
Mobile indoor
localization

using

Kalman filtering

By Anders E. Bilgrau

27th of May, 2011
Department of Mathematical Sciences

Supervisors: Jakob G. Rasmussen & Rasmus L. Olsen

In collaboration with Department of Electronics & Information Technology

Institut for Matematiske Fag, I-17

Fredrik Bajers Vej 7 G

9220 Aalborg Øst

Telefon: 99 40 88 04

Fax: 98 15 81 29

http://www.math.aau.dk/
Title:

Mobile indoor localization using
Kalman Filtering

Topics:
Applied mathematics, Mobile Lo-
calization, Kalman Filtering, Indoor
Localization, Path finding, Mobility
models, Random way-point, Heat
equation, Diffusion Equation

Project period:
Comb2, Spring 2011

Author:

Anders Ellern Bilgrau

Supervisors:
Jakob G. Rasmussen
Rasmus L. Olsen

Printed copies: 5

Pagenumber: 56

Appendices: 3

Finished: 27th of May, 2011

Abstract:

This report studies mobile indoor local-
ization using Kalman filters to estimate
the current state in a hidden Markov
chain. The optimal Kalman filters has
been a very successful tool in a wide va-
riety of applications and has also proved
useful in localization. The report intro-
duces and then derives the Kalman fil-
ter in the context of the larger class of
Bayesian filters.
Location data from a faux office is sim-
ulated from a variation of the random
way-point mobility model using the Heat
equation for path finding.
An heuristic attempt to improve the
Kalman filter by reusing old inferred po-
sitions is done with ambiguous results.
The Kalman filter can be slightly im-
proved although it is not worth the extra
computational effort.

The content of the report is freely accessible, but publication (with the source) may be

made only after agreement with the authors.

Preface

This project was prepared in the fall of 2010 at Aalborg University by Anders
E. Bilgrau and supervised by Jakob G. Rasmussen, department of Mathe-
matical Sciences, and Rasmus L. Olsen, Department of Electronics & Infor-
mation Technology.

The report assumes intermediate knowledge and insight in set and prob-
ability theory. The reader should also be well-acquainted with standard
topics such as functional analysis. No knowledge of measure theory and
partial differential equations is required. The report do assume some famil-
iarity with both bi- and univariate kernel density estimation; appendix A is
a very brief introduction on this topic.

The primary objective of the report is to study and discuss Kalman
filtering as means to infer the current position of some indoor mobile device.

Since we avoid measure theory along with other complex mathemati-
cal subjects, the strictly necessary foundations are ignored and thus many
mathematical details are not accounted for. The theory and style of the
report is therefore heuristic and informal and the report is a compromise
between theory and application.

Citations are listed after an IEEE-like style and the sources are seen in
the bibliography. All programming and implementation of Kalman filters
along with the majority of the all figures were written in the programming
language R. [1]

The digital version of the report is best viewed in Adobe Reader 9 or
newer. Also, note that the table of content, links, and references are clickable
internal hyperlinks. All figure are in vector graphics which is great for
zooming in.

3

Table of Contents

Preface 3

1 Introduction 5
1.1 Mobility models . 6
1.2 Path finding . 7

1.2.1 The Lee algorithm . 8
1.2.2 Using the heat equation 9

1.3 The used mobility & observation model 13

2 Kalman filtering 17
2.1 Prediction step . 18
2.2 Update step . 18
2.3 An implementation of a Kalman filter 19
2.4 Extended Kalman filter . 20
2.5 Derivation of the Kalman filter 21

2.5.1 Recursive Bayesian Estimation 21
2.5.2 Kalman filter as a special case of the Bayes filter . . . 23

3 A new model 26
3.1 The 2-dimensional framework 27

3.1.1 Performance . 30
3.2 Using the extended Kalman filter 30

3.2.1 Performance . 34

4 Concluding notes 38

Bibliography 40

A Kernel density estimation 42

B Derivation notes 46

C R-scripts 48

4

Chapter 1

Introduction

Exact and reliable localization of mobile devices is in high demand and nu-
merous techniques for providing such estimates have been proposed. The
method of localizing some electric device of course depends on the tech-
nology used. For instance, the Global Positioning System (GPS) computes
distances to the satellites using transmission times and derive, via trilat-
eration, an estimate of the position of the device. Bluetooth technology
based systems may use signal strengths to arrive at a location estimate. In
this report, we discuss indoor location estimation in the context of mobile
wireless technologies, e.g. WLAN or Bluetooth, though the results are not
necessarily restricted to it.

