

Preface

This master thesis is the result of the specialization year in the Database and
Programming Technology group at the Department of Computer Science at
Aalborg University, written by Morten Bested, Benjamin Krogh and Andreas
Weisberg.

The topic of this thesis is ensuring quality and consistency of database de-
signs using automated evaluations and techniques.

The thesis builds upon our experiences from our SW9 project in which we
constructed a preliminary prototype. Here we unify the experiences from the
two semesters. Most of the work in this thesis is original. However, the following
sections are updated or rewritten from our SW9 project. The related work in
Section 2 is updated, the architecture in Section 5.1 is rewritten, the report
examinations of phpBB and PrestaShop in Section 6.2.1 and 6.2.2 are rewritten
and the evaluation of the naming convention analysis in Section 6.3 is updated.

The CD attached to this thesis contains the tool, relevant reports, and a
readme file.

DBLint: A Tool for Automated Analysis of Database Design

Morten Bested, Benjamin Krogh, Andreas Weisberg

Department of Computer Science,
Aalborg University, June, 2011

ABSTRACT
Evaluating the quality and consistency of a database schema
by a manual review is time-consuming and error-prone. To
accommodate this challenge, we propose DBLint, a fast,
configurable, and extensible tool for automated analysis of
database design. DBLint is fully implemented and includes
46 design rules derived from good database design practices.
The rules discover design errors, which are collected as is-
sues and presented in an interactive report. The issues are
used to calculate a score for each table and an overall score.
The scores are based on the severities of the issues, their
location in the schema, and a table-importance measure.
DBLint has been tested extensively on more than 35 real-
world schemas, identifying a large number of relevant issues.
Developers from four organizations have evaluated DBLint
and found it to be useful and relevant, in particular the over-
all score and report. To the best of our knowledge, DBLint
is a significant improvement over existing schema-checking
tools.

1. INTRODUCTION
A good database design is a fundamental requisite for

achieving good data quality [6], thus it is important to put
effort into the design of a database. However, maintaining
the quality of an evolving database schema is a difficult chal-
lenge. If the schema is maintained by different developers,
and there are no clear agreements on design principles, the
quality of the schema design may degenerate over time. Pos-
sible issues that arise throughout development are missing
foreign keys, different data types between columns in foreign
keys, and redundant indices. As the schema size increases,
the challenge of ensuring the quality by manual reviewing
becomes both time-consuming and error-prone.

This paper describes DBLint, an automated and DBMS
independent tool for analyzing database designs. The main
purpose of DBLint is to ensure consistency and maintain-
ability of database designs by identifying bad design pat-
terns. These patterns are expressed as rules that analyze
a schema’s metadata and the data stored in the database.
DBLint’s main output is an interactive report containing a
list of all the discovered design issues.

To illustrate many of the pitfalls facing a database de-
signer, consider the MySQL schema in Figure 1 containing
the two tables users and posts.

The DBLint tool detects 15 design issues in this example,
several non-obvious. The issues reported are the following,
grouped by severity.

create table use r s (
user name varchar (32) ,
id varchar (32) primary key ,
emai l1 varchar (32) ,
emai l2 char (32) default ’ ’ ,
l a s t v i s i t e d p o s t int ,
`msn#` varchar (0)) ;

create table pos t s (
date datetime ,
p o s t i d int unique ,
s ub j e c t varchar (31) ,
postText varchar (1500) ,
u s e r i d varchar (10) ,
index i x i d (p o s t i d) ,
index i x i d s u b j e c t (pos t id , s ub j e c t) ,
foreign key (u s e r i d)

references use r s (id)) ;

alter table use r s add
foreign key (l a s t v i s i t e d p o s t)

references pos t s (p o s t i d) ;

Figure 1: A database design with multiple issues.

Critical A table without a primary key, a varchar column of
length zero, and different data types between a source
and a target column.

High A char column with the empty string as default value,
and columns not following the naming convention.

Medium Different data types in a sequence of columns
(email1 and email2), inconsistent maximum length
of varchar columns, a redundant index, too many nul-
lable columns in the same table, and a nullable and
unique column.

Low An identifier containing a special character, a varchar
column with too large maximum length, a cyclic de-
pendency between the two tables, a column named
with a reserved word from SQL, and a primary-key
column not positioned first.

DBLint is envisioned to be used by developers to quickly
catch common design errors, e.g., as part of a unit-test suite.
Analyzing schema metadata is very fast and can be per-
formed quickly to verify the design before deployment. A
developer team can control the quality of a schema by ex-
pressing their design principles as rules in DBLint. Further-
more, DBLint can be used in a training environment to help

1

newcomers to understand and avoid common design errors.
DBLint’s data analysis can be used on deployed databases to
find data quality issues that arise when the system is used.

The three main principles of DBLint are: (1) Low con-
figuration, which ensures a low initial cost of using DBLint.
(2) Domain-independence, which ensures general applica-
bility. (3) Rule extensibility, which enables DBLint to be
adapted to specialized environments. An example of a low-
configuration and domain-independent rule is the naming-
convention checker that automatically discover the conven-
tion used and detects inconsistencies.

We introduce a metric score that summarizes the overall
quality of a schema. The score is based on the design is-
sues reported and a table-importance measure. The score
can be used to compare different schema versions or design
alternatives. DBLint also assigns a score to each table, such
that the most problematic parts of the schema can be easily
identified.

DBLint has been evaluated on 35 real-world schemas, of
which 14 widely used schemas are compared. Three of these
schemas have been examined thoroughly, and it is verified
that DBLint reports a large number of relevant issues. This
proves the need for a static analyzer to help the database
designer develop a consistent and maintainable database de-
sign. Furthermore, DBLint has been tested by four devel-
oper teams with very positive results. The developers found
particularly the database score to be a motivational factor
that encourages team members to compete on quality.

To summarize, the main contributions of this work are the
following.

• A bundled collection of 46 design rules, experimentally
validated to be relevant and generally applicable.

• A pluggable and extensible rule system.

• An overall score, rating database designs between 0%
and 100%.

• A comparison of 14 real-world and widely used schemas.

The paper is organized as follows. In Section 2, the related
papers and tools are described. In Section 3, the design rules
are presented together with a discussion about the difference
between metadata rules and data rules. Furthermore, three
of the design rules are presented. In Section 4, the approach
for assigning the database design scores is presented. In Sec-
tion 5, the architecture of the system is presented together
with discussions about interesting parts of the system, such
as DBMS independence, data extraction and rule execution.
In Section 6, DBLint is tested with respect to the relevance
of issues and with respect to performance. Furthermore, a
comparison of 14 real-world database designs is discussed.
In Sections 7 and 8, we discuss and conclude upon the find-
ings of this work.

2. RELATED WORK
DBLint is a tool, and it is thus relevant to discuss the

other tools that DBLint is inspired by. We have not found
any academic paper that thoroughly addresses automatic
diagnosis of database design. However, attempts have been
made to quantify what a good data model is. These are
relevant even though the approaches taken are different than
ours. Following are two sections describing the related tools
and related academic papers.

2.1 Tools
The main source of inspiration is a number of existing

tools from other domains. The original Lint program was
written to detect bugs and obscurities in C programs [12].
Lint-like tools have since been made for many other pro-
gramming languages such as Python [27] and Java [15]. The
idea of reporting obscurities or inconsistencies through static
analysis is very similar to ours, except that DBLint is for a
different domain. The original Lint examines source code,
while DBLint examines database schemas. The relation be-
tween Lint and DBLint becomes clearer when considering
that a DBMS is comparable to a compiler in that it captures
errors, but does not care about inconsistencies or other bad
design decisions. FindBugs [1], a Lint-like tool for Java, has
provided inspiration on how to build a system that supports
extensible rules, or “bug patterns” in FindBugs jargon.

SchemaSpy [7], SchemaCrawler [8], SQL Auditor [31] and
Database Examiner [30] are all tools for analyzing schemas.
SchemaSpy and SchemaCrawler are open-source tools that
provide limited Lint-like functionality for schemas. The core
features of these are extraction and presentation of database
metadata, and they do not provide a thorough analysis of
the database’s design. SQL Auditor and Database Exam-
iner are commercial tools with a purpose similar to that of
DBLint, but DBLint differs in five main areas. (1) An exten-
sible rule system that allows quick development of additional
rules. (2) Automatic consistency checks, e.g., a naming con-
vention rule. (3) Combined metadata and data analysis.
(4) A scoring system rating database designs. (5) A table-
importance measure. Furthermore, SQL Auditor supports
only SQL Server, and Database Examiner supports only en-
terprise DBMSs. DBLint supports four widely used DBMSs:
MySQL, Oracle, PostgreSQL, and SQL Server.

2.2 Academia
An effort has been put into the development of methods

that quantifies the quality of a data model or a relational
schema using a set of metrics. [25] and [5] propose and
evaluate three metrics for estimating the maintainability of
relational schemas. These are simple measures such as the
number of attributes and foreign keys in the schema. Com-
pared to our work, we give a broader estimation of quality
as we include the result of 46 rules.

[21] has identified 25 metrics for evaluating the quality of
a schema for quality factors such as understandability, cor-
rectness, and implementability. However, the metrics rely
on manual evaluation as most of these cannot be measured
automatically. An example of such a metric is the number
of user requirements not represented in the data model. To
calculate this number, a complete set of requirements must
be available and evaluated against the data model manually.
The strength of the manual approach is that it is possible
to identify design problems that are hard to find automat-
ically. However, our focus has been to develop a tool that
evaluates a database design automatically. We regard the
two approaches as complementary because they identify dif-
ferent design problems.

[32] presents a tool for validating schemas in SQL Server.
Schemas are verified according to properties such as non-
redundant integrity constraints. The number of properties
verified is limited, but similar checks could be adopted in
DBLint.

2

3. DATABASE DESIGN RULES
The rules in DBLint focus on the design of the database

and are based on the following sources.

Good practices [29] and [6] describes good practices in
designing a database, such as: a primary key on each
table, check constraints enforcing data integrity, and a
consistent naming convention. [16] discuss the impor-
tance of agreeing on design conventions and practices
in programming. The concept from [16] can be ap-
plied to database designs, where a similar agreement
for a database design enhances the quality of the final
result.

Antipatterns [13] describes several antipatterns that should
be avoided, e.g., storing lists in varchar columns and
unnecessary indices.

Experience Through interviews with experienced database
developers and extensive analysis of many existing data-
base designs, several obscurities have been identified,
such as self-referencing primary keys and different data
types between source and target columns in foreign
keys.

The severity of the design rules are different because some
rules find issues that indicate problems with the data in-
tegrity, while others just indicate small deviations in the
design. To accommodate these differences the design issues
are categorized into four severity levels: low, medium, high
and critical. The severities are used to categorize and ar-
range the issues in the report, and to calculate the scores.
The four severity levels are defined as follows.

Critical Used on issues potentially leading to compromised
data integrity.

High Used on issues indicating a design that deviates sig-
nificantly from good database design practice.

Medium Used on issues that contradicts good design prac-
tice.

Low Used on issues indicating minor inconsistencies and
issues not influencing the integrity of the data.

3.1 Metadata and Data Analysis
This section describes the possibilities when analyzing

metadata compared to analyzing the actual data. Meta-
data analysis gives access to the structure of the database.
This allows DBLint to analyze how the tables are related,
what keys and indices the tables have, how data types are
used, etc. This information forms a good base for consis-
tency checks of the database design.

When including data from the database into the analysis,
many new possibilities are introduced. These possibilities
include simple data type checks, such as analyzing varchar
columns for string encodings of other data types, and more
complex analyses such as finding outlier data.

Metadata analysis can be performed at any time, hence it
is useful in a development process. To perform a meaningful
data analysis the database must contain real data. This
means that the data analysis is not suitable in development,
but can be used when the database is in production.

There is a performance aspect when considering the dif-
ferences between metadata and data analysis. Metadata

analysis can be performed in seconds, whereas data analysis
is much more time-consuming, depending on the size of the
database.

3.2 Rule Overview
DBLint has 46 rules: 27 metadata rules, listed in Table 1;

and 19 data rules, listed in Table 2. The rightmost columns
in the two tables show the severity for each rule, ranging
from critical (C) to low (L). An argumentation for the rel-
evance of each metadata rule can be found in Appendix A,
and for each data rule in Appendix B.

