a r t g i s t

335

336 i f (opt . s i ze () >= PA_n)

337 {

C-6 C Gecode Source Code

338 s td : : ce r r << " Er ro r : s i ze must be between 0 and "

339 << PA_n−1 << std : : endl ;

340 return 1;

341 }

342

343 Min im izeScr ip t : : run <TSP,BAB, SizeOptions >(opt) ;

344 cout << endl << endl ;

345

346 while (true) {

347 cout << " Schedul ing f i n i s h e d . Would you l i k e to run \ " Placement o f Scanner Head S c r i p t \ " ? Y /N: " ;

348 g e t l i n e (c in , i npu t) ;

349

350 i f (i npu t == "Y" | | i npu t == " y ")

351 {

352 system (" Placescannerhead . exe ") ;

353 break ;

354 }

355 else i f (i npu t == "N" | | i npu t == " n ")

356 {

357 cout << "Done" << endl ;

358 break ;

359 }

360 else

361 {

362 cout << " I n v a l i d i npu t − t r y again " << endl ;

363 }

364 }

365

366 return 0;

367 }

368

369 / / STATISTICS : example−any

C Gecode Source Code C-7

C-8 C Gecode Source Code

APPENDIX D
Functional Structure Diagrams

D-1

D.1 RLC ahead of or inside the roll forming mill at IAI

D.1 RLC ahead of or inside the roll forming mill at IAI

Position and focus
Laser beam

Laser Beam

Position Control

Position data

Fiber Laser
Source

Focused Laser
Beam

H
eat

C
ontrol

Program

Electricity

Strip Position
Start/Stop

C
reate Laser Beam

Source

C
ooling

Laser control
H

eat
H

eat

1 D
O

F Part
Feeding

Start/Stop

Laser C
ut H

oles

H
eat

Cut Part
Scrap

Static M
ount

(Static) Force

Pre-Processing
(Scheduling,

planning, etc.)

C
A

D
-data

M
etal Strip

Figure D.1: Functional structure for RLC of holes ahead of or inside the roll forming mill
at IAI.

D-2 D Functional Structure Diagrams

D.2 RLC after the roll forming mill at IAI

D.2 RLC after the roll forming mill at IAI

Position and focus
Laser beam

Laser Beam

Position
Control

Position data

Fiber Laser
Source

Focused Laser
Beam

H
eat

C
ontrol

Program
Strip Position
Start/Stop

C
reate Laser Beam

Source

C
ooling

Laser control
H

eat
H

eat

1 D
O

F Part
Feeding

M
etal Strip

Laser C
ut H

oles

3 D
O

F positioning

Force

Position
Control

Position data

H
eat

Roll Form
Torque

H
eat

Form
ed Part

H
eat

Electricity

Pre-Processing
(Scheduling,

planning, etc.)

C
A

D
-data

M
etal Strip

H
eat

Cut Part
Scrap

Start/Stop

Figure D.2: Functional structure for RLC of holes after the roll forming process at IAI.

D Functional Structure Diagrams D-3

D.3 Robotic RLC at Grundfos

D.3 Robotic RLC at Grundfos

Position and focus
Laser beam

Laser Beam

Position Control

Laser beam

Position data

Fiber Laser
Source

Focused Laser
Beam

H
eat

C
ontrol

Program

Electricity

Part position
Start/Stop

C
reate Laser Beam

Source

C
ooling

Laser control
H

eat
H

eat

2 D
O

F Part
Positioning

M
etal Part

6 D
O

F
Positioning

Force

Position
control

Position data

H
eat

Part Position Control

Pre-Processing
(Scheduling,

planning, etc.)

C
A

D
-data

M
etal Part

Laser C
ut H

oles

H
eat

Cut Part
Scrap

Figure D.3: Functional structure for robotic RLC at Grundfos.

D-4 D Functional Structure Diagrams

D.4 Station RLC at Grundfos

D.4 Station RLC at Grundfos

Position and focus
Laser beam

Laser Beam

Position Control

Laser beam

Position data

Fiber Laser
Source

Focused Laser
Beam

H
eat

C
ontrol

Program
Part Ready?
Start/Stop

C
reate Laser Beam

Source

C
ooling

Laser control
H

eat
H

eat

Part Loading
M

etal Part

(Static)Force

Part Loading Control

Static M
ount

Laser C
ut H

oles

H
eat

Cut Part
Scrap

Electricity

Pre-Processing
(Scheduling,

planning, etc.)

C
A

D
-data

M
etal Part

Figure D.4: Functional structure for using RLC as a station in a production line at
Grundfos.

D Functional Structure Diagrams D-5

D.5 Robotics RLC of holes in car bodies at Volvo

D.5 Robotics RLC of holes in car bodies at Volvo

Position and focus
Laser beam

Laser Beam

Position Control

Position data

Fiber Laser
Source

Focused Laser
Beam

H
eat

C
ontrol

Program
Car Body Position
Start/Stop

C
reate Laser Beam

Source

C
ooling

Laser control
H

eat
H

eat

1 D
O

F C
ar Body

Positioning
Car Body

Laser C
ut H

oles
Car Body w

ith
Cut H

oles

Scrap 6 D
O

F
Positioning

Force

Position
Control

Position data

H
eat

Scrap rem
oval

Scrap Rem
oval

Control

Car Body Position Control

Electricity

Pre-Processing
(Scheduling,

planning, etc.)

C
A

D
-data

Car Body
H

eat

Scrap

Figure D.5: Functional structure for the cutting of holes in car bodies at Volvo using the
RLC process.

D-6 D Functional Structure Diagrams

APPENDIX E
Requirements

E.1 Functional Requirements

Name FR-3: Selecting variants in random order.
Summary The user shall be able to review modules and select variants in a

random order. There are in other words no predefined sequence
for the user to select variants.

Rationale When the users are able to reselect all variants at any time
the users will quickly be able to test and try out different
combinations of variants. In the end this should make it faster
to configure a complete system.

Requirements The system shall take into account that any module can change
variant at any time and warn the user if the change clashes with
another module.

Table E.1: Functional Requirement 3.

Name FR-4: View and edit user info and pending inquiries.
Summary The user shall be able to view and edit user info and pending

inquiries. The user shall further more be able to delete inquiries
if they no longer are of interest to the user. Finally the user can
delete his/her account.

Rationale If a user changes address, phone number or similar it is important
that the user can change these information so that the ROBOCUT

team always can get in contact with users. It is also important
that the user can delete pending inquiries that no longer are of
interest so that the ROBOCUT does not use time on inquiries that
have no real interest to the customer.

References A login system is required, see non-functional requirements:
security

Table E.2: Functional Requirement 4.

E-1

E.2 Non-Functional Requirements

Name FR-5: Notifying user upon successful inquiry with inquiry ID.
Summary The system shall notify the user upon a successful sent inquiry

by sending an email to the user containing at least an unique ID
for the specific inquiry.

Rationale The user may want to consult the ROBOCUT team about an
inquiry and the unique ID will help the ROBOCUT team identify
the specific inquiry.

Requirements Each inquiry shall dynamically be given a unique ID.

Table E.3: Functional Requirement 5.

Name FR-6: Showing details of selected variant.
Summary The system shall show details (image and description) of the

currently selected module variant.
Rationale The details will enable the user to further study a variant before

finally deciding. This functionality will also serve to remind the
user of what variant is currently selected.

Requirements If the user selects a variant and then alters the requirements the
selected variant may no longer be displayed as a choice to the
user. In this case the configurator should still be aware of what
variant the user selected and display the details for this variant.

Table E.4: Functional Requirement 6.

E.2 Non-Functional Requirements

Name NFR-3: Warn user immediately with informative text when
selecting incompatible variant of module.

Summary If the user selects a variant of a module that is incompatible with
another selected variant of module the user should be warned
immediately with informative text.

Rationale The informative text should allow the user to understand why
they are not compatible and revise the selecting based on this
information. This should in the end lead to the user being able
to understand the relation between the modules better.

Table E.5: Non-Functional Requirement 3.

E-2 E Requirements

E.2 Non-Functional Requirements

Name NFR-4: Management of variants.
Summary It should be possible for the administrator to edit, add and delete

variants of modules.
Rationale This will make it possible to keep all variants up to date using an

online management system which is much easier than having to
update the whole database offline and then having to upload the
entire database.

Table E.6: Non-Functional Requirement 4.

Name NFR-5: Usability (by target user community).
Summary The configurator should present the user with help and informa-

tion mostly concerning the user specified requirements.
Rationale The user may be uncertain of way a specific requirement exactly

does and refers to. In such case the user should be able to
easily and intuitively get help and information about that exact
requirement.

Table E.7: Non-Functional Requirement 5.

Name NFR-6: Security.
Summary A secure and reliable user account system shall be implemented.

The system should be secure enough for users to trust it to hold
sensitive user information. User passwords should be encrypted.

Rationale A secure user account system is a must for users to trust the
configurator to hold sensitive information from users.

Table E.8: Non-Functional Requirement 6.

Name NFR-7: Accessibility.
Summary The system should be made available to as many as possible. This

should result in using technologies that are common and does not
require special software or hardware.

Rationale The configurator is meant to be a tool for sharing the possibilities
of remote laser cutting. It is thus a key factor that as many users
as possible have access to the configurator.

Table E.9: Non-Functional Requirement 7.

E Requirements E-3

E.2 Non-Functional Requirements

E-4 E Requirements

APPENDIX F
User Manuals

This chapter contains a user manual for the scheduling interface and the ROBOCUT

configurator. The manuals presents screen shots along with brief descriptions.

F.1 Installing and running the ROBOCUT Add-in

In order use the add-in for Autodesk Inventor 2011 it needs to be installed and
registered. This can be done either automatically through Microsoft Visual Studio
2008, or by manually registering the Add-in .dll. Both methods are described below,
and both of these assume that Autodesk Inventor 2011 is already installed.

F.1.1 Installing the add-in through Visual Studio

This is the easiest, and most reliable way of installing the add-in. In addition it
also provides the possibility of looking through the source code and continue the
development. Of course this entails that Microsoft Visual Studio 2008 is installed.

The add-in can be installed as follows (on a x86 system):

1. Open the ROBOCUTAddIn.sln C# solution located in the folder Part I/Inventor Add-
in on the enclosed CD with Microsoft Visual Studio 2008

2. Once the solution is loaded, go to "Project -> ROBOCUTAddIn Properties" or
press Alt+F7, this should open the options window.

3. Go to the "Build" tab, and make sure that the "Active" configuration has been
chosen and that the "Register for COM interop" option is selected.

4. Once this is done, the Add-in needs to be build. This is done by choosing "Build
-> Build solution" or F7.

5. If the steps above have been carried out correctly, and the build was successful
the add-in should be ready for use with Inventor!

F-1

F.2 Using the ROBOCUT Add-in

F.1.2 Installing the add-in by manually registering the .dll

This method of installing the add-in is more difficult, and it is not guaranteed to
function properly in all cases as the manual registration procedure is somewhat
system dependent.

The add-in can manually be installed as follows (on a x86 system):

1. Navigate to the folder Part I/Inventor Add-in on the enclosed CD.

2. Copy the entire folder to a desired location on the local harddrive (e.g.
"C:/ROBOCUTAddIn").

3. Once copied navigate to the folder on the local harddrive and run the file: "x86
Register.bat" in administrator mode.

4. This should register the location of the Add-In, and it should be ready for use in
Inventor.

Note that this guide has been tested on Windows 7 only. If the Add-In is not usable
after the above procedure, it is advised to visit Autodesk Inc. [2011] for assistance on
how to properly register the add-in.

F.2 Using the ROBOCUT Add-in

This section provides a quick walkthrough of the functionality of the ROBOCUT add-
in. The walkthrough presents all of the steps necessary to define the cutting tasks and
process parameters, run the scheduler and finally open and visualize the results based
on the example part seen in Figure A.5.

As a very first step it the add-in must be installed as described in the previous
section. Once installed, Autodesk Inventor 2011 is started, and the sheet metal part
that needs to be scheduled is opened. Once the part has loaded, the "Flat Pattern"
environment is selected next, as shown on Figure F.1:

Figure F.1: A sheet metal part is opened, and the Flat Pattern environment is selected.

F-2 F User Manuals

F.2 Using the ROBOCUT Add-in

Once in the "Flat pattern" environment, the ROBOCUT panel should appear along
with the "Scheduler" button for starting the add-in as seen in Figure F.2. If this is not
the case, the add-in has not been installed correctly.

Figure F.2: The ROBOCUT Add-In button should be visible after entering the Flat Pattern
environment.

Once the Add-in has been started the ROBOCUTAddIn window should appear as
seen in Figure F.3, and it is ready for use.

Figure F.3: When the ROBOCUT Add-In it will open a separate window.

F User Manuals F-3

F.2 Using the ROBOCUT Add-in

1

2

3
4

5

6

9

10

11
12

13

7
8

Figure F.4: Close-up of the ROBOCUTAddIn window.

In what follows, the functionality of the Add-In will be described based the
numbered Figure F.4.

1. Define Cut Direction. This is the first and only button that is active when the
Add-In is first opened. It is used to describe the direction of which the conveyor
moves the part during the cut. The direction is defined by first choosing the
leading edge of the part, and then an edge perpendicular to the leading edge.

2. Select Bendlines. When the cut direction has been defined, this button becomes
active. In order to perform a check (9) if any holes are to close to a bendline, the
bendlines (shown in green in Figure F.3) needs to be selected. When the button
is pressed, it is only possible to select the lines parallel to the direction of travel.

3. Select Holes. The next button to become active. This allows the user to select the
holes, and holes only, one by one, as seen in Figure F.3. Based on the selection
the Add-In selects an appropriate starting point for the cutting task, and extracts
the length of the cut path.

4. Cutting Speed. This box allows the user to specify the parameter for the laser
cutting speed.

5. Conveyor Speed. This box allows the user to specify the parameter for the
conveyor speed, that is the speed at which the metal strip moves in the cut
direction specified in (1).

6. Move Speed. This box allows the user to specify the parameter for the move
speed, that is the linear speed in the cutting plane that the laser beam can travel

F-4 F User Manuals

F.2 Using the ROBOCUT Add-in

between cuts.

7. Run Scheduling. Once the cutting tasks have been defined through (1)-(3)
and the parameters this button becomes active. When pushed, it will export
the defined cutting tasks and parameters to a the text files "coordinates.txt"
and "constants.txt", respectively and lead the user to the folder containing the
scheduling executable. The user can then manually execute the scheduler before
returning to Inventor.

8. Set Scheduler Folder. Is simply used to indicate the location of the scheduling
executable that is used in (7).

9. Perform Check. Is an experimental function for checking if any of the selected
holes are to close to the selected bendlines. This function is used when all of the
holes have been selected, prior to running the scheduler.

10. Set check rule. Sets and edits the rule used in (9).

11. Get Results. Once "Run Scheduling" has been executed, this button becomes
active. When pressed it looks for the file "result.txt" and loads the results it
contains. The loaded results are then loaded, and the last solution path is drawn
onto the part, as seen in Figure F.5.

12. Scroll through results. In case multiple solutions have been found, the user is able
to scroll through them using these navigation buttons.

13. Console window. During the use of the add-in, the console window provides some
detailed information about the commands that are carried out, as well as the
results of the calculations carried out by the add-in. Once the add-in is closed,
this information is saved in a log file.

F User Manuals F-5

F.2 Using the ROBOCUT Add-in

Figure F.5: After running the scheduler, the result can be loaded by pressing "Get Results".

F-6 F User Manuals

F.3 User Manual for ROBOCUT Configurator

F.3 User Manual for ROBOCUT Configurator

Master Page Layout

Figure F.6: Screen shot of ”Home.aspx”.

The default page display a welcome message and a picture of the ROBOCUT concept.
The screen shot of the default page shows the master page layout. The master page
layout is visible for all pages and will not be shown in the following screen shots.

F User Manuals F-7

F.3 User Manual for ROBOCUT Configurator

Figure F.7: Screen shot of ”Login.aspx”.

If not logged in, the user will be redirected to the login page when trying to access
”Configuration”, ”Admin” or ”Info”. The login page redirects the user to the page the
user tried to access when successfully logged in. The login page contains a link that
leads to the register page.

F-8 F User Manuals

F.3 User Manual for ROBOCUT Configurator

Figure F.8: Screen shot of ”Register.aspx”, step 1.

Figure F.9: Screen shot of ”Register.aspx”, step 2.

Registration consists of two steps. Step one collects additional user information.
Step two collects user name, password and email address.

F User Manuals F-9

F.3 User Manual for ROBOCUT Configurator

Configurator selects groups
of variants based on requirements

Figure F.10: Screen shot of ”Configurator.aspx”.

The configurator page contains a tab for each module. A screen shot of the
configurator page with the ”Fiber Laser” tab open is shown in Section 13.1, Figure
13.1. The Figure here shows the content of the ”Movement of Scanner Head” tab. The
green text shows the user what groups of variants are recommended for the input
in ”Cut/Weld Geometry”. Only the recommended variants are displayed in the mid
column.

F-10 F User Manuals

F.3 User Manual for ROBOCUT Configurator

Figure F.11: Screen shot of ”Admin.aspx”.

The administrator section of the web site makes is possible to add/edit variants.
Each modules has a tab. The variants are displayed in a bulleted list each with an edit
and delete button. In the button there is text fields for adding a new variant.

F User Manuals F-11

F.3 User Manual for ROBOCUT Configurator

Figure F.12: Screen shot of ”Admin.aspx”.

The administrator section of the web site also contains a ”Users” tab. This tab
display a list of all user accounts and make it possible to get the additional information
about a specific user. In the button all inquiries are shown.

F-12 F User Manuals

F.3 User Manual for ROBOCUT Configurator

Figure F.13: Screen shot of ”Settings.aspx”.

The info page displays the user account information of the user currently logged in.
In the button of the page, the user can see all submitted inquiries.

F User Manuals F-13

F.3 User Manual for ROBOCUT Configurator

Only visible if
the user is
logged in

Figure F.14: Screen shot of ”About.aspx”.

The about page can be accessed without being logged in. However the send
feedback function will not be visible if the user is not logged in.

F-14 F User Manuals

	1 Introduction
	1.1 The Robocut Project
	1.2 Scope of this Project

	2 Problem Formulation
	I Scheduling System
	3 Introduction
	3.1 Integrated Planning and Scheduling
	3.2 Introduction to Scheduling
	3.3 Scheduling Definitions and Notations
	3.4 Related Work

	4 The Scheduling Problem
	4.1 Usage Scenarios
	4.2 Scheduling the RLC Process for Roll Forming
	4.3 Mathematical Description of the Problem
	4.4 Assumptions and Approach

	5 Dispatching Rule Scheduler
	5.1 Basic Dispatching Rules
	5.2 Composite Dispatching Rules
	5.3 Summary

	6 Combinatorial Optimization
	6.1 Running Time of Algorithms
	6.2 The Travelling Salesman Problem
	6.3 Software
	6.4 Implementation
	6.5 Results
	6.6 Summary

	7 Scheduling Interface
	7.1 Framework
	7.2 Requirements
	7.3 The Robocut Add-In
	7.4 Summary

	8 Discussion

	II Robocut Configurator
	9 Introduction
	9.1 Notation

	10 Identifying Modular Architecture
	10.1 Clarifying the Task
	10.2 Establishing Function Structures
	10.3 Working Principles and Variants
	10.4 Selecting and Evaluating modules
	10.5 Embody Modular Architecture and Framework

	11 Software Requirements
	11.1 Scope
	11.2 Product Perspective
	11.3 Specific Requirements
	11.4 Summary

	12 Software Design Specification
	12.1 Architecture
	12.2 Database Design
	12.3 User Interface Design

	13 Verification and Validation
	13.1 Presentation of Configurator
	13.2 Validation Testing
	13.3 Defect Testing
	13.4 Summary

	14 Discussion

	III Conclusion
	15 Conclusion
	Summary
	Bibliography

	IV Appendix
	A Ib Andresen Industri A/S
	A.1 Roll forming
	A.2 Robocut potential in the roll forming process
	A.3 Visits at Ib Andresen
	A.4 Problems associated with punched holes
	A.5 CAD data
	A.6 Changeover
	A.7 Software for defining holes
	A.8 Controlling the laser cutting process
	A.9 Setup of Laser

	B Scheduling Constraints
	B.1 Description of Constraints

	C Gecode Source Code
	D Functional Structure Diagrams
	D.1 RLC ahead of or inside the roll forming mill at IAI
	D.2 RLC after the roll forming mill at IAI
	D.3 Robotic RLC at Grundfos
	D.4 Station RLC at Grundfos
	D.5 Robotics RLC of holes in car bodies at Volvo

	E Requirements
	E.1 Functional Requirements
	E.2 Non-Functional Requirements

	F User Manuals
	F.1 Installing and running the Robocut Add-in
	F.2 Using the Robocut Add-in
	F.3 User Manual for Robocut Configurator