Throughout the report, the general problem is to infer the current po-
sition of some mobile device based on noisy and inexact measurements of
the current and earlier positions. Obviously, the näıve way of doing this is
to use the processed “raw” measurements of the location. However, much
of the noise can be removed and even better estimates can be achieved. To
elaborate on the mathematical notation of this, let (x2, y2), (x2, y2), . . . be
the true sequence of positions of the device at time t1, t2, The mea-
surements of the positions (xi, yi) are usually derived from other physical
quantities which makes these observations inexact. I.e. we can only observe
zi := (xi + ui, yi + vi) for all i, where ui and vi are two random variables.
Precisely how ui and vi are distributed will be discussed later. To reiterate,
the problem estimate the current true position (xn, yn) having only the cor-
rupted “raw” observations z1, . . . ,zn available. The näıve approach above
(i.e. (x̂n, ŷn) := zn) obviously ignores a lot of information. For instance, we
should expect the successive observations to be correlated spatially and so
zn−1 is also informative about (xn, yn).

We shall concern ourselves with localization of devices handled by hu-
mans, such as Smart-phones or laptops, and thus we are effectively esti-
mating the position and movement of humans. This is reflected in the
construction of the following presented mobility model.

5

Very high raw accuracy can be achieved in localizing static devices; how-
ever, accuracy often results in significantly increased computation times.
Such delay is usually unimportant when the device is stationary, while this
is certainly not the case when the device is mobile. Obviously, long delays
results unreliable location estimates as it is accurate of a previous position.
In this manner exact and reliable mobile localization becomes a trade-off be-
tween delay and precision. While this delay-precision aspect is important,
this report does not deal with it in greater detail.

With assumptions on how the device moves noise can be eliminated and
better estimates can be achieved. The modelling of the spatial behaviour of
the device is called the mobility model. As no real data has been available,
we first wish to simulate a data set from a faux office.

1.1 Mobility models

The mobility model, as said, models the behaviour of whatever one is try-
ing to localize. The right choice (if such a thing exists) of mobility model
is problem-dependant but since this report is concerned with indoor local-
ization of hand-held devices the mobility model presented in the following
should essentially mimic human behaviour. While we shall keep it as sim-
ple as possible, mobility models can be made arbitrarily complex taking
ever more variables into account. The goal of this section is to construct a
realistic human mobility model.

We shall see, that models which takes e.g. environmental obstacles,
momentum and speed of movement into account can be somewhat easily
made. [2] [3]

The popular so-called random walk mobility models is a large class of
mobility models which all largely fits into the following simplified algorithm;

i. Choose a direction from the interval [0, 2π] uniformly.

ii. Choose a speed from the interval [vmin, vmax] also uniformly.

iii. Move with the selected speed in the selected direction either

• for some specified distance or

• in some predefined time.

iv. Wait some uniformly distributed time. Then repeat the procedure.

If the area in which the device moves is finite some rules for when the
device hits the area boundaries can be imposed on the model. E.g. a new
direction can be chosen if the border is hit according to some bouncing rule.
The random direction mobility model is largely as above but moves in the
selected direction at the chosen speed until it hits the border.

6

If vmin = 0 the phenomenon speed decay occurs where the average speed
converge to zero as time goes to infinity. If vmin > 0 the average speed
converge to some speed above vmin. [4]

The Random Waypoint model is also a popular mobility model. The
random waypoint requires we have a finite convex area for, as we shall see,
obvious reasons. The simplest form of such an algorithm goes as follows;

i. Choose a uniformly selected waypoint from the set of possible way-
points.

ii. Select a speed v uniformly from some interval [vmin, vmax].

iii. Move with speed v toward the selected waypoint until it is reached.

iv. Wait some uniformly distributed time and then repeat process.

This gives the essential gist of the random waypoint model, which however,
can the deviate quite alot from the above procedure. The requirement of
finite space in the above is obvious since a waypoint cannot be chosen uni-
formly from an unbounded set. The convexity ensures the device does not
leave the area on its way to the waypoint. The random waypoint model
can somewhat easily be expanded to be boundary-less by wrapping the area
onto a torus. Note, that more generally the set of possible waypoints may
be a finite set of non-random waypoints. Also, the drawing of a waypoint
from this set need not necessarily be uniform.