Metadata Rule S

1 Missing Primary Keys C
2 Different Data Type Between Source and Tar-

get Columns in a Foreign Key
C

3 Varchar Columns of Length Zero C
4 Inconsistent Naming Convention H
5 Inappropriate Length of Default Value For

Char Columns
H

6 Redundant Foreign Keys H
7 Table With Too Few Columns H
8 Too Big Indices H
9 Too Many Nullable Columns H
10 Too Long Column Names M
11 Nullable and Unique Columns M
12 Cycles Between Tables M
13 Inconsistent Max Lengths of Varchar Columns M
14 Self-Referencing Primary Key M
15 Inconsistent Data Types in Column Sequence M
16 Missing Column in a Sequence of Columns M
17 Primary- and Unique-Key Constraints on the

Same Columns
M

18 Redundant Indices M
19 Too Short Column Names M
20 Too Many Text Columns in a Table M
21 Foreign-Key Without Index L
22 Primary-Key Columns Not Positioned First L
23 Use of Reserved Words From SQL L
24 Different Data Types for Columns With the

Same Name
L

25 Use of Special Characters in Identifiers L
26 Table Islands L
27 Too Large Varchar Columns L

Table 1: Metadata Rules.

3.3 Rule Examples
To demonstrate the wide range of rules in DBLint, three

rules are described. The first is a simple rule to get started,
and the following two are more advanced rules.

A common trait of the three rules is that they focus on
consistency. The first on ensuring consistency among maxi-
mum length of varchar columns, the second on ensuring that
data in the database is uniform, and the third on ensuring
that the naming convention for identifiers is used consis-
tently. Additionally, an implementation of the rule “Nul-
lable and Unique Columns” is given in Appendix F.

3.3.1 Inconsistent Max Lengths of Varchar Columns
One of the metadata rules that help keeping the design

consistent, is the rule that examines all varchar columns,

3

Data Rule S

28 Duplicate Rows in a Table C
29 Storing Lists in Varchar Columns C
30 Wrong Representation of Boolean Values C
31 Defined Primary Key is not a Minimal Key H
32 Redundant Columns H
33 All Values Equals the Default Value H
34 Not-Null Columns Containing Many Empty

Strings
H

35 Numbers or Dates Stored in Varchar Columns H
36 Empty Tables M
37 Mixture of Data Types in Text Columns L
38 Columns With Only One Value L
39 All Values Differ From the Default Value L
40 Inconsistent Casing of First Character in Text

Columns
L

41 Unnecessary One-to-One Relational Tables L
42 Column Values from a Small Domain L
43 Large Unfilled Varchar Columns L
44 Missing Not-Null Constraints L
45 Column Containing Too Many Nulls L
46 Outlier Data In Column L

Table 2: Data Rules.

and compares the maximum lengths to find columns with
small deviations.

Consider the example in Figure 1. The example contains
four varchars columns of length 32, and one of length 31.
The column of length 31 is a deviation from the majority of
varchar columns and is therefore considered a design issue.
This rule finds issues in many real-world schemas, e.g. Dru-
pal, where 78 columns are of length 255, while 2 columns
are of length 254. Small deviations in the column defini-
tions such as these, may cause misunderstandings between
developers.

This rule is a good example of a simple rule that is capable
of analyzing large schemas to find inconsistencies. The same
analysis could be done by hand, but would be more time
consuming.

3.3.2 Outlier Detection
An interesting data analysis is detection of values that

seems to be deviating from the general data in the database.
Such values can be characterized as outliers, based on the
definition from [11]. The intuition is that outlier data indi-
cates missing check constraints or data integrity problems.
Examples of this are: city names containing numbers, and
dates that are much different from the majority of dates.

Many of the approaches for detecting outliers are based on
knowledge about the data domain, and what possible kinds
of outliers the data may contain. Because DBLint is domain
independent, these approaches are insufficient. [14] and [3]
present techniques for performing outlier detection based
on distance measures in a multidimensional space. Such a
solution requires the data in the database to be converted
into points, which can be done for columns of any type.
Using a multidimensional space makes it possible to include
many different properties of the data, such as string length
and word count.

In [14] an outlier is determined using a global view on
the data set. An object is said to be an outlier if a certain

fraction p of the other objects in the data set lies greater
than distance D from the examined object. Because this
approach uses a global view there are several limitations. In
Figure 2, the strategy from [14] will only be able to detect
object o1 as outlier, because of the short distance from ob-
ject o2 to cluster C2. To use this approach the variables p
and D must be specified in advance, making the approach
less suitable, because p and D relies heavily on the domain.
[3] presents an approach that requires less configuration be-
fore the analysis, and does not result in a binary value spec-
ifying if an object is an outlier or not. Instead [3] introduce
the term Local Outlier Factor (LOF) that gives each object
in the data set a degree of being outlier, based on its nearest
neighborhood. This means that in Figure 2 object o2 is also
determined to be an outlier because its neighborhood is a
dense cluster that it is not a part of. An advantage of [3]’s
approach is that the analysis is not bounded by a constant
distance to determine outliers. However, the analysis needs
to know the size of the neighborhood.

C

C
o

o

1

2
2

1

Figure 2: Data set containing two clusters, C1 and
C2. There are two outliers, a global outlier o1 and a
local outlier o2. The figure is based on [3].

The approach taken in DBLint is to represent the data
as points in a multidimensional space and then apply LOF
to find outliers. The capability of finding local outliers is a
clear advantage in the case of DBLint, as it is applicable to
unknown data.

Finding Outlier Data with DBLint. When analyzing the
data, each column is analyzed individually. This is done to
limit the scope of the analysis and because it is difficult to
correlate columns without prior knowledge.

To be able to use the data it must be converted into a point
representation. Many different approaches can be used to
convert a value into a point. For instance, a string can be
converted based on its: length, number of words, average
word length, and the number of numeric values. This con-
version can be seen as an abstraction of the data.

The analysis is performed table-wise, with a single scan
over all rows in the table. The scan constructs an R-tree [10]
for each column that is used in the LOF analysis. After the
analysis, all values with a LOF larger than a configurable
threshold are reported as outlier data.

3.3.3 Naming Convention Rule
A consistent naming convention is an important feature

of a maintainable database design [29]. However, manually
examining all identifiers to find inconsistencies is a time-
consuming process, and for this reason, DBLint includes a
rule for checking the consistency of the naming convention.

4

The rule is designed such that it automatically discovers the
convention used and reports inconsistencies. The naming
convention rule is a good example of a zero-configuration,
domain independent, and non-trivial design rule.

Automatic detection of a naming convention is non-trivial
because it involves aspects such as consistent use of do-
main specific terms, syntax, and abbreviations. To create
a domain-independent, zero-configuration rule, the focus is
limited to casing, word separators, and symbols.

The idea is that identifiers adhering to a naming con-
vention, can be described by a grammar similarly to the
grammars used in programming languages. These gram-
mars usually consist of production rules that uses tokens
as well as other production rules. DBLint does not know
which grammar is used, and therefore needs a method of
building the grammar from identifiers. To simplify the prob-
lem, the first step in the approach is to tokenize an identi-
fier into a sequence of predefined token types. The token
types used in DBLint are: begin, lowerword, underscore,
uppperchar, symbol and end. The intuition behind using
these tokens is that similar identifiers produce near identi-
cal sequences of tokens. For instance, tokenizing either of
the identifiers post id and user name from the example in
Figure 1, yields the following sequence of tokens: (begin,
lowerword, underscore, lowerword, end).

The second step in the approach is to extract the nam-
ing convention from the lists of tokens. DBLint is able to
extract and represent a naming convention in two different
ways. Both methods use the tokenized identifiers, and have
been tested with similar results. The two approaches are
described in the following sections.

Markov-Chain Representation. The first approach uses
a first-order Markov chain [28] to represent the naming con-
vention. A state represents a token and a transition rep-
resents the probability of going from one token to another.
Figure 3 shows an example of a Markov-chain representing a
consistent naming convention of lowercase words separated
by underscores, e.g., user name.

1

lower

word

under

score
begin end

0.55

1

0.45

1

lower

word

under

score
begin end

0.23

1

0.45

upper

char

0.0125

1

Figure 3: A consistent naming convention. Used in
MediaWiki, Drupal, and Magento.

The Markov-chain representation of the naming scheme
is used to locate identifiers not following the main conven-
tion. Intuitively, an identifier not adhering to the convention
will at some point follow a transition with a low probability.
This is illustrated in Figure 4. The inconsistency is indicated
by the transition with low probability from lowerword to
upperchar. Identifiers following such low-probability tran-
sitions are reported as issues in DBLint.

Trie Representation. The second approach to represent a
naming convention is a trie, also known as a prefix tree.
A trie usually contains strings, but in this case it contains
tokenized identifiers. Figure 5 shows a trie for the same
schema as in Figure 4. Lowercase words are represented by w

1

lower

word

under

score
begin end

0.55

1

0.45

1

lower

word

under

score
begin end

0.234

1

0.753

upper

char

0.013

1

Figure 4: Markov-chain representation of an incon-
sistent naming convention. This example is from
Joomla.

and uppercase characters are represented by C. The numbers
indicate how many identifiers follow a specific path.

The trie is used to find the most common naming conven-
tion by following the path with highest numbers. In Fig-
ure 5, the naming convention would be w w, that is a lower-
case word followed by an underscore, followed by a lowercase
word. Identifiers following a different path in the tree, such
as registerDate, will be reported as issues.

w

w_ wC

wCww_w

219

557

5

_

w

w

C

w

Figure 5: Trie representation of an inconsistent
naming convention. This example is from Joomla.

The advantage of a Markov chain over a trie is that a
Markov chain can represent naming conventions of infinite
length. The advantage of a trie over a Markov chain is that
a trie can model more complex naming conventions, such as
every other word being uppercase. DBLint defaults to the
Markov-chain representation, but can be configured to use
the prefix tree.

3.4 Table Importance
A property of most schemas is that some tables are more

important than others [33, 34]. Knowing which tables are
the most important is useful in several places in DBLint,
and thus methods of identifying these tables will be an im-
provement over assuming equality of all tables.

An important table have the following traits: it has a
high connectivity in the schema graph, meaning that many
other tables are connected to the table [34]; it has a high
cardinality [34]; the entropy of the table is high [33].

DBLint uses two approaches for approximating impor-
tance: the PageRank algorithm [4] on the graph defined
by foreign keys; and the table data importance metric de-
scribed in [33] that in addition to foreign keys also considers
the data stored in the tables. The mechanism used depends
on the configuration of DBLint: if data is to be analyzed,
DBLint uses table data importance, otherwise PageRank.

5

Both approaches are normalized such that the sum of all
tables’ importance is 100. The table importance metric is
primarily used by DBLint in the following areas.

Naming Convention A naming convention is derived from
a list of identifiers, as described in Section 3.3.3. The
influence that each identifier has on the naming con-
vention is determined by the importance of the table,
such that important tables contribute more to the con-
vention than peripheral tables.

Scoring The scoring system, as will be described in Sec-
tion 4, weights design issues such that an issue in an
important table is considered more severe. This is
based on the assumption that changes or errors are
likely to propagate to other tables. For instance, a
primary key with an inappropriate data type is less
severe for a peripheral table, compared to an impor-
tant table where the primary key is referenced by many
tables.

3.4.1 The PageRank Algorithm
With only metadata available, the approximation of ta-

ble importance is based solely on foreign keys. Interpret-
ing a schema as a directed graph, makes it possible to use
the PageRank graph centrality algorithm [4] for computing
a ranking of each vertex. Specifically PageRank calculates
the relative likelihood of visiting a given vertex by randomly
following edges, and sometimes jumping to a random vertex
in the graph. PageRank was originally developed for esti-
mating the relative importance of web-pages based on the
link graph. Though PageRank is a centrality approximation
algorithm, it is used to estimate the importance of tables in
DBLint. The intuition is that a central table is also likely
to be an important table, because other tables will depend
on it.

PageRank assigns a numerical weight to each vertex in a
directed graph based on the weights of its neighbors. The
weight of a vertex, i.e., its PageRank, is calculated through
a number of iterations. Each vertex, with m outgoing edges,
gives in each iteration 1

m
of its PageRank to each connected

vertex. It terminates when the difference between the weights
from two iterations is lower than a predefined constant.

A fundamental assumption of PageRank is that a website
u linking to another website v corresponds roughly to u say-
ing that v is important. In the context of DBLint, this is
also assumed to be true, such that a table f with a foreign
key to table p, corresponds to f saying that p is important.
This is based on the fact that a foreign-key ensures an in-
clusion dependency relationship, yielding a strong relation
between the two tables.

For PageRank to be useful on a database, it is assumed
that most foreign-keys are specified in the schema. If many
foreign keys are not specified this approach will degenerate,
until each table has a rank of 1

n
, n being the number of

tables. We have observed a lack of foreign keys in some
schemas, and thus some cases in which PageRank does not
yield useful information.

3.4.2 Table Data Importance
Using both metadata and data makes it possible to use the

approach described in [33], from now on referred to as Table
Data Importance (TDI). TDI is a more suitable approach
than PageRank, because PageRank has some problems with

dimension tables such as zip codes and status types re-
ceiving too high rating, and many-to-many relation tables
receiving too low because they have no ingoing edges. TDI
solves these problems by (1) reading foreign-keys as undi-
rected, and (2) assigning weights to foreign-key relationships
according to the information content of the attributes in the
relation. For instance, consider a schema with the two ta-
bles users and zip codes, and a foreign-key from users to
zip codes. PageRank would not assign much importance to
the users table due to no ingoing foreign-keys, whereas TDI
would transfer importance from zip codes back to users

again. For a more in depth description of this algorithm
please refer to [33].

