
A Fast-Paced Peer-to-Peer Game

Master Thesis by

Janus Hansen, Rune Kristian Jensen & Martin Breum Rosenbeck

Aalborg University
Department of Computer Science
Selma Lagerlöfs Vej 300
9220 Aalborg
Telephone:(45)96358080
http://www.cs.aau.dk

Title:
Rawrlocks – A Fast-Paced Peer-to-Peer Game

Theme:
Distributed Systems

Project timeframe:
1st February - 31th May, 2011

Project group:
f11d602a

Group members:
Janus Hansen
Rune Kristian Jensen
Martin Breum Rosenbeck

Supervisor:
Brian Nielsen

Abstract:
Real-time multiplayer action games require fast com-
munication between computers. The most common
solution is to use a central server for communication,
but other solutions are possible. Some games desig-
nate one of the players to be the server. Another
approach is a peer-to-peer solution where every peer
in the game is part server and part client. This solu-
tion has not been proven successful in any commer-
cial games, but may be a viable solution.
In order to test a peer-to-peer solution, we create a
simple fast-paced action game called Rawrlocks. The
game is used to examine the peer-to-peer architec-
ture and evaluate if that architecture is feasible for a
real-time multiplayer action game. Maintaining con-
sistency in Rawrlocks is split into two problems. 1)
variables that can be modified by all players should
only be accessible by one player at any time. To solve
this problem we implemented a synchronisation ser-
vice. 2) how to ensure that events are executed at
the same time across peers. We solve this by imple-
menting a functionality that delays all events for an
equal amount of time.
Our testing shows that variables managed by the
synchronisation service are only modified by one peer
at any time. Also, most events are executed on both
peers within a time frame of 3ms as long as the la-
tency does not exceed the amount of time the events
are delayed by.

Copies: 5

Total pages: 88

Report finished: 30th May, 2011

The content of this report is freely available, but publication is only permitted with explicit permission from the authors.

Signatures

Janus Hansen

Rune Kristian Jensen

Martin Breum Rosenbeck

iii

Preface

This report is written during the Dat6 project period by computer science
group f11d602a on the 10th semester at Aalborg University. The main theme
of this report is “Distributed and Embedded Systems”. This report is addressed
at students, supervisors or anyone who finds the topic interesting. However it
is required to have a knowledge base equivalent to that of a 10th semester
computer science student.

References to sources are marked by [#], where # refers to the related
literature in the bibliography at the end of the report. References with the
format [# P. #] refer to a specific page in the literature. Figures without a
reference have been made by the group.

In the back of the report is a CD containing:

• The “Game” folder from our repository containing the source code of
Rawrlocks and game necessary files.

• The “program” folder from our repository containing source code for the
lobby server, lobby client and synchronisation service and the scripts used
to automate the tests.

• A folder with the parsers used to parse test data.

• All the logs gathered from the tests.

• Aggregated data from the tests.

v

Contents

1 Introduction 1
1.1 Problem Definition . 2
1.2 Report Structure . 3

2 Analysis 5
2.1 Game State . 5
2.2 Consistent Game State . 6
2.3 Connectivity Models and Object Distribution 8
2.4 Latency in Games . 9
2.5 Game Description . 11
2.6 Other Real World Problems . 13
2.7 Multiplayer Networking Techniques 16

3 Design 19
3.1 Lobby Server . 19
3.2 Rawrlocks Architecture . 20
3.3 Game State Objects . 22
3.4 Network Services . 25
3.5 Artificially Added Delay . 30
3.6 Solutions to Latency Hiding . 33

4 Implementation 41
4.1 Rawrlocks Synchronisation Service Packets 41
4.2 Rawrlocks Game Client . 41
4.3 Event Delay . 46
4.4 Implementation Issues . 49

5 Testing 51
5.1 Environment . 51
5.2 Consistency Testing . 55
5.3 Bandwidth Testing . 66
5.4 Summary . 68

6 Conclusion 71
6.1 Conclusion . 71
6.2 Discussion . 72
6.3 Future Works . 73

Bibliography 77

vii

1
Introduction

Ever since the first multiplayer game Tennis For Two emerged in 1958, there
has been focus on multiplayer in games. Before the Internet became popular
it was often via modem or locally players played with each other. Nowadays,
most multiplayer gaming is happening via the Internet, and some makes a living
out of competitive gaming. There are two main genres of multiplayer games:
Games that are played in a persistent world and games that are not played in
a persistent world. Games in a persistent world are called MMOG’s (massively
multiplayer online game) and games that are not played in a persistent world
are called session based games. An example of an MMOG is World of Warcraft
and a session based game example is Counter Strike. Multiplayer adds a social
aspect to computer games where you test your skills against friends or foes.
Especially MMOGs make it possible to continue playing with the same people
in the persistent world.

Because there are several players in multiplayer games, they require some
way to coordinate the game and keep the players connected. If there is no
control in a game, it can turn into a complete mayhem where players do not
agree on how the world is coordinated. One way to coordinate is to use a
server. Another is to use a peer-to-peer system. Most games use a client-server
model nowadays. Therefore, we wish to examine how well a peer-to-peer system
handles game coordination.

Research in the peer-to-peer architecture has focused on MMOGs. One
reason why peer-to-peer is interesting for large scale games is the removal of
a single server, that potentially can end up being a bottleneck. Thus, a peer-
to-peer solution means the maximum amount of players is not limited by the
capacity of the servers hosting the game.

When players have full knowledge of events in a game world the game is said
to use global consistency. Games that use this approach do not support many
players as the amount of updates rise significantly as the amount of players
increase. To cope with large numbers of players, players only receive updates
about a subset of the game world. This approach builds on the assumption
that players are only interested in events in their vicinity. Games using this
approach are said to use local consistency.

Knutsson [1] and Donnybrook [2] each offers a scalable solution using a
peer-to-peer architecture. Knutsson focuses on large MMOGs where the num-

1

CHAPTER 1. INTRODUCTION

ber of players is important. This is achieved by partitioning the game world and
forming interest groups for each partition, thus utilizing local consistency. Don-
nybrook is a system designed for fast-paced games where global consistency is
required, but the emphasis is also on scaling. However, the technique employed
causes players to receive full updates of only a small subset of participants. The
remaining players send updates once each second.

In commercial games, the peer-to-peer architecture is found in some games.
However, it is often a hybrid between peer-to-peer and client-server. The de-
velopers supply servers for matchmaking. When a group of peers is matched,
one is designated as host. This peer is a client but also acts as the server,
responsible for controlling the game state. The host is said to be a super-peer.
The difference between a client-server architecture and the super-peer is that
the super-peer can change in a game session while the server of the client-server
architecture is always the server. Warcraft III [3] custom games uses the super-
peer architecture.
Demigod [4] is an example of a game where the developers initially implemented
a pure peer-to-peer architecture. Before a game starts each peer connects to
everyone else in a lobby. Brad Wardell mentions in [5] some of the initial prob-
lems related to the pure peer-to-peer architecture. E.g. players unable to make
and keep connections to each other through a NAT.

1.1 Problem Definition

The predominant network architecture for multiplayer games is the client-server
architecture. In this thesis we examine whether or not it is feasible to employ
a pure peer-to-peer architecture.
We wish to examine how well peer-to-peer works in a fast-paced action game
with up to 10 players while keeping the game consistent. The number 10
is chosen because similar games like DotA [6], Bloodline Champions [7] and
Heroes of Newerth [8] all have a limit on concurrent players in a game of 10.
The game should be playable with an average internet connection. According
to Glenn Fiedler 99% of households with an internet connection in the USA,
Europe, Japan and Korea have 256kbps download or greater and 93.9% have
256kbps upload or greater as of March 2010 [9].
One of the challenges in a peer-to-peer architecture is how to keep the game
state consistent across peers. A game in which a player cannot interact with
the other players due to consistency problems is not enjoyable. We wish to
limit the delay imposed on the game, such that it is low enough for the average
person to not notice the game is being delayed. Another interesting problem is
how to handle variables that require mutual exclusion. The solution must not
ruin the fast-paced nature of the game.
To sum up, this thesis addresses the following problems:

• Is it possible to keep a fast-paced game with up to 10 players consistent
using a peer-to-peer network architecture?

• Can we limit the bandwidth usage such that the game is playable in a
normal household? – 256/256kbps.

2

1.2. REPORT STRUCTURE

• Is it possible to make the game work with network latency without players
noticing the delay?

• How can we make updates to shared mutual exclusive objects in a fast-
paced peer-to-peer action game?

We developed the test game Rawrlocks, a game designed such that we can
examine the aforementioned problems. Initial analysis along with a prototype
of Rawrlocks was produced during the DAT5-project period resulting in the
report “Peer-to-Peer Middleware for Fast-Paced Computer Games” [10]. The
result was that Rawrlocks had the desired game mechanics implemented. Two
peers could connect and play against each other. Although, there was no
guarantee that the game state was consistent. We decided to split up the
distribution of game state objects in two modules: A module coupled with
the game client used to distribute variables that required fast delivery and an
independent module, the synchronisation service, that was used to distribute
variables that required reliable delivery. The synchronisation service had basic
functionality for object synchronisation.
During this semester, we further develop the modules of Rawrlocks to make it
more suitable for its purpose. Testing of Rawrlocks helps provide answers to
the presented problems.

1.2 Report Structure

Chapter 2 analyses various parts of how a game works in relation to what is
required to distribute a game. The chapter also analyses how latency affects
games and outlines other problems found in a distributed game.
Chapter 3 describes the parts needed to make a peer-to-peer multiplayer game
work. Starting with how peers discover each other to how game clients commu-
nicate. The chapter also explains how latency can be handled in a peer-to-peer
game and provides possible solutions to latency hiding.
Chapter 4 explains low-level details of the Rawrlocks implementation. In-
cluded is the packet structure of the game client packets and the synchronisa-
tion service packets.
Chapter 5 presents the test environment along with the test results. The
results are analysed and discussed in this chapter.
Chapter 6 concludes the work and results. It also presents discussion on how
the project relates to other games and some ideas for future work.

3

2
Analysis

This chapter presents analysis of the topics relevant for the problems defined in
the Problem Definition 1.1. First, Section 2.1 and Section 2.2 explain the con-
cept of “game state” and what consistency means for game state. Section 2.3
describes three different connectivity models. The models determine how ob-
jects are distributed in a multiplayer game. Multiplayer games require that
messages are sent back and forth. Thus, the messages are affected by network
latency. Section 2.4 contains a description of a method on how to estimate
one-way latency.
Next, Section 2.5 describes the game mechanics in Rawrlocks. Some of the real
world problems related to this topic, which are not adressed in this thesis, are
briefly covered in Section 2.6. Lastly, Section 2.7 presents four techniques that
are used to achieve consistency in the Source engine.

2.1 Game State

To make a game progress, it must be possible to change the state of the game.
The state of a game consists of the state of the set of objects in the game. In
order to define what the game state is, we define what an object is.

Definition 2.1
Object: A collection of related variables

There are two types of objects – mutable and immutable objects. The state of
the game depends on the mutable objects. If Chess is used as an example, the
mutable objects are the 32 pieces and who’s turn it is. The variables of the
mutable objects can be modified during a game.

Definition 2.2
Mutable Object: An object that can be modified

The only immutable object in Chess is the board, and it is therefore not a
part of the game state. The board does not change state during a game, but
contains information the pieces use to verify whether or not a move is inside
or outside the board. It is instantiated at the beginning of the game.

5

CHAPTER 2. ANALYSIS

Definition 2.3
Immutable Object: An object that cannot be modified

In order to have a complete game state in a game of Chess, a peer must know
the state of every object. As mentioned each Chess piece has two game state
variables: Its position and whether or not it lives. The state of the current turn
is either black or white. A new game state occurs whenever a player makes a
move because the state of at least one of the 32 objects changes. Thus the state
of the game differentiates from what it was. Two players is able to continue a
game of Chess if and only if they have the same complete game state.

Definition 2.4
Game State: The current state of each mutable object in a game

Updates to mutable objects must be verified and distributed by a single point.
Otherwise peers can update objects at will, and disagreements of the object’s
state is likely to occur.

Definition 2.5
Object ownership: Any mutable object is owned by exactly one peer.
Ownership implies that only the peer that owns the object is authorised to
update the state of the object

Definition 2.6
Replicated Object: A copy of an object which the player does not control

The players who does not control a given object, have a replica of the object.

Chess is an example of a turn based game. The rate of updates to the game
state depends on how much time each player spends per move. In a real time
game, however, the rate of updates are at a constant pace, typically several
times per second.

2.2 Consistent Game State

It is important to maintain a consistent game state. Therefore, peers must
agree on the state of each mutable object. Disagreeing means that conflicts
can arise and result in a player’s action being legal according to the local game
state but illegal at another player.

Definition 2.7
Consistency: A game is consistent when replicated data ends up equal
across peers when modified.

The game state does not have to be equal at the same absolute time across
participating peers.

Definition 2.8
Absolute time: The time according to a global clock

6

2.2. CONSISTENT GAME STATE

A consistent gameplay is a gameplay where all events occurring in the game
state of one peer, occurs across every peer.

2.2.1 Consistency Affected Properties

There are three properties that affect the consistency of a variable; freshness,
exactness and ordering. These properties cannot all be handled at the same
time. It is therefore important to evaluate which properties are most important
for a variable. Before evaluating the properties on the game object variables,
the properties are defined:

Freshness How new and up-to-date a variable must be. A high freshness
requirement means the variable must be sent and handled as fast as pos-
sible. A low freshness requirement means that the variable does not need
to be updated frequently.

Exactness How exact a variable must be to be usable. A high exactness re-
quirement means that the variable must be consistent across peers and
the variable is not allowed to reach a sustained conflicting state. A low ex-
actness requirement means that the variable is allowed to have variations
across peers.

Ordering How important sequential execution of variable updates is. A very
high ordering means that execution of updates must be linearisable. A
linearisable execution order means that events are executed in the ex-
act order they are generated as if it is a synchronous system. Variables
that require lesser ordering can rely on sequential ordering. Sequential
ordering means that only updates from the local client must be executed
in the order they are generated as if the local system is a synchronous
system.[11, P.616] The importance is related to who is able to modify a
given variable. If only one peer attempts to change a variable, the result
is the same with linearisable ordering and sequential ordering.

Ordering is a special case because it is important to have any game state
modification seem linearised to have a consistent gameplay across clients. If
a game is not linearised, clients might see the same situations played out dif-
ferently. The difference between true linearisable execution and making the
execution seem linearisable is how strict the constraint is. It can be expensive
timewise to enforce linearisability on every action because it must be ensured
that there are no other actions preceding the next action in the execution chain.
The game requires real-time execution. Trying to execute in a linearisable order
and ignoring any errors is a cheap solution because execution happens in the
current known global order. Errors can be ignored where there are ownership
constraints on variables. With such constraints, updates only occur at one peer
and therefore the game state eventually becomes consistent again.

7

CHAPTER 2. ANALYSIS

P1P1 P2P2 P3P3

Data Store

View View View

ServerServer

Figure 2.1: The network topology of the client-server network architecture. The
peers are connected to a server that controls the whole data store with the game
state.

2.3 Connectivity Models and Object Distribution

There are three solutions for managing the mutable objects in a multiplayer
game: Client-server, peer-to-peer and super-peer. This section explains the
idea behind each solution.

Client-Server

In a client-server solution all clients connect to the same central server. The
situation is depicted in Figure 2.1. The server has the capacity to host game
sessions1. The game state resides in the data store on the server. The server
acts as a master that holds the true game state and has supreme ruling over
any changes to mutable objects.

Peer-to-Peer

In peer-to-peer solutions all clients connect directly to each other, see Fig-
ure 2.2. It is possible to use several network topologies, e.g. fully connected or
ring topology. However, for this discussion we assume that a fully connected
topology is used. Each peer is responsible for managing a subset of the mutable
objects.

1A game session is a single game from beginning to completion e.g. one match of chess.