A good, quick, and informal page describing these mobility models can
be found at [5].

The speed during the movement may also be much more complex than
simply a constant uniformly sampled speed. These so-called speed models
can e.g. vary the speed over time (with some even stopping), be stochastic
or deterministic (or a combination).

Likewise, the waiting time (sometimes called dwell time) may also be
modelled by non-uniform distributions and depend on various parameters.
The waiting times are sometimes modelled into the speed model with speeds
of zero.

The simple models above obviously does not model human behaviour
very well in general. Most notably, they do not take walls and obstacles into
account; a huge factor in indoor localization. The discussion therefore turns
to path-finding.

1.2 Path finding

As an introduction to path finding, we first consider the simple Lee algo-
rithm which primarily has been used for routing of circuits in printed circuit
boards. [6]

7

50 100 150 200

50
10

0
15

0
20

0

Example of a layout matrix

X

Y

●

●

●

●

●●

●

WP 1

WP 2

WP 3

WP 4WP 5

WP 6

Destination.

Figure 1.1: A illustration of a 200 by 200 layout map matrix describing some
rooms together with a destination and 6 starting way-points. The inaccessible black
squares (in this case walls) corresponds to entry values of zero and white accessible
areas to one. In appendix C, the R-script C.1 produces this plot.

1.2.1 The Lee algorithm

Suppose we are confined to a rectangular area on which we wish to find the
path from a starting point (xs, ys) and some destination (xd, yd). The area
is discretized into n by m grid and the accessible regions is characterized by
a so-called layout map matrix L of size n × m where each entry li,j in L
corresponds the spatial grid and is defined by

li,j =

{
1 if li,j is accessible

0 if li,j is inaccessible
(1.1)

Figure 1.1 is an example of a layout map matrix that will be used throughout
the report.

The Lee algorithm is now simple to implement. Let A be a n × m
matrix and set value at the destination point to one, i.e. axd,yd := 1. From
the destination axd,yd all “empty”, accessible, and direct neighbouring entries
(over, under, left, right) are incremented by 1 until the starting point (xs, ys)
(or all accessible entries) has been given a number. The route is now found
by backtracking from the starting point by following the lowest neighbouring
points. This procedure illustrated in figure 1.2.

8

12
2

2
2

3
3

3
3

3
3

3
3

4
4

4
4 4

4

4
4

4
4

4

5
5

5
5

5
5

5
5

5
5

5
5

5

6

6
6 6

6

6
6

6
6

6
6

6
6

7
7

7 7

7
7

7
77

7
7

8
8

8
8

8 8
8

8

9
9

9
9

9
9 9

9

10
10

10
10

10
10

10 10

11
11

11
11

11
11

11
11

12
12

12
12

12
12

12
12

13
13

13
13

13
13

13

14
1414

14
14

14
14

15
15

15
15

15

15
15

16
16

16
16

16
16

16

Figure 1.2: The entries above, below, right, and left to the destination (in blue)
are incremented by one until the starting point (red) is reached. The black squares
correspond inaccessible places, i.e. where the layout matrix entries li,j = 0. The
generated path is shown in grey. Note, that this path is not unique.

Note, that if the incrementation is continued until all accessible entries
are filled, the starting point can be picked arbitrarily and the route to the
destination found effortlessly in accordance to the above. The point here is
that the computational effort lies in computing the gradient field. One way
to implement the algorithm is seen in R-script C.1.

Figure 1.3 uses the Lee algorithm on the layout map of figure 1.1. From
figure 1.3 it is seen that the paths creep along walls which intuitively not
model human mobility very well. Also, the paths are very rough and too
linear as human paths. To overcome this problem we adopt a similar general
concept of following the gradient albeit with a much more complicated pro-
cess to generate the gradient field; namely the heat (or diffusion) equation.

1.2.2 Using the heat equation

The heat equation is a partial differential equation which describes the tem-
perature of a system at some point in space and time. The idea here is
to let the destination be a heat source from which heat flows out and fills
the room. With the rooms heated, one can follow the line of highest rising
temperatures to the source.