Without foreign keys, TDI assigns a weight relative to
the information content in the table, hence if there is data
in the database it still yields a useful result, compared to
PageRank. A negative aspect of TDI is that it requires a
full scan of all data, which makes this algorithm orders of
magnitude slower than PageRank.

4. SCORING
DBLint provides a metric that summarizes how well a

database design follows the rules. An overall database score
is given as a number between 0% and 100%. A higher score
indicates a better design. A score for each table is also given,
such that the most problematic parts of the database can
be identified. Database designers will benefit from a score
in the following ways.

• The score reveals the overall state of the schema. This
information can be used to determine whether more
work needs to be put into the database design in gen-
eral.

• Different schema versions or design alternatives can
easily be compared using the scores. For instance,
the database designer can see whether a number of
schema changes have improved the overall quality of
the schema or degraded it. An example of this can be
seen in the transition from Drupal 6.20 to 7.0, in which
the score decreased from 60% to 53%.

• The team can use the score to agree on a minimum
acceptable score for tables. This is an easy way to
assure quality of tables when extending or modifying
the database.

• A score for each table reveals the most problematic
areas of the database design. This can be used to
direct the focus onto the tables that contribute most
negatively to the overall score.

• The team can use the score as a motivational factor or
to encourage competition between developers. This
was observed when evaluating DBLint in developer
teams.

The score is not a complete and correct measure of quality.
The purpose of rules is not to asses quality, but to find design
issues. Therefore, a low score should primarily be seen as
an indication of the schema having quality issues.

6

4.1 Score Calculation
DBLint uses a bottom-up approach for calculating the

scores. A database can be considered a hierarchy or a tree
with the database as root, and schemas, tables, and columns,
as the second, third and fourth level of the tree, respectively.
The score of either a database, a schema, or a table is cal-
culated by aggregating the scores of the nodes below it. For
instance, the score of a schema is based on the scores of its
tables, and the score of a table is based on the scores of its
columns. As a consequence, DBLint calculates an overall
score for the database as well as a score for each schema,
table, and column.

All scores are based on the issues found by the rules. A
database with many critical issues will generally score less
than a database with only a few low-severity issues. All
issues specifies where in the schema the problem is located,
e.g., column x uses a special character in the identifier or
table y does not have a primary key. In DBLint, this is
called an issue context, and issues affect only the score of
the context in which they are found. The argument for this
is that an issue on only a small part of the schema, e.g.,
a column, should not have as much impact on the overall
score compared to an issue relevant for the whole schema,
e.g. no foreign keys in database. The former issue is called
a column-level issue and the latter is called a schema-level
issue. The impact that each issue has on the score of its
context is determined by its severity.

The score is chosen to be a number between 0% and 100%,
to make it understandable to the user and comparable across
databases. To achieve this, the scores in DBLint follow an
exponential decay curve, illustrated in Figure 6. The figure
shows the relationship between the total penalty given for
issues and the score. The scoring functions are described
below.

40

60

80

100

sc
o
re

0

20

40

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2

sc
o
re

penalty

Figure 6: The eksponential decay curve used for
calculating scores.

Column Score. A column starts with a 100% score, that
is reduced for each column-level issue. The column scoring
function for at column c is defined as follows.

scorec(c) = 100e−pc(c)

where

pc(c) =
∑
iss∈c

penaltyc(iss)

Each issue is assigned a penalty, determined by the func-
tion penaltyc. The function pc summarizes the penalties of
all issues in the given column.

Table Score. The table scoring function calculates an aver-
age of its columns, and reducing table-level issues from this
average. The table scoring function for a table t is defined
as follows.

scoret(t) =

∑
c∈t scorec(c)

|t.columns| · e
−pt(t)

where

pt(t) =
∑
iss∈t

penaltyt(iss)

|iss.tables|

|t.columns| is the number of columns in table t, while
|iss.tables| is the number of tables sharing issue iss. The
intuition behind the formula is that since a table consists of
columns, the score should reflect the quality of these. The
maximum score a table can get is the average of the score of
its columns. This average is further reduced by table level
issues, e.g., a missing primary key.

The penalty of an issue is divided if the issue is shared
between multiple tables. For instance, if there is a cyclic
dependency between two tables, the two participating tables
shares the penalty.

Schema Score. The score of a schema is calculated by tak-
ing the weighted average of its tables, and reducing this
average for each schema-level issue. The schema scoring
function for a schema s is defined as follows.

scores(s) =

∑
t∈s scoret(t) · w(t)∑

t∈s w(t)
· e−ps(s)

where

ps(s) =
∑
iss∈s

penaltyt(iss)

|iss.schemas|

The weight of a table reflects its importance as described
in Section 3.4, meaning that an important table will con-
tribute more to the score than a peripheral table. The ar-
gument for this is that important tables are expected to be
queried often, referenced by other tables, or store a lot of
data. Therefore, such tables should have a higher influence
on the score than other tables. The table weight function is
defined as follows.

w(t) = max(1,
√

timp)

The table importance timp is a number between 0 and
100, provided by the table-importance algorithm. To pre-
vent some tables from having too much impact on the score
compared to others, the square root of the table importance
is used. This problem becomes evident when considering the
schema for a system such as the open source ERP system
Openbravo. Using PageRank on this schema, approximately
1 percent of the tables receive 75% of the importance. The
most important table receives an importance value three or-
ders of magnitude larger than a peripheral table without

7

incoming foreign keys. While the weight should reflect table
importance, we do not believe that using the importance
value directly is a fair and well-balanced approach. There-
fore, we compute the square root of the importance value to
prevent important tables from having too much influence. A
minimum value of 1 prevents peripheral tables from having
too little influence.

Database Score. The overall database score is calculated
by averaging the score of its schemas, and reducing this aver-
age for each issue at the database level. The scoring function
for a database d is defined as follows.

scored(d) =

∑
s∈d scores(s)

|d.schemas| · e
−pd(d)

where

pd(d) =
∑
iss∈d

penaltys(iss)

Penalty Functions. The penalty functions used in the for-
mulas above take an issue as input and returns a number,
depending on the severity of the issue. A penalty function
decides how rapidly a score approaches zero. The penalty
function for schemas is given below.

penaltys(iss) =

0.29 if severity(iss) = critical
0.22 if severity(iss) = high
0.16 if severity(iss) = medium
0.10 if severity(iss) = low

The constants defined in this function are determined
through an empirical study of the 14 schemas in Figure 13,
such that the average score of all databases in the data-set
is 50%. This means that if the overall score of a database
is larger than 50%, the database design is considered above
average. Similar penalty functions for tables and columns
are shown in Appendix C.

5. SYSTEM OVERVIEW
This section describes the architecture of DBLint and the

responsibilities of the individual components. Furthermore,
this section addresses the challenges of: being DBMS in-
dependent, extracting data from the database, and how to
handle the scheduling of pluggable rules. Finally, the inter-
active report is described.

5.1 Architecture
DBLint has a layered architecture, shown in Figure 7, that

divides the system’s responsibilities into four low-coupled
layers. The result is a flexible and maintainable architecture
without ties to any concrete DBMS. The architecture is a
non-strict layered architectures in that the UI Layer uses
components from all three layers below it.

DBLint supports four common database systems, with
minimal DBMS-specific code. New DBMSs can be sup-
ported by implementing an interface, effectively encapsulat-
ing all DBMS specific code. The rule system uses a plug-in
architecture that decouples the rules from the rest of the
system. This decoupling makes the system highly extensi-
ble and maintainable.

The architecture of DBLint is divided into two parts:
DBLint and Data Sources. Data sources are external data-
bases from which the Extractor retrieves the metadata and
the data, which rules are checked against.

The boxes in DBLint on the figure represents separate lay-
ers. Each layer is further divided into sub-components such
as Controller and Model Builder. As shown, rules are not
considered a part of the DBLint core. Instead, the rules are
loaded at run-time, represented by an arrow on the figure.
The following sections describe the layers in more detail.

DBLint Architecture

Data Sources

DBLint

E
x
tr
a
c
ti
o
n

L
a
y
e
r

Oracle MySQL PostgreSQL

Generic Database Interface

Extractor

M
o
d
e
l

L
a
y
e
r

Model Builder

Model

U
I

L
a
y
e
r

Report Main GUI

R
u
le

L
a
y
e
r

SQL Server

Controller Issue Collector

Rules & Providers

Plug-ins

Standard Rules

User Rules

Providers

db1 db2 db3 db4

Figure 7: The layered architecture of DBLint. Rules
are plug-ins loaded at run-time. Data sources are
the external databases that DBLint examines.

5.1.1 Extraction Layer
The Extraction Layer’s main responsibility is connect-

ing to a database, extracting metadata, and allowing data
access. The Extraction Layer is a generic database in-
terface that allows DBLint to process databases from dif-
ferent DBMSs in a uniform way. It handles all differences
between different DBMS systems, such as loading DBMS
specific drivers and accessing metadata.

5.1.2 Model Layer
The Model Layer consists of the two components: Model

and Model Builder. The Model component is a collection of
classes used to represent, for example, tables, columns, and
indices. The Model Builder instantiates these classes using
metadata from the Extraction Layer, thereby constructing
an in-memory database model. This model is the main data
structure used when expressing rules. The model is a fast
and convenient way of accessing the database structure while
being completely DBMS independent.

5.1.3 Rule Layer
Rules and providers are decoupled from DBLint and writ-

ten as plug-ins, increasing the maintainability and flexibility

8

of the architecture. The definitions of rules and providers
are the following.

Rule Definition A rule is an independent piece of code
that reports design issues each time a violation of the
rule occur. The rule examines the database design
based on the in-memory database model. Further-
more, rules can access the data in the database. Rules
are independent of each other, but can specify depen-
dencies to providers.

Provider Definition A provider is similar to a rule, but
instead of reporting design issues, a provider exposes
additional information about the schema or the data.
Providers can be used when multiple rules need the
same information about a schema. For instance, if
two rules need information about table importance, a
provider can run the analysis and expose the informa-
tion to both rules.

New rules and providers can be added easily due to the
plug-in architecture, even by third-party developers. This
is especially useful for companies that have their own con-
straints, which need to be enforced by specialized rules.

The main task of the Controller is to schedule rules and
providers for execution. Rules are scheduled to be executed
in parallel if possible. The Controller resolves dependen-
cies between rules and providers, and ensures the right order
of execution. The Issue Collector collects and manages
issues identified by the rules.

5.1.4 UI Layer
The UI Layer contains the user interface of DBLint. This

user interface is used to: configure the database connection,
select schemas and tables to be analyzed, select rules to be
executed, show status of analysis during an execution, and
finally generation of the report.

5.2 DBMS Independence and Database Model
To make DBLint DBMS independent, the extraction layer

specifies abstractions for creating database connection and
extracting metadata and data. The extraction layer is de-
signed as an instance of the abstract factory design pattern
[9], using several abstractions from ADO.NET [18]. The
functionality required to support each DBMS is specified
in an interface. This interface makes it easy to support a
new DBMS, as the only requirement is to implement this
interface and extending the factory to use the new imple-
mentation. The two prerequisites for supporting a DBMS
are that (1) it has an ADO.NET data provider implementa-
tion and (2) the DBMS provides a mechanism for extracting
metadata.

A generic model of the database is used to make DBLint
DBMS independent, such that rules can analyze the database
design regardless of which DBMS the metadata comes from.

5.2.1 In-Memory Database Model
The in-memory database model is an object representa-

tion of the database design that provides a uniform repre-
sentation of database objects such as tables, columns, and
referential constraints. The model support most common
database concepts, but due to time constraints it does not
represent User Defined Types (UDT), check constraints or
views.

The database model is a lightweight representation of a
database; each table uses on average 20 kB of memory, in-
cluding information about database objects such as columns,
indices, and keys.

5.2.2 Metadata Extraction
The SQL standard defines the information schema, which

is a number of system tables containing relevant metadata
about the database’s definitions [17]. Given the purpose of
these standardized system tables, it should be easy to ex-
tract most of the data needed. However, most DBMSs have
insufficient implementations of the standard, and extracting
the full information requires querying DBMS specific sys-
tem tables. In addition, the standard does not specify all
the information needed to construct the model, e.g., index
information.

Besides the differences in the structure of the system ta-
bles, there are also many differences in how metadata is rep-
resented. Boolean values, data-type definitions, referential
constraints, update and delete rules, and so on, are often ex-
pressed differently. DBLint handles these differences in the
extraction layer, where there is an implementation of the
extraction interface for each DBMS. This makes the layers
above the extraction layer DBMS independent.

5.3 Data Extraction
Analyzing the data in a database gives a better insight

into the usage of the database, than only analyzing meta-
data. However, data analysis poses the following challenges.

