
The Creative Sensor Network

A wireless sensor network capable of
sending OSC Messages to

creative applications

Humidity
85.32 %

Light Intensity
15124 Lx

Temperature
24.43 °C

CO2
301 ppm

Department of Architecture,
Design & Media Technology
Niels Jernes Vej 14
www.create.aau.dk

Title:
The Creative Sensor Network

Description:
A wireless sensor network capable of
sending OSC Messages to creative
applications.

Theme:
Master’s Thesis

Project period:
10th semester:
February 8th 2011 - May 31st 2011

Participant:

Tobias Thyrrestrup

Supervisors:

Dan Overholt

Esben Skouboe Poulsen

Abstract:
The goal of the project is to create
a wireless sensor network capable of
sending OSC Messages directly into a
number of creative applications: Pro-
cessing, Grasshopper, openFrameworks,
Max/MSP, LuaAV, and Quartz Com-
poser. This gives designers the option
to inform their designs based on the con-
text in which they will be placed. But
also to give designers an understanding
of the environment their designing for.
The product developed for this report is
referred to as the Creative Sensor Net-
work. The evaluation of the product shows
that there is little difficulty implementing
the product in anyone of the creative ap-
plications and there is an interest in the
product from people with a design back-
ground. The product has also been suc-
cessfully implemented in a research project
focusing on responsive architecture.

Publications: 5

Number of Pages: 138

Appendices: A - H

Finished: May 31st 2011

The content of this report is public, but may not be published without written approval from the author.
Copyright c© 2011, Tobias Thyrrestrup.

Preface

Formalities

Sources are referred to by [”author’s surname”, ”year the text is written”], the literature list
is drawn up with the authors’ surnames in alphabetical order. If the source is a webpage
for an organization or a company the name of the organization or company is used as the
reference.

A presentation of the product is recorded on video, and video material is available on
a CD attached Appendix H.

A digital version of the report, the product source code, and copies of Internet sources
are also available on the CD attached in Appendix H.

Acknowledgments

The project has been developed in a running exchange of information with Electrotexture
Lab. who has contributed with information, inspiration, and provided space and equipment
for the development of the product.

A big thanks to Esben Skouboe Poulsen and Mads Brath Jensen for inspiring the
project and for providing me with expertise and appropriate criticism to drive the project
forward.

Also a big thanks to Dan Overholt for guidance and clarification, and to Andreas
Eggertsen and Isak Worre Foged for showing an interest in the project.

Contents

1 Introduction 1

2 Analysis 3

2.1 Ubiquitous Computing . 3

2.2 Sensor Networks . 4

2.3 Creative Applications . 7

2.4 Problem statement . 11

3 Concept 13

3.1 The Creative Sensor Network . 13

3.2 Use Cases . 14

3.3 Part Conclusion . 15

4 Hardware Technologies 17

4.1 Open Sound Control . 17

4.2 Microcontrollers . 19

4.3 Wireless Networking . 19

4.4 Ethernet Networking . 20

4.5 Connection diagram . 21

4.6 Components . 21

4.7 Serial Peripheral Interface . 22

4.8 Part Conclusion . 23

5 Implementation 25

5.1 Circuit Diagram . 25

5.2 Bill of Materials . 25

5.3 Communication . 28

5.4 Flow Chart . 28

5.5 Code Samples . 29

5.6 Product . 31

5.7 Part Conclusion . 32

III

Aalborg University Master’s Thesis 10th Semester

6 Evaluation 33
6.1 Creative Applications . 33
6.2 Comments . 37
6.3 Case Using Grasshopper . 38
6.4 Part Conclusion . 40

7 Discussion 41

8 Conclusion 43

9 Perspective 45

Bibliography 47

List of Figures 51

Appendices 53

A Schematics 55
A.1 Base . 57
A.2 Node . 61

B Bill of Materials 65
B.1 Base . 67
B.2 Node . 71

C Flow Charts 75
C.1 Base . 77
C.2 Node . 81

D Source Code 85
D.1 Base . 87
D.2 Node . 103

E Visual Programming 111
E.1 Grasshopper . 113
E.2 Max/MSP . 117
E.3 Quartz Composer . 121

F openFrameworks - Example 125

G Case Using Grasshopper 129

H CD 137

IV

1. Introduction

Recently we have witnessed a paradigm shift from cyberspace to pervasive com-
puting. Instead of pulling us through the looking glass into some sterile, lumin-
ous world, digital technology now pours out beyond the screen, into our messy
places, under our laws of physics; it is built into our rooms, embedded in our
props and devices – everywhere [McCullough, 2005].

This paradigm shift is interesting because it opens up a hole new world of possibilities
both in interaction design and in architecture. The prospect of computers and sensors
embedded everywhere could potentially produce very precise information about the spaces
we inhabit and the way we interact with these same spaces. These high resolution "images"
of our surroundings could future the creation of stimulating and appealing environments -
perhaps even intelligent?

The more obvious facts obtained from such images could be the amount of electricity
or water used in a building, wether or not the light is turned on or off in a room with no
people, but it could also create an understanding of space, if one was to say that a space is
interesting and fulfilling if people use the space, then factors like light intensity and color,
air quality, movement in the space, and temperature could be recorded and re-used in the
design process when creating new spaces.

A shift in design strategy towards using dynamic parametric design tools in the process
of creating new designs has already taken place. But what if the parameters fed into these
tools where directly informed by our surroundings? How is the information made available
in a design context? and what are the technical challenges related to gathering the data
in the first place?

These are some of the key questions if this scenario is to become part of the design
process. Also a real-time interface connecting the parametric design tools to the embedded
sensors is crucial. This poses the following question:

How can designers exploit the advantage of embedding
computers and sensors everywhere?

1

2. Analysis

To tackle the question asked in Chapter 1 a few aspects need further looking into. First, ubi-
quitous computing is introduced and practical implementations of the concept are presen-
ted. Second, commercially available sensor networks capable of communicating sensor
values back to a computer are presented. Third, creative applications capable of facilit-
ating dynamic parametric design are presented and examined for their ability to accept
input from external hardware, and last the problem statement is formulated.

2.1 Ubiquitous Computing

Ubiquitous computing also known as pervasive computing is the notion of microscopic com-
puters embedded in everyday things, all connected on a giant network [McCullough, 2005].

Tiny computers fitted with sensors capable of data-processing constitute the network,
the computers are commonly referred to as "nodes". Nodes share the information they
collect with other nodes and this way produce meaningful digital representations of the
environment in which they are situated. Researchers could program the network to analyze
data based on specific research questions and this way produce results faster, letting the
network gather and process detailed data in real-time [Butler, 2006].

The scenario of ubiquitous computing described relies on computers being extremely
small, this is not yet the case. As an example the smallest microcontroller available to
the general public from Atmel is a 2x2 millimeter chip [Atmel, 2011]. Although this is
impressive, there is also a need for supporting circuitry and a power source, therefore it is
still not small enough to be embedded everywhere. As a result a more realistic approach
to ubiquitous computing needs to be taken.

The article "The Internet of Things" published by Scientific American Inc. tackles ubi-
quitous computing in a more practical manner. The data protocol developed during the
evolution of the Internet is adopted and extended to networks of all types of devices, inter-
device internetworking. This opens the possibility of connecting e.g. light bulbs, switches,
alarm clocks, coffee makers, air conditioners etc. together to create "smart spaces" utilizing
the Internet as the network between nodes [Gershenfeld et al., 2004]. The article describes
a system standardizing the communication between house hold appliances through the

3

Aalborg University Master’s Thesis 10th Semester

Internet data protocol but more or less leaves out the aspect of sensing.

Another example where the sensing aspect is crucial is the "Japan Geigermap" where
crowd-sourced radiation geiger readings are plotted on a Google map. After the disaster at
the Fukushima Daiichi power plant people from all over Japan have built their own geiger
sensors and upload the readings to an online real-time sensor network - Pachube. This
provides everybody with a high resolution image of the radiation levels through out Japan
[Zhang, 2011]. Figure 2.1 shows the sensor readings on the Japan Geiger map.

Figure 2.1: Overview of the Japan Geigermap [Zhang, 2011].

2.2 Sensor Networks

This section describes a set of commercially available wireless sensor network solutions
capable of sensing the environment and relaying information back to a computer.

2.2.1 Libelium - Waspmote

The Libelium wireless sensor node - Waspmote is designed around the ATmega1281 micro-
processor from Atmel. The board has 7 analog inputs and 8 digital input/output ports, 1
PWM output, 2 UART serial interfaces, 1 I2C serial interface, and 1 USB port. The board
also features 2 built-in sensors: a temperature sensor and an accelerometer. The wireless
network is built around the ZigBee protocol and the XBee wireless module capable of
providing different network topologies: peer-2-peer, tree and mesh. The board is ready for
plug and play installation of the following sensor modules: Gases Board, Event Detection

4

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

Board, Prototyping Board, Agriculture Board, Smart Metering Board [Libelium, 2011a].
Figure 2.2 shows the Waspmote sensor module.

Figure 2.2: Libelium Waspmote [Libelium, 2011a].

A Waspmote Gateway is provided for wireless communication with the "motes" from
a computer. The gateway has a USB interface for relaying the serial data from the XBee
module back to a computer. Libelium also provides a networked gateway - Meshlium for
logging data to a file or an internal MySQL database on the Meshlium itself or an external
MySQL database. The data is then accessible to a computer capable of querying the
database [Libelium, 2011b].

2.2.2 NEWPORT - Wireless Sensor System

The NEWPORT wireless sensor system is comprised of 1 - 32 End Devices communicating
with a Coordinator over 2.4GHz ZigBee wireless network. The Coordinator is connected to
an Ethernet network and the Internet. A number of different static sensor configurations
are available for the End Devices combining the following sensors: temperature, humidity
and barometric pressure. A web-based interface let users monitor sensor values without
needing anything but a standard web-browser [Newport, 2011b]. Figure 2.3 shows the
web-based interface, an End Device and a Coordinator.

NEWPORT offers a program for logging data to Excel or Visual Basic and an OPC
Server software that integrates with popular data acquisition and automation applications.
The Coordinater supports communication over TCP [Newport, 2011b].

2.2.3 MEMSIC - eKo Outdoor Wireless System

The eKo outdoor wireless system consist of one eKo Gateway, one eKo Base Radio and a
number of eKo Nodes forming a wireless mesh network over the 2.4GHz ZigBee protocol.

5

Aalborg University Master’s Thesis 10th Semester

Figure 2.3: NEWPORT Wireless Sensor System [Newport, 2011a].

Each node has a battery, a solar cell for charging the battery, and 4 ports for connecting
eKo compatible sensors supporting a vast number of integrated sensor devices. The eKo
Gateway contains data visualization software packages, eKo View - a web-based interface
and Xserve. The eKo Base Radio connects the eKo Nodes wirelessly to the eKo Gateway
[Memsic, 2011]. Figure 2.4 shows the eKo Nodes, eKo Gateway and the eKo Base Radio.

Figure 2.4: MEMSIC eKo Outdoor Wireless Sensor System [CMT, 2011]

Xserve is an application running on the eKo Gateway and it makes sure that the
data from the wireless sensor network can be received by a range of applications through
standard XML over the network using TCP [Crossbow, 2011].

6

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

2.2.4 Summary

The sensor systems described in Section 2.2 all have a wireless interface using the 2.4 GHz
ZigBee protocol. The Waspmote and the eKo Node can use a wide variety of sensors while
the NEWPORT system has a fixed set of configurations only incorporating temperature,
humidity and pressure. All of the systems implement different interfaces for sending data
back to a computer. The eKo Gateway is using the standardized eXtensive Markup Lan-
guage (XML) and the Libelium Meshlium uses a standardized database solution - MySQL
whereas the NEWPORT system implements its own message format for sending packages
over TCP.

2.3 Creative Applications

This section describes design tools that facilitate the creative process. A combination of
ordinary integrated development environments (IDE), visual programming environments,
plug-ins, libraries etc. all supporting dynamic parametric design. Furthermore the ap-
plications are examined for their ability to connect to external devices to determine if a
common interface across all applications can be found.

2.3.1 Processing

Processing was initially developed to give artists and designers a tool to "sketch" ideas
in code, but has since evolved into a tool for creating production-level work. Processing
is based on Java and provides its users with instant feedback through its programing
environment [Processing, 2011b]. Figure 2.5 shows the user interface of Processing.

Figure 2.5: Overview of Processing IDE and the display window [Processing, 2011c].

Processing supports the following inputs from external hardware natively: Serial, and

7

Aalborg University Master’s Thesis 10th Semester

through the use of libraries like bluetoothDesktop, UDP, oscP5, TUIOClient and proMidi:
Bluetooth, UDP, OSC, TUIO, Midi [Processing, 2011a].

2.3.2 Rhinoceros - Grasshopper

Rhinoceros is a 3D-modeling tool for creating accurate models for rendering, engineering,
manufacturing and construction. Rhinoceros also supports plug-ins from third-party de-
velopers [McNeel, 2011]. Grasshopper is a plug-in for Rhinoceros which provides designers
with a visual programming language for experimenting with new shapes using generative
algorithms. Grasshopper does not require the user to have any knowledge of program-
ming or scripting [Grasshopper, 2011]. Figure 2.6 shows the Grasshopper user interface
alongside the Rhinoceros user interface.

Figure 2.6: Overview of Rhinoceros using the Grasshopper plug-in [Li, 2011].

Grasshopper supports the following inputs from external hardware using the Firefly
[Firefly, 2011] and gHowl [gHowl, 2011] components: Serial, UDP, OSC, TUIO.

2.3.3 openFrameworks

openFrameworks is a compilation of C++ libraries facilitating the creative and artistic
process by providing a simple framework for developing audio-visual experiments. Libraries
are wrapped together using a consistent interface for simplicity [openFrameworks, 2011a].
Figure 2.7 shows an example of the openFrameworks workspace.

openFrameworks support the following inputs from external hardware sources natively:
Serial, and through the use of the packaged addons ofxNetwork and ofxOSC: TCP, UDP,
OSC [openFrameworks, 2011b].

8

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

Figure 2.7: Overview of openFrameworks graphics example alongside the Xcode IDE.

2.3.4 Max/MSP

Max/MSP provides the user with a graphical programming environment for media related
programming, and it is used by artists and scientists alike. Max provides user interface,
timing and communication. MSP provides real-time audio synthesis and digital signal
processing [Cycling74, 2011b].

Figure 2.8: Overview of the Max/MSP visual programming environment.

Max/MSP supports the following inputs from external hardware natively: HID, Serial,
OSC [Cycling74, 2011a], and through the use of the mxj object: TCP, UDP.

9

Aalborg University Master’s Thesis 10th Semester

2.3.5 LuaAV

LuaAV is a real-time creative scripting environment for working with sound, image, space
and time. It is based on the Lua scripting language bundled with libraries for sound
graphics and media protocols. The main purpose of LuaAV is to provide the user with a
tool to turn any creative thought into an experiment without thinking about the technology
[LuaAV, 2011b]. Figure 2.9 shows the user interface for LuaAV.

Figure 2.9: Overview of LuaAV, the OpenGL Window, and a scripting editor.

LuaAV supports the following inputs from externals hardware: Midi, OSC [LuaAV, 2011a].

2.3.6 Quartz Composer

Quartz Composer combines all the technologies of Mac OS X into a real-time visual pro-
gramming environment which instantly provides the user with visual feedback. No need
for time consuming rendering, greatly reducing the time spent developing [Quartz, 2011].
Figure 2.10 shows the user interface for Quartz Composer.

Quartz Composer supports the following inputs from external hardware: HID, UDP,
OSC.

2.3.7 Summary

Table 2.1 summarizes the input capabilities of the creative applications described in Section
2.3 moreover it reveals that OSC is the only protocol which is supported by all applications.
This concludes that an external device must implement the OSC protocol to be able to
transmit information to anyone of the creative applications described in this section.