The equation is also known as both gas and diffusion equation since
it also describes both the micro- and macroscopic diffusion of particles in
fluids (or gas) as the probability density and concentration respectively.
Here, however, we keep the using the equation in the context of heat.

9

50 100 150 200

50
10

0
15

0
20

0

Path finding using the Lee algortihm

X

Y

●

●

●

●

●●

●

Figure 1.3: The paths from the waypoints (black) to the destination (white) gen-
erated by the Lee algorithm using the layout matrix of figure 1.1. The colouring
illustrates the incrementation from the destination. Contour lines are shown in
white to which the path always runs perpendicular. This plot is outputted from
R-script C.1.

10

50 100 150 200

50
10

0
15

0
20

0

Path finding using the Heat equation

X

Y

●

●

●

●

●

●

●

Figure 1.4: The generated paths from the waypoints (black) to the destination
(white) by using the heat equation and the layout map from figure 1.1. The colouring
illustrates the falling temperatures that radiates from the destination. As above, the
path always runs perpendicular to the contour lines shown in white. This plot is
outputted from R-script C.2

11

If u(x, y, t) is the temperature at the spatial location (x, y) at time t then
is satisfies the heat equation given by

∂u

∂t
− κ

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0,

where κ is some constant scalar. The solution u(x, y, t) is approximated
in by discrete points (xi, yj , tk) in accordance to the above. The rectan-
gular region [xmin, xmax] × [ymin, ymax] is split into an ∆s-equidistant mesh
{x1, x2, . . . , xn} × {y1, y2, . . . , ym}. I.e. we have xi+1 = xi + ∆s and yj+1 =
yj +∆s for all i and j. The temporal dimension is also discretized by letting
tk = k ·∆t for all k = 0, 1, 2, . . . and for some ∆t.

If uki,j is the temperature at (xi, yj) at time tk then partial derivatives
above can be approximated by

∂u

∂t
≈
uk+1
i,j − uki,j

∆t
,

∂2u

∂x2
≈
uki+1,j + uki−1,j − 2uki,j

∆s2
, and

∂2u

∂y2
≈
uki,j+1 + uki,j−1 − 2uki,j

∆s2
.

These approximations are derived by applying the so-called forward and
central finite difference approximations1. Substituting the approximations
into the heat equation we get

uk+1
i,j − uki,j

∆t
= κ

(
uki+1,j + uki−1,j − 2uki,j

∆s2
+
uki,j+1 + uki,j−1 − 2uki,j

∆s2

)
which implies

uk+1
i,j = uki,j + κ

∆t

∆s2

(
uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − 4uki,j

)
(1.2)

It is seen that at a given point the rate of change in temperature is directly
proportional to the difference between the average temperature around the
point and the temperature at the point. This becomes apparent by rear-
ranging the above

uk+1
i,j − uki,j

∆t
= κ′

(
uki+1,j + uki−1,j + uki,j+1 + uki,j−1

4
− uki,j

)
,

1If f(x) is a differentiable function, then the derivative can be approximated by

f ′(x) ≈ f(x+ h)− f(x)

h

f ′(x) ≈
f
(
x+ 1

2
h
)
− f

(
x− 1

2
h
)

h
,

called the forward and central differences. The second order partial derivatives above is
obtained by applying the central difference twice.

12

where κ′ = 4
∆s2

κ. [7]
The procedure for the heat equation is now nearly identical to the Lee al-

gorithm. However, instead of the simple incrementation the value of nearby
(up, down, left, right) points are computed by using equation (1.2). The
algorithm in pseudo-code is as follows. Let u0 be a n×m matrix describing
the temperature at time k = 0 with u0

xd,yd
= 1 and all other entries zero.

We then approximate the solution u(x, y, t) at different times by computing
the heat matrices u1,u2, . . . for the next time instances k = 1, 2, . . .;

for k = 0, 1, 2, 3, . . . do

Set ukxd,yd := 1

for i = 2, 3 . . . , n− 1 do

for j = 2, 3 . . . ,m− 1 do

According to equation (1.2), let

uk+1
i,j := uki,j+κ

∆t

∆s2
(
uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − 4uki,j

)
.

end do

end do

Let uk+1 := L ◦ uk, where ◦ denotes the Hadamard product (or
element-wise matrix product) and L is the layout map matrix.

end do

By constantly keeping the temperature at the source to 1 and multiplying
element-wise with the layout matrix L ensures that the source and wall
is radiating and absorbing heat respectively. [8] An implementation in the
language of R is seen in script C.2.