8

2.4. LATENCY IN GAMES

P1P1 P2P2 P3P3

Figure 2.2: The network topology of the peer-to-peer network architecture (fully-
connected). Each peer have a local data store where they control part of the game
state.

For instance, in a game of chess the mutable objects are the 32 pieces and the
question of who’s turn it is. Each object must be owned by one peer. The
mutable objects are evenly distributed to the peers, such that each peer has a
set of chess-pieces and one peer has object ownership of who’s turn it is.
There is a risk that an object owner disconnects and leaves an object ownerless.
In order to avoid this situation, objects can be replicated and stored on other
peers. If a client who owns an object disconnects, a peer with an up-to-date
replica of the object in question, can assume ownership of the object. The peer
uses the last stored values of the object and restores the game to a consistent
state.

Super-Peer

A super-peer solution resembles a client-server solution. The server is a single
peer – super-peer. The super-peer can change during the game session if, for
instance, the current super-peer disconnects or has network problems. In some
games the super-peer is the person who created the game session. This solution
is cheap from the perspective of the game developer as the users of the game
handles the hosting.

2.4 Latency in Games

One of the biggest problems in games with multiple participants playing on-
line is the network latency between the participants. According to Sears and
Jacko [12] network latency is affected by bandwidth, distance, routing hops and
jitter.
Bandwidth is the amount of data that can be transferred to and from a com-
puter over time (upload and download). Smed & Kaukoranta [13] defines la-

9

CHAPTER 2. ANALYSIS

Bandwidth
how much

Send

Receive

Latency
how long

Jitter
how variable

Time

Figure 2.3: Difference between bandwidth, latency and jitter [12, P.336]

tency as the amount of time it takes a packet to be sent from the originating
node to a destination node – this is determined by distance and internet in-
frastructure. Jitter describes the variance in latency over time. Figure 2.3
illustrates the relationship between bandwidth, latency and jitter.

Definition 2.9
Network Latency: The total time it takes a packet to be transmitted from
one computer to another

Determining one-way latency precisely is a difficult task, but it is commonly
estimated to half the round trip time (RTT). As network latency grows it be-
comes difficult to maintain a game that appears consistent for the participants.
In our 9th semester report [10] we established that humans do not notice the
delay between an action occurs until he sees it, if it is small and hidden enough.
We found a 100ms limit in the previous work [10, Sec. 2.4.3] and can also be
found in [14]. We choose to make the game work with a latency of 50ms be-
cause that limit covers Europe, as described in [10, Sec. 2.3.2] and is below the
maximum of 100ms.

Several methods to hide latency exist. One of the reasons that latency
hiding techniques work is that a player cannot see the rendered game of the
other participants. When a player cannot see the other monitors directly,
different game states can only be noticeable through conflicting actions in the
game. E.g. an action would be legal according to the game state of one player,
but conflict according to another player’s game state. Therefore, any change
considered legal by the game logic does not reveal any latency.

Latency is important to handle correctly. One reason is that the game can
reach an inconsistent state if latency is not handled correctly. It can also give
an unfair advantage to some peers. An unfair advantage could be knowledge
about changes to the game state before another player has knowledge about
the updates. E.g. a power-up respawning – if a player knows about a power-up
respawning before other players, the given player has that much more time to
try and obtain it. A more interesting example is the position of an avatar and
the possibility to evade fireballs from other players.

10

2.5. GAME DESCRIPTION

Figure 2.4: Figure taken from One-way delay estimation and its application[15],
shows estimating latency with RTT/2 versus their solution.

2.4.1 One-Way Latency Estimation

Finding the exact one-way latency is difficult when there is no global clock.
Using RTT/2 is inaccurate as the latency is not necessarily the same both
ways. Several obstacles can cause the latency to differ forward and reverse.
E.g. different routes through the Internet each way or throttling by a cable
modem due to asymmetric connection.[15].

One possibility is to measure the latency more exact by marking the data
packet and then return an ACK packet. This only works for TCP and does not
give the exact latency, but yields a better result than using RTT/2. A more
exact measurement of latency gives a better end result, but even current TCP
implementations use RTT for congestion control.

Using the more exact latency measurement would further show which direc-
tion is causing the slowdowns. As seen in Figure 2.4, RTT/2 does not deviate
much from the forward delay. For the most part the deviation is up to 25% with
a worst case of 50%. In Rawrlocks context, with a maximum latency of 50ms,
this would yield a worst case deviation of 25ms and normal up to 12.5ms. This
is an error margin that cannot be removed. The deviation is not taken into
consideration as it is impossible to determine with the available information.

2.5 Game Description

Rawrlocks is a fast-paced arena-based action game. The game is loosely based
on Warlock Brawl [16] and Bloodline Champions [7]. Rawrlocks is a round
based game with 2-10 players starting in a single shared 2D arena where the

11

CHAPTER 2. ANALYSIS

players fight each other. An illustration of the arena is shown in Figure 2.5.
When only one player is alive, that player is declared the winner and the round
ends. The arena consists of an area with walkable ground and an area with lava
that damages any player standing on it. At the beginning of each round the
arena has a fixed size that decreases as time passes, such that, in the end, the
entire arena is gone. Each player controls a single avatar that can use abilities
and moves around in the 2D world using the keyboard and mouse. The arena
contains two power-ups that enhances certain features of the avatar for a period
of time.

Arena

Lava

Avatar

Avatar

Avatar

Powerup Powerup

Figure 2.5: The arena with three players and two power-ups

Avatar

An avatar has a predefined amount of health. Health is decreased if the avatar
is hit by offensive enemy abilities or if the avatar touches the lava. When an
avatars’ total health becomes equal to or less than zero, the avatar dies and
loses the round.
An avatar is able to fire abilities, get hit by offensive abilities, pick up power-
ups and move around on the arena. Abilities have a cast time. The offensive
abilities affect an avatar with a knockback.

Cast time Cast time is the time interval between a player activates an ability
to the time the ability is fired in the game world. The value of cast time
varies from ability to ability, but is constant per ability.

Knockback The knockback forces an avatar to move along a vector – the
knockback vector.It is the movement of an avatar that is manipulated,
and therefore the effect can be partly negated by moving in the opposite
direction. The knockback effect decreases over time and is gone after a
short time period.

12

2.6. OTHER REAL WORLD PROBLEMS

Abilities

An ability is an action the avatar can perform. The abilities are divided into
offensive and defensive: An offensive ability deals damage and applies knock-
back to opponents. The offensive abilities are fireball and scourge. A defensive
ability manipulates an avatar’s state and helps the avatar to defend himself in
a number of ways. The defensive abilities are teleport and thrust. The four
abilities are as follows:

Fireball The avatar sends a fireball in a direction indicated by the cursor’s
position. The fireball moves in a straight line starting from the avatar
with a constant velocity for a limited range. If an enemy avatar is hit by
a fireball, the avatar loses a fixed amount of hit points and has knockback
applied in the direction of the fireball.

Scourge The avatar creates an explosion at its current position in a circular
area around the avatar. The explosion deals damage and applies knock-
back to enemies within range of the ability. The knockback is applied in
a direction away from the avatar that activate the scourge ability.

Teleport Changes the avatar’s position to the position of the cursor projected
down onto the arena. The teleport is limited to a certain range.

Thrust Applies a knockback to the player’s avatar in the direction of the
cursor. The force of the knockback is constant no matter the distance
between the cursor and the player.

Power-Ups

Rawrlocks has two power-ups. These power-ups can be picked up by avatars
and disappears from the arena once picked up. Hence they can only be picked
up once per spawn. The effect given to the avatar is temporary and is either
doubles the movement speed of the avatar or doubles the damage of the avatar’s
offensive abilities. After a fixed amount of time the power-up respawns at its
initial position.

2.6 Other Real World Problems

In a real world environment there are several problems affecting a multiplayer
game. These problems have not been taken into consideration in this thesis.
The problems must be solved to make peer-to-peer games usable in a real world
scenario. Therefore, this section briefly explains the problems that are relevant.

2.6.1 Network Address Translation

NAT (Network Address Translation) is currently widely deployed. More than
90% [17] of all broadband subscribers deploy NAT on their home network. In
Rawrlocks, all peers connect to each other to create the correct peer-to-peer

13

CHAPTER 2. ANALYSIS

network for gaming. Therefore, a way through the NAT must be found as to
connect the NAT’d peers. The easiest way to a NAT’d computer is for the user
to manually forward a port or use UPnP (Universal Plug and Play) to forward
a port on request. UPnP is not supported by all routers.

The peers that do no forward ports manually or through UPnP must deploy
other methods. One method to get through a NAT is NAT Punching, but this
method only has a 90% success rate [18]. This means that other methods are
required to connect the last 10% of the peers. Another suggested method is
to use super-peers which proxies the traffic among the peers unable to connect
with each other. This adds one extra hop to any packets sent via the proxy-
peers, but ensures everyone is able to connect in a peer-to-peer network as
required by Rawrlocks. A hop is the delay it takes to send a packet from one
peer to another over the network.

2.6.2 Peer Disconnects

In a real world scenario peers can leave the game unexpectedly. The result
is loss of variables and a stale avatar in the game. A game must be able to
continue even with peers disconnecting, otherwise the game experience can be
ruined by a single peer. Before a peer can be removed from the game, the peer
must first be marked as not participating in the game anymore. Packets are
sent constantly in games. If a peer suddenly stops sending game updates, it
is expected that the peer is not part of the game anymore. The participating
peers can inform each other when a peer stops sending game updates. If more
than half observe this situation, the peer can be disconnected. The method is
basically an election where a majority of peers may agree to vote a peer out of
the game.

When a peer is disconnected and must be removed from the game. There
are two things that must be done.

• The avatar must be removed from the game.

• Ownership of the variables controlled by the peer must be re-delegated
to other peers.

Removing the avatar is fairly simple as it is just deleting the avatar object on
all the peers. This must be done when the disconnect has been decided.

In a game like Rawrlocks where everyone are against everyone, it does not
pose as a big competitive advantage or disadvantage that one player discon-
nects.

If a peer disconnects after a very short time with no data, small hickups in
the network can easily ruin the game for an unlucky player. Warcraft 3 solves
this problem by not disconnecting the peer after a few seconds with no data.
It freezes the game and shows all the peers that the game is waiting for the last
peer. The upside to this solution is that it is possible to wait longer without
ruining the game. The downside is that all the peers must wait for a single
peer.

14

2.6. OTHER REAL WORLD PROBLEMS

2.6.3 Peer Connectivity Issues

A common connectivity problem is a routing problem. What happens if peer
1 and peer 2 are unable to communicate with each other, but peer 3 to 5 have
no problems communicating with everyone? Peer 1 and peer 2 causes the game
to become inconsistent when they update their local variables. E.g. location
and variables owned by them. The solutions to this problem are not cheap
and routing problems can easily result in the game splitting into several “sub-
games”. The simple solution is to route traffic from peer 1 to peer 2 through
another peer, creating a super-peer type scenario. The number of hops becomes
two instead of one and part of the advantage in making the game peer-to-peer
is lost.

The important thing to note is that connectivity issues are more likely to
push over a game like Rawrlocks when a peer-to-peer model is used compared to
a server-client model. This is because the number of connections is larger than
with a server-client model and therefore has more points of failures connectivity-
wise.

2.6.4 Cheaters

For all products there are someone who will try to break it and use it in ways
not originally intended. In multiplayer games it is often used to gain benefits
over other players, also known as cheating. Since peers control part of the
game state it opens up for a whole new category of cheats compared to the
client-server model.

Anti-cheat solutions directly oriented towards peer-to-peer games have been
analysed in the works of Baughman and GauthierDickey [19][20]. The focus
is on correct ordering of the correct events and through that prevent cheat by
predicting the future. A correct event is an event not tampered with after it has
taken place. Rawrlocks does not ensure each event reaches all peers, thereby
making it hard for a scheme like this to work in practice. The best way to
ensure no cheat is to use methods that client-server models employ. This could
be anti-cheat software on the peer and detecting abnormalities too big to be
possible in the game.

15

CHAPTER 2. ANALYSIS

2.7 Multiplayer Networking Techniques

This section examines the Source engine and how it makes networked games
seem consistent and real time to the players. The section is based on [21].
Source employs a client-server networking architecture, but some of the tech-
niques can be used in peer-to-peer solutions.
The Source engine uses four methods to cope with the issues introduced by
network latency. All these methods are invisible to the player:

• Data compression

• Interpolation

• Prediction

• Lag compensation

2.7.1 Data Compression

In order to reduce the required amount of data that must be sent, Source uses
delta compression. Therefore, the server does not send a full snapshot of the
game state, but only changes since last acknowledged update. The server only
sends a full snapshot at the beginning of the game or when a client suffers from
heavy packet loss for a couple of seconds.

2.7.2 Interpolation

The Source engine sends a fixed amount of updates per second to clients by
default. If the objects were only updated when new information is received and
set exactly to received, moving objects and animations would look choppy and
jittery. Therefore, the position of an object is interpolated between snapshots.
If xt is the position at time t, and if x0 = 0 and x1 = 1, the interpolation sets
x0.5 = 0.5. This means that at times where the server does not inform a client
where an object is, the client calculates the position of the object with the help
of already received values.

2.7.3 Prediction

Source lets clients predict their actions locally. The effect is that the local
client has a predicted state of the local game state while the server has the true
state. If the two states differ, the client has made a prediction error that must
be corrected since the server has the true state. As the latency from client to
server increases the predictions are more likely to be incorrect. If the value is
being corrected by the server, the client interpolates from the locally predicted
position to the real position received from the server. At high latencies this
behaviour is likely to produce erratic behaviour.

16

2.7. MULTIPLAYER NETWORKING TECHNIQUES

2.7.4 Lag Compensation

In a Source game if a player activates a key, the server receives the message
after latency time. If the player aims at an enemy on his screen and fires a
shot, the enemy may have moved on the server before the message is received.
The result is that the local player believes he hits the enemy, but this is not
true according to the server’s game state. This is because the enemy has moved
away from the shot in the time it takes for the message reach the server. In
order to fix this issue, the server keeps a history of all recent player positions
for one second. If a user command is executed, the server estimates at what
time the command was created, te:

te = Current Server Time− Packet RTT− Client View Interpolation

The server moves all other players back to where they were at the command
execution time. Therefore, the position of the enemy is the same on the server,
as it was when the player fired his shot towards the enemy on the player’s
screen.

17

3
Design

This chapter describes the design of Rawrlocks. Section 3.1 covers a method
to discover other peers. Next, the general architecture of Rawrlocks is outlined
in Section 3.2, and the components of particular interest are explained more
thoroughly in Section 3.3 and Section 3.4. Lastly, Section 3.5 and Section 3.6
presents several design suggestions to cope with the problems caused by latency.
In the end the aspects required to develop a peer-to-peer multiplayer game has
been covered.

3.1 Lobby Server

Typically, multiplayer applications require a rendezvous point where peers can
discover each other. File-sharing systems such as BitTorrent [22] require tracker
servers to facilitate discovery of other peers. We mentioned in the introduction
to Chapter 1 that some game developers supply servers for matchmaking, but
game sessions use peer-to-peer or super-peer.

Thus a rendezvous point for the peers is required – a lobby server. A lobby
server needs only basic functionalities, such that it is easy and fast to start a
game session. For instance, peers must be able to create rooms, such that peers
in one room play with each other. Peers must get the appropiate information
required to establish connections and create the peer-to-peer network. The
functionalities of the lobby server are as follows:

Handle connections A peer must be able to connect to the server and be
identified by a unique ID, e.g. their name.

Room Rooms are used as a lobby for the peers that takes part in the same
game session and provides a segregation of peers. A room contains a
limited amount of peers. Any peer is able to create and join rooms. The
rooms are hosted on the lobby server.

List of Room The server keeps track of all rooms. Rooms are removed once
the game has started. The list of rooms is retrievable by peers.