1. Handling large data sets.

2. Keeping a simple data interface.

3. Limiting the number of data scans.

4. Maintaining DBMS independence.

Challenge 1 is to consider the performance aspect when
implementing data rules. This is in contrast to metadata
rules that have a very small overhead. Furthermore, if a
rule stores a local copy of each row from a database, then
DBLint is effectively limited by main memory, therefore this
should be avoided.

Challenge 2 is to maintain the plug-in type of rule def-
initions. Every complication of this interface, e.g., due to
resource cleanup or thread synchronization, is a deviation
from the principle that DBLint should be easy to extend.

Challenge 3 is to reduce the number of data scans, such
that each row is only extracted once from the database. This
is necessary to reduce the load on the database server as
well as the network traffic. Furthermore, extracting each
row only once may prove to be an optimization, if network
bandwidth is a bottleneck.

Challenge 4 is to maintain DBMS independence, such that
rules use the same interface regardless of DBMS. This is dif-
ficult due to different handling of data types depending on
DBMS. Therefore, DBLint must translate rows from differ-
ent DBMSs into a uniform format.

When a metadata rule is executed, it analyzes the com-
plete database before returning. A data rule cannot examine
the complete database in the same manner due to the pos-
sibly large data sets and multiple scans. Instead data rules
only examine one table at a time. A data rule is therefore
executed multiple times, once for each table in the database.

9

This way, the Controller in the Rule Layer fully controls
which tables are to be examined when.

We hypothesize that it is faster to limit examinations to
one table at a time, than it is to analyze multiple tables at a
time. The intuition behind this hypothesis, is that it allows
the DBMS to fill its cache memory with data from that table
alone [22], thus reducing reads from persistent storage.

Rules access data, using the construction shown in Fig-
ure 8. Besides being relatively simple, this construction has
the following advantages: it disposes the resources required
to extract data, e.g. closing connections; it uses the well-
known language constructs using and foreach; and finally
it allows testing of different hypothesis about data extrac-
tion.

using (var rows = t ab l e . GetTableRows ())
foreach (var row in rows)
{

i f (row [” user name ”] != . . . //Snip
}

Figure 8: Code showing how to access rows from a
table.

5.3.1 Data Extraction Strategies
The simplest implementation of the GetTableRows method

in Figure 8, would be to return a data reader of a SELECT *

FROM statement. This approach is illustrated by Figure 9a.
It has the advantage of simplicity, but the disadvantage of
all rules fetching all data from all tables.

Rule 1

Rule 2

Rule 3

rowi

rowi

rowi

(a) Simple extraction

Row
Fetcher

Rule 1

Rule 2

Rule 3

rowi

rowi

rowi

rowi

(b) Advanced extraction

Figure 9: Two strategies for data extraction.

In DBLint, rules are synchronized behind the scenes, such
that only one data reader is created for each table, instead of
having each rule creating a new data reader. The rows from
this reader are distributed to all the rules enumerating the
rows in the table. This is illustrated in Figure 9b. When a
rule has processed enough rows to determine if there is an
issue, it can cancel the enumeration by breaking out of the
foreach loop. The using declarative then notifies the Row

Fetcher, which then removes the rule from the set of rules
enumerating the table.

5.4 Rule Scheduling
Each rule can specify dependencies to providers, and each

provider can specify dependencies to other providers. A
provider cannot expose the additional information about the

schema to rules, before it has been executed. Therefore
the order of execution is important and simply executing
all rules and providers in parallel is inadequate. DBLint
handles this problem by scheduling rules and providers such
that all dependencies are fulfilled automatically.

Dependencies among rules and providers are represented
as a dependency graph, in which rules and providers are
represented as vertices, and a dependency from rule A to
provider B is represented by an arrow from A to B. This
is illustrated by the example in Figure 10. There are two
rules in this example, the missing primary-key rule without
dependencies and the inconsistent naming-convention rule
with a dependency to the table-importance provider.

Naming

Convention

Rule

Table

Importance

Provider

PageRank

Provider

Table Data

Importance

Provider

Missing

Primary

Key Rule

Missing

Primary

Key Rule

PageRank

Provider

Table Data

Importance

Provider

Table

Importance

Provider

Naming

Convention

Rule

Missing

Primary

Key

PageRank

Provider

Information

Content

Provider

Importance

Provider

Naming

Convention

Rule

Pass 1 Pass 2 Pass 3

Figure 10: Rule and provider dependency graph.

To get a valid execution order, the dependency graph is
sorted topologically, using a post-order depth-first traver-
sal, starting at the nodes without incoming edges. A valid
execution order is an order that satisfies the dependencies
specified by rules and providers. Figure 11 shows one of
the possible solutions when applying the algorithm to the
example in Figure 10.

Naming

Convention

Rule

Table

Importance

Provider

PageRank

Provider

Table Data

Importance

Provider

Missing

Primary

Key Rule

Missing

Primary

Key Rule

PageRank

Provider

Table Data

Importance

Provider

Table

Importance

Provider

Naming

Convention

Rule

Missing

Primary

Key

PageRank

Provider

Information

Content

Provider

Importance

Provider

Naming

Convention

Rule

Pass 1 Pass 2 Pass 3

Figure 11: Topological-sorted dependency graph.
The nodes in the graph are executed from left to
right.

The execution order is parallelized such that rules and
providers without interdependence are executed concurrently.
For instance, in Figure 11 the first three nodes are executed
in parallel, followed by node four and five.

5.5 Rule Configuration
Severities and thresholds in the default configuration of

the rules are determined through an empirical evaluation of
many schemas. However, all settings in DBLint are con-
figurable as a mean to separate mechanisms from policies.
If these thresholds and severities were hardcoded into the
DBLint source code, it would be an argument against the
usefulness of DBLint. Appendix F.1 demonstrates how sever-
ities and thresholds are implemented as configurable fields
in DBLint.

5.6 DBLint Report
After analyzing a database, DBLint reports the results

to the user. This report enables the user to quickly and
intuitively understand the issue at hand, locate where in

10

the database the issue has been found, and provide enough
information to understand why the issue has been raised.

Instead of providing a summary view in the user inter-
face, the issues identified by DBLint are presented in an
interactive HTML report that enables the user to explore
issues, scores, and tables. The main reason for generating
an HTML report is that it is a portable format, that can be
saved and distributed. Furthermore, one of the developer
teams evaluating DBLint requested that it should be possi-
ble to copy and distribute the report among team members.

Figure 12: Summary page for the Drupal 7.0 CMS.
Note that only schema rules are enabled because the
database does not contain data.

5.6.1 Report Views
The report consist of five views: Summary, Issues, Tables,

Rules, and Incremental. The Summary view is shown by the
example in Figure 12. The summary shows the overall score,
the types of issues found, and the most problematic tables.
The summary can be used to gain an overview of the report,
before exploring the issues further.

The issues found are displayed in the Issues view. Issues
are grouped by type, e.g., missing primary key, and sorted
by severity. Each group of issues can be expanded to get
a detailed description of all issues. To further facilitate the

understanding of an issue, it is possible to navigate to a
detailed presentation of the related tables.

The Tables view contains a list of all tables, including
their score, number of issues found, and importance. The list
of tables can be sorted according to each of these properties,
hence the Tables view has a number of uses. For instance,
the most problematic tables in the database can be identified
by sorting the list of tables according to the table score.

The Rules view shows the rules executed, and the number
of issues found by each rule. This view allows the user to
get a quick overview of the executed rules and identify the
ones that reported most issues.

The Incremental view presents changes to the database
between different DBLint runs. If a table has been modified
between two runs, the table is listed in the Incremental view
together with its previous score and the new score. This
is useful for monitoring the quality of the database as the
database evolves. The incremental view also lists new issues,
such that the user can see exactly which issues caused the
score to change.

5.7 Implementation
The implementation is written in C# 4.0 for the .NET

platform, in 16,000 lines of code excluding blank lines and
comments. One of the main reasons for using .NET is Lan-
guage Integrated Query (LINQ), which provides a powerful
querying mechanism, such that rules are able to easily query
the metadata object model.

The report is generated using NVelocity, a template en-
gine for .NET, outputting a collection of static HTML files.
Javascript/jQuery is used to make the HTML files more in-
teractive. The report has been successfully tested in major
browsers such as Chrome, Firefox, Internet Explorer, and
Opera.

6. TESTS
DBLint is tested in order to validate three hypotheses.

The first hypothesis is that the rules in DBLint are appli-
cable in general, i.e., DBLint finds issues in most schemas.
The second hypothesis is that the issues found by DBLint
are relevant. To the best of our knowledge, it is impossible
to give a formal verification of the rules. Instead DBLint
is applied to three widely used systems and the resulting
reports thoroughly examined. This examination is intended
to indicate whether issues are relevant. The third hypoth-
esis, is that DBLint is fast enough to be used repeatedly
throughout development, e.g., as part of a test suite.

Finally, the results of the evaluations of DBLint by four
developer teams are described.

6.1 Database Design Comparison
DBLint has been tested on more than 35 schemas, ranging

from small in-house schemas to large ERP systems, using all
supported DBMSs. DBLint detected issues in all examined
schemas. Out of the 35 schemas, we select 14 well-known
and widely-used systems and compare their scores, shown in
Figure 13. The horizontal axis is logarithmic with respect
to the number of tables, and the vertical axis is the score.
Note that data rules were excluded from this test, because
real-world data sets were not available for all systems.

The result of applying each rule to these 14 schemas can
be used to show the relevance of each rule. Table 7 in
Appendix E shows how many issues each rule detected in

11

Database Score Tuples BytesTransferedLoadingTimeExecutionTimeTotalTime ComplexityIssuesTotalTables Columns MissingPKsIslands

MySQL.wordpress 70 160 0 122 217 339 278 8 11 91 0 11

MySQL.joomla 80 0 0 296 209 505 799 49 34 299 3 5

MySQL.umbraco 60 495 0 253 253 506 823 84 44 231 4 27

mediawiki.mediawiki 38 2836 0 372 227 599 962 78 46 306 29 21

MySQL.cms_made_simple_1_9_4_120 3253 0 239 206 445 947 97 52 225 29 52

phpbb.dbo 61 0 0 228 217 445 1661 41 62 546 11 62

typo.public 56 118 0 491 292 783 2226 98 68 806 2 68

MySQL.drupal 54 1440 2 1011 436 1447 1561 113 73 457 1 73

MySQL.prestashop 57 0 0 622 269 891 1650 138 114 565 21 6

moodle.public 58 1325 0 818 282 1100 5271 150 195 1758 0 195

MySQL.magento 68 1532 1 3048 382 3430 6468 367 300 2502 19 66

MySQL.vtiger 42 7946 0 3609 367 3976 7515 850 442 1939 136 286

openbravo.public 19 70352 0 2644 963 3607 14551 2819 508 9020 0 2

large_erp2.dbo 4 6164421 0 3584 1474 5058 51484 22677 1116 20720 1 1116

49.07143

wordpress

Joomla

MediaWiki

Moodle

Magento

0

10

20

30

40

50

60

70

80

90

10 100 1000

S
co

re
 (

%
)

Number of tables

PrestaShop

CMS Made Simple

Openbravo

vtiger

Commercial ERP

Umbraco phpBB

Drupal
TYPO3

Figure 13: Overall scores of 14 well-known schemas.

the schemas, and the number of schemas that violated each
rule. Rules “Different Data Type Between Source and Tar-
get Columns in a Foreign Key”, “Redundant Foreign Keys”,
and “Varchar Columns With Length Zero” did not detect
any issues. However, the first two of these rules did find is-
sues when DBLint was evaluated by developer teams. Sev-
eral general issues were identified, e.g., on average 15% of all
tables are missing a primary key and on average 65% of all
tables are not participating in any relationship with other
tables. This is surprising as primary/foreign keys are funda-
mental concepts of good relational database design [29]. A
similar list for data rules is shown in Table 8 in Appendix E.
The databases used for this test is the same as the databases
used for performance testing in Section 6.4.2.

6.2 Report Examination
To validate that DBLint finds relevant issues, reports from

analyzing the three systems PrestaShop, phpBB, and Moo-
dle have been examined manually. The three schemas have
been chosen because they are non-trivial and widely used.
PrestaShop has a reasonable amount of foreign keys, while
phpBB does not have any. PrestaShop and phpBB have
only been analyzed by metadata rules, whereas Moodle has
been analyzed by data rules.

The issues in the reports are examined and categorized
into one of the following three categories.

True positive There is evidence supporting that the issue
is a real problem.

False positive There is evidence challenging the issue.

Undecidable Insufficient domain knowledge makes the is-
sue undecidable.

6.2.1 PrestaShop 1.3.3
The PrestaShop issues are summarized in Table 3. The

most important information is the bottom line which states
that out of a total of 139 issues detected, 122 are validated
to be actual design issues in the schema, 11 are undecidable
and 6 are false positives.