As can be seen in figure 1.4, the paths generated by using the heat
equation seems much more plausible as human paths. It should be noted,
that path e.g. from way-point one to two may not coincide with that two to
one. Figure 1.5 shows all possible paths between 11 way points.

1.3 The used mobility & observation model

In this report, the used mobility model is the above random waypoint model
combined with path finding using the heat equation and the following speed
and waiting models. Assuming we have a collection of nw waypoints,

W =
{
w1=(x1, y1), w2=(x2, y2), . . . , wnw=(xnw , ynw)

}
,

from which random way-points are sampled wp1 , wp2 , wp3 , . . . such that wpi 6=
wpi+1 . I.e. the same way-point is not chosen twice in a row. The random

13

5 10 15 20

5
10

15
20

All possible paths between waypoints

X

Y

●

●

●

●

●

●

●

●

●

●

●

WP 1

WP 2

WP 3

WP 4

WP 5

WP 6

WP 7

WP 8

WP 9

WP 10

WP 11

Figure 1.5: All 110 possible paths between the 11 way-points.

14

path is now given by the above sequence connected by the paths given by
the heat equation as described above. The way-points and path used for the
simulation is the 11 way-points and 110 paths of figure 1.5.

When each way-point is reached, a waiting time ti at way-point wi is
simulated by exponential distributed; i.e. ti ∼ Exp(λi). For the data sim-
ulation, we use λ1 = λ2, . . . = 1

20 ; thus on average we wait 20 seconds at
each way-point. As I could find no experimental data on how actual wait-
ing times are distributed this is an arbitrary choice that sounds somewhat
fair and is mathematical convenient. In reality, heavier tailed (perhaps even
multi-modal) distributions is probably the case.

The average walking speed for humans is about 5km/h ≈ 1.38m/s. [9]
As we do not allow for negative speed, the speed model is simply drawn
from a (truncated) Gaussian distribution (with support [0,∞)) with mean
5 and standard deviation 0.25.

For the observed quantities we simply corrupt the true path, sampled
with at rate of 1 measurement per second, by additive zero-mean Gaussian
white noise with standard deviation σ = 1

2 ; i.e. about 95% of the observed
locations are within 1 metre of the true position. In reality, this depends on
the number of access points (and thus delay) as mentioned in the beginning
of this chapter and seen in [10].

Figure 1.6 shows the simulated data produced by R-script C.5 according
to the above. The randomly chosen sequence of way-points was(

3, 6, 1, 10, 6, 10, 3, 5, 7, 4, 5, 2, 1, 9, 7, 4,

2, 8, 11, 3, 4, 3, 10, 1, 2, 6, 8, 6, 8, 6, 4, 6,

9, 7, 6, 3, 5, 6, 10, 9, 8, 10, 4, 10, 7, 11, 1
)

15

Simulated random walk in a buiding

X

Y

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

● ●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
● ● ●

● ●
●

●

●●

●

●

●

●

● ●●

●● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●● ● ●

● ●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

● ●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

● ●

●
●

●

●

●
●●●

●

●●
●●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●●
●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●●●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●● ●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●●

●

● ●

●
●●●

●

●●

●

●

●●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●●

●
●

●

●

●●

●

●
●

●
● ●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●
●

●

●

●●●

●

●●
●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

●
● ●

● ●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●● ●

●

●
●

●
●

●●
●

●●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●●

●

●
● ●●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●●

●

● ●
●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●
●●

● ●

●●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●
●

●●

●

●

●●

●●
●

●
●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●

●●
●● ●●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

● ●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

WP 1

WP 2

WP 3

WP 4

WP 5

WP 6

WP 7

WP 8

WP 9

WP 10

WP 11

0 5 10 15 20

0
5

10
15

20

Figure 1.6: The simulated data of the random walk between 11 way-points as
described above. Black solid lines show the true path and the red circles are the
measurements.

16

Chapter 2

Kalman filtering

Kalman filters, due to Rudolf E. Kalman’s famous paper [11], have since its
publication in 1960 become a hugely popular filter used in a wide spectrum
of applications. They are filters in the sense that they filter out noise.