Start game When a game session starts the server sends each connected peer
a client list with ID, name and IP address of the peers in the room. This

19

CHAPTER 3. DESIGN

information is used by Rawrlocks to establish connections between the
peers.

The lobby server uses a client-server network architecture and is shown in
Figure 3.1.

Lobby
Server

Peer

Peer

Peer

Peer

Peer

PeerPeer

Peer

Figure 3.1: The network architecture of the lobby server.

3.2 Rawrlocks Architecture

This section explains the architecture of Rawrlocks. Figure 3.2 depicts the
overall architecture. The architecture is divided into several layers, some of
which are split into modules.

Game Rules
Abilities, Player Mechanics, Power-up

Game Engine Facilities
MOGRE, SDK, Resource Management, Libraries

Network Services

Game Client Synchronisation Service

Network Abstraction Layer
Multiple Unicast UDP En-/Decode Multiple Unicast TCP Demand, Respond

Host OS, Network Layer

Game State (Shared Objects)

Game Client Variables Synchronisation Service Variables

Figure 3.2: Overall architecture of Rawrlocks.

20

3.2. RAWRLOCKS ARCHITECTURE

3.2.1 Game Rules

This layer represents the game specific logic in Rawrlocks. All game specific
events are handled in this layer. The logic behind the game decides how fast
avatars move, how fast projectiles fly, how far an avatar is knocked back. The
limited physics that is implemented in Rawrlocks is also in this layer. E.g. the
game logic observes an avatar colliding with a power-up. After this event the
colliding avatar has the power-up effect applied onto him and the power-up
itself is removed from the arena. Everything that makes Rawrlocks a game is
handled in this layer.

3.2.2 Game Engine Facilities

A lot of software programs make use of libraries and SDKs – computer games
are no different. This layer represents the game engine and SDKs used to
power Rawrlocks. For Rawrlocks we use Mogre, which is a .NET wrapper
for Ogre3D [23], and MOIS as input system. Mogre handles tasks such as
rendering, resource- and scene management. Since this layer mainly contains
the utilities for the execution of the program, it is not of much interest with
relation to the scope of this project.

3.2.3 Game State (Mutable Objects)

This layer represents the game state in Rawrlocks. The game state in Rawrlocks
is the combined state of every object in the game. The only immutable object
in Rawrlocks is the lava floor and is not discussed further. When the game
is designed, the implementor must classify the objects according to freshness
and exactness and decide how to distribute the objects of the game. The
objects are divided into two categories that determine which module handles
the distribution:

• Objects distributed using the game client (GC) – these objects have high
requirements on freshness.

• Objects distributed using the synchronisation service (SS) – these objects
have high requirements on exactness.

Game state objects are further discussed in Section 3.3.

3.2.4 Network Services

The segregation of the distributed variables in Rawrlocks require two different
network services for distribution. One network service to ensure fast delivery
– this service is an integrated part of the GC. The other network service must
provide reliable delivery. This service is designed as an add-in such that it
can be used by games similar to Rawrlocks. The network services are further
discussed in Section 3.4.

21

CHAPTER 3. DESIGN

3.2.5 Network Abstraction Layer

As mentioned the two network services handle distribution of game state vari-
ables in Rawrlocks. Each network service needs a transport protocol for this
end-to-end communication. Hence, the network abstraction layer represents
the encoding, decoding and transport of data.

3.3 Game State Objects

Game state objects are constantly changing in Rawrlocks. This section out-
lines the game state objects and their variables and classifies the freshness and
exactness requirements of each of the variables.

In Rawrlocks changes to a variable symbolises that an event has happened.
Events are divided into two groups, that determines the cause of when variables
are updated:

Definition 3.1
Triggered Events: Events activated according to game rules.

Definition 3.2
Activated Events: Events activated by player input.

The variables of each object in Rawrlocks are described and categorised
below. Furthermore, we classify whether the alteration of a variable is bound
to a triggered or an activated event.

Power-Up

The variables bound to a power-up object are:

Availability Describes whether the power-up is available to be picked up. This
variable is altered by a triggered event, i.e. an avatar colliding with the
power-up

Active Is it active on an avatar and, if it is, which avatar is it active on. This
variable is altered by a triggered event, i.e. has the power-up effect been
active for its designated duration.

Both variables on a power-up has high exactness requirements and low freshness
requirements. Therefore, they are distributed via the SS. Changing one variable
of a power-up object means changing the other. Thus, the variables of a power-
up must have the same owner.

Restart Round

The variable determines if a round should be restarted or not. Restart round is
a triggered event. The event is triggered if less than two players are alive. The
peer who owns the variable decides whether or not the condition is fulfilled.

22

3.3. GAME STATE OBJECTS

However, it is desirable that all peers see that the condition is fulfilled. It is
necessary that the event restart round is exact across peers, since this event
resets arena size and variables on the avatar object. Therefore, we create a SS
variable in order to keep track of whether a new round must be started.

Arena

The variable bound to the arena object is:

Size The size of the arena must be exact. If an update to arena size is lost,
an avatar can stand in lava at one peer while not standing in lava locally
because an update was lost. The arena size is reduced by a triggered
event that is triggered at fixed time intervals. The size of the arena is
distributed using the SS.

Avatar

The variables bound to an avatar object are:

Avatar health Altering the health of an avatar is a triggered event that occurs
whenever an avatar is hit by an enemy ability or is standing in the lava.
The health of the avatars must be exact, while the freshness is of minor
importance. For these reasons health is distributed using the SS.

Last damage dealer The last damage dealer, and in effect, who gets the kill
if an avatar dies is a value that must be exact. This is a triggered event
that occurs whenever the health of an avatar is reduced by an enemy
avatar. This event is heavily related to avatar health since it is used to
decide avatar kills. It is therefore distributed using the SS.

Avatar specifics This covers, among others, the position, movement vector
and mouse position. Each of these values must be known in order to
position the avatar correctly across peers. The avatar specifics has loose
exactness requirements while freshness is very important. Each of the
variables distributed in avatar specifics are activated events. Due to the
high freshness requirements the avatar specifics are distributed using the
GC. The peer controlling the avatar propagates the message to the other
peers in the game.

Ability cast When an avatar is in the process of activating an ability, it starts
casting it. This events sets two variables on the avatar: Whether the
avatar is casting, and, if it is, which ability it is casting. Players use this
knowledge to predict other players’ moves. Ability cast is an activated
event with high freshness requirements. It is therefore distributed using
the GC.

Ability fire When an ability is fired the opponents must know about it to be
able to react to the incoming ability as fast as possible. The activation
of an ability requires exactness in the sense that the other players in the
game must see the ability being activated. When an avatar has casted an

23

CHAPTER 3. DESIGN

Variable Distribution
num. Fresh Exact Event type Placement
1 Power-up availability L H triggered SS
2 Power-up active L H triggered SS
3 Restart round L H triggered SS
4 Arena size L H triggered SS
5 Avatar health L H triggered SS
6 Last damage dealer L H triggered SS
7 Avatar specifics H L activated GC
8 Ability cast H L activated GC
9 Ability fire H H triggered GC
10 Ability hit H H triggered GC

Table 3.1: The game state variables in Rawrlocks and their freshness and exactness
requirements (L is low, H is high), whether the variable triggers an event and if it is
distributed using the SS or the GC.

ability for its cast duration, a triggered event fires the ability. It is worth
noting that this event does not alter any game state variables with high
exactness requirements, so losing the event does not create an inconsistent
state. This event is distributed by the GC by the player who fired the
ability.

Ability hit While the health of an avatar has loose freshness requirements, the
fact that they got hit has high freshness requirements. This events does
not change health, because the health reduction already happened before
this event is activated. This event is the notice to other peers that an
avatar was hit by an ability. Like the firing of an ability, this value must
be exact. If an ability hits an opponent this event is triggered. This event
does not alter any game state variables with high exactness requirements,
so losing the event does not create an inconsistent state. Because of the
high freshness requirements, this event is distributed by the GC by the
player who fired the ability that hit.

3.3.1 Variable Classification

Table 3.1 shows an overview of all the game state variables, the level of their
freshness and exactness requirements, whether or not it is a triggered event
and whether it is distributed using the SS or the GC.

Rawrlocks has a total of ten variables that are shared among peers. Fig-
ure 3.3 shows the freshness and exactness requirements of each variable. The
X-axis determines how important the freshness requirement of a variable is,
going from left to right with higher to lower importance respectively. The Y -
axis determines how important the exactness requirement of a variable is, going
from bottom to top with higher to lower importance respectively.

24

3.4. NETWORK SERVICES

Freshness LowerHigher
Higher

Lower

Ex
ac

tn
es

s

5, 61, 2, 4 3

8

7

9, 10

A B

D C

Figure 3.3: Exactness and freshness of Rawrlocks variables.

Each circle represents one to three variables depending on the numbers below.
The numbers in turn relate to the number of the variables in Table 3.1. E.g.
number 1 represents Power-up availability, which is located close to the origin
of the Y -axis and approximately halfway out on the X-axis. Thus, exactness
is of high importance while the freshness requirement is lower.
The figure is divided into four areas: A, B, C and D. Each area helps determine
which module should handle a given variable. Area A contains variables where
freshness is of highest importance. These variables are distributed by the GC.
Area B is a grey area, and variables within this area could be distributed by
either module. Rawrlocks however does not contain variables in this area. The
variables in area C has high exactness requirements and must be distributed
by the SS.
Area D contains variables, that must be both fresh and exact. In Rawrlocks,
two variables have high exactness and freshness requirements – ability fire and
ability hit. Both variables have higher requirements for freshness than for ex-
actness. Therefore, they are distributed by the GC. Because of the fact that
neither ability-fire or ability-hit alters any variables with high exactness re-
quirements, these events require a loose form of reliability. If one packet is lost,
the event should not be lost. However, if a peer loses packets until a new event
of the same type is activated, the event is lost.

As mentioned the variables are distributed using either the GC or the SS.
These two modules are located in the layer below the game state layer, and are
described in Section 3.4.

3.4 Network Services

This section describes the design of the two networking services in Rawrlocks.
Section 3.4.1 describes the design of the GC while Section 3.4.2 describes the
design of the SS.

25

CHAPTER 3. DESIGN

3.4.1 Game Client

The GC’s task is to distribute the variables that were defined to be handled by
the GC in Table 3.1. These are the variables that have high requirements on
freshness.

Fast packet delivery is achieved by using the UDP protocol. The recipient
must be able to update a local replica that simulates the behaviour of the player
sending the packet no matter how many packets are lost in the meantime.
Furthermore, due to the high freshness requirements on every GC variable, the
values must be updated and sent at a high rate.
In order to meet the high exactness requirements on the triggered events of
the GC, the activation of an these events triggers instantly sending a packet to
every peer in the game.

3.4.2 Synchronisation Service

The SS is the module that keeps high exactness variables consistent across
peers. The SS is an independent component and is not directly integrated into
the game but runs simultaneously. The SS has two communication types –
one with the local GC and one with the other SSs in the game. The SS is in
constant communication with the game to make sure updates arrive as fast as
possible.

The SS works as a variable storage where the GC can request updates to
variables. The SS informs the GC of any updates to any variable currently
stored.

Variables are restricted in order to simplify the SS and define a predictable
behaviour to keep the SS fast and its complexity low. The SS has the following
restrictions on variables.

• A variable can only be an integer.

• All variables must be initialised by the game client before the game starts.

• The local GC initialises all variables in the same order across SSs.

• A variable must have exactly one owner.

Allowing only integers removes the need for data type definitions. It is also
the only needed data type for the test game. Initialising all variables in the
same order at the beginning of the game makes it possible to evenly distribute
ownership of the variables without negotiation.

The SS has two commands to change variables, Set and Modify.

Set (v, x) Changes a variable, v, to x.

Modify (v, x) Changes a variable v, to v + x.

The Modify command uses delta updates. The use of delta updates lowers
the number of hops in a system. If a peer wishes to alter a Modify variable,

26

3.4. NETWORK SERVICES

Modifiability Command
Power-up availability owner set
Power-up active owner set
Restart round owner set
Arena size owner set
Avatar health all modify
Last damage dealer all set

Table 3.2: SS game state variables in Rawrlocks and whether or not it is modifiable
by owner or all and if the variable can be set or modified.

the peer contacts the owner of the variable and tells him to alter the value of
a variable by a specific amount.

The Set command sets a variable to a specific value. The use of the Set
command depends on the ownership mode of the variable. The two ownership
modes of variables in the SS is described below.

There are two ownership modes on SS variables:

Modifiable by owner All GCs inform their local SS about changes to SS
variables. If a variable is set to be modifiable by owner, only the owner is able
to modify or set the variable. This means that variables that are modifiable by
owner, are updated according to the game state of the owner of the variable.
This ownership type works since peers have full knowledge about the game state
and can observe the ingame events that leads up to a change in a variable.
E.g. an avatar is observed by the GC to have collided with a power-up. The
variables on the power-up object are grouped together in the SS and are both
modifiable by owner. According to game logic, the power-up effect must be
applied to the avatar that collided with the power-up and removed from the
arena. The GC sends a request to its SS that the aforementioned happened.
If the SS that receives this request owns the power-up variable, the request is
accepted. If the SS does not own the power-up variable, the request is dropped.

Modifiable by all One GC informs its local SS about changes to a variable
in a situation where the GC is designated to observe and inform about a given
event. If a variable is set to be modifiable by all, every peer can request changes
to the variable but only the owner applies the changes. Therefore, modifiable
by all variables never reach an inconsistent state.
E.g. an avatar shoots another avatar with a fireball and the target loses health.
The GC request to change a variable and sends this to its SS. If the SS does
not own the health point variable of the hit avatar, the SS that owns the health
point variable is informed to modify the health point of the avatar that was
hit.

The variables in Rawrlocks that are distributed by the SS is shown in Ta-
ble 3.2. Their ownership mode and the command type that is used to make
updates to the variable are defined for each variable.

27

CHAPTER 3. DESIGN

GC 1 SS 1 GC 2SS 2

Subtract 10hp from A
i

5
0

m
s

Subtract 10hp from Ai

Ai hp is 490

5
0

m
s A i h

p is
490

Ai hp is 490

Figure 3.4: Update of variable that uses the modify command and its ownership
type is modifiable by all.

Ingame Situations

This section describes three common ingame situations that are used to de-
scribe the SS behaviour. The situations use the following definition:

Definition 3.3
Ai: Avatar i, the avatar with ID number i.

Situation A: GC1 informs SS1 to decrease the health of Ai by 10 points.
This situation is shown in Figure 3.4.

• SS1 checks who owns the health point variable of Ai.

• The owner of the variable is informed about the update.

• The health of Ai is updated according to its ownership mode and com-
mand type. The SS owning the altered variable informs every other SS
about the updated value.

• SS1 receives the update to the variable and informs GC1.

Situation B: GC1 observes Ai colliding with a power-up. GC1 informs
SS1 to remove the power-up and apply the power-up effect on Ai. SS1 is not
the owner of the variable. This situation is shown in Figure 3.5.

• SS1 ignores the request since it does not own the health point variable of
Ai. The game state remains unchanged.

Situation C: GC1 informs SS1 that Ai is colliding with a power-up. The
power-up effect must be applied on Ai and the power-up must be removed from
the arena. SS1 is the owner of that particular power-up group. The situation
is shown in Figure 3.6.

28

3.4. NETWORK SERVICES

SS 1 GC 2SS 2

Remove power-up
apply effect to Ai

GC 1

Figure 3.5: Situation where a power-up variable is not owned by SS1.

GC 1 SS 1 GC 2SS 2
Remove power-up
apply effect to Ai

Remove power-up

apply effect to A
i

Remove power-up
apply effect to Ai

Remove power-up
apply effect to Ai

5
0

m
s

Figure 3.6: Situation where a power-up variable is owned by SS1.

• GC1 informs SS1 about the update and requests the given variables
changed.

• SS1 owns the power-up variables and informs all the other SSs about
the update. The power-up is removed from the arena, and the effect is
applied to Ai.