It should be noted that the 21 critical issues are tables
without primary keys, 66 of the medium issues are due to
redundant indices, 22 of the low-severity issues are due to
reserved words and 3 low-severity issues are due to primary-
key columns not positioned as the first columns in the table.
The rules detecting these issues cannot raise false positives,

following the intuition that either you have a primary key
or you do not. As such they will not be discussed further.

The issues raised by “Too many nullable columns” and
“Table with too few columns” could not be determined to
be true positives or false positives without better domain
and application knowledge. Hence they are undecidable.

Rule “Inconsistent length of varchar columns” reported
20 columns with length 255 and 3 columns with length 256.
Inspecting the columns (all of them) did not yield any evi-
dence supporting that this difference is justified.

Rule “Table island” raised six issues. We believe that
three of the issues are true positive. The names of the tables
and columns strongly indicate that there should have been
a foreign key, e.g., the column order message lang.id lang

should have referenced lang.id lang. One issue is undecid-
able and the last two issues are false positives; both tables
are independent tables unrelated to other concepts in the
database, such as the alias table used to translate mis-
spelled user search terms.

Rule “Different data types for columns with same name”
reported 12 issues of which six are true positives, such as
the column date upd that appears 12 times as DateTime and
one time as Date. Four issues are considered false positives.
These instances involve columns with names such as “title”
or “description”. Such names can refer to different concepts
depending on context, hence they are false positives. The
last two issues are undecidable. They are reported on the
two tables range price and range weight, which have very
similar definitions. The two tables have the same columns,
indices and foreign keys, but the two columns, delimiter1
and delimiter2 differ in their data types.

True
positive

Undecidable False
positive

Total

Critical 21 0 0 21
High 0 8 0 8
Medium 67 0 0 67
Low 34 3 6 43

Total 122 11 6 139

Table 3: The results of examining the issues for
PrestaShop.

As can be seen in Table 3, false positives are only found
in low severity issues.

6.2.2 phpBB 3.0.7
The issues for phpBB are summarized in Table 4. Note

that the schema for phpBB is smaller than PrestaShop. 41
issues are reported totally, of which 31 have been found to
be true positives, one false positive and nine undecidable.

In the phpBB schema there are no foreign keys, 11 tables
without primary keys, five tables with redundant indices
and one primary key where the columns are not in the same
order as the primary key index. Because of the nature of
these issues they will not be discussed further.

Rule “Table with too few columns” reported one issue: a
table with a single column that is primary-key and appears
to be a foreign key to the users table (inferred from naming
convention). This corresponds to a boolean, i.e., something
that can be modeled using an extra attribute in the users

table. Considering that the users table has 76 columns

12

already, we think that the extra column in that table is
justified. The extra byte could come from the 40 character
varchar column used to store IP addresses.

Rule “Inappropriate length of default value for char col-
umns” reports five issues. These issues are categorized as
undecidable because all five occurrences are char columns of
size 32 with the empty string as default value. This means
that these columns may occupy more space than needed.
However, all these columns are part of primary-keys, which
is seen as a sign of the default value being rarely used.

Rule “Inconsistent max lengths of varchar columns” re-
ported five columns of length 30 and four columns of length
32, but inspection shows that the columns refer to different
concepts, and as such could be justified. On the other hand,
we have not found any evidence indicating that the lengths
are not arbitrary constants, hence the issues are undecid-
able.

Rule “Too large varchar column” reported 15 issues of
which 12 are true positives and 3 are undecidable. We have
tried to estimate the usage of the columns and see whether
it is better, from a performance perspective, to use a CLOB
instead. Instances where the entity is likely to be used with-
out the large varchar field has then been rated true positives.
It should be noted that of the issues reported 13 columns
have a maximum of 4000 characters, and 2 columns have a
maximum of 8000 characters.

Rule “Different data types for columns with the same
name” reports one issue. The issue is a column named code

and is used in two tables with size 8 and 50. The issue has
been rated false positive because code can refer to different
concepts depending on context.

True
positive

Undecidable False
positive

Total

Critical 12 0 0 12
High 1 5 0 6
Medium 5 1 0 6
Low 13 3 1 17

Total 31 9 1 41

Table 4: The results of examining the issues for
phpBB.

The conclusion of examining the reports for PrestaShop
and phpBB, is that the metadata rules detect relevant issues,
with only few false positives. Furthermore, false positives
occur only on issues with low severity.

6.2.3 Moodle 1.9.12
The issues for Moodle are summarized in Table 5. The

Moodle schema has only been analyzed by data rules, and
there are 273 issues in total. 151 issues have been found to
be true positive, 96 undecidable and 26 false positive.

In the analyzed instance of Moodle 126 tables are not in
use, which means that a medium severity issue is reported
for each. These issues are all categorized as true positives
and will not be discussed further.

Four issues are reported by the “Storing lists in character
column” rule and each issue was categorized as true positive.
The lists are storing references to rows in other tables. This
means that the columns are used for one-to-many relations.
These relations should be stored in additional tables, such

that it is possible to use foreign keys to ensure data integrity.
The rule “The empty string used to represent null” re-

ported 34 issues. Five of these are true positives because
the columns are nullable and already contain null values. 29
of the issues are undecidable.

Rule “Number or dates stored in varchar column” re-
ported three issues, of which one is categorized as true pos-
itive. The column tolerance with the default value ‘0.0’
contains only numbers, indicating that the data type should
have been a number. The last two issues are undecidable.
However, the columns only contain numbers.

Rule “All values equals the default value” accounts for 17
issues of which 14 are undecidable. Three issues are false
positives and the columns contain system settings that are
all set to a standard value.

The rule “Redundant column” reports one issue, which
is undecidable. The issue is found on a column containing
947 values that is redundant to a primary key column with
values generated from a sequence.

Rule “Duplicated rows” finds two issues. Both of these
issues are found by excluding the primary key column from
the analysis and both primary keys are sequential integers.
One issue is a true positive where a logging mechanism en-
ters the same row twice into a log table. The second issue
is a false positive, because it occurred on a table used for
extending the system. In the current system the table has
only one column besides the primary key column, and this
column contains a default setting value.

Rule “All values are different from the default value” ac-
counts for 27 issues. Four issues are true positive because
they belong to mandatory columns such as username and
password in the user table. The last 23 issues are catego-
rized as undecidable.

Rule “Large unfilled varchar columns” reported 18 issues
of which three are true positives. These columns contain
data much smaller than the maximum allowed. In two of
the columns the data is a concatenation of the same URL
and a variable hash value. The result is that all values have
the same prefix (the URL) followed by a fixed sized hash
value. In this case the prefix value should be stored in a
new table with a referential constraint and the column with
hash values could be made smaller. The last 15 issues are
undecidable.

The rule “Column values from a small domain” reported
five issues. Three issues are true positives, because the val-
ues stored in the columns are closely correlated, e.g., write
and read. The last two issues are false positives, because
there is no immediate correlation between values.

Rule “Inconsistent casing of first character in text col-
umn” reported four issues. One issue is a true positive,
because it contains e-mail addresses and one of these begins
with a capitalized letter. The last three issues are all cat-
egorized as false positive. An example of a false positive is
an Entity Attributes and Value (EAV) table where the value
column contains a mixture of data types and casing.

Rule “Missing not-null constraint” reported three issues,
of which two are true positives. These issues are found on
columns that appear to be mandatory. The last issue is
undecidable, because it contains last-modified dates. It is
not possible to determine if this also includes the creation
date (such a column is not present in the table), which means
that the column should be mandatory as well.

The rule “Column containing too many nulls” reports nine

13

issues, of which one is a true positive. This is the column
createdby, which appears to be mandatory but contains
few values. Seven issues are undecidable because we cannot
determine if these columns are unnecessary or just not in
use in the current system. The last issue is a false positive.
It belongs to a modifiedby column in a table that has not
been modified yet.

Rule “Column with only one value” reports four issues,
which are all categorized as undecidable.

True
positive

Undecidable False
positive

Total

Critical 4 0 0 4
High 6 46 3 55
Medium 127 0 1 128
Low 14 50 22 86

Total 151 96 26 273

Table 5: The results of examining the data issues
for Moodle.

The result from examining data stored in the Moodle
schema reveals that data rules are more uncertain and that it
is difficult to determine if the issues are true positives. Data
rules reveal interesting information about the data and the
schema design. Much of this information could be used to
present statistical information instead of including it as is-
sues. However, this would require adding new features to
DBLint.

Analyzing the Moodle schema showed that data analysis
faces some challenges when the schema is designed for gen-
eral purposes, which is the case in a Content Management
Systems (CMS). Many of the false positives and undecid-
able issues are due to a range of unused functionality in the
CMS. This is also indicated by the large number of empty
tables.

Outlier Data in Moodle. The data analysis performed on
Moodle does not include the rule that detects outlier data.
The rule has been left out because tests have shown that
this kind of rule conflicts with the principles of DBLint.
The current implementation of outlier detection, with low-
configuration finds data of interest in Moodle. However, it
is difficult to characterize these occurrences as design issues.
An example of outlier data found in Moodle is a column
containing 748 rows with decimal values, of which one value
is 100 and all other values are between zero and 25. Another
example is a column with first names containing 257 rows, of
which the majority is a single word, and one instance where
the name consists of three words.

6.3 Naming Convention
To verify the approach used to find deviations in the nam-

ing convention two schemas are manually examined with
respect to their naming convention. The results of this
are compared with DBLint’s results. The two systems are
Typo3, in which DBLint found 51 naming convention issues,
and Drupal in which there are no issues.

When manually examining the two schemas, we first an-
alyzed all identifiers to determine the naming convention.
Afterwards, all the identifiers were examined again to find
those that deviated from the convention.

Comparing the result from the manual examination and
the results from DBLint using the Markov-chain represen-
tation, we can see that they agree on all inconsistencies.
From this we conclude that the approach taken in discover-
ing naming convention satisfies our intentions.

6.4 Performance
The purpose of the performance tests is to show that

DBLint is a fast tool that is applicable in a development
process. Furthermore, we want to show that the method
used for extracting data and executing rules is efficient with
respect to both time and network traffic.

Test Setup. The setup used for performance testing con-
sists of two machines, a client machine running DBLint and
a database server. The database server is a virtualized Win-
dows 2008 Server with a 2.3 GHz quad core processor and
6 GB RAM. The client machine has a 2.26 GHz dual core
processor with 4 GB RAM, running Windows 7. The client
and server are connected by a 100 Mbps LAN network, and
DBLint is configured to use 20 concurrent connections to
the database server.

6.4.1 Metadata and Data
There is a significant difference in the time it takes to run

metadata rules compared to data rules. This is expected as
the amount of data is possibly much larger than the meta-
data. On average, the metadata analysis takes 1.3 seconds
for every 100 tables. The results are based on the 14 schemas
in Figure 13, and shows that DBLint is suitable for use in
a development process regarding speed. Data analysis takes
on average 2.5 minutes for every 100,000 rows, correspond-
ing to 7 GB/hour.

6.4.2 Data Access and Execution
The purpose of this test is to show that the strategy used

for extracting data and executing rules in DBLint is efficient.
Brief descriptions of each strategy for accessing data and
executing rules are given in the following.

Sequential Rules are executed sequentially one by one.
This method is simple to implement, but is expected
to be slow, and expensive in network traffic because
all rules extract data independently.

Concurrent Rules are executed concurrently and each data
rule runs on multiple tables at the same time. This
method is expected to be faster than the sequential
method because of better CPU utilization.

Table synchronized Rules are executed concurrently on
one table at a time. This is expected to be faster
than the previous method because the database server
should be able to hold the entire table in its cache,
thus minimizing disk I/O on the database server.

Row synchronized Data reads are synchronized such that
each row is fetched once and distributed among rules,
minimizing network traffic.

Data Set. The data set consists of nine databases contain-
ing a total of 9,090,618 rows. Four of these databases contain
test data, totaling 1.25 million rows. A complete list of the
databases in the tests is shown in Table 6.

14

Database Test data Rows

Moodle 93,420
Commercial ERP 6,164,421
vtiger x 7,942
Drupal 1,446,707
Xcart x 64,490
Small e-commerce 128,284
Wordpress 12,530
SASSDM x 1,102,472
Openbravo x 70,352

9,090,618

Table 6: Data sets used for performance evaluations.

BytesLoaded Execution Time

Sequential 18.64797592 52.04953333

Concurrent 18.64295673 36.82246667

Table sync. 18.66183281 34.60298333

Row sync. 3.151348114 23.98765

18,6GB 18,6GB 18,7GB

3,2GB

52min

37min
35min

24min

0

2

4

6

8

10

12

14

16

18

20

0

10

20

30

40

50

60

Sequential Concurrent Table sync. Row sync.

Execution Time

Data Loaded

Figure 14: Comparison of the four strategies used
for extracting data and executing rules.

Results. The results of the test are shown in Figure 14. The
amount of data transferred from the database is shown for
each method, as well as the total execution time. The first
three methods transfer the same amount of data, which is ex-
pected because there is no synchronization of data between
the rules. Executing rules concurrently yield a faster execu-
tion, as shown by the sequential and concurrent execution-
time bars in Figure 14. Synchronizing data rules such that
they run on one table at a time did not yield any significant
improvements. The intuition for this to be faster, is that
the database server should be able to hold the entire table
in its cache and therefore serves data faster. There are three
explanations why it did not improve the execution time. (1)
The database server is not the bottleneck, i.e., the network
and the client machine executing the rules is. (2) There will
be a wait at the end of each table as the fastest rules are
waiting for the slowest rule to complete. (3) Buffer eviction
strategies are optimized for regular OLTP work-loads rather
than full table scans [23, 26].

The row-synchronized method currently implemented in
DBLint, is the most efficient method with respect to both
network traffic and execution time. Significantly less data
is extracted from the database, because rules are able to
share the extracted data. The total execution time is also
improved, possibly due to the reduced network traffic, re-
ducing the network bottleneck.

To conclude, the method used for executing rules and ex-
tracting data in DBLint is efficient in terms of both network
traffic and execution time, compared to executing the rules

sequentially or concurrently without synchronization.

6.5 User Feedback
DBLint has been successfully used to examine eight sche-

mas, developed and used by four organizations. The output
from DBLint was reviewed by senior developers and they ex-
pressed their opinions about the design rules, the discovered
design issues, and the tool itself.

The idea of having a tool assisting the development pro-
cess and giving feedback about the quality of a database
design is good. The developers found it less intimidating to
receive feedback from a tool than from a superior/colleague.

The schema rules implemented in DBLint identified rele-
vant design issues that are considered design errors by the
developers. Examples of such issues are inconsistent lengths
on varchar columns, redundant indices, and different data
types between source and target columns in foreign keys.
The data rules also identified issues, however, many of these
issues could not be characterized as design issues, but more
as additional information about the design. For instance the
use of different data types in a varchar column could often
be justified; however, the ability to give the information that
a column contained a mixture of data types was relevant.

Discussing the main principles of DBLint, our intentions
of making DBLint a low-configuration tool, and the ability
of using it in a matter of seconds was appreciated. The
extensibility of DBLint was also mentioned as an important
feature, making the tool much more adaptable.

Data analysis was included into DBLint to make a wider
analysis and possibly reveal new issues. However, during
the evaluation of DBLint, it was suggested that data anal-
ysis could also be used to monitor how the data evolves.
For instance, a change in the percentage of null values may
require an adaptation of the overlying applications.

Overall, DBLint received positive comments and has prov-
en to be relevant for developers in assisting the development
of better database designs.

7. DISCUSSION
Throughout the tests we made a number of observations

related to the scoring system and outlier detection. These
observations are due to a number of trade-offs in the de-
sign of DBLint, and mark the boundaries of what is pos-
sible within an automated, low-configuration tool, such as
DBLint.

7.1 Scoring
Achieving a fair score that correctly reflects the quality of

a database design, based on issues reported by the rules, is
challenging. A score will necessarily be a trade-off between
many criteria, such as simplicity and completeness. The
score in DBLint is designed to solve many problems, thereby
trading simplicity for completeness. Some of the key aspects
of the scoring system in DBLint are the following.

• The score is independent of the size of the schema,
because the scoring function calculates an average in-
stead of a sum.

• Issues in DBLint have different context, i.e., some is-
sues concern specific columns while other issues con-
cern the schema as a whole. The scoring system takes
this into account by only reducing the score of the rel-
evant context.

15

• Issues are required to specify a severity such that issues
which are less severe do not reduce the score as much
as critical issues.

• Table importance is included when calculating the score
of a schema, such that important tables contribute
more to the score than peripheral tables.

• All scores are given as a number between 0% and 100%,
which is easy to read by the user. This is imple-
mented by making the scores follow an exponential-
decay curve, starting at 100% for databases without
issues.

If a more simplistic scoring system is chosen, some of the
above problems cannot be addressed. An example of a sim-
pler scoring system is one that has a single function incre-
menting a number for each issue in the database. A lower
number would then indicate fewer issues and a better de-
sign. The problem with this approach is that the scope of
each issue will be ignored, e.g., a schema-level issue and a
column-level issue will contribute equally to the score. An-
other problem is that this score is not independent of schema
size.

The scoring system in DBLint does not take the number
of rules into account. This means that the score will drop
as more rules are added. One could argue that the score
should stay the same because the schema is unchanged. On
the other hand, as more rules are added, new problems are
unveiled and the number of issues to correct becomes larger.
Furthermore, it is difficult to take rules into account because
they are very different. For instance, some rules are general
and generate many issues, while others are triggered less
often.

7.2 Experiences with Outlier Detection
DBLint, being a low-configuration tool with domain-in-

dependent rules, conflicts with outlier detection. The prob-
lem is that when converting data into points, all data is
processed equally independently of what is actually stored.
This means that data such as e-mails, titles, and descrip-
tions, are all treated equally. Consider the example where
varchars are converted to points in three dimensions: the
number of words, the average length of words, and the total
length of the varchar. Applying this to a column containing
descriptions makes sense, but not on a column containing
e-mails. On such a column the first dimension will have the
same value for all rows, while the other two dimensions will
be equal for all rows, hence they will likely all be in the
same cluster. This example shows that there is a need for
different conversions depending on the type of data stored
in the columns.

Using the same approach for all columns of the same type
causes too many false positives and may omit other outliers.
It would be possible to make these more complex configura-
tions available in DBLint. It would, however, conflict with
the low-configuration principle of the tool.

8. CONCLUSION
DBLint is a fast, configurable, and extensible tool for

analyzing database designs. DBLint addresses the prob-
lem of time-consuming manual reviews, being an automated
tool containing 46 design rules. The rules are configurable,

DBMS independent as well as domain independent, and ex-
amine both metadata and data. DBLint outputs an inter-
active report that enables the user to browse all detected
issues.

DBLint calculates an overall score as well as on individual
tables, based on the found design issues. A score has a
number of benefits, e.g., developers can be pointed towards
the most problematic parts of the database, or get an overall
idea of how well the given schema is designed.

DBLint has been extensively tested on more than 14 real-
world schemas, identifying a large number of relevant de-
sign issues. Furthermore, DBLint has been tested in four
developer teams with positive results. Several issues were
verified to be relevant, of which some have been corrected
afterwards. The evaluations substantiated our intuition of
a need for a database design verification tool, to assist de-
velopers in keeping a consistent and high quality database
design.

9. FUTURE WORK
Currently, the in-memory database model in DBLint does

not include check constraints, views, and UDTs. Including
these will extend the possibilities of metadata analysis and
give a more complete view of the database design.

Currently, the focus in DBLint is on diagnostics and not
auto-correcting issues. This is because DBLint is unaware
of the impact auto-correction will have to the overlying ap-
plications, which makes it dangerous. However, a possible
extension is to produce SQL code that correct some of the
issues, and display it together with the issue.

The current architecture of DBLint allows for advanced
data analyses such as functional-dependency detection and
inclusion-dependency detection. By implementing these anal-
yses, rules will be able to verify that a database is properly
normalized. Furthermore, these analyses will allow DBLint
to detect missing foreign keys, which was requested during
the user evaluation of DBLint.

The data access methods in DBLint can be extended to
include data sampling, allowing for analysis of much larger
data sets.

10. ACKNOWLEDGMENTS
We would like to thank the database design teams at

Aveva Denmark, House of BI and Atira for evaluating the
DBLint tool and giving feedback. We would also like to
thank Michael M. Hansen from Aalborg University for eval-
uating and discussing the tool.

11. REFERENCES
[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix,

and Y. Zhou. Evaluating static analysis defect
warnings on production software. In Proceedings of
the 7th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering,
PASTE ’07, pages 1–8. ACM, New York, NY, USA,
2007. ISBN 978-1-59593-595-3.

[2] R. Bouman. Finding redundant indexes using the
mysql information schema.
http://www.oreillynet.com/databases/blog/2006/

09/_finding_redundant_indexes_usi.html.

16

http://www.oreillynet.com/databases/blog/2006/09/_finding_redundant_indexes_usi.html
http://www.oreillynet.com/databases/blog/2006/09/_finding_redundant_indexes_usi.html

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. Lof: identifying density-based local outliers.
SIGMOD Rec., 29:93–104, May 2000. ISSN 0163-5808.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Seventh
International World-Wide Web Conference (WWW
1998), 1998.

[5] C. Calero, M. Piattini, and M. Genero. A case study
with relational database metrics. In Proceedings of the
ACS/IEEE International Conference on Computer
Systems and Applications. IEEE Computer Society,
Washington, DC, USA, 2001. ISBN 0-7695-1165-1.

[6] C. Coronel, S. Morris, and P. Rob. Database systems:
design, implementation, and management. Course
Technology Cengage Learning, 2009. ISBN
9780538469685.

[7] J. Currier. SchemaSpy.
http://schemaspy.sourceforge.net.

[8] S. Fatehi. SchemaCrawler.
http://schemacrawler.sourceforge.net.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.
ISBN 0201633612.

[10] A. Guttman. R-trees: a dynamic index structure for
spatial searching. SIGMOD Rec., 14:47–57, June 1984.
ISSN 0163-5808.

[11] D. M. Hawkins. Identification of outliers. Chapman
and Hall, 1980. ISBN 041221900.

[12] S. C. Johnson. Lint, a C Program Checker. In COMP.
SCI. TECH. REP, pages 78–1273, 1978.

[13] B. Karwin. SQL Antipatterns: Avoiding the Pitfalls of
Database Programming. Pragmatic Bookshelf Series.
Pragmatic Bookshelf, 2010. ISBN 9781934356555.

[14] E. M. Knorr and R. T. Ng. Algorithms for mining
distance-based outliers in large datasets. In
Proceedings of the 24rd International Conference on
Very Large Data Bases, VLDB ’98, pages 392–403.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1998. ISBN 1-55860-566-5.

[15] Lint4j. http://www.jutils.com.

[16] S. McConnell. Code Complete, Second Edition.
Microsoft Press, Redmond, WA, USA, 2004. ISBN
0735619670.

[17] J. Melton and A. Simon. SQL:1999: understanding
relational language components. Morgan Kaufmann
series in data management systems. Morgan
Kaufmann, 2002. ISBN 9781558604568. LCCN
2001090723.

[18] Microsoft. Ado.net. http://msdn.microsoft.com/
en-us/library/aa286484.aspx.

[19] Microsoft. Maximum size of index keys. http://msdn.
microsoft.com/en-us/library/ms191241.aspx.

[20] Microsoft. Reserved keywords. http://msdn.
microsoft.com/en-us/library/aa238507.aspx.

[21] D. L. Moody. Metrics for evaluating the quality of
entity relationship models. In Proceedings of the 17th
International Conference on Conceptual Modeling, ER
’98, pages 211–225. Springer-Verlag, London, UK,
1998. ISBN 3-540-65189-6.

[22] MySQL. The innodb buffer pool. http://dev.mysql.

com/doc/refman/5.5/en/innodb-buffer-pool.html.

[23] Oracle. Memory architecture.
http://download.oracle.com/docs/cd/B28359_01/

server.111/b28318/memory.htm.

[24] Oracle. Schema object names and qualifiers.
http://download.oracle.com/docs/cd/B28359_01/

server.111/b28286/sql_elements008.htm.

[25] M. Piattini, C. Calero, and M. Genero. Table oriented
metrics for relational databases. Software Quality
Control, 9:79–97, June 2001. ISSN 0963-9314.

[26] PostgreSQL. Notes about shared buffer access rules.
Internal documentation for V9.0.4 located in:
/src/backend/storage/buffer/README.

[27] Pylint. http://www.logilab.org/857.

[28] L. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[29] A. Silberschatz, H. Korth, and S. Sudarshan.
Database Systems Concepts. McGraw-Hill, Inc., New
York, NY, USA, 5 edition, 2006. ISBN 0072958863,
9780072958867.

[30] D. Software. Database examiner.
http://www.dbesoftware.com.

[31] SSW. Sql auditor.
http://www.ssw.com.au/ssw/SQLAuditor.

[32] E. Teniente, C. Farré, T. Urṕı, C. Beltrán, and
D. Gañán. SVT: schema validation tool for microsoft
SQL-server. In Proceedings of the Thirtieth
international conference on Very large data bases -
Volume 30, VLDB ’04, pages 1349–1352. VLDB
Endowment, 2004. ISBN 0-12-088469-0.

[33] X. Yang, C. Procopiuc, and D. Srivastava.
Summarizing relational databases. Proceedings of the
VLDB Endowment, 2(1):634–645, 2009.

[34] C. Yu and H. V. Jagadish. Schema summarization. In
Proceedings of the 32nd international conference on
Very large data bases, VLDB ’06, pages 319–330.
VLDB Endowment, 2006.

All websites have been accessed may 23, 2011

17

http://schemaspy.sourceforge.net
http://schemacrawler.sourceforge.net
http://www.jutils.com
http://msdn.microsoft.com/en-us/library/aa286484.aspx
http://msdn.microsoft.com/en-us/library/aa286484.aspx
http://msdn.microsoft.com/en-us/library/ms191241.aspx
http://msdn.microsoft.com/en-us/library/ms191241.aspx
http://msdn.microsoft.com/en-us/library/aa238507.aspx
http://msdn.microsoft.com/en-us/library/aa238507.aspx
http://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-pool.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-pool.html
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/memory.htm
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/memory.htm
http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/sql_elements008.htm
http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/sql_elements008.htm
http://www.logilab.org/857
http://www.dbesoftware.com
http://www.ssw.com.au/ssw/SQLAuditor

APPENDIX
A. SCHEMA-RULES ARGUMENTATION

Missing Primary Key
A primary key uniquely identifies rows in tables. Missing a
primary/unique key on a table allows duplication of rows,
which should be avoided. Furthermore, individual rows can-
not be referenced using foreign keys when the table lacks a
primary/unique key. If a table does not contain columns
suitable for a primary key, it is always possible to create a
surrogate key.

Different Data Type Between Source and Target Columns
in a Foreign Key
A foreign key is a relationship between two tables, a source
table and a target table. Values from the source column
is stored in the target column, hence the data type of the
two columns should be the same. However, it is possible
to create a working foreign-key relationship between two
columns of different data types. For instance, a source col-
umn number(8) and a target column number(4). This may
lead to an application crash when inserting data because
the domain of the target column is smaller than the source
column.

Varchar Columns of Length Zero
A column designed to contain no data is simply a bad design
practice. A varchar of length 0 could be used to represent
boolean values, such that the empty string equals true and
a null value equal false. However, there are better and less
obscure ways to model boolean values.

Inconsistent Naming Convention
Using consistent naming of attributes and entities makes
life much easier for the database designer and application
programmers [29]. An inconsistent naming convention com-
plicates writing queries and understanding the schema.

Inappropriate Length of Default Value For Char Columns
A char column always occupies the specified length, even
when the empty string is used. Therefore, char columns
should only be used if the length is small or the size of
the data is known in advance. Otherwise, varchar columns
should be used because they occupy only the space corre-
sponding to the actual data.

Redundant Foreign Keys
Duplicate foreign keys could have contradicting referential
actions, such as CASCADE and SET NULL. Having contradict-
ing referential actions may lead to unforeseen events when,
e.g., deleting rows. Furthermore, if the foreign-keys have
indices the DBMS will have to maintain more indices. A
duplicate foreign key can be deleted with little effort.

Table With Too Few Columns
Tables with zero or one column are suspicious. A table with
zero columns cannot contain any data. A table with one
column can be accepted under special circumstances, but
should generally be avoided.

Too Big Indices
Large indices reduce performance because they are expen-
sive to maintain, and should be avoided when smaller keys
are sufficient. Some DBMSs have a maximum key size on
indices, e.g., SQL Server is limited to 900 bytes per key [19].
In some cases, a large natural primary key can be replaced
with a surrogate key.

Too Many Nullable Columns
In DBLint there are two cases where a table is said to contain
too many nullable columns:

1. All columns are nullable except the primary key columns.

2. A large percentage of the columns are nullable.

The first case is especially bad if the primary key is a single
surrogate key, because a row can contain no useful data. In
the second case, it is likely that the developer forgot to add
the appropriate not-null constraints.

Too Long Column Names
The maintainability of a schema might decrease with long
names, because it makes identifiers harder to remember and
queries more difficult to write. Furthermore, Oracle does
not allow column names to exceed 30 characters [24].

Nullable and Unique Columns
Null in a database typically refers to “value does not ex-
ist” or “value unknown”, and as such should not be allowed
in columns, which have a unique constraint defined. Null
values in unique indices are handled differently depending
on DBMS: Some DBMSs allows zero or one null value in a
unique index, while, e.g., Oracle allows multiple null values.
This difference may be a portability issue, and cause misun-
derstandings among developers of the different DBMSs.

Cycles Between Tables
A cycle can be necessary to model specific data structures,
e.g., a hierarchical structure. However, the developer should
be aware that the cycle exists, because circular dependencies
may cause several problems if deferrability and delete rules
are not considered. These problems are the following.

• If there is a cascade delete on all references, it is possible
to delete all data in the tables.

• If no references are deferred and the columns are manda-
tory, data cannot be inserted.

Inconsistent Max Lengths of Varchar Columns
Inconsistent maximum length of varchar columns is a rule
purely about consistency. Consider an example with 200
columns of maximum length 256 and three columns of length
255. These three columns are deviating from the majority,
and could be 256 without conflicting with the data in the
columns.

Self-Referencing Primary Key
Having a foreign key relation on a primary key column ref-
erencing itself strongly indicates an error. The foreign key
must reference its own row and does not contain any useful
information. Such a foreign key can be deleted without any
loss of functionality or conflicts in the database.

18

Inconsistent Data Types in Column Sequence
A sequence of related columns can be inferred from the
naming, e.g. address 1, address 2, ..., address n. Another
example is columns used for extensibility, e.g., 10 columns
(cust col 1, ..., cust col 10), used to store unforeseen in-
formation after the database is deployed.

All columns in the sequence should have the same data
type to avoid confusion and potential errors. Imagine that
there are 10 columns in a sequence and the third column’s
data type is integer and the others are varchars. This may
result in problems because a developer might mistake the
third column for being a varchar, like the others. Further-
more, varying data types in a column sequence violates con-
sistency.

Missing Column in a Sequence of Columns
If there exist a sequence of columns, e.g., col 1, col 2, ...,
col n, the postfix number should be ordered sequential from
1 to n. If a column is missing from a sequence it has probably
been forgotten or deleted without proper refactoring.

Primary- and Unique-Key Constraints on the Same
Columns
Having a primary- and unique-key constraint on the same
columns makes the unique constraint redundant. The unique
key can be deleted without affecting data integrity.

Redundant Indices
Redundant indices are usually not necessary. A redundant
index is an index where the sequence of columns is a prefix
of another index, e.g., the index inx a(col 1) is redundant
to inx b(col 1, col 2). Having redundant indices is a per-
formance issue because the DBMS needs to maintain more
data structures than necessary. There are exceptions where
a redundant index is reasonable, but most likely it can be
deleted without any problems. [2]

Too Short Column Names
Columns should be named with meaningful and distinct
names [29]. This makes it easy to read and understand
the data model and queries. Very short column names have
a tendency to consist of abbreviations or letters that have
certain meaning in the development team. However, these
columns are not very maintainable and make queries less
understandable.

Too Many Text Columns in a Table
LOB columns containing text are used to store large string
values. Normally they will only take up the space they need,
however the data are stored outside the table, and hence it
requires an additional I/O for each value. If a table contains
a large number of these columns it could indicate that the
developer were unaware of the different data types.

Foreign-Key Without Index
When deleting/updating a row from the referenced table,
the DBMS checks that the specific row is not referenced, and
takes corresponding action depending on the delete/update
rule. This check must look-up values in the referencing table,
which requires a full table scan if an index does not exist.
Having an index on the foreign-key columns will make this
look-up faster.

Primary-Key Columns Not Positioned First
It is convention to position the primary-key columns first
[29]. The order of columns in a table is important for read-
ability purposes. A related case is when a table contains
a sequence of columns, such as (address 1, address 2, ...),
and it is natural to place the columns ascending based on the
postfix number. Similarly placing the primary-key columns
first makes it possible to quickly see how rows are uniquely
identified.

Use of Reserved Words From SQL
Reserved SQL keywords such as date and from should be
avoided when choosing identifiers [20]. Avoiding reserved
SQL keywords in identifiers makes the queries more readable
and names will not need to be escaped in queries.

Different Data Types for Columns With the Same Name
A column’s name often refers to a concept, hence when the
same name is used with different data types the represen-
tation of that concept is inconsistent. Possible errors that
could arise include implicit casts.

SQL clauses such as natural join and using, matches col-
umns based on names. Without care two columns could
easily be matched, which will make implicit casts.

Generic names such as value and content, do not neces-
sarily refer to the same concepts.

Use of Special Characters in Identifiers
Special characters in identifier names should be avoided, ex-
cept the character ‘ ’ for the following two reasons.

• Identifiers must be escaped in queries.

• Identifiers cannot be mapped directly into program-
ming languages.

In practice there are almost no good reasons for using
special characters instead of an understandable/describing
name. For instance, a product table containing a column
with products numbers, could be named ‘#’ but a better
solution would simply be product no.

Table Islands
Having a connected schema graph means that the data is
related. If the schema is not connected it is possible that
one is trying to model two separate concepts or businesses.
In that case it is better to extract the table islands into
separate schemas.

Too Large Varchar Columns
Large varchar columns are a problem because they may
cause the row to overflow resulting in chaining. Chained
rows are slower to extract from the database as they require
additional I/Os.

B. DATA-RULES ARGUMENTATION

Duplicate Rows in a Table
Duplicate rows in a table are not desirable [29], because they
require additional space and may lead to an inconsistent
state. In DBLint the check for duplicate rows is divided
into two categories:

19

Pure duplication A row is duplicated if the entire row is
represented in the table more than once.

Semi duplication A row is a semi-duplicate if two rows
contains the same data, when ignoring the auto-incre-
ment primary-key column. Semi-duplication shows that
the same data is present but are identified in different
ways.

Duplicate rows indicate problems in the way data is val-
idated when modified. Pure-duplicate rows can be deleted
from the database, saving storage space.

Storing Lists in Varchar Columns
Storing lists in varchar columns is recognized as an anti-
pattern in [13], and it is a violation of the first normal form
[29]. It indicates that the overlying application has logic that
handles such a list. However, in a database context such a
list should be modeled using a second table, with a one-to-
many relation. Furthermore, if the list is used to reference
rows in another table, it is not possible for the DBMS to
enforce referential constraints on the relation. This means
that the list can reference a row that no longer exists, leading
to problems in the overlying application.

Wrong Representation of Boolean Values
A boolean value is either true or false, i.e., it is possible
to represent the value with only one bit. Not all DBMSs
have a data type for boolean values, e.g., Oracle, resulting
in many alternative ways of storing booleans. We have ob-
served booleans stored in char and varchar columns using
any of the following values: (true, false), (yes, no), (t, f), (y,
n), (j, n), (1, 0), (2, 1).

A good boolean representation is both unambiguous and
space efficient. Words are space inefficient, hence ruled out.
The convention from the C programming language, i.e., (1,
0) for true and false respectively is a possibility. This rep-
resentation is, however, problematic as it relies on the pro-
grammer being an experienced C programmer. We see the
(2, 1) representation as testament to this problem. Instead,
single char columns with values such as (t, f) or (y, n) could
be used. This requires only one byte and is unambiguous.

Another aspect of representing booleans is that is should
be consistent across the schema, i.e., it should not be a mix-
ture of chars, words and numbers.

Defined Primary Key is not a Minimal Key
A primary key is a minimal superkey [29]. If the defined
primary key is not a minimal superkey, it means that it is
possible to identify a row with fewer attributes. Using a su-
perkey instead of a primary key is even less attractive when
other tables need to reference it. Each of the referencing ta-
bles will need to hold more information than actual needed,
resulting in using more space and less efficient indices.

Redundant Columns
A table with two or more columns containing the exact same
values for all rows indicates that one or more columns are
unnecessary. If one of the columns is in a unique key or pri-
mary key, it indicates a third normal-form violation [29].

All Values Equals the Default Value
If all values in a column equal the default value, then the
entropy of the column is equivalent to the column containing

only empty strings. This is seen as indicative of the overlying
application ignoring this field. If the column is unused it
should be removed to prevent cluttering of the design and
to save space.

Not-Null Columns Containing Many Empty Strings
If a varchar column has a not-null constraint, it is manda-
tory. If the column contains many empty strings, it in-
dicates that the overlying application circumvents this re-
striction. This could be the result of misunderstandings
between application and database developers. Modeling un-
known or nonexistent values with the empty string should
be avoided.

Numbers or Dates Stored in Varchar Columns
If a varchar column contains only numbers or dates, it in-
dicates that an incorrect data type is chosen. Choosing a
more strict data type ensures better data quality.

There are design patterns, such as the EAV, that uses
the varchar data type to store many different data types.
However, if the column contains numbers or dates exclu-
sively, it indicates that the data type of the column could
be changed.

Empty Tables
A table without data clutters the design unnecessarily. Note
that this only applies to regular tables, and not to temporary
tables.

Mixture of Data Types in Text Columns
Having a varchar column that contains a mixture of data
types can be necessary in some design situations, such as
when using EAV where multiple data types are stored in
the same column. However, in general this is seen as the
overlying application modeling different concepts using one
column.

Columns With Only One Value
If a column contains only one value it indicates a possible
redundancy. However, there are exceptions to this rule, such
as columns with boolean values, or columns containing only
values from a small domain. An example of this could be
all users having the same time zone.

All Values Differ From the Default Value
If the default value differs from all values in a column, the
default value is not used. The default value could be a legacy
from an earlier design. Removing the default value from the
column definition should not affect the overlying applica-
tion. Values from a small domain such as booleans are an
exception to this, because of cases where, e.g., a table users

have an activated column. This column will have the de-
fault value ‘false’, but all users will be activated and hence
have the value ‘true’.

Inconsistent Casing of First Character in Text Columns
If the casing of the first character differs in a text column, is
a sign of data quality issues. For instance, it could indicate
that the overlying application does not validate user input,
such as e-mails correctly.

20

Unnecessary One-to-One Relational Tables
Modeling a one-to-one relation with a relational table con-
necting two entities is often unnecessary. If the relational
table covers most values in one of the source tables, the
relation could be modeled using an additional column.

Column Values from a Small Domain
If a varchar column contains values from a small domain,
the data could come from an enum structure. Some DBMSs
supports the enum data type that should be used instead. If
the enum type is unavailable on the used DBMS, the column
should have a check constraint ensuring that the column
only contains allowed values.

Large Unfilled Varchar Columns
The maximum length of a varchar should be selected such
that it matches the data that are stored in the column. If the
data in the column only uses less than half of the maximum
length, the column width could be decreased.

Missing Not-Null Constraints
If a column is defined to be nullable without containing any
null values, the column should be declared with the not null
constraint. This is possibly due to the designer forgetting
to add a not-null constraint.

Column Containing Too Many Nulls
A column with very few values could indicate functionalities
rarely used or legacy columns.

Outlier Data In Column
Outlier data may indicate missing check constraints or dirty
data. When a column contains data that deviates from the
majority, it may be generated by another mechanism. To
avoid that a process stores dirty data, the definition of the
column could be made more strict by adding check con-
straints.

C. SCORING PENALTY FUNCTIONS
The penalty function for tables pt is defined as follows.

penaltyt(iss) =

1.40 if severity(iss) = critical
1.00 if severity(iss) = high
0.80 if severity(iss) = medium
0.60 if severity(iss) = low

The penalty function for columns pc is defined as follows.

penaltyc(iss) =

1.60 if severity(iss) = critical
1.40 if severity(iss) = high
1.20 if severity(iss) = medium
1.00 if severity(iss) = low

D. SUMMARY
Real world database schemas are often very complex, and

therefore difficult to create and maintain without making
errors. However, some errors can be detected automatically,
thus lowering the burden on the developer. In this paper,
we propose DBLint, an automated tool designed to assist
developers when developing schemas, such that they avoid

many common pitfalls. The targeted audiences include both
new and experienced database developers.

DBLint comes with 46 database design rules. Of these,
27 analyze schema metadata and 19 analyze the data in the
database. The set of analyses range from straight-forward
checking of specific properties such as “does this table have
a primary key?”, to non-trivial analysis such as “detect the
naming convention and find deviations” and “detect outliers
in the given data set”.

DBLint has a flexible, extensible and layered architecture.
The architecture ensures DBMS independence, while pro-
viding access to metadata and data. A major aspect of the
architecture is that it handles as much as possible for rules,
such that they are kept simple. Examples of this include
that each rule may specify a number of configurable op-
tions that DBLint identifies, saves, and restores across runs.
Rules are plug-ins, loaded and executed at run-time.

When all rules have been executed, DBLint generates a
report with the detected issues. This report is an interac-
tive HTML document, and an intuitive and effective way of
reading issues. The report is effective because it, in addition
to describing issues, also describes the analyzed database.
For instance, when examining a redundant index, the full
metadata information of the related table is available.

The report contains an overall score that summarizes all
detected issues in the schema. The score is between 0%
and 100%. This score is aggregated over all issues detected,
whether they are on the schema, table or column level. The
score is calibrated such that a score of 50% corresponds to
the average schema. The score is normalized with respect
to the size of schema, hence two schemas of different size
can be compared directly without corrective measures. In
addition to the total score, a score for each table is given,
such that the most problematic tables can be identified.

We have compared the issues found in 14 schemas from
widely-used systems. From this comparison we have made
the interesting observation that many schemas do not use
foreign-keys, and many tables do not have a primary-key
declared. This is surprising, as these concepts are funda-
mental database concepts. This observation clearly demon-
strates the need for DBLint. In addition to this quantitative
study, we perform a qualitative study. Three reports from
analyzing the metadata and data of three open source sys-
tems have been examined thoroughly and we conclude that
DBLint finds many relevant issues and that the noise-to-
signal rate of DBLint is low with only few false positives.

DBLint has been successfully evaluated by four organiza-
tions, with positive feedback regarding: the rules, the low-
configuration principle, the score and the report.

Finally we have evaluated the performance of DBLint,
showing that roughly 100 tables/second can be analyzed
when only considering metadata. When considering data
approximately 4 · 104 rows/minute can be analyzed.

E. RULE SUMMARY
Table 7 shows the number of issues found by each rule

when running DBLint on the 14 schemas from well-known
systems. The column ‘C’ shows the total issue count and the
column ‘S’ shows the number of schemas violating each rule.
Table 8 contains a similar list of data rules when running
DBLint on nine databases containing both real-world and
test data.

21

Metadata Rule C S

1 Missing Primary Keys 256 11/14
2 Different Data Type Between Source

and Target Columns in a Foreign Key
0 0/14

3 Varchar Columns of Length Zero 0 0/14
4 Inconsistent Naming Convention 64 5/14
5 Inappropriate Length of Default

Value For Char Columns
21 3/14

6 Redundant Foreign Keys 0 0/14
7 Table With Too Few Columns 152 7/14
8 Too Big Indices 229 6/14
9 Too Many Nullable Columns 197 9/14
10 Too Long Column Names 13 2/14
11 Nullable and Unique Columns 13 4/14
12 Cycles Between Tables 11 1/14
13 Inconsistent Max Lengths of Varchar

Columns
21 9/14

14 Self-Referencing Primary Key 2 1/14
15 Inconsistent Data Types in Column

Sequence
1 1/14

16 Missing Column in a Sequence of
Columns

2 2/14

17 Primary- and Unique-key Constraints
on the Same Columns

6 1/14

18 Redundant Indices 249 13/14
19 Too Short Column Names 6 1/14
20 Too Many Text Columns in a Table 4 3/14
21 Foreign-Key Without Index 2408 2/14
22 Primary-Key Columns Not Posi-

tioned First
1179 11/14

23 Use of Reserved Words From SQL 1726 13/14
24 Different Data Types for Columns

With the Same Name
576 12/14

25 Use of Special Characters in Identi-
fiers

19814 1/14

26 Table Islands 421 14/14
27 Too Large Varchar Columns 264 5/14

Table 7: Metadata Rules.

F. SAMPLE RULE CODE
This section shows the code for the rule “Nullable and

Unique Columns”. Additionally it shows how to implement
configurable fields in a rule.

Figure 15 shows the code for the rule. It extends the
abstract class BaseSchemaRule that requires two properties
and one method to be overridden: Name, Severity, and
Execute. The Name property specifies the name of the rule
that is visible in the DBLint rule selection window, as well
as in the Rules view in the report. The Severity property
specifies the default severity of the rule that can be config-
ured in the user interface. Finally, the Execute method is
the actual rule implementation.

Line 1-17 is boilerplate code and will not be discussed
further. Line 18-28 iterates over all columns that are both
unique and nullable; and Line 20-27 reports an issue for each
of these columns. Note how the description of the issues is
handled in line 22-25. The Description object takes a string
similar to a format string, but its parameters may be objects
such as tables and columns.

F.1 Configurability

Data Rule C S

28 Duplicate Rows in a Table 17 6/9
29 Storing Lists in Varchar Columns 5 2/9
30 Wrong Representation of Boolean

Values
668 4/9

31 Defined Primary Key is not a Minimal
Key

0 0/9

32 Redundant Columns 156 7/9
33 All Values Equals the Default Value 126 4/9
34 Not-Null Columns Containing Many

Empty Strings
2265 8/9

35 Numbers or Dates Stored in Varchar
Columns

767 7/9

36 Empty Tables 1372 8/9
37 Mixture of Data Types in Text

Columns
812 8/9

38 Columns With Only One Value 36 9/9
39 All Values Differ From the Default

Value
391 8/9

40 Inconsistent Casing of First Character
in Text Columns

425 8/9

41 Unnecessary One-to-One Relational
Tables

0 0/9

42 Column Values from a Small Domain 113 9/9
43 Large Unfilled Varchar Columns 388 9/9
44 Missing Not-Null Constraints 312 8/9
45 Column Containing Too Many Nulls 299 7/9

Table 8: Data Rules.

Figure 16 shows how the configurable options from the
rule “Too big index” are implemented. A special class,
Property<T> is used that takes a type parameter T. T can be
any of the following: bool, int, float, string, or Severity.

The constructor for Property<T> requires three arguments:
The title of the property, the default value (of type T), the
description and optionally a function used to validate values.

These properties are extracted using Reflection and con-
figurable via the user interface. Additionally, DBLint per-
sists the configured fields.

22

1 public class NullableAndUnique : BaseSchemaRule
2 {
3 public override string Name
4 {
5 get { return ” Nul l ab l e and Unique Columns” ; }
6 }
7
8 // The d e f a u l t s e v e r i t y o f t h i s ru l e . Can be con f i gured in the GUI.
9 protected override Seve r i t y Seve r i t y

10 {
11 get { return Seve r i t y . Medium ; }
12 }
13
14 public override void Execute (Database database ,
15 I I s s u e C o l l e c t o r i s s u e C o l l e c t o r ,
16 I P r o v i d e r C o l l e c t i o n prov ide r s)
17 {
18 foreach (var column in database . Columns . Where (c => c . I s N u l l a b l e && c . Unique))
19 {
20 var i s s u e = new I s s u e (this , this . De f au l tS eve r i t y . Value) ;
21 i s s u e .Name = ” Nul lab l e and Unique Column” ;
22 i s s u e . Des c r ip t i on = new Desc r ip t i on (
23 ”Column ’{0} ’ in t a b l e {1} i s both n u l l a b l e and unique ” ,
24 column ,
25 column . Table) ;
26 i s s u e . Context = new ColumnContext (column) ;
27 i s s u e C o l l e c t o r . Report I s sue (i s s u e) ;
28 }
29 }
30 }

Figure 15: The actual code used in DBLint for the rule “Nullable and Unique Columns”.

Property<int> MaxSize =
new Property<int>(”Maximum Key S i z e ” ,

200 ,
”The maximum number o f bytes a l lowed [. . .] ” ,
v => v > 0) ;

Property<int> MaxColumns =
new Property<int>(”Maximum Columns in Index ” ,

7 ,
”The maximum number o f columns al lowed [. . .] ” ,
v => v > 0) ;

Property<int> MaxColumnsUnique =
new Property<int>(”Maximum Columns in Unique Index ” ,

5 ,
”The maximum number o f columns al lowed [. . .] ” ,
v => v > 0) ;

Property<int> VarcharSizeReduct ionFactor =
new Property<int>(” Estimated Varchar F i l l Rate (%)” ,

20 ,
”The average f i l l r a t e o f varchars [. . .] ” ,
v => v >= 0 && v <= 10 0) ;

Figure 16: The configurable fields from the rule “Too big index”. [...] indicates that a string is truncated for
formatting purposes.

23

	Introduction
	Related Work
	Tools
	Academia

	Database Design Rules
	Metadata and Data Analysis
	Rule Overview
	Rule Examples
	Inconsistent Max Lengths of Varchar Columns
	Outlier Detection
	Naming Convention Rule

	Table Importance
	The PageRank Algorithm
	Table Data Importance

	Scoring
	Score Calculation

	System Overview
	Architecture
	Extraction Layer
	Model Layer
	Rule Layer
	UI Layer

	DBMS Independence and Database Model
	In-Memory Database Model
	Metadata Extraction

	Data Extraction
	Data Extraction Strategies

	Rule Scheduling
	Rule Configuration
	DBLint Report
	Report Views

	Implementation

	Tests
	Database Design Comparison
	Report Examination
	PrestaShop 1.3.3
	phpBB 3.0.7
	Moodle 1.9.12

	Naming Convention
	Performance
	Metadata and Data
	Data Access and Execution

	User Feedback

	Discussion
	Scoring
	Experiences with Outlier Detection

	Conclusion
	Future Work
	Acknowledgments
	References
	Schema-Rules Argumentation
	Data-Rules Argumentation
	Scoring Penalty Functions
	Summary
	Rule Summary
	Sample Rule Code
	Configurability