Denote by xk ∈ Rn the state vector of some dynamical system. Ulti-
mately, we are interested in estimating this state vector xk which charac-
terize the current state of the system. It is assumed, that the system is
governed by a difference equation of the form

xk = F kxk−1 + Bkuk + wk, (2.1)

where the state transition matrix F k denotes a n × n matrix, the n × n
matrix Bk describes the known control-input given by the control vector
uk ∈ Rn, and wk ∈ Rn is process noise assumed to multivariate normal, i.e.
wk ∼ Nn(0,Qk). Equation (2.1) is sometimes also referred to as the state
space model. The state vector, in our specific case, will contain the position
coordinates among other quantities.

The state vector is, however, not directly observable and can only be
inferred though the use of the so-called observation model that maps the
state space into the observation space;

zk = Hkxk + vk, (2.2)

where Hk is the observation model, vk is measurement noise assumed to be
Nn(0,Rk)-distributed.

The initial states, measurement noise and process noise, i.e. the set
{x0,w1, . . . ,wk,v1, . . . ,vk}, are assumed mutually independent.

The estimate of the current state vector xi can obviously only be com-
puted from the available measurements z1, . . . ,zi. We denote by x̂i|j the
estimate of xi given all observation up to time j i.e. the set {z1, . . . ,zj}.
The Kalman filter operates recursively in two conceptualized phases called
the prediction and update step in which the filter predicts the a priori state

17

estimate, denoted by x̂k|k−1, and then updates the a posteriori state estimate
x̂k|k. Here a priori and a posteriori refers to the observation of zk.

To access the estimated accuracy of the state estimate both a priori
and a posteriori error covariance matrices, denoted by P k|k−1 and P k|k
respectively, is also computed.

2.1 Prediction step

Since the filter works recursively, assume that x̂k−1|k−1 and P k−1|k−1 are
available; then the a priori state estimate is computed by the equation

x̂k|k−1 = F kx̂k−1|k−1 + Bkuk,

along with the a priori error covariance matrix

P k|k−1 = F kP k−1|k−1F
T
k + Qk. (2.3)

Again, the a priori error covariance matrix P k|k−1 describes the accuracy
of x̂k|k−1. These a priori estimates are used in the updating step of the
Kalman filter.

2.2 Update step

For simplicity of the updating step, some helpful quantities are computed
first;

ỹk = zk −Hkx̂k|k−1 (Measurement residual)

Sk = HkP k|k−1H
T
k + Rk (Residual covariance)

Kk = P k|k−1H
T
kS
−1
k (Optimal Kalman Gain).

From these the a posteriori state estimate is given by

x̂k|k = x̂k|k−1 + Kkỹk, (2.4)

and the a posteriori error covariance estimate,

P k|k = (I −KkHk)P k|k−1, (2.5)

can be computed. [12] [13] It is shown later in what sense the Kalman filter
is optimal. First, we shall see what the different matrices of the observation
and state space model look like in the context of localization.

18

2.3 An implementation of a Kalman filter

The specific Kalman filter is presented here can be used to infer the present
position of some device on the basis of earlier position measurements; which
is precisely what we are interested in! From the laws of motion in classical
mechanics we can construct a state model. The relationship between posi-
tion s as a function of time and it’s derivatives; speed v = ds

dt , acceleration

a = dv
dt , and jerk j = da

dt . The three formulas we need here, is

d3s

dt3
= j,

d2v

dt2
= j, and

dv

da
= j. (2.6)

Note that jerk is nothing more than the rate of change in acceleration. By
taking anti-derivatives on both sides of the first formula we can informally
derive a useful expression;

s =

∫∫∫
j dtdtdt =

∫∫ (
jt+ a0

)
dtdt

=

∫ (
1

2
jt2 + a0t+ v0

)
dt =

1

6
jt3 +

1

2
a0t

2 + v0t+ s0,

where s0, v0, a0 are the start position, speed, and acceleration. Similarly the
last two equations of (2.6) yield

v =
1

2
jt2a0t+ v0,

a = jt+ a0.