3.4.3 Network Abstraction Layer

Section 3.4 described the two modules that handle distribution of game state
variables in Rawrlocks. Each module needs a transport protocol for the end-
to-end communication. Hence, the network abstraction layer represents the
encoding, decoding and transport of data.

UDP is already mentioned as providing fast packet delivery for the GC. The
GC’s main task is to distribute variables with high freshness requirements.
Furthermore, UDP’s header is only 28 bytes including the IPv4 header [24].
The GC sends packets at a rate of 20 per second. Thus, the GC sends a
packet every 50ms. The fully-connected topology implies that each update is
broadcasted to all peers. Each second a GC sends: ((n− 1) · (20 + k))packets,
where n is the amount of players in the game and k is the amount of locally
triggered events that occured in the last second.
Figure 3.7 shows connectivity between GCs. Each peer uses a UDP socket to
send data to other peers in the game.

The SS requires exactness and assurance that packets arrive. Overhead
is less important and a reliable protocol such as TCP is needed. Requests

29

CHAPTER 3. DESIGN

Game Client Game ClientUDP conn.

Game Client

UDP conn. UDP conn.

Figure 3.7: Illustration of GC communication.

Synchronisation
service

Client
Synchronisation

service

Synchronisation
service

TCP conn. TCP conn.

TCP conn.
Client

TCP conn.

Client
TCP conn.

Client
TCP conn.

Figure 3.8: Illustration of SS connectivity.

to read and modify a variable requires a connection between reader and the
owner of the variable. When a variable is updated the owner is responsible for
broadcasting the variable’s new state to all other peers.
Figure 3.8 shows connectivity between SSs and GCs and their independence
from each other. The SS uses TCP for communication with the client and other
SS.

3.5 Artificially Added Delay

In order to make the game fair, the game state must be as equal as possible
across peers at the same absolute time. We propose a technique, that adds an
artificial delay to events occurring in the game. A major problem with this is
to determine the current latency between peers. This problem is discussed in
Section 2.4.

30

3.5. ARTIFICIALLY ADDED DELAY

P1 P2

ED1,1 ED2,2

P3

ED3,3

L1,3 L2,3

L1,2

Figure 3.9: Illustration of users playing the game with all the variables which induce
delay and where delay can be induced

The definitions below outlines the meaning of the variables used for discus-
sion in this and related sections. The relationship between the variables Px,
Lx,y, EDx,y is shown in Figure 3.9.

Definition 3.4
Game delay (GD): The delay in absolute time from the creation of an
event untill the time it must be executed.

Definition 3.5
Px: Player x, a participant in a game of Rawrlocks controlling avatar Ax.

Definition 3.6
Lx,y: Latency between Px and Py. This value is not adjustable as it is
given by the network latency. We asumme that Lx,y = Ly,x, because we use
RTT/2.

Definition 3.7
EDx,y: The delay to be added for execution of Py’s events on Px’s screen.
The amount of time events are postponed before being executed. An event
is executed after a delay equal to GD on all peers from the absolute time the
event was created. Thus, ED is calculated by using the following formula:
EDx,y = GD − Lx,y.

31

CHAPTER 3. DESIGN

To illustrate the use of the variables, we present a simple example.

Example: A player performs an event, which should be executed at the
same absolute time on all peers. In this situation GD = 50ms. The example is
shown in Figure 3.10.

• P1 performs an event at t = 0ms, and sends a packet to all other peers
in the game.

• L1,2 = 20ms. The packet sent by P1 arrives at P2 at t = 20ms.

• ED2,1 is: 50ms − 20ms = 30ms. Thus P2 waits 30ms before executing
the event of the received packet.

• P1 waits GD before executing the event locally. Both players execute the
event at t = 50ms absolute time after the event was created.

This means events contained in a packet are executed at the same absolute
time if the latency between peers is less than GD.

Player 1 Player 2

Packet transmission

Latency

2
0

m
s

Even
t D

elay

3
0

m
s

Event is execute at t=50ms

5
0

m
s

G
am

e D
elay

Figure 3.10: Situation where a player sends an event that is delayed to be executed
at the same absolute time at two players.

In order to synchronise the events of the game, the game must be delayed by
a certain amount of time. If all players in a game sessions should compete at an
equal level, GD must be a value greater than or equal to the two players with
the highest latency between them. The highest latency from a given player Px

to another player is defined as Lmaxx

Lmaxx
= max(Lx,1, Lx,2, . . . Lx,n)

Thus if the players should compete at an equal level GD is determined as
follows:

GD = max(Lmax1
, Lmax2

, . . . , Lmaxn
)

32

3.6. SOLUTIONS TO LATENCY HIDING

In doing this every peer seems to have the same latency. However, a pair of
players with a high latency between them imposes an equally high delay to the
rest of the players. Therefore, we define a limit, GDmax, which is the maximum
amount of time the game can be delayed by. The revised formula is:

GD = min(max(Lmax1
, Lmax2

, . . . , Lmaxn
), GDmax)

One-way latency measurements must be carried out with reasonable intervals
for this to work. More about a technique for this can be found in Section 2.4.
We wish to keep a constant GD, so the formula used is:

GD = GDmax

Hence our solution causes a degradation in consistency as latency between peers
increases above GD. A constant GD means that all local events are delayed
by GD. The delay imposed by Px on an event received from a remote player,
Py is:

EDx,y = max(GD − Ly,x, 0)

This means that if Ly,x is bigger than GD, events are activated instantly but
delayed by latency. Therefore, a player where L > GD to another player means
event activation varies and this causes different game states across peers.

There are several solutions to keep a fast-paced game consistent. The two
main categories are the ones using absolute packets and the ones using relative
packets. Section 3.6 presents four solutions to artificially added delay. First of
Section 3.6.1 and Section 3.6.2 presents two solutions using absolute packets.
The solution presented in Section 3.6.1 uses delay to attempt to have the same
event history played out on two players. However, movement events are not
delayed. Section 3.6.2 presents a solution that delays events with a constant
GD. In order to synchronise the position of avatars, peers distribute their
location as it would be after GD. Thus, the position of every avatar is kept
equal across clients at the same absolute time. Every other event in the game
is being synchronised after GD. Next is Section 3.6.3 and Section 3.6.4 which
presents two solutions using relative packets. The solution in Section 3.6.3 uses
input-duration pairs. The pairs consist of an input key and a duration. Besides
the pairs, the latest mouse position is contained in the packet. Section 3.6.4
presents a solution, that sends input on a per frame basis. This method uses
the information of the latest frames to make up for packet loss.

3.6 Solutions to Latency Hiding

This section outlines the solutions we believe are relevant to accomplish latency
hiding.

Any method to keep a game consistent are affected by latency. Latency has
already been determined as a variable in Figure 3.9. It is important to note
that latency is not measured exact. But the methods described here assume
so. The reason why one-way latency is not exact is explained in Section 2.4.
We define the maximum latency allowed for Rawrlocks as 50ms. This value is

33

CHAPTER 3. DESIGN

henceforth known as game latency.
There are two ways to construct packets; absolute and relative packets.

Absolute Contains complete updates for game state objects, e.g. the position
of Player 1 is now (4, 6).

Relative Contains relative updates for game state objects, e.g. shift Player
1’s current position by (1, 0). The terms delta and relative are used
interchangeably.

The packet system described in Section 4.2 can be used in the solutions with
absolute packets. The solutions using relative packets requires a new packet
system.

Mouse Position Mouse position is used to determine the direction for three
abilities in Rawrlocks – namely fireball, thrust and teleport. therefore the
position must be sent to peers. The position of the mouse can be delayed,
making it consistent across peers, or the freshest mouse position can be used.
No matter the implementation, the rendering of the mouse position must be
with no added delay. This is because the mouse requires high precision and
even a few ms delay is noticeable. It is the position used for ability calculations
that can be artificially delayed. If it is delayed, it can be made identical across
peers such that abilities are fired in the same direction. Players may be able
to notice the delay, but tests are needed to prove whether or not this holds.

Another option is to send the freshest mouse position. By doing so, players
should be unable to notice a delay in mouse position. However, the direction
of a fired ability may vary across peers depending on the delay between peers
and how the sending peer is moving his mouse. Flicking the mouse rapidly
with high sensitivity gives the biggest difference on the local mouse position
compared to the remote mouse position. Therefore, the direction of a fired
ability is likely to have differ across every peer.

Without further ado we present each solution starting with the two using
absolute packets.

3.6.1 Consistent Event History

This method seeks to ensure that situations play out the same way. The ex-
ecution order of events is the same on all peers. A player’s own events are
locally delayed by game latency ·2 except for local avatar movement. Events
from remote players are delayed by game latency. The event can potentially be
other events, e.g. power-up pickup. as long as it is only a single type of event
This is because all other events have their time corrected in relation to the
event that does not have any imposed delay. Movement is chosen as example
in this discussion because it is easier to explain and because it makes sense to
use an event where the user wants immediate feedback.
Since movement is not delayed locally, the local player Px receives and executes
a remote event from Py after game latency. Py execute’s Px movement event
after game latency and his own event after game latency ·2. Therefore the sit-
uation plays out in the same order on both players. This means two players’

34

3.6. SOLUTIONS TO LATENCY HIDING

Avatar
1

Avatar
2

Avatar
1

Avatar
2

Player 1 perspective Player 2 perspective

Fireball Fireball

Figure 3.11: Illustration of users playing the game from two different perspectives
at the same absolute time.

game state are never consistent at same absolute time, but events are executed
consistently.

Example: In the situation where the latency between Px and Py: Lx,y =
50ms. An event is delayed as follows:

EDy,x = 0ms

EDx,y = 0ms

EDx,x = 100ms

These are applied to every event except movement where the event delays
are as follows:

EDy,x = 0ms

EDx,y = 0ms

EDx,x = 0ms

The first situation is P1 firing a fireball towards P2 with L1,2 = 50ms. The
cast time for a fireball is 400ms. The scenario can be seen in Figure 3.11. The
two perspectives are in the exact same absolute time and the situations are not
equal, but plays out the same way if the game continues. Figure 3.12 illustrates
when the events are executed in absolute time.

1. P1 starts to cast a fireball towards P2. It takes a total of 500ms before
the fireball is fired on P1’s computer, due to the 400ms cast time and
ED1,1 = 100ms for this event.

2. P2 receives the event that P1 is casting a fireball 50ms later in absolute
time. P2 commits that P1 is casting the fireball to the local game state.
In absolute time there is 100ms until P1 commits the change to its local
game state.

35

CHAPTER 3. DESIGN

3. P2 executes the fireball of P1 in its local game 400ms after the event is
received because ED2,1 = 0ms.

4. P2 sends movement back to P1 where P2 avoids the fireball.

5. P1 receives the movement 50ms after P2 moved on P2’s computer. P1

fires the fireball and sees that P2 avoids the fireball. Thus, resulting in
the same event execution history.

P1

50ms
P2

Absolute time

x
1 G

am
e latency

100ms

2
x

x

400ms
x

3

400ms

G
am

e
la

te
nc

y

4

5

50ms

x
2

Figure 3.12: Illustration of event execution in absolute time. The circled numbers
matches the numbers in the example.

The second situation is P1 firing a fireball towards P2 and P3. The latency
between peers is: L1,2 = 20ms, L1,3 = 50ms and L2,3 = 50ms. Figure 3.13
illustrates when the events are executed in absolute time.

1. P1 starts to cast a fireball towards P2 and P3. It takes a total of 500ms
before the fireball is fired on P1’computer, due to the 400ms cast time
and ED1,1 = 100ms for this event.

2. P2 receives the event that P1 is casting 20ms later in absolute time. P2

waits ED2,1 = game latency−L1, 2 = 30ms before committing the change
to its local game state.

3. P3 receives the event that P1 is casting 50ms later in absolute time. P3

commits the event to local game state.

4. P2 and P3 both moves to dodge the fireball. The movement is sent to P1.

5. Both player’s movement is committed to P1 game state after 50ms.

6. P2 movement is executed 50ms later at P3 game state and vice versa.
Thus both players’ view of each other differs from P1’s view. However
this is not that big of a problem because P1 is the one who decides who
is hit by the fireball.

Problems

This method gives consistent event execution at peers who creates an event
at the cost of game latency ·2. The downside is that participants does not see

36

3.6. SOLUTIONS TO LATENCY HIDING

P1

50ms
P2

Absolute time
1 G

am
e latency

100ms

2
x

400ms

400ms

G
am

e
la

te
nc

y

4

5

50ms

1

P3

G
am

e
la

te
nc

y

50ms 400ms 50ms

G
am

e latency

3 4

xx

x

x

x

x x

x
6

6

Figure 3.13: Illustration of event execution in absolute time. The circled numbers
matches the numbers in the example.

each others movement in the same absolute time. Movement is delayed by
game latency before they are committed to the remote players’ game state.
The main problem with this method is that all events besides movement is
delayed by 100ms because the delay is inconsistent across events. Whether or
not people notices that movement is not delayed while every other event in
the game is delayed is unknown. Furthermore, events are not happening at
the same absolute time across clients. Meaning, that the game state is never
consistent across peer in an active game.

Another problem is that the model can only handle half the network latency
the other models can handle because events take twice the time to execute and
players notice too much added latency.

3.6.2 Position Prediction

This solution uses absolute packets and a technique to predict an avatar’s
position. The solution seeks to keep the game consistent by using GD

The position is predicted locally before a packet is sent and works as follows:

Pos(Plocal, t+GD) = Pos(Plocal, t) + (V̂P · SP +KBP) ·GD

t is the current time, Pos(Plocal, t+GD) is the position of player Plocal at
time t+GD, V̂P is the normalised direction of the player’s velocity, SP is the
current speed of the player and KBP is the player’s knockback vector.

The value of GD can be as low as the game latency. Activating events at
the same absolute time across peers should make the game state equal across all
peers. However, this solution requires exact knowledge of the latencies between
peers.

37

CHAPTER 3. DESIGN

3.6.3 Input-Duration Pairs

This solution uses relative updates and seeks to activate keys at the same
absolute time across peers. The idea is to emulate the same gameplay across
peers by sending activated keys.

The packets in this solution consist of a list of pairs. A pair consists of an
input key and the current duration the key has been pressed. The pairs are
henceforth known as input-duration pairs. The information in the packets is
used to make relative game state updates. Besides the pairs, a packet contains
the newest mouse position.

A packet contains the nine most recent input-duration pairs and one mouse
position.

Whenever a key is pressed one pair is set; the key is set to that of the
pressed key and the duration starts incrementing. When the key is released
the pair consists of a key identifier and a duration. Pairs are set the moment a
key is pressed. A pair is finalised once the key of the pair is released or if a key
is pressed for more than 256 frames, in both cases a new pair is instantiated. If
two keys are pressed at the same time, two pairs are set. The second key press
activates the second pair and so on. This means that pairs are in a list with a
maximum length of nine pairs. When a new pair is inserted the oldest pair is
pushed out.

Receiving Input-Duration Pair Updates

Input-pairs are delayed by 50ms before being activated for the duration on
both sending and receiving peer. The duration value of the pair is updated
whenever a value, that is higher than the previous value, is received. If the
duration value received is equal two times in a row, the player sending the pair
has released the key in question.

When a movement input is sent it contains directions instead of keys. The
players can send nine different directions – one for each direction of which
one is the zero vector i.e. standing still. Each movement update is stored
and converted to an in-game distance that is added to a locally stored player
position.

Problems

Ability activation and ability hits are not guaranteed to be fired from the same
position or with the same mouse position. Because this solution uses relative
updates the game is likely to become inconsistent across clients, since lost
updates are not re-sent. Peers do not send events, so whether peers agree on
an ability hitting a target depends on latency, packet loss and if mouse position
is delayed. In order to have the same game state across peers, input must be
registered in the same order at the same frame across peers.

38

3.6. SOLUTIONS TO LATENCY HIDING

3.6.4 Sending Input Per Frame

This solution uses relative updates. It seeks to update the game state every
50ms and each iteration is called a frame. The game is delayed by 50ms. Each
player sends input on a per frame basis. The information sent could be as
follows:

Frame number n
4 keys for frame n

mouse position for frame n

4 keys for frame n− 1

mouse position for frame n− 1

4 keys for frame n− 2

mouse position for frame n− 2

4 keys for frame n− 3

mouse position for frame n− 3

The input for the four latest frames is sent to every peer. The current
displayed frame is n− 1 given a latency of 0ms. This means that the input for
frame n−2 is too old when it is received even with a latency of 0ms. Therefore,
the frame information of the three oldest frames can be used to readjust the
position of the player sending the packet in case of packet loss.

Starting the Game

When a frame n is ready to be computed, frame n + 1 is sent to each of the
other peers. This means that in order to proceed to the next frame, a peer
needs packet information for the current frame from every other peer.
When the game starts the first two packets are calculated as soon as possible
i.e. at 0ms and after 50ms. Each peer sends the packets to all the other peers.
When a peer has received information for frame 1 from every other peer, the
game state of frame 1 is calculated and rendered. This happens no sooner than
50ms in absolute time after the frame input. The Input of frame 2 is calculated
and sent to each peer. When frame 2 is received, frame 3 is calculated and
distributed. This happens in intervals of approximately 50ms.

Having consistent input for each frame ensures that events progress in the
same order. However, the input must be received no later than 50ms after
being activated. Therefore, the game should be consistent if there is no packet
loss.

Problems

If a packet is lost, the remote player does not know the input for the next
frame. A player knows that a packet has been lost if the difference between
two concurrent frame numbers is more than 1.
Two methods can be used to prevent the effects of packet loss:

39

CHAPTER 3. DESIGN

1. The input in two consecutive frames is likely to be similar. If input for a
frame is unknown, the last known packet is used.

2. If a packet is not received at the time it is needed, the position of the
player sending the input can be readjusted when the packet arrives.

If a peer loses four packets in a row, the input of the peer is never received and
the game state is likely to become inconsistent.

3.6.5 Conclusion

The solutions using relative updates are likely to become inconsistent in case
of packet loss or out of order packets. I.e. a fireball could be fired a frame
later on one client’s computer, which results in a player avoiding a fireball he
should not have avoided. Further updates from this situation results in the
game getting more and more inconsistent, and a consistent game state is never
again reached. The consistent event history solution suffers from the problem
that two players do not play out the same event at the same absolute time.
The game state is never equal on two peers at the same absolute time while
the game state is being altered. Thus, one can argue that the game state is
never consistent. The solution using position prediction has the problem that
if an avatar changes direction between two frames other peers must be notified
as fast as possible. Since all events are executed after the same delay, the game
state stays consistent on all peers.
Common for all solutions is that the difference between game states increases
concurrently as latency goes above GD. In order to have a viable solution that
can be tested against our highlighted problems as described in Section 1.1, we
have decided to use the solution described in Section 3.6.2. This solution has
a consistent game state across peers and uses absolute packets.

40

4
Implementation

This chapter describes the implementation of the services required to keep
Rawrlocks consistent. In Section 4.1 the SS implementation and, specifically,
the SS packet structure is described. Afterwards, Section 4.2 describes the
implementation of the GC with a close look at the GC packet structure.

In Section 4.3 we describe the implementation of the chosen latency hiding
solution as described in Section 3.6. Lastly, we conclude on the implementation
in Section 4.4.

4.1 Rawrlocks Synchronisation Service Packets

Due to the constraints defined in Section 3.4.2 the packets sent via the SS are
constructed simple. The structure of packets sent between SSs is shown in
Table 4.1(b). The figure contains three attributes that are described below:

Packet Type Modify update or Set update.

Variable ID ID of the variable maps to the same variable name on all the SS.
This is because game clients initialise the variables in the same order on
all SSs.

Value The value to modify or set the variable with.

Packets contain an IPv4 header and a TCP header plus data and costs 20 +
20 + 6 = 46bytes. The TCP stack automatically combines multiple packets
sent at the same time to the same destination. The worst case situation with
10 players is a player picking up a power-up. The result is two updates sent to
every player with a burst of ((20 + 20) + 6 · 2) · 9 = 468bytes.

4.2 Rawrlocks Game Client

This section describes the GC packet implementation in Rawrlocks. In Sec-
tion 3.3, we analysed the variables of Rawrlocks in order to find the ones that
required synchronisation. The variables that requires distribution via the GC
are:

41

CHAPTER 4. IMPLEMENTATION

• Avatar Specifics

• Ability Cast

• Ability Fire

• Ability Hit

Furthermore, we defined the freshness and exactness requirements for each
variable, and whether the event is triggered or activated.

A packet in Rawrlocks consists of these four variables and a prefix with a
1 byte hash of the string “rawrlocks”. The hash is checked upon receiving a
packet and the packet is discarded if the hash is wrong. While the freshness
requirement is high for all variables in a packet the exactness requirement
varies. The requirements for each variable is shown in Figure 3.3. Due to the
high exactness requirement on triggered events, a loose form of reliability is
required as described in Section 3.3. In order to distribute as little information
as possible, we analyse which values are required for the triggered events:

Ability Fire

In order to activate an Ability Fire event two things are required:

1. The position it is fired from and in case it is a fireball, the direction it is
fired in.

2. The ability type.

Number 1 is updated independently of the Ability Fire event. Therefore,
this information can be omitted when updating Ability Fire. Number 2 is
specific to the event and must be known in order to activate the correct event.

Ability Hit

In order to activate an Ability Hit event two things are required:

1. Which of the recently fired abilitis is the one hitting

2. The targets of the ability.

Once the fired ability is known, the impact specific details, e.g. knockback,
are retrieved from the fired ability and is applied to the targets. If the correct
fired ability is not found, the avatar may have erroneous impact details applied,
but the game state does not reach an inconsistent state because the clients syn-
chronizes the inconsistent state and it therefore becomes the consistent state.

42

4.2. RAWRLOCKS GAME CLIENT

Triggered Event Reliability

Triggered events in Rawrlocks need only a loose form of reliability. Neither of
the triggered events update game state variables with high exactness require-
ments. Thus, if a triggered event is lost, the game state remains consistent.
However, losing a single packet should not result in the player not being able
to see whether a triggered event occured. The information required to execute
the latest triggered event is sent with every packet. If a packet is lost, an event
can still be executed using the next packet.

In order to achieve the desired level of reliability, events are prefixed with a 4
bit sequence ID. Whenever a triggered event occurs the sequence ID increments.
The packet is updated with the event information required to activate the event
and the packet is sent to every peer.
The sequence ID loop, such that if the last received event sequence ID is above
13, a sequence ID of less than 6 is considered an increment.

4.2.1 Rawrlocks Game Client Packets

The structure of a Rawrlocks packet is as depicted in Table 4.1(a)

Avatar Specifics

This part of the packet contains general information about the avatar. Who
controls it, where it is, the direction it is moving and its knockback.

Avatar Cast

When an avatar casts an ability, its appearance changes in the form of a color
change. This part contains a value indicating whether to cast or not, and a
value indicating which ability to cast. Thus, while a player is not casting, the
value is still being sent with each packet.

Ability Fire

When an ability is fired the type of the fired ability is sent. Whenever an avatar
receives an ability fire event, the fired ability is added to a list of fired abilities
unique to each avatar. The ability is placed in an array at the position equal
to that of the received counter.

Ability Hit

In the event of an avatar being hit by an ability, the player who initiated the
ability makes every other participant aware of the event. This part contains an
ID of the fired ability that hit and the targets hit. Whenever an avatar receives
an ability hit event, the fired ability is fetched from the avatar’s array of fired
abilities. The specific impact details are calculated from the specifications of
the fired ability.

43

CHAPTER 4. IMPLEMENTATION

T
ab

le
4.1:

T
he

structure
of

the
packets

sent
betw

een
nodes.

T
able

4.1(a)
is

the
G
C

packets
w
hile

T
able

4.1(b)
is

the
SS

packets.
(a)

G
am

e
C
lient

P
acket

Structure
D
escription

P
acket

P
arts

R
aw

rlocks
hash

A
vatar

Specifics
A
bility

C
ast

A
bility

F
ire

A
bility

H
it

T
otal

Size
in

bytes
1

14
1

2
3

20
P
acket

P
arts

D
escription

A
vatar

Specifics
A
vatar

ID
P
osition

M
ove

direction
M
ouse

position
K
nockback

T
otal

Size
in

bytes
1

8
1

2
2

14
D
escription

A
bility

C
ast

C
asting

SkillT
ype

T
otal

Size
in

bytes
1/8

7/8
1

D
escription

A
bility

F
ire

Sequence
ID

SkillT
ype

T
otal

Size
in

bytes
1/2

1/2
1

D
escription

A
bility

H
it

Sequence
ID

A
bility

H
it
ID

T
argets

T
otal

Size
in

bytes
1/2

1/2
2

3

(b)

Synchronisation
Service

P
acket

Structure
D
escription

P
acket

T
ype

V
ariable

ID
V
alue

T
otal

Size
in

bytes
1

1
4

6

44

4.2. RAWRLOCKS GAME CLIENT

4.2.2 Packet Conversion

A Rawrlocks packet can be converted to an array of bytes and vice versa. In
order to convert we use some data compression methods to make the packet
size as small as possible.

Direction A direction is compressed from a 2D vector to a number between
0 and 255. The number 255 is the zero vector.

Small numbers Two small positive integers (between 0 and 15) are represented
as one byte such that the first half of the byte is one number while the
other half is the other number. This method is used for sequence ID’s
and skill type.

Booleans Boolean values are added together with a small positive integer
such that the first 7 bits are used for the number and the last bit is the
boolean.

Distance The distance to the mouse cursor from the avatar. A number be-
tween 0 and 90000 is converted to a number between 0 and 255

Knockback The length of the knockback vector is a number between 0 and
600. This is converted into a number between 0 and 255 so it can be used
as a byte. The knockback direction is converted as every other direction

Each conversion has a method to convert to and from a byte. When a
packet object is converted to a byte array each variable is converted to a byte
or an array of bytes. The bytes of the packet parts is joined to a byte array.
The byte arrays of each packet part is joined to form a byte array that contains
the packet information. For the reverse conversion the byte array is read and
the value for each variable in each part is set.

4.2.3 Packet Creation

When the game is initialised a local packet is created. The avatar ID is set to
that of the local player’s ID.
Each of the packet parts contain a function to update the data of the packet part
from an event. Thus, whenever an event is queued the local packet is updated
accordingly. See Section 4.3 for information on events and event queue.

4.2.4 Packet Handling

When a packet is received the replicated avatar corresponding to the received
avatar ID is extracted from the local avatar list. New events are added to the
avatar’s event queue as per the data in the packet. Determining the position of
the avatar is described in Section 4.3.2. Ability Cast is handled straight forward.
If the value indicates that a player is casting, the skill-type determines which
ability the avatar is casting. The color of the avatar is changed accordingly.
For Ability Fire it is checked whether the sequence ID is newer than the last

45

CHAPTER 4. IMPLEMENTATION

ID. If it is, the ID is updated to the new sequence ID and the projectile ID
and ability type is stored in an array at a position equal to the sequence ID.
The ability contained in the packet is fired from the sending avatar’s current
position and direction.
The Ability Hit is handled in a similar way. First, a check to see whether the
sequence ID is higher than the latest ID. If this is the case, the ID is updated
and the ability data is gathered from the list of fired abilities. The target of
the ability applies knockback if the target is the local player. The knockback
depends on the ability, which is described in Section 2.5. Players affected by
knockback sends it as part of their packet.

4.2.5 Packet Loss

The game is designed to handle packet loss. However, the effect of packet
loss varies depending on the data contained in the lost packet. If there are no
changes to triggered events and the avatar does not change direction, packet loss
is unnoticeable. This is because the position of remote avatars is extrapolated if
no new positions are known. However, if the first packet containing a triggered
event is lost, the event has further delay imposed, and thus the time difference
between activation across peers is bigger than if no packets were lost. If a peer
loses all packets for a second or two, the peer is likely to lose a triggered event,
meaning that either an ability is not fired on the peer’s client or a hit does not
occur. We argued, in Section 3.3, that the loss of a triggered event should not
cause the game to reach an inconsistent state.

4.3 Event Delay

Section 3.5 discusses solutions to add artificial delay to events. This section
contains an explanation of how the selected solution, presented in Section 3.6.2,
is implemented in Rawrlocks.
There are five types of events in Rawrlocks that are distributed via the GC.
These events require the following information updated:

Cast Event Cast events contain two values:

• A boolean determining whether or not to cast.

• An integer determining which ability to cast.

Fire Event Fire events contain one value: Which ability to fire.

Hit event Hit events contain two values:

• A value determining which of the abilities that was fired that hit.

• Which enemies are hit.

Knockback event In order to activate a knockback event, the knockback
vector must be known.

46

4.3. EVENT DELAY

Move event The direction an avatar walks.

These events are the ones necessary to alter the variables distributed via
the GC decided in Section 3.3.

4.3.1 Event Base Class

Each event inherits from the event base class, that contains a set of common
values and functions:

Owner The avatar that owns the specific event. The owner can either be
local (controlled by the player in front of the computer) or remote.

Condition The condition of the event. If the condition is true, the event must
be executed. This value is only used for local events.

Event Queue A queue of events specific to the owning avatar and the event
type. The data contained in an element in the queue is described in
Section 4.3.

AddToEventQueue Adds an event to the event’s event queue.

AddToLocalPacket Adds the data of the event to the next packet to be sent.

Activate Executes the event.

The events run differently depending on whether the owner is the local player
or a remote player. Figure 4.1 is a flowchart diagram, that illustrates what
happens at the local player, Plocal (top half of the figure), and remote player,
Premote (bottom half of the figure), in the event algorithm.

Local Player Events

If condition is true, two things happen in Plocal’s GC:

• The event is added to the event queue via the AddToEventQueue function.

• The data of the event is added to the local packet via the AddToLocal-
Packet function.

If the event is a triggered event, the local packet is sent to all remote peers
immediately. Otherwise, packets are sent at the regular rate of (n − 1) × 20
packets per second to remote peers.
When an event has been in the event queue for GD the event is activated via
the Activate function and removed from the event queue.

Remote Player Events

The local GC receives a packet from Premote after a delay of Lremote,local. The
packet contains the data of an event. The local GC uses this data to create
and add the event to Premote’s event queue. An event from Premote is executed
at Plocal after EDremote,local = GD − Lremote,local via the Activate function.
After activation, the event is removed from Premote’s event queue.

47

CHAPTER 4. IMPLEMENTATION

Condition

True
AddToEventQueue
AddToLocalPacket

False

Δt = 0
Activate

Activate

Δt = GD

AddToEventQueue

Δt = ED

Δt = L

Do nothing

Local Player

Remote Player

Figure 4.1: Local- and remote player event activation.

4.3.2 Position Prediction

As per the design of our latency solution described in Section 3.6.2, the position
of the local avatar is predicted before it is sent.

In order to meet the freshness requirements of avatar position, a change
in direction triggers a new packet, that is sent instantly to every other peer.
When a player receives a packet, a move event is created with the received
position. When the event is activated, the position of the player is set to the
received value.

Position Prediction Between Received Points

For every remote player in the game the three latest received positions are
stored. tn is the time when the newest received position is active and to is the
time when the oldest received position is active. If tn > t, Premote moves from
its current position to the newest received position.
If tn < t we extrapolate in a line from Pos(Premote, to) to Pos(Premote, tn).
If tn = t the position of the avatar is set to the received value.

The three situations are listed below:

If tn > t:

Pos(Premote, t) = Pos(Premote, t) + ̂(Pos(Premote, tn)− Pos(Premote, t))× SP

If tn < t:

Pos(Premote, t) = Pos(Premote, t) + ̂(Pos(Premote, tn)− Pos(Premote, to))×SP

If tn = t:
Pos(Premote, t) = Pos(Premote, tn)

48

4.4. IMPLEMENTATION ISSUES

Using these formulas we can calculate the position of an avatar at time t,
whether or not a new value of the position of the avatar has been received.

4.4 Implementation Issues

This section describes some of the issues regarding the implementation of Rawr-
locks.

4.4.1 Mouse Position Delay

In the current implementation, the mouse position is not delayed. This means
that whenever Plocal receives a packet from Premote, the mouse position of
Premote is set when it is received. Therefore, the mouse position of players is
not consistent and so, fire events are likely to be activated in different directions
across peers.
E.g: A situation where Lremote,local = GD. Plocal activates a fire event. At
t+ 0, Plocal sends the fire event and direction to every other peer. At t+GD,
Plocal activates the fire event in Dir(Plocal, t + GD). However, remote peer
activates the fire event in Dir(Plocal, t), since it is the newest received direction
of Plocal.
The amount mouse direction can differ across peers depends on the latency
between peers and how fast Plocal moves his mouse. If Plocal moves his mouse
from one side of his avatar to the other, the direction changes 180◦. The worst
case scenario in the current implementation is that a fire event is activated in
opposite directions, which is an unacceptable situation. In the current imple-
mentation mouse position is delayed by Lremote,local for remote players due to
the latency.

If we were to delay mouse position, players might be able to notice the
imposed delay. The implementation decide the direction of a fire event when
it is added to the event queue instead of when it is activated. If fire events
were handled this way, the fire events would be activated in the same direction
across clients if Lremote,local ≤ GD and the first packet containing the fire event
is not lost.

4.4.2 Packet Reordering

Currently, packets do not contain a sequence ID, and thus, there is no method
to detect if a packet is out of order. If Plocal receives an old packet from
Premote, Plocal mistakenly believes the delay of the packet is Lremote,local while
the packet in reality is further delayed. Therefore, the position of Premote is set
to an incorrect value upon activating the misordered packet. Packet reordering
can be avoided if a packet sequence ID is introduced. Thus, if a packet has
wrong ordering, the packet sequence ID is lower than the newest received packet
sequence ID.

49

CHAPTER 4. IMPLEMENTATION

4.4.3 Latency Estimation

Our latency estimation technique is simple: RTT/2 = latency. Other latency
estimation techniques use the same approach. However, Choi and Yoo [15]
proved that latency 6= RTT/2. Latency estimation using RTT differs by up
to 25% from the real latency. Thus, if latency = 50ms then the estimated
latency varies with ±12.5. This is a value far below what humans are able
to detect. Furthermore, other games have used RTT/2 as an estimation of
latency successfully.

50

5
Testing

This chapter presents the testing conducted on Rawrlocks. Section 5.1 de-
scribes the environment used to run our tests. Besides the description of the
test environment the section contains an explanation of the global timer that
is used to compare results and how the network between the test environment
computers is emulated. Section 5.2 contains descriptions of the scenarios used
to test how consistent Rawrlocks is along with a discusion of the results. Sec-
tion 5.3 describes the bandwidth testing, the results are used to determine how
much traffic Rawrlocks produces.

5.1 Environment

The test environment is the set of computers we use to test Rawrlocks. The
environment consists of four identical Dell Optiplex GX620 computers and two
Lenovo SL500 2746 notebooks connected via ethernet through a D-Link DES-
1008D switch.
The specifications are as follows:

• Dell Optiplex GX620: Intel Pentium D 820 2.8GHz, 1GB DDR2 memory,
ATI Mobility Radeon X600.

• SL500 2746: Intel Core 2 Duo 2.0GHz(AQG) and 2.4GHz(49G), 2GB
DDR2 memory, NVIDIA GeForce 9300M GS 256MB

• D-Link DES-1008D: 8 10/100mb ports.

Computer 1-4 are Dell Optiplex. Computer 5-6 are Lenovo SL500. The
computers have the following setup and roles in testing:

Computer 1 is running Ubuntu Linux 10.10. The computer has netem in-
stalled.

Computer 2-6 is running Windows 7 and plays the game.

A test runs as follows: Computer 1 starts the game, kills the game and
collects the log files from Computer 2 to Computer 6. The consistency tests
run on Computer 2 and Computer 3 or Computer 5 and Computer 6. The
bandwidth tests run on all the game computers, Computer 2-6.

51

CHAPTER 5. TESTING

Master (C1)
High res. Timer

tglobal

Master (C1)
High res. Timer

tglobal

Clock

Broadcast
Clo

ck

Bro
ad

ca
st

 Pi (Ci)
tc,i = ki + ti

 Pi (Ci)
tc,i = ki + ti

 Pj (Cj)
tc,j = kj + tj

 Pj (Cj)
tc,j = kj + tj

Figure 5.1: The master (Computer 1) has a high resolution timer. The timer is
broadcasted to peers to synchronise timestamps in logs. In this figure x is replaced
with the respective peer i, j.

5.1.1 Global Timer

In order to test whether events execute at the same absolute time, we have
implemented a global timer.
Computer 1 runs a high resolution timer [25] and broadcasts the current time
using an UDP packet with destination 224.100.0.1 with a 100ms interval. The
broadcast is shown in Figure 5.1. The time broadcasted is known as tglobal.
The packet is not broadcasted onto the subnets used for test cases, but onto
the normal network which has no induced latency or bandwidth restrictions.
After starting Rawrlocks Computer 2-6 receives the first packet from Computer
1, Computer 2-6 sets a local value kx such that kx = tglobal. Furthermore,
Computer 2-6 starts a local high resolution timer, tx, that counts up from 0.
The current time on Computer x is tc,x = kx + tx.

Every five seconds Computer 2-6 listens for a new value of tglobal. Upon
receiving a new value of tglobal, the value of kx is updated such that kx =
tglobal − tx Due to local network delay and CPU scheduling we accept tc,x to
drift ±5ms from the value of tglobal. If a test contains a time difference bigger
than 5ms the test is discarded.

5.1.2 netem

In order to test Rawrlocks with varying latencies, we use netem, a module that
provides a network emulation functionality [26]. netem can, amongst a list
of filters, add a network latency filter. The network latency filter can add a
specific delay to incoming and outgoing packets.

52

5.1. ENVIRONMENT

Master (C1)
netem

Master (C1)
netem

Raw
rlo

ck
s

tra
ffi

c

Raw
rlocks

traffic

P
i 's packet delayed by L

w
ith netem

P j's
 p

ac
ke

t d
ela

ye
d b

y L

w
ith

 n
ete

m

 Pi (Ci) Pi (Ci) Pj (Cj) Pj (Cj)

Figure 5.2: Setup with netem on the master computer.

Testing with netem

Setup Our test setup is illustrated in Figure 5.2. Computer 1 has netem
installed. All traffic created by Rawrlocks is routed through Computer 1 before
it is arrives at the receiving peer. Computer 1 adds a static latency to outgoing
packets.

Latency To test variable added latency with netem, we need real world sam-
ples to compare with. In order to test latency stability in a real world internet
environment, we ping a server in Spain and a server in Australia from a server
located in AAU’s network ≈ 87600 times at a rate of one time per second. The
results are shown in Figure 5.3(a) and 5.3(b). The figure shows how much ping
times deviates from the previous ping. The majority of pings do not deviate
from ping to ping. Combined ≈ 2.1% deviates with 6ms or more. The maxi-
mum deviation for Australia is 14ms and 212ms for Spain, but these deviations
happened once or twice over a 24 hour period.

In order to test the artificial latency distribution of netem, we add a delay
filter with a normal distribution on Computer 1. The delay is 50ms and it is
varying with ±20ms. Thereafter, we ping Computer 2 from Computer 3 while
routing the traffic of Computer 3 through Computer 1. The distribution graph
of the test is shown in Figure 5.3(c). While the real world tests show ≈ 2.1%
with 6ms or higher deviation, netem has ≈ 90% over.

While it is possible to add our own distributions based on experimental
data in netem it is beyond the scope of this project. Therefore, we do not test
with varying latency but use a predefined fixed latency.

Packet Loss The game is designed to handle some degree of packet loss. If
a packet is lost in Rawrlocks, it does not need to be resent. The information
in the lost packet is still contained in the following packet provided that no

53

CHAPTER 5. TESTING

 0

 20000

 40000

 60000

 80000

 0 1 2 3 4 5 6 7 8 9

C
ou

nt

Deviation from previous ping time in ms

(a) Australia

 0

 20000

 40000

 60000

 80000

 0 1 2 3 4 5 6 7 8 9

C
ou

nt

Deviation from previous ping time in ms

(b) Spain

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

C
ou

nt

Deviation from previous ping time in ms

(c) netem

Figure 5.3: Ping deviation between each ping, by pinging every second.

new triggered events are activated. Due to time constraints we do not test for
packet loss.

5.1.3 Test Scenario

A test runs like this:

• Computer 1 contacts the computers playing the game and informs them
to start the game.

• The game runs for a predefined time span. This span varies and depends
on how much time it takes for one test run to complete.

• Computer 1 synchronises tc,x of the computers. One of the computers
playing the game is chosen by the SS to decide a test start time. The
starting time is relative to tglobal. When each players’ tc,x reaches the
specified value, the computers start the test locally. It is assumed that
the test is started at the same absolute time across peers.

• After a test has run for the specified amount of time, Computer 1 tells
the other computers to kill the game and collects the logs.

This process loops until a sufficient amount of logs are gathered.

54

5.2. CONSISTENCY TESTING

25ms 50ms 100ms 250 ms
with ED × × ◦ ◦
without ED ◦ ◦ ÷ ÷

Table 5.1: The types of test cases we have chosen to run for our consistency tests.
“×” is a test inside our requirements while “◦” is outside our requirements. “÷” means
the test is not performed.

5.2 Consistency Testing

The tests described in this section help determine if Rawrlocks stays consistent
between two peers. We construct two different scenarios, each following a script.
By using the same scripts we can replay the same situation several times, and
check if the participants agree on the outcome.

Each scenario is tested several times with minor modifications in order to
test slightly various situations and compare the results. In the tests with event
delay, events are delayed by a value of 50ms. The tests are conducted without
graphics rendering and run at ≈ 16000 FPS.

Table 5.1 provides an overview of the different test cases carried out in this
section. In the table it is depicted which test cases are inside and which test
cases are outside our requirements. A test inside our requirements means that
the test is run within our set latency limit of 50ms and with the implemented
event delay. Outside our requirements means that the test is run either with a
latency above our latency limit or without event delay.

The following sections provide a thorough description of the scenarios.

5.2.1 Scenario 1: Fireball

This scenario has two actors; avatar 1, who moves in a straight line and avatar
2, who shoots a fireball in a vector perpendicular to avatar 1’s movement vector.
The scenario is illustrated in Figure 5.4. A maximum of one fireball may hit
avatar 1 because the cooldown on the fireball ability is bigger than the amount
of time it takes for avatar 1 to walk across the area where he may get hit by a
fireball.

Variables We modify this scenario in two ways;

• Change the initial position of avatar 1 – depicted in Figure 5.4 by the
adjustment vector.

• Change the network latency between the peers.

By changing the initial position of avatar 1 we get situations where the fireball
hits avatar 1 and situations where the fireball does not hit. By testing with
latencies within our requirements (25ms and 50ms) and latencies above (100ms

55

CHAPTER 5. TESTING

Avatar 1

Avatar 2
Fireball
 Vector

M
o

ve
m

en
t

V
ec

to
r

A
d

ju
st

m
en

t
V

ec
to

r

Figure 5.4: Illustration of fireball scenario. Avatar 1 moves along a vector while
avatar 2 fires a fireball in a vector perpendicular to avatar 1’s movement vector

and 250ms), we see if Rawrlocks stays consistent both within and outside our
requirements.

Motivation This test is conducted to check three aspects of the Rawrlocks
implementation:

• Do the peers activate the ability-fire events at the same time. The time
we compare is tA−fire1 and tA−fire2 in Figure 5.5. This metric tests our
event delay.

• Do the peers agree on the game state with regards to ability-hit events.
This metric tests if our latency hiding technique can be used to calculate
future game states.

• Are the positions of the avatars equal across peers when an ability-hit
event occurs? This metric tests our position prediction.

Measurements In this test we are interested in three metrics:

Event execution test We look at the time ability-fire events are activated lo-
cally for both players. We display the time differences between event
activations on a chart.

Agreement test We look at whether both players agree on a fireball hit or
not. The test results list the number of hits the players agreed on and
the number of hits they disagreed on.

Position prediction test We look at the position of the player being hit by
a fireball when the ability-hit event is activated. Both nodes log the

56

5.2. CONSISTENCY TESTING

P2 E2 P1E1

G
D

L
2,1

ED
1,2

ED
2,

2

tQ-fire2

tA-fire2 tA-fire1

t t t t

tQ-fire1G
D

 – L
1

,2

Figure 5.5: Illustration of the time we use to compare fireball event activation.
Player 2, P2, queues a fireball ability-fire event at time tQ−fire2 and his engine, E2,
sends the event to E1. The ability-fire event is activated at P2 after GD at time
tA−fire2. After the event is received at E1 the event activates at P1 after GD − L2,1

at time tA−fire1. The compared times are tA−fire1 and tA−fire2.

position of the avatar being hit when the ability-hit event is activated.
We calculate the maximum and average distance between player position
at ability-hit event activation. Note that if the ability-hit event is not
activated at the same time, the position of the avatar is not logged at the
same time either.

The tests satisfy our goals by the following metrics:

Agreement test An agreement test satisfies if the players agree on ability-hit
events in at least 99% of the tests.

Event execution test An event execution test satisfies if the events activate
within ±10ms, out of which 5ms stems from clock synchronisation inac-
curacy.

Position prediction test A position prediction test satisfies if the position of
avatars vary with less than one yard. For reference, the avatar has a
radius of 23 yards.

Expected Outcome We expect the tests to satisfy our requirements if the
latency is less than or equal to GD and event delay is activated. Otherwise,
we expect the tests to fail. Furthermore, we expect to see similar results for
tests with 100ms latency with event delay and tests with 50ms latency without
event delay. With regards to position prediction, the situations are depicted
in Figure 5.6. The values to be noticed in the figure are what the time of
the position activation is when the ability-hit event is activated. For both
figures the difference in time of position activation when the ability-hit event is
activated is 100ms. An avatar can move 9 yards in 100ms, and thus we expect
the position prediction “100ms with ED” test and the “50ms without ED” test
to have a position difference of ≈ 9 yards.

57

CHAPTER 5. TESTING

P1 (Hit) E1 E2

L

t t t t

P2 (shooter)

Hit P2 A(50)

Pos P1 A(0)

Hit P2 A(50)

Pos P1 A(100)

Pos P1 A(0)

t=100

t=50

t=0

(a) Without ED and 50ms latency

P1 (Hit) E1 E2

L

Pos P1 Q(50)

t t t t

P2 (shooter)

Hit P2 Q(100)

Hit P2 A(100)

Pos P1 A(50)

Hit P2 A(100)

Pos P1 A(150)

Pos P1 A(50)

t=100

t=50

t=0

t=150

(b) With ED and 100ms latency

Figure 5.6: The illustrations show a situation where a player hits another player
with an ability. P1 is the target of the ability-hit event while P2 makes the event.
The illustrations contain four terms that must be defined: “Pos” is the position of a
specific player, “Hit” is an ability-hit event created by a specific player, “At” means
the event should be activated at time t and “Qt” means the ability must be queued
and should be activated at time t.
In both situations, P2 sees the position of P1 at time t0 when the ability-hit event is
activated. P1 however, sees his position at time t0+100ms when the ability-hit event
is activated at P1.

58

5.2. CONSISTENCY TESTING

Agreement Test
With ED Without ED

Latency 25ms 50ms 100ms 250ms 25ms 50ms
Iterations 1423 1560 309 223 282 228
Number of hits 475 517 100 77 99 79
Agree on hit 474 518 85 10 93 64
Agree on no hit 946 1036 193 88 173 143

Disagreements
3 6 31 125 16 21

(0.21%) (0.38%) (10%) (56%) (5.7%) (9.2%)
Agreements in % 99.79 99.62 90 44 94.3 90.8

Table 5.2: Test results for the agreement test

Test Results

The test results from the agreement and position prediction test cases are shown
in Table 5.2 and Table 5.3 respectively.

The test results for the event execution test are shown in Figure 5.8 for
cases with event delay and in Figure 5.7 for cases without event delay. The
figures show absolute event execution time difference between peers.

Agreement Test Table 5.2 shows the test results of the agreement test case.
The results show that the test cases within our requirements pass the agree-
ment test while the tests outside our requirements failed. The tests within our
requirements are above the set limit of 99%. The best result of the test cases
outside our requirements is the “25 ms without event delay” test where the
actors agree in 94.3% of the iterations.

It is interesting to note how closely the results of the “100ms with ED”
and “50ms without ED” cases resemble each other. Agreement is at 90% and
90.2% respectively. This is because the implemented event delay in effect cuts
off 50ms of the latency by delaying the game execution 50ms. Therefore, the
tests “100ms with ED” and “50ms without ED” show equal results. This further
supports that the event delay works as intended and that event delay works by
adding a global delay, as described earlier.

Event Execution Test Figure 5.8(a) and Figure 5.8(b) show the 25ms and
50ms tests with event delay, and lies within our requirements. The charts of
the tests within our requirements show that most of the ability-fire events are
activated at both peers within a few milliseconds.

Figure 5.8(c) and Figure 5.8(d) shows the 100ms and 250ms tests with event
delay. These tests are outside the requirements of what Rawrlocks is intended
to handle. Therefore, there is a time deviation too big to be acceptable. The
100ms and 250ms latency tests with event delay fails the event execution test.

Figure 5.7 shows the results of the tests without event delay. Even though
the latency is within our requirements for both tests, the time difference be-

59

CHAPTER 5. TESTING

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 18 20 22 24 26 28 30 32 34

F
ire

ba
lls

 fi
re

d

Execution deviation between peers in ms

(a) 25ms latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 44 46 48 50 52 54 56 58 60

F
ire

ba
lls

 fi
re

d

Execution deviation between peers in ms

(b) 50ms latency

Figure 5.7: Fireball ability-fire event activation time deviation across clients. All
tests are done without event delay.

tween ability-fire event activation deviates more than is allowed per our satisfi-
ability metrics. It is worth noting that the ability-fire event activation deviates
by an amount of time approximately equal to the network latency between
peers. This is expected when latency is not taken into consideration in the
game.

There is a spike in all the charts in Figure 5.8 around 20-50ms later than
the biggest spike. In the charts in Figure 5.7 this spike occurs around 6-8ms
later. All the values are from the first fireball fired in an iteration and not
any additional fireballs. We assume this is due to a programming error and
therefore we do not consider these to be useful results.

The test results show that our event delay technique succeeds in executing
events on all peers within a reasonable timespan. This holds so long as the
latency between peers does not exceed the amount of time events are delayed
by.

Position prediction test Table 5.3 shows that there is a noticeable difference
between tests within our requirements. The “25ms with ED” test has one
occurrence (0.21%) outside our satisfactory metrics while the average position
difference is 0.47 yards. The “50ms with ED” test has 36 occurrences (6.9%)
outside our satisfactory metrics. The average position difference is below our
satisfiability requirements in both tests within our requirements. In the test
cases outside our requirements, the players disagree on positions in every test
run.

In the “50ms with ED” test the maximum position difference is 2.7 yards, a
distance beyond the satisfying requirements. For reference, the avatar radius
is 23 yards, thus 2.7 yards is ≈ 12% of the avatar radius. The movement speed
of an avatar is 90 yards/s, meaning that a distance of 2.7 yards is coverable
in 30ms. Furthermore the average difference does not exceed the limit of 1
yard. These facts make us believe that the erroneous position predicitions do
not have a big impact.

60

5.2. CONSISTENCY TESTING

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 0
 1

0
 2

0
 3

0
 4

0
 5

0
Fireballs fired

E
xe

cu
tio

n
de

vi
at

io
n

be
tw

ee
n

pe
er

s
in

 m
s

(a
)

25
m

s
la

te
nc

y

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0

Fireballs fired

E
xe

cu
tio

n
de

vi
at

io
n

be
tw

ee
n

pe
er

s
in

 m
s

(b
)

50
m

s
la

te
nc

y

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

 1
10

Fireballs fired

E
xe

cu
tio

n
de

vi
at

io
n

be
tw

ee
n

pe
er

s
in

 m
s

(c
)

10
0m

s
la

te
nc

y

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

 1
90

 2
00

 2
10

 2
20

 2
30

 2
40

 2
50

 2
60

Fireballs fired

E
xe

cu
tio

n
de

vi
at

io
n

be
tw

ee
n

pe
er

s
in

 m
s

(d
)

25
0m

s
la

te
nc

y

F
ig
u
re

5.
8:

F
ir
eb

al
la

bi
lit
y-
fir
e
ev
en
t
ac
ti
va
ti
on

ti
m
e
de

vi
at
io
n
ac
ro
ss

cl
ie
nt
s.

A
ll
te
st
s
ar
e
do

ne
w
it
h
ev
en
t
de

la
y.

61

CHAPTER 5. TESTING

Position Prediction Test
With ED Without ED

Latency 25ms 50ms 100ms 250ms 25ms 50ms
Iterations 474 518 100 77 99 79
Position difference
(average) in yards

0.47 0.86 9.9 37 5.0 9.7

Position difference
(max) in yards

1.7 2.7 13 50 5.1 24.4

Position difference
above 1 yard

1 36 100 77 99 79

Position difference
above 1 yard in %

0.21 6.9 100 100 100 100

Table 5.3: Test results for the position prediction test

Fireball Scenario Results
With ED Without ED

Latency 25ms 50ms 100ms 250ms 25ms 50ms
Agreement test × ×
Event execution test × ×
Position prediction test ×

Table 5.4: The fireball scenario tests that satisfied our test metrics are marked with
an “×”.

Based on the results, we conclude that the functionality of the position
prediction depends on the latency between peers. This is probably because we
use extrapolation if the received position should be active at a time before the
current game time. Therefore, in tests with 50ms delay, the position is set the
moment it is received. After the position is received, we extrapolate between
earlier received points.

Again there is a resemblance between the “100ms with ED” and “50ms
without ED” tests. The average position difference is 9.9 yards and 9.7 yards
respectively. We expected the positions to differ with ≈ 9 yards, so the results
are as expected.

Satisfying Test Results:

Table 5.4 shows the tests that passed our requirements, illustrated by an “×”.
One test within our requirements failed, the position prediction “50ms with
ED” test. Otherwise, the test results are as expected.

62

5.2. CONSISTENCY TESTING

Avatar 1 Avatar 2
Movement

Vector
Movement

Vector

Power-up

Figure 5.9: Illustration of Power-Up scenario. Two players race each other for the
power-up.

5.2.2 Scenario 2: Power-Up

In this scenario two players race each other for a power-up by moving towards
it from opposite sides. The ownership of the power-up belongs to player 2. The
scenario is illustrated in Figure 5.9.

Variables We modify the latency in this scenario. First, the scenario is run
with a latency of 25ms, 50ms, 100ms and 250ms with event delay enabled.
Afterwards, the test is run with 25ms and 50ms latency without event delay.

Motivation This test is conducted to check two aspects of the SS implemen-
tation:

• Test to check if only one avatar obtains the power-up effect.

• Check if the owner of a power-up has an advantage in obtaining the
power-up in relation to the position prediction. The implemented posi-
tion prediction should cause the owner of the power-up to not have an
advantage.

Measurements In this test we are interested in three metrics:

Agreement test We look at whether the players agree on who gets the power-
up. The test results show the number of times the players agreed and
disagreed.

Disagreement test If the players disagree on who gets the power-up, we look at
collisions between players and power-up from the perspective of the player
that did not get the power-up. The time difference between collisions is
depicted in the test results.

63

CHAPTER 5. TESTING

Exactness test The power-up effect must only be active on one avatar at any
time. The test results show the amount of times each player gets the
power-up effect.

The tests satisfy our goals by the following metrics:

Agreement test The avatars start equally far away from the power-up and
starts walking towards it at equal speeds at the same time. Therefore,
the avatars should reach the power-up in the exact same frame. In order
to meet the requirements, the players must agree on the outcome in at
least 99% of the test runs.

Disagreement test When the players disagree on who gets the power-up, the
time difference between the collisions between players and power-up must
be below 10ms out of which 5ms stems from clock synchronisation inac-
curacy. The value is so low to make sure it is unnoticeable for a human.

Exactness test The test satisfies iff one player gets the power-up. If more
than one avatar gets the power-up, the test has failed. If the game is to
remain consistent at latencies above GD, this test must not fail in any
test case, with or without event delay.

Expected Outcome We expect the tests to satisfy our requirements if the
latency is less than or equal to GD and event delay is activated. Otherwise,
we expect the tests to fail. However, we expect the exactness test to succeed
in every test case.

Test Results

The test results from the agreement test are shown in Table 5.5, the disagree
time difference test results are shown in Table 5.6 and the exactness test results
are shown in Table 5.7.

Agreement Test The results of the agreement tests are shown in Table 5.5.
The results show that the players do not agree on who gets the power-up. The
best result is for the “25ms with ED” test case where the players agree ≈ 66%
of the test runs. In the rest of the cases, the players agree less than 1% of the
times. This is not satisfiable in itself because the players should agree on the
result of ingame events.

The problem with this test is that the players start with an equal distance
to the power-up and starts moving at the exact same time. Therefore, the
smallest difference in player position can can result in a disagreement between
players. The fact that the players agree ≈ 66% of the times in the 25ms with
event delay is impressive since the smallest incorrectness can affect the result.

It is interesting to look at the time difference between collisions with the
power-up for each player in the eyes of the player that did not get the power-
up. If the time difference is so small that humans are unable to notice it, the
disagreement is irrelevant, since the player that disagreed with the event is
unable to notice that the opponent had an unfair advantage.

64

5.2. CONSISTENCY TESTING

Agreement Test
With ED Without ED

Latency 25ms 50ms 100ms 250ms 25ms 50ms
Iterations 3523 1362 329 245 270 212
Player 1 got power-
up

1159 55 0 0 0 212

Player 2 got power-
up

2366 1307 329 245 270 0

Agreement 2336 76 0 1 1 0
Disagreement 1177 1285 329 244 269 212

Table 5.5: Test results for the agreement test.

Disagreement Test The results for the disagreement test are shown in Ta-
ble 5.6. The discussion of these results are split in two parts: The results from
tests within- and outside our requirements.

Disagree Time Difference Test
With ED Without ED

Latency 25ms 50ms 100ms 250ms 25ms 50ms
Disagreement itera-
tions

1177 1285 329 244 269 212

Disagreement time
in ms (average)

0.35 0.67 50 200 24 49

Disagreement time
in ms (maximum)

35 17 52 202 27 52

Over disagreement
time-limit

9 16 329 244 269 212

Table 5.6: Test results for the disagree time difference test.

Inside requirements The tests in this discussion are 25ms and 50ms tests with
event delay. In the 25ms test, the average amount of time between players
colliding with the power-up is 0.35ms. A time frame so small is only
possible if a game is running at more than 2500FPS. If the game ran
with 20FPS, the logged time difference would be in iterations of 1/20th
of a second. 1/20th of a second is 50ms, so every value below 50ms would
be logged as a difference of 0ms. In both tests inside our requirements,
the maximum disagreement time is 35ms. A number that is in the range
from 0ms to 50ms, and thus can be in the same frame in a 20FPS scenario.
The number of frames required for the 50ms test is 1400, which is also
well above a normal frame rate for games. The maximum amount of time
between players colliding with the power-up is 17ms. This is also a value
below what is humanly noticeable.

65

CHAPTER 5. TESTING

Outside requirements None of the tests outside our requirements satisfied our
testing metric. Even though the differences can be unnoticeable by a
human with 20FPS as described above, the disagreement average is too
high compared to the inside requirements results where the average is
below 1ms.

Exactness Test Table 5.7 shows the results of this test. The results show that
exactly one player gets the power-up in every iteration and therefore satisfies
the requirements completely. The fact that this test never fails shows that
variables with high exactness requirements are exact even at high latencies.
This is necessary if the game state is to remain consistent for peers where
latency may exceed the specified maximum value.

Exactness Test
With ED Without ED

Latency 25ms 50ms 100ms 250ms 25ms 50ms
Iterations 3523 1362 329 245 270 212
Exact power-up
pickup

yes yes yes yes yes yes

Table 5.7: Test results for the exactness test.

Satisfying Test Results:

Table 5.8 shows the tests that passed our requirements, illustrated by an “×”.

Power-Up Scenario Results
With ED Without ED

Latency 25ms 50ms 100ms 250ms 25ms 50ms
Agreement test
Disagreement test × ×
Exactness test × × × × × ×

Table 5.8: The test runs that had satisfactory results as per our requirements.

5.3 Bandwidth Testing

The test described in this section helps to determine if Rawrlocks abides by
our bandwidth requirements of 256/256 kbit/s.

Scenario The main focus in this test is to determine the average bandwidth
consumption for different numbers of players in the game. Certain events, such
as firing abilities or picking up power-ups causes temporarily increase in the

66

5.3. BANDWIDTH TESTING

Bandwidth Consumption Results
Players 2 3 5
Connections for every peer 1 2 4
Runtime in seconds 206 257 150
Bandwidth consumption (avg) in kbit/s 11.1 21.7 43.1
Bandwidth consumption (max) in kbit/s 16.3 34.1 68.8
Bandwidth consumption per conn. (avg) in kbit/s 11.1 10.9 10.8
Bandwidth consumption per conn. (max) in kbit/s 16.3 17.1 17.2

Table 5.9: Results from the bandwidth consumption test

bandwidth consumption, so we have constructed a simple bot that activates
these events.

Bot Functionality Without going into too much detail, we briefly describe
the functionality of the bot.
The bot has two desires:

1. It wishes to stay away from the lava. If it is in the lava it uses teleport
to get away.

2. It wishes to cause damage to its opponents. It uses scourge if another
avatar is within a certain distance. Otherwise, it either decides to walk
in a random direction or shoot a fireball in the direction of an opposing
avatar.

Variables We change one value in this test: the number of players.
By changing the number of players, we get an estimate of the traffic increase
that more peers cause. A fully connected topology implies that the number of
messages sent is (n−1)∗PPS – where n is the number of peers in the network
and PPS is the amount of packets per second. In Rawrlocks, minimum is
PPS = 20.

Measurements We perform this test with two, three and five peers. This
means that each peer connects to one, two and four peers respectively.

Expected Outcome We expect the tests to show that Rawrlocks, even with
10 players and at peak values, do not produce more traffic than can be sent
and received with a 256/256kbit/s connection. We expect the bandwidth con-
sumption to depend linearly on the amount of peers.

Test Results

Table 5.9 shows the results. The information in the table is made from outgoing
traffic, but the incoming traffic is equal to the outgoing in Rawrlocks.

The results show that the outgoing bandwidth consumption per peer is
approximately the same. With this in mind, the average outgoing bandwidth

67

CHAPTER 5. TESTING

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

B
an

dw
id

th
 c

on
su

m
pt

io
n

in
 k

bi
t/s

Players

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

B
an

dw
id

th
 c

on
su

m
pt

io
n

in
 k

bi
t/s

Players

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

B
an

dw
id

th
 c

on
su

m
pt

io
n

in
 k

bi
t/s

Players

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

B
an

dw
id

th
 c

on
su

m
pt

io
n

in
 k

bi
t/s

Players

x = 15.88 x = 24.27

Figure 5.10: The required bandwidth as a function of the number of players in the
game. If the players must be able to handle peak bandwidth consumption the game
scales to 15 players, while it scales to 24 players if players must only handle average
bandwidth consumption

consumption in a game with 10 players is approximately (10− 1) ∗ 11kbit/s =
99kbit/s.
The maximum outgoing bandwidth consumption in a game with 10 players is
approximately (10 − 1) ∗ 17.2kbit/s = 154.8kbit/s. A maximum bandwidth
consumption value of 154.8 kbit/s is below our bandwidth limit of 256/256
kbit/s.

