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Preface
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waiting for is a commercial stereo vision head-mounted-display from Vuzix, which is described
in chapter 2.
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Chapter 1
Introduction

1.1 Motivation

With the advance in technology in the past decade, it is becoming increasingly popular to find
entertaining ways of incorporating information through interactive media devices in attractions
of all sorts. The modern user is expecting to have information delivered in entertaining and prac-
tical ways, improving their experience when visiting attractions such as landmarks, museums and
animal parks. When visiting the Empire State building in New York, it is possible to purchase
access to a preprogrammed remote and a map with several landmarks marked on it. By entering
a number of a landmark, visible from the top of the building, information about the landmark
is delivered through a speaker build into the remote. The user can then observe the landmarks
while being taught about their history and surrounding structures.

In many museums a user can interact with the exhibits, such, for example as switching prisms in
a display of how light travels through telescopes, hearing about the movement of glaciers during
the ice age, while watching a video of how the landscape is changed by this or seeing how much
your stomp will affect a seismograph[1][2]. In animal parks similar exhibits are available, letting
the visitor hear the many sounds of the animals they meet in the park, taking quizzes on what
different expressions in a monkeys face mean or seeing how humans affect the natural habitats.
Most of these exhibits are usually stationary and indoor, rarely in interaction with the live animal
habitats in the park. At the live habitats, information about the animals are usually relayed to
the user through informative signs placed along the enclosure. As a more mobile and interactive
approach, London Zoo introduced a device called i-Track in 2008. The i-Track helped visitors
navigate the zoo and let the visitor take quizzes, provided information on animals in the park and
could play sound and video clips of animals from the zoo[3].

There is no doubt that increased interactivity with attractions through multimedia devices of all
sorts, at static as well as live exhibits, is important to visitors and can be seen as an attraction
in itself attracting more visitors. In 2007 Wellington zoo launched an advertisement campaign,
placing special markers in their ads, which would show a 3D animal when watched through a
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1.2 Related Work

video phone using their free software package. The campaign allegedly lead to a growth of 32%
in the visitors count of the zoo[4][5].

The most common information relay at live habitats in zoological parks consists of signs, de-
scribing the type of animals living there and the visitor often spend much time reading these,
unable to observe the animals in the mean time. This is especially true for animal parks with
roaming animals, where the visitors must remain in their cars while observing the animals. We
believe that the user experience can be improved by developing a system that can automatically
detect animals of interest, while the visitor is looking at them and provide visual information
directly in the users field of view. The information available to the user could essentially be
anything from general information about the type of animal, the name of the specific animal or
what the animal is currently doing. To be able to augment information like this, it is necessary
to first find out what the user is observing and then find and recognize any animals in the field
of view. If the user was wearing a head-mounted-display, with cameras, the user could in theory
observe the surroundings through the HMD unhindered, while the camera feed can be used for
image processing. Using computer vision techniques, the animals in the field-of-view can then
be detected and recognized. The goal of this project is to answer the question of how can we
detect and recognize an animal and classify what action the animal is performing?

1.2 Related Work

The work in this report is build on a plethora of work in augmented reality, object recognition
and action recognition. The previous work that has been done in these fields, do not map directly
to our application as we work with a combination of constraints that are unusual for the above
fields. The use of an HMD removes some of common constraints used in action recognition tasks,
that relate to camera motion, while applying both detection and action recognition methods to
animals in real time is very uncommon.

1.2.1 Augmented Reality

Augmented reality is a way of combining digitally generated data with a real world scene being
observed. Augmented reality is often seen as 3D characters that are rendered into a real world
scene, often interacting with a user or the scene itself. A similar example is through software
sold with many web-cameras, that allow the user to digitally add a hat or mustache to a person
observed by the camera.

For commercial use, the most commonly seen augmentation method is based on fiducial markers
as implemented in the ARToolkit[6] which also supports 2D barcodes, natural features and cus-
tom patterns. Fiducial markers are a form of 2D barcodes that show a clear and unique pattern,
which is known and can be detected by the AR software. The software then use the scale, rota-
tion and placement of the marker to determine the size, placement and rotation of a 3D model
to overlay the marker. Some AR implementations use simple features as known from the com-
puter vision community, such as edge, point or corner detectors to augment graphics into scenes
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without the use of classic markers. The main focus in augmented reality research has focused on
markers based on markers with clear patterns or on human features such as eyes or faces. Our
goal is to develop a system that can use the natural appearance and motion of animals as markers
for augmentation purposes.

1.2.2 Object Recognition and Detection

For object detection and tracking, local descriptors such as the Scale Invariant Feature Transform[7]
or Speeded Up Robust Features[8] are often used in a sparse implementation, using good features
found in the image. The SIFT use Differences of Gaussians, image pyramids and orientation bin-
ning to gain scale and rotation invariance. The SURF method is to some degree inspired by SIFT,
but use approximate Haar-wavelet responses as a part of the keypoint extraction stage. By using
integral images, the haar-wavelet responses can be obtained with only 4 memory lookups for
arbitrary kernel sizes, resulting in high computational performance.
The AdaBoost framework of Viola and Jones[9] was developed for face detection, but has since
been applied to many other problems[10][11]. For human detection a more common approach
is to use Histograms of Oriented Gradients, which is a dense descriptor based on image gradi-
ents and orientation binning. The HOG descriptor has been successfully applied to pedestrian
detection problems and many forms[12][13][14]. A principally different approach is part based
models, that use a probabilistic model of a human part composition. A collection of detectors
are then used to detect the human parts and the composition is then matched against the proba-
bilistic model[15][16][17]. The main focus in the field is on recognizing humans or more static
scene objects such as number plates, cars or buildings. Some work has included horse detections,
but animal recognition is a field not yet thoroughly explored. We seek to apply research done
in the area of detection and recognition of humans to the problem of detecting and recognizing
different animals, as a part of our system. The application requires real-time performance and
must be able to detect non-rigid objects. The method should also integrate well with an action
recognition step, which requires the method to be very generic and can not be constrained by
shape assumptions.

1.2.3 Action Recognition

Since human motion is biological motion, the successful methods from human action recogni-
tion will mostly map very well to animal action recognition, as long as the human shape is not
an important assumption of the method.
In action recognition there are two main methods of working with the data, global representa-
tions and local representations. In global representation the object of interest is extracted as a
region of interest and the complete region is used in the recognition task[18]. Using silhouettes
from background subtraction, Bobick and Davis[19] used motion histograms and motion energy
images to represent motion. Efros et al.[20] used motion flow instead of silhouettes to avoid
background subtraction, to compensate for motion due to camera movement they used tracking
of the object. Thurau and Hlaváč[21] and Lu and Little[22] both use the grid-based histograms
of oriented gradients representation for action detection. This method combines local and global
features, as each cell in the grid is a local representation associated with the global ROI. Ikizler
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et al.[23] combine the grid-based histogram of line segments with the optical flow method of
Efros et al.[20] for human action recognition. A third method is to extract multi dimensional
spacio-temporal volumes (STV) such as Jiang and Martin[24] who use shape flows over time,
improving performance on cluttered backgrounds. By constructing 3D volumes, with time as the
third dimension, the matching problem can be seen as a 3D template matching problem, instead
of matching 2D shapes in different spaces. Yan et al.[25] extract minima and maxima from the
STV, obtained from a multi camera view to create action sketches and project them to constructed
4D exemplars, using 3 spacial dimensions. The multi view setup help reduce sensitivity to noise
and allow matching from arbitrary viewpoints.
The second main method is by using local representations. The local descriptors only detect cer-
tain points of interest on the object, by analyzing patches. By using patches the orientation of the
object is of less importance for successful recognition, as long as the area matching the patch is
visible. One way of choosing the patches are by looking at saliency. Laptev and Lindeberg[26]
looks for patches with significant temporal and spacial variation using an extended version of
the Harris corner detector. Willems et al.[27] uses integral videos to to efficiently calculate the
determinant of a 3D Hessian matrix, which they use to define saliency.
Bregonzio et al.[28] use Gabor filtering to detect salient points, in an area of focus. In [29] Sco-
vanner et al. extend the SIFT[7] descriptor to 3D. Wang et al.[30] found that a combination of
image gradients and flow information generally results in better performance for local descrip-
tors. Jhuang et al.[31] imitate the human visual system, based on biological research on the
human brain, to build a system that works on both spacial and temporal data. In this project we
aim to implement an action recognition algorithm that as seamlessly as possible integrate with
an animal detection algorithm to build a framework combining the two to generate markers for
augmentation purposes.

1.3 Contribution

In this project we develop a classification system that can be used in a head mounted display in a
natural environment. The system detects and classify animals and their current action based on
spacial contours and movement. We use HOG descriptors based on appearance data of frames
from a video stream to detect and classify the animals. We then detect what action each animal
is performing using HOG descriptors on motion frames of each detection region. We correct the
motion frames with the mean motion vector between each frame to obtain a significant invariance
to camera movement. We test the ’action recognition’ stage with frame-to-frame motion maps
and with multi-motion maps. Using multi-motion maps helps capturing cyclic motion and min-
imize errors from outliers during detection. The classifier is build as a cascaded SVM classifier,
where the first stage detects and classify animals using single video frames. The second stage
use the motion data to classify the action. The result from each cascade is appended in each
detected region to build a history of what is seen in the region, which is then finally displayed on
the screen along with a border around the animal.
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Chapter 2
Platform

The system will consist of a Head-Mounted-Display, HMD, connected to a laptop, since the
HMD does not have any processing capabilities. The HMD is a Vuzix 920AR model which
features displaying 3D contents on the internal displays and recording with two front mounted
stereo cameras. All inputs for the system is provided by the HMD, which is to be worn by the
user of the system.

2.1 Hardware

The Vuzix 920AR has the following hardware:

• Two front mounted web cameras capturing up to 640x48030FPS

• Two built in displays for stereo- or mono-vision display in up to 1024x768

• 6-degrees of freedom motion sensor

Pitch, Roll, Yaw, X-, Y- and Z-value

The HMD has two front mounted cameras that can be calibrated into a stereo camera setup. On
the inside of the glasses are two displays that will allow the user to view any content provided by
the system. The HMD also has a 6-degrees of freedom motion sensor that can provide rotation
and translation data how the HMD is being moved. The motion sensor provides the data using
3-axes magneto-resistive sensors, 3-axes accelerometers and 3-axis gyros.

2.2 Interfaces

• VGA/DVI interface for display input

• USB2.0 connector shared by the 2 built in web cameras

• USB cable for power and tracker data
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2.3 Features

Figure 2.1: The basic system diagram, showing the hardware relation.

The idea for the prototype is to connect the HMD to a laptop that will compute the relevant data
from the input sensors and display the result on the HMD displays. An illustration of the setup
can be seen in fig. 2.1.

2.3 Features

The HMD has an additional set of features, that can be used either as the user or the developer
for the platform. The main features of interest are:

• Side-by-side stereo display mode (SxS)

• Filtered 6 degrees of freedom sensor input

• Remote for On-Screen-Display for manual adjustments of the HMD

2.4 Extensions

With the rapid development of mobile platforms, such as smart phones and tablets, the HMD
could very well be used with our system on such a platform instead of a laptop. This would
greatly increase the mobility of the system and make for versatile deployment. A likely approach
could be the development of a common framework, where a venue can easily build a plugin that
seamlessly integrate with standard HMDs on all mobile platforms.
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Chapter 3
Problem definition

3.1 Overall Requirements

The goal of this project is to develop an online system that is capable of detecting animals and
their actions using a head mounted display, with cameras. From a user point of view the system
must be able to do the following:

• Detect animals of interest in the Field Of View (FOV)

• Classify what type of animals are being observed and what they are doing

• Provide information about the animals in a fun and relevant way

The two first points are classification problem, while the last point is an Augmented Reality
problem. This dictates a system structure resembling the one illustrated in fig. 3.1. The user
requirements also allow us to define the technical requirements of the system to be implemented.

Classification step Augmentation step

Laptop

Figure 3.1: A simple system outline, defining the blocks that should be implemented in the
system running on the laptop.
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3.2 System Requirements

3.2.1 Classification step

To achieve the goal as described above, the classification step will follow a common structure for
classification problems in computer vision. The structure has a feature extraction step where fea-
tures will be extracted from the input images. The features are then encoded in a descriptor step,
which generates a common representation for one or more features, to make them comparable in
the final step, the classifier. The classifier step uses the descriptors to determine if the observed
region is a known class and which. The structure is illustrated in fig. 3.2.

ClassifierCreate descriptors

Classification step

Augmentation stepExtract FeaturesCameras

Figure 3.2: The structure of the classification step.

Classifier

• Detect and classify different animals

• Classify which action is being performed

In order for the classifier to distiungish between positive data from negative data, the data needs
to be vectorized into a descriptor.

Descriptor

A descriptor is a container that is used to analyze and store the description of a feature found
in the input data. The data describing the classes we are interested in is obtained from the front
mounted cameras of the HMD, which means the data available is video and images. The videos
are essentially lists of images which are subsequent to each other in a temporal domain. The
descriptor should therefore be chosen among descriptors that live up to the following:

• Good performance on image data

• Good tolerance to noise

• Scale invariant

• Intensity invariant

To use a descriptor it is necessary to chose a set of features that will take advantage of the
descriptors strengths.
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Features

The features are some kind of descriptive data obtained from the input. This can be the input
itself or a transformation of the input. In image and video data, features such as points, edges or
motion are among the common features. We want to choose our features so that they comply to
the following:

• Data representation as an image

• Portray structures representative to the animal type

• Portray structures representative to the action of the animal

• Invariance to camera movement

We choose to represent the features as images, since our main source of data is image data. This
choice will likely enable the use of only a single descriptor for the classification step. Invariance
to camera movement means that the when the subject is observed in the feature space, it should
appear the same no matter if the camera is still or moving. This is important since the platform
is a HMD and the user can not be expected to be perfectly still when detection and classification
is being performed.

3.2.2 Augmentation step

The goal of augmentation step is interpret the results from the classifier and utilize the available
means of communicating with the user to augment useful information. It must be designed to
comply with the following:

• Extract information from the classification step

• Interpret the results

• Generate useful content to augment

• Augment the information in a convenient way to the user

3.3 System Limitations

The platform of the system limits the application in several ways. One major limitation is to the
real time requirement, as the HMD should be connected to a computer during use. In this project
we focus on implementing the system on a laptop. The laptop has limited computation power
over a desktop computer or computer cluster. The laptop will in a user scenario be running
on battery power, which will further limit the computation power, but also mean that excess
processing will result in low battery time. A second set of limitations come from the HMD,
which will provide the data for our system and be the target of our output. This means that
limitations on the HMD will directly affect detection performance and the experience of the
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system. The HMD has two built-in cameras, which are each able to provide video streams in a
resolution of 640x480 pixels at 30 FPS in the YUY2[32] color format. Since both cameras are
connected to an internal USB2.0 HUB and connected to the PC with one common USB cable,
the maximum combined data rate is 480 Mbps[33, p. 46 table 5-5]. The data rate of each camera
at 640x480 at 30 FPS YUY2 is:

datarate = 640 ·480 ·2.5 ·30 Bps (3.1)

= 23.04 MBps (3.2)

= 184.37 Mbps (3.3)

Communications on the USB2.0 bus will at it’s fastest configuration, High-speed Isochronous
Transaction with a data payload of 1024 bytes[33, p. 46 table 5-5], be able to transfer useful data
at:

57344000 Bps = 57.344 MBps (3.4)

= 458.753 Mbps (3.5)

This calculation does not take into account any overhead from data encapsulation, bit stuffing or
time slot negotiations on the USB2.0 hub in the HMD. With a combined rate of the two cameras
of 368.64 Mbps raw data through at least one USB2.0 hub, the HMD is likely to approach the
limits of the USB2.0 connection. Empirical tests showed that our test computers were only able
to capture at approximately 26 FPS from the two cameras simultaneously. To avoid fluctuating
frame rates, we chose to lock the frame rate at 20 FPS.

The screens of the HMD both operate at a maximum resolution of 1024x768 in the mono-vision
setup, meaning that the image displayed on both screens is the same. When switching the HMD
into stereo mode, the screens are set up in a Side-by-Side, SxS, stereo mode, meaning that the
each screen show half of the image send on the VGA connection, left screen shows the left half,
right screen the right half. In this mode the resolution stays the same, meaning that the horizontal
resolution of each screen is effectively halved and stretched when the HMD is in SxS mode.

According to the specification, the HMD provides a diagonal field of view of 31◦, which is a
very narrow field of view, as humans rely heavily on their peripheral vision when navigating.
The company producing the HMD is currently working on VR glasses in wide screen and with
higher resolution, which may address some of these problems, but none of the product announced
are equipped with cameras yet. Though the limitations in resolution and field of view is essential
for the success of a final product, these limitations are of no importance to a proof of concept,
and will therefore not be further addressed in this report.
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3.4 Scope

3.4.1 Classification stage

The classifier stage of the system must live up to the following requirements:

• Detect any animal seen on the screen of the HMD

• Classify what animal is being observed

• Classify which action is being performed by detected animals

• Works during low to medium camera rotation speed

• Works in most lighting conditions

• Compute new result at least every 50 ms

Low to medium camera rotation is defined as the shaking and rotation of the camera when the user
is observing a mostly still subject (low rotation speed) or when the user is tracking a subject that
is moving (medium rotation speed). The system is not required to detect and classify during high
rotation speeds, defined as when the user is navigating or rapidly shifting attention. We choose
to implement this invariance for the pitch and yaw rotations of the camera only as camera roll is
not expected to be a common rotation type when observing an animal. The lighting conditions
the system should work in, is defined as daylight and indoor lighting where the subjects are
clearly visible in the images. As this report is a proof-of-concept, the computational speed of the
algorithms are of less importance, as there are many ways to improve on this, but it is not the
main focus in this report. The amount of animals and actions the system will be trained on is
limited since the data must be recorded using the HMD and the data set is hard to obtain. The
specific animals and actions trained in this project can be seen in part III.

3.4.2 Augmentation

In this project we will focus on the design and implementation of the classification stage. The
augmentation step will therefore only be implemented as a basic overlay, but could in principle
be extended to elaborate visual or audible augmentations. The requirements for the augmentation
step will be:

• Mark animals of interest

• Label the markings with information on what type of animal is being observed

• Label the marking with the action the animal is currently performing

• Display new markings and labels on every classification update
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Chapter 4
System Definition

4.1 Classification step

4.1.1 Choice of classifier

The classifier needs to detect and classify animals and their actions and have the ability to perform
these online. Boosted classifiers and SVMs, have proven effective in detecting humans, human
features and other static objects[34][35][12][36].

Boosted classifiers are often used in combination with simple descriptors, such as Gabor or Haar
kernel responses, to train a strong classifier from an array of weak classifiers based on these de-
scriptors. The weak classifier is trained by folding positive and negative training samples with
the kernels, using the responses to define a threshold for the weak classifier. The responses of
the positives and negatives are then used to find the combination of weak classifiers that sep-
arate the positive samples from the negative samples the best. By cascading such classifiers,
keeping the number of weak classifiers low on the first levels of the cascade, the computation
time of a boosted classifier can be reduced to a point where online performance can be achieved.
The downside to the boosted classifier is that it is very sensitive to inaccurate training data and is
prone to over fitting on small training sets. To avoid these problems, the classifier must be trained
with large amounts of both positive and negative training samples to get good performance.

SVM classifiers use descriptor vectors of positive and negative samples, mapped into a high di-
mensional space to find the hyperplane best separating the positives from the negatives. The
linear SVM classifier maps the descriptor vectors directly into the high dimensional space and
finds the optimal hyperplane separating the samples, which is in most cases a sufficient method.
If the samples are not linearly separable a kernel based SVM classifier can be used. This method
folds the descriptor vector with a kernel, such as a Gaussian, to map the descriptor into a, typi-
cally higher dimensional, Hilbert space where the samples become linearly separable. Since the
descriptor vectors used in an SVM are usually very high dimensional, the folding operation in
kernel based SVM classifiers makes this method slower than a simple linear SVM.

The boosted classifier is prone to shaping the separation function to a small positives set, as it tries
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to find a way to detect all positives and negatives perfectly. This can have a negative effect, when
the boosting algorithm train a classifier that works very well on the small training set, it may not
generalize well. The linear SVM classifier will on the other hand try to find the hyperplane that
separates the positives from the negatives with a gap wide as possible. Since the hyperplane is
linear, it does not take shape of the training set and might in many cases be more invariant to over
fitting. SVM classifiers have also proven to perform very well on pedestrian recognition[12] and
human detection using appearance and optical flow[37].

In this project we will be using footage of animals performing different actions, which must be
recorded using the HMD provided. We must therefore record all the training data with the HMD
and cannot use existing datasets, which means our dataset will be quite limited. Considering that
the SVM classifier is well suited for small datasets and has already been proven to work well
with detection of humans, we have chosen to use the SVM classifier as the classifier step in this
project.

4.1.2 Choice of descriptor

In the previous section the features for the detector were chosen so that all features can be de-
scribed as images, thus allowing the use of one descriptor optimized for image analysis. Most
current object detectors use variations of either Scale Invariant Feature Transform[7] or His-
tograms of Oriented Gradients[12] as the descriptor.

The Scale Invariant Feature Transform, SIFT, descriptor is a sparse descriptor that uses pyramid
scales of Differences of Gaussians. The descriptor is designed to find unique and easily rec-
ognizable key points in images, which are well suited for detection and recognition of objects.
The SIFT algorithm uses pyramidal scaling, also known as octaves, to become scale invariant.
The SIFT descriptor is often used for object recognition, sparse optical flow and for tracking
objects. The SIFT descriptor is computationally a very efficient algorithm and many real time
implementations already exist. Since the SIFT descriptor is sparse, it typically uses collections
of key points, but does not store spacial relation between features. The spacial relation between
key points may very well contain important information about the pose of the animal and thereby
what action is being performed. To be able to determine action from motion, it is important that
the key points are placed on limbs that move with high correlation to the action being performed.
This can not be guaranteed by the SIFT descriptor as the best keypoints may not necessarily be
those best separating one action from another.

The Histograms of Oriented Gradients, HOG, is a dense descriptor, which uses every pixel in
the input image to create its descriptors. Each descriptor is composed by values optained from
histograms of the gradients in the image. Each histogram is found by dividing the gradient
orientation into bins and adding the gradients amplitude to their respective bins. The image
is divided into blocks, which is again divided into cells from each a histogram is made. The
histograms are normalized with respect to the other cells within the same block. The HOG
descriptor is very good for coding spacial form, which is very important for action recognition,
since movement as well as actual pose contains valuable clues to which action is being performed.
Since the HOG descriptor is a dense descriptor which uses a range of image processors, the
algorithm is computationally heavy and the obtainable frame rate is low. According to Dalal &
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Triggs[12] the computational performance of the HOG descriptor in a linear SVM classifier was
under a second per frame in a 320x240 image with 4000 detection windows, which must mean
that each frame takes more than 500 ms to process.

The SIFT algorithm is by far the most computational efficient of the two algorithms, but the lack
of spacial relation of the features and the fact that there is no way to know if the best features
also are useful for describing movement, makes the SIFT descriptor a less attractive choice. The
HOG descriptor on the other hand, encodes features for the spacial shape of the object and has
in other papers been proven useful for both spacial and temporal matching. The downside being
that it is a very computational heavy descriptor. We choose to use the HOG descriptor in this
project, since the real time requirement is of less importance than the classification performance
requirements.

4.1.3 Choice of features

According to the classification step requirements, we are interested in detecting which animal is
being observed and what action is being performed. To do this efficiently, it is necessary to find
and extract features that are good for each of these tasks.

Appearance

To detect an animal and classify which type of animal is being observed, the appearance of the
animal contains many valuable cues. As humans we can often tell what basic class of animal we
are looking at, just by observing it’s silhouette. This indicates that the shape of the animal itself,
may contain valuable information. For human detection, the unaltered input image from cameras
has already proven to perform well when used in combination with the HOG descriptor[12][14].
Combining the input image with optical flow in the HOG descriptor seem to further improve
detection performance[37]. We therefore choose to use the input image as a feature for our
animal classifier and end up testing if a combination of the input image and the optical flow
might improve the performance.

Motion

To detect what action the detected animal is performing, it seems natural to look at the motions
of the animal. The work of Ikizler et al.[23] show that the use of optical flow is useful for human
action detection. We decide to use the CUDA implementation[38] of the optical flow algorithm
developed by Werlberg et al.[39] to generate flow maps. The flow maps of this method are very
detailed and shows detailed silhouettes of the moving objects, which implicitly encodes poses as
well as movement. The optical flow algorithm extracts motion between two frames, providing
frame-to-frame motion. Using frame-to-frame motion as a feature may very well encode very
fine movements for the detector, but many actions such as walking exhibit cyclic motion patterns.
The classification performance of cyclic motions might improve when running classification on
data collected over multiple motion frames. To test if the system benefits from using multiple
motion frames, we implement a simple multi-temporal-motion-model. The model uses motion
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over several frames to encode the relation between frame-to-frame motions and improve encod-
ing of cyclic motions.

Since appearance images might provide information about a specific action, one could imagine
features as a combination of appearance and motion frames. On that behalf, we therefor choose
to test motion only features and a combination of appearance and motion features.

4.1.4 Summary

The final classifier will be an SVM classifier using HOG descriptors to detect what animal is
being observed and what kind of action is performed using the appearance images and / or motion
frames. Motion frames will be extracted from the current appearance image and the previous one.
An illustration of the chosen classification step structure can be seen in fig. 4.1.

Classification step

Augmentation step

Appearance imagesCameras

Previous frames Optical Flow images

SVMHOG

Figure 4.1: The chosen structure of the classification step with the choice of components.

4.2 Augmentation step

The augmentation step will be a very simple augmentation, as the focus of the report is how to
obtain data that is useful for augmenting information in the context defined in chapter 1.1. The
augmentation step will receive a region, marking the location and extend of the detected animal.
The classification step also provides class labels containing information on what animal and what
action has been performed. This information can be used to augment information in many ways,
but since this is not the focus of this project, we chose to augment the detection information as
described in section 3.4 and illustrated in fig. 4.2.

Classification step

Augmentation step

Draw labelled box
around detection

Extract Boundingbox

Extract Class information

Cameras Display

Figure 4.2: The functionality structure of the augmentation step.
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Marking the bounding box

The classification step outputs a bounding box of the detection. The coordinates of this bounding
box is converted to a rectangle and rendered onto the output frame.

Labeling the bounding box

The classification step also provides a history of classes or a combined class for the bounding
box. When a history of classes are present, a string is appended to generate a meaningful string,
describing the animal and action. The text is then rendered onto the output frame on top of the
bounding box.

Displaying the result

We decide to render the resulting frame to the screen using OpenGL[40] to improve performance
and reduce lag. The output frames, overlayed or not, are copied to an OpenGL texture on the
graphics card, when all other operations have finished. The texture is applied to a quad and
rendered to a window. Since the HMD uses SxS stereo rendering, we implement support for
stereo images also. The left and right frame is rendered to a quad each, each filling the left
and right half of the window respectively. When viewed in fullscreen, this render method will
correctly display the images on each of the screens in the HMD.

Summary

The final augmentation step will take the detected regions from the classification step and an
image, to augment the data into, as inputs. From the detected regions a class history will be used
to generate descriptive text. The text and the bounding box of the detected region will be rendered
on top of the input image and into an output frame. The output frame will then be rendered as
textures on quads in an OpenGL window for display on the HMD. The final structure can been
seen in fig. 4.3. The specific implementation of the augmentation step will not be discussed
further in this report.

Classification step

Augmentation step

Render to OpenGL
texture

Extract Boundingbox

Extract and concatenate
Class information

Camera 1

DisplayRender OpenGL frame

Classification step Render to OpenGL
texture

Extract Boundingbox

Extract and concatenate
Class information

Camera 2

Figure 4.3: The final implementation structure of the augmentation step.
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Chapter 5
The classification step

As has been found in chapter 4, a classification step needs to be developed in order to find the
regions containing an animal and the action these animals are performing. The classifier needs
to be able to classify the animal and its actions based on appearance- and motion-data, where the
appearance data consists of plain RGB frames and the motion data consists of motion informa-
tion generated by one or several motion frames created by the optical flow algorithm. A simple
and intuitive way of creating a classification step, would roughly be the one illustrated by the
blockdiagram in figure 5.1.

Current frame
Classify HOG's
using SVM

Previous frame

Collect HOG's
over detection window

Collect HOG's
over detection window

Classification step

Collection of detected
regions

Generate motion maps
with optical flow

Generate multi-motion 
maps of N motion maps

Figure 5.1: Classifier step using optical flow and HOG combined with a SVM classifier. The
classification step returns the regions containing an animal and the action performed by this
animal. The multi-motion maps used by HOG is generated by the N previous motion maps,
which is created by the optical flow algorithm.

Note that the detection window is defined as the area from which the HOG descriptors are gen-
erated and the detected region is found as the output area generated from running non-maximum
suppression on the positive classified detection windows. The motion frames are from now on
called motion maps or multi-motion maps, since the motion maps can consist of information
from one or several motion frames respectively.

The classification step in figure 5.1 would however not be particular efficient, which leads to the
approach of using a cascade of classifiers instead.
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5.1 Cascade of classifiers

In order to decrease the computation time of computing all the possible class and action combi-
nations in one step, a well known method of arranging the classifiers in a cascade of classifiers
will be used. The cascade of classifiers consists of different layers of classifiers arranged as a
decision tree. In each layer or stage of the cascade, a decision is made if the detection window
contains the class. An example of such a cascade of classifiers is illustrated in figure 5.2.

Animal Type 1

Action 2Action 1 Action 3

Animal Type 2

Action 2Action 1 Action 3

Stage 1

Stage 2

Figure 5.2: Cascade of classifiers tree, where the type of animal is found in the first stage and
the action for the respective animal in the second stage. The regions found to contain the animal
in the first stage, will be used to generate new detection windows for the action classifiers.

The purpose of the cascade of classifiers is to use only a few classifiers in the first stage, to elim-
inate large areas of the frame that does not contain the searched classes. In the following stages
of the cascade fewer regions will be candidates of classification, and as a natural consequence of
this, the candidates can be classified by more specialized classifiers. In the example illustrated
in figure 5.2, the classifier only needs to search for two types of animals in the whole frame in
stage 1. This leaves only the regions in which the animal is detected for the next stage. De-
tecting the action performed by the animal in stage 2 is therefore much less of a challenge both
computational-wise and detection performance-wise. In comparison, if no cascade was used, the
classifier would have to compute six different classifiers in the whole image, which is a harder
challenge both computational-wise and detection performance-wise. Detection performance-
wise since the classifiers can not be specialized in either appearance or action recognition, com-
putationally since the amount of descriptors to be calculated for the image is greatly increased.

The cascade of classifiers can be extended to an arbitrary number of stages and number of classes
in each stage. We choose a two stage setup as the one shown in fig. 5.2, i.e. stage 1 is detecting
the regions containing a specific animal and stage 2 its actions. Since different types of animals
might have different types of actions with different compositions, it is sensible to identify the
animal first, before detecting which action is being performed.
From this point on stage 1 will be referred to as the ’animal detection and recognition’ stage and
stage 2 as the ’action recognition’ stage.

Incorporating the cascade approach in the classification step, yields the final overall classifier
step illustrated in figure 5.3.
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Current frame

Classify HOG's
using SVM

Generate motion maps
with optical flow

Previous frame

Collect HOG's
over detection window

Collect HOG's
over detection window

Define new detection 
windows in the
detected regions

Classification step

Generate multi-motion 
maps of N motion maps

?

Remaining
stages?Yes No

Regions
detected?

Yes

No

Collection of detected
regions

Figure 5.3: The classifier step rearranged as a cascade. Here the question mark ? is indicates a
choice of using either HOGs encoded from the appearance frames, motion data or a combination
of the two, for the current stage in the cascade. New detection windows are generated from all
the detected regions in the current stage and, if anymore stages remain, they are passed on.

Two things should be noted when using the above classification step,

1. The question mark in the block diagram illustrates the choice of using any combination of
the HOG descriptors, in order to yield the best detection performance with respect to the
animal and action classification.

2. In any of the stages of the classifier, if no regions are detected, the already detected regions
from previous stages are collected as detection results. This serves the purpose of detecting
e.g. an elephant even though its actions was not recognized.

The ability to classify e.g. an elephant even though the action was not recognized, is important
with respect to robustness. The robustness comes from the ability to keep track of where the
elephant is located, even though the action is not recognized. The importance of keeping track
of where the elephant is located becomes evident in section 5.2.6. From a user point-of-view
it is also important to detect the animal, even though the action is not recognized, as missing
detections are worse than less detailed detections.

The other ability to choose the combination of the HOG descriptors individually, gives an advan-
tage with respect to detection performance. It is reasonable to assume that the appearance HOGs
are better at classifying the type of animal than using only the motion data HOGs. Likewise, the
motion data HOGs are presumably better at classifying the animals action than the appearance
HOGs. At last, a combination of both the appearance and the motion data HOGs might yield
better results, which was the case in Dalal & Triggs[37], for both the animal and action clas-
sification. The different combinations of HOGs will be tried and verified for each stage in the
cascade of classifiers in part III.

In the following, each block in the blockdiagram 5.3 will be explained in the following order:

Generate motion maps with optical flow:
The generation of motion maps with the help of a dense optical flow algorithm, is explained in
section 5.2.
Generate multi-motion maps of the last N motion maps:
By utilizing the last N found motion maps, one can generate multi-motion maps, which is ex-
plained in subsection 5.2.5.
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Collect HOGs over detection window:
How to encode appearance or motion maps into HOG descriptors are covered in section 5.3.
Classify HOGs using SVM:
The training and classification using SVM, is clarified in section 5.4.

5.2 Motion maps

It was found in chapter 4.1.3, that the implementation of multi-motion maps could possibly im-
prove the action detection step when using the optical flow algorithm. The improvement comes
from the use of movement over frame sequences in a video instead of only frame-to-frame move-
ment.

Let the single frame vector motion map be defined as M, which consists of the dense pixel move-
ment (optical flow) between two consecutive frames. Let the x- and y-component of the vector
motion map be defined as the motion maps Mx and My respectively. Then let the vector multi-
motion map found by evaluating several motion vector maps be defined as M̄ and its components
as M̄x and M̄y.

Since the resulting vector multi-motion map M̄ heavily depends on the implementation of the
vector motion map M, the following section will clarify how to estimate the later. Roughly three
problems arises in estimating the motion map components Mx and My:

Firstly, how do one estimate and measure motion between two frames? There has long existed
good algorithms to approximate optical flows, from which implementations exists in various op-
tical flow libraries free to download and use. Since the main aim for this project is not to develop
an optical flow algorithm, a CUDA implementation of an optical flow algorithm is used [38]. The
algorithm [39] proposed by Manuel Werlberger et al. used in this library is explained in section
5.2.1.

Secondly, how do one find the relative motion between the camera and the scene, making the
resulting Mx and My motion maps robust to camera movements like translation and rotation. A
method solving this, is explained in section 5.2.3.

Thirdly, the generated motion maps need to be cropped to extract the objects of interest in the
generation of training images. In order to do this, the motion maps need to be saved to a RGB 24-
bit format. Since the motion maps will consist of both negative and positive floating point values,
they need undergo a transformation to save all the motion information correctly, see chapter 5.2.4.

In order to show how the flowlib library differentiates from other and more classic approaches,
it has been chosen to first explain the method proposed by Horn and Schunck [41], from which
many state of the art optical flow algorithms originate.
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5.2.1 General optical flow

In general, and also done by the algorithm proposed by Horn and Schunck, optical flow algo-
rithms estimate flow under the assumption that patterns in an image will not change brightness
when moving, i.e. the image brightness at a point (x,y) in the image at time t, denoted by
E(x,y, t), will have the following constraint:

dE
dt

= 0.

Using the chain-rule for differentiation gives

∂E
∂x

dx
dt

+
∂E
∂y

dy
dt

+
∂E
∂t

= 0.

The velocity can now be defined as the vectors

u =
dx
dt

and v =
dy
dt

This gives one equation with the two unknows u and v

Exu+Eyv+Et = 0, (5.1)

The equation can not be solved without introducing addition constraints and is commonly known
as the aperture problem. The above constant brightness equation constrains the optical flow
algorithm, see figure 5.4.

u

v

(E  , E   )x y

constraint line

Figure 5.4: The brightness equation 5.1, constrains the velocity (u,v) to lie on a certain line
perpendicular to the brightness gradient vector (Ex,Ey) in velocity space.

The aperture problem

If every pixels could move independently, it would be impossible to estimate the optical flow,
due to the aperture problem. To solve this problem Horn and Schunck view opaque objects as
objects with finite size and undergoing rigid motion or deformation. This assumption implies that
neighboring points have similar velocity and the brightness patterns varies smoothly almost ev-
erywhere. This constraint is called the smoothness constraint and is defined as the minimization
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of the sum of the squares of the laplacians of the x- and y-component of the flow.

∇
2u =

∂2u
∂x2 +

∂2u
∂y2 and ∇

2v =
∂2v
∂x2 +

∂2v
∂y2

Estimation the partial derivaties of brightness change and the Laplacian equations

In order to solve the two equations for the two variables u and v, Horn and Schunck estimated
the partial derivatives of the brightness change and the laplacians of the x- and y-component of
the flow. The partial derivaties of brightness change are estimated as:

Ex ≈
1
4
{

Ei, j+1,k−Ei, j,k +Ei+1, j+1,k−Ei+1, j,k +Ei, j+1,k+1−Ei, j,k+1 +Ei+1, j+1,k+1−Ei+1, j,k+1
}

Ey ≈
1
4
{

Ei+1, j,k−Ei, j,k +Ei+1, j+1,k−Ei, j+1,k +Ei+1, j,k+1−Ei, j,k+1 +Ei+1, j+1,k+1−Ei, j+1,k+1
}

Et ≈
1
4
{

Ei, j,k+1−Ei, j,k +Ei+1, j,k+1−Ei+1, j,k +Ei, j+1,k+1−Ei, j+1,k +Ei+1, j+1,k+1−Ei+1, j+1,k
}

The Laplacians of the velocity of the flow are estimated as:

∇
2u≈ 3(ūi, j,k−ui, j,k) and ∇

2v≈ 3(v̄i, j,k− vi, j,k)

Where the local averages are defined as follows

ūi, j,k =
1
6
{

ui−1, j,k +ui, j+1,k +ui+1, j,k +ui, j−1,k
}
+

1
12
{

ui−1, j−1,k +ui−1, j+1,k +ui+1, j+1,k +ui+1, j−1,k
}

v̄i, j,k =
1
6
{

vi−1, j,k + vi, j+1,k + vi+1, j,k + vi, j−1,k
}
+

1
12
{

vi−1, j−1,k + vi−1, j+1,k + vi+1, j+1,k + vi+1, j−1,k
}

These estimations can now be used to solve the velocity of the optical flow u and v.

Solving the the constant brightness and the smoothness constraint

To solve the two constraints, Horn and Schunck defined the problem as a minimization problem
given the equation for the rate of change in brightness:

δb = Exu+Eyv+Et

and the departure from the smoothness in the velocity flow

δc = (ū−u)2− (v̄− v)2.

By introducing a weighting factor a2, which is introduced due to the fact that the brightness
measurements will be corrupted by quantization error and noise, so that δb can not be expected
to be equal zero, the total error which has to be minimized is

δ
2 = a2

δ
2
c +δ

2
b
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By differentiating δ2,

∂δ2

∂u
=−2a2(ū−u)+2(Exu+Eyv+Et)Ex

∂δ2

∂v
=−2a2(v̄− v)+2(Exu+Eyv+Et)Ey

yields two equations, which can be set equal zero in order to find u and v. This yields the two
new equations

(a2 +E2
x )u+ExEyv = (a2ū−ExEt)

ExEyu+(a2 +E2
y )v = (a2v̄−EyEt),

which can be arranged in a in the form

(a2 +E2
x +E2

y )(u− ū) =−Ex[Exū−Eyv̄+Et ]

(a2 +E2
x +E2

y )(v− v̄) =−Ey[Exū−Eyv̄+Et ],

where Horn and Schunck defines a2 to be roughly equal to the expected noise in the estimate
E2

x +E2
y .

With these equations, one is able to estimate the optical flow velocities u and v, which is illus-
trated in figure 5.5. In general, the Horn and Schunck method and variations from it, suffers from

u

v

(E  , E   )x y

constraint line

(u,v)

(u,v)

Figure 5.5: The values of the optical flow velocities u and v which minimizes the error, lies on a
line drawn from the local average of the flow velocity perpendicular to the constraint line.

the three major problems, see [39]:

• Untextured regions: In poorly textured regions, no matching can be performed and hence
strong regularization is needed to propagate the motion from textured regions into the
untextured areas.

• Occlusions: As soon as motion is present in the images, regions are occluded or exposed
by moving objects. Those occluded regions cannot be matched between the image frames.

• Small scale structures: Small scale structures with a relative large movement are hard to
preserve in the motion field sine isotropic regularization does not adapt well to the local
image structures.
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In order to cope with these issues, it has been chosen to use a robust and popular library called
flowlib [38], which uses an approach called Motion estimation using Non-Local Total Variantion
Reqularization [39]. This approach tries to solve the above mentioned issues.

5.2.2 Motion estimation using Non-Local Total Variantion Reqularization

The following approach by Werlberger et al. is somewhat similar to the one proposed by Horn
and Schunck, i.e. they are trying to minimize a data term and a regularization term, where the
data term is a measure of the similarity of the input images for a given motion field and the regu-
larization term ensures motion field smoothness. The data term would in the Horn and Schunck
method be the constant brightness term and the regularization would be the velocity smoothness
terms given by the laplacians of (u,v).

A variational motion estimation model is typically given by the minimization problem

min
u
{R(u)+D(I0, I1,u)} ,

where the unknown motion field u = (u1,u2)
T : Ω→ R2 and the images I0 and I1 are all defined

in the image domain Ω ⊂ R2. Note that the variable u has been redefined to keep the authors
notation. R(u) is the regularization term and D(I0, I1,u) is the data term. In the case of Horn and
Schunck, the regularization and data term would be

R(u) = a2
δ

2
c

D(I0, I1,u) = δ
2
b.

Note the slightly different notation used in this approach. Instead of referring to the brightness E
in the images, I(x) is now a reference to the pixel value in image I at coordinate x = (x1,x2).

Second Order Approximation of the Data Term

As was the case in the Horn and Schunck method and a lot of other approaches of estimating
the optical flow, the data term is based on the constant brightness constraint. If the illumination
in the images changes, this constant brightness assumption would fail. To avoid this, a lot of
approaches pre-process the images in order to eliminate or reduce the influence of illumination
changes. This approach by Manuel Werlberger et al. reduce the influence of illumination by
using the normalized cross correlation as a similarity measure between the two images. The nor-
malized cross correlation is invariant to multiplicative illumination changes.

Let δ(x,(u(x1),v(x2))) be the pointwise data term depicting the truncated normalized cross cor-
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relation. This gives the following data term

D(I0, I1,u) = λ

∫
Ω

δ(x,u(x))dx

To calculate the cross correlation, one must first find the mean and the variance. The mean of a
certain patch is found as follows

µ0(x) =
∫

Ω

I0(y)B∑(x− y)dy and

µ1(x) =
∫

Ω

Ĩ1(y)B∑(x− y)dy,

where B∑ denotes a box filter of width ∑ and
∫

B(z)dz = 1 and Ĩ1(y) = I1(y+(u0)) the warped
image. The standard deviation σ(x) is found as

σ0,1(x) =
√∫

Ω

(I(y)−µ(x))2B∑(x− y)dy.

The normalized cross correlation can then be found as

NCC(x,u(x)) =
1

σ0(x)σ1(x)
·
∫

Ω

(I0(y)−µ0(x))(Ĩ1(y)−µ1(x))B∑(x− y)dy.

Note that in order to account for local distortions within the correlation window, Werlberger et al.
uses the warped image Ĩ1(x) = I1(x+ u0) in the matching term. Also to be more robust against
occlusions, they define the truncated normalized cross correlation as follows

δ(x,u(x)) = min{1,1−NCC(x,u(x))} ,

which discards all negative correlations.
This is a non-linear function, which can not easily be solved with numerical methods. In order
to linearize the term, a direct second-order Taylor expansion is performed, yielding

δ(x,u(x))≈ δ(x,u0(x))+(∇δ(x,u0(x)))T (u(x)−u0(x))+(u(x)−u0(x))T (∇2
δ(x,u0(x)))(u(x)−u0(x)),

(5.2)

where ∇2δ(x,u0(x)) denotes a semi-definite approximation of the Hessian matrix

∇
2
δ =

[
(δxx(x,u0(x)))+ 0

0 (δyy(x,u0(x)))+

]

To summarize, the data term D(I0, I1,u) is now expressed as a Taylor expansion of the normalized
cross correlation instead of the more traditional constant brightness term, which will make the
matching more robust against illumination.

Non-Local Total Variation Regularization

As was the case with the approach by Horn and Schunck, a second equation was needed in order
to solve the velocity of the optical flow. In this approach, the second equation is called non-local
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total variation (NL-TV) and utilizes the coherence of neighboring pixels kinetic behavior. As
many other optical flow regularization algorithms, it is based on the belief that objects will move
in a similar motion pattern.

NL-TV incorporates this information directly, yielding

R(u) =
∫

Ω

∫
Ω

w(x,y)(|u1(x)−u1(y)|ε + |u2(x)−u2(y)|ε)dydx, (5.3)

where |qε| denotes the Huber norm given by

|q|ε =

{
|q|2
2ε

|q| ≤ ε

|q|− ε

2 else

The Huber norm is used instead of the total variation in order to avoid piecewise constant motion
fields. The function w(x,y) is a weight function used to define the mutual support between the
pixel at position x and y. The function is defined as follows

w(x,y) = e−
(

∆c(x,y)
α

+ ∆s(x,y)
β

)
.

∆c(x,y) denotes the color similarity between I0(x) and I0(x) as the Euclidean distance in the Lab
color space and ∆s(x,y) is the Euclidean distance in the spacial domain between x and y.

Figure illustrates how the weighting function w(x,y) has an impact on an image patch. As can

(a) (b)

(c) (d)

Figure 5.6: Euclidean distance weights (b), color similarity weights (c) and the combined
weights (d) for the subregion marked in (a). These pictures have been borrowed from [39]
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be seen in figure 5.6(d), the function w(x,y) will encode a low level segmentation in the im-
age. This will help the regularization term to only weight similar motion fields within the same
segmentation.

Estimating the motion field

In order to estimate the motion field u, one has to solve the minimization

min
u
{R(u)+D(I0, I1,u)} .

Inserting equation 5.2 and 5.3, yields

min
u

{∫
Ω

∫
Ω

w(x,y)(|u1(x)−u1(y)|ε + |u2(x)−u2(y)|ε)dydx+

λ

∫
Ω

δ(x,u0(x))+(∇δ(x,u0(x)))T (u(x)−u0(x))+(u(x)−u0(x))T (∇2
δ(x,u0(x)))(u(x)−u0(x))dx

}
.

How to solve this equation is beyond the scope of this report, but the output of u generated by
the libflow library will be used as the motion map Mx and My.

5.2.3 Invariance to camera movements

In chapter 3.4, it was declared that the system should be invariant to a limited amount of camera
motion. The motions the system must be invariant to are camera pitch and yaw. The motion
maps used for classification is the part of the system that is affected by this requirement the most.
Two independent approaches has been proposed in order to eliminate the information introduced
by camera rotation. The first approach, explained in the following, introduce a motion field shift
with respect to the average motion between two frames, which eliminates most of the motion
introduced by pitch and yaw rotations. The second approach suppress the motion introduced by
the camera, by running HOG directly in the motion maps Mx and My[37].

Consider the motion vector map M from where Mx and My are derived. Each vector in M rep-
resent the estimated motion in which the pixel have moved from the subsequent frame to the
current frame. This motion is the relative motion between the camera and the scene, which in-
dicates the motion vectors as a combination of the camera motion and the objects in the scene.
Let the motion vector at the point (x,y) in the motion vector map M be denoted m and the same
point in the motion map Mx and My be denoted mx and my. Figure 5.7(a) illustrates how the
motion vector m can be seen as a vector addition of the camera motion mc and the underlying
scene motion ms.

It is easy to see, that the camera motion vector mc and the motion vector m need to be subtracted
in order to extract the scene motion vector ms. Since the camera motion vector mc is unknown,
one has to estimate it. Let pb and po be the number of pixels in the frame belonging to the
background and moving objects respectively. Under the assumption that there will be many more
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Figure 5.7: Motion vector m can be split into a camera motion vector mc and scene motion ms,
as in figure (a). In figure (b), the estimated scene motion m′s is found by subtracting the estimated
camera motion m′c from the measured motion m. One should expect an error ε between the
estimated scene motion m′c and mc.

pixels belonging to a static background than to the moving objects, i.e. pb� po. The average of
the motion vector map M will be weighted almost exclusively by the motions generated by the
pixels pb and very little by the motions generated by the pixels po. Since the pixels pb from the
background move almost uniformly, they have a direct relation to the motion vectors mc, hence
one can estimate the approximate camera motion, m′c, from the average of the motion vector map
M.

m′c =
1

pb + po
∑

(x,y)⊂(Ωb∪Ωo)

m(x,y) (5.4)

where Ωb ⊆Ω and Ωo ⊆Ω are the subregions in the motion map domain Ω⊂R2 containing the
background pixels and the object pixel respectively. To find the scene motion ms, one have to
subtract the measured motion vector m with the estimated camera motion m′c. Since the estimated
camera motion is expected not to be equal the true camera motion, the error ε is introduced when
using the estimated camera motion m′c. ms can be found as

ms = m−mc (5.5)

mc = m′c + ε (5.6)

ms = m−m′c− ε (5.7)

but since ε is unknown, one can only estimate the scene motion m′s as the scene motion ms minus
the error ε

ms = m′s− ε (5.8)

By substituting the left hand side of eq. 5.8 with the expression from eq. 5.7, the estimated scene
motion can be expressed as:

m′s = m−m′c.
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m′s is a good approximation to ms, since the average error can be expressed as

ε̄ = m̄c− m̄′c (5.9)

Where m̄c is

m̄c =
1

pb + po
∑

(x,y)⊂(Ωb∪Ωo)

mc(x,y) (5.10)

and m̄′c from equation 5.4, can be rewritten as

m̄′c =
1

pb + po
∑

(x,y)⊂(Ωb∪Ωo)

(mc(x,y)+ms(x,y))

m̄′c =
1

pb + po
∑

(x,y)⊂(Ωb∪Ωo)

mc(x,y)+
1

pb + po
∑

(x,y)⊂(Ωb∪Ωo)

ms(x,y)

Since ms(x,y) = 0 : (x,y)⊂Ωb, this yields

m̄′c =
1

pb + po
∑

(x,y)⊂(Ωb∪Ωo)

mc(x,y)+
1

pb + po
∑

(x,y)⊂(��Ωb∪Ωo)

ms(x,y) (5.11)

Inserting equation 5.10 and 5.11 into 5.9, yields:

ε̄ =
1

pb + po
∑

(x,y)⊂(Ωb∪Ωo)

mc(x,y)−
1

pb + po
∑

(x,y)⊂(Ωb∪Ωo)

mc(x,y)−
1

pb + po
∑

(x,y)⊂Ωo

ms(x,y)

ε̄ =− 1
pb + po

∑
(x,y)⊂Ωo

ms(x,y)

Which is equivalent to

ε̄ =− po

pb + po

1
po

∑
(x,y)⊂Ωo

ms(x,y)

ε̄ =− po

pb + po
m̄s(x,y)

When the assumption pb� po holds then ε̄ ≈ 0. Since the objects in this projects motion maps
are animals which are not spatially dominant in the scene, the assumption ε̄ ≈ 0 seems a valid
approximation.

Let the estimated object motion vector map M′s and the x- and y-component maps M′s,x and M′s,y
be defined as,

M′s = M−M′c = M− M̄

M′s,x = M−M′c,x = Mx− M̄x

M′s,y = M−M′c,y = My− M̄y

A scaled and offset version of the x- and y- component maps M′s,x and M′s,y will be used both in
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the training and classification step, see chapter 5. How M′s,x and M′s,y are scaled and offset will
be clarified in the following section.

5.2.4 Scaling of the motion vector maps

In order to effectively utilize the estimated object motion maps M′s,x and M′s,y as training data,
they need to be cropped and saved as images, see chapter 3.2. Since images stored on a computer
is stored in a compressed RGB 24-bit (8-bit per channel) format, in which the color value interval
pr. channel is 0−255, the motion maps M′s,x and M′s,y need to be quantized and clamped into the
interval 0−255 in order to preserve the motion information.

For convenience this color interval will in the following be referred as 3 floating point channels
with the value interval 0.0 to 1.0, but before saving the data to the disk they are converted to the
RGB 24-bit format.

As were explained in section 5.2.3, the motion map Mx and My were subtracted with their average
in order to extract the estimated object motion maps M′s,x and M′s,y. This implies that the motion
maps M′s,x and M′s,y has zero motion at the value 0, and movement both on the positive and
negative side, depending on movement direction. If those values are to be quantized and clamped
to lie within the interval 0.0−1.0, one have to divide the motion maps with an appropriate value
d and add an offset 0.5 to move the average (no motion) up to the middle of the interval 0.0−1.0.

M∗s,x = 0.5+
M′s,x

d

M∗s,y = 0.5+
M′s,y

d

An illustration of the scaling and offset of the motion vector m′s is shown in figure 5.8. Every

B

B   = 1.

B  = 1.

w

h

m'

m's,x

 s,y

m's

u

u1

2

m*s

m*s,x

m s,y*

x
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.5

Figure 5.8: The estimated object motion vector m′s is scaled and offset with 0.5 into a vector m∗s
enclosed by the box B with width Bw = 1.0, height Bh = 1.0 and center in (0.5,0.5). The scaled
object motion vectors’ x- and y-components m∗s,x and m∗s,y, will compose the scaled motion maps
M∗s,x and M∗s,y
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vector m∗s that fit within the box B will be saved, where as any vector reaching outside the box,
after scaling and translation, will be clamped to the box edge. The vector parts, reaching outside
the box B will be seen as either errors due to noise in the estimated object motion map M′s or
motion so large and uncommon and the exact direction and length can be assumed less important
to the classification process.

Since the scaling factor d is directly equivalent to the maximum pixel-velocity (pixels / frame) of
the motion map that is measurable. The scaling factor d is determined by measuring the standard
deviation of mean-corrected motion in a video sequence with legal camera motion, as defined in
chapter 3.4. The scaling factor d is then set to 4 times the standard deviation. This should ensure
the important object motions to be quantized within the interval 0.0−1.0 where movements will
lie in the interval

left: 0.0≤m∗s,x < 0.5

right: 0.5 <m∗s,x ≤ 1.0

down: 0.0≤m∗s,y < 0.5

up: 0.5 <m∗s,y ≤ 1.0

stagnant: m∗s,x = m∗s,y = 0.5

Examples of the motion maps M∗s,x and M∗s,y are shown in figure 5.9(c) and 5.9(d) generated from
the frames 5.9(a) and 5.9(b).

(a) (b)

(c) (d)

Figure 5.9: Example of the object motion maps M∗s,x (c) and M∗s,y (d) generated from the two
sequential frames (a) and (b). It is easy to see from (c), that the elephant must be walking left
due to the dark gray color in M∗s,x and the head and ear is moving slightly upwards due to the
slightly lighter color in M∗s,y.
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As it was found in chapter 4.1.3, it is reasonable to assume that the detection performance of
the ’action recognition’ stage can be increased by using more than one motion vector map in
combination. A way of utilizing the motion information from more than one motion vector map,
the following section introduce a method which combines several motion vector maps into only
one map, to be used with the HOG descriptor. These combined motion maps will from now on
be called multi-motion maps.

5.2.5 Multi-motion maps

Note that in this subsection, the motion vector map M∗s and its derivatives M∗s,x and M∗s,y will be
referred to as M, Mx and My for simplicity.

As mentioned in chapter 4.1.3 using only one motion vector map M is most likely not enough
to precisely encode an action of an animal. This is due to the fact that M from e.g. an elephant
walking could for many frame-to-frame observations be very similar to an elephant standing. A
case where a walking elephant is classified as a standing elephant is illustrated in figure 5.10. A

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

=

Trained standing model

A Mx My

A Mx My

Input appearance and motion maps. Elephant walking.

Figure 5.10: Frame 3 of a sequence with a walking elephant is classified as a standing elephant,
due to similar motion maps in both the Mx and My motion map.

second problem with the use of only one motion map M, is the information loss of the motion
behavior over a complete or partial motion cycle, e.g. a walking cycle. This information is cru-
cial to distinguish e.g. walking from turning around.

To solve these issues an entity called the multi-motion map is proposed. Let a multi-motion map
M̄ be defined as a motion vector map with the same size as the motion vector map M, consisting
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of an average of several motion vector maps. An illustration of the averaging process can be seen
in figure 5.11. Using the average of several motion maps, lets M̄ encode the movement within a
given time interval connecting a sequence of motions to the action. See figure 5.12 for examples

{ {
n = 1 n = N

∑
n = 1

N

=

Mx

1
N

Figure 5.11: Example of Mx motion map being averaged over N frames in a sequence. The
same approach applies to the My motion map.

of averaged motion maps for a given video sequence with different values of N. As seen in figure

Mx, N= 1 Mx, N= 5 Mx, N= 10 Mx, N= 20

frame 20

frame 21

frame 22

frame 23

frame 24

Figure 5.12: The multi-motion map M̄x for N = 1,5,10,20. The sequence starts from frame 20,
as the preceding frames were used to build the averaged motion map.

5.12, averaging the motion maps have greatly reduced the noise in especially the background.
Secondly it can be seen, that when N increases, the the multi-motion maps from different frames
increase in similarity. This should greatly improve the action detection performance as cyclic and
partial motions are encoded in the feature vector. As can be seen with the motion maps M̄x,N=10

and M̄x,N=20, the motion map seems to have covered most of the walking cycle for an elephant,
i.e. the multi-motion maps are hardly changing from frame to frame.

It might be tempting just to choose N equal 20 for all the classes of actions in order to encode
these cycles, but note that a running average over N samples works like a low pass filter, i.e. the
greater N the more suppression is placed on the higher frequency temporal signals. Thus the
drawback of choosing a too high value of N, is the loss of the faster or non-cyclic actions of an
animal.
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Due to the hard task of choosing an optimal N for all kinds of actions, it has been decided to test
the classifier with various average motion maps generated with N equal 5, 10 and 20, see chapter
8.

5.2.6 Running average

Generating multi motion maps for training purposes is a straight forward task, but when applied
to unknown data it is necessary to find a way to crop the needed motion map regions at runtime.
To generate valid multi-motion maps, it is important that each multi-motion map is only updated
with exemplars from the corresponding animal. For a low number N, registering invalid motion
exemplars may severely corrupt the constructed multi-motion map and hinder correct action de-
tection.
The cascaded classifier structure has been implemented so that it already pass detection win-
dows from the first cascade to the second. To implement the multi-motion maps, we construct
a search area for each detection window. The search area is a copy of the detection window to
which we add a multi-motion map container, containing a running average of motion over the
predefined number of frames. Each search area is extended by 10% of the detection window
size and is stored for the next frame, where the new detection windows will be matched with
the existing search areas. If a detection window is matched with a search area, the multi-motion
map for the search area is updated with the motion map of the detection window and the new
multi-motion map is used for action recognition. If a search region is not matched with a new
detection window within a predefined number of frames, the search area is discarded, as it is
considered obsolete. Correct action detection is not needed to succesfully build multi-motion
maps, but require accurate detection windows from the previous cascade stage.

5.3 Histogram of oriented gradients

In order to encode the appearance and motion map features into a descriptor, it has been chosen
to use histogram of oriented gradients (HOG) 4.1.2. HOG is a method of encoding features into
descriptors such that e.g. supervised learning methods like the support vector machine (SVM)
can be used to analyze and classify the descriptors [12]. The HOG descriptor implementation
used is a library called ’INRIA Object Detection and Localization Toolkit (ODLToolkit)’, which
is an open source implementation based on the algorithm proposed by Dalal and Triggs [12][42].

The proposed classifier, see chapter 5, uses HOG descriptors for either the appearance images or
the motion maps or both. Since the appearance and motion maps both are pixel-based images,
they are easily used by the ODLToolkit without any changes to the library itself. But since the
ODLToolkit does not support multiple types of images when calculating the descriptors, a lot of
work has been put into improving the library to support input images of different types, allowing
the appearance and motion-map images to be combined in one descriptor vector. Figure 5.13
illustrates the proposed extended work flow in addition to the original HOG work flow imple-
mented in the ODLToolkit.
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Figure 5.13: The work flow of the HOG algorithm, where the teal colored boxes illustrates the
original HOG algorithm. The magenta colored boxes illustrates the work done to extend the
algorithm to combine HOG descriptors from T types of images, where the maximum allowable
T depends on the amount of memory available on the system.

As can be seen on figure 5.13, the HOG work flow has been extended to support T different
types of input images. The support of multiple types of input images will be utilized to create
classifiers based on both appearance and motion map images. Note that even though the motion
map often is mentioned as only one type of input image, in the practical implementation the mo-
tion map type is composed of the x- and y-component of the motion vector map, and hence, the
support of multiple input types is a must.

In the following, each step in the HOG algorithm will be explained. Keep in mind that the default
parameters used for a standard person detector in the work done by Dalal and Triggs will be used
throughout this work, if not mentioned otherwise. The reason why the default parameters are
used is due to the big diversity in the appearance and composition of animals, which would make
the search of the optimal parameters ambiguous.

5.3.1 Gamma/color normalization

In the original HOG algorithm proposed by Dalal and Triggs, they ended up using no image
normalization at all. Their results showed only modest results on the detection performance.
The conclusion was that the normalization step was not essential probably due to the block nor-
malization in the later steps and due to the fact that they use gradients which are robust against
brightness offsets.

5.3.2 Gradient computation

An objects appearance and shape has found to be characterized well by the distribution of local
intensity gradients and / or edge directions. To find these local distributions, one needs to cal-
culate the gradients for each pixel of the image. According to Dalal and Triggs, the best kernel
yielding the best performing gradient, was the simple kernel [-1, 0, 1].

The gradient map will end up being computed in each pixel in the input image. Let Ω⊂R2 be the
image domain and I(x,y) be the pixel value in the image coordinates (x,y) ⊂ Ω. Let the kernel
Kx = [−1,0,1] and Ky = [−1,0,1]T be the kernels with which the image is convolved. Then the
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computed gradient vector map G is found as

G =
[

I ∗Kx I ∗Ky

]
From where the magnitude of the brightness change is found as

‖G‖=
√
(G2

1 +G2
2).

5.3.3 Orientation Binning

In order to create the descriptors, the gradient vector map G is divided into blocks B of 2x2 cells
C of the size 8x8 vectors, see figure 5.14. A local histogram H is made from each cell of gradi-

C
B

C

C C

1 2

3 4

H

8

8

Figure 5.14: The gradient vector map is divided into blocks B of 2x2 cells C of the size 8x8. For
each cell C, a historgram is generated with 18 bins covering the interval 0◦−180◦.

ents in terms of the gradient orientation and magnitude. The orientations are truncated into bins
and the magnitude is accumulated to the bin in question. Dalal and Triggs use histograms of 9
bins covering orientations in the interval 0◦− 180◦, where each bin covers 20◦. The gradients
are binned into the 0◦−180◦ span, by ignoring the sign of the gradient. To minimize problems
of orientations close to bin borders, a bilinear interpolation method is applied to the bin voting
system.

Since this project is aiming at using motion maps, see chapter 5, it is important to be able to dis-
tinguish if an animal is walking left or right, which is directly encoded in the motion maps5.2.3,
where light pixels indicates an animal is walking to the right and dark pixel the opposite. Since
the sign of the gradient of the motion maps shows this exact information, it has been decided to
truncate the orientations of the gradients into 18 bins covering the interval 0◦−360◦.

5.3.4 Normalization of the descriptor blocks

Since the gradient magnitudes vary over a great range due to local variations and contrast between
background and foreground, Dalal and Triggs found it necessary to do normalization in order
to increase the detection performance. The proposed normalization is to normalize each cell
histogram H against all the other histograms in a block B. Let v be the unnormalized descriptor
vector and ‖v‖2 be the L2-norm of the vector v. Then the normalization is found as

v =
v√

‖v‖2
2 + ε2

.
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In order to increase the detection performance even further, the blocks are overlapped. In this
way each cell contribute to the descriptor vector multiple times, but being normalized with re-
spect to different blocks. Dalal and Triggs found that a block stride of 8 yielded the best detection
performance. Figure 5.15 illustrates the four overlapping blocks, where the mid cell is contribut-
ing to the resulting descriptor vector four times.

B B

B B

1

3 4

2

16

16

8
Overlap

8 Overlap

Figure 5.15: The blocks are arranged with a stride of 8. This yields an overlap of the blocks,
causing the mid cell to be covered by four different blocks.

It has been shown that weighing down the edge pixels, using a Gaussian spatial window over
each pixel in a block, before accumulating orientation votes into cells improve performance.

5.3.5 Collect and append HOG descriptors over the detection window

To show how the HOG descriptors are appended over an image or detection window, it has been
decided to give an example how to calculate the descriptor size from an input example. The size
of the descriptor vector depends on the block size, the histogram bin size, the cell size, the block
stride and the input image size. A practical example of the correlation between these parameters
and different types of input images, is given in figure 5.16. The example illustrates three types
of input images of the size 64x64 consisting of an appearance frames, x-motion and y-motion
maps. The block grid is arranged with a cell size 8x8, histogram bin size 18, block size 2x2,
block stride 8 in which the HOG descriptors are calculated in each input image. The size of the
resulting descriptor vector can be calculated as follows.

Let the image width and height be Iw and Ih, block width and height Bw and Bh and the block
stride Bs, then the total amount of blocks in the input image can be found with the formula

Number of blocks =
(

Iw−Bw

Bs
+1
)(

Ih−Bh

Bs
+1
)
=

(
64−16

8
+1
)(

64−16
8

+1
)
= 49

If each cell contributes with a descriptor size equal to the bin size 18 and each block contains
four cells, the descriptor size can be found as

Descriptor size = 49 ·4 ·18 = 3528

Since there is three types of input images in this example, the resulting appended descriptor size
is 3 ·3528 = 10584.
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Figure 5.16: Example of how the blocks are arranged with respect to the input images. The
block overlaps are illustrated with different values of gray, where dark gray equals an overlap
of four cells, gray equals an overlap of two cells and light gray equals no overlap. The block B
is separated into regions illustrating the cells.

5.4 Support Vector Machine

In chapter 5.1 it was found that Support Vector Machine classifiers (SVM) [43] should be used in
a cascade. Since the goal of this project is not to develop a SVM classifier, it has been chosen to
use the free and open source SVM library lightSVM [44]. The library comes with the comman-
dline tool svm_learn, which has been used to train classifiers from the training data generated
with the HOG decriptor clarified in chapter 5.3. An illustration of the training of the classifiers is
shown on the figure 5.17.

Train linear 
SVM classifier using
lightSVM

Classifier model

Positive
Training exemplars

Negative
Training exemplars

HOG descriptor generation

HOG descriptor generation

Figure 5.17: The positive and negative exemplars are used to generated HOG descriptors,
which is given to the lightSVM library. This produces a classifier model, which is used in the
classifiers used by the main application.

The resulting Classifier models are used in the classifiers used by the main application. It is has
been chosen to use linear SVM classifiers to separate positive from negative exemplars due to the
good detection performance achieved by the human detection project by Dalal and Triggs[12],
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which is also using HOG descriptors.

Since the SVM classifier is a very important element in this project, it has been chosen to shed
some light on the actual SVM algorithm and its capabilities.

5.4.1 Derivation of the SVM classifier

The SVM classifier is a supervised classifier, which entail the need of some prelabeled training
data. The training data in this project would e.g. consists of

1. Training labels y ⊆ {−1,+1}, where y = +1 means e.g. an elephant and y = −1 means
e.g. not an elephant

2. Training data x ⊆ Rd , where the components of x is notated as follows x =
{

x1, ...,xd
}

.
The training data would in this project be the HOG descriptors extracted from training
exemplars of appearance and motion frames.

Given these training data, the idea is to find a classification function F : Rd → {−1,+1} which
is able to classify any new data x. Such a function can be expressed as

F(x) = sign f (x)

with a decision function f : Rd → R parameterized as

f (x) = a0 +a1x1 +a2x2 + ...+adxd .

If the coefficients a0, ...,an are written as w = (a0, ...,an) ⊆ (R)d+1 and augmenting x with the
constant 1 in the first position x̃ = (1,x0, ...,xd)⊆ Rd+1 f (x) can be written as

f (x) = wT x̃. (5.12)

From now on, x̃ will be referred as x in order to simply things.

f (x) can be visualized as the hyperplane wT x̃ = 0 separating the negatives from positives, see
figure 5.18.

The idea is to find the parameters w, which separates the training data the most, i.e. the param-
eters w, which maximizes the distance p from the hyperplane to the nearest data on each side.
The distance p can be found as

p = min
i=1,...,n

∣∣∣∣∣
(

w
||w||

)T

xi

∣∣∣∣∣ ,
for all the training samples n.
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x1

x2

w
w x = 0T

Figure 5.18: The hyperplane separating the two classes.

Given the above definitions, the parameters w can be found with the following optimization
problem

max
w⊆Rd

p

subject to

p = min
i=1,...,n

∣∣∣∣∣
(

w
||w||

)T

xi

∣∣∣∣∣
and

sign wT xi = yi, for i = 1, ...,n.

The minimization of p can be rewritten to

p≤

∣∣∣∣∣
(

w
||w||

)T

xi

∣∣∣∣∣ ,
which constraints p to be smaller than all

∣∣∣∣( w
||w||

)T
xi

∣∣∣∣. This forces p to be a positive number.

If the equality constraint is inserted in the inequality constraint and divided by p, the optimization
problems can be written as

max
w⊆Rd ,p⊆R+

p (5.13)
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subject to

yi

∣∣∣∣∣
(

w
p||w||

)T

xi

∣∣∣∣∣≥ 1, for i = 1, ...,n,

where R+ stands for all positive values.

Using that ||w|| = 1
||p|| , the maximization 5.13 can be written as the minimization of ||w|| or the

equivalent solution ||w||2, which is easier to solve numerically. The optimization problem can at
last be written as

min
w⊆Rd

||w||2 (5.14)

subject to

yi
∣∣wT xi

∣∣≥ 1, for i = 1, ...,n,

The above approach is also called the maximum-margin classifier. An illustration of positives
and negatives separated by the two margin hyperplanes is found in figure 5.18. Until now, the

x1

x2

2
||w||

w

w x = 1T

w x = 0T

w x = -1T

p

p

Figure 5.19: The hyperplane and its margins separating the two classes.

maximum-margin classifier has been found as an optimization problem 5.14. The solution to this
problem does only exist if the data is completely separable. Usually data will not be completely
separable due to outliers, see figure 5.20.

To overcome this problem, the soft margin classifier is introduced.
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Figure 5.20: An outlier violates the margins by ξi.

Soft margin classifier

In order to find the parameters w even though there exists outliers, the slack variable ξi is intro-
duced yielding the a new optimization problem defined as

min
w⊆ Rd

ξ1, ...,ξn ⊆ R+

||w||2 + C
n

n

∑
i=1

ξi (5.15)

subject to

yi
∣∣wT xi

∣∣≥ 1−ξi, for i = 1, ...,n,

where C > 0 is a regularization variable, which can be used to balance between robustness and
correctness. Increasing C will increase the impact of the slack variable ξi and making the solu-
tion similar to the original max margin optimization problem in 5.15. Decreasing C will make
ξi having a decreasing impact on the solution and greater outliers are accepted. The effect of the
regularization variable C is illustrated in figure 5.21.

Non-linear data classification

In some situations, the data which needs separation is not linear and hence, the maximum margin
classifier can not separate the data. To cope with that situation one can transform the non-linear
data into a linear space before solving the optimization 5.14. This transformation or mapping
(possible non-linear) is defined as ϕ : Rd → Rm, which change the decision function 5.12 to

f (x) = wT
ϕ(x), (5.16)
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Figure 5.21: Example where robustness might be more attractive than correctness. The regu-
larization variable C in (a) is greater than the one in (b). It is easy to see that (b) illustrates a
more robust classifier than the more correct classifier illustrated in (a).

where w⊆ Rm is the solution to the optimization

min
w⊆ Rm

ξ1, ...,ξn ⊆ R+

||w||2 + C
n

n

∑
i=1

ξi (5.17)

subject to

yi
∣∣wT

ϕ(xi)
∣∣≥ 1−ξi, for i = 1, ...,n.

An example of a useful mapping from the cartesian coordinate system to the polar coordinate
system is defined as

ϕ :
(

x
y

)
→
√

x2 + y2

arctan y
x
.

The illustration on figure 5.22 shows the effect of mapping the data set into a polar coordinate
system.

It is clear that the mapping to the polar coordinate system enables the maximum margin classifier
to separate the data set.

Since there is no restrictions on the mapping ϕ : Rd → Rm, m can be of much higher dimensions
compared to d and might introduce some computational and runtime issues due to the increased
amount of used memory.

The above concerns are basically unfounded due to kernelization, which will be shown in the
following.
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Figure 5.22: Example of a mapping from the non-linear data set in the cartesian coordinate
system (a) into the polar coordinate system (b). When the data set is mapped into the polar
coordinate system, it is possible to separate the data with a maximum margin classifier.

The representer theorem

In the following The representer theorem [43, p. 16] , it is shown that w can not be arbitrary, but
it lies in a subspace of Rm with dimensions n or less, where n is the number of training samples.
The proof of the representer theorem will not be examined in this chapter, but it basically says
that w can be represented as follows

w =
n

∑
j=1

α jϕ(x j) for coefficients α1, ...,αn ⊆ R. (5.18)

Substituting w in the optimization problem 5.17 with the equation 5.18, yields the new optimiza-
tion problem

min
α1, ...,αn ⊆ R
ξ1, ...,ξn ⊆ R+

n

∑
i, j=1

αiα jϕ(xi)
T

ϕ(x j)+
C
n

n

∑
i=1

ξi (5.19)

subject to

yi

n

∑
j=1

α jϕ(xi)
T

ϕ(x j)≥ 1−ξi, for i = 1, ...,n,

and the generalized decision function becomes

f (x) =
n

∑
j=1

α jϕ(xi)
T

ϕ(x j).

The general idea of the representer theorem, is that most of the coefficients α j will be zero and
hence, the computational and runtime costs are reduced. All the training examples x j with non-
zero coefficients α j are usually called support vectors. It should also be noted that instead of
optimizing over w⊆ Rm one can optimize over (α1, ...,αn)⊆ Rn.
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Even though the representer theorem has reduced the computation and runtime requirements, one
still has to calculate and store {ϕ(x1), ...,ϕ(xn)} before finding the parameters of the maximum
margin classifier. In order to avoid this bottleneck, kernelization comes into play.

Kernelization

By observing the optimization problem 5.19, it is easy to see that the transformed features are
represented pairwise. This property can be utilized by defining the kernel parameter k(x,x′) =
ϕ(x)T ϕ(x′). By estimating the kernel directly instead of the individual ϕ(xi) parameter, the num-
ber of needed calculations reduced to n(n+1)

2 unique values due to symmetry, instead of the n ·m
entries of the vectors ϕ(xi).

Inserting k(x,x′) into the optimization problem 5.19, yields the kernelized maximum margin clas-
sifier, also called Support Vector Machine. The SVM classifier is found by solving the following
optimization problem

min
α1, ...,αn ⊆ R
ξ1, ...,ξn ⊆ R+

n

∑
i, j=1

αiα jk(xi,x j)+
C
n

n

∑
i=1

ξi (5.20)

subject to

yi

n

∑
j=1

α jk(x j,xi)≥ 1−ξi, for i = 1, ...,n,

The SVM approach by using the kernelization k(xi,x j) instead of the individual ϕ(xi) approach
have two major advantages.

1. In some cases, calculating an impression of k(xi,x j) might give some speed improvement.
An example could be the square of the mapping ϕ : x → (1,

√
2x,x2) ⊆ R3 versus the

equivalent kernelized version k(x,x′) = (1+ xx′)2.

2. One can construct kernel functions k(xi,x j) without knowing how to compute ϕ.

In general, k(x,x′) gives a lot of opportunities to design different kernels, as long as Mercer’s
condition is fulfilled, see [43, p. 19-20]

Mercer’s condition:
Let X be a non-empty set. For any positive definite kernel function k : X×X → R, there exists a
Hilbert space H and a feature map ϕ : X → H such that

k(x,x′) = (ϕ(x)T
ϕ(x′))H ,

where (·)H denotes the Hilbert space.

Examples of some kernels commonly used by SVM’s are shown in the following
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• Linear: K(x,x′) = xT x′

• Polynomial: K(x,x′) = (1+ xT x′)m

• Gaussian: K(x,x′) = exp
(
− ||x−x′||2

2σ2

)
with σ > 0

which all obey the Mercer’s condition.

In this project the linear kernel will be used, which has been proven to perform well with HOG
descriptors [12].

5. The classification step 49 of 106



PART

III
VERIFICATION

50 of 106



Chapter 6
Methodology

In this part of the report, the system performance is tested regarding animal detection & recogni-
tion and action recognition, within the system scope given in 3.4. Since the ’animal detection and
recognition’ is the first stage of the proposed cascade classifier, it is highly influential on the per-
formance of the second stage of the cascade, the ’action recognition’ stage. To avoid punishing
the second stage for errors in the first stage, only the regions detected as the animal in question
in the first stage, will be evaluated in the second stage.

The stages ’animal detection and recognition’ and ’action recognition’ will in the following chap-
ters be verified and tested. In each chapter, the type of test which is about to be conducted, choice
of descriptor combinations, the setup and the training and verification data will be clarified before
the performance results of the specific stage is presented.

6.1 Verification data notes

To verify the ’action recognition’ stage of the classifier, a dataset of different animals performing
different actions is needed and must be recorded using a moving camera. Unfortunately such a
dataset is not publicly available. We visited Pittsburgh zoo on several occasions to built such a
dataset, but only very little useful data came from it. Our dataset for training and verifying the
action recognition stage only contain elephants with the actions walking left or right. We verify
our algorithm against this dataset to validate that our action detection algorithm is not signifi-
cantly affected by a moving camera.
The dataset does not contain enough different actions to validate the action recognition algorithm
itself. We have therefore chosen to train and validate our algorithm against the KTH dataset
also, which provides six different action sets performed under four different conditions and in-
cludes data for 25 different persons.We use the same data segregation as Schuldt, Laptev and
Caputo[45], using persons 11 to 18 for training and persons 1, 4, 19 to 25 for validation. Our ele-
phant data set contains one sequential movie containing 10560 frames, frames 0-4999 are used
for training and frames 5000 and up are used for validation.
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Animal detection and recognition

In order to test the ’animal detection and recognition’ stage, the detected location of the animal
will be evaluated with respect to the overlap of the verification data. Let the verification region be
noted W and the detected region be noted D, then the overlap O can be found as the intersection
between W and D over the union of W and D,

O =
W ∩D
W ∪D

.

The overlap measure gives an indication of how precise the system is at estimating the correct
location of the animals in the image. The overlap of the detected location of an animal versus
where you see the animal in the image is one of the key factors of a good user experience.

Another and maybe more important key factor of a good user experience, is the ability to detect
the animal in the scene versus falsely detecting an animal not present in the scene. This measure
is often called a Receiver Operation Characteristic curve ( ROC curve) and found as the true
positive rate, or recall, versus the false positive rate. Recall and false positive rate is calculated
as follows:

recall =
true_positives

true_positives+ f alse_negatives

f alse_positive_rate =
f alse_positives

true_negatives+ f alse_positives

The ROC curve is generated by stepwise adjusting the threshold deciding whether the region
is positive or not. With a low threshold, the classifier will classify more regions as positives,
increasing the number of false positives and lowering the false negatives. The lower threshold
will also result in more false positive regions, many clustered near the actual positives, resulting
in many detections with low overlaps. On the other hand, increasing the threshold will decrease
the detection performance, but at the same time reject more regions with a low overlap. That
is, to find the optimal ’animal detection and recognition’ stage one must find the best balance
between a good detection rate over false positive rate versus keeping the overlap between the
ground truth data and the detected regions as large as possible. This is done by evaluating a set
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of different detected regions with different overlaps, in order to find the minimum acceptable
overlap for a system like this. When the minimum acceptable overlap has been found, for all the
positive regions, each positive region having an overlap less than the chosen minimum overlap,
will be discarded and changed to a false positive. Changing a detected region from true positive
to a false positive, will generate one additional false negative and one less true negative, as the
verification region is changed from found to missed.

7.1 Choice of descriptors

The ’animal detection and recognition’ stage of the classifiers main functionality is to locate and
classify the type of animals being observed. As has been explained in the chapter about the HOG
algorithm, chapter 5.3, the ODLToolkit has been extended to enable it to combine multiple input
images into one descriptor. This enables the use of any combination of both the appearance and
motion descriptors to detect and recognize the animal. The descriptor made from the appearance
images are good for encoding texture, shape and color compositions, which seem to be many of
the indicators humans use to recognize animals. The descriptors made from motion, only encode
motion patterns and to some degree shape contours of the moving parts. Since many animals
have very similar movements or may be completely still on many occasions, the use of motion
descriptors seem less attractive than the appearance descriptors for the ’animal detection and
recognition’ stage.

The above reasoning leads to the test of a classifier based on only the appearance descriptors and
a classifier based on a combined appearance and motion descriptor, to see how motion informa-
tion affect performance.

7.2 Setup

The classifier based on appearance descriptors, will be using descriptors generated by the HOG
algorithm using the following parameters:

• Cell size: 8x8px.

• Block size: 4x4px cells.

• Linear gradient voting into 18 orientation bins in 0◦−360◦.

• Block spacing stride of 8 pixels.

• 64x64px detection window.

• Gaussian spatial window, with σ = 8 = 0.5 ·block width.

The cell size, block size, spatial Gaussian window size and the block spacing stride has been cho-
sen on the basis of the experiments done by Dalal and Triggs[12]. The parameters were found to
be optimal for pedestrian detection, but would most likely perform similarly on animals.
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Since the intention of this system is to detect and classify different species of animals, it would
not be feasible to find the optimal parameters for each type of animal. The same reasoning is be-
hind the choice of a detection window size of 64x64px, since a squared detection window is the
best compromise for detecting both tall and wide animals. By using the same detection window
for all animals, much computational performance can be gained. Empirical experiments show
that the size of 64x64px is appropriate, as most animals of interest are 64x64px or larger in the
images.
For linear gradient voting, 18 bins in 0◦− 360◦ will be used as animals often have similar tex-
tures and colors, i.e. ’signed’ gradients should help substantially detecting the animal from the
background, as Dalal and Triggs observed was the case for e.g. cars and motorbikes.

The classifier based on appearance and motion descriptors will be using the same parameters as
above, except the use of only 9 orientations bins in 0◦− 180◦, i.e. the ’sign’ of the gradient is
ignored. Using ’unsigned’ gradients may help detecting animals from their motion information,
even though the motion map exemplars, generated from the animals motion, are direction sensi-
tive. See the figure 7.1.

(a) (b)

Figure 7.1: Motion map exemplars generated from the x-component of a motion map vector,
from an elephant walking left (a) and right (b).

Since the two training exemplars illustrated in the above figure represents the same class Elephant
and both are used to train a classifier, it is clear that ’unsigned’ gradients should help making the
two exemplars more comparable.

7.3 Training and verification data

The training data used to train the ’animal detection and recognition’ stage of the classifier, is as
mentioned above both appearance and motion map exemplars. The appearance exemplars have
been cropped from videos recorded with the HMD in Pittsburgh Zoo & PPG Aquarium [46].
The motion map exemplars have been cropped from two motion map videos generated from the
appearance video, the x-component and y-component of the motion vector map respectively. All
the cropped exemplars have been cropped and scaled to the same size as the detection window
of 64x64px. The training exemplars contains images of elephants from different poses, angles
and actions. The video has been recorded under natural varying light conditions and with low to
medium camera movements.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.2: Examples of the training data used to train the ’animal detection and recognition’
stage of the classifier. In the case of the appearance only classifier, the exemplars (a), (d) and
(g) will all be encoded as three individual HOG descriptors. In the case of the appearance and
motion classifier, three HOG descriptors will be assembled from the exemplars [(a) (b)(c)], [(d)
(e) (f)] and [(g) (h) (i)].

Three examples of exemplars from the training data is shown in figure 7.2, from which three sets
of descriptors will be generated.

Notice the lack of motion information in the exemplars 7.2(b), 7.2(c), 7.2(e) and 7.2(f) when
the elephant is standing still. This could definitely cause some problems regarding distinction
between the background and the elephant.

The training exemplars have been cropped from different sequences of consecutive frames within
the frame interval 0 - 4999 in the recorded elephant movie. Selected sequences of frames con-
taining elephants in the rest of the elephant movie, in the interval 5000 - 10560 frames, is used
to label verification data from where 1530 regions have been labeled as containing an elephant.
Negative exemplars have been randomly cropped from the video, which does not contain ele-
phants. The classifier based on appearance HOG descriptors has been trained on the amount of
exemplars shown in table 7.1 and the classifier based on both appearance and motion map ex-
emplars has been trained on the amount shown in table 7.2. Each amount of positive training
exemplars have been generated with corresponding left-right reflections. The negative exem-
plars have been randomly cropped from non-elephant frames, from the same video. After the
first classification run, several false-positives has been collected as hard negative exemplars. The
hard negatives have been used to train the final classifiers.
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Appearance
Positive elephant exemplars 4942
Negative exemplars 6113

Table 7.1: Training exemplars used to produce HOG descriptors for the appearance classifier.

Appearance Motion-x Motion-y
Positive elephant exemplars 4942 4942 4942
Negative exemplars 6113 6113 6113
Hard negative exemplars 1564 1564 1564

Table 7.2: Training exemplars used to produce HOG descriptors for the appearance and motion
classifier.

7.4 Results

The goal is to find the optimal balance between a high recall over false positive rate versus keep-
ing the minimum overlap between the ground truth data and the detected regions as large as
possible for the cascade stage.

In order to show what impact the minimum acceptable overlap has on the detection performance,
figure 7.3 shows the ROCs from different minimum overlaps of the appearance classifier. The
combined appearance and motion classifier will not be shown in this context due to bad results,
which will be clarified later in this chapter.

To find the ideal minimum acceptable overlap and thereby the resulting ROC curve, the detection
results were manually inspected. Figure 7.4 shows four examples and their respective overlap.

The choice of which detected region is acceptable and which is not, is completely subjective, and
might differ from person to person. We suggest the following reasoning:

Figure 7.4(a) shows only the back of an elephant, most of the head outside the detected area, and
therefor not found acceptable. Figure 7.4(b) illustrates the classifier detecting a small elephant
partly occluding a bigger elephant. Due to the bigger elephant, the detected region is significantly
larger than the ground-truth region for the smaller elephant and it is not clear which elephant is
detected. Since the box does not clearly favor one or the other, the detection should be discarded.
Figure 7.4(c) shows the classifier detecting an elephant missing a small part of the head. Since
the most of the elephant is within the detected region, it is found acceptable. Figure 7.4(d) shows
a nearly perfect detection, which obviously should be accepted.

On the basis of the detected regions, a minimum overlap of 0.6 is found suitable. Consequently
for each detected region below an overlap of 0.6, the true positive label will be discarded and
generate one extra false positive, one extra false negative and one less true negative, which will
impact the ROC curve in a negative direction. Figure 7.5 illustrates an example of the 0.6 bound-
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Figure 7.3: Each ROC curve has been generated from testing 1530 regions in the verification
frames, each with a different minimum acceptable overlap.

(a) 0.5 overlap (b) 0.59 overlap (c) 0.67 overlap (d) 0.88 overlap

Figure 7.4: Four different detections and their respective overlap with the verification labels.

ary in comparison with the overlap of all the detected regions for a threshold of 0.4.

Using the minimum overlap of 0.6 and sweeping the threshold from 0.1 to 1.1, generates the
ROC curve for the appearance only classifier on figure 7.6 and the ROC curve for the combined
appearance and motion classifier on figure 7.7.

The ROC curve for the combined appearance and motion classifier has a significantly worse re-
call than the appearance only classifier. At a false positive rate of 1.1x10−4 the classifier only
detects a little over a third of the ground-truth verification labels. This suggests that the motion
data in combination with the appearance data is not good for detecting the animal. A reason
for this may be the large variation in the motion data for e.g. an elephant standing versus an
elephant walking. Appearance-wise there is not much difference of an elephant walking versus

7. Animal detection and recognition 57 of 106



7.4 Results

0 200 400 600 800 1000 1200 1400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of true positive detection @ threshold:0.4

O
ve
rla
p

Figure 7.5: The overlap between the detected region and the verification region for each true
positive detection at a threshold of 0.4. The red line illustrated the minimum overlap of 0.6.
Every true positive detections below that boundary will be discarded and generate one extra
false positive, one extra false negative and one less true negative.

an elephant standing, as the overall shape does not change significantly. This generates a lot of
descriptors with very little in common for the SVM classifier to classify, and thus giving the bad
results.

The ROC curve for the appearance only classifier looks more promising. This indicates that
a classifier based only on the appearance desciptor is better at detecting an animal rather than
a classifier based on both appearance and motion descriptors, which agrees with the intuition
given in the introduction of this chapter. The threshold 0.4 yielding the recall of 0.7948 at a false
positive rate of 4.249x10−6 will be used in the verification of the ’action recognition’ stage in the
next chapter.
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Figure 7.6: ROC curve of the appearance only classifier generated by sweeping the threshold
from 0.1 to 1.1 with a step size of 0.1.
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Figure 7.7: ROC curve of the combined appearance and motion classifier generated by sweep-
ing the threshold from 0.1 to 1.1 with a step size of 0.1.
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Chapter 8
Animal action recognition

To test the action recognition performance of the second stage of the cascade, a confusion matrix
will be generated containing all the tested actions. The matrix show how high a percentage of
one action is misclassified as another in the ’action recognition’ stage.

The ’action recognition’ stage will be tested by running the cascade on consecutive frames in a
video containing elephants. All the regions detected as containing an elephant by the ’animal de-
tection and recognition’ stage, will be examined by the ’action recognition’ stage and classified
as one of the two trained actions ’elephant walking left’ or ’elephant walking right’.

In order to test the ’action recognition’ stage of the cascade without interference from the ’animal
detection and recognition’ stage, only the detections classified as one of the two tested action will
be considered. This exclude detections only detected as an elephant or not detected at all. False
positives generated by actions not included in the training set, e.g. a standing elephant recognized
as walking, will also not be considered and just ignored.

8.1 Choice of descriptors

The ’action recognition’ stage of the classifiers main functionality is to recognize the action per-
formed by the animal detected and recognized by the ’animal detection and recognition’ stage of
the cascade. The ’action recognition’ stage is being tested both with a combination of appearance
HOG and motion map HOG descriptors and with motion descriptors only. As has already been
mentioned in the descriptor discussion in section 7.1, the motion descriptors are good at encoding
the motion pattern performed by the animal and the appearance descriptors are good at encoding
the animals texture, shape and color composition. The motion descriptors are a natural choice for
an ’action recognition’ stage, but by including the appearance descriptor information contained
in the pose of the animal combined with the motion descriptors, may improve the performance
of the classifier on some actions where motion may be ambiguous.
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Each type of the classifiers are tested with appearance and motion map exemplars generated from
5, 10 and 20 averaged consecutive appearance frames and motion maps in order to test if averag-
ing over several appearance frames and motion maps makes the classification step more robust,
see section 5.2.5 about multi-motion maps. Classifiers based on single appearance and motion
map exemplars will also be tested. This will produce a total of 16 different classifiers, covering
two types of actions and eight descriptor combinations. A confusion matrix will be generated for
each classifier set-up.

8.2 Setup

The classifier based on motion descriptors and the classifier based on a combined motion and
appearance descriptors, will both be using descriptors generated by the HOG algorithm using
the same parameters as the ’detector and recognition’ stage of the cascade, namely the following
parameters:

• Cell size: 8x8 pixels.

• Block size: 4x4 cells.

• Linear gradient voting into 18 orientation bins in 0◦−360◦.

• Block spacing stride of 8 pixels.

• 64x64 detection window.

• Gaussian spatial window, with σ = 8 = 0.5 ·block width.

The parameters have been chosen for the same reasons as in section 7.2, but the argument for
choosing linear gradient voting into 18 orientation bins in 0◦− 360◦ is a bit different. Using
’signed’ gradients, i.e. orientations in the interval 0◦− 360◦, should help distinguish the two
actions ’elephant walking left’ and ’elephant walking right’, since the most descriptive difference
is the color of the motion in the motion maps. Using unsigned gradients will ignore the difference
between a dark silhouette and a light silhouette against the grey background, as also described in
section 7.2.

8.3 Training and verification data

The training data used to train the ’action recognition’ classifiers, is from the same set which
was used in the ’animal detection and recognition’ classifier, see section 7.3. The difference is
that only the exemplars where the elephant is moving either to the left or to the right is used. As
mentioned above, the average over 5, 10 and 20 appearance and motion map exemplars will be
generated for each type of classifiers.
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Appearance / Motion-x / Motion-y
N = 1 N = 5 N = 10 N = 20

Elephant walking left 715 710 705 695
Elephant walking right 349 344 339 330

Table 8.1: Positive training exemplars used for training the 16 classifiers.

Examples of exemplars generated from the appearance frame and motion map and their respec-
tive averaged versions are shown in figure 8.1. The training exemplars have been cropped from
different sequences of consecutive frames within the frame interval 0 - 4999 in the recorded ele-
phant movie. Selected sequences of frames with elephants in the rest of the elephant movie, in
the interval 5000 - 10560 frames, is used to label verification data. From the verification data
446 regions have been labeled containing and elephant walking left and 440 regions containing
an elephant walking right. The training exemplars used for training the ’elephant walking left’
classifier will be used as negatives for the ’elephant walking right’ classifier and vice versa.

The amount of positive exemplars used to train the classifiers are shown in table 8.1.
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(a) N = 1 (b) N = 1 (c) N = 1

(d) N = 5 (e) N = 5 (f) N = 5

(g) N = 10 (h) N = 10 (i) N = 10

(j) N = 20 (k) N = 20 (l) N = 20

Figure 8.1: Exemplars of an elephant walking right. Each row illustrates the exemplars gen-
erated by averaging over N subsequent exemplars. Each column illustrates the three different
training exemplar types, appearance and motion in the x- and y-direction.
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8.4 Results

As has been discussed in the introduction, confusion matrices will be generated for each type
of classifiers in order to test the ’action recognition’ stage. This is done to see if the stage is
mislabeling one action as another. The first four confusion matrices shown in table 8.2, 8.3, 8.4
and 8.5 are generated with the classifiers based on the motion only descriptors generated from
non-averaged, averaged over 5, 10 and 20 exemplars.

Detected
Elephant walking left Elephant walking right

Actual
Elephant walking left 91% 9%

Elephant walking right 0% 100%

Table 8.2: Confusion matrix generated with the motion only classifier trained with the non-
average exemplars.

Detected
Elephant walking left Elephant walking right

Actual
Elephant walking left 100% 0%

Elephant walking right 0% 100%

Table 8.3: Confusion matrix generated with the motion only classifier trained with the average
over 5 exemplars.

Detected
Elephant walking left Elephant walking right

Actual
Elephant walking left 100% 0%

Elephant walking right 0% 100%

Table 8.4: Confusion matrix generated with the motion only classifier trained with the average
over 10 exemplars.

Detected
Elephant walking left Elephant walking right

Actual
Elephant walking left 100% 0%

Elephant walking right 0% 100%

Table 8.5: Confusion matrix generated with the motion only classifier trained with the with the
average over 20 exemplars.

The classifiers based on non-average descriptors, shown in table 8.2, is the only motion only
based classifier misclassifying the two actions. It classifies 9% of the ’elephant walking left’
ground-truth data as the ’elephant walking right’ action, while every single ’elephant walking
right’ ground-truth data was classified correctly. Using averaged exemplars shows and even
better classification performance, which supports this projects hypothesis that using motion in-
formation over several frames will help distinguish action. All of the ground-truth ’elephant
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walking left’ and ’elephant walking right’ were classified correctly using the classifiers based on
the descriptors made by averaged exemplars.

Even though there is not much to improve on the action recognition performance on this dataset,
it has been chosen to test four classifiers based on the combined appearance and motion descrip-
tors generated from non-averaged, averaged over 5, 10 and 20 exemplars. The confusion matrices
generated from these classifiers are shown in figure 8.6, 8.7, 8.8 and 8.9.

Detected
Elephant walking left Elephant walking right

Actual
Elephant walking left 1% 99%

Elephant walking right 43% 57%

Table 8.6: Confusion matrix generated with the combined appearance and motion classifier
trained with the non-average exemplars.

Detected
Elephant walking left Elephant walking right

Actual
Elephant walking left 28% 72%

Elephant walking right 80% 20%

Table 8.7: Confusion matrix generated with the combined appearance and motion classifier
trained with the average over 5 exemplars.

Detected
Elephant walking left Elephant walking right

Actual
Elephant walking left 54% 46%

Elephant walking right 90% 10%

Table 8.8: Confusion matrix generated with the combined appearance and motion classifier
trained with the average over 10 exemplars.

Detected
Elephant walking left Elephant walking right

Actual
Elephant walking left 85% 15%

Elephant walking right 94% 6%

Table 8.9: Confusion matrix generated with the combined appearance and motion classifier
trained with the with the average over 20 exemplars.

These results are somewhat peculiar. When using the classifier based on the non-average de-
scriptors, the detections seem to favor the ’elephant walking right’, where 99% of the ’elephant
walking left’ ground-truth labels have been detected as ’elephant walking right’. Increasing the
amount of exemplars used in the averaged descriptors, seems to increase the amount of detection
hits being classified as the ’elephant walking left’ action. An explanation to this behavior might
be found by the uneven amount of training data used for the two different actions. Including
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appearance data in the classifier seem to outweight the motion data so heavily that the SVM can
not use the motion data to correctly separate the two classes.
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Chapter 9
Human recognition

Due to the low amount of actions in our own dataset the verification of the ’action recognition’
stage of the classifier has not been tested against enough different action types in order to prove
the action recognition efficiency. In order to verify the ’action recognition’ stage the stage is
tested against the KTH-dataset [45]. The dataset contains the actions ’handclapping’, ’handwav-
ing’, ’boxing’, ’walking’, ’running’ and ’jogging’. The results will be presented in confusion
matrices as in the verification of the elephant, chapter 8.

The ’action recognition’ stage will be tested against the human candidate regions resulting from
the ’detector and recognition stage’, which has been trained on human exemplars cropped from
the KTH-dataset. Since the human detection part is not in the scope of this report, the detection
performance of this classifier will not be discussed.

9.1 Choice of descriptors

Since the combined appearance and motion descriptors proved to have very bad performance
used in an ’action recognition’ stage in chapter 8, it has been chosen only to test the motion only
method.

9.2 Setup

The setup is almost identically to the one used in chapter 8, with only two deviations. The first
difference is the use of 48x48 detection windows instead of 64x64, due to the smaller videos
included in the KTH-dataset (160x120). The 48x48 window size was chosen as it cover the
smallest occurrences of humans in the dataset. The other deviation is the use of ’unsigned’ gra-
dients instead of ’signed’ gradients. The ’unsigned’ gradients are used to eliminate the direction
dependency when using the motion map exemplars, e.g. the purpose is only to recognize if a hu-
man is walking and not if the human is walking left or right with respect to the camera. This was
chosen as other action recognition algorithms tested against the KTH-dataset do not distinguish
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direction. The ’signed’ vs ’unsigned’ gradient behavior is explained in chapter 7 under the setup
of the combined appearance and motion classifier.

9.3 Training and verification data

The training data used for the human action recognition classifier consists of motion map ex-
emplars cropped from the motion maps generated from the videos in the KTH-dataset. The
KTH-dataset provides six different action sets ’handclapping’, ’handwaving’, ’boxing’, ’walk-
ing’, ’running’ and ’jogging’, performed under four different conditions and includes data for 25
different persons. The data for the different persons are split into two parts, one training part
consisting of the eight different persons, named person 11, 12, 13, 14, 15, 16, 17 and 18 and one
verification part consisting of the eight different persons named person 19, 20, 21, 23, 24, 25, 01
and 04.
Some actions from the KTH data set contain actions that can have different orientations, such as
’boxing’, ’walking’, ’jogging’ and ’running’. for ’boxing’ the verification set contains ’boxing’
sequences both to the left and to the right. The training set only contain two videos of a person
’boxing’ to the right, which seems quite low to learn useful features. Since we are using unsigned
gradients in the HOG descriptor, for this test, we have mirrored all our training image pairs and
used those for training also. This increases our training exemplars for opposing directions.

Examples of the cropped exemplars used for the motion descriptor based classifier, is shown in
figure 9.1.

The number of positives and negatives used for the training used, is shown in table 9.1.

The small amount of ’jogging’, ’walking’ and ’running’ exemplars used to train the classifiers
are due to the fact, that for these actions, the people pass in and out of the images. The people
in the videos are fairly close to the camera, leaving very few frames where a square region of
the person can be extracted. This have a great impact on especially the action ’running’, where
it was not possible to generate exemplars averaged over 20 exemplars, since the person was not
inside the extractable area for 20 frames in most sequences.

Motion-x / Motion-y
N = 1 N = 5 N = 10 N = 20

Handclapping 3010 2860 2719 2410
Handwaving 3266 3106 2946 2626
Boxing 3264 3104 2944 2624
Jogging 1320 1000 680 50
Running 762 482 202 N/A
Walking 2034 1724 1414 808

Table 9.1: Positive training exemplars used for training the six different action classifiers.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 9.1: The first column shows the appearance exemplar corresponding to the motion map
exemplars shown in the second and third column. Note that only the second and third column
are used for training the ’action recognition’ classifier. The rows from top to down represents
’handclapping’, ’handwaving’, ’boxing’, ’walking’, ’running’ and ’jogging’.
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9.4 Results

As has been discussed in the introduction, confusion matrices will be generated for each type of
classifier in order to test the human ’action recognition’ stage. This is done to see if the stage is
mislabeling one action as another. Table 9.2 shows the results from using non-average exemplars,
table 9.3, 9.4 and 9.5 show the results from averaging over 5, 10 and 20 exemplars respectively.

Detected
Boxing Handclapping Handwaving Jogging Running Walking

Actual

Boxing 16% 36% 48% 0% 0% 0%
Handclapping 7% 45% 47% 0% 1% 0%
Handwaving 5% 33% 62% 0% 0% 0%

Jogging 7% 4% 43% 41% 5% 0%
Running 7% 5% 47% 33% 8% 0%
Walking 8% 11% 63% 17% 0% 0%

Table 9.2: Confusion matrix generated with the motion only classifier trained with the non-
average exemplars.

It is easy to see in table 9.2, that a great number of actions were mislabeled. Especially the action
’handwaving’ seems to dominate the other actions in all of the action sequences. Another thing to
notice, is the great confusion between the actions ’boxing’, ’handclapping’ and ’handwaving’. By
looking at the non-averaged motion maps for the actions, we see that the actions look very similar.
The ’boxing’ sequences may very well be confused with the ’handclapping’ and ’handwaving’
sequences since both left and right boxing characters were trained into the same SVM model.
Since most of the ’boxing’ motion occupy the same areas of the image as ’handclapping’ and
’handwaving’ and both left and right were trained into the same model, there is a great chance
that the classifier could not build a good set of negative weights for the set.
The confusion between ’walking’, ’jogging’ and ’running’ is not very surprising, as our algorithm
does not recognize speed very well. As the poses look very similar, it is hard to distinguish the
three actions in low resolution videos, especially from motion. Looking at fig. 9.2 it is also clear
that the motion data from the ’walking’, ’jogging’ and ’running’ actions are very noisy, which
help further explain the problems seen.

(a) Walking (b) Running (c) Jogging

Figure 9.2: Examples of noisy ’Walking’, ’Running’ and ’Jogging motion maps. Left images
are X and right images are Y motion maps.
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Detected
Boxing Handclapping Handwaving Jogging Running Walking

Actual

Boxing 23% 53% 24% 0% 0% 0%
Handclapping 14% 55% 30% 0% 1% 0%
Handwaving 17% 27% 53% 0% 2% 0%

Jogging 9% 15% 16% 47% 11% 2%
Running 15% 15% 18% 34% 16% 1%
Walking 18% 19% 27% 26% 6% 4%

Table 9.3: Confusion matrix generated with the motion only classifier trained with the average
over 5 exemplars.

Detected
Boxing Handclapping Handwaving Jogging Running Walking

Actual

Boxing 26% 53% 20% 0% 1% 0%
Handclapping 16% 58% 25% 0% 1% 0%
Handwaving 17% 19% 60% 0% 4% 0%

Jogging 11% 7% 34% 14% 23% 11%
Running 13% 10% 29% 14% 24% 10%
Walking 16% 7% 52% 2% 7% 17%

Table 9.4: Confusion matrix generated with the motion only classifier trained with the average
over 10 exemplars.

Increasing the number of average frames decrease the confusion between ’handclapping’ and
’handwaving’, as a more clear picture of the dominant movements appear in the motion maps.
The figure also shows that when using more average frames, the motions start to fade, as opposing
motion cancel each other out in the average images. The ’walking’, ’jogging’ and ’running’
actions are still well separated from the first three actions, but the internal confusion is still great.
The increased amount of images being averaged, only help eliminate the noise seen in the non-
averaged images, but does not give information as to how to distinguish them. Examples of the
see fig. 9.3 for examples of the N10 motion maps.

(a) Handclapping (b) Handwaving (c) Boxing

(d) Walking (e) Running (f) Jogging

Figure 9.3: ’Handclapping’, ’Handwaving’, ’Boxing’, ’Walking’, ’Running’ and ’Jogging’ mo-
tion maps from the N10 training set. Left images are X and right images are Y motion maps.
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Detected
Boxing Handclapping Handwaving Jogging Running Walking

Actual

Boxing 46% 50% 3% 0% 0% 0%
Handclapping 21% 76% 2% 0% 0% 0%
Handwaving 28% 34% 35% 0% 1% 2%

Jogging 17% 34% 7% 0% 2% 41%
Running 31% 34% 5% 0% 12% 19%
Walking 23% 41% 6% 0% 1% 29%

Table 9.5: Confusion matrix generated with the motion only classifier trained with the average
over 20 exemplars.

As the number of frames in the average is increased to 20, the ’handclapping’ recognition rate
dramatically increase. Looking at the average frames for the N20 averages, fig. 9.4, it becomes
apparent that the images hardly contain any distinguishable data for ’handclapping’ and ’hand-
waving’. It is hard to tell if the SVM classifier may be able to extract useful information from the
HOG descriptors for such data, but it seems unlikely as many ’walking’ frames are also suddenly
classified as ’handclapping’.

(a) Handclapping (b) Handwaving

Figure 9.4: ’handclapping’ and ’handwaving’ examples from the N20 training set. Left images
are X and right images are Y motion maps.
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Chapter 10
Discussion

The performance of the ’animal detection and recognition’ stage performs very well on our ele-
phant class. The detection rate is approximately 4%-9% lower at a false positive rate of 4x10−6

than what Dalal and Triggs[12] got from their human detector running on the INRIA dataset.
Dalal and Triggs trained their classifier to find humans seen from a side view at any of the 360◦

orientations, since the human body have approximately the same shape from any of these orien-
tations. Our elephant classifier is also trained on a similar 360◦ orientation scheme, even though
elephants do not generalize well to a vertically symmetric model, so a detection rate decrease of
4%-9% compared to the human detector does not seem poor.

The results of the ’action recognition’ stage on the elephant dataset, presented in the confusion
matrices in fig. 8.3 through 8.5 did seem impressive, with a 100% recognition rate using 5
averaged frames and up. Using non-averaged frames did not do as well as the averaged frames,
which indicates that using averaged frames does in fact help the action recognition with respect
to an elephant walking. The results also seem to indicate that increasing the amount of frames
used for the average, improves the results. As mentioned in section 5.2.5, this may only be true
to some extend. As the number of frames per average is increased, the response time of the
classifier is decreased. This means that an animal walking left, may be walking left for several
seconds, before an appropriate average frame is generated for the classifier to recognize, or if
the animal changes from one action to another the correct action is not detected until the average
has been completely replaced by the motion of the new action. The amount of frames used in
the average is the determining factor of how long these transition periods are, as the worst case
transition time can be calculated as:

T =
Navg

FPSvid
[s],

where Navg is the number of frames being averaged and FPSvid is the frames pr. seconds in the
corresponding videofeed. If the action to be detected can be performed within the time T , the
average may often not be able to converge fast enough for the detector to be able to detect the
action. It is apparent from the above equation, that the algorithm is not invariant to the frame rate
of the camera or video. It is therefor very important to choose an average length that makes sense
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for the action being performed and the equipment used for observing the scene. Our framework
is developed so that a threaded process samples the video input at a predetermined frame rate,
compensating for variable frame rates from the input.

Unfortunately, testing only the two different actions ’elephant walking left’ and ’elephant walk-
ing right’ against each other, is not enough to validate the ’action recognition’ stage. This led to
the test of our system against a public available dataset named KTH, created by Christian Schüldt
et al. [45].

The results shown as confusion matrices in table 9.2 to 9.5, did show some very poor results on
the KTH dataset. One of the things to notice from the results are the great confusion between
the actions ’boxing’, handclapping’ and ’handwaving’ when using non-average exemplars. This
may be due to the very similar motion map training exemplars seen between them. The ’boxing’
might very well be confused with the ’handclapping’ and ”handwaving’ actions, since both left
and right boxing exemplars were trained into the same SVM classifier. In order to avoid some of
the confusion between the action ’boxing’ and the actions ’handclapping’ and ’handwaving’ one
could train two classifiers for ’boxing’, one for each direction.
Increasing the amount of exemplars used for averaging appear to help distinguishing the actions
’boxing’, handclapping’ and ’handwaving’, even though the training images seem to fade out as
opposing motions cancel each other out. This could indicate, that a different approach of storing
the pixel movement information in the motion maps is needed. This could instead be done by
storing the amplitude of the motion vector instead of using its x and y components or by storing
the positive and negative values of the x and y components in separate color channels.

There were also found to be a great amount of confusion between the actions ’jogging’, ’running’
and ’walking’, probably due to the noisy motion map exemplars generated with the optical flow
algorithm and the fact that our approach does not generalize speed very well. This confusion
is not changing much when increasing the amount of frames used for averaging. In order to
improve these results, one should probably use higher resolutions for the videos in order to get
better results from the optical flow algorithm.

Comparing the results with the approach of using local descriptors together with SVM, by Chris-
tian Schuldt et. al. [45], on the same KTH dataset, shows some similarities to our results. This
approach does also confuse between the similar actions ’walking’, ’jogging’ and ’running’ and
the other group of similar actions ’boxing’, ’handclapping’ and ’handwaving’. Even though they
have similar confusion between the actions as our system, they do have an overall better recogni-
tion rate per actions. Another approach using local descriptors for spatio-temporal recognition,
by Ivan Laptev et. al [47], shows impressive results, with an almost perfect detection rate in all
of the six actions. It is important to note that these methods uses local image descriptors and to
the best of our knowledge does not handle frames with more than one subject. We are concider-
ing the whole frame supporting multible detections, which makes our problem harder. However
combining our global HOG approach in the first cascade, with a classifier using local descrip-
tors in the second stage might improve the action recognition significantly, and at the same time
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support multible detections.
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Chapter 11
Conclusion

The goal of this project is to develop a proof-of-concept system that is able to detect an animal,
recognize the action being performed and augment the information onto a screen for a user to
see while walking through a zoo or driving through a animal park. The system is designed to
be used with a head-mounted-display with front mounted cameras for input and internal screens
for display of the results. The HMD setup requires the implementation to be robust to camera
movements, lighting conditions and be able to perform the tasks online.
To built a system living up to the above stated requirements we have designed a two-stage cas-
caded binary linear SVM-classifier trained on HOG descriptors. The HOG descriptor provides
robustness to variation in lighting and creates dense descriptors using gradients to encode the tex-
ture, shape and color composition of the animals. The first cascade stage is the animal detector
stage and the second stage is the action detection stage.
We found that using appearance images only, with signed gradients arranged into 18 bins for
the ’animal detection and recognition’ stage gave the best results. The detection rate was ap-
proximately 80% at a false positive rate of approximately 4x10−6 false positives on our own
verification set. The detector is trained so that it can detect elephants from a 360◦ side view, even
though elephants do not have a vertical symmetry that generalize as well as humans.
For the ’action recognition’ stage we found that using motion maps only, performed much better
than using combined appearance and motion features. We again used signed gradients arranged
into 18 bins, to be able to differentiate between left versus right motion, as well as upwards versus
downwards motion. We also found that for recognizing an elephant walking left versus walking
right using average images over 5 frames or more eliminated any confusion of the two actions.
This lead us to test the classifier on the KTH action dataset, to see how the action detection per-
formed on slightly more complex and larger action sets. The results on the KTH-dataset were not
satisfactory, and part of the reason was the low resolution of the dataset, which resulted in cor-
rupted motion data. The results also revealed that a list of improvements are needed to improve
our action recognition method, as the main reason for the bad results are motions canceling each
other out when average frames were constructed.
We found that compensating the motion maps with the average image motion eliminates camera
motion in the motion maps in most cases, for low to medium camera movements. We also found
that using the GPU implementation of the optical flow algorithm and the ODLToolkit HOG im-
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plementation is not able to compute the needed data in an online application at a resolution of
640x480 with the configurations used in this report.
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Chapter 12
Future Work

There are implementations of the HOG algorithm and settings for the optical flow algorithm that
may be able to increase the computational performance to a point where online performance is
achievable. A method of building a detector from a cascade of rejectors, based on HOG features
already exist and claims to be able to detect humans online[14]. Implementing the HOG descrip-
tor on a GPU may also speed up the descriptor enough to allow online detection, when used in
an SVM.
In our implementation, the ODLToolkit library is using global settings for the HOG objects,
as it was not designed for multi-class detection. Implementation of multi HOG support in the
ODLToolkit library will allow different binning settings and different SVM thresholds for each
cascade stage, may also allow for much better fine tuning of the cascades.
Action detection performance can possibly be further improved by implementing a tracking
method such as Kalman filtering, to keep track of the animals detected even when the detec-
tor may fail on single frames. Since the ’action recognition’ stage rely heavily on the ’animal
detection and recognition’ stage, the implementation of a tracker in the first stage may very well
greatly improve the robustness of the second stage. The ’action recognition’ stage may also be
improved by implementing a voting system that can allow more action classifiers to vote on an
exemplar. Such a voting system can be used to both keep a detection stable, when outliers appear
but also allow the classifier to have multiple possible classes allowing fast switching if strong
evidence for nearby class appear, when a weak classification is found.
A significant weakness of our ’action recognition’ stage of our cascade is the bad recognition
performance to movements such as hand waving using larger numbers of exemplars in the av-
erage, as the back and forth movements start to cancel out. For actions where the ’sign’ of the
movement is not important, using ’unsigned’ flow frames could possibly eliminate the problem.
A different approach could be to store negative and positive motions in separate motion maps.
The implemented method for compensating for camera motion is sensitive to extreme outliers in
the motion data and large foreground movement. A different method for compensating camera
motion could possibly eliminate these error factors, such as determining the movement from a
median or combined median and mean filter, meaning over N number of neighbors of the median.
A more robust method could be the utilization of the two cameras in the HMD to retrieve stereo
depth, in order to determine which pixels are actual background pixels.
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With the development of less computational intensive algorithms and exploiting the OpenGL
framework can lead to the ability to implement the system on modern mobile devices, such as
smart phones and tablets, making the system much more appealing to the users. In this project
the focus has been on the implementation of the detection and recognition problem and left the
augmentation perspective mostly unexplored.
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Appendix A
Performance Optimization of HumanEva
using OpenGL

During our stay at CMU and Disney Research Pittsburgh we were asked to help out on a project
that our supervisor Leonid Sigal has been working on, see [48]. We were asked to recode parts
of a MATLAB function named propagate into C-code, as to improve computation time. The
HumanEva project aims to estimate the pose of a person, using an annealing particle filter, where
as the propagate function is responsible for calculating the likelihood for several hundreds of
particles for each layer for each pose estimation.

Each particle in the particle filter generate a skeletal pose, within a limited space of joint poses.
Each skeleton is then skinned with a predefined 3D model, which is then projected into a 2D
model. The projection is made for each view the subject has been recorded from with all the rel-
evant distortion, rotation and translation parameters. The 2D projection is then matched against
a background subtracted image obtained from the view corresponding to the 2D projection. The
likelihood of a guessed pose being the actual pose observed is then calculated based on the over-
lapping and non-overlapping regions of the 2D projections and the background subtractions, is
then calculated for each particle.

Render Mesh

Propagate

Load Images

Background Subtraction

Skinning

Projection

Calculate Likelihood

Generate Pose

x4x 200

Figure A.1: Simplified structure of the MATLAB code before optimizations. Grey boxes indicate
functions that will be replaced.
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A.1 MATLAB code before optimization

A simplified code structure can be seen in fig. A.1. The gray boxes indicates MATLAB code
which will be replaced by either C or OpenGL code. In fig. A.2 the simplified structure of the
optimized code can be seen. The bright blue boxes indicate C-code and the bright red boxes
indicate OpenGL code.

Render Mesh

Propagate

Load Images

Background Subtraction

Skinning

Projection

Calculate Likelihood

Generate Pose

x 200 x4

Get Likelihoods

Figure A.2: Simplified structure of the optimized code. Bright blue boxes are MATLAB code
replaced by C-code and the red are replaced by OpenGL code.

Since the code was all written in MATLAB and we were only asked to optimize some parts,
it was necessary to interface the MATLAB code with C-code. This was done using the MEX
libraries in MATLAB allowing data transfers between MATLAB and standard C-code [49].

To speed up the code we decided to use OpenGL[40] in combination with shaders written in the
shader programming language GLSL[50] to create fast parallel functions. Not every function is
feasible to do in OpenGL, whereas they just were be implemented in C-code.

To outline the changes that has been made in the MATLAB code, the following sections will
explain the old MATLAB code and where it needs optimizations. Note that throughout this text
function names will be written as function_name and m_ in front of a function’s name will in-
dicate a not yet optimized function, a c_ will indicate an optimized function in C-code and a gl_
will indicate an optimized function which is implemented using OpenGL and GLSL.

A.1 MATLAB code before optimization

In order to change anything in the propagate function, it’s functionality needs to be known. To
simplify the illustration of the propagate function’s functionality, it has been chosen to split
it up in different functions, i.e. m_image_initialization, m_skinning, m_2D_projection,
m_mesh_rendering and m_likelihood.

For the sake of the overview, the above functions will shortly be introduced leaving out the de-
tails. The details of the optimizations done to improve the functions are explained in chapter B.
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A.1 MATLAB code before optimization

m_image_initialization

This function takes care of the initialization of all the images used on the propagate function.
This includes the calculations of the background subtracted images.

m_skinning

Each particle in the particle-filter is a predicted pose, which is initially just represented as a
skeleton. The skeleton needs to be skinned in order to be compared to a background subtracted
image. The skinning is basically made out of various matrix and vector multiplications, where
each vector or matrix represents the skin model, weights and skeleton model. The output from
the m_skinning function is a 3D mesh of triangles.

m_2D_projection

The 3D mesh of a pose guess needs to be projected down to a 2D image which is comparable
with a background subtracted image. This is done in m_2D_projection, where the 3D coordi-
nates will be projected into a 2D coordinate image plane given the four different camera views
and intrinsic and extrinsic camera parameters.

m_mesh_rendering

This function rasterizes the 2D image plane of the pose guess into an image.

m_likelihood

The m_likelihood function calculates the likelihood between the guessed pose image and a
background subtracted image. The likelihood for the different views is averaged and returned.

Pseudo code describing the propagate function is shown in figure A.3.

propagate ( ) {
m _ i m a g e _ i n i t i a l i z a t i o n ( ) ;
for m = 1:5 / / num_layers {

for p = 1:200 / / num_par t ic les {
m_skinning ( ) ;
for v = 1:4 / / num_views {

m_2D_projection ( ) ;
m_mesh_rendering ( ) ;

}
m_ l i ke l ihood ( ) ;

}
}

}

Figure A.3: Pseudo code illustrating roughly where the different functions are called and shows
how many times they are called.

As can be seen in the pseudo code, some of the functions are called hundreds of times to compute
the 5 layers in the annealing particle filter. If any of these functions are slow, it will have a big
impact of the overall speed performance of the propagate function. To see if any of the above
functions need optimization, profiling will be done of the MATLAB code in the next section.
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A.2 Timing results before optimization

A.2 Timing results before optimization

To be able to do any optimization, the MATLAB code should be benchmarked in order to see
where the code needs improvement. The function which needs optimizations in the HumanEva
project is found to be the propagate function of the annealing particle filter. The profiling results
which prove the propagate function to be the dominant one is not included because we were
only asked to optimize the propagate function.

The timing results for the functions called from within the propagate function are shown in
table A.1 and A.2. It has been chosen to run two rounds of pose estimation, which will lead to
two calls of the propagate function. The timings are found on an Intel(R) Core(TM) 2 Duo
P8700@2.53GHz with an ATI Radeon 4650, running MATLAB 2010b on Ubuntu 10.10 64-bit.
The timings were found by using the ’tic - toc’ approach [51] instead of the build in profiler in
MATLAB. The profiler was not used due to its self-time and overhead profiling MATLAB code.
The extra time the profiler would take profiling the MATLAB code, would lead to wrong results
of the timing results of the OpenGL functions, due to the parallel nature of the OpenGL backend.
The OpenGL functions would simply have time to finish in the background before it would be
called again, leading to an almost zero timing result.

Layer #5 #4 #3 #2 #1
m_image_initialization [sec] 0.51 0.00 0.00 0.00 0.00
m_skinning [sec] 15.10 14.81 14.99 14.97 15.12
m_2D_projection [sec] 27.86 27.33 27.25 28.22 29.65
m_mesh_rendering [sec] 51.97 50.55 51.36 50.55 51.36
m_likelihood [sec] 17.16 16.84 16.92 17.63 17.66
Misc MATLAB code [sec] 2.40 2.47 1.48 3.63 4.21
Total pr. layer [sec] 115.00 112.00 112.00 115.00 118.00
Total pr. pose [sec] 572.00

Table A.1: Timing results for the MATLAB functions over each layer for the first pose. For each
layer the functions process 200 particles for each of the four camera views.

Layer #5 #4 #3 #2 #1
m_image_initialization [sec] 0.50 0.00 0.00 0.00 0.00
m_skinning [sec] 14.90 15.09 15.10 15.03 14.98
m_2D_projection [sec] 27.97 28.92 29.01 28.53 28.78
m_mesh_rendering [sec] 52.91 52.11 52.12 51.17 51.55
m_likelihood [sec] 17.28 17.76 17.59 17.25 17.46
Misc MATLAB code [sec] 4.44 3.12 2.18 2.02 2.23
Total pr. layer [sec] 118.00 117.00 116.00 114.00 115.00
Total pr. pose [sec] 580.00

Table A.2: Timing results for the MATLAB functions over each layer for the second pose. For
each layer the functions process 200 particles for each of the four camera views.
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A.2 Timing results before optimization

As can be seen in the timing-results for the two pose computations, the total computation time
per pose is relatively high when the pose has to be calculated for each frame in a video clip.

To trace the functions needed to be optimized, the average performance of the different functions
should be considered. The graph A.4 shows the average computation time for the different MAT-
LAB functions over two rounds of pose estimations.

Image +Texture initializations
Skinning

2D projection
Mesh rendering

Likelihood
Misc matlab code

0,00 sec
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17,36 sec
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Figure A.4: Average performance for the MATLAB functions computing two poses with five
layers in each.

As can be seen in the above graph, the functions m_skinning, m_2D_projection, m_mesh_rendering
and m_likelihood are the predominant reason for the slow computation time. If these could be
optimized, the propagate function in the HumanEva project should see a performance improve-
ment.

In the next chapter will functions, which addresses these performance issues, be proposed.
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Appendix B
Implementation of optimized functions

B.1 Mesh rendering

To compare a pose guess from the particle filter to the background subtracted image, it is neces-
sary to render the pose guess to a texture that can be stored on the GPU. To do this, the initial
mesh pose is extracted from MOCAP data and fed to the particle filter. The particle filter then
generates a set of randomized guesses, distributed around the initial pose by a Gaussian function
and constrained by physical constraints of the human body. The resulting poses guesses are then
skinned using the skinning function described in section B.3.1, resulting in an array of vertices
in a polygonal mesh. The resulting 2D mesh is scaled and compatible with OpenGL’s drawing
functions.

Since the mesh is in one large and ordered array, rendering the mesh using OpenGL’s Vertex
Array support is a straight forward procedure and allows for high speed rendering. The vertex
array method allows transfer of the whole mesh before rendering anything to the screen, limiting
the amount of CPU to GPU data transfers compared to immediate mode rendering [52].

The rendering of the mesh was the largest slowdown in the MATLAB code as can be seen in
figure A.4, since software rendering has always been a hard task for the CPU. By moving this
operation to the GPU using OpenGL, the rendering process is transfered to a combination of
framework and hardware built for the sole purpose of this type of operations and should provide
significant improvements. The rendering function, gl_render_mesh is implemented as seen
below.

gl_render_mesh ( g l_contex t , dims , ve r t i ce_ index , v e r t i c e Array , [ o p t i o n a l arguments ] )
Opt iona l arguments : ( ’ Color ’ , f l o a t [R,G,B ] ) , ( ’ L inewid th ’ , f l o a t ) , ( ’ Texture ’ , t e x t u r e )

The gl_render_mesh function is a multipurpose function that can render a mesh either to a
texture or to the screen. Rendering to a texture is done by giving the optional string ’Texture’

followed by texture which is an integer holding the OpenGL texture ID of the texture in which
to store the output. The other two optional input parameters, ’Color’ and ’Linewidth’ allows
for change of mesh color and rendering as wire frame. Setting ’Linewidth’ to 0.0 disables wire
frame rendering. Both ’Color’ and ’Linewidth’ should only be set when rendering to screen,
since neither wire frame or colored mesh textures are supported by the other parts of the code
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B.1 Mesh rendering

Figure B.1: Mesh rendered using the OpenGL rendering function.

used for likelihood calculations. In figure B.1 an example of a mesh render is shown.
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B.2 Likelihood

B.2 Likelihood

As has been found in section A.2, the m_likelihood function needs optimizations which should
lead to an overall performance improvement of the MATLAB function propagate. In order to
illustrate what have been done to improve the m_likelihood function, it has been chosen first to
highlight how the m_likelihood function works.

The purpose of the m_likelihood function, is to give an estimation of how well a background
subtracted image fits the guessed pose, i.e. a particle. In the case of the current MATLAB code,
the fit of a subtracted image and the guessed pose is found as how much the silhouettes from
the images overlap each other versus the penalty of non-overlapping regions for both silhouettes
[48]. An illustration of the overlapping and non-overlapping regions can be seen in figure B.2.

(a) Binary
background
subtracted
image Mb.

(b) Binary
image of the
silhouette
representing
the guessed
pose M f .

(c) Illustra-
tion of the
regions Rt ,Bt
and Yt .

Figure B.2: Visualization of how MATLAB and OpenGL expects to read images from memory.

The idea is to minimize the non-overlapping regions illustrated as the colors red and blue, there-
fore maximizing the overlapping region illustrated with a green color.

The sum of the pixels p for each region is found as:

Rt = ∑
p
(M f (p)(1−Mb(p))) (B.1)

Bt = ∑
p
(Mb(p)(1−M f (p))) (B.2)

Yt = ∑
p
(M f (p)Mb(p)) (B.3)

The likelihood can then be calculated as:

−logp(yt |xt)
v

∝ (1−α)
Bt

Bt +Yt
+α

Rt

Rt +Yt

p(yt |xt)
v is the probability of the image observation conditioned on the pose estimate for the

view v and particle t. For more information, see [48]. This likelihood should be evaluated as the
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B.2 Likelihood

average likelihood over all the four views.

−logp(yt |xt) =
1
4 ∑

v
−logp(yt |xt)

v

This likelihood will be returned by the m_likelihood function for further processing.

To compute the likelihood for 200 particles sequentially on the CPU, does obviously consume a
lot of computation-time even with small images. To address this, it has been chosen to calculate
the likelihood on the GPU using OpenGL as has been done in the gl_render_mesh function
described in section B.1. This will also make use of the already rendered mesh texture (pose
guess) generated by the gl_render_mesh function. Keeping the textures in the video-memory
without having to download the texture to the system-memory, should speed things up due to a
well known small memory download bandwidth from the video-memory to the system-memory.

To write a GPU implementation of the m_likelihood function, it has been chosen to split the
function up in two parts to make it easier utilizing different shaders. The first part will generate
a silhouette-image like the one illustrated in figure B.2(c). The second part will summarize over
the different regions and calculate and place the likelihoods in a texture depending on the current
evaluated particle. This texture will from now on be referenced as the probability_texture

and will have the size one times the number of particles. The later is done to limit the download of
textures from the video RAM to the system RAM, by only downloading the probability_texture
to the system RAM after all the, in this case 200, probabilities have been calculated.

The two separate functions will from now be called Silhouette and Average and their OpenGL
/ GLSL implementation will be explained in the section B.2.1 and B.2.2. It should be noted that
Silhouette and Average are internal functions in the resulting mex file and will not be exposed
to the MATLAB interface. The likelihood function which is exposed to the MATLAB interface
gl_likelihood is implemented as seen below.

g l _ l i k e l i h o o d ( g l_contex t , tex tures_background_subt rac t ion , textures_mesh , t e x t u r e _ p r o b a b i l i t y ,
t e x t u r e s _ s i l h o u e t t e , num_part ic le , num_views ) ;

Where num_views is the number of views to compute the likelihood for.
textures_background_subtraction is an array containing num_views background subtracted
textures. textures_mesh is an array containing num_views pose guesses. texture_probability
is an OpenGL texture number, in which one wants to save the probabilities. textures_silhouette
is an array of num_views empty textures, which the gl_likelihood function will use for tem-
porary silhouette calculations. num_particle is the current computed particle. num_views is
simply the number of views.
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B.2.1 Silhouette

To calculate the likelihood of a certain pose, guessed by the particle filter, we must calculate the
differences and overlaps of the background subtraction result and the result of the pose guess. To
do this a shader is designed to do GPU accelerated comparisons of the two images, which are
stored in textures on the graphics card, from here on called silhouette_texture.

The shader is designed so that it will utilize the three color channels of the textures. The red color
channel is used to draw the unaccounted for pixels of the pose guess, the blue channel is used for
the similarly unaccounted for pixels of the background subtraction result and the green channel
is used to store the intersection of the two textures. These values represent the inner calculations
of the sums of Rt , Bt and Yt in equations B.1, B.2 and B.3. A pixel in the silhouette_texture,
Ms(p), is calculated as:

R(p) = M f (p)(1−Mb(p)) (B.4)

B(p) = Mb(p)(1−M f (p)) (B.5)

G(p) = M f (p)Mb(p) (B.6)

Ms(p) =

R(p)
G(p)
B(p)

 (B.7)

Ms(p) is a three channel RGB pixel in the silhouette_texture Ms.

The calculations are done in a shader, which utilize the multiple GPU cores on the graphics card
to calculate all the pixel values of Ms in parallel. The graphics card also supports multiple texture
units and rendering targets, which allows a shader to compute multiple silhouette textures at a
time. Each silhouette texture computation uses two texture units on the graphics card and the
ATI 4650 has a total of eight texture units available. The data sets used in this project contains
images from four different cameras, meaning that it is possible to process all four views at the
same time.

Silhouette Shader
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Figure B.3: Silhouette Shader set up.

To make use of these capabilities, each set of background subtracted images and pose guess
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images for the four views are attached to the eight available texture units. The silhouette results
are then written in each of the four color attachments of the framebuffer object. Each of the color
attachments are textures, which can now be send to the summation function, described in section
B.2.2, where the true values of Rt , Bt and Yt will be calculated. The structure of the set up can be
seen in figure B.3.

B.2.2 Average

In the following section an algorithm for summing and averaging over the silhouette_texture’s
with OpenGL is proposed. The proposed algorithms will not return anything to the system mem-
ory due to the slow transfers between the video memory and system memory. Instead will the
calculated probabilities be placed in another so called probability_texture ordered after the
particle number.

To find the average likelihood, one has to find the sum of the non- and overlapping regions Rt , Bt

and Yt cf. B.1,B.2 and B.3. There is no easy way to sum up all the pixels in a texture in parallel,
due to the sequential nature of a summation. In order to solve this problem to some extend, it
has been chosen to sum groups of four pixels up at a time over several iterations until there is
only one pixel left. This approach has the advantage to be parallel without having problems with
concurrent write to the same pixel, which would lead to erroneous results.

An illustration of the proposed algorithm is found in figure B.4. It is easy to see that the above

0.0 0.0

0.0 1.0

1.0 1.0

0.0 1.0

3.0 0.0

2.0 0.0 5.0

Figure B.4: Proposed summation algorithm. A group of four pixels are summed in each itera-
tion. In this case four iterations are needed to find the total sum

summation algorithm has a drawback, i.e. it only works effectively on textures with the width
and height equal to 2k where k is an integer. If the texture is not a power of two, sooner or later the
texture can not be divided by two resulting in uneven texture sizes. To deal with this, if a texture
can not be divided by two, its width and height will be saved to two variables real_width and
real_height and then added by one in both width and height which will result in a texture size
dividable with two. The smaller texture will now have the width (real_width+1)/2 and height
(real_height+ 1)/2. The shader rendering the small texture from the bigger texture, should
use the variables real_width and real_height to avoid reading from a non existing pixel. This
approach is illustrated in figure B.5.
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0.0 0.0

0.0 1.0 1.0

1.01.0 2.0

real_width

real_height

Figure B.5: The summation shader rendering to the smaller texture to the right reading from the
bigger texture, ignores the pixels located in a position greater than real_width and real_height
(illustrated in the blue box). This cause the shader only to sum the pixels within the bigger
texture even though it is not a power of two texture (illustrated as the green box)

With the above approach, the shader is able to find the sum of a texture, even if it is not a power
of two texture. For an initial texture of the size 1280x720 (used in the HumanEva project), results
in 11 iterations.

Recall that the silhouette textures were generated with each region in each color-channel, see
B.2.1. This is not an issue for the summation algorithm given that OpenGL natively differen-
tiates between the different color channels, resulting in a texture with the size 1x1 with three
channels. One channel for each region Rt , Bt and Yt .

To speed up the summation algorithm up even further, the approach used in the silhouette algo-
rithm B.2.1 using more than one texture unit on the GPU, is used. It is known that the likelihood
has to be calculated for each view, which will naturally lead to the use of four texture units, i.e.
one texture unit for each view. An illustration of the utilization of four texture units with the four
views, calculating Rt , Bt and Yt with only one shader call per iteration, is shown in figure B.6.

Note that in order for the summation shader to work properly, the textures have to be of the type
GL_RGBA32F_ARB to avoid overflow of the pixels.

The four outputs from the summation algorithm are just a number representing the sizes of the
different regions Rt , Bt and Yt . To find the average likelihood for the four views, one last shader
is needed. This shader has to input the four textures with the size 1x1 and calculate the average
likelihood as follows:

− logp(yt |xt)
v

∝ (1−α)
Bt

Bt +Yt
+α

Rt

Rt +Yt

− logp(yt |xt) =
1
4 ∑

v
−logp(yt |xt)

v

Not only should the shader average over the four input textures and calculate the likelihood, but
also place the resulting likelihood in a probability_texture depending on the particle cur-
rently propagating. Recall that the each texture from the summation shader contains all the sizes
of each region in the RGB color channels. This enables the next shader only to depend on four
three channel textures instead of 12 one channel textures.
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B.2 Likelihood

Summarization shader

Texture unit 1 Texture unit 2 Texture unit 3 Texture unit 4

Summarization shader

1. iteration

2. iteration

n. iteration

Figure B.6: For each iteration, the summation shader adds four pixels and save the output in a
texture half the size.

The average shader is illustrated in figure B.7. After all the particles have propagated and the
probability_texture has been filled with likelihoods, the function gl_get_texture, see sec-
tion B.4.2, can be used to read the likelihoods into a standard Matlab array. Reading all the like-
lihoods from a texture instead of each individual likelihood, decrease the amount of slow video
to system memory transfers.
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B.3 c_skinning and c_projection

Calculate likelihood

Calulate Average

Texture unit 1

Rt Yt Bt

Texture unit 2

Rt Yt Bt

Texture unit 3

Rt Yt Bt

Texture unit 4

Rt Yt Bt

p(yt | xt)
1 p(yt | xt)

2 p(yt | xt)
3 p(yt | xt)

4

p(yt | xt)
probability_texture

1 Np

Average shader

Figure B.7: The likelihood of each four outputs from the summation shader is calculated and
averaged. The average of the likelihood is saved into the probability_texture given the particle
p. N being the total number of particles.

B.3 c_skinning and c_projection

As can be seen in the timing discussion section A.2, the functions m_skinning and m_projection
takes up a lot of computation time. While these functions would easily be implement in OpenGL,
they have been tested to run very fast in a plain C implementation. Due to the fast C implemen-
tations, they will not be implemented in OpenGL. Both functions are relative simple so they will
not be explained in details, but will be introduced in the following.

B.3.1 c_skinning

Each particle in the particle-filter is represented by a skeleton or pose. This skeleton needs to
be skinned in order to use it in the likelihood function, see section B.2. The skinning function
is used to skin the skeleton, where each skeleton represents a pose. The skinning is basically
made out of various matrix and vector multiplications, where each vector or matrix represents
the skin model, weights and skeleton model. The idea behind the matrix multiplication will not
be explained in details, due to the goal of this project being optimizations.

The implementation of the various matrix multiplications in C using direct memory access, gave
a huge boost in performance which will be evaluated in section C.

B.3.2 c_projection

The projection of the 3D mesh vertices from the skinning function into 2D image coordinates
using various camera parameters, was done by using MATLAB’s build in project_points_2

function. As can be seen in section A.2, the project_points_2 function is one of the slowest
functions in the HumanEva project. In order to speed up the function to do the projections of the
3D vertices to 2D vertices, OpenCV’s ProjectPoints2 has been used instead.

To use an OpenCV function within a mex function environment, MATLAB’s vertices and ma-
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B.4 Misc OpenGL functions

trices (maxArray) have to be converted to OpenCV’s data container for matrices and vectors
(cvMat). This has been accomplished without any data copying or conversion by sharing the
data pointers between the cvMat structure and mxArray structure. Avoiding any data copying
and conversion should help decreasing the overhead calling an OpenCV function from within
MATLAB.

The new projection mex function is called c_projection and will, as explained above, interface
with OpenCV’s ProjectPoints2 function. Using the c_projection function instead of MAT-
LAB’s build in function project_points_2, gave a huge speed up which will be evaluated in
section C.

B.4 Misc OpenGL functions

B.4.1 gl_create_texture

To utilize OpenGL and its graphics capabilities we need to create textures in the graphics cards
memory to allow computations on the GPU. To create these textures the function gl_create_texture
is implemented as follows.

t e x t u r e = g l_c rea te_ tex tu re ( g l_contex t , width , he ight , channels , [ image ] )

The function returns an OpenGL texture ID in texture, referring to a texture on the graphics
card of size width times height times channels.
If the optional argument image is given as input, texture will be populated with the data con-
tained in image array else texture will contain zeros. image must be of size width times
height times channels.
The function is a MEX function that interfaces with MATLAB and image is a MATLAB im-
age array. This means that image is arranged as columns first in memory, arranging the image in
memory as column by column for the width of the image, one color channel at a time, as in figure
B.8(b). OpenGL reads image data row by row, reading all channels for each row position, as
illustrated in figure B.8(a). To compensate for this difference the array image must be permuted
with permute(image,[3,2,1]), before calling gl_create_texture, to ensure compatibility
with OpenGL’s methods for reading images from memory.

(a) OpenGL image
read order.

(b) MATLAB image read order.

Figure B.8: Visualization of how MATLAB and OpenGL expects to read images from memory.
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All textures created using this function are stored as RGBA floating point images in the graphics
memory, as this format maps easily to the probability calculations in section B.2. The format
is also native on newer graphics cards and allow us to store values larger than the range of the
drawing functions, which we exploit in section B.2.2. The data provided in image must be
unsigned byte, as this is the format expected by the gl_create_texture.

B.4.2 gl_get_texture

The function gl_get_texture has been created, in order to read an OpenGL texture back into
a MATLAB array. The function is mainly used to download the probability_texture back
to the system memory, which then can be used in the further computations. The function can be
used as follows.

M = g l_ge t_ tex tu re ( g l_contex t , t e x t u r e )

Where M is a [m x n] matrix with m equals the height times the number of channels and n equals
the width of the texture. For the probability_texture m would be number of particles and n
would be one.

B.4.3 gl_init and gl_quit

Two very important functions are gl_init and gl_quit, whereas gl_init handles all the
GLSL shader compilations, texture allocations and creating a gl_context struct, which is used
throughout every OpenGL function calls in this project. gl_quit is used to deallocate all the
textures on the GPU and safely close down the OpenGL context.

gl_init and gl_quit can be used respectively as follows.

g l_con tex t = g l _ i n i t ( width , height , show_window )

Where width and height would be the size of the pictures being computed and the show_window
variable is a boolean controlling if a window with the framebuffer should be shown.

g l _ q u i t ( g l_con tex t )
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Appendix C
Timing evaluation after optimization

In order to evaluate the gain by porting parts of the MATLAB functions to plain C and OpenGL,
timings have been done with the tic toc approach as described in section A.2. The computation
time of the different functions can be seen in table C.1 and C.2.

Layer #5 #4 #3 #2 #1
m_image_initialization +
gl_create_texture [sec] 0.55 0.00 0.00 0.00 0.00
c_skinning [sec] 0.10 0.10 0.10 0.10 0.11
c_2D_projection [sec] 0.37 0.19 0.20 0.20 0.20
gl_mesh_rendering [sec] 0.98 0.49 0.96 0.40 0.45
gl_likelihood [sec] 2.68 3.11 2.64 3.20 3.16
Misc matlab code [sec] 2.36 1.44 1.14 1.03 1.00
Total pr. layer [sec] 7.04 5.33 5.04 4.93 4.92
Total pr. pose [sec] 27.26

Table C.1: Timing results for the Matlab functions over each layer for the first pose. For each
layer the functions process 200 particles for each of the four camera views.

Layer #5 #4 #3 #2 #1
m_image_initialization +
gl_create_texture [sec] 0.53 0.00 0.00 0.00 0.00
c_skinning [sec] 0.10 0.10 0.10 0.10 0.10
c_2D_projection [sec] 0.20 0.19 0.19 0.20 0.20
gl_mesh_rendering [sec] 0.82 0.40 0.45 0.44 0.41
gl_likelihood [sec] 2.87 3.27 3.21 3.21 3.25
Misc matlab code [sec] 2.66 1.50 1.17 1.04 1.01
Total pr. layer [sec] 7.18 5.46 5.12 4.99 4.97
Total pr. pose [sec] 27.72

Table C.2: Timing results for the MATLAB functions over each layer for the second pose. For
each layer the functions process 200 particles for each of the four camera views.

These results are compared to the old MATLAB functions in figure C.2.
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Image +Texture initializations
Skinning

2D projection
Mesh rendering

Likelihood
Misc matlab code

0,00 sec

0,50 sec

1,00 sec

1,50 sec

2,00 sec

2,50 sec

3,00 sec

3,50 sec

0,11 sec 0,10 sec 0,21 sec

0,58 sec

3,06 sec

1,44 sec
Average

Figure C.1: Average performance for the C and OpenGL functions computing two poses with
five layers in each.

Image +Texture initializations
Skinning

2D projection
Mesh rendering

Likelihood
Misc matlab code

0,00 sec

10,00 sec

20,00 sec

30,00 sec

40,00 sec

50,00 sec

60,00 sec

0,10

15,01

28,35

51,57

17,36

2,82
0,11 0,10 0,21 0,58

3,06
1,44

Average (MATLAB)
Average (OpenGL)

Figure C.2: Comparement of the MATLAB functions versus the functions implemented in C and
OpenGL, computing two poses with five layers in each.

By comparing the timings from the pure MATLAB code and the timings obtained after all the
performance optimizations it is clear that significant speed improvements have been made. By
calculating the timing mean of the two pose calculations timed before and after the optimizations,
meaning over the calculations of 2000 particles, an estimate of the performance gain can be made.

t̄be f ore =
572+580

2
= 576 (C.1)

t̄a f ter =
27.26+27.72

2
= 27.49 (C.2)

∆t = t̄be f ore− t̄a f ter = 548.51 (C.3)

t̄be f ore : t̄a f ter =
t̄be f ore

t̄a f ter
≈ 21 (C.4)
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With a speed up of approximately 21 times, the performance gain is noticeable, but further in-
vestigation of tables A.1, A.2 and C.1, C.2 shows that the speed ups are not equally distributed
over the reimplemented functions. Image and texture initializations and miscellaneous MAT-
LAB code are areas where improvements have not been implemented and are therefore not of
interest. A quick review of the remaining functions show that the functions for Skinning, 2D
projection and Mesh rendering perform between 80 and 100 times faster than their equivalent
MATLAB implementations, the Likelihood function only perform approximately 6 times faster
than its MATLAB equivalent. The reason for the meager improvement in this function is caused
by the internal Average function, see section B.2.2, which needs to run for 11 iterations to cal-
culate the sum for images of the size 1280x720.

Little can be done to improve the performance of the Average function. If the summation where
to be done on the CPU instead, the silhouette_texture’s need to be transfered to the CPU.
The silhouette_texture’s are high resolution pictures and for each layer 800 textures must
be transfered, 200 particles in 4 views each. Using this approach a different bottleneck will
become apparent. The problem is that the bus between the CPU and the GPU is designed for
high upload speeds from the CPU, since usually the CPU will request large amounts of data to be
computed on the GPU and then displayed on the screen, the CPU on the other hand rarely need
any significant amount of data from the GPU and therefore has very limited bandwidth on the
download direction. While most operations on the GPU can actually be processed while code is
executed on the CPU, transferring data from the GPU to the CPU forces the GPU to finish all
queued operations before it can return the requested data. In the meantime the CPU has to wait
for the GPU to finish and return the requested data. The sheer amount of data to be transfered
and the many state changes in OpenGL will make this approach less favorable, as the drawbacks
will outweigh the gain from summing the values on the CPU.
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