Now, by substituting t with ∆tk in the above and letting jk ∼ N(0, σ2
k) we

can summarize the above equations of motion with the system

xk = F kxk−1 + Gkjk

where

F k =

1 ∆tk
1
2∆t2k 0 0 0

0 1 ∆tk 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆tk

1
2∆t2k

0 0 0 0 1 ∆tk
0 0 0 0 0 1

 , xk =

xk
x′k
x′′k
yk
y′k
y′′k

 , Gk =

1
6∆t3k
1
2∆t2k
∆tk
1
6∆t3k
1
2∆t2k
∆tk

 ,

and ∆tk = tk− tk−1. It is thus assumed that in the timespan of ∆tk the jerk
jk is constant and equal in both directions. This is not yet a state model, as
components of the term Gkjk is completely determined by any of the others.
I.e. Gkjk is just a stochastically scaled vector and not a stochastic vector.

19

With inspiration from E[jkGkG
T
k] let wk ∼ N6(0,Qk) be the process

noise term where

Qk =

1
36∆t6k

1
12∆t5k

1
6∆t4k 0 0 0

1
12∆t5k

1
4∆t4k

1
2∆t3k 0 0 0

1
6∆t4k

1
2∆t3k ∆t2k 0 0 0

0 0 0 1
36∆t6k

1
12∆t5k

1
6∆t4k

0 0 0 1
12∆t5k

1
4∆t4k

1
2∆t3k

0 0 0 1
6∆t4k

1
2∆t3k ∆t2k

 .

This concludes the construction of the state space model

xk = F kxk−1 + wk.

In this model the state is characterized by the position, speed, and acceler-
ation in both directions.

Knowing that the device moves in two spatial dimensions both an x
and y coordinate is obtained for each measurement; i.e. we only observe
a corruption zk of the current position coordinates (the first and fourth
component) of xk. This can be expressed as the observation model given by

zk = Hkxk + vk, vk ∼ N2(0,R)

where

Hk =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
and R = E[vkv

T
k] =

[
σ2 0
0 σ2

]
.

This is but one example of a possible framework; one might stop at the
speed and let the acceleration be the driving process noise. Alternatively
in other circumstances, one might go even deeper than the jerk and use the
(sometimes) so-called jounce. Note that in this model, there is no control
term.

2.4 Extended Kalman filter

The need for linearity in the Kalman filter is obviously somewhat restric-
tive. The extended Kalman filter generalizes the ordinary Kalman filter and
allows for non-linear state-space and observation models. It has become
the de-facto standard when non-linear estimation state estimation including
GPS and other navigation system. [14] Now, if f and h are differentiable
functions then

xk = f(xk−1,uk) + wk

zk = h(xk) + vk,
(2.7)

where wk and vk both are zero-mean multivariate Gaussian with Qk and
Rk as covariance matrices respectively. Note, in some texts f and h are
functions also of the process and measurement noise.

20

The formulas for the update and prediction steps does not change much.
The update step is described by

x̂k|k−1 = f(x̂k−1|k−1,uk)

P k|k−1 = F kP k−1|k−1F
T
k + Qk

along with the prediction step by;

ỹk = zk − h(x̂k|k−1) (Measurement residual)

Sk = HkP k|k−1H
T
k + Rk (Residual covariance)

Kk = P k|k−1H
T
kS
−1
k (Optimal Kalman Gain)

x̂k|k = x̂k|k−1 + Kkỹk

P k|k = (I −KkHk)P k|k−1.

Here F k and Hk are the defined as the Jacobian matrices of f and h,

F k :=
∂f

∂x

∣∣∣
x=x̂k−1|k−1,u=uk−1

(2.8)

Hk :=
∂h

∂x

∣∣∣
x=x̂k|k−1

.

From these formulas, it is evident that the extended filter is a linearization
of the state transition function and the observation model around the last
inferred state. The generalization to the non-linear systems allowed by the
extended Kalman filter comes at a price. The extended filter is no longer
optimal.

2.5 Derivation of the Kalman filter

The Kalman filter has been derived in various ways. Some, such as [15]
and [13], is based on the concept of innovations. Following [16], we shall here
derived the equations from the more general method of Recursive Bayesian
Estimation.