Figure 5.10 shows the bandwidth consumption as a function of the amount
of players in the game. According to the graph, Rawrlocks scales to 15 players
under maximum bandwidth consumption and 24 players with average band-
width consumption.

5.4 Summary

The tests performed in this chapter are related to the problems outlined in
the problem definition in Section 1.1. The overall problem is, “is it possible to
keep a fast-paced multiplayer game with up to 10 players consistent using a
peer-to-peer solution”. We tested for consistency in Section 5.2 and bandwidth
consumption in Section 5.3.

Consistency testing tests to see if the game remains consistent at variable
latencies with event delay both enabled and disabled. We test two scenariors; a
fireball scenario, described in Section 5.2.1 and a power-up scenario, described
in Section 5.2.2. Table 5.1 shows the conducted tests within each scenario and
which test cases are inside or outside our requirements.

The results from the fireball scenario are summed up in Table 5.4. Only
one test within our requirements fail, the position prediction at 50ms latency

68

5.4. SUMMARY

with event delay. The average results from the failed test case are within our
satisfactory limit, but in 36/518 occurrences the position varies by more than
one yard across nodes. The maximum variance is at 2.7 yards. The results
show that the game fulfills the original requirements in all but one test case. In
the failed test case, the results are arguably pretty good – the average position
variance is less than one yard and the maximum variance 2.7 yards, a distance
coverable in 30ms.

The results from the power-up scenario are summed up in Table 5.8. The
results show that there are problems with agreeing on the outcome of events
across peers. However, if the players disagree on the outcome, the difference
in time between collisions is so small that it is impossible for humans to see
the difference. The situation presented in the power-up scenario would rarely
occur in a real world scenario. It is unlikely that players starts moving towards
a power-up from an equal distance at the exact same time. Conflicts happen
because the time frame between collisions is less than 1ms. The exactness test
succeeds in all test cases and therefore the game does not reach an inconsistent
state even at high latencies.

Bandwidth testing tests how much traffic Rawrlocks generates in a nor-
mal game. The results, shown in Table 5.9, show that the bandwidth con-
sumption is below the limit of 256kbit/s, even during peaks. The bandwidth
consumption per connection is almost the same at different values of players
in the game. If we assume the bandwidth consumption per connection is con-
stant we can calculate the theoretic maximum amount of players in a game of
Rawrlocks. The result is shown as a graph in Figure 5.10. The graph shows
that bandwidth consumption scales linearly with the number of players, and
that Rawrlocks should be playable with 15 players at peak consumption.

69

6
Conclusion

In this chapter, we look at what has been done and how to proceed. The chapter
also discusses the generality of the design of the synchronisation service and
the event delay.

6.1 Conclusion

This report contains analysis of the problems related to a peer-to-peer network
architecture in a fast-paced action game with a maximum of 10 players. We cre-
ated a small test game in this genre called Rawrlocks. We focused on techniques
to keep the game state consistent across peers. After analysing the variables
in Rawrlocks we found found that each variable had different requirements on
exactness and freshness. The variables with high exactness requirements and
those with high freshness requirements had to be distributed in different ways.

For the variables with high freshness requirements, we proposed four solu-
tions on how to keep the game state consistent across peers. The design of the
chosen solution is described in Section 3.6.2. The solution uses exact updates
and seeks to execute events at the same absolute time across peers. The solu-
tion provides a technique to predict the position of the local avatar such that
the avatar’s position is known when a remote player receives it.

For the variables with high exactness requirements we designed a synchro-
nisation service, which is described in Section 3.4.2. The SS keeps variables
exact by allowing only one peer, the owner of the variable, to commit changes
to a specific variable. If other peers wish to alter a shared variable they must
contact the owner of the variable first.

We conducted a number of tests on Rawrlocks to show that it meets the
requirements specified in Section 1.1. The tests are split up in two parts:
Consistency testing and bandwidth testing.
We performed two test scenarios in order to test the consistency of Rawrlocks:
A fireball test, described in Section 5.2.1, and a power-up test, described in
Section 5.2.2.

The fireball test fails in one test case within the requirements. There are
problems regarding the position prediction in the test case with event delay
and 50ms latency. However, we argue that the differences in player position

71

CHAPTER 6. CONCLUSION

across clients in the tests does not have a major impact in a real world setting.
The main reason for this is that the average position difference is below our
limit of one yard.

The test results for the event execution test in the fireball scenario shows
that the peers execute events within 3ms in absolute time in the 25ms and
50ms latency with event delay test cases.

The power-up test shows that if two players request a shared variable within
a time frame of less than 1ms, the players are likely to disagree on who should
be allowed access to the shared variable. We argue that this is not a problem
since, the players request the object in a time frame so small, it is impossible for
a human to see who should rightfully be granted access to the shared variable.

The exactness tests of the power-up scenario all succeed. This suggests that
the game state remains consistent across peers even at latencies not intention-
ally supported by the solution.

The bandwidth test shows that the bandwidth consumption by Rawrlocks
is below the bandwidth requirements of 256/256kbit/s even at peak values with
the maximum amount of players in the game.

According to our test results, Rawrlocks is playable with up to 25ms la-
tency. Furthermore, Rawrlocks should remain playable at 50ms latency. Even
latencies above 50ms does not result in an inconsistent game state. Instead vari-
ables with high freshness requirements differs more and more between peers as
latency increase.

6.2 Discussion

This section discusses the generality of our implementation. Specifically we
discuss the generality of the SS and the event delay implementation.

6.2.1 Generality of Implementation

Generality is the ability to map our solutions onto other problems and games.
E.g. how easy is it to refit our solution to a first person shooter game.

In order to make the solution presented in the report more general, events
and the necessary event information must be defined in a general manner. No
matter how general the definition of events is, the amount of data that must be
transferred depends on the amount of events and the complexity of the events.
This means, that more events means requires events must be specified and
distributed between GCs. Thus, the bandwidth requirement increases for the
game.

The SS is in itself general and can be used for other games without altering
any code in the SS. This is because the SS is a variable store that can link up
with other variable stores and keep the variables consistent across SSs. The
SS still have limits by only allowing integers. This prevents using the SS for
other tasks like a chat or floating point numbers. It is currently not possible
to extend a text string for a chatlog or adding floating points.

72

6.3. FUTURE WORKS

The game implementation can be compared with the techniques used by
the Source engine described in Section 2.7. The lag compensation that Source
uses can be compared to our event delay in the sense that latency is taken into
consideration to have a correct evaluation of the game. Prediction deployed by
the Source engine can be compared to Rawrlocks position prediction. Every
client is also a server and therefore try to predict how the other players move
around.

Generality of Event Delay

The events in Rawrlocks have different necessary information that must be
shared with the other peers. The amount of data that is sent to other peers
depends on how many events the game contains and how much information
each event contains.

The GC uses an event delay, defined in Section 4.3, in order to delay events
and activate. The GC distributes the information of events via a custom made
packet system. The packet system contains the necessary information needed
to activate events that are distributed via the GC. In order to add new events
to the GC, the necessary event information must be defined. Furthermore, an
event has some base values and functions that must be defined. That is, which
conditions must be true for the event to activate, what data is put in the event
queue, how is the data added to the local packet and how to activate the event.
Once an event contains this information, it can be added to the game.

The information required to create new events is game specific and not
general. However, the overall design of events is general and can be used for
any game that makes use of event delay.

6.2.2 Decentralisation and Latency

Latency affects a peer-to-peer game more than a client-server game because
there is no central authority to enforce consistency. In the current implemen-
tation a single player with high latency to every other peer is likely to ruin
the game experience for everybody. In a client-server environment, a peer with
high latency to the server only ruins the game for himself because the server
can force actions of clients.

Latency problems in a client-server environment merely cause problems for
the clients and not the consistency of the game. Latency problems in a peer-
to-peer environment is likely to affect consistency because a peer with high
latency to other peers owns part of the game state.

6.3 Future Works

There are several directions to take from here, to improve Rawrlocks. Some of
the ones think are interesting are listed in this Section.

73

CHAPTER 6. CONCLUSION

6.3.1 More testing

There is always room for more testing. Currently, there are elements in the
game that is not tested. These elements may contain flaws in the game. The
elements that can be tested are as following:

Packet loss how does the game act when packets are lost.

45ms Latency test with Event Delay The problems with the 50ms latency tests
may relate to the processing time and a hard limit of 50ms GD. A test
with lower than 50ms can show if this assumption is true.

Latency hiding methods Implement more latency hiding methods and test
them against each other.

Modifiable by all does variables that are modifiable by all stay consistent.

6.3.2 Interpolation

Positions of remote players could be interpolated between received points. In-
terpolation is described in Section 2.7.2. In Rawrlocks, we would interpolate
between positions if we know the position of a remote player at a time t1 > t
where t is the current game time. The remote player should interpolate between
its current position and the known position. An interpolation implementation
would likely reduce the effects incorrect position predictions.

6.3.3 NAT Handling

NAT is one of the places Demigod failed. We would implement and test a
reliable way to handle NAT and keep the game playable.

6.3.4 Cheaters

Currently, the protocol allows cheater to do almost anything they would want
to do.This is an obvious place to improve the implementation. A multiplayer
game is not worth much in a real world scenario where the players are performs
malicious deeds.

6.3.5 Object Migration

If a player disconnects, all the objects the player owns are lost. Migrating these
in a meaningful fashion can improve the game as it is not destroyed when a
player disconnects.

6.3.6 Apply to Another Game

The methods described in this report could be interesting to apply to another
game to see exactly how general they are. There are several open source games

74

6.3. FUTURE WORKS

with multiplayer support, e.g. Quake 3, an FPS game with an open source en-
gine [27]. Quake 3 has also been used as a test bed by others in Donnybrook [2].

By using the Quake 3 engine, new problems arise as the game is in 3D
instead of 2D like Rawrlocks. Quake 3 is a more complex game than Rawrlocks,
so a new set of events and a new packet structure is required.

If the model is applied and tested on a commercially succesful game, it
would prove that the model works outside games designed for the purpose.

75

Bibliography

[1] Björn Knutsson, Massively Multiplayer Games, Honghui Lu, Wei Xu, and
Bryan Hopkins. Peer-to-peer support for massively multiplayer games,
2004.

[2] Ashwin Bharambe, John Douceur, Jacob R. Lorch, Thomas Moscibroda,
Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook: En-
abling large-scale, high-speed, peer-to-peer games. In SIGCOMM ’08:
Proceedings of the 2008 conference on Applications, technologies, architec-
tures, and protocols for computer communications, August 2008.

[3] Blizzard Entertainment. Warcraft iii. http://us.blizzard.com/en-us/
games/war3/.

[4] Gas Powered Games. Demigod. http://www.demigodthegame.com/.

[5] Brad Wardell CEO at Stardock. Demigod: So what the hell
happened? http://frogboy.impulsedriven.net/article/352561/
Demigod_So_what_the_hell_happened.

[6] IceFrog. Defense of the ancients. http://www.playdota.com.

[7] Stunlock Studios. Bloodline champions. http://www.bloodchampions.
com.

[8] S2Games. Heroes of newerth. http://www.heroesofnewerth.com.

[9] Glenn Fiedler. Glenn fiedler’s game development articles and tutorials.
GDC 2010 Networked Physics Slides.

[10] Janus Hansen, Martin B. Rosenbeck, and Rune K. Jensen. Peer-to-peer
middleware for fast-paced computer games, 2010.

[11] Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design (4th Edition) (International Computer Science).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[12] Andrew Sears Julie A. Jacko. The Human-Computer Interaction Hand-
book: Fundamentals, Evolving Technologies and Emerging Applications.
2002.

[13] Harri Hakonen Jouni Smed, Timo Kaukoranta. Aspects of networking in
multiplayer computer games, 2002.

[14] Kajal Claypool Mark Claypool. Latency and player actions in
online games. 2006. http://web.cs.wpi.edu/~claypool/papers/
precision-deadline/.

[15] Jin-Hee Choi and Chuck Yoo. One-way delay estimation and its applica-
tion. Computer Communications, 28(7):819 – 828, 2005.

[16] Zymoran. Warlock brawl. http://www.warlockbrawl.com/.

77

http://us.blizzard.com/en-us/games/war3/
http://us.blizzard.com/en-us/games/war3/
http://www.demigodthegame.com/
http://frogboy.impulsedriven.net/article/352561/Demigod_So_what_the_hell_happened
http://frogboy.impulsedriven.net/article/352561/Demigod_So_what_the_hell_happened
http://www.playdota.com
http://www.bloodchampions.com
http://www.bloodchampions.com
http://www.heroesofnewerth.com
http://web.cs.wpi.edu/~claypool/papers/precision-deadline/
http://web.cs.wpi.edu/~claypool/papers/precision-deadline/
http://www.warlockbrawl.com/

BIBLIOGRAPHY

[17] Gregor Maier, Fabian Schneider, and Anja Feldmann. NAT usage in res-
idential broadband networks. In Neil Spring and George Riley, editors,
PAM ’11: Proceedings of the 12th International Conference on Passive
and Active Network Measurement, volume 6579 of Lecture Notes in Com-
puter Science, pages 32–41. Springer Berlin / Heidelberg, March 2011.

[18] Daryl Seah, Wai Kay Leong, Qingwei Yang, Ben Leong, and Ali Razeen.
Peer nat proxies for peer-to-peer games. In Proceedings of the 8th Annual
Workshop on Network and Systems Support for Games, NetGames ’09,
pages 6:1–6:6, Piscataway, NJ, USA, 2009. IEEE Press.

[19] Marc Liberatore Nathaniel E. Baughman and Brian Neil Levine. Cheat-
proof playout for centralized and peer-to-peer gaming. IEEE/ACM Trans-
actions on Networking, 22:1–17, 2007.

[20] Virginia Lo Chris GauthierDickey, Daniel Zappala and James Marr. Low-
latency and cheat-proof event ordering for peer-to-peer games, 2004.

[21] Source multiplayer networking. http://developer.valvesoftware.com/
wiki/Source_Multiplayer_Networking.

[22] Inc. BitTorrent. Bittorrent - delivering world’s content. http://www.
bittorrent.com.

[23] The OGRE Team. A 3d library for multiple desktop and mobile platforms.
http://www.ogre3d.org/.

[24] J. Postel. RFC 768: User datagram protocol, August 1980. Status: STAN-
DARD. See also STD0006.

[25] Song Ho Ahn. High resolution timer. http://www.songho.ca/misc/
timer/timer.html.

[26] Linux Foundation. netem. http://www.linuxfoundation.org/
collaborate/workgroups/networking/netem.

[27] iquake3 team. iquake3. http://ioquake3.org/.

78

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://www.bittorrent.com
http://www.bittorrent.com
http://www.ogre3d.org/
http://www.songho.ca/misc/timer/timer.html
http://www.songho.ca/misc/timer/timer.html
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://ioquake3.org/

	Introduction
	Problem Definition
	Report Structure

	Analysis
	Game State
	Consistent Game State
	Connectivity Models and Object Distribution
	Latency in Games
	Game Description
	Other Real World Problems
	Multiplayer Networking Techniques

	Design
	Lobby Server
	Rawrlocks Architecture
	Game State Objects
	Network Services
	Artificially Added Delay
	Solutions to Latency Hiding

	Implementation
	Rawrlocks Synchronisation Service Packets
	Rawrlocks Game Client
	Event Delay
	Implementation Issues

	Testing
	Environment
	Consistency Testing
	Bandwidth Testing
	Summary

	Conclusion
	Conclusion
	Discussion
	Future Works

	Bibliography