10

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

Figure 2.10: Overview of the Quartz Composer editor, viewer and objects browser.

Application Serial Bluetooth HID TCP UDP OSC TUIO Midi
Processing x x x x x x
Grasshopper x x x x
openFrameworks x x x x
Max/MSP x x x x x x
LuaAV x x
Quartz Composer x x x x

Table 2.1: Comparison chart showing the input capabilities of each application.

2.4 Problem statement

Ubiquitous computing in its purest form with computers embedded everywhere is still
a thing of the future but embedding microprocessors in everyday things and deploying
sensors almost everywhere is possible as seen in the examples given in Section 2.1. Data
acquisition is possible with the commercially available wireless sensor networks but they
all implement different ways of communicating with a computer, some standardized and
some not, on top of that extra software is needed in some cases to interpret the sensor
information and relay it to a creative application. This makes it difficult to use the data
directly in the creative applications as seen in the summary in Section 2.3 where only a few
applications support the protocols used by the sensor systems furthermore the summary
shows that all applications implements an interface for OSC communication based on this
the problem statement is formulated as the following question:

How to develop and implement a wireless sensor system capable of
sending OSC messages directly into creative applications?

11

3. Concept

This chapter presents the overall concept of the product for this report - "The Creative
Sensor Network". It also presents two use cases, one where the finished product assists
in the design process, and another where the product is used to inform the structure of a
finished design.

3.1 The Creative Sensor Network

The concept of the product is comprised of a number of wireless sensor "Nodes" and a
"Base" connected to an Ethernet network. The Nodes are capable of reading sensor values
from a number of attached sensors e.g. light intensity, temperature, humidity etc. and
transmit the readings to the Base. The Base handles the conversion of sensor values into
a standardized OSC format. The packet is then broadcasted on the network where any
creative application can receive the information directly and the user can implement the
information in a design process. The user should also have the ability to send a discover
message to a certain Node to make it flash its light for easy identification of Nodes. Figure
3.1 shows an overview of the Creative Sensor Network concept.

For ease of use the connection between the Nodes and the Base should be handled
automatically without the need for the user to configure or setup the Nodes or the Base.
The Nodes will be battery powered to maintain wireless capabilities. To save on power
consumption the Nodes therefore need to implement a "sleep" state which take their power
consumption to a minimum when idle.

3.1.1 Ease of Use

The setup procedure of the system is intended to be simple. First the Base is connected
to the local network then power is applied to the Base. When the Light Emitting Diode
(LED) turns on it signals that the device is powered and once the Base is ready to accept
messages from nodes it signals the user by turning on a different LED. The sensors are
then attached to the Nodes and power is applied to the Nodes. When the LED on a Node
turns on it signals that the device is powered, after an initialization period where the Node
connects to the Base the LED turns of letting the user know the connection has been made.

13

Aalborg University Master’s Thesis 10th Semester

SENSOR Relative humidity

Luminosity

C
O

2

Te
mper

atu
re

A
ir

qu
al

ity
s[1]

s[0]

n[1]

La
bo

ra
to

ry

Con
fer

en
ce

 ro
om

Hall

Green area

Passage w
ay

n[n]

s[n
]

NODE BASE

NETWORK

n[0]

Figure 3.1: Overview of the Creative Sensor Network.

The LED on a Node blinks each time the sensors are read and the value is transmitted to
the Base.

3.2 Use Cases

This section describes two use cases where the features of the Creative Sensor Network
could be used: First, in a development process of a new design and second, in the everyday
control of a design.

First Use Case

In the development process designers and architects look to the context of the place where
their creation is to be situated e.g. looking into the history of a place, the people who
use the space and so on. Incorporating the Creative Sensor Network in the design process
could expand the knowledge of the context by supplying designers with information about
the temperature changes, light intensities, humidity, air quality etc. through out the space.
This provides designers with a high resolution "image" of the context they are about to
change with their creation.

14

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

Second Use Case

A dynamic building structure is created capable of changing elements of a building based
on different external factors e.g. the facade opens up and lets more light into the building if
the light intensity or the temperature is to low, or a building evolves over time incorporating
the changes in the environment into the building structure - like seashells where changes
in the patterns on the shell is evidence of changes in the mineral composition of the water
- this way the history of a building can be deciphered from the patterns of the structure.

3.3 Part Conclusion

The concept of the Creative Sensor Network has been presented and is comprised of a
Base with the ability to send OSC formatted messages, and a number of Nodes capable of
wirelessly sending sensor readings to the Base. The setup procedure has been outlined and
is kept at a minimum for ease of use, only requiring the user to plug in sensors, connect
power, and connect a network cable. Two use cases for the finished product have also been
introduced, one where the product is used in the design process and another where the
product is used to inform a structure.

15

4. Hardware Technologies

This chapter describes the different hardware technologies the Creative Sensor Network
is composed of. First, the OSC protocol is examined as it needs to be supported by the
hardware. Second, the microcontroller is introduced and features listed. Third, wireless
networking technologies are presented. Fourth, the Ethernet networking technology is
presented. Fifth, the components for the Creative Sensor Network are presented, and last
the Serial Peripheral Interface (SPI) is examined as it will be the interface for connecting
the components.

4.1 Open Sound Control

OSC is developed as a means of communicating between computers, sound synthesizers and
other multimedia devices. OSC was originally designed as a successor for the Midi protocol
using network communication instead of the more low-level approach Midi uses, but has
since been implemented as a method of communicating between a range of different soft-
ware and hardware applications. OSC is mainly communicating over the User Datagram
Protocol (UDP) but could just as well be used over any other protocol [Noble, 2009].

OSC is a formal way of communicating over e.g. UDP as it defines how text and
numbers should be transmitted such that they will be recognized by the receiving part.
The following is a subset of the atomic data types defined by the OSC syntax:

• int32 - 32-bit big-endian two’s compliment integer.

• float32 - 32-bit big-endian IEEE 754 floating point number.

• OSC-string - A sequence of non-null ASCII characters terminated by a null, followed
by 0-3 additional null characters to make the total number of bytes a multiple of four.

An OSC Packet consist of a number of bytes containing its content, the count of bytes
is always a multiple of four. The content of the OSC Packet is an OSC Message which in
turn is comprised of an OSC Address Pattern, an OSC Type Tag String followed by any
number of OSC Arguments [Wright, 2011].

17

Aalborg University Master’s Thesis 10th Semester

• OSC Packet

– OSC Message

1. OSC Address Pattern

2. OSC Type Tag String

3. OSC Arguments

An OSC Address Pattern is an OSC-string starting with the character ‘/’ (forward
slash) followed by a sequence of characters defining the address:

"/osc/address"

An OSC Type Tag String is a OSC-string starting with the character ‘,’ (comma) fol-
lowed by a sequence of characters corresponding to the sequence of OSC Arguments in the
message. Each of the characters after the comma is called a OSC Type Tag and represents
the corresponding OSC Argument. Table 4.1 shows a subset of OSC Type Tags.

OSC Type Tag OSC Argument
i int32
f float32
s OSC-string

Table 4.1: OSC Type Tag definitions.

The OSC Type Tag String for sending two integers is as follows:

",ii"

The OSC Argument is any number of atomic data types represented in binary correspond-
ing to the OSC Type Tag String. A simplification of a complete OSC Packet could look
something like the following:

"/osc/address ,ii 1234 4321"

The correct representation of the OSC Packet is shown in Table 4.2, each byte is shown
by its hex value and the bytes are separated in multiples of four:

0x2F (/) 0x6F (o) 0x73 (s) 0x63 (c)
0x2F (/) 0x61 (a) 0x64 (d) 0x64 (d)
0x72 (r) 0x65 (e) 0x73 (s) 0x73 (s)
0x00 () 0x00 () 0x00 () 0x00 ()
0x2C (,) 0x69 (i) 0x69 (i) 0x00 ()
0x00 () 0x00 () 0x04 () 0xD2 ()
0x00 () 0x00 () 0x10 () 0xE1 ()

Table 4.2: OSC Packet represented by hex values.

18

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

4.2 Microcontrollers

A microcontroller is a miniature "computer" on a single integrated circuit or chip. It
contains a processor, memory, and a number of Input/Output (I/O) pins. Digital I/O
channels are the most common also called General Purpose I/O (GPIO). GPIOs are con-
figurable by software as either digital input or digital output. In digital input mode they
may be used to read the state of e.g. a button. In digital output mode they can be used
to turn on or off e.g. a light or a motor. Most microcontrollers also have Analog-to-Digital
Converter (ADC) input pins capable of converting an analog voltage signal into a digital
representation of the signal. This enables a microcontroller to read and process values
from a range of sensors e.g. vibration, acceleration etc. A serial port is available on some
microcontrollers. It can be used to interface the microcontroller to a computer or another
microcontroller. Specialized forms of serial interfaces include Serial Peripheral Interface
(SPI) or Inter-Integrated Circuit (I2C) these provide functionality for connecting to peri-
pherals e.g. external memory, ethernet interfaces, wireless modules etc. [Catsoulis, 2005].

The microcontroller for the Base needs to support the following features:

• GPIO pins for controlling status leds and turning peripherals on or off.

• Serial port for sending debug messages to a computer.

• Two interfaces for connecting a wireless transceiver and an Ethernet peripheral.

• Support for 32-bit integers as specified by the OSC specification.

The microcontroller for the sensor Node needs to support the following features:

• GPIO pins for controlling status leds and turning peripherals on or off.

• Serial port for sending debug messages to a computer.

• One interface for connecting a wireless transceiver peripheral.

• A number of ADC enabled input pins for reading sensor values.

On top of the features already described it is crucial that the microcontroller for the
Nodes support power management modes as the Nodes will be battery powered and good
power management will increase battery life.

4.3 Wireless Networking

The microcontroller needs a wireless module to communicate wirelessly with other micro-
controllers, in this case Nodes communicating sensor values to the Base.

A wireless module is comprised of a transceiver peripheral, and an antenna. The
microcontroller sends messages to the transceiver over a serial interface e.g. SPI. The
transceiver is then responsible for generating the radio waves for transmitting the message
through the air.

19

Aalborg University Master’s Thesis 10th Semester

A wide variety of transceiver modules are available e.g. Bluetooth, WIFI and ZigBee
transceivers all communicating in the 2.4 GHz frequency band [Igoe, 2007], but also sub-
GHz transceivers exists for communication in the 300 - 900 MHz frequency band. The
sub-GHz transceivers often have a wider range at the same power usage because of their
lower frequency, but also lower data rates than the 2.4 GHz modules.

The most common protocol for wireless sensor networks is the ZigBee protocol [Faludi, 2007],
this is partly because it incorporates unique addressing of modules as-well as power saving
options and security. These features are commonly implemented in the hardware layer of
ZigBee compatible transceivers whereas other transceivers need these features implemented
in software.

The wireless module for both the Base and the Nodes needs to support the following
features:

• Unique addressing.

• Power saving options.

• Serial interface

4.4 Ethernet Networking

The microcontroller needs an Ethernet module to transmit OSC Messages to computers
on the network. Ethernet is a local-area networking standard developed at Xerox PARC
in the early 1970s. The Ethernet module consist of an Ethernet controller peripheral
and an isolation transformer. The isolation transformer is responsible for isolating the
microcontroller circuit from the rest of the Ethernet network.

Adding an Ethernet module opens up a lot of possibilities e.g. access to file servers,
databases, and even the Internet. Other options include monitoring the microcontroller
from afar using a web interface or have it send emails notifying about changes or errors.
The most interesting option is the ability to send data to a computer at high speeds
[Catsoulis, 2005].

There is a number of different options with regards to the speed of an Ethernet interface:
10 Mbps, 100 Mbps, 1Gbps. There are two reasons for choosing the 10 Mbps option - The
microcontroller will not have to transfer large amounts of data rather it will transfer many
small packages containing the sensor readings. Another reason is the fact that higher-speed
implementations require special attention to the circuit design because of electromagnetic
interference [Catsoulis, 2005].

The Ethernet module for the Base needs to support the following features:

• 10 Mbps interface.

• Serial interface

20

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

4.5 Connection diagram

Figure 4.1 shows a connection diagram of the different hardware technologies comprising
the Creative Sensor Network.

Node

Ethernet module Wireless module

Network

MicrocontrollerSPI SPI

Wireless moduleMicrocontroller SPI

OSC

Base

Creative application

Wireless

Sensor ADC

Figure 4.1: Hardware connection diagram.

First a sensor value is read through the ADC by the microcontroller on the Node. This
reading is transmitted through SPI to the wireless module which transmits the value to
the wireless module of the Base. The microcontroller on the Base then reads the value
through SPI from the wireless module and reformats it into an OSC Message. The message
is then transmitted through SPI to the Ethernet module which broadcasts the message on
the network.

4.6 Components

Microchip Technologies provides the free Microchip Application Libraries (MAL) to de-
velopers when used with Microchip products. MAL is a compilation of libraries includ-
ing: USB Framework, Graphics Library, Memory Disk Drive, TCP/IP Stack, mTouch
Capacitive Touch Library, Smart Card Library and MiWi Development Environment
[Microchip, 2011a].

The two most interesting features of MAL is the TCP/IP Stack and the MiWi Devel-
opment Environment. The TCP/IP Stack support a number of protocols for connecting
Microchip microcontrollers to the network and Internet, including support for UDP sockets
needed to send OSC messages across the network as described in Section 4.1.

MiWi is a protocol for creating wireless networks and it is Microchips take on the
ZigBee protocol incorporating some changes in the Media Access Control (MAC) layer and
a smaller memory footprint [Microchip, 2011b]. Although it still runs on ZigBee compliant
wireless modules.

21

Aalborg University Master’s Thesis 10th Semester

As all the features needed for creating the product for this report are supported by
the MAL. It is decided to use Microchip microcontrollers and peripherals to ease the
development. The following components from Microchip are supported by the MAL and
are chosen to fulfill the criteria described in Section 4.2, furthermore the microcontroller
chosen for the Nodes features a very low sleep current:

• PIC32MX340F512H - 32-bit microcontroller, 2 SPI interfaces, serial port and GPIOs.

• PIC18F46K22 - 8-bit microcontroller, SPI interface, serial port, ADC and GPIOs.

• MRF24J40MA - ZigBee compatible wireless module, SPI interface.

• ENC28J60 - Ethernet Controller, 10 Mbps interface, SPI interface.

4.7 Serial Peripheral Interface

This section examines the SPI interface that will be used by the microcontroller to commu-
nicate with the peripherals. SPI was developed by Motorola to provide a simple interface
for connecting peripherals to a microcontroller. SPI is a synchronous protocol where the
master (microcontroller) provides a clock to the slave (peripheral) for synchronizing the
data transfer between the two. Many peripherals may be connected on the same SPI
interface.

SPI uses four signals: Master Out Slave In (MOSI), Master In Slave Out (MISO),
Serial CLocK (SCLK), and Chip Select (CS). On some chips MOSI is labeled Serial Data
In (SDI), MISO is labeled Serial Data Out (SDO), SCLK is labeled CLK. Figure 4.2 shows
the connections between a microcontroller and a peripheral.

Microcontroller Peripheral
MOSI

MISO

SCLK

GPIO

SDI

SDO

CLK

CS

Figure 4.2: SPI connection diagram.

To initialize a connection the master pulls the specific slave’s CS pin low. Then the
master transmits a byte on the MOSI signal line and at the same time a byte is received
from the slave on the MISO signal line. This way a simultaneous write and read operation
is performed and this makes SPI communication very efficient.

SPI supports four modes of operation depending on the clock polarity. Mode 0 has a
low idle clock and transitions to high when data is ready to be read. Mode 1 also has a
low idle clock and transitions to low when data is ready. Mode 2 has a high idle clock and
transitions to low when data is ready. Mode 3 also has a high idle clock and transitions to

22

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

high when data is ready. Figure 4.3 shows an overview of the SPI data timing for all the
modes.

1 2 3 4 5 6 7 8

SCLK

MOSI

MISO

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

SCLK

MOSI

MISO

MSB 6 5 4 3 2 1 LSB

CS

CS

CS

MSB 6 5 4 3 2 1 LSB

CS

SCLK

MOSI

MISO

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

SCLK

MOSI

MISO

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Mode 3

Mode 2

Mode 1

Mode 0

Figure 4.3: Diagram of the SPI transition modes.

4.8 Part Conclusion

OSC is examined to determined what capabilities the hardware needs to support to im-
plement the protocol. e.g. 32-bit integers and support for the UDP communication. The
microcontroller is then introduced and the features required by the Base and Nodes have
been outlined. The Base need to support 32-bit integers to ease the implementation of the
OSC communication, and the microcontroller for the Node needs to support low power
usage, as it will be battery powered. The features of the wireless module and the Eth-
ernet controller have been presented, common for both is the need to support a serial
interface for communication. MAL is introduced as a basis framework for supporting the
implementation of both wireless and Ethernet communication, especially the support for
UDP is important for the OSC communication. MAL is only available for components
developed by Microchip, therefore Microchip components have been chosen that fulfill the
criteria set for the microcontrollers, the wireless module and the Ethernet controller. The
SPI interface is examined as it will be used by the microcontroller to communicate with
the peripherals.

23

5. Implementation

This chapter describes the implementation of the Base and the Nodes of the Creative
Sensor Network. First, the hardware aspect is described. The circuit diagram connecting
all the hardware components is drawn and then used to create the Printed Circuit Board
(PCB). All of the components are listed in the bill of materials. Second, the software
aspect is described. The OSC communication is described, as well as the events occurring
during runtime using flow charts and code samples from the source code, and last the final
product is presented.

5.1 Circuit Diagram

The circuit diagram is used to make the initial connections between the components of a
circuit design. The components are visualized using simple objects, each pin of a component
is labeled as described in the components data sheet. Figure 5.1 and 5.2 shows the circuit
diagrams for the implementation of the electronics for the Base and Node, respectively.
Full-size circuit diagrams for the Base and Node are available in Appendix A.1 and A.2.

After the circuit diagram has been drawn it is used to create the PCB layout. All
the components are drawn with their appropriate land pattern or foot print, and are
placed on the print, then electrical traces are routed between the components based on the
connections made in the circuit diagram. Figure 5.3 and 5.4 shows the final PCB layout
created based on the circuit diagrams of the Base and Node.

5.2 Bill of Materials

The Bill of Material (BOM) lists all the components needed for a specific design. The
components are listed in the following manner: part number, value, device type, packaging,
and a description of the component e.g.:

Part Value Device Package Description
Y2 25MHz CRYSTAL5X3 CRYSTAL-SMD-5X3 Crystals

The BOMs for the Base and Node are available in Appendix B.1 and B.2, respectively.

25

Aalborg University Master’s Thesis 10th Semester

Figure 5.1: Circuit diagram of the Base.

Figure 5.2: Circuit diagram of the Node.

26

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

Figure 5.3: PCB layout of the Base.

Figure 5.4: PCB layout of the Node.

27

Aalborg University Master’s Thesis 10th Semester

5.3 Communication

This section describes the OSC Address Patterns used by the Base to communicate in-
formation back to the creative applications as well as the patterns used to send discover
messages to the Nodes.

When the Base receives a message from a Node it reformats the message into an OSC
Message. The message consist of a OSC Address Pattern comprised of a container and an
identifier, a OSC Type Tag, and a number of OSC Arguments consistent with the number
of sensors. The container in this case is "node" because the information comes from a
Node and the identifier is the address of the Node. The type tag identifies that a number
of integers are sent and the arguments are the actual sensor values:

"/node/7" ",iiii" 1023 1023 1023 1023

When the user wants to identify a Node a similar address pattern is sent to the Base
which is then responsible for relaying the data to the Node. This time the message consist
of an address, one type tag, and one argument. The address is comprised of a container,
an identifier, and a function. The function in this case is "discover" and it represents the
task to be executed when the message is received. The type tag identifies that only one
integer is sent and the argument is either 1 or 0 to enable or disable the discover mode:

"/node/7/discover" ",i" 1

These addresses provide basic functionality for receiving sensor data from the Nodes
and for discovering a specific Node.

5.4 Flow Chart

The flow chart is the diagram that represents the different software tasks of the program
to run on the microcontroller. The diagram defines a starting condition for the program
e.g. "Power On" and hereafter the different tasks of the program are listed e.g. initialize
parameters, send or receive messages, or check whether a received message is valid or not.
Figure 5.5 shows the different symbols used in the flowchart.

Input / OutputGeneric processStart symbol Condition
NO

YES

Figure 5.5: Symbols of the flow chart.

28

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

The flow chart also details what part of the tasks should be loop over and over until
the device is powered off. Flow charts are available for the Base and Node in Appendix
C.1 and C.2, respectively.

5.5 Code Samples

This section presents important code samples from the programs that run on the Base
and Nodes. These specific samples have been chosen because they are crucial for the end
product. The code samples have been simplified to preserve readability. The first code
sample is from the Base. It is responsible for initializing the wireless module and creating
a new network for the Nodes to join. First it scans the available radio channels for noise
and then it creates a new network on the channel with the least noise, the sample is shown
in Listing 5.1.

1 // Global variables - included to preserve readability
2 #define LED_1 LATDbits.LATD0
3

4 LED_1 = 0;
5

6 MiApp_ProtocolInit(FALSE);
7

8 MiApp_ConnectionMode(ENABLE_ALL_CONN);
9

10 Printf("Active Scanning Energy Scanning\r\n");
11

12 MiApp_StartConnection(START_CONN_ENERGY_SCN, 10, 0xFFFFFFFF);
13

14 LED_1 = 1;

Listing 5.1: Base - Starting a new network.

Line 2: Global definition. Line 4: Make sure LED 1 is turned off. Line 6: Initialize
the wireless module and the protocol stack. Line 8: Make sure the connection is set up
to enable all incoming connections. Line 10: Debug text. Line 12: Start energy scan
to determine the channel with lowest noise level and then start a new network on that
channel. Line 14: Turn on led to indicate that the Base is ready for connections from
Nodes.

The second code sample is from the Node. It is responsible for initializing the wireless
module and for joining the network created by the Base. First the Node needs to know on
which radio channel the Base has created a network therefore it initializes a search for the
Base and if the search returns a valid network a connection is established, if not the Node
keeps searching until it finds a network, the sample is shown in Listing 5.2.

Line 2-6: Global variables. Line 8: Initialize the wireless module and the protocol
stack. Line 10-23: Start endless loop. Line 12: Search for networks to join and return the
number of found networks. Line 14-16: If a network is found set the channel of the Node

29

Aalborg University Master’s Thesis 10th Semester

1 // Global variables - included to preserve readability
2 BYTE myChannel = 0xFF;
3 BYTE j;
4 struct {
5 BYTE Channel;
6 } *ActiveScanResults;
7

8 MiApp_ProtocolInit(FALSE);
9

10 while(1)
11 {
12 j = MiApp_SearchConnection(10, 0xFFFFFFFF);
13

14 if(j > 0) {
15 myChannel = ActiveScanResults[0].Channel;
16 }
17

18 if(myChannel != 0xFF) {
19 MiApp_SetChannel(myChannel);
20 break;
21 }
22 Printf("No Suitable PAN, Rescanning...\r\n");
23 }
24

25 MiApp_ConnectionMode(DISABLE_ALL_CONN);
26

27 MiApp_EstablishConnection(0, CONN_MODE_DIRECT);

Listing 5.2: Node - Joining a network.

to the channel of the first search result. Line 18-21: If the channel has been changed send
the channel to the wireless module and break the loop. Line 22: Debug text. Line 25:
Disable all incoming connection. Line 27: Connect to the first network returned by the
network search.

The third code sample is from the Base. It is responsible for converting incoming
messages from Nodes into an OSC Message. The message received from the Node contains
the sensor readings, the Node address and the signal strength of the received message.
This information is reformatted into an OSC Message ready with an OSC Address Pattern
that matches the specific Node.

1 // Global variables - included to preserve readability
2 int tmp[3];
3 char nodeID[10];
4 struct {
5 BYTE *SourceAddress;
6 BYTE PacketRSSI;
7 } rxMessage;
8

9 sprintf(nodeID, "/node/%u", rxMessage.SourceAddress[0]);
10

11 OSCCreateMessage(nodeID, ",iiii", tmp[0], tmp[1], tmp[2], rxMessage.PacketRSSI);

Listing 5.3: Base - Creating a new OSC Message.

Line 2-7: Global variables. Line 9: Create a string containing the OSC Address Pattern

30

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

"/node/" appended with the lowest byte of the Node address of the message from the Node.
Line 11: Create an OSC Message with the specific OSC Address Pattern containing four
integers - three sensor values and the signal strength from the Node. The full source code
for the Base is available in Appendix D.1. The full source code for the Node is available
in Appendix D.2. The source is included without the MAL libraries. The source code for
these libraries is available for download from: www.microchip.com/mal/

5.6 Product

The finished product consist of a number of battery powered Nodes capable of reading
sensors and communicating the sensor values wirelessly back to the Base. The Base is
connected to the network through an Ethernet connector and is capable of sending OSC
Messages to all devices on the network. The Nodes have been fitted with a temperature
sensor and a light intensity sensor. Figure 5.6 shows a photo of the finished product.

Figure 5.6: Photo of the Creative Sensor Network.

31

Aalborg University Master’s Thesis 10th Semester

5.7 Part Conclusion

The circuit diagram and PCB layout for the Creative Sensor Network has been presented
together with a BOM for one Base and one Node. The OSC Address Patterns for the
communication of sensor values to the creative applications and the process of discovering
a Node have been outlined. Moreover flow charts of the programs running on the Base and
the Node have been presented. The process of initializing the wireless network connection
and the process of creating an OSC Messages have been presented using code samples.
The final product has been presented with a photo of the assembled product.

32

6. Evaluation

This chapter will evaluate the product of this report - The Creative Sensor Network. First,
showing how only a few lines of code or a few objects are needed to directly receive sensor
values in the different creative applications described in Section 2.3. Second, potential
users with a design background have commented on the product and its use in the design
process. Third, a case where the product has been used in a design process is presented.

6.1 Creative Applications

This section presents examples of how easy it is to implement the Creative Sensor Network
in anyone of the creative applications. For applications based on code, code examples are
shown in listings and for applications based on visual programming the number of objects
needed to receive the information are listed and a screenshot of the connection of the
objects is available in Appendix E.

Each of the examples show how to setup the application to receive OSC Messages on
port 12345 and how to identify a specific OSC Address Pattern e.g. "/node/7". Further-
more the OSC Arguments (sensor values) from that specific address are extracted from the
OSC Message, this can then be replicated to extract all of the sensor values from all of the
Nodes, the only modification needed is changing the OSC Address Pattern to match the
Node of interest.

6.1.1 Processing

The code example for Processing is using the oscP5 library. First the library is imported,
then the OSC receiver is initialized and the callback is established. When the program
runs all OSC Messages are sent to the callback where specific messages can be identified
and used in anyway the designer chooses. Listing 6.1 shows the code.

Line 1-2: Import the necessary libraries. Line 4-5: Create OSC handler and an array
for storing sensor values. Line 7-9: Processing setup function - Initialize the OSC handler
and receive port. Line 11-12: Processing draw loop. Line 14-21: OSC callback function.
Line 15: Print all OSC Messages. Line 16: Identify "/node/7" for further processing. Line
17-19: Store the sensor values from Node 7 in the array.

33

Aalborg University Master’s Thesis 10th Semester

1 import oscP5.*;
2 import netP5.*;
3

4 OscP5 oscP5;
5 int [] s = new int[4];
6

7 void setup() {
8 oscP5 = new OscP5(this, 12345);
9 }

10

11 void draw() {
12 }
13

14 void oscEvent(OscMessage msg) {
15 msg.print();
16 if(msg.checkAddrPattern("/node/7")) {
17 for(int i = 0; i < 4; i++) {
18 s[i] = msg.get(i).intValue();
19 }
20 }
21 }

Listing 6.1: Receiving sensor values in Processing

6.1.2 Grasshopper

Grasshopper needs the gHowl component to support OSC. After this component has
been installed the example queries for at valid network connection on which to receive
OSC Messages. The received messages are filtered based on their OSC Address Pattern
and the OSC Arguments of all valid addresses are printed in a text panel. Then the sensor
values are extracted from on of the messages. A screenshot of the example is available in
Appendix E.1.

The following objects are used to receive OSC Messages and extract the OSC Argu-
ments from messages with a specific OSC Address Pattern:

• NetSource

• >UDP<

• OSC_D

• Item

• Split

The NetSource object registers if there is a valid network to receive messages from.
The >UDP< object is setup to receive OSC Messages on port 12345. The OSC_D object
stores a list with the OSC Arguments of messages with OSC Address Patterns of interest.
The Item object extracts Node 7 from the list. The Split object is used to extract the
sensor values from a list of arguments.

34

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

6.1.3 openFrameworks

openFrameworks support OSC through the ofxOsc addon. The addon is included in the
header file for the program. The program is setup to print the OSC Address Pattern of
incoming OSC Messages to the console. A message with a specific address is filtered out
and the OSC Arguments of the message are stored. To minimize the space needed open-
Frameworks specific code has been left out. The full source code is available in Appendix
F. Listing 6.2 shows the code.

1 // testApp.h
2 #include "ofxOsc.h"
3

4 ofxOscReceiver receiver;
5 int s[4];
6

7 //testApp.c
8 void testApp::setup() {
9 receiver.setup(12345);

10 }
11

12 void testApp::update(){
13 while(receiver.hasWaitingMessages()) {
14 ofxOscMessage m;
15 receiver.getNextMessage(&m);
16 cout << m.getAddress() << endl;
17 if (m.getAddress() == "/node/7") {
18 for (int i = 0; i < m.getNumArgs(); i++) {
19 s[i] = m.getArgAsInt32(i);
20 }
21 }
22 }
23 }

Listing 6.2: Receiving sensor values in openFrameworks

Line 2: Include addon. Line 4-5: Create OSC handler and array for storing sensor
values. Line 8-10: Setup OSC handler to receive on port 12345. Line 12-23: Update loop.
Line 13-22: Receive all OSC Messages. Line 14-15: Store current message. Line 16: Print
the OSC Address Pattern to the console. Line 17-21: check if the address match "/node/7".
Line 18-20. Loop through the OSC Arguments of the message. Line 19: Extract the sensor
values and store them.

6.1.4 Max/MSP

Fortunately the internal message structure of Max/MSP is based on OSC Messages there-
fore there is no need to import extra libraries as OSC is natively supported in Max/MSP.
The example is setup to print all OSC Messages to the Max window for debugging. A
specific OSC Address Pattern is routed to an object that unpacks the OSC Arguments and
shows each of the integer values in a number box. A screenshot of the example is available
in Appendix E.2.

35

Aalborg University Master’s Thesis 10th Semester

The following objects are used to receive and extract the sensor values from OSC
Messages in Max/MSP:

• udpreceive

• print

• route

• unpack

The udpreceive object is setup to receive messages on port 12345. All messages are
printed to the Max window using the print object. The route object identify OSC Mes-
sages with the OSC Address Pattern "/node/7" and the unpack object extracts the OSC
Arguments.

6.1.5 LuaAV

Although LuaAV supports OSC natively the OSC module still have to be required at the
beginning of the script. An OSC handler is setup to print all of the incoming OSC Messages
to the LuaAV console. It also filters out messages with a specific OSC Address Pattern and
stores the OSC Arguments from these messages. Furthermore the OSC handler is setup
to run simultaneous with the rest of the script. Listing 6.3 shows the code.

1 local osc = require("osc")
2 local oscin = osc.Recv(12345)
3 local s = {}
4

5 function get_osc()
6 for msg in oscin:recv() do
7 print(msg.addr, msg.types, unpack(msg))
8 if msg.addr == "/node/7" then
9 for i = 1, #msg, 1 do

10 s[i] = msg[i]
11 end
12 end
13 end
14 end
15

16 go(function()
17 while(true) do
18 get_osc()
19 wait(1/50)
20 end
21 end)

Listing 6.3: Receiving sensor values in LuaAV

Line 1: Require OSC. Line 2: Initialize OSC to receive messages on port 12345. Line
3: Create table to hold sensor values. Line 5-14: Function for receiving OSC Messages.
Line 6-13: Loop through all received messages. Line 7: Print messages to the console.
Line 8-12: Check if OSC Address Pattern matches "/node/7". Line 9-11. Loop through

36

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

all OSC Arguments and store them. Line 16-21: Create a simultaneous process that calls
the OSC handler once every 20 milliseconds.

6.1.6 Quartz Composer

Quartz Composer also support OSC natively and it is simple to setup. The example shows
how OSC Messages are filtered based on their OSC Address Pattern so only the messages
of interest enter the program, the rest are discarded. The example then extracts the OSC
Arguments from a message with a specific OSC Address Pattern. Moreover it is shown
how to print the arguments to the viewer, although this is not needed. A screenshot of the
example is available in Appendix E.3.

Only two different objects are used to extract the OSC Arguments in Quartz Composer:

• OSC Receiver

• Structure Index Member

The OSC Receiver object is setup to receive messages on port 12345 and then the OSC
Address Patterns of interest are added to the object. The Structure Index Member object
handles the extraction of the OSC Arguments by setting the index of the argument to
extract.

6.1.7 Summary

As seen in the examples above it only takes a few lines of code or a few objects to setup
anyone of the creative applications to receive sensor values from the Creative Sensor Net-
work. This makes it very easy for designers familiar with these applications to get up and
running and start exploring the possibilities of this new design tool, rather than spending
time wondering about different protocols or writing data parsers or proxies.

6.2 Comments

This sections presents two comments from potential users of the Creative Sensor Network.
The first comment is from Andreas Eggertsen - Architect Cand. polyt. who is working at
Snøhetta studio in Norway. He had the following to say about the uses of the design tool:

The telling of the story of condensed experience meaningful and relevant con-
tains the relationship to the environment in a specific time. The information
can form the basis for an understanding with real world data developed in inter-
action with the context, with a feed-back loop in the design process the designer
can develop the precision of design response and develop the understanding of
how to unfold the potentials of the specific situation.

37

Aalborg University Master’s Thesis 10th Semester

Andreas Eggertsen
24.05.2011

The second comment is from Isak Worre Foged - M.Arch, partner in studio AREA,
and research assistant at Architecture and Design, Aalborg University. He has commented
on aspects of architectural research that could benefit from using a tool like the Creative
Sensor Network:

A part of architecture is to create environments. In the current conducted re-
search work, architecture is suggested to construct new types of spaces that take
greater emphasis on changing conditions, provided by daily to yearly altering
climates and rapid changes in occupancy intensity and activity. Buildings call
for constructs that facilitate a higher level of responsive adaptability to meet
new conditions - instantly. In this pursuit lies a common understanding of
sensing, decision taking and actuating, to which an improved level of all three
aspects could push towards novel environmental conditions in architecture.

Isak Worre Foged
16.05.2011

6.3 Case Using Grasshopper

After learning about the product Isak Worre Foged agreed to incorporate it in a research
project currently being conducted. In the following paragraph the focus of the project is
described and also how the Creative Sensor Network is used in the process:

Extended Sensitivity - Towards Novel Awareness in Architecture
Most current research in architecture deals with a low level sensory field of one
to three sensors, situated locally. To instead situate sensors locally and region-
ally in an infrastructure of contextual awareness opens to new ways of respond-
ing to altering conditions and to the basis of how we understand spatial sensitiv-
ity in architecture. Within the conducted research work is a physical prototype
constructed which mediates between internal and external environments of a
building, enabled through an extended sensory field to enhance the contextual
awareness beyond our human sensing capacities and furthermore, perhaps more
importantly, to install logics that predict adaptation from the regional climatic
patterns compared to the local climatic and occupancy driven patterns. The raw
contextual information is captured through the Creative Sensor Network sys-
tem, and translated through the parametric bundle of softwares Rhinoceros +
Grasshopper + gHowl + Firefly to physical actuation within the architectural

38

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

prototype, adapting and changing the local milieu and thereby returning a new
set of local environmental patterns to be evaluated against the regional patterns.

The visual programming for the project done in Grasshopper is shown as a screenshot
in Figure 6.1. A full-size version is available in Appendix G.

Figure 6.1: Grasshopper program for the research project.

The objects in the area furthest to the left are responsible for receiving sensor values
from the Creative Sensor Network. The rest of the objects are responsible for logging
and filtering the received data as well as visualizing the information through the use of
geometry objects. Again it can be seen that the number of objects needed for receiving
the sensor readings is a small part of the complete program. The output of the program
can be seen in Figure 6.2. A full-size version is available in Appendix G.

Figure 6.2: Grasshopper visualization for the research project.

The first section is visualizing the relations between temperatures from different Nodes.
The second section is visualizing the relations between incoming light intensities from dif-
ferent Nodes. The third section visualizes the correlation between light intensities and

39

Aalborg University Master’s Thesis 10th Semester

temperatures. The fourth section is visualizing the resulting actuation lengths for con-
trolling a structure.

6.4 Part Conclusion

Only a few lines of code or few objects are needed to implement the Creative Sensor
Network in anyone of the creative applications. This makes it very easy for designers
already familiar with one or more of the applications to get up and running and start
using the sensor readings in a design context. Furthermore two potential users with a
background in design have commented on scenarios where the product can be used in the
creation of new environments. The Creative Sensor Network has also been successfully
implemented in a current research project conducted by Isak Worre Foged focusing on
architecture which reacts to changes its surroundings.

40

7. Discussion

The Creative Sensor Network differentiate itself from other wireless sensor networks in the
way it provides the user with sensor values. The interface is directly compatible with any-
one of the creative applications described in Section 2.3 because the OSC communication
protocol is implemented in the hardware. This compatibility could presumably have been
accomplished using one of the sensor networks described in Section 2.2 accompanied by
a piece of software capable of translating the received data from the sensors into OSC
Messages. However this would create another hurdle for designers as they get pulled away
from their preferred creative applications and this is not the intension as this product is
thought to be a transparent extension to the design tools that lets the designer focus on
the creative process rather that the technical aspects.

One could argue that a wireless sensor network has nothing to do with the design process
and this is the reason why none of the sensor systems implement an interface suitable for
communicating directly with creative applications. However this is improbable based on
the comments from Andreas Eggertsen and Isak Worre Foged. As they both describe
aspects of the architectural discipline where a deeper knowledge and understanding of the
spaces we inhabit could be beneficial in the design process. Furthermore the fact that the
Creative Sensor Network was interesting enough to be implemented in the research project
conducted by Isak Worre Foged is evidence of an interest in a product that facilitates an
ease of use real-time interface between the real world and the creative applications.

The Creative Sensor Network is not thought as a replacement for the established design
process or the architectural models concerned with the understanding of spaces which have
been developed through many years. Instead it is imagined as a means to discover these
aspects and make them more visible to the designer and this way extend the design process.
It can be seen as a real-time "image" of a space to either guide the design process or inform
a design once it has been constructed, or perhaps both.

41

8. Conclusion

Ubiquitous computing has been introduced as a way of gathering precise readings of our
surroundings. It has been proposed that the control parameters in a design process can
be regulated by these readings. A practical approach to ubiquitous computing as of today
has been to use wireless sensor networks to collect information about our environment. A
number of commercially available sensor networks have been examined for their ability to
communicate information back to a computer. Also a number of creative applications have
been examined for their ability to directly receive information from external devices and the
OSC protocol is found to be the only one supported by all of the creative applications. This
particular protocol is however not supported by any of the sensor networks and therefore
it is cumbersome at the very least to setup a communication interface between the creative
applications and the sensor networks.

A concept is described consisting of a Base and a number of Nodes. The Base imple-
ments the ability to send OSC Messages over an Ethernet network. These messages can
then be received by any of the creative applications. The Base can also receive messages
wirelessly from a number of Nodes. Each of the Nodes can be fitted with sensors to give
readings of their surroundings and transmit this information back to the Base.

Hardware technologies like microcontrollers, wireless modules and Ethernet modules
have been briefly introduced. And the communication aspect relaying information from
the Base to the creative applications through OSC has been examined. The communication
between hardware components through SPI has also been examined.

A product has been created capable of sensing the environment in which it is installed.
The sensory information is communicated back to a central unit capable of serving the data
directly into a number of creative applications. It has been shown that the programming
impact of implementing the Creative Sensor Network in anyone of the described creative
applications can be neglected. The product has also been successfully applied in an ongoing
research project.

43

9. Perspective

In perspective the Creative Sensor Network could be implemented with a variety of func-
tionality. The Base already features an Ethernet controller capable of connecting it to the
Internet and not only the local network. This way multiple devices could communicate
their information over the Internet to connect into larger "smart grids". Designers could
then tap into these grids to find information not only about our surroundings on a local
scale but also on a global scale.

Another option is to use the GPIO pins on the Nodes to control actuators making the
Nodes capable not only of reading sensor values but also of making actuations based on
the readings. And as the sensor readings are fed to a computer and processed further the
computer could again send global actuations across all the Nodes through the Base. This
complete feedback system could create interesting levels of actuation as Nodes start to
process the sensor data and maybe create local subtle changes to a structure. Then when
the information has been processed on the computer and correlated to sensor readings
received from other Nodes, a change is made to the structure on a global level.

A plug and play sensor system could also be developed to ease the installation of new
sensors on the Nodes. The current version of the Creative Sensor Network requires that
the user has some understanding of electronics to install a new sensor as the sensor inputs
are comprised of a ground pin, a positive voltage, and an analog input pin. Although it is
common to see sensors with this configuration there is still a lot of sensors which come in
different configurations. Some newer sensors don’t even provide an analog output as they
use a digital interface like SPI or I2C with an ADC built into the sensor. This option could
also be implemented to support a wider range of sensors.

45

Bibliography

[Atmel, 2011] Atmel (2011). TinyAVR - Unmatched Performance and Efficiency in
a Small Package. Atmel Corporation. http://www.atmel.com/dyn/products/

devices.asp?category_id=163&family_id=607&subfamily_id=791 [date:
05.13.2011].

[Butler, 2006] Butler, Declan (2006). Everything, Everywhere. Nature Publishing Group.

[Catsoulis, 2005] Catsoulis, John (2005). Designing Embedded Hardware, p. 26–29.
O’Reilly.

[CMT, 2011] CMT (2011). Wireless Sensor Networks. CMT. http://www.cmt-gmbh.

de/1/Produkte/Wireless_Sensor_Networks/Wireless_Sensor_Networks.html

[date: 05.15.2011].

[Crossbow, 2011] Crossbow (2011). Xserve Users Manual. Crossbow. http:

//www.memsic.com/support/documentation/wireless-sensor-networks/

category/6-user-manuals.html?download=96%3Axserve-user-s-manual [date:
05.15.2011].

[Cycling74, 2011a] Cycling74 (2011a). A Functional Listing of all Max Objects. Cycling
74. http://cycling74.com/docs/max5/vignettes/core/max_functional.html

[date: 05.13.2011].

[Cycling74, 2011b] Cycling74 (2011b). Products - Cycling 74. Cycling 74. http:

//cycling74.com/products/ [date: 05.13.2011].

[Faludi, 2007] Faludi, Robert (2007). Building Wireless Sensor Networks. O’Reilly.

[Firefly, 2011] Firefly (2011). Firefly - Tools. Firefly Experiments. http://www.

fireflyexperiments.com/tools/ [date: 05.13.2011].

[Gershenfeld et al., 2004] Gershenfeld, Neil, Krikorian, Raffi, & Cohen, Danny (2004). The
Internet of Things. Scientific American Inc.

47

http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=791
http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=791
http://www.cmt-gmbh.de/1/Produkte/Wireless_Sensor_Networks/Wireless_Sensor_Networks.html
http://www.cmt-gmbh.de/1/Produkte/Wireless_Sensor_Networks/Wireless_Sensor_Networks.html
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/6-user-manuals.html?download=96%3Axserve-user-s-manual
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/6-user-manuals.html?download=96%3Axserve-user-s-manual
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/6-user-manuals.html?download=96%3Axserve-user-s-manual
http://cycling74.com/docs/max5/vignettes/core/max_functional.html
http://cycling74.com/products/
http://cycling74.com/products/
http://www.fireflyexperiments.com/tools/
http://www.fireflyexperiments.com/tools/

Aalborg University Master’s Thesis 10th Semester

[gHowl, 2011] gHowl (2011). gHowl - Grasshopper. gHowl. http://www.grasshopper3d.
com/group/ghowl [date: 05.13.2011].

[Grasshopper, 2011] Grasshopper (2011). Grasshopper - Generative modeling for Rhino.
grasshopper3d.com. http://www.grasshopper3d.com/ [date: 05.13.2011].

[Igoe, 2007] Igoe, Tom (2007). Making Things Talk, p. 178–180. O’Reilly.

[Li, 2011] Li, Bo (2011). Walk Bridge Modelled with Grasshopper. grasshopper3d.com.
http://www.grasshopper3d.com/photo/walk-bridge-modelled-with-7 [date:
05.13.2011].

[Libelium, 2011a] Libelium (2011a). Waspmote - Datasheet. Libelium. http:

//www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf

[date: 05.15.2011].

[Libelium, 2011b] Libelium (2011b). Wireless Sensor Networks with Waspmote and
Meshlium. Libelium. http://www.libelium.com/documentation/mesh_extreme/

wsn-waspmote_and_meshlium_eng.pdf [date: 05.15.2011].

[LuaAV, 2011a] LuaAV (2011a). LuaAV - Documentation. AlloSphere Research Group.
http://lua-av.mat.ucsb.edu/doc/index.html [date: 05.14.2011].

[LuaAV, 2011b] LuaAV (2011b). LuaAV - Real-Time Audio Visual Scripting. AlloSphere
Research Group. http://lua-av.mat.ucsb.edu/blog/ [date: 05.14.2011].

[McCullough, 2005] McCullough, Malcolm (2005). Digital Ground - Architecture, Pervas-
ive Computing, and Environmental Knowing, p. 7, 9, 11, 12, 14, 19, 21. The MIT
Press.

[McNeel, 2011] McNeel (2011). Rhinoceros - Modeling tools for designers. McNeel. http:
//www.rhino3d.com/ [date: 05.13.2011].

[Memsic, 2011] Memsic (2011). eKo Outdoor Wireless System. MEMSIC. http:

//www.memsic.com/support/documentation/eko/category/15-datasheets.

html?download=156%3Aeko-base-station [date: 05.15.2011].

[Microchip, 2011a] Microchip (2011a). Microchip Application Libraries. http://www.

microchip.com/mal/ [date: 05.22.2011].

[Microchip, 2011b] Microchip (2011b). Microchip MiWi P2P Wireless Protocol. http:

//ww1.microchip.com/downloads/en/AppNotes/01204B.pdf [date: 05.22.2011].

[Newport, 2011a] Newport (2011a). NEWPORT - Wireless Sensor System. Newport.
http://www.newportelect.com/ppt/ZSERIES.html [date: 05.15.2011].

48

http://www.grasshopper3d.com/group/ghowl
http://www.grasshopper3d.com/group/ghowl
http://www.grasshopper3d.com/
http://www.grasshopper3d.com/photo/walk-bridge-modelled-with-7
http://www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/documentation/mesh_extreme/wsn-waspmote_and_meshlium_eng.pdf
http://www.libelium.com/documentation/mesh_extreme/wsn-waspmote_and_meshlium_eng.pdf
http://lua-av.mat.ucsb.edu/doc/index.html
http://lua-av.mat.ucsb.edu/blog/
http://www.rhino3d.com/
http://www.rhino3d.com/
http://www.memsic.com/support/documentation/eko/category/15-datasheets.html?download=156%3Aeko-base-station
http://www.memsic.com/support/documentation/eko/category/15-datasheets.html?download=156%3Aeko-base-station
http://www.memsic.com/support/documentation/eko/category/15-datasheets.html?download=156%3Aeko-base-station
http://www.microchip.com/mal/
http://www.microchip.com/mal/
http://ww1.microchip.com/downloads/en/AppNotes/01204B.pdf
http://ww1.microchip.com/downloads/en/AppNotes/01204B.pdf
http://www.newportelect.com/ppt/ZSERIES.html

Medialogy 2011 Master’s Thesis Tobias Thyrrestrup

[Newport, 2011b] Newport (2011b). NEWPORT - Wireless Sensor System - Specific-
ations. Newport. http://www.newportelect.com/PDFspecs/zSeries_n_lo.pdf

[date: 05.15.2011].

[Noble, 2009] Noble, Joshua (2009). Programming Interactivity, p. 614–615. O’Reilly.

[openFrameworks, 2011a] openFrameworks (2011a). openFrameworks - About. openFrame-
works. http://www.openframeworks.cc/about/ [date: 05.13.2011].

[openFrameworks, 2011b] openFrameworks (2011b). openFrameworks - Addons. open-
Frameworks. http://www.openframeworks.cc/addons/ [date: 05.13.2011].

[Processing, 2011a] Processing (2011a). Libraries Processing. processing.org. http://

processing.org/reference/libraries/ [date: 05.13.2011].

[Processing, 2011b] Processing (2011b). Overview Processing. processing.org. http:

//processing.org/learning/overview/ [date: 05.13.2011].

[Processing, 2011c] Processing (2011c). Overview Processing. processing.org. http://

processing.org/about/ [date: 05.13.2011].

[Quartz, 2011] Quartz (2011). Working with Quartz Composer in Leopard. Apple
Inc. https://developer.apple.com/library/mac/#featuredarticles/

WorkingWithQuartzComposer/_index.html [date: 05.14.2011].

[Wright, 2011] Wright, Matt (2011). The Open Sound Control 1.0 Specification. CNMAT.
http://opensoundcontrol.org/spec-1_0/ [date: 05.14.2011].

[Zhang, 2011] Zhang, Haiyan (2011). Japan Geigermap. http://japan.failedrobot.

com/ [date: 05.16.2011].

49

http://www.newportelect.com/PDFspecs/zSeries_n_lo.pdf
http://www.openframeworks.cc/about/
http://www.openframeworks.cc/addons/
http://processing.org/reference/libraries/
http://processing.org/reference/libraries/
http://processing.org/learning/overview/
http://processing.org/learning/overview/
http://processing.org/about/
http://processing.org/about/
https://developer.apple.com/library/mac/#featuredarticles/WorkingWithQuartzComposer/_index.html
https://developer.apple.com/library/mac/#featuredarticles/WorkingWithQuartzComposer/_index.html
http://opensoundcontrol.org/spec-1_0/
http://japan.failedrobot.com/
http://japan.failedrobot.com/

List of Figures

2.1 Overview of the Japan Geigermap [Zhang, 2011]. 4
2.2 Libelium Waspmote [Libelium, 2011a]. 5
2.3 NEWPORT Wireless Sensor System [Newport, 2011a]. 6
2.4 MEMSIC eKo Outdoor Wireless Sensor System [CMT, 2011] 6
2.5 Overview of Processing IDE and the display window [Processing, 2011c]. . . 7
2.6 Overview of Rhinoceros using the Grasshopper plug-in [Li, 2011]. 8
2.7 Overview of openFrameworks graphics example alongside the Xcode IDE. . 9
2.8 Overview of the Max/MSP visual programming environment. 9
2.9 Overview of LuaAV, the OpenGL Window, and a scripting editor. 10
2.10 Overview of the Quartz Composer editor, viewer and objects browser. . . . 11

3.1 Overview of the Creative Sensor Network. 14

4.1 Hardware connection diagram. 21
4.2 SPI connection diagram. 22
4.3 Diagram of the SPI transition modes. 23

5.1 Circuit diagram of the Base. 26
5.2 Circuit diagram of the Node. 26
5.3 PCB layout of the Base. 27
5.4 PCB layout of the Node. 27
5.5 Symbols of the flow chart. 28
5.6 Photo of the Creative Sensor Network. 31

6.1 Grasshopper program for the research project. 39
6.2 Grasshopper visualization for the research project. 39

51

Appendices

53

A. Schematics

55

A.1 Base

A.2 Node

B. Bill of Materials

65

B.1 Base

Partlist for the Base

Part Value Device Package Description
C1 10uF CAP_POL1206 EIA3216 Capacitor Polarized
C2 0.1uF CAP0603-CAP 0603-CAP Capacitor
C3 10uF CAP_POL1206 EIA3216 Capacitor Polarized
C4 18pF CAP0603-CAP 0603-CAP Capacitor
C5 18pF CAP0603-CAP 0603-CAP Capacitor
C6 0.1uF CAP0603-CAP 0603-CAP Capacitor
C7 0.1uF CAP0603-CAP 0603-CAP Capacitor
C8 11pF CAP0603-CAP 0603-CAP Capacitor
C9 11pF CAP0603-CAP 0603-CAP Capacitor
C10 10uF CAP_POL1206 EIA3216 Capacitor Polarized
C11 100uF CAP_POL1206 EIA3216 Capacitor Polarized
C12 0.1uF CAP0603-CAP 0603-CAP Capacitor
C13 0.1uF CAP0603-CAP 0603-CAP Capacitor
C14 0.1uF CAP0603-CAP 0603-CAP Capacitor
C15 0.1uF CAP0603-CAP 0603-CAP Capacitor
C16 0.1uF CAP0603-CAP 0603-CAP Capacitor
C17 0.1uF CAP0603-CAP 0603-CAP Capacitor
C18 0.1uF CAP0603-CAP 0603-CAP Capacitor
C19 0.1uF CAP0603-CAP 0603-CAP Capacitor
C20 0.1uF CAP0603-CAP 0603-CAP Capacitor
C21 0.1uF CAP0603-CAP 0603-CAP Capacitor
IC2 LM1117 V_REG_LM1117SOT223 SOT223 Voltage Regulator
J1 J00-0065NL J00-0065NL J00-0065NL MagJack 10/100 Ethernet Jack
J2 POWER_JACKPTH POWER_JACKPTH POWER_JACK_PTH Power Jack
L1 FB INDUCTOR0603 0603 Inductors Ferrite Bead
LED1 GRN LED0603 LED-0603 LEDs
LED2 YEL LED0603 LED-0603 LEDs
M1 MRF24J40MA MRF24J40MA MRF24J40MA Microchip Wireless 2.4GHz module
R1 2.32K 1% RESISTOR0603-RES 0603-RES Resistor
R2 10K RESISTOR0603-RES 0603-RES Resistor
R3 10K RESISTOR0603-RES 0603-RES Resistor
R4 49.9 1% RESISTOR0603-RES 0603-RES Resistor
R5 49.9 1% RESISTOR0603-RES 0603-RES Resistor
R6 49.9 1% RESISTOR0603-RES 0603-RES Resistor
R7 49.9 1% RESISTOR0603-RES 0603-RES Resistor
R8 180 RESISTOR0603-RES 0603-RES Resistor
R9 180 RESISTOR0603-RES 0603-RES Resistor
R10 10K RESISTOR0603-RES 0603-RES Resistor
R11 10K RESISTOR0603-RES 0603-RES Resistor
R12 10K RESISTOR0603-RES 0603-RES Resistor
R13 4.7K RESISTOR0603-RES 0603-RES Resistor
R14 150 RESISTOR0603-RES 0603-RES Resistor
R15 150 RESISTOR0603-RES 0603-RES Resistor
U$1 TEMT6000 TEMT6000 TEMT6000-SEN Ambient Light Sensor
U1 PIC32MX340F512H- PIC32MX340F512H- TQFP64_10X10MC Microcontroller
U2 ENC28J60-X/SO ENC28J60-X/SO SOIC28-W_MC Ethernet Controller
Y1 8MHz RESONATORSMD RESONATOR-SMD Resonator
Y2 25MHz CRYSTAL5X3 CRYSTAL-SMD-5X3 Crystals
Y3 32kHz CRYSTAL32-SMD CRYSTAL-32KHZ-SMD Crystals

B.2 Node

Partlist for the Node

Part Value Device Package Description
C1 10uF CAP_POL1206 EIA3216 Capacitor Polarized
C2 10uF CAP_POL1206 EIA3216 Capacitor Polarized
C3 0.1uF CAP0603-CAP 0603-CAP Capacitor
C4 0.1uF CAP0603-CAP 0603-CAP Capacitor
C5 0.1uF CAP0603-CAP 0603-CAP Capacitor
C6 0.1uF CAP0603-CAP 0603-CAP Capacitor
LED1 WHT LED0603 LED-0603 LEDs
M1 MRF24J40MABTM MRF24J40MABTM MRF24J40MA-BTM Microchip Wireless 2.4GHz module
R1 100K RESISTOR0603-RES 0603-RES Resistor
R2 10K RESISTOR0603-RES 0603-RES Resistor
R3 100K RESISTOR0603-RES 0603-RES Resistor
R6 150 RESISTOR0603-RES 0603-RES Resistor
R11 10K RESISTOR0603-RES 0603-RES Resistor
R12 10K RESISTOR0603-RES 0603-RES Resistor
R13 4.7K RESISTOR0603-RES 0603-RES Resistor
U$1 TEMT6000 TEMT6000 TEMT6000-SEN Ambient Light Sensor
U$2 PIC18F46K20-X/PT PIC18F46K20-X/PT TQFP44_MC Microcontroller
U2 MIC5216 V_REG_LDOSMD SOT23-5 Voltage Regulator LDO
U3 MCP9701A MCP9700SMD SOT23-3 Temperature Sensor
Y1 16MHz RESONATORSMD RESONATOR-SMD Resonator

C. Flow Charts

75

C.1 Base

Power On

Initialize
microcontroller

Initialize
peripherals

Start wireless
network

Update TCP/IP
stack

Update OSC
server

Check incoming
messages

Send sensor values
as OSC to network

Send discover
message to Node

Message
available?

NO

YES

Sensor
message?

NO

YES

Discover
message?

NO

YES

Base

C.2 Node

Power On

Initialize
microcontroller

Initialize
peripheral

Connect
to the Base

Check messages
from the Base

Send sensor values
to the Base

Sleep 10 seconds

Blink LED

Read sensor values

Message
available?

NO

YES

Discover
message?

NO

YES

Node

D. Source Code

85

D.1 Base

/*
 HardwareProfile.h
 */

/***
 *
 * Hardware specific definitions for:
 * - PIC32 Starter Kit
 * - PIC32MX360F512L
 * - Ethernet PICtail Plus (ENC28J60)
 *

 * FileName: HardwareProfile.h
 * Dependencies: Compiler.h
 * Processor: PIC32
 * Compiler: Microchip C32 v1.11 or higher
 * Company: Microchip Technology, Inc.
 *
 * Software License Agreement
 *
 * Copyright (C) 2002-2010 Microchip Technology Inc. All rights
 * reserved.
 *
 * Microchip licenses to you the right to use, modify, copy, and
 * distribute:
 * (i) the Software when embedded on a Microchip microcontroller or
 * digital signal controller product ("Device") which is
 * integrated into Licensee's product; or
 * (ii) ONLY the Software driver source files ENC28J60.c, ENC28J60.h,
 * ENCX24J600.c and ENCX24J600.h ported to a non-Microchip device
 * used in conjunction with a Microchip ethernet controller for
 * the sole purpose of interfacing with the ethernet controller.
 *
 * You should refer to the license agreement accompanying this
 * Software for additional information regarding your rights and
 * obligations.
 *
 * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
 * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT
 * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR
 * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF
 * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS
 * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE
 * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER
 * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT
 * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE.
 *
 *
 * Author Date Comment
 *~~
 * Howard Schlunder 09/16/2010 Regenerated for specific boards
 **/
#ifndef HARDWARE_PROFILE_H
#define HARDWARE_PROFILE_H

#include "Compiler.h"

// Set configuration fuses (but only in MainDemo.c where THIS_IS_STACK_APPLICATION is defined)
#if defined(THIS_IS_STACK_APPLICATION)

#pragma config FPLLODIV = DIV_1, FPLLMUL = MUL_20, FPLLIDIV = DIV_2, FWDTEN = OFF
#pragma config FPBDIV = DIV_2, POSCMOD = HS, FNOSC = PRIPLL, CP = OFF, BWP = OFF, DEBUG = ON, ICESEL = ICS_PGx1

#endif

#if defined(__PIC32MX__)

 #define PIC32MX_SPI2_SDO_SCK_MASK_VALUE (0x00000140)
 #define PIC32MX_SPI2_SDI_MASK_VALUE (0x00000080)

#define PIC32MX_INT3_MASK_VALUE (0x00000400)
 //#define PIC32MX_INT2_MASK_VALUE (0x00000010)
 //#define PIC32MX_INT1_MASK_VALUE (0x00000008)
 //#define PIC32MX_INT1_MASK_VALUE (0x00000100)
 /* MAX SPI CLOCK FREQ SUPPORTED FOR MIWI TRANSCIEVER */
 #define MAX_SPI_CLK_FREQ_FOR_P2P (1000000)

#endif

// Clock frequency values
// These directly influence timed events using the Tick module. They also are used for UART and SPI baud rate generation.
#define GetSystemClock() (80000000ul) // Hz
#define GetInstructionClock() (GetSystemClock()/1) // Normally GetSystemClock()/4 for PIC18, GetSystemClock()/2 for PIC24/
dsPIC, and GetSystemClock()/1 for PIC32. Might need changing if using Doze modes.
#define GetPeripheralClock() (GetSystemClock()/4) // Normally GetSystemClock()/4 for PIC18, GetSystemClock()/2 for PIC24/
dsPIC, and GetSystemClock()/1 for PIC32. Divisor may be different if using a PIC32 since it's configurable.

// Hardware I/O pin mappings

#define CLOCK_FREQ 80000000
#define USE_DATA_EEPROM

// Transceiver Configuration
#define RFIF IFS0bits.INT3IF
#define RFIE IEC0bits.INT3IE

#define PHY_CS LATEbits.LATE0
#define PHY_CS_TRIS TRISEbits.TRISE0

#define PHY_RESETn LATEbits.LATE1
#define PHY_RESETn_TRIS TRISEbits.TRISE1

#define PHY_WAKE LATEbits.LATE2
#define PHY_WAKE_TRIS TRISEbits.TRISE2

#define RF_INT_PIN PORTDbits.RD10
#define RF_INT_TRIS TRISDbits.TRISD10

#define SPI_SDI PORTGbits.RG7
#define SDI_TRIS TRISGbits.TRISG7

#define SPI_SDO LATGbits.LATG8
#define SDO_TRIS TRISGbits.TRISG8

#define SPI_SCK LATGbits.LATG6
#define SCK_TRIS TRISGbits.TRISG6

// Misc
#define LED_1 LATGbits.LATG9
#define LED_1_TRIS TRISGbits.TRISG9

#define TMRL TMR2

// UART configuration (not too important since we don't have a UART
// connector attached normally, but needed to compile if the STACK_USE_UART
// or STACK_USE_UART2TCP_BRIDGE features are enabled.
#define UARTTX_TRIS (TRISFbits.TRISF5)
#define UARTRX_TRIS (TRISFbits.TRISF4)

// ENC28J60 I/O pins
#define ENC_CS_TRIS (TRISFbits.TRISF0)
#define ENC_CS_IO (LATFbits.LATF0)
#define ENC_RST_TRIS (TRISFbits.TRISF1) // Not connected by default. It is okay to leave this pin completely
unconnected, in which case this macro should simply be left undefined.
#define ENC_RST_IO (LATFbits.LATF1)

// SPI SCK, SDI, SDO pins are automatically controlled by the
#define ENC_SPI_IF (IFS0bits.SPI1RXIF)
#define ENC_SSPBUF (SPI1BUF)
#define ENC_SPICON1 (SPI1CON)
#define ENC_SPICON1bits (SPI1CONbits)
#define ENC_SPIBRG (SPI1BRG)
#define ENC_SPISTATbits (SPI1STATbits)

#define SaveAppConfig(a)

#endif // #ifndef HARDWARE_PROFILE_H

/*
 OSC.h - OSC implementation for the Microchip TCP/IP Stack
 */

#ifndef __OSC_H
#define __OSC_H

#include <string.h>
#include <stdarg.h>
#include <stdlib.h>
#include "GenericTypeDefs.h"

#define OSC_PORT 12345

#define OSC_SUCCESS 0
#define OSC_ERROR_BAD_DATA 1
#define OSC_ERROR_BAD_BUFFER 2
#define OSC_ERROR_BAD_INDEX 3
#define OSC_ERROR_BAD_PROPERTY 4
#define OSC_ERROR_BAD_TAG 5

#define OSC_MAX_MESSAGE_IN 300
#define OSC_MAX_MESSAGE_OUT 300

#define OSC_TEXT_BUFFER 50

#define OSC_SUB_SYSTEM_SIZE 10

void OSCServerTask(void);
void OSCCloseSocket(void);
int OSCisActive(void);
int OSCCreateMessage(char* address, char* format, ...);
int OSCRegSubSystem(const char* name, int (*subReceiveMessage)(char* bp, int len));
int OSCIntReceiverHelper(char *bp, int len, const char* subSystemName,

int (*propertySet)(int property, int value),
int(*propertyGet)(int property),
char* propertyNames[]);

int OSCIndexIntReceiverHelper(char *bp, int len, int indexCount, const char* subSystemName,
int (*propertySet)(int index, int property, int value),
int(*propertyGet)(int index, int property),
char* propertyNames[]);

#endif

/*
 OSC.c - OSC implementation for the Microchip TCP/IP Stack

 Based on code from MakingThings.
 The code has been rewritten to work with the Microchip TCP/IP Stack:
 http://www.makingthings.com/ref/firmware/html/osc_8c-source.html
 */

#include <ctype.h>
#include "TCPIP Stack/TCPIP.h"
#include "OSC/OSC.h"

typedef struct _OSCSubSystem
{

const char* name;
int (*receiveMessage)(char* bp, int len);

} OSCSubSystem;

static enum _OSCState
{

OSC_INIT = 0,
OSC_SOCKET,
OSC_LISTEN,
OSC_CLOSE,

} OSCState = OSC_INIT;

typedef struct _OSCStruct
{

char buffer[OSC_MAX_MESSAGE_OUT];
char recvBuffer[OSC_MAX_MESSAGE_IN];
char* bufferPtr;
int bufferRemaining;
int messages;
char textBuf[OSC_TEXT_BUFFER];
int regSubSystems;
OSCSubSystem subSystem[OSC_SUB_SYSTEM_SIZE];
UDP_SOCKET socket;

} OSCStruct;

OSCStruct OSC;

void OSCResetBuffer(void)
{

OSC.bufferPtr = OSC.buffer;
OSC.bufferRemaining = OSC_MAX_MESSAGE_OUT;
OSC.messages = 0;

}

int OSCEndianSwap(int a)
{

return ((a & 0x000000FF) << 24) |
 ((a & 0x0000FF00) << 8) |
 ((a & 0x00FF0000) >> 8) |
 ((a & 0xFF000000) >> 24);

}

void OSCCloseSocket(void)
{

OSCState = OSC_CLOSE;
}

int OSCisActive(void)
{

if(OSC.socket != INVALID_UDP_SOCKET)
{

return 1;
}
return 0;

}

int OSCRegSubSystem(const char* name, int (*subReceiveMessage)(char* bp, int len))
{

int subSystem = OSC.regSubSystems++;

if(OSC.regSubSystems > OSC_SUB_SYSTEM_SIZE)
{

return OSC_ERROR_BAD_INDEX;
}

OSCSubSystem *sub = &OSC.subSystem[subSystem];
sub->name = name;
sub->receiveMessage = subReceiveMessage;

return OSC_SUCCESS;
}

int OSCPropertyLookup(char** properties, char* property)
{

char** p = properties;
int index = 0;
while(*p != NULL)
{

if(strcmp(property, *p++) == 0)
{

return index;
}
index++;

}
return -1;

}

char* OSCFindDataTag(char* bp, int len)
{

while(*bp != ',' && len-- > 0)
{

bp++;
}

if(len <= 0)
{

return NULL;
}
else
{

return bp;
}

}

int OSCReadInt(char*bp)
{

int v = *((int*)bp);
v = OSCEndianSwap(v);
return v;

}

int OSCExtractData(char* bp, char* format, ...)
{

va_list args;
va_start(args, format);
int count = 0;
BOOL cont = TRUE;

int strLen = strlen(bp);
int pad = 4 - (strLen % 4);

char* data = bp + (strLen + pad);

char* fp;
char* tp = bp + 1; // Skip comma ','
for(fp = format; cont == TRUE; fp++)
{

switch(*fp)
{

case 'i':
if(*tp == 'i')
{

(va_arg(args, int)) = OSCReadInt(data);
data += 4;
count++;

}
else
{

cont = FALSE;
}
break;

default:
cont = FALSE;
break;

}
tp++;

}
va_end(args);

return count;
}

int OSCNumberMatch(int count, char* bp, int* bits)
{

int n = 0;
int digits = 0;
while(isdigit(*bp))
{

digits++;
n = n * 10 + (*bp++ - '0');

}

*bits = -1;

if(digits == 0)
{

return -1;
}
return n;

}

int OSCIntReceiverHelper(char *bp, int len, const char* subSystemName,
int (*propertySet)(int property, int value),
int(*propertyGet)(int property),
char* propertyNames[])

{
if(*bp == '\0' || *bp == ' ')
{

return OSC_SUCCESS;
}

int propertyIndex = OSCPropertyLookup(propertyNames, bp);
if(propertyIndex == -1)
{

return OSC_ERROR_BAD_PROPERTY;
}

char* type = OSCFindDataTag(bp, len);
if(type == NULL)
{

return OSC_ERROR_BAD_TAG;
}

int value;

if(type[1] == 'i')
{

int count = OSCExtractData(type, "i", &value);

if(count != 1)
{

return OSC_ERROR_BAD_DATA;
}

(*propertySet)(propertyIndex, value);
}
else
{

value = (*propertyGet)(propertyIndex);
sprintf(OSC.textBuf, "/%s/%s", subSystemName, propertyNames[propertyIndex]);
OSCCreateMessage(OSC.textBuf, ",i", value);

}

return OSC_SUCCESS;
}

int OSCIndexIntReceiverHelper(char *bp, int len, int indexCount, const char* subSystemName,
int (*propertySet)(int index, int property, int value),
int(*propertyGet)(int index, int property),
char* propertyNames[])

{
int i;
if(*bp == '\0' || *bp == ' ')
{

return OSC_SUCCESS;
}

char* prop = strchr(bp, '/');
char* propHelp = NULL;
if(prop == NULL)
{

propHelp = bp + strlen(bp);
}

*prop = 0;

int bits;
int number = OSCNumberMatch(indexCount, bp, &bits);
if(number == -1 && bits == -1)
{

return OSC_ERROR_BAD_INDEX;
}

*prop = '/';

if(propHelp != NULL && (*propHelp == '\0' || *propHelp == ' '))
{

return OSC_SUCCESS;
}

int propertyIndex = OSCPropertyLookup(propertyNames, prop + 1);
if(propertyIndex == -1)
{

return OSC_ERROR_BAD_PROPERTY;
}

char* type = OSCFindDataTag(bp, len);
if(type == NULL)
{

return OSC_ERROR_BAD_TAG;
}

if(type[1] == 'i' || type[1] == 'f')
{

int value;
int count = OSCExtractData(type, "i", &value);
if(count != 1)
{

return OSC_ERROR_BAD_DATA;
}

if(number != -1)
{

(*propertySet)(number, propertyIndex, value);
}
else
{

int index = 0;
while(bits > 0 && index < indexCount)
{

if(bits & 1)
{

(*propertySet)(index, propertyIndex, value);
bits >>= 1;
index++;

}
}

}
}
else
{

if(number != -1)
{

int value = (*propertyGet)(number, propertyIndex);
sprintf(OSC.textBuf, "/%s/%d/%s", subSystemName, number, propertyNames[propertyIndex]);
OSCCreateMessage(OSC.textBuf, ",i", value);

}
else
{

int index = 0;
while(bits > 0 && index < indexCount)
{

if(bits & 1)
{

int value = (*propertyGet)(index, propertyIndex);
sprintf(OSC.textBuf, "/%s/%d/%s", subSystemName, index, propertyNames[propertyIndex]);
OSCCreateMessage(OSC.textBuf, ",i", value);

}

bits >>= 1;
index++;

}
}

}

return OSC_SUCCESS;
}

int OSCSendPacket(void)
{

char* bp;
int len;
int maxPut;

if(OSC.messages == 0)
{

return OSC_SUCCESS;
}

bp = OSC.buffer;
len = OSC_MAX_MESSAGE_OUT - OSC.bufferRemaining;

if(OSC.messages == 1)
{

bp += 20;
len -= 20;

}

if(UDPIsPutReady(OSC.socket)) // Get UDP TX FIFO free space
{

UDPPutArray(bp, len);
UDPFlush();

}
OSCResetBuffer();
return OSC_SUCCESS;

}

int OSCReceiveMessage(char* bp, int len)
{

int i;
if(*bp == '/')
{

if(strlen(bp) > (unsigned int)len)
{

return OSC_ERROR_BAD_DATA;
}

char* nextChar = bp + 1;
if(*nextChar == '\0' || *nextChar == ' ')
{

return OSC_SUCCESS;
}

char *nextSlash = strchr(nextChar, '/');
if(nextSlash != NULL)
{

*nextSlash = 0;
}

int count = 0;
for(i = 0; i < OSC.regSubSystems; i++)
{

OSCSubSystem *sub = &OSC.subSystem[i];
int match = strcmp(nextChar, sub->name);
if(match == 0)
{

if(nextSlash)
{

(sub->receiveMessage)(nextSlash + 1, len - (nextSlash - bp) - 1);
}
else
{

char* noNextSlash = bp + strlen(bp);
(sub->receiveMessage)(noNextSlash, 0);

}
}

}
}
else
{

return OSC_ERROR_BAD_DATA;
}
return OSC_SUCCESS;

}

int OSCReceivePacket(char* bp, int len)
{

int status = -1;

if(len > 0)
{

char* bp = OSC.recvBuffer;
switch(*bp)
{

case '/':
status = OSCReceiveMessage(bp, len);
break;

case '#':
if(strcmp(bp, "#bundle") == 0)
{

bp += 16;
len -= 16;
while(len > 0)
{

int messageLen = OSCEndianSwap(*((int*)bp));
bp += 4;

len -= 4;
if(messageLen <= len)
{

OSCReceivePacket(bp, messageLen);
}
bp += messageLen;
len -= messageLen;

}
}
break;

default:
break;

}
}
UDPDiscard();
return status;

}

void OSCServerTask(void)
{

char* bp;
int len;
int maxGet, maxPut;

switch(OSCState)
{

case OSC_INIT:
OSC.socket = INVALID_UDP_SOCKET;
OSCResetBuffer();
OSCState = OSC_SOCKET;
break;

case OSC_SOCKET:
OSC.socket = UDPOpen(OSC_PORT, NULL, OSC_PORT);
if(OSC.socket == INVALID_UDP_SOCKET)
{

break;
}
OSCState = OSC_LISTEN;
break;

case OSC_LISTEN:
// Figure out how many bytes have been received and how many we can transmit.
if(UDPIsGetReady(OSC.socket)) // Get UDP RX FIFO byte count
{

int len = UDPGetArray(OSC.recvBuffer, OSC_MAX_MESSAGE_IN);
OSCReceivePacket(OSC.recvBuffer, len);
UDPDiscard();

 UDPSocketInfo[OSC.socket].remotePort = OSC_PORT;

}
OSCSendPacket();
break;

case OSC_CLOSE:
if(OSC.socket != INVALID_UDP_SOCKET)
{

UDPClose(OSC.socket);
OSCState = OSC_INIT;

}
break;

}
}

char* OSCWriteString(char* bp, int* len, char* string)
{

int i;
int strLen = strlen(string);
int pad = 4 - (strLen % 4);

*len -= strLen + pad;

strcpy(bp, string);
bp += strLen;

for(i = 0; i < pad; i++)
{

*(bp++) = 0;
}

return bp;
}

char* OSCCreateInternalMessage(char* bp, int* len, char* address, char* format, va_list args)
{

char* fp;
BOOL cont = TRUE;
int val;

// Write address as OSC string
bp = OSCWriteString(bp, len, address);
// Write format as OSC string
bp = OSCWriteString(bp, len, format);

for(fp = format + 1; cont == TRUE; fp++)
{

switch(*fp)
{

case 'i':
*len -= 4;
if(*len >= 0)
{

val = va_arg(args, int);
val = OSCEndianSwap(val);
((int)bp) = val;
bp += 4;

}
else
{

cont = FALSE;

}
break;

default:
cont = FALSE;
break;

}
}

return cont ? NULL : bp;
}

char* OSCWriteTimeTag(char* bp, int* len, int a, int b)
{

if(*len < 8)
{

return NULL;
}

((int)bp) = OSCEndianSwap(a);
((int)bp) = OSCEndianSwap(b);
bp += 8;
*len -= 8;

return bp;
}

char* OSCCreateBundle(char* bp, int* len, int a, int b)
{

char* bp2 = bp;

bp2 = OSCWriteString(bp2, len, "#bundle");
if(bp2 == NULL)
{

return NULL;
}

bp2 = OSCWriteTimeTag(bp2, len, a, b);

if(bp2 == NULL)
{

return NULL;
}

return bp2;
}

int OSCCreateMessage(char* address, char* format, ...)
{

char* bp;
int len;
int count = 0;

if(address == NULL || format == NULL || *format != ',')
{

return OSC_ERROR_BAD_DATA;
}

if(OSC.bufferPtr == NULL)
{

OSCResetBuffer();
}

bp = OSC.bufferPtr;
len = OSC.bufferRemaining;

if(bp == OSC.buffer)
{

bp = OSCCreateBundle(bp, &len, 0, 0);
if(bp == NULL)
{

return OSC_ERROR_BAD_BUFFER;
}

}

int* lp = (int*)bp;
bp += 4;
len -=4;

char* mp = bp;

if(len > 0)
{

va_list args;
va_start(args, format);

bp = OSCCreateInternalMessage(bp, &len, address, format, args);

va_end(args);
}
else
{

bp = NULL;
}

if(bp != NULL)
{

*lp = OSCEndianSwap(bp - mp);

OSC.bufferPtr = bp;
OSC.bufferRemaining = len;
OSC.messages++;

}
return ((bp != NULL) ? OSC_SUCCESS : OSC_ERROR_BAD_BUFFER);

}

/*
 BaseHandler.h
 */
#ifndef __BASE_HANDLER_H_
#define __BASE_HANDLER_H_

int baseReceiveMessage(char* bp, int len);

#endif

/*
 BaseHandler.c
 */
#include "OSC\OSC.h"
#include "HardwareProfile.h"

const char baseSubSystemName[] = "base";

const char* baseGetSubSystemName(void)
{

return baseSubSystemName;
}

char* basePropertyNames[] = {"led", "active", 0};

int basePropertySet(int property, int value)
{

switch(property)
{

case 0:
LED_1 = (BYTE)value;
break;

case 1:
OSCCloseSocket();
break;

}
return OSC_SUCCESS;

}

int basePropertyGet(int property)
{

int value;
switch(property)
{

case 0:
value = LED_1;
break;

case 1:
value = OSCisActive();
break;

}
return value;

}

int baseReceiveMessage(char* bp, int len)
{

return OSCIntReceiverHelper(bp, len, baseSubSystemName,
basePropertySet,
basePropertyGet,
basePropertyNames);

}

/*
 NodeHandler.h
 */
#ifndef __NODE_HANDLER_H_
#define __NODE_HANDLER_H_

int nodeReceiveMessage(char* bp, int len);

#endif

/*
 NodeHandler.c
 */
#include "OSC\OSC.h"
#include "HardwareProfile.h"
#include "WirelessProtocols/MCHP_API.h"

BYTE nodeAddressSuffix[8] = {EUI_0, EUI_1, EUI_2, EUI_3, EUI_4, EUI_5, EUI_6, EUI_7};

const char nodeSubSystemName[] = "node";

const char* nodeGetSubSystemName(void)
{

return nodeSubSystemName;
}

char* nodePropertyNames[] = {"discover", 0};

int nodePropertySet(int index, int property, int value)
{

switch(property)
{

case 0:
if(value == 1 || value == 0)
{

MiApp_FlushTx();
MiApp_WriteData(0x30 | (BYTE)value);
nodeAddressSuffix[0] = (BYTE)index;
MiApp_UnicastAddress(nodeAddressSuffix, TRUE, FALSE);

}
break;

}
return OSC_SUCCESS;

}

int nodePropertyGet(int index, int property)
{

int value;
switch(property)
{

case 0:
value = 0;
break;

}
return value;

}

int nodeReceiveMessage(char* bp, int len)
{

return OSCIndexIntReceiverHelper(bp, len, 1, nodeSubSystemName,
nodePropertySet,
nodePropertyGet,
nodePropertyNames);

}

/*
 main.c - main loop for the Base
 */

#define THIS_IS_STACK_APPLICATION

#include "TCPIP Stack/TCPIP.h"
#include "WirelessProtocols/Console.h"
#include "ConfigApp.h"
#include "HardwareProfile.h"
#include "WirelessProtocols/MCHP_API.h"
#include "OSC/OSC.h"
#include "BaseHandler.h"
#include "NodeHandler.h"

#define BASE 0x01
#define NODE 0x02

#if ADDITIONAL_NODE_ID_SIZE > 0
 BYTE AdditionalNodeID[ADDITIONAL_NODE_ID_SIZE] = {BASE};
#endif

BYTE myChannel = 11;
APP_CONFIG AppConfig;
static unsigned short wOriginalAppConfigChecksum; // Checksum of the ROM defaults for AppConfig
char nodeID[10];
extern char baseSubSystemName[];
extern char nodeSubSystemName[];

static void InitAppConfig(void);
static void InitBoard(void);

#if defined(__C32__)
void _general_exception_handler(unsigned cause, unsigned status)
{

Nop();
Nop();

}
#endif

int main(void)
{

BYTE count = 0;
 BYTE i;

BYTE buffer[15];
WORD tmp[3];
char textBuf[60];

 /***/
 // Initialize the system
 /***/
 ConsoleInit();

InitBoard();
 TickInit();

InitAppConfig();
StackInit();

 #if defined(PROTOCOL_P2P)
 Printf("\r\n\r\nStarting MiWi(TM) P2P Stack ...");
 #endif
 #if defined(PROTOCOL_MIWI)
 Printf("\r\n\r\nStarting MiWi(TM) Stack ...");
 #endif

 #if defined(MRF24J40)

 Printf("\r\n RF Transceiver: MRF24J40\r\n");
 #elif defined(MRF49XA)

 Printf("\r\n RF Transceiver: MRF49XA\r\n");
 #elif defined(MRF89XA)

 Printf("\r\n RF Transceiver: MRF89XA\r\n");
 #endif

 LED_1 = 0;

 /***/
 // Initialize Microchip proprietary protocol. Which protocol to use
 // depends on the configuration in ConfigApp.h
 /***/
 MiApp_ProtocolInit(FALSE);

#ifndef ENABLE_ED_SCAN
MiApp_SetChannel(myChannel);

#endif

 MiApp_ConnectionMode(ENABLE_ALL_CONN);

 #ifdef ENABLE_ED_SCAN

 Printf("\r\nActive Scanning Energy Scanning");
 MiApp_StartConnection(START_CONN_ENERGY_SCN, 10, 0xFFFFFFFF);

#else
 MiApp_StartConnection(START_CONN_DIRECT, 10, 0);
 #endif

// Turn on LED 1 to indicate ready to accept new connections
LED_1 = 1;

// OSC HANDLERS
OSCRegSubSystem(baseSubSystemName, baseReceiveMessage);
OSCRegSubSystem(nodeSubSystemName, nodeReceiveMessage);

while(1)
{

static DWORD t = 0;

StackTask();
StackApplications();
OSCServerTask();

 if(MiApp_MessageAvailable())
 {
 for(i = 0; i < rxMessage.PayloadSize; i++)
 {

buffer[i] = rxMessage.Payload[i];
 }

 for(i = 0; i < 3; i++)
 {

tmp[i] = ((WORD)buffer[i * 2] << 8) & 0xFF00;
tmp[i] |= buffer[i * 2 + 1];

}

#ifdef ENABLE_CONSOLE
DWORD time = SNTPGetUTCSeconds();
sprintf(textBuf, "%u, %u, %u, %u, %u, %u\r\n", (BYTE)rxMessage.SourceAddress[0], time, tmp[0], tmp[1], tmp[2],

(BYTE)rxMessage.PacketRSSI);
#endif
Printf(textBuf);
sprintf(nodeID, "/node/%u", rxMessage.SourceAddress[0]);
OSCCreateMessage(nodeID, ",iiii", tmp[0], tmp[1], tmp[2], (BYTE)rxMessage.PacketRSSI);

 MiApp_DiscardMessage();
 }

}
}

static void InitBoard(void)
{

// LEDs
LED_1_TRIS = 0;
LED_1 = 0;

PHY_CS_TRIS = 0;
PHY_CS = 1;
PHY_RESETn_TRIS = 0;
PHY_RESETn = 1;

RF_INT_TRIS = 1;

SDI_TRIS = 1;
SDO_TRIS = 0;
SCK_TRIS = 0;
SPI_SDO = 0;
SPI_SCK = 0;

PHY_WAKE_TRIS = 0;
PHY_WAKE = 1;

#ifdef __PIC32MX__

// Enable optimal performance
SYSTEMConfigPerformance(GetSystemClock());
mOSCSetPBDIV(OSC_PB_DIV_2); // Use 1:2 CPU Core:Peripheral clocks

#ifdef HARDWARE_SPI

SPI2CON = 0x00008120;

mSpiChnSetBrg(2,19);

#endif

/* Set the Port Directions of SDO, SDI, Clock & Slave Select Signal */
mPORTGSetPinsDigitalOut(PIC32MX_SPI2_SDO_SCK_MASK_VALUE);
mPORTGSetPinsDigitalIn(PIC32MX_SPI2_SDI_MASK_VALUE);

/* Set the INT3 port pin to input */
mPORTDSetPinsDigitalIn(BIT_10);

// Set CS, RST, WKE to outputs
mPORTESetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2);

/* Set the Interrupt Priority */
mINT3SetIntPriority(4);

 /* Set Interrupt Subpriority Bits for INT1 */
 mINT3SetIntSubPriority(2);

 /* Set INT1 to falling edge */
 mINT3SetEdgeMode(0);

 /* Enable INT1 */
 mINT3IntEnable(1);
 /* Enable Multi Vectored Interrupts */
 INTEnableSystemMultiVectoredInt();

// Disable JTAG port so we get our I/O pins back, but first
// wait 50ms so if you want to reprogram the part with
// JTAG
DelayMs(50);
#if !defined(__MPLAB_DEBUGGER_PIC32MXSK) && !defined(__MPLAB_DEBUGGER_FS2)

DDPCONbits.JTAGEN = 0;
#endif

#endif

RFIF = 0;

if(RF_INT_PIN == 0)
{
 RFIF = 1;
}

// Deassert all chip select lines so there isn't any problem with

// initialization order.

#if defined(ENC_CS_TRIS)
ENC_CS_IO = 1;
ENC_CS_TRIS = 0;

#endif
}

static ROM BYTE SerializedMACAddress[6] = {MY_DEFAULT_MAC_BYTE1, MY_DEFAULT_MAC_BYTE2, MY_DEFAULT_MAC_BYTE3,
MY_DEFAULT_MAC_BYTE4, MY_DEFAULT_MAC_BYTE5, MY_DEFAULT_MAC_BYTE6};

static void InitAppConfig(void)
{

while(1)
{

// Start out zeroing all AppConfig bytes to ensure all fields are
// deterministic for checksum generation
memset((void*)&AppConfig, 0x00, sizeof(AppConfig));

AppConfig.Flags.bIsDHCPEnabled = TRUE;
AppConfig.Flags.bInConfigMode = TRUE;
memcpypgm2ram((void*)&AppConfig.MyMACAddr, (ROM void*)SerializedMACAddress, sizeof(AppConfig.MyMACAddr));

AppConfig.MyIPAddr.Val = MY_DEFAULT_IP_ADDR_BYTE1 | MY_DEFAULT_IP_ADDR_BYTE2<<8ul | MY_DEFAULT_IP_ADDR_BYTE3<<16ul |
MY_DEFAULT_IP_ADDR_BYTE4<<24ul;

AppConfig.DefaultIPAddr.Val = AppConfig.MyIPAddr.Val;
AppConfig.MyMask.Val = MY_DEFAULT_MASK_BYTE1 | MY_DEFAULT_MASK_BYTE2<<8ul | MY_DEFAULT_MASK_BYTE3<<16ul |

MY_DEFAULT_MASK_BYTE4<<24ul;
AppConfig.DefaultMask.Val = AppConfig.MyMask.Val;
AppConfig.MyGateway.Val = MY_DEFAULT_GATE_BYTE1 | MY_DEFAULT_GATE_BYTE2<<8ul | MY_DEFAULT_GATE_BYTE3<<16ul |

MY_DEFAULT_GATE_BYTE4<<24ul;
AppConfig.PrimaryDNSServer.Val = MY_DEFAULT_PRIMARY_DNS_BYTE1 | MY_DEFAULT_PRIMARY_DNS_BYTE2<<8ul |

MY_DEFAULT_PRIMARY_DNS_BYTE3<<16ul | MY_DEFAULT_PRIMARY_DNS_BYTE4<<24ul;
AppConfig.SecondaryDNSServer.Val = MY_DEFAULT_SECONDARY_DNS_BYTE1 | MY_DEFAULT_SECONDARY_DNS_BYTE2<<8ul |

MY_DEFAULT_SECONDARY_DNS_BYTE3<<16ul | MY_DEFAULT_SECONDARY_DNS_BYTE4<<24ul;

// Load the default NetBIOS Host Name
memcpypgm2ram(AppConfig.NetBIOSName, (ROM void*)MY_DEFAULT_HOST_NAME, 16);
FormatNetBIOSName(AppConfig.NetBIOSName);

// Compute the checksum of the AppConfig defaults as loaded from ROM
wOriginalAppConfigChecksum = CalcIPChecksum((BYTE*)&AppConfig, sizeof(AppConfig));
break;

}
}

D.2 Node

/*
 HardwareProfile.h
 */

#ifndef _HARDWARE_PROFILE_H
#define _HARDWARE_PROFILE_H

 #include "GenericTypeDefs.h"
 #include "ConfigApp.h"

#define SENSOR_NODE

 #define CLOCK_FREQ 16000000
 #define USE_DATA_EEPROM

 // Transceiver Configuration
 #define RFIF INTCONbits.INT0IF
 #define RFIE INTCONbits.INT0IE

 #define PHY_CS LATBbits.LATB4
 #define PHY_CS_TRIS TRISBbits.TRISB4

#define PHY_CS_ANS ANSELBbits.ANSB4

 #define PHY_RESETn LATDbits.LATD5
 #define PHY_RESETn_TRIS TRISDbits.TRISD5

#define PHY_RESETn_ANS ANSELDbits.ANSD5

 #define PHY_WAKE LATDbits.LATD4
 #define PHY_WAKE_TRIS TRISDbits.TRISD4

#define PHY_WAKE_ANS ANSELDbits.ANSD4

 #define RF_INT_PIN PORTBbits.RB0
 #define RF_INT_TRIS TRISBbits.TRISB0
 #define RF_INT_ANS ANSELBbits.ANSB0

 #define SPI_SDI PORTCbits.RC4
 #define SDI_TRIS TRISCbits.TRISC4

#define SDI_ANS ANSELCbits.ANSC4

 #define SPI_SDO LATCbits.LATC5
 #define SDO_TRIS TRISCbits.TRISC5

#define SDO_ANS ANSELCbits.ANSC5

 #define SPI_SCK LATCbits.LATC3
 #define SCK_TRIS TRISCbits.TRISC3

#define SCK_ANS ANSELCbits.ANSC3

// ADC - Channels

#define LGT_TRIS TRISBbits.TRISB3
#define LGT_ANS ANSELBbits.ANSB3

#define TMP_TRIS TRISBbits.TRISB1
#define TMP_ANS ANSELBbits.ANSB1

#define BAT_TRIS TRISEbits.TRISE1
#define BAT_ANS ANSELEbits.ANSE1

#define AN0_TRIS TRISAbits.TRISA0
#define AN0_ANS ANSELAbits.ANSA0
#define AN1_TRIS TRISAbits.TRISA1
#define AN1_ANS ANSELAbits.ANSA1
#define AN2_TRIS TRISAbits.TRISA2
#define AN2_ANS ANSELAbits.ANSA2
#define AN3_TRIS TRISAbits.TRISA3
#define AN3_ANS ANSELAbits.ANSA3
#define AN4_TRIS TRISAbits.TRISA5
#define AN4_ANS ANSELAbits.ANSA5

// Misc
 #define LED_1 LATEbits.LATE2
 #define LED_1_TRIS TRISEbits.TRISE2

#define LED_1_ANS ANSELEbits.ANSE2

 #define TMRL TMR0L

 // Following definition is for delay functionality
 #if defined(__18CXX)
 #define GetInstructionClock() (CLOCK_FREQ/4)
 #endif

 void BoardInit(void);

#endif

/*
 HardwareProfile.c
 */

#include "SystemProfile.h"
#include "Compiler.h"
#include "WirelessProtocols/Console.h"
#include "TimeDelay.h"
#include "HardwareProfile.h"
#include "WirelessProtocols/SymbolTime.h"

void BoardInit(void)
{
 #if defined(SENSOR_NODE)

WDTCONbits.SWDTEN = 0; //disable WDT

// Transceiver configuration

PHY_CS = 1;
PHY_CS_TRIS = 0;
PHY_CS_ANS = 0;

PHY_RESETn = 1;
PHY_RESETn_TRIS = 0;
PHY_WAKE = 0;
PHY_WAKE_TRIS = 0;

RF_INT_TRIS = 1;
RF_INT_ANS = 0;

 RFIF = 0; //clear the interrupt flag

// SPI configuration
SPI_SDI = 0;
SDI_TRIS = 1;
SDI_ANS = 0;

SPI_SDO = 0;
SDO_TRIS = 0;
SDO_ANS = 0;

SPI_SCK = 0;
SCK_TRIS = 0;
SCK_ANS = 0;

// ADC - Channels
LGT_TRIS = 1;
LGT_ANS = 1;

TMP_TRIS = 1;
TMP_ANS = 1;

BAT_TRIS = 1;
BAT_ANS = 1;

// LED configuration
LED_1 = 1;
LED_1_TRIS = 1;
LED_1_ANS = 0;

CCPTMRS1 = 0x08;
PR6 = 0x63;
CCP5CON = 0x0C;
CCPR5L = 0x00;

PIR5bits.TMR6IF = 0;
T6CON = 0x04;

while(!PIR5bits.TMR6IF);

LED_1_TRIS = 0;

 // The MRF24J40 is using INT0 for interrupts
INTCON = 0x00; // Is this needed?

 INTCON2 = 0xC0; // Disable PORTB pull-ups and set INT0 interrupt on rising edge
 INTCON3 = 0x00; // Disable INT1, INT2

 // Set the SPI module
 #if defined(HARDWARE_SPI)
 SSP1STAT = 0xC0; // Mode 0,0
 SSP1CON1 = 0x21; // FOSC/16
 #endif

// Set the ADC module
ADCON0 = 0x01; // AD Control Register 1: Enable (turn on ADC)

 ADCON1 = 0x00; // Set VREF+ to VDD and VREF- to VSS;
ADCON2 = 0xBD; // AD Control Register 2: 20 TAD (accuracy), FOSC_16 (freq/16), right justified

PMD0 = 0xBF; // Power ON USART1 Peripheral only
PMD1 = 0xBF; // Power ON MSSP1 Peripheral only
PMD2 = 0xFE; // Power ON ADC Peripheral only

 RCONbits.IPEN = 1; // Enable interrupt priority
 INTCONbits.GIEH = 1; // Enable high priority interrupts
 #else
 #error "Unknown demo board. Please properly initialize the part for the board."
 #endif
}

#if defined(__18CXX)
 void UserInterruptHandler(void) {
 if(INTCONbits.INT0IE && INTCONbits.INT0IF) {
 INTCONbits.INT0IF = 0;
 }

}
#endif

/*
 main.c - main loop for the Node
 */

/************************ HEADERS **/
#include "WirelessProtocols/Console.h"
#include "ConfigApp.h"
#include "HardwareProfile.h"
#include "WirelessProtocols/MCHP_API.h"
#include "pwm.h"
#include "delays.h"

/************************** VARIABLES ************************************/
#define BASE 0x01
#define NODE 0x02

#if ADDITIONAL_NODE_ID_SIZE > 0
 BYTE AdditionalNodeID[ADDITIONAL_NODE_ID_SIZE] = {NODE};
#endif

BYTE myChannel = 0xFF;
BYTE TxErrors = 0;
BOOL Sleeping = FALSE;

void getAD(BYTE channel, WORD * buffer)
{

ADCON0 &= 0b10000011; // Clear CHS4:CHS0
ADCON0 |= channel << 2; // Set channel

ADCON0bits.GO = 1;

while (ADCON0bits.NOT_DONE); // Wait for conversion

*buffer = ((WORD)ADRESH << 8) & 0xFF00;
*buffer |= ADRESL;

}

void main(void)
{
 BYTE i, j;

WORD val[9][3];
BYTE chan[3];

static BYTE duty = 0;
static BYTE sign = 1;
static enum _State
{

SLEEP = 0,
BLINK,

} State = SLEEP;

 BoardInit();
 ConsoleInit();

chan[0] = 9; // ADC Channel for LIGHT sensor
chan[1] = 10; // ADC Channel for TEMP sensor
chan[2] = 6; // ADC Channel for BATTERY sensor

 #if defined(PROTOCOL_P2P)
 Printf("\r\n\r\nStarting MiWi(TM) P2P Stack ...");
 #endif
 #if defined(PROTOCOL_MIWI)
 Printf("\r\n\r\nStarting MiWi(TM) Stack ...");
 #endif

 #if defined(MRF24J40)

 Printf("\r\n RF Transceiver: MRF24J40\r\n");
 #elif defined(MRF49XA)

 Printf("\r\n RF Transceiver: MRF49XA\r\n");
 #elif defined(MRF89XA)

 Printf("\r\n RF Transceiver: MRF89XA\r\n");
 #endif

 LED_1 = 1; // Turn on LED 1 to indicate on

 /***/
 // Initialize Microchip proprietary protocol. Which protocol to use
 // depends on the configuration in ConfigApp.h
 /***/
 /***/
 // Function MiApp_ProtocolInit initialize the protocol stack. The
 // only input parameter indicates if previous network configuration
 // should be restored. In this simple example, we assume that the
 // network starts from scratch.
 /***/
 MiApp_ProtocolInit(FALSE);

 #ifdef ENABLE_ACTIVE_SCAN

 ConsolePutROMString((ROM char*)"\r\nStarting Active Scan...");

 while(1)
 {
 j = MiApp_SearchConnection(10, 0xFFFFFFFF);

 if(j > 0)
 {
 // now print out the scan result.
 Printf("\r\nActive Scan Results: \r\n");
 for(i = 0; i < j; i++)
 {
 Printf("Channel: ");
 PrintDec(ActiveScanResults[i].Channel);
 Printf(" RSSI: ");
 PrintChar(ActiveScanResults[i].RSSIValue);
 #if defined(IEEE_802_15_4)
 #if ADDITIONAL_NODE_ID_SIZE > 0

 Printf(" PeerInfo: ");
 for(j = 0; j < ADDITIONAL_NODE_ID_SIZE; j++)
 {
 PrintChar(ActiveScanResults[i].PeerInfo[j]);
 }
 #endif
 Printf(" PANID: ");
 PrintChar(ActiveScanResults[i].PANID.v[1]);
 PrintChar(ActiveScanResults[i].PANID.v[0]);
 Printf("\r\n");
 #endif
 myChannel = ActiveScanResults[i].Channel;
 }
 }

 if(myChannel != 0xFF)
 {
 MiApp_SetChannel(myChannel);
 break;
 }

 Printf("\r\nNo Suitable PAN, Rescanning...");
 }

#else
MiApp_SetChannel(myChannel);

#endif

 MiApp_ConnectionMode(DISABLE_ALL_CONN);

 #ifdef ENABLE_HAND_SHAKE
 i = MiApp_EstablishConnection(0, CONN_MODE_DIRECT);
 #endif

 while(1)
 {

if(MiApp_MessageAvailable())
{

if(((BYTE)rxMessage.Payload[0] & 0x30) == 0x30)
{

BYTE state = ((BYTE)rxMessage.Payload[0] & 0x01);
if(state == 1)
{

State = BLINK;
}
else
{

State = SLEEP;
}

}
MiApp_DiscardMessage();

}
else
{

switch(State)
{

case SLEEP:
#ifdef ENABLE_FREQUENCY_AGILITY

if(TxErrors > 3)
{

TxErrors = 0;
 MiApp_TransceiverPowerState(POWER_STATE_WAKEUP);

Sleeping = FALSE;
 MiApp_ResyncConnection(0, 0xFFFFFFFF);

}
else
{

Sleeping = TRUE;
}

#endif
 #ifdef ENABLE_SLEEP

if(Sleeping == TRUE)
{

PMD0 |= 0x20; // Power OFF Timer6
PMD1 |= 0x10; // Power OFF CCP5

MiApp_TransceiverPowerState(POWER_STATE_SLEEP);
while(ConsoleIsPutReady() == 0);

ClrWdt();

 // Turn off LED 1 to indicate sleep
 LED_1 = 0;

WDTCONbits.SWDTEN = 1; // enable watch dog timer

Sleep();

 WDTCONbits.SWDTEN = 0; // disable watch dog timer

 // Turn on LED 1 to indicate wake-up
 LED_1 = 1;

for(i = 0; i < 3; i++)
{

for(j = 0; j < 8; j++)
{

getAD(chan[i], &val[j][i]);
}

}

for(i = 0; i < 3; i++)
{

val[8][i] = 0;
for(j = 0; j < 8; j++)
{

val[8][i] += val[j][i];
}
val[8][i] >>= 3;

}

MiApp_FlushTx();

for(i = 0; i < 3; i++)
{
 MiApp_WriteData((BYTE)(val[8][i] >> 8));
 MiApp_WriteData((BYTE)val[8][i]);
}

if(MiApp_UnicastConnection(0, FALSE) == FALSE)
{

Printf("\r\nUnicast Failed\r\n");
}

 if(MiApp_TransceiverPowerState(POWER_STATE_WAKEUP_DR) > SUCCESS)
{

TxErrors++;
}
else
{

TxErrors = 0;
}

}
#endif
break;

case BLINK:

MiApp_TransceiverPowerState(POWER_STATE_SLEEP);
while(ConsoleIsPutReady() == 0);

PMD0 &= 0xDF; // Power ON Timer6
PMD1 &= 0xEF; // Power ON CCP5

LED_1_TRIS = 1;

CCP5CON = 0x0C;
T6CON = 0x04;

while(!PIR5bits.TMR6IF);

LED_1_TRIS = 0;

for(i = 0; i < 0xFF; i++)
{

Delay10KTCYx(4);
SetDCPWM5(duty += sign);

}
Delay10KTCYx(0);
Delay10KTCYx(0);

sign *= -1;
 // Turn on LED 1 to indicate wake-up

for(i = 0; i < 3; i++)
{

for(j = 0; j < 8; j++)
{

getAD(chan[i], &val[j][i]);
}

}

for(i = 0; i < 3; i++)
{

val[8][i] = 0;
for(j = 0; j < 8; j++)
{

val[8][i] += val[j][i];
}
val[8][i] >>= 3;

}

MiApp_FlushTx();

for(i = 0; i < 3; i++)
{
 MiApp_WriteData((BYTE)(val[8][i] >> 8));
 MiApp_WriteData((BYTE)val[8][i]);
}

if(MiApp_UnicastConnection(0, FALSE) == FALSE)
{

Printf("\r\nUnicast Failed\r\n");
}

 if(MiApp_TransceiverPowerState(POWER_STATE_WAKEUP_DR) > SUCCESS)
{

TxErrors++;
}
else
{

TxErrors = 0;
}
break;

}
}

 }
}

E. Visual Programming

111

E.1 Grasshopper

E.2 Max/MSP

E.3 Quartz Composer

F. openFrameworks - Example

125

/*
 testApp.h
 */
#pragma once

#include "ofMain.h"
#include "ofxOsc.h"

class testApp : public ofBaseApp{
public:

void setup();
void update();
void draw();

void keyPressed(int key);
void keyReleased(int key);
void mouseMoved(int x, int y);
void mouseDragged(int x, int y, int button);
void mousePressed(int x, int y, int button);
void mouseReleased(int x, int y, int button);
void windowResized(int w, int h);

ofxOscReceiver receiver;
int s[4];

};

/*
 testApp.c
 */
#include "testApp.h"

//--
void testApp::setup(){

receiver.setup(12345);
}

//--
void testApp::update(){

while(receiver.hasWaitingMessages()) {

ofxOscMessage m;
receiver.getNextMessage(&m);

cout << m.getAddress() << endl;

if (m.getAddress() == "/node/7")
{

for (int i = 0; i < m.getNumArgs(); i++) {
s[i] = m.getArgAsInt32(i);

}
}

}
}

//--
void testApp::draw(){
}

//--
void testApp::keyPressed (int key){

}

//--
void testApp::keyReleased(int key){

}

//--
void testApp::mouseMoved(int x, int y){

}

//--
void testApp::mouseDragged(int x, int y, int button){

}

//--
void testApp::mousePressed(int x, int y, int button){
}

//--
void testApp::mouseReleased(int x, int y, int button){

}

//--
void testApp::windowResized(int w, int h){

}

G. Case Using Grasshopper

129

01
/ L

oc
al

 te
m

pe
ra

tu
re

 (C
) l

ev
el

s f
ro

m
 se

ns
or

 fe
ed

Ti
m

e
ba

se
d

re
gi

st
ra

tio
n

of
 te

m
pe

ra
tu

re
 c

ha
ng

es

02
/ L

oc
al

 li
gh

t (
lx

) l
ev

el
s f

ro
m

 se
ns

or
 fe

ed
Ti

m
e

ba
se

d
re

gi
st

ra
tio

n
of

 li
gh

t c
ha

ng
es

03
/ C

or
re

la
tio

ns
 b

et
w

ee
n

te
m

pe
ra

tu
re

 a
nd

 li
gh

t p
at

te
rn

s
M

ul
tip

le
 c

on
di

tio
n

an
al

ys
is

, c
om

pa
ris

on
 a

nd
 d

ec
is

io
n

cr
ea

tin
g

se
co

nd
 le

ve
l p

at
te

rn

04
/ P

ro
to

ty
pe

 a
da

pt
at

io
n

A
ct

ua
tio

n
le

ng
th

s w
ith

in
 p

ro
to

ty
pe

 c
re

at
in

g
m

or
ph

ol
og

ic
al

 a
nd

 p
or

ou
si

ty
 a

lte
ra

tio
n

Ti
m

e
po

si
tio

n
of

la

st
 u

pd
at

ed
 n

od
e

Ti
m

e
po

si
tio

n
of

la

st
 u

pd
at

ed
 n

od
e

 2

/4
 C

or
re

la
tio

n
be

tw
ee

n
en

vi
ro

nm
en

ts

 2

/4
 C

or
re

la
tio

n
be

tw
ee

n
en

vi
ro

nm
en

ts

 4

/4
 C

or
re

la
tio

n
be

tw
ee

n
en

vi
ro

nm
en

ts

 2
/4

 C
or

re
la

tio
n

be
tw

ee
n

en
vi

ro
nm

en
ts

 3

/4
 C

or
re

la
tio

n
be

tw
ee

n
en

vi
ro

nm
en

ts

 3

/4
 C

or
re

la
tio

n
be

tw
ee

n
en

vi
ro

nm
en

ts

R
ed

 p
at

te
rn

 re
pr

es
en

ts

 in
do

or
 e

nv
iro

nm
en

t
B

la
ck

 p
at

te
rn

 re
pr

es
en

ts

an
 o

ut
do

or
 e

nv
iro

nm
en

t

R
ed

 p
at

te
rn

 re
pr

es
en

ts

 in
do

or
 e

nv
iro

nm
en

t
B

la
ck

 p
at

te
rn

 re
pr

es
en

ts

an
 o

ut
do

or
 e

nv
iro

nm
en

t

 C
or

re
la

tio
n

be
tw

ee
n

2
pa

ra
m

et
er

s,
4

en
vi

ro
nm

en
ts

 o
f e

ac
h

in
du

ci
ng

 re
sp

on
se

 B

 C
or

re
la

tio
n

be
tw

ee
n

2
pa

ra
m

et
er

s,
4

en
vi

ro
nm

en
ts

 o
f e

ac
h

in
du

ci
ng

 re
sp

on
se

 A

St
ro

ke
 le

ng
th

 o
f i

nd
iv

id
ua

l a
ct

ua
to

rs

H. CD

137

	Introduction
	Analysis
	Ubiquitous Computing
	Sensor Networks
	Creative Applications
	Problem statement

	Concept
	The Creative Sensor Network
	Use Cases
	Part Conclusion

	Hardware Technologies
	Open Sound Control
	Microcontrollers
	Wireless Networking
	Ethernet Networking
	Connection diagram
	Components
	Serial Peripheral Interface
	Part Conclusion

	Implementation
	Circuit Diagram
	Bill of Materials
	Communication
	Flow Chart
	Code Samples
	Product
	Part Conclusion

	Evaluation
	Creative Applications
	Comments
	Case Using Grasshopper
	Part Conclusion

	Discussion
	Conclusion
	Perspective
	Bibliography
	List of Figures
	Appendices
	Schematics
	Base
	Node

	Bill of Materials
	Base
	Node

	Flow Charts
	Base
	Node

	Source Code
	Base
	Node

	Visual Programming
	Grasshopper
	Max/MSP
	Quartz Composer

	openFrameworks - Example
	Case Using Grasshopper
	CD