2.5.1 Recursive Bayesian Estimation

Recursive Bayesian estimation or simply Bayes filtering uses Bayesian theory
to recursively estimate an unknown probability density function. The setup
assumes that some state process is a first order Markov chain1 and that

1If X0, X0, . . . is a sequence of random variables with values in the state-space Ω and
if the Markov property

P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = P (Xn+1 = xn+1|Xn = xn)

holds for all xn, . . . ,x0 ∈ Ω for all n, then Xn is a Markov chain. Paraphrased, the Markov
property states that conditioned on the present, the future is independent of the past. [17]

21

Figure 2.1: A visualization of the hidden Markov model showing the depen-
dence structure of the variables. The states of the underlying Markov model
{x1, . . . ,xn, . . .} is not directly observable, as noted elsewhere.

the k’th observation zk is independent of all states except xk. From these
assumptions, the Markov property

p(xn|x1, . . . ,xn−1) = p(xn|xn−1)

holds for all n and

p(zn|x1, . . . ,xn−1) = p(zn|xn−1).

This setup, as seen in figure 2.1, forms a so-called hidden Markov model as
the states of the Markov chain is unobservable. For simplicity, denote the
set {x1, . . . ,xk} by x1:k and likewise for z1:k.

From Bayes’ theorem

p(xn|z1:n) =
p(z1:n|xn)p(xn)

p(z1:n)

=
p(zn, z1:n−1|xn)p(xn)

p(z1:n−1, zn)

=
p(zn|z1:n−1,xn)p(z1:n−1|xn)p(xn)

p(zn|z1:n−1)p(z1:n−1)

=
p(zn|z1:n−1,xn)p(xn|z1:n−1)p(z1:n−1)p(xn)

p(zn|z1:n−1)p(z1:n−1)p(xn)

=
p(zn|xn)p(xn|z1:n−1)

p(zn|z1:n−1)
(2.9)

where the last step uses the independence of observations along with some
terms cancelling. As the usual Bayesian statistics go, this can be interpreted
as posterior = likelihood × prior

evidence , where the evidence is seen as a normalizing

22

constant. The prior and evidence can be computed using

p(xn|z1:n−1) =

∫
p(xn|xn−1)p(xn−1|z1:n−1)dxn−1

p(zn|z1:n−1) =

∫
p(zn|xn)p(xn|z1:n−1)dxn,

respectively; both of which is given by the law of total probability.
The computation of the prior, evidence and posterior is essentially the

Bayes filter. In general, though, the calculation of the posterior probabil-
ity distribution, and thus an optimal Bayesian solution, is only possible in
principle as the integrals are unmanageable in practice. Is it feasible only
for some restricted special cases; one of which is the Kalman filter.

Out of the various optimal criteria that can be chosen the maximum a
posterior (MAP) is the interesting one in the following. As suggested by the
name, the MAP estimate is found from the calculated posterior distribution
as the point maximizing the distribution. While the MAP is sometimes
unreliable, e.g. when the posterior not unimodal (and so the MAP estimate
may not even be unique), we need not worry about such problems here as
we only deal with the well-behaved Gaussian distributions in the following.

2.5.2 Kalman filter as a special case of the Bayes filter

This derivation of the Kalman filter expands the assumptions of the Bayes
filter above and assumes that the process noise wn and observation noise
vn are zero-mean multivariate Gaussian with covariance matrices

E[wiw
T
j] = Qiδij and E[viv

T
j] = Riδij , ∀i, j ∈ {1, . . . , n}

receptively, where δij denotes the Kronecker delta function2. Additionally
the cross-covariances E[viw

T
j] = 0. So, it is assumed that all noises are

uncorrelated.
Furthermore, we assume that the state and observation processes adhere

to the linear relationships of (2.1) and (2.2) respectively for some matrices
F n, Bn, and Hn.

With linearity and the Gaussian assumptions we can find the expected
value and covariance of zn|xn seen in equation (2.9);

E[zn|xn] = E[Hnxn + vn|xn] = Hnxn and

Cov[zn|xn] = Cov[vn|xn] = Rn.

2The Kronecker delta function is defined as

δij =

{
1, if i = j

0, otherwise

23

All xn and zn are Gaussian since they are linear combinations of Gaussian
distributed random variables. Thus,

p(zn|xn) = (2π)−
Nz
2 |Rn|−

1
2 e−

1
2

(zn−Hnxn)TR−1
n (zn−Hnxn) (2.10)

Similarly, we can derive the conditional probability distribution function for
xn|z1:n−1 from the expectation

E[xn|z1:n−1] = E[F nxn−1 + Bnun + wn|z1:n−1]

= F n E[xn−1|z1:n−1]︸ ︷︷ ︸
:=x̂n−1|n−1

+Bnun := x̂n|n−1,

and covariