
3DStream
Vision, Graphics and

Interactive Systems project

Florent Guillaumie Romain Klein Thierry Plesnar

10th semester, Fall 2010

To be evaluated on June 14th 2011

3DStream 10th semester VGIS PROJECT

TITLE:

3D Stream

PROJECT PERIOD:
VGIS10,
From February 1st 2011
to June 31st 2011

PROJECT GROUP:
1025

GROUP MEMBERS:
Florent Guillaumie
Romain Klein
Thierry Plesnar

SUPERVISOR:
Claus Brøndgaard Madsen

CENSOR:
Helge B.D. Sørensen

NUMBER OF COPIES: 5

REPORT PAGES: 62

APPENDIX PAGES: 4

TOTAL PAGES: 66

SYNOPSIS:

This project evaluates several
ways to stream huge 3D ob-
jects on the Internet. The sys-
tem had to allow the user to
see these objects in his browser
and in real time, despite a size
that can reach several hundred
mega bytes.
This project was made in col-
laboration with the C2RMF -
Louvre museum. It will mainly
focus on the streaming of work
of arts which are digitized in
the PLY format.
The discussion will have to ad-
dress the performance issues
because of the size of the ob-
jects which have to be handled.

1/66

Acknowledgement

We would like to thank the Aalborg University staff who supervised, supported
and helped us during both researches and implementation of our project:

Claus Brøndgaard Madsen, who supervised our work and the general
project progress.

We would like also to thank the “Centre de recherches et de restauration
des musées de France” of the Palais du Louvre team, especially:

David Kolin and his assistants, Yann Ledudal and Guillaume Blaise.

A lot of work and improvement have also been made thanks to feedbacks
from the following persons which we would like to thank. They helped us
designing our final application by participating in our usability and user tests,
giving us their personal opinion about it, and helping us to adapt our first idea
to a useful and practical application:

Gabrielle Tranchet, Paweł Pankiewicz, Anders Nørgaard, Alexandre Ma-
jetniak, Branko Plesnar, Iraporan Plesnar, Simone Klein, Dominique
Klein, Agnès Guillaumie, Philippe Guillaumie, Jérôme Arlet, Élise Arlet,
Ninna Marie.

2

Preface

Technology notice

This document has been written with LATEX, the document markup language
and compiled with pdftex. The images in this document are all free of rights
or have references, and have been partially retouched with Adobe Photoshop
CS5 and PixelMator. The graphics have been made with Microsoft Office
Project 2007.

The application has been developed in Javascript and WebGL. Linux server
uses Apache and MySQL on an Ubuntu 10.10 distribution.

Report outline

This document goes from the very beginning of our project to the final user
testing.

First, in a quick introduction, we will present you an overview of our
product, the purpose of the study and the different fields involved.

Then, in the requirements analysis part, we will state the basis of the
project, identify the stakeholders and give an overview of the technologies
encountered such as the WebGL.

Also, in the design section, the way we planned to develop our application
will be presented using mostly UML diagrams.

Afterwards, the implementation part will go deeper into our technical so-
lutions to solve the problem.

Finally, the system will be tested and the results will be given in the tests
section. To conclude, this report sums up our investment into this project
and gives us some working methods for the future.

3

Contents

Acknowledgements 1

Preface 2

1 Introduction 8
1.1 Project overview . 8
1.2 Purpose of the study / Problematics 14
1.3 Domains involved in the study 14

1.3.1 PLY files . 14
1.3.1.1 Introduction to PLY file format 14
1.3.1.2 The digital Michelangelo Project 14
1.3.1.3 PLY file format 15

1.3.2 JavaScript . 17

2 Paper overview 19

3 Requirements analysis 20
3.1 Pre-requisites . 20

3.1.1 User characteristics 20
3.1.2 Software system features 21
3.1.3 Use case . 22

3.2 Candidate technologies . 23
3.2.1 Technologies based on heavy clients 23
3.2.2 Technologies displaying 3D shapes in a web browser 24

3.2.2.1 Flash . 24
3.2.2.2 Java . 25
3.2.2.3 O3D . 26
3.2.2.4 VRML / X3D 26
3.2.2.5 WebGL 27
3.2.2.6 Image displaying, server rendering 27

4

3DStream 10th semester VGIS PROJECT

3.2.2.7 Decision based on the requirements 28
3.2.3 Streaming optimization 29

3.2.3.1 Bandwidth concerns 29
3.2.3.2 PLY file reduction 31

3.3 Additional information . 33
3.3.1 Data storage . 33
3.3.2 Planning . 33

4 Design 34
4.1 WebGL . 34

4.1.1 WebGL libraries benchmark 34
4.1.1.1 Decision 37

4.2 Database / File . 38
4.3 Mock-ups . 39

5 Implementation 43
5.1 Server side . 43
5.2 Client side . 45

5.2.1 File preparation . 45
5.2.1.1 Javascript arrays 46
5.2.1.2 File chunks 47

5.2.2 Viewer . 48
5.2.2.1 XB-PointStream PLY parser 48
5.2.2.2 X3DOM with JavaScript arrays 49
5.2.2.3 X3DOM with direct DOM injection 51

6 Performance test 52
6.1 Comparison between several browsers 52

6.1.1 Firefox 4 . 52
6.1.2 Internet Explorer 9 53
6.1.3 Google Chrome . 54

6.2 Comparison between two different configurations 54
6.2.1 Testing machine configurations 54
6.2.2 Results . 54

6.3 Comparison with two different model sizes 56
6.4 Complete benchmark results 56

Bibliography 59

Appendices 63

5/66

List of Figures

1.1 Example: A Thai Statue rendered in Meshlab 9
1.2 A coordinate measuring machine 11
1.3 A lidar time-of-light scanner 12
1.4 Triangulation principle schema 12
1.5 The NextEngine scanner 13
1.6 Laser scan of the David. The Digital Michelangelo Project. . 15
1.7 Result: The red cube rendered in Meshlab 17

3.1 Use Case: Collaborative Work between curators and researchers 22
3.2 Anticipated bandwidth requirements, BuddeComm based on

NTA data. 30
3.3 Comparison between ellipsoids and vertices [9](Fig.3) 31

4.1 Request comparison Database / File 38
4.2 Mockup(1): Login page [14] 40
4.3 Mockup(2): 3D model main page [14] 40
4.4 Mockup(3): 3D model annotation [14] 41
4.5 Mockup(4): 3D model comments [14] 41
4.6 Mockup(5): 3D model curator contact [14] 42

5.1 Asus EEEPC 701 4G . 43
5.2 Screen capture of test server speed test 44

6.1 Firefox WebGL support testing 53
6.2 IE 9 WebGL support testing 53
6.3 Alienware laptop streaming performance test 55
6.4 Samsung netbook streaming performance test 55
5 Specific planning . 65
6 Global planning . 66

6

List of Tables

3.1 Technologies used to display 3D models in web-browsers . . 29

6.1 Chrome medium resolution model 57
6.2 Chrome high resolution model 57
6.3 Firefox 4 medium resolution model 57
6.4 Firefox 4 high resolution model 57

7

Chapter 1

Introduction

1.1 Project overview

Nowadays, the tendency to go from the 2D to the 3D is real. This comes
directly from the fact that the viewer will find it more realistic. The most
common example is that more and more movies are now in 3D to enhance
the experience of the audience. The use of 3D objects is also increasing at
the expense of images, but for different reasons. 3D allows to have way more
details on the object than simple images could ever provide because of the
interactive control of the viewpoint. But it has a cost, the size of such files
can reach hundreds of mega bytes.

The issue with such large files is that you need to entirely download it
before being able to observe it thanks to a local application. For instance, the
3D file at page 9, which comes from The Stanford 3D Scanning Repository1,
has a size of 180Mb. If we arbitrarily consider that the average download
speed is between 500Kb/s and 4Mb/s, we can estimate that it would take
between 45 seconds and 6 minutes to get it. Then you still need to manually
open this file with your local application which will take some extra seconds
to load it. In the end, it takes quite a long time to be able to examine a 3D
object and this is the problem we want to address.

The solution we decided to explore to answer this problem, is the streaming
of the 3D object over the Internet. This technique allows the viewer to watch
the object appearing on his screen as it is being downloaded and keeps the
model from being distributed (for copyright reasons).

1http://graphics.stanford.edu/data/3Dscanrep/

8

3DStream 10th semester VGIS PROJECT

Figure 1.1: Example: A Thai Statue rendered in Meshlab

The web technologies to manipulate 2D images are really advanced and
well established. People are finally realizing that the technology for the visual-
ization of 3D models online is now available. Such a technology can be quite
useful to improve the user experience on the web. For instance, by having
virtual visits of museums, ordering a personalized kitchen online and being
able to change any part of it while seeing directly the result, etc.

The first 3D technology for the web was actually presented in 1994 and
was called VRML (Virtual Reality Modeling Language). It was simply based
on a text file describing a virtual scene. However, this language required a
plugin to be installed in the browser of the user and used a lot of processing
power. In the end, this technology was only used by a handful of people. The
X3D, which was released by the Web3D consortium in 2001, was an improved
version of VRML but still required a plugin for the browser. The success of
these languages was very limited.

Finally, with the definition of the HTML5 standard, a new technology non-
plugin dependent emerged, the WebGL, which is now supported by the last

9/66

3DStream 10th semester VGIS PROJECT

version of most of the browsers. It is independent from HTML5 but relies on
the <canvas> element of the standard and JavaScript. [28]

Example of use [35]:

<body onload="webGLStart();">
<canvas id="canvas" style="border: none;" width="500" height="500">
</canvas>

</body>

function webGLStart() {
var canvas = document.getElementById("canvas");
initGL(canvas); //These functions are
initShaders(); //created to load the WebGL
initBuffers(); //but not defined in the standard
gl.clearColor(0.0, 0.0, 0.0, 1.0);
gl.enable(gl.DEPTH_TEST);
drawScene();

}

We came in contact with the C2RMF - Louvre museum to work on a
project for them. The aim is to create a client-server architecture to stream
3D digitalized objects. The main goal is to create a system to stream files
produced by the C2RMF (Centre de Recherche et Restauration des Musées
de France) which is in charge of creating 3D models of masterpieces provided
by the Louvre museum thanks to a scanner.

There are many ways to scan real-life objects, in our case sculptures or
crockeries, to obtain a digitized or scanned version in three dimensional mod-
els. Each of these technologies has advantages and drawbacks considering
limitations, like shiny or transparent objects, cost or precision. Some of them
can directly capture the color data, whereas other need to take a 2D picture
and apply the texture. Considering the amount of techniques and the slight
differences that can sometimes appear between them, we will only describe
the ones that we find the most relevant. [29, 13, 33]

• Contact: A stylus touches the object to create a point-cloud, because
it is pure mechanical, it can be very precise and it is not sensitive to the
object aspect (transparency or non-reflection for example). The main
drawback of this technique is that it can damage the object, for that
reason, it is not used in cultural heritage but mainly in industry.

10/66

3DStream 10th semester VGIS PROJECT

Figure 1.2: A coordinate measuring machine

• Destructive slicing: This method is very simple: the object is grind and
at every pass of the grinder, a picture or a 2D scan is taken. of course
at the end of the process, the object is destroyed, but this technique
provide one of the most accurate result, if has for example been used on
frozen corpse to improve medical knowledge of human body. Of course,
this method can’t be applied on work of art!

• Active

– Time-of-light: The principle of this method is quite simple. The
light, even if it is very fast, needs a certain amount of time to go
from one point to another. Since the laser has only one precise
wavelength, and that we can precisely know when we turn this laser
on, we just have to check an impulse of the laser wavelength. The
electronic system speed allows a precision of around one millimeter
with this technique, and it works for very large distances but it is
very sensitive to surface mirroring. The precision of this method
can be improved based on the phase shift of the laser.

11/66

3DStream 10th semester VGIS PROJECT

Figure 1.3: A lidar time-of-light scanner

– Triangulation: This method is also laser based but works because
we know the distance between the sensor and the laser emitter
along with the angle between the laser and the sensor-laser side.
Those two values are not supposed to change. The measurement
will focus on the angle between the sensor-laser side and the laser
dot on the object. By knowing those three information, we can
easily deduce the distance between the sensor or the laser emitter.
Triangulation is more accurate than time-of-light but can operate
only few meters around the scanner.

Figure 1.4: Triangulation principle schema

– Structured light: This is the main technique used at the C2RMF
to digitize objects with a NextEngine scanner. Fundamentally,

12/66

3DStream 10th semester VGIS PROJECT

a known pattern is emitted in front of the object and a sensor
captures the differences between how the pattern should look like
and the distorted version reflected by the object. These scanners
are very fast because of the pattern which allow to consider many
points at the same time. The precision can be quite impressive
considering the price and the speed of these scanners, for example,
the NextEngine has an accuracy of 0.1 millimeters at its higher
resolution.

Figure 1.5: The NextEngine scanner

• Passive

– Silhouette: Many pictures of the object are taken in front of a
known background with slight angles changes. The different sil-
houettes are combined to design the shape of the object. This
method is slow, not very accurate and cannot detect concavities
because it is only sensitive to the maximal surface of the object.
The advantages are that the technique is cheap and that the color
data can be easily captured.

– Stereoscopic This method is based on the animal stereoscopic
vision: two sensors are placed at a known distance. The difference
between the two viewpoints, coupled with a treatment algorithm,
allows to know the distance between objects and the system. This
method can be really fast, however it is not very accurate.

Based of these scanned objects, this project aims to create a tool de-
signed for the curators. The Louvre Museum and the C2RMF have expressed
the need of this tool for some reasons: reducing manipulation of fragile mas-
terpieces, allowing foreign experts to work on a piece located too far and

13/66

3DStream 10th semester VGIS PROJECT

allowing tags/labels in order to create collaborative work. In fact, some vi-
sualizers have been created to display high definition images, but none have
approaching functionalities for 3D models. Even if all these features are not
going to be implemented, we have to consider them when we will have to
make some choices in order to ease their further implementation.

1.2 Purpose of the study / Problematics

The purpose of this study is to find a way to display, in the most efficient
way possible, a 3D file which can reach several hundreds mega bytes. This
can be interpreted in different ways. The viewer has to process the faces
efficiently. The transmission of the data can be optimized. The possibility of
pre visualizing the object as it is being downloaded can be implemented. All
those paths will be explored for our project.

1.3 Domains involved in the study

1.3.1 PLY files

The C2RMF produces 3D files at the PLY format with such scanners, which
is why we will only focus on this format.

1.3.1.1 Introduction to PLY file format

In this part will be introduced the PLY polygon file format, also known as
the Stanford Triangle Format. PLY files are used to store three dimensional
data, usually generated by 3D scanners, that are described as a collection
of polygons. This format has been developed in the 90s by Greg Turk, a
researcher in the field of computer graphics. PLY files support a description of
a single object as an assembly of vertices, faces and other elements, along with
properties such as color, transparency, surface normals, texture coordinates
and data confidence values.

1.3.1.2 The digital Michelangelo Project

The Digital Michelangelo Project2 at Stanford University used this PLY home-
grown file format to obtain an extremely high resolution 3D scan of the David

2http://graphics.stanford.edu/projects/mich/

14/66

3DStream 10th semester VGIS PROJECT

sculpture. They obtained a full-resolution 3D model of Michelangelo’s 5 meter
statue of David with about one billion polygons. This project allowed us to
get a better understanding of the progress in the field of 3D modelling and
rendering.

Figure 1.6: Laser scan of the David. The Digital Michelangelo Project.

1.3.1.3 PLY file format

PLY file format has two sub-formats: an ASCII representation to easily get
started, and a binary version for compact storage, quick saving and loading.
The structure of a typical PLY file is the following:

1. Header

2. Vertex List

3. Face List

4. (lists of other elements)

The header specifies the elements of a mesh and their types, followed by
the list of elements itself, usually vertices and faces. But both the ASCII
and the binary files header are in ASCII text, only numerical data following

15/66

3DStream 10th semester VGIS PROJECT

the header can be either of those. The header always starts with a line
containing the word ply, which identifies the file as a PLY file. The second
line indicates in which format is the PLY file. Comments may also be added
using the keyword comment at the start of the line. The "element" keyword
introduces the description of how particular data elements are stored and how
many of them there are. Finally, at the end of the header there must always
be the line end_header. Here is a simple example[10] of a red cube to better
understand this format:

ply
format ascii 1.0 { ascii/binary, format version number }
comment this file is a cube { comments are keyword specified }
element vertex 8 { define "vertex" element, 8 in file }
property float32 x { vertex contains float "x" coordinate }
property float32 y { y coordinate }
property float32 z { z coordinate, too }
property uchar red { vertex contains uchar "red" color }
property uchar green { vertex contains uchar "green" color }
property uchar blue { vertex contains uchar "blue" color }
element face 6 { there are 6 "face" elements }
property list uint8 int32 vertex_index

{ "vertex_indices" is a list of ints }
end_header { delimits the end of the header }
0 0 0 255 0 0 { start of vertex list }
0 0 1 255 0 0
0 1 1 255 0 0
0 1 0 255 0 0
1 0 0 255 0 0
1 0 1 255 0 0
1 1 1 255 0 0
1 1 0 255 0 0
4 0 1 2 3 { start of face list }
4 7 6 5 4
4 0 4 5 1
4 1 5 6 2
4 2 6 7 3
4 3 7 4 0

16/66

3DStream 10th semester VGIS PROJECT

Figure 1.7: Result: The red cube rendered in Meshlab

1.3.2 JavaScript

JavaScript is a language commonly used by every major modern Internet
browser. It is based on E.C.M.A.3 stabilized and standardized implementation
(and should be named ECMAScript). [15] Even if every browser has its own
implementation of this language, which requires sometimes tricks to make
code work properly on every interpreters, JavaScript is nowadays used at a
very large scale to give to HTML pages breakthrough capabilities. It provided
unbelievable functionalities to common applications at the time of its first
version already.

By far, the most common variant of JavaScript is client based, where the
script is interpreted in the web browser of the client, but ECMAScript was
designed to be embedded in any kind of application [15] which makes this
language very versatile, even more with its last specifications and implemen-
tations. JavaScript was made to handle, in a simple way, objects provided by
the application hosting the interpreter: these objects can be DOM elements
but also files not supported by the englobing software.

Right now, JavaScript is considered as the Next Big Language thanks to its
architecture (dynamic, object-oriented) but also because last implementations

3European Computer Manufacturer’s Association

17/66

3DStream 10th semester VGIS PROJECT

of the client based JavaScript interpreter providse the user with amazingly
fast computations. [30] This speed is profitable to interact with web pages,
but also for all the "hidden" calculations which are sometimes needed before
displaying an object.

We will use this language in our project because rich interactions like the
ones provided in our project rely on AJAX technologies completely based on
JavaScript objects. Another point to consider is that any 3D file format is
natively handled by modern web browsers, and the PLY file is nothing more
than a text-file. To convert the information included in these files into pixels
displayed on the client screen, calculations need to be done and can be entirely
coded in JavaScript.

18/66

Chapter 2

Paper overview

About twenty years have passed since the creation of LYNX, the well known
text web-browser. During those two decades, browsing the web has radically
changed: right now all major bowsers are able to style the text, display images,
create scalable vectors, play sounds and videos, interact with plugins and
now. . . display 3D objects! This capability is a great milestone to provide
multimedia through the Internet, and because it is standardized and does not
rely on any plugin, WebGL allows 3D object to interact not only with the
DOM, but also with all the information available on the Internet.

Web-browsers are constantly improving their performances and function-
alities, making them more and more complex. Renderers have to comply to
requirements for professional workstations, such as color management, as well
as mobile devices, with small memory footprint and low energy consumption.
It is for sure one of the most complex multimedia softwares because of all the
HTML5 additionnal functionnalities.

WebGL was intrinsically designed to run on mobile devices. We knew
from the beginning that the application we wanted to implement was very
computational heavy, but we could not predict that we would reach the limits
of PHP 5, Chrome (even the canary version) and Firefox 4.

Right now, we are able to stream huge 3D models with the help of WebGL,
but the biggest ones made all tested browsers crash or freeze. Since we need
to rely on the browser and its JavaScript interpreter to render the shapes, we
don’t have many ways to optimize the use of memory, and the solutions we
tried are closer to hacking behaviour than properly documented methods. We
noticed that only a handful of people asked web-browser to treat such a large
amount of data and we hope our work can be the foundation of the Internet
browsing in few years.

19

Chapter 3

Requirements analysis

This section presents all the researches made for this project and all the ideas
which could potentially solve the problem of displaying large 3D models, while
always keeping in mind the requirements.

3.1 Pre-requisites

3.1.1 User characteristics

Stakeholders: Museum curator

A Museum curator is working on the conservation of pieces of art. They
are responsible for selecting and buying those objects, to describe them and
their values and also agree together for loaning art objects between museums.
Moreover, museum curators work involves the safety of the pieces of art
in their responsibilities (including not only theft but also destruction by the
visitor, or ambient aggression like light or oxygen), and performing corrective
treatments if necessary.[34]

Because conservation is becoming more and more technical, conservators
usually specialize in a particular type of object, such as paintings, sculptures,
photographs, crockeries, etc. Others concentrate on artwork from a specific
historical period.

More than 60 curators [27] are working in the eight departments of the
Louvre museum in Paris. Specialists in their field, they are responsible of the
international diffusion of the museum’s collections. They are involved in an
international symposia, lectures at the École du Louvre, the National Heritage
Institute, restoring works of art at the Ecole Normale Superieure, universities,

20

3DStream 10th semester VGIS PROJECT

selection boards and numerous scientific publications.
The recent improvements in 3D scanning technologies allowed the creation

of a numerical database from the collection of the museum. This could help
researchers to work on the 3D models without having to touch or moving the
objects, and thus damage them.

3.1.2 Software system features

Main feature The main feature of our project will obviously be the 3D
stream ability. This viewer will be able to establish a connection with a server
which will provide the 3D models directly inside a rendering surface in the
client viewer. The user will never have to handle files in order to see the
model, and will be able to zoom and rotate it.

First, users would see the model rendering chunk by chunk and then would
be able to interact with it or would have a first preview of the object while
the full model is loading. This is what we call the pre-visualization process.

Requirements: This viewer would have several requirements. We not only
need it to display the 3D object, but also to allow the user to interact with it.
The most important requirement being the fact that large 3D files have to
be handled correctly by the viewer without too many performance problems
(of course, this aspect is very subjective and depends on which device renders
the model).

Secondary features

1. Annotations: Each curators should be able to put some notes linked to
the model by clicking on the current position. Those notes would be
saved and available for each curators. There would also be a RSS feed
on some selected models in order to know each time someone annotates
it or publishes about it.

2. Security: Due to security reasons, the curators would need to identify
themselves through a portal with a login and password in order to deny
those scanned models files to unidentified people.

3. Digital watermarking: Copyright information would be embedded into
a digital signal, in such a way that it would be difficult to remove.
Therefore it would be possible to identify the source of the PLY files by
executing a simple algorithm. If the flow of information is copied, then
the copyright would be carried with it.

21/66

3DStream 10th semester VGIS PROJECT

3.1.3 Use case

In this section will be detailed the use case of the system we would like create:

Figure 3.1: Use Case: Collaborative Work between curators and researchers

Collaborative Work between curators and researchers, Figure 3.1

1. Brief Description
This use case shows us the interaction possible between the actors
(curators, researchers) and the streaming of the 3D model.

2. Context
A famous researcher is working on a publication involving a piece of art
included in the collection of the Louvre museum. After asking for the
permission, he logs himself in the system which allows him to interact
with a 3D model of the object. He will also be able to access the an-
notations which have already been published by other researchers, or by
the museum curator himself. Those annotations could be commented
by others to make the process more interactive. There is also an option
which allows the viewer to center the 3D model on a special part of the
object which has been annotated. Finally, the researcher will be able to
subscribe to the RSS feed of the publications made on this object to
receive the latests information about it.

22/66

3DStream 10th semester VGIS PROJECT

3. Flow of Events

(a) Basic Flow
The researcher receives an email notifying that his note has been
published

i. The streaming starts on the web page and the user sees the
model rendering point by point.

ii. The annotations and the optionnal comments corresponding
to this object appear on the side of the streaming canvas.

iii. A list of the museum curator’s publications is also available at
the bottom of the canvas.

iv. The researcher interacts with the 3D object within the canvas
(zooming, rotating).

v. The user has something to publish and posts an annotation
related to this piece of art.

vi. The museum curator validates the researcher note.
vii. The annotation will be updated on the feed of the other pub-

lications with a publishing date, author and optionnaly a loca-
tion on the model.

viii. The researcher receives an email notifying that his note has
been published.

(b) Alternative Flows

i. The user can subscribe to the RSS feed of the related object to
automatically receive the latest annotations and publications
about it.

ii. The researcher will also be notified if the museum curator
decides to reject an annotation.

iii. If the user is already subscribed to the RSS feed of an object,
he will have instead the possibility to unsubscribed to it.

3.2 Candidate technologies

3.2.1 Technologies based on heavy clients

A Meshlab plugin MeshLab is an open source application used to process
and edit 3D triangular meshes. It helps the processing of models coming

23/66

3DStream 10th semester VGIS PROJECT

from 3D scanning, by providing functions such as cleaning and converting
this kind of meshes, and many others [1]. A solution might be to download
from the web the 3D file thanks to a plugin in Meshlab which would have to
be created. But this could work for any other open source application similar
to Meshlab. This technique would have the advantage of providing all the
functionnalities of this software to the user, and only the features concerning
the collaborative work would have to be added. However, the application
would not provide any previsualization while the file is being downloaded and
most of tools provided by Meshlab are not relevant for users defined in the
analysis. Also, it would be very dependent of Meshlab, which means that
after any architecture modification of the software (after an upgrade, ...),
the plugin could potentially not be compatible with it anymore. Moreover, it
would require to download and install Meshlab with its plugin, and for that
you need the administrator privileges.

A whole new viewer Since many features of a conventional local 3D viewer
are not relevant in the context of streaming 3D objects, we can also create
a client-server system based on a viewer entirely developed from scratch. A
programing language like Java is perfectly designed for this application: it
provides reliable client-server architectures and tools, but also patterns to
ease the development of such a system. Moreover, OpenGL capabilities are
easily implementable with this language and one of its greatest advantages is
the portability of the bytecode. Such a viewer would allow previsualization in
opposition to the plugin based implementation. Whereas the Meshlab-plugin
will have only to handle the communication with the server, this vision will
ask the complete creation of the 3D model viewer. Even if this solution has
many advantages, the C2RMF prefers a model visualization embedded in a
web-browser.

3.2.2 Technologies displaying 3D shapes in a web browser

3.2.2.1 Flash

The Adobe Flash technology can describe a player, an application file for-
mat or a development environment. Sometimes described by Adobe as a
web-standard1, its implementation in a web-page requires a plug-in. The
most commonly used player is closed source and provided by Adobe, the

1Creative Suite 4 Web Standard applications ReadMe

24/66

http://kb2.adobe.com/cps/404/kb404059.html

3DStream 10th semester VGIS PROJECT

Adobe Flash Player, and can be easily found on most of computers brows-
ing the web [5]. This player has some open-source alternatives like Gnash
or Lightspark, but also commercial alternatives like Scaleform which handles
hardware acceleration on GPU. Nevertheless, the most common flash player
is the one provided by Adobe, even if it is only available in 32 bits and lacks
hardware optimizations.

One of the great advantage of Flash applications is their great consistency.
Because they are displayed in a plugin, on the same computer, whatever the
browser, the animation displayed will be exactly the same. But, this will also
be true on different operating systems or even architectures! This advantage
is reinforced by the proportion of computers browsing the Internet able to
handle SWF files.

One of the great criticises of the Flash development is that it requires
an expensive license to allow developers to create applications based on it,
which is totally false. Adobe provides an open-source compiler for Flex and
ActionScript 3, the language used to create SWF [6] and Flash applications
can be created without giving any money to Adobe. But the flash player is
slow and resources consuming, especially on other platforms than Windows,
and moreover on mobile devices, because no hardware acceleration is used to
render graphics on this platform (using the Adobe Flash Player). Nevertheless,
Molehill, codename of the 3D GPU-accelerated API for Flash, will speed up
this technology but it is still in development. [24]

3.2.2.2 Java

Java is an object-oriented language allowing to produce byte-code able to run
on several JVM2, available on most platforms and operating system. Thanks
to this portability, JVM can run in a web-browser to create applets to integrate
in web page applications with complex functionality and server interaction,
and for a long time, it was the only way to provide RIA3. Java has a strong
community and is one of the most used computer language. [36]

Java development can be fast and easy thank to the community, but also
with the number of libraries available. Moreover, thanks to a clear specifi-
cation of its functionality, many open-source implementation os JVM can be
found, and Java itself can be considered as a free software since the IcedTea
project passed TCK test in june 2008. [32] Another advantage of this solution
is that J2SE, the most common implementation of this language, has directly

2Java Virtual Machine
3Rich Internet Application

25/66

http://www.gnu.org/software/gnash/
http://sourceforge.net/projects/lightspark/
http://www.scaleform.com/

3DStream 10th semester VGIS PROJECT

embedded OpenGL graphics routines. This means that handling 3D models
in applets will be easy and will provide great performances. Finally, all the
members of this project have extensive knowledge of this language and are
comfortable creating a program with.

JVM requires an installation to be used as a web-browser plugin, but it is
not the most pervasive one, and is losing market shares comparing to Adobe
Flash or web-standard base RIA. [5, 12]

3.2.2.3 O3D

O3D is an API provided by Google to create rich and interactive 3D applica-
tions in the browser. At the beginning it was designed as a browser-plugin able
to communicate directly with the client DirectX9 and PS 2.0 capable graphic
card, but this implementation of the API is right now deprecated. [17] On
May 07, 2010, the developers announced the decisions of stoping the plugin
development and the will to create a WebGL JavaScript library. [26] This rad-
ical change was decided because of the JavaScript interpreters performance
to request low-level API used by WebGL was considered too slow. Their
reservations appears to be false and they decided to build their tool on the
3D standard. From our project point of view, O3D is right now, no more than
another library to ease the usage of WebGL and that is how we will consider
this technology. [18]

3.2.2.4 VRML / X3D

VRML4 is a language presented at the world wide web conference of 1994,
and was designed to represent 3D virtual scenes. We cannot consider the
first version of this language as a programing one, but more as a markup
or a modeling language, like HTML. The scene will be described and the
interpreter plugin will display a scene, this characteristics forbid the creation
of animations and interactivity, whereas the second version VRML97 can. [37]
The creation of real applications was still impossible with this implementation.

The X3D, or Extensible 3D, is a superseded version of VRML providing
better tools for animations or shape creation. The original VRML syntax,
xml or binary can be interpreted by an X3D browser plug-in, and even if X3D
allows to render finer scenes, and optimizations like oct-tree, it still doesn’t
provide any function to create real applications. [38]

4Virtual Reality Markup Language

26/66

3DStream 10th semester VGIS PROJECT

Right now, X3D has become a WebGL library thanks to the Fraunhofer
institute, called X3DOM. [8, 16] This library has extensive functionalities, and
even if X3D was designed only to create interactive models, X3DOM allows
to create RIA. As or O3D, we will consider this language more as another
WebGL library than for the language itself.

3.2.2.5 WebGL

WebGL is a 3D computer graphics API, basing its calculations on JavaScript
and its specifications on OpenGL ES 2.0, which as been standandized by
the Khronos group. [22, 23] This API uses the canvas HTML5 element,
which provides an area allowing the client to draw graphics, and rely on
two well established technologies. As we described it in the introduction,
JavaScript is very well established in the recent browsing habits and all the
majors web-browser are doing their best to improve capabilities and speed
of their JavaScript renderer. This fight can be easily noticed by the number
of benchmarks aiming to evaluate JavaScript perfomance (like PeaceKeeper,
SunSpider, V8 benchmark suite, Dromaeo, Kraken JavaScript benchmark...)
Right now, this computation is done so fast that even for handling a low level
graphic API, they are enough fast, and reduce the need to create a plugin to
enable 3D capabilities for browser, according to the O3D creator. [26]

OpenGL ES 2.0 is a standard, also created by the Khronos group, and was
designed to display graphics on mobile device like SmartPhones or Tablets.
The graphics capabilities of this kind of device are good and can provide com-
plex scenes without asking too much computational resources. This is great
because it allows users with modest client to have access to this technol-
ogy, like on the way to obsolescence computers or mobile devices for which
OpenGL ES was designed. [21]

Since WebGL is a standard, and quite all majors web browsers creators
have taken part in its specification, it has a great chance to become the
reference in the next months (see O3D and X3D port to WebGL). In May
2011, this technology is only available in the latest release versions of Google
Chrome and Firefox 4. Opera, Apple are planing to release it in few months
or weeks. The only major browser that is not planing to support it is Internet
Explorer, even if its JavaScript acceleration is graphic card based.

3.2.2.6 Image displaying, server rendering

Another technique to have 3D objects displayed in a browser is to base the
rendering not on the client but on the server, and only sends to the client an

27/66

http://clients.futuremark.com/peacekeeper/index.action
http://www.webkit.org/perf/sunspider-0.9.1/sunspider-0.9.1/driver.html
http://v8.googlecode.com/svn/data/benchmarks/v6/run.html
http://dromaeo.com/
http://krakenbenchmark.mozilla.org/

3DStream 10th semester VGIS PROJECT

image file. To do so, the server requires a graphic card, which needs to be
very powerful, and a complex AJAX, or RIA, client-server architecture has to
be built. This is used to know exactly where the user is looking. The client
sends this information to the server which has to render the image depending
on the position and then send it back to the client. This operation has to be
done so that the interaction with the object appears to be smooth. There is
no standard for this technology, but you can find examples on the website of
Real-scan5.

Even if server rendering has very great performances, if the connection
between the server and the client has a low latency and a high speed, we
decided not to consider it for two reasons. First of all, it requires a deep
knowledge in 3D programing, client-server architecture and RIA and members
of the group do not have the time to acquire the technical skills and develop
such a complex system. Second of all, the servers from the C2RMF, like
most of the servers, don’t have any graphic cards.

3.2.2.7 Decision based on the requirements

The first two technologies that have been rejected from our project are
VRML/X3D and O3D, because they are not really supported anymore (they
have been ported as WebGL libraries but do not exist as a plugin anymore).
For this reason, we will only consider them as WebGL libraries and not as a
technology anymore.

We also decided not to rely on plugins because they require administrator
privileges to be installed, and also their performances are not really consistent
depending on the platform or the operating system. This leads to stop con-
sidering Java and Flash (moreover, the most used flash player has very low
performances on 3D rendering).

The last technology allowing to display 3D objects in a web-browser is
the WebGL. The standard has been defined by the Khronos group [23] and is
based on openGL ES 2.0 to allow its portability on most 3D graphic capable
devices (like Android or iOS ones). The durability of this tool is assured not
only by its standardization, but also by the fact that it is supported by all
the major web-browsers, except Internet Explorer. It relies on very strong
foundations. The choice of this technology appears to be, efficient, durable,
portable and versatile.

5http://www.real-scan.com/

28/66

3DStream 10th semester VGIS PROJECT

Kept Rejected
Java •
Flash •
O3D •

VRML/X3D •
WebGL •

Table 3.1: Technologies used to display 3D models in web-browsers

3.2.3 Streaming optimization

3.2.3.1 Bandwidth concerns

Introduction to streaming Streaming is the fact of constantly presenting
some data to a user while the rest is being delivered. For example, in this
way you can start watching a youtube video before it gets fully downloaded.
It is usually applied to the medias which are distributed over networks such
as the radio, the television or even books and audio CDs. The television on
the Internet is a commonly streamed medium.

Bandwidth requirements In 2010, the "Broadband for all" in Europe en-
sures that all european governments support the idea that all citizens should
have "affordable access to essential electronic communication services". [20]
So far, only the UK, Finland, France and Spain have passed legislation to
provide broadband to all citizens. Data speeds are different but are usually
between 1Mb/s and 2Mb/s.

29/66

3DStream 10th semester VGIS PROJECT

Figure 3.2: Anticipated bandwidth requirements, BuddeComm based on NTA
data.

Regarding to the surveys, a broadband speed of 2.5 Mbps or more is
recommended for streaming movies (e.g. Youtube videos), and 10 Mbps for
High Definition content.

Streaming 3D There are two parameters that could cause some troubles
by streaming 3D objects. First, the size of the 3D model. Those files are very
large and their size can reach more than hundreds of mega bytes. Second,
the user, depending on his bandwidth, could wait several minutes before being
able to display the object. However, most of the ways to reduce this time
would also reduce the quality of the model. Knowing that the stakeholders
are curators who need all the details of the object, losing too much quality is
not really an option. We can make their waiting time as pleasant as possible
thanks to several features which will be introduced later in this report.

30/66

3DStream 10th semester VGIS PROJECT

3.2.3.2 PLY file reduction

A PLY file reduction can be relevant to solve performance issues. In our case,
the computers that the curators from the Louvre would use are powerful
enough to visualize the full model at interactive rates. Which is why the full
model has to be available at some point in the session. However, in order
to potentially extend the users of our project for future purposes, it would
be convenient to address the performance issues, due to the size of the file,
so that computers which are not powerful enough can interact with the 3D
object. This could be done by either creating a viewer which only handles
points or reducing the number of faces and vertices contained in the PLY
files.

A PLY file reduction can also be relevant to answer the bandwidth con-
cerns. This technique can be applied to two different situations. First, it
allows to reduce the file in order to provide the user with a lower resolution
object which he can manipulate while a bigger resolution is loading on the
background. Second, it is possible to only send the parts of the PLY files
which are needed depending on what the user is looking at and the level of
zoom.

Ellipsoids This technique uses overlapping ellipsoids instead of vertices and
faces to represent a 3D object. This allows to have a good idea of its shape
while the size of the file was quite lowered. [9]

Figure 3.3: Comparison between ellipsoids and vertices [9](Fig.3)

From left to right: Original horse model (49000 vertices corresponding
to 18500 bytes), ellipsoid approximations consisting of 400 and 100 ellipsoids
respectively (corresponding to 14400 and 3600 bytes).

The problems with this technique are that it doesn’t handle colors, the
quality of the object is quite low even if it allows to send a lighter file. Also,

31/66

3DStream 10th semester VGIS PROJECT

when using an average bandwidth, streaming all the vertices instead of trying
to lower the number is done at a satisfying speed.

Billboard clouds The billboard clouds principle has been introduced in 2002
by four researchers [11]. This technique is an extreme 3D-models simplifica-
tion using an optimization algorithm to reduce the input primitives to a set
of planes. Each plane is rendered as a textured quad that replaces the ge-
ometry mapped by the plane. All the planes together approximate the shape
of the original geometry. The difficulty of this simplification is to find a min-
imum set of planes, which results in a complex optimization problem. Since
the frame rate has to stay above 60 frames per seconds for the movements
and animations to be perceived smoothly, this method which requires "a very
computationally expensive and time consuming task and can only be done in
a preprocessing step" [25] should not fit our needs. It is important to note
that the rendering is made on the server and requires a graphic card, which
standard servers don’t have. Moreover another difficulty resides in preserving
visual accuracy of the simplified representation which is not fitting with the
stakeholders needs.

Backface culling and octrees The backface culling determines if polygons
from a model, are visible to the viewer or not. To do so it calculates their
normal vector, which is the cross vector from two of the sides of the triangle
in our case, and will not display the faces which are not oriented towards the
camera. It is a relatively low computational process which is only relevant on
the server side.

An octree is a tree data structure in which each node has exactly eight
children. You can use them to partition a three dimensional space by subdi-
viding it into eight smaller spaces. By doing so, it is possible to know which
part of the octree are in the field of view of the camera and only send those.

These solutions help improving the rendering speed of a 3D object by
not treating the polygons which are useless to the viewer, but require some
calculations before being able to send any data.

Lossless data compression A lossless data compression is a compression
which allows to recover the exact original data from the compressed data. The
gzip compression is one of these and is handled by all modern web browsers[7].
It can be used to reduce the amount of data that has to be transferred
to obtain the exact same result. However, it implies to lose some time to
compress and then decompress the file and you need to wait to receive the

32/66

3DStream 10th semester VGIS PROJECT

whole file to be able to extract the data. Because of this, slicing the file in
smaller parts is relevant but it reduces the efficiency of the compression since
its algorithm is mostly based on the redundancy of the bits from the file.

3.3 Additional information

3.3.1 Data storage

Different types of data have to be stored for our project. The first and
most important of all is the PLY files which can weight several hundred mega
bytes, for which we have the possibility to either store them in a database
or as normal files which we can access through Apache. Then, we have to
store all the names of the PLY files, their descriptions, and potentially all the
annotations from the curators in a database.

3.3.2 Planning

The time allocated for our thesis project is pretty short and that is why we
needed a planning to stay on track. As you may know, our project started at
the beginning of February and ends with the delivery of the report at the end
of may.
The chart (fig. 6 on Appendices) presents the major steps in our project
timeline. As you can see, the Research and the Requirements analysis takes
almost 50% of the global time allocated for this project. Then, the design
and implementation parts take another full month. We also planned to do
some improvements and maintenance after the delivery of the report.
The chart (fig. 5 on Appendices) introduces each tasks and tries to evaluate
the ones which can be developed in parallel. Also we have been able to draw
the critical path: the tasks which can not be delayed. We can also see on
this well detailed timeline that our streaming application will be fully working
around the second week of May.

33/66

Chapter 4

Design

This section provides an exhaustive list of WebGL libraries, each of them being
analyzed to determine if they can fulfill the project needs. It also presents
some choices made for the implementation of the project and includes a
mock-up of the application.

4.1 WebGL

4.1.1 WebGL libraries benchmark

Since the number of WebGL vertices in a same object is natively limited by
the library, because of a 16 bits index, which represents 65 536 vertices. This
limitation exists because the Khronos Group wants WebGL to run exactly
with the same specifications on all platforms. [19] Because we are handling a
huge number of vertices and faces in our model, we need to find an API able
to handle more than 65K vertices.

• C3DL, canvas 3D JavaScript Library | Website: http://www.c3dl.org/

This library can’t handle Collada models which go higher than 20MB
(and will make Firefox 4 crash). [2]

• Copperlicht | Website: http://www.ambiera.com/copperlicht/index.html

This library has very high performances but doesn’t handle more than
65K vertices. Coppercube, one of the tools of Ambiera, allows to split
huge models into smaller chunks [3]. But this tool is not free and we
need to pay to obtain the source code of this library, even if it is free
of use. Moreover, the functionality of adding color to vertices is not
provided.

34

3DStream 10th semester VGIS PROJECT

• Curve 3D | Website: http://codi.st/pages/curve3d/

Curve 3D is a 3D engine, only written in JavaScript, which does not rely
on the acceleration capabilities of the graphic card to render the shapes
it designs, but works in all major current browsers (Firefox 3.6+, IE8+,
Chrome 5+, Opera 10.5+). Since all the calculations are handled by
the CPU and through an interpreter, the performances are pretty low.

• CubicVR.js | Website: http://www.cubicvr.org/

CubicVR.js is a rewriting of CubicVR C++ 3D engine in JavaScript /
WebGL, and even if performances and capabilities are interesting for
our project, the number of vertices is limited to 65K vertices by chunk.

• GammaJS | Website: http://gammajs.org/

The purpose of GammaJS is to create 2D models and provide the tools
to interact with them in order to produce a game. Since we want to
interact with our models with 3 axes and 2 rotation angles, this library
cannot fulfill our needs.

• GTW |Website: http://blog.graphtech.co.il/gtw-—rich-user-interface-
library-for-web-applications/

This is not really a library but it provides interactive elements to improve
the GUI of RIA. For this reason, it cannot be adapted to our needs.

• JS3D | Website: http://www.wxs.ca/js3d/coordexample.html

Like Curve3D, it is not a WebGL library, but a pure JavaScript one.

• Kuda | Website: http://code.google.com/p/kuda/

Kuda is a "library and editor for authoring interactive 3D content for
the web", which is a purpose entirely different from the one this project
is trying to achieve.

• OSG.js | Website: http://osgjs.org/

OSG.js is a low level library that doesn’t handle faces and vertices buffer
splitting, and for this reason is limited to 65K vertices by facemesh.
Moreover the documentation of this project is quite inexistent.

• PhyloGL | Website: http://senchalabs.github.com/philogl/

PhiloGL is a WebGL Framework created to offer ways to visualize data
in 3D, create games and beautiful creations. This library does not

35/66

3DStream 10th semester VGIS PROJECT

provide any easy way to handle faces and does not handle more than
65K vertices.

• Pre3D | Website: http://deanm.github.com/pre3d/

Like Curve3D, it is not a WebGL library, but a pure JavaScript one.

• Processing.js | Website: http://processingjs.org/

Processing.js is a rewriting of Processing visual programming language
(based on Java) in order to make it work on the web and which in-
tegrates WebGL for 3D capabilities. This library does not provide an
easy way to create faces and its performances are lower than genuine
WebGL optimized library [31].

• O3D | Website: http://code.google.com/p/o3d/

At the beginning, O3D was an external plug-in and even if the O3D de-
velopment team knew the creation of WebGL, they thought JavaScript
will not be fast enough to handle computations of a low level library.
Few months later, they realized that WebGL could allow them to do
what they wanted to and decided to rewrite all the library into the new
standard. Even if it is a Google project, the official, and of course the
non official, documentation is not reliable because we cannot be entirely
sure if it is for the plug-in or the WebGL based version.

• SceneJS | Website: http://scenejs.org/

SceneJS is a JavaScript / JSON based API created in order to manip-
ulate elements of a 3D scene in WebGL. Thanks to the JSON archi-
tecture and functionalities, creation, modification and destruction of a
scene or an element is very easy and modifications can occur directly on
the model or the way to displaying it. With this API, models are limited
to 65K vertices.

• StormEngineC | Website: http://code.google.com/p/stormenginec/

This WebGL library does not provide easy ways to create faces, it
doesn’t handle more than 65K faces and is halted. Moreover, the lack
of documentation is very perceptible.

• SpiderGL | Website: http://spidergl.org/

SpiderGL is a library which is still in alpha development. However the last
update on their Sourceforge was made the 29 january 2010. Moreover,

36/66

3DStream 10th semester VGIS PROJECT

it does not support more than 65K vertices and some of their examples
are buggy.

• ThreeD Library / TDL | Site: http://code.google.com/p/threedlibrary/

This is a low-level library which "focuses on speed of rendering rather
than ease of use" but which cannot be downloaded and does not have
any documentation. . .

• Three.js | Website: https://github.com/mrdoob/three.js/

Three.js focuses in creating a 2D and 3D engine, very easy to learn and
handle. Of course, the 3D part relies on WebGL but this library limits
its mesh to 65K vertices.

• WebGLU | Website: https://github.com/OneGeek/WebGLU

WebGLU is described by its creator as a set of low-level tools designed
to have the best performances. Because of that, it does not handle
colored faces and vertices buffer splitting.

• X3DOM | Website: http://www.x3dom.org/

X3DOM is a WebGL library created by the Fraunhofer institute in or-
der to give the ability to render X3D objects in a WebGL compatible
browser without the need of installing any plug-in. It provides the same
capabilities of the original implementation but in a more extensible way,
because it is based on standards and can interact with the DOM. It sup-
ports the splitting of an object in chunks of 65K vertices and provides
a primitive interaction with the displayed model.

• XB Pointstream | Website: https://github.com/asalga/XB-PointStream

This is not really a library, but more a point cloud displayer which we
modified and debugged to fit our needs. The purpose of XBPS is to
take a point cloud, split it if it has more vertices than 65K and quickly
display points. But it only handles points and the face implementation
is not planned.

4.1.1.1 Decision

After considering all the advantages and drawbacks, we decided to use two
WebGL libraries. The first one being XB-PointStream for its very good per-
formances on huge files, since this library only focuses on displaying clouds of
magnified points, and because it displays the data as soon as it receives it.

37/66

3DStream 10th semester VGIS PROJECT

The other library being X3DOM. The purpose of X3D and X3DOM, which is
the WebGL version of X3D, is to create animated 3D scenes and was never
created to handle huge models. Considering the size of objects manipulated
in this project, X3DOM performances appear to be acceptable and its func-
tionalities fit our needs.

4.2 Database / File

The two options available were to either use a database or keep the PLY file
in its original format to display it in the 3D viewer. Both these solutions have
their advantages and drawbacks concerning this project, and those are listed
below:

Database

1. Advantages: The database has the capacity to easily apply some algo-
rithms on the PLY file to optimise the data flow (ex: backface culling,
billboard clouds. . .). It can also provide us different statistics, like the
number of times a table has been accessed or how many times a PLY
file has been requested. Moreover, it allows us to compress the data
before sending it to the client, and the browser will handle by itself the
decompression.

2. Drawbacks: Using the database would imply the need to generate a
PLY file to display before being able to send any data, which would
therefore increase the total time needed to obtain the full model.

Sending le

Sending le

HTTP request

Creation of the leDatabase processingHTTP requestDataBase

File

Figure 4.1: Request comparison Database / File

File

1. Advantages: Just like the database, the fact to simply store the data
in a PLY file would also allow us to compress the data before sending

38/66

3DStream 10th semester VGIS PROJECT

it, thanks to the mod_deflate provided by Apache [7]. But the main
advantage of using the PLY format would be the access speed to the
data, which is higher than with the database.

2. Drawback: The major drawback would be the difficulty to apply any
algorithm on the data to optimise the data flow.

Decision Whatever the solution, the network would have to send an equal
amount of data in around the same amount of time, so this parameter was
not part of the decision making. However, the server would be much more
requested and more space would probably be required with the creation of
SQL ids, if the solution based on the database was implemented. For these
reasons and because of the higher access speed to the data, we decided to
simply store the data in files.

4.3 Mock-ups

These mock-ups describe a full-feature system that the C2RMF plans to
create. Our project has the only aim to stream 3D objects in a web-browser,
which is why some of the presented functions will never be discussed in this
report. Nevertheless, some choices we have made were clearly oriented to
ease implementation of these functionalities in the future.

In the following pictures, ways to comment, interact or annotate the model
are described, as well as a method to contact the curator in order to obtain
further informations on the object.

39/66

3DStream 10th semester VGIS PROJECT

Figure 4.2: Mockup(1): Login page [14]

Figure 4.3: Mockup(2): 3D model main page [14]

40/66

3DStream 10th semester VGIS PROJECT

Figure 4.4: Mockup(3): 3D model annotation [14]

Figure 4.5: Mockup(4): 3D model comments [14]

41/66

3DStream 10th semester VGIS PROJECT

Figure 4.6: Mockup(5): 3D model curator contact [14]

42/66

Chapter 5

Implementation

5.1 Server side

This part will explain the different server-side implementations with their own
characteristics and limitations. The first part will introduce the testing server
settings, running at our place, which is mostly used for developing and demon-
stration purposes. Then we will describe the Louvre server configuration which
is quite different than the one used for development. The approach used for
this thesis is close to the management in professional projects: all develop-
ment, testing and documentation have been done on a testing setup before
pushing it "live" to the C2RMF servers.

Figure 5.1: Asus EEEPC 701 4G

43

3DStream 10th semester VGIS PROJECT

• Test server: Asus EeePC 701 4G1

– Configuration: the server is running on an Asus EeePC which has
a very light configuration but fits the project needs. It is powered
by an Intel Celeron M353 with a 900 MHz frequency underclocked
to 630 MHz, has 1 GB of DDR-2 RAM and a 4 GB SSD for
stockage. It also comes with a Wi-Fi b/g Atheros card and an
Ethernet 10/100 Mbps. As you can see, it has some limitations
such as the lack of RAM and storage, moreover, the processor is
quite slow. But it was still more than needed to implement and
test the prototype versions.

– Installation: LAMP, which stands for Linux, Apache Http Server,
MySQL and Perl/PHP/Python, has been installed on that com-
puter and offers many advantages: firstly, it is free of cost config-
uration since it is an open source software and it fits the project
needs. Secondly, since the time allocated for the project is quite
short, we focus on an easy to install and deploy installation, and
on something which the team members know well. Moreover, it
allows us to program locally before having the application available
online. Many softwares where used:

∗ Ubuntu 10.10 Server Edition
∗ Apache 2.2.16
∗ MySQL 5.1
∗ PHP 5
∗ phpMyAdmin 3.3.7

– Bandwidth: Since the test server is located at home, the band-
width is the one provided by the house keeper. After running a
few bandwidth tests, here is an average of its global performances.
It has a ping between 5 and 10ms and a very good upload speed
(around 70Mbps)2. In other words, the server has the proper band-
width to stream huge 3D files.

Figure 5.2: Screen capture of test server speed test
1http://www.notebookcheck.net/Asus-Eee-PC-701-4G.6745.0.html
2Ping, download speed and upload speed from http://speedtest.net

44/66

3DStream 10th semester VGIS PROJECT

• RENATER CNRS network, Louvre configuration: The Louvre is plugged
to RENATER which is a french network composed by a metropolitan
infrastructure and international connections to broadband. RENATER
is handling more than 1000 establishments engaged in the areas of
Research, Technology and Education. The characteristics of this net-
work [4] are:

– An architecture based mostly on dark fiber

– An architecture with links to 10 Gb/s on almost all points of net-
work presence

– An opportunity to respond to the needs of very high speeds of
large research projects by establishing optical paths from end to
end between the points of presence

Moreover RENATER is interconnected to other European research net-
works and the U.S. via the European network GÉANT which is the
largest structure of its kind.

5.2 Client side

5.2.1 File preparation

Like it was previously said in this report, the WebGL cannot handle 3D models
with more than 65K vertices, even though some libraries can automatically
split models if needed. In order not to be limited to libraries which provide
this feature and to improve performances of the ones which are able to divide
models in smaller chunks, a program was implemented to split PLY files.
Since the 3D model will already go through a program to be sliced, we might
as well format the data so that it is easier to use it for the viewer. Here is a
quick reminder[10] of what a PLY file looks like:

45/66

3DStream 10th semester VGIS PROJECT

ply
format ascii 1.0
element vertex 8
property float32 x
property float32 y
property float32 z
property uchar red
property uchar green
property uchar blue
element face 6
property list uint8 int32 vertex_index
end_header
0 0 0 255 0 0
0 0 1 255 0 0
0 1 1 255 0 0
0 1 0 255 0 0
1 0 0 255 0 0
1 0 1 255 0 0
1 1 1 255 0 0
1 1 0 255 0 0
4 0 1 2 3
4 7 6 5 4
4 0 4 5 1
4 1 5 6 2
4 2 6 7 3
4 3 7 4 0

One model will be split into several smaller models which are indepen-
dent from each other, but when put together shape the original model. The
program allows to split the models in two different ways.

5.2.1.1 Javascript arrays

The first way is by splitting the file into javascript arrays. An array of vertices
will never have more than 65K vertices to respect the WebGL limit. The
main advantage of this technique is that when the javascript file containing
the array is included, the data is directly available for the viewer. Here is an
example, even though the actual arrays contain way more data:

46/66

3DStream 10th semester VGIS PROJECT

var vertices0 = new Array("-57.4653", "-41.9127", "-23.114",
"-57.6114", "-41.6757", "-22.6852",
"-57.5898", "-41.9012", "-23.5612",
"-58.4987", "-37.3321", "-18.2672",
"-58.6951", "-37.086", "-18.3145");

var vertices1 = ...
etc.

var faces0 = new Array("0", "1", "2" , "-1",
"3", "4", "5", "-1",
"6", "4", "3", "-1",
"7", "8", "9", "-1",
"10", "8", "7", "-1");

var faces1 = ...
etc.

var colors0 = new Array("0.27450982", "0.27450982", "0.27450982",
"0.047058824", "0.047058824", "0.047058824",
"0.15294118", "0.15294118", "0.15294118",
"0.32941177", "0.050980393", "0.11372549",
"0.31764707", "0.019607844", "0.101960786");

var colors0 = ...
etc.

The main problem of this method is that some browsers cannot handle
that much data for an array declaration, such as Firefox. To solve this, slicing
the file in even smaller chunks would work, but the huge number of HTTP
requests addressed to the server would decrease the performances of data
transmission. Moreover, the method used to inject the JavaScript code in
the page is not compliant to good practices commonly accepted.

5.2.1.2 File chunks

The second way is splitting the file into small chunks which are already for-
matted for the viewer to use them. Here is an example with only a small
amount of data formatted for X3DOM:

47/66

3DStream 10th semester VGIS PROJECT

File: 0vertices
3299 68.5992 12.0763 -3.60006 67.59 11.7546 -1.09796 66.6631
11.5234 -0.137346 66.1669 11.5951 0.219926 66.0071 11.3723
2.0417 65.4909 11.0471 2.66579 65.1336 25.7053...

File: 1vertices
...

File: 0faces
0 1 2 -1 3 4 5 -1 6 4 3 -1 7 8 9 -1 10 8 7 -1 11 8 10 -1 12
13 14 -1 15 14 13 -1 14 15 16 -1 16 17 18 -1 18 19 20 -1 21
20 19 -1 22 23 24 -1 23 22 25 -1 26 25 22 -1 27 25 26 -1 27
28 29 -1...

File: 1faces
...

File: 0colors
0.27450982 0.27450982 0.27450982 0.047058824 0.047058824
0.047058824 0.15294118 0.15294118 0.15294118 0.32941177
0.050980393 0.11372549 0.31764707 0.019607844...

File: 1colors
...

The main advantage of this technique is that, by simply reading the files
in JavaScript, it is possible to know when all the data from the file was loaded
to then inject it into the DOM.

5.2.2 Viewer

5.2.2.1 XB-PointStream PLY parser

This method is directly based on the original PLY file, saved in ASCII, and
stored without any treatment on the server. The client requests the file with
AJAX methods, processes it chunk by chunks, and displays points while the
data is received.

To work, this method relies on the fact that in the PLY file, the vertices
information (color and position) are stored before the faces and that they are
independent from other vertices or any other data: a line in the vertices part

48/66

3DStream 10th semester VGIS PROJECT

only provides the information to display a vertex and nothing more. Moreover,
the number of vertices which is included in the header allows to exactly know
which part of the file is composed of vertices and which part is composed of
faces.

Because of the use of AJAX objects, downloading and treating the data
does not sluggish the webpage: the user is still able to interact with the page
(scroll, type, click...) but also with the 3D model in the canvas (zoom and
turn it).

XB-PointStream is already able to treat many point cloud files (asc, psi
and pts), but we created a parser in order to make this library able to process
ply files, even if only one part of a ply file can be considered as a point cloud.
This library, based on the file extension, choses the right parser: we just need
to provide the complete path of the file in order to make the application work.
The PLY parser will find the needed informations in the header and process
the data in order to display points.

The download time of the considered point cloud is quite long compared to
the time needed to process the data by the client’s browser, so the information
will be treated and displayed chunk by chunk. The model will appear on the
client screen by group of points which can easily be either randomized or
ordered. This method gives the user a true feeling of receiving the model in
a streaming way.

But even if this method is very simple to implement and has several ad-
vantages, it has also huge drawbacks. The first one is that it does not handle
faces, and because of that they have to be ignored once all the vertices have
been displayed. The other reason is that a lot of unneeded data is transferred
in the process. For instance, MeshLab adds at the end of every vertex the
information for the alpha channel, which is not used at all in our case. For
these reasons, this method has been rejected in our final implementation.

5.2.2.2 X3DOM with JavaScript arrays

X3DOM allows to manipulate X3D formatted information in the DOM of a
webpage with the help of JavaScript tools (the same which call the WebGL
functions in order to display 3D in canvas). The information is placed in a
non-standardized tag call <X3D> ... </X3D> like in this example:

49/66

3DStream 10th semester VGIS PROJECT

<x3d width="500px" height="400px">
<scene>

<shape>
<appearance>
<material diffuseColor=’red’></material>

</appearance>
<box></box>

</shape>
</scene>

</x3d>

This is a very simple syntax compared to the code which would have to be
written in WebGL in order to display the same scene (a red cube at the center
of a <canvas> of 500*400px). In the end, the object won’t be displayed
between the X3D tag, but X3DOM will create a context in the webpage to
render the "world" in a proper way.

The tag <IndexedFaceSet coordIndex=’data’/> </IndexedFaceSet>
provided by X3DOM is very useful in our context since it uses all the data
inserted in a usual PLY file, only the format is different. We can slice the
original file in smaller PLY files and format them in order to properly put them
into these tags. The small chunks provided will progressively be loaded, giving
to the user an impression of streaming, keeping him from waiting for the full
file to be downloaded.

The first version of this method was to format the files in JavaScript arrays
as it is described in the subsection 5.2.1.1. It worked properly on small models,
but there were some memory management problems with higher definition
files. We tried to release the memory by destroying the arrays (removing
the include of the javascript file), but the implemented JavaScript garbage
collector of the browser would still not free the memory. This only works if
the object is destroyed right after its creation, in other words by keeping the
browser from starting to use it. In the case of our biggest models, the amount
of memory required made all tested browsers crash. Moreover, the method
used to implement these JavaScript objects into the DOM is not very reliable
and can lead to malfunctions. For all these reasons, this method has been
rejected in our final implementation.

50/66

3DStream 10th semester VGIS PROJECT

5.2.2.3 X3DOM with direct DOM injection

This method is similar to the previous one: the original PLY file is sliced in
many files, like it was described in 5.2.1.2. These files are formatted to be
directly injected in the DOM, and more particularly into the <X3D> tags of
X3DOM.

Thanks to XMLHttpRequest objects, one of the most famous elments of
AJAX, the needed information is downloaded while at the same time allowing
the user to interact with the page, and of course the rendering surface. Since
all the needed information for one chunk has been received, It is directly in-
jected into the DOM and rendered by X3DOM. The model is displayed chunk
by chunks, exactly like in the method described in the subsection 5.2.2.2,
however this method is more robust and well known. Moreover, the amount
of memory required is lower.

Nevertheless, this method is still very stressful for the browser and the
biggest models cannot be handled by all tested bowsers which cashed after
receiving and treating too much information. Since this method is the one
which provided the best results, it will be benchmarked in next section.

51/66

Chapter 6

Performance test

In this section of the report, the global performances of our implementation
will be presented.

First, we will study the persistency of the implementation between several
browsers. Then, the time to render the model between two relatively different
configuration running on the same OS will be examined. In addition, two
distinct models of different size will be tested on the same machine.

6.1 Comparison between several browsers

For the comparison between several browsers, we took a pool of three major
browser vendors: Windows (Internet Explorer 9), Mozilla (Firefox 4) and
Google (Chrome). By far the most used browsers according to statistics from
w3schools.com which prints browser statistics month by month. It shows that
Firefox is in the lead with about 42%, following by IE and Chrome which are
both around 25% in 2011. Before starting the tests, it is interesting to
note that only Google and Mozilla are members of the Khronos consortium’s
WebGL Working Group working with many 3D graphics developers.

6.1.1 Firefox 4

Firefox just came up with a new release: Firefox 4. The previous release of
Firefox did not support WebGL.

In this latest version of Firefox, WebGL is fully supported and is running
smoothly on our machines. There is a screenshot of the test during the
streaming:

52

3DStream 10th semester VGIS PROJECT

Figure 6.1: Firefox WebGL support testing

6.1.2 Internet Explorer 9

As expected, since Microsoft is not a member of the Khronos consortium’s
WebGL group, it does not support WebGL at the moment and it is far from
being certain that it will. Here are an example of the streaming test window:

Figure 6.2: IE 9 WebGL support testing

53/66

3DStream 10th semester VGIS PROJECT

6.1.3 Google Chrome

Chrome was the first browser to support WebGL. Also, there was no problem
in any tests of the 3D streaming. Thus, Chrome has been chosen for the two
following tests as the reference browser.

6.2 Comparison between two different configu-
rations

6.2.1 Testing machine configurations

The first machine is a heavy powerful Alienware laptop. It runs on Windows
7, has an Intel Core2 Quad CPU Q9000 at 2.00GHz. Also coming with
4096MB DD2 RAM, two NVIDIA GeForce GTX 260M graphic cards and
around 500Go 7200RPM hard-drive. The second machine is a less gifted
one: Samsung N510. This small netbook also runs on Windows 7. Its CPU is
an Intel Atom N270 at 1.60GHz, with a NVIDIA ION LE graphic card, about
1024MB RAM and a 120Go 5400RPM hard-drive. As you can imagine, those
two configurations are different enough to allow us to do some comparison
between the performance of the 3D streaming project on a gaming machine
and a small netbook. Another computer will be used in our detailed bench-
mark, a MacBook Pro running Mac OS X 10.6.7 with a Intel Core i5 2.53 GHz
with 8 GB of memory, a 7200 RPM 500 GB hard-drive and using two graphic
cards, an Intel HD Graphics and a NVIDIA GeForce GT 330M with 256 MB
of memory.

The following part describe two different behaviors of our application in
two different configurations, when the system is able to handle this amount of
memory and when it is not. Extensive benchmark will be provided in section
6.4.

6.2.2 Results

Here are the results of this particular testing: The first one has been tested
on the Alienware laptop and, as you can see, it uses almost all the memory
available (85%) which slowly raises as the streaming progresses. Also you can
notice that the usage of the UC is moving between 5% and 25%. Therefore
the streaming of that model is very smooth and we can easily interact with
the model without any inconvenience.

54/66

3DStream 10th semester VGIS PROJECT

Figure 6.3: Alienware laptop streaming performance test

The second one has been evaluated on the Samsung netbook. The results
are way more critical: The memory usage is almost saturated with 92% used
and is also slowly increasing. The real problem on this machine was the UC
usage which is very unstable between 30% and 100%. Which caused the
streaming process to be slug and also the whole machine to respond very
slowly.

Figure 6.4: Samsung netbook streaming performance test

Therefore, as the quantity of the memory will impact on the time of the
global streaming process, the computation capability of a client will impact
on how the machine will react to it.

55/66

3DStream 10th semester VGIS PROJECT

6.3 Comparison with two different model sizes

The first file is a full resolution model with four million of faces, without any
process to decrease the number of vertices and faces. The only treatment
applied is to divide it into small chunks (195 pieces which represent 585 files).
The second file is the same model but the "quadric edge collapse decimation"
in Meshlab was applied to it in order to have a file with 2 millions of vertices
and which weights around 90 MB instead of 180 MB. The second file can
still be considered as a huge file. But as you will see in the following results,
browsers are handling those in a very different manner.

6.4 Complete benchmark results

The following tables show the difference in rendering medium and huge models
in two different systems (Mac OS X & Windows 7), with three different
platforms (the testing machine configurations described in subsection 6.2.1).
With small files (around one million of faces and below) our application render
the streamed model on every browser. With higher definition, the situation
depends mostly on which browser is used to render the model, and also on the
memory available on the computer, the processor always have a reasonable
occupation. If the streaming was not completed, it was always because of a
bad memory management by the browser.

56/66

3DStream 10th semester VGIS PROJECT

Memory used by process Free memory Streaming completion
Samsung 564 MB 63 MB 7, 64 on 96 chunks loaded
Alienware 1.1 GB 1.7 GB 7, 71 on 96 chunks loaded

Mac 698 MB 4.90 GB 7, 65 on 96 chunks loaded

Table 6.1: Chrome medium resolution model

Memory used by process Free memory Streaming completion
Samsung 527 MB 68 MB 7, 63 on 196 chunks loaded
Alienware 1.0 GB 1.7 GB 7, 65 on 196 chunks loaded

Mac 700 MB 4.91 GB 7, 63 on 96 chunks loaded

Table 6.2: Chrome high resolution model

Memory used by process Free memory Streaming completion
Samsung 597 MB 52 MB X
Alienware 2.7 GB 237 MB X

Mac 2.61 GB 3.85 GB X

Table 6.3: Firefox 4 medium resolution model

Memory used by process Free memory Streaming completion
Samsung 602 MB 64 MB 7, 97 on 196 chunks loaded
Alienware 2.8 GB 122 MB 7, 102 on 196 chunks loaded

Mac 4.08 GB 2.63 GB 7, 162 on 196 chunks loaded

Table 6.4: Firefox 4 high resolution model

57/66

Conclusion

When we started this project, WebGL was not standardized by the Khronos
group yet, and was not supported by any major web-browser in their final
version: the technology was at its very beginning. Of course our knowledge
in web 3D programming has greatly increased, but also in classical 3D pro-
gramming, since nobody in the team was familiar with such a technology. We
were complete beginners, who did not know anything about vertices, faces
or shader but we could rely on an associated extensive knowledge in web-
programming. Some of us were confident in database structure, others in
PHP or JavaScript, client-server interaction and server administration and we
all knew very well Java.

We were expecting a success because we knew that the skills of the team
covered all the web or streaming part of this project, but we did not expect
the problems which we faced because of handling files of this size. The first
version of the PLY splitter, made in PHP, was unable to provide us a simple
chunk because of memory problems. As you have seen in the benchmark,
even in the method which needs less memory in the browser, all of them are
unable to handle the models with a too high resolution. We really think that
browser rendering engines have to be improved to handle that much data,
which is very likely to become a fact in a few months.

With this project, our skills have not only increased in 3D programming,
but also in memory management, server and client side and in technology
watch because WebGL was really a new one. We are glad the Aalborg Uni-
versity gave us the opportunity to work on a technology in development and
we hope this project convinced you that WebGL will play a major role on the
Internet in the days to come.

58

Bibliography

[1] Meshlab. Available from: http://meshlab.sourceforge.net/.

[2] C3dl stability issue on firefox, May 2011. Available from: http://www.
c3dl.org/index.php/tutorials/tutorial-4-models/.

[3] Copperlicht support of more than 65k vertices, May 2011. Available
from: http://www.ambiera.com/forum.php?t=1734.

[4] National telecommunication network for technology, education and re-
search, May 2011. Available from: http://www.renater.fr/?lang=
en.

[5] Adobe. Flash player penetration [online]. May 2011. Available from:
http://www.adobe.com/products/player_census/flashplayer/.

[6] Adobe. Open source flex sdk, May 2011. Available from:
http://opensource.adobe.com/wiki/display/flexsdk/Flex+
SDK;jsessionid=994D5D961333BD2704CAFB0359011FA3.

[7] Apache. Apache module mod_deflate, 2011. Available from: http:
//httpd.apache.org/docs/2.2/mod/mod_deflate.html.

[8] Johannes Behr. X3dom - a dom-based html5 / x3d integration model. In
International Conference on 3D Web Technology (WEB3D). Fraunhofer
Institute for Computer Graphics, June 2009.

[9] Stephan Bischoff and Leif Kobbelt. Streaming 3d geometry data
over lossy communication channels. 2002. Available from: http:
//citeseer.ist.psu.edu/538355.html;.

[10] John Burkardt. Ply files - an ascii polygon format. Available from:
http://people.sc.fsu.edu/~jburkardt/data/ply/ply.html.

59

http://meshlab.sourceforge.net/
http://www.c3dl.org/index.php/tutorials/tutorial-4-models/
http://www.c3dl.org/index.php/tutorials/tutorial-4-models/
http://www.ambiera.com/forum.php?t=1734
http://www.renater.fr/?lang=en
http://www.renater.fr/?lang=en
http://www.adobe.com/products/player_census/flashplayer/
http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK;jsessionid=994D5D961333BD2704CAFB0359011FA3
http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK;jsessionid=994D5D961333BD2704CAFB0359011FA3
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://citeseer.ist.psu.edu/538355.html;
http://citeseer.ist.psu.edu/538355.html;
http://people.sc.fsu.edu/~jburkardt/data/ply/ply.html

3DStream 10th semester VGIS PROJECT

[11] Xavier Décoret, François Sillion, Frédo Durand, and Julie Dorsey. Bill-
board clouds, June 2002. Available from: http://artis.imag.fr/
Publications/2002/DSDD02.

[12] Dreamingwell.com. Rich internet applications statistics, May 2011.
Available from: http://riastats.com/.

[13] Wikipedia english. 3d scanner, May 2011. Available from: http://en.
wikipedia.org/wiki/3D_scanner.

[14] Wikipedia english. Mokomokai [online]. May 2011. Available from:
http://en.wikipedia.org/wiki/Mokomokai.

[15] David Flanagan. JavaScript, the definitive Guide. O’Reilly, 5th edition,
August 2006.

[16] Fraunhofer Institute for Computer Graphics. X3dom instant 3d in the
html way, May 2011. Available from: http://www.x3dom.org/.

[17] Google. O3d plug-in api (deprecated). Available from: http://code.
google.com/intl/fr/apis/o3d/.

[18] Google. Webgl implementation of o3d, May 2011. Available from: http:
//code.google.com/p/o3d/.

[19] Khronos group mailing list. Public webgl, gl oes element index uint
[online]. February 2011. Available from: https://www.khronos.org/
webgl/public-mailing-list/archives/1102/msg00094.html.

[20] GSMA. Future challenges for universal service, broadband for
all, April 2011. Available from: http://www.europarl.europa.
eu/document/activities/cont/201104/20110420ATT18222/
20110420ATT18222EN.pdf.

[21] Khronos. Opengl es 2.0 release announcement, March 2007.
Available from: http://www.khronos.org/news/press/releases/
finalized_opengl_es_20_specification/.

[22] Khronos. Khronos releases final webgl 1.0 specification [online].
March 2011. Available from: http://www.khronos.org/news/press/
releases/khronos-releases-final-webgl-1.0-specification.

[23] Khronos. Webgl specification [online]. March 2011. Available from:
http://www.khronos.org/registry/webgl/specs/latest/.

60/66

http://artis.imag.fr/Publications/2002/DSDD02
http://artis.imag.fr/Publications/2002/DSDD02
http://riastats.com/
http://en.wikipedia.org/wiki/3D_scanner
http://en.wikipedia.org/wiki/3D_scanner
http://en.wikipedia.org/wiki/Mokomokai
http://www.x3dom.org/
http://code.google.com/intl/fr/apis/o3d/
http://code.google.com/intl/fr/apis/o3d/
http://code.google.com/p/o3d/
http://code.google.com/p/o3d/
https://www.khronos.org/webgl/public-mailing-list/archives/1102/msg00094.html
https://www.khronos.org/webgl/public-mailing-list/archives/1102/msg00094.html
http://www.europarl.europa.eu/document/activities/cont/201104/20110420ATT18222/20110420ATT18222EN.pdf
http://www.europarl.europa.eu/document/activities/cont/201104/20110420ATT18222/20110420ATT18222EN.pdf
http://www.europarl.europa.eu/document/activities/cont/201104/20110420ATT18222/20110420ATT18222EN.pdf
http://www.khronos.org/news/press/releases/finalized_opengl_es_20_specification/
http://www.khronos.org/news/press/releases/finalized_opengl_es_20_specification/
http://www.khronos.org/news/press/releases/khronos-releases-final-webgl-1.0-specification
http://www.khronos.org/news/press/releases/khronos-releases-final-webgl-1.0-specification
http://www.khronos.org/registry/webgl/specs/latest/

3DStream 10th semester VGIS PROJECT

[24] Adobe Labs. 3d apis for adobe flash player and adobe air [online].
May 2011. Available from: http://labs.adobe.com/technologies/
flashplatformruntimes/incubator/features/molehill.html.

[25] Christian Luksch. Implementation of an improved billboard cloud al-
gorithm, July 2009. Available from: http://www.cg.tuwien.ac.at/
research/publications/2009/LUKSCH-2009-BBC/.

[26] Vangelis Kokkevis Matt Papakipos. The future of o3d [online].
May 2010. Available from: http://blog.chromium.org/2010/05/
future-of-o3d.html.

[27] Louvre museum. About the louvre: Behind the scenes, museum curator,
May 2011. Available from: www.louvre.fr.

[28] NeA. Webgl - part 1: A new challenger appears. . . , February
2011. Available from: http://insanitydesign.com/wp/2011/02/13/
webgl-part-1-a-new-challenger-appears/.

[29] NextEngine. Nextengine scanner specifications, May 2011. Available
from: http://www.nextengine.com/products/scanner/specs.

[30] Christophe Porteneuve. Pragmatic guide to JavaScript. The pragmatic
programmers, November 2010.

[31] Andor Salga. Webgl browser stress tests using processing.js, May
2010. Available from: http://asalga.wordpress.com/2010/05/24/
webgl-browser-stress-tests-using-processing-js/.

[32] Rich Sharples. Java is finally free and open [online]. June 2008. Available
from: http://blog.softwhere.org/archives/196.

[33] Simple3D. Simple3d [online]. 2006. Available from: http://www.
simple3d.com/.

[34] StateUniversity.com. Museum curator job description, May 2011.
Available from: http://careers.stateuniversity.com/pages/548/
Museum-Curator.html.

[35] Giles Thomas. Webgl lesson 1 - a triangle and a square, 2011. Available
from: http://learningwebgl.com/blog/?p=28.

61/66

http://labs.adobe.com/technologies/flashplatformruntimes/incubator/features/molehill.html
http://labs.adobe.com/technologies/flashplatformruntimes/incubator/features/molehill.html
http://www.cg.tuwien.ac.at/research/publications/2009/LUKSCH-2009-BBC/
http://www.cg.tuwien.ac.at/research/publications/2009/LUKSCH-2009-BBC/
http://blog.chromium.org/2010/05/future-of-o3d.html
http://blog.chromium.org/2010/05/future-of-o3d.html
www.louvre.fr
http://insanitydesign.com/wp/2011/02/13/webgl-part-1-a-new-challenger-appears/
http://insanitydesign.com/wp/2011/02/13/webgl-part-1-a-new-challenger-appears/
http://www.nextengine.com/products/scanner/specs
http://asalga.wordpress.com/2010/05/24/webgl-browser-stress-tests-using-processing-js/
http://asalga.wordpress.com/2010/05/24/webgl-browser-stress-tests-using-processing-js/
http://blog.softwhere.org/archives/196
http://www.simple3d.com/
http://www.simple3d.com/
http://careers.stateuniversity.com/pages/548/Museum-Curator.html
http://careers.stateuniversity.com/pages/548/Museum-Curator.html
http://learningwebgl.com/blog/?p=28

3DStream 10th semester VGIS PROJECT

[36] Tiobe. Tiobe programming community index for may 2011, May
2011. Available from: http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html.

[37] Web3D. Vrml97 functional specification and vrml97 external author-
ing interface (eai) international standard iso/iec 14772-1:1997 and
iso/iec 14772-2:2002. Available from: http://www.web3d.org/x3d/
specifications/vrml/.

[38] Web3D. X3d international specification standards. Available from:
http://www.web3d.org/x3d/specifications/x3d/.

62/66

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.web3d.org/x3d/specifications/vrml/
http://www.web3d.org/x3d/specifications/vrml/
http://www.web3d.org/x3d/specifications/x3d/

Appendices

63

Planning

64

3DStream 10th semester VGIS PROJECT

Figure 5: Specific planning

65/66

3DStream 10th semester VGIS PROJECT

Figure 6: Global planning

66/66

	Acknowledgements
	Preface
	Introduction
	Project overview
	Purpose of the study / Problematics
	Domains involved in the study
	PLY files
	Introduction to PLY file format
	The digital Michelangelo Project
	PLY file format

	JavaScript

	Paper overview
	Requirements analysis
	Pre-requisites
	User characteristics
	Software system features
	Use case

	Candidate technologies
	Technologies based on heavy clients
	Technologies displaying 3D shapes in a web browser
	Flash
	Java
	O3D
	VRML / X3D
	WebGL
	Image displaying, server rendering
	Decision based on the requirements

	Streaming optimization
	Bandwidth concerns
	PLY file reduction

	Additional information
	Data storage
	Planning

	Design
	WebGL
	WebGL libraries benchmark
	Decision

	Database / File
	Mock-ups

	Implementation
	Server side
	Client side
	File preparation
	Javascript arrays
	File chunks

	Viewer
	XB-PointStream PLY parser
	X3DOM with JavaScript arrays
	X3DOM with direct DOM injection

	Performance test
	Comparison between several browsers
	Firefox 4
	Internet Explorer 9
	Google Chrome

	Comparison between two different configurations
	Testing machine configurations
	Results

	Comparison with two different model sizes
	Complete benchmark results

	Bibliography
	Appendices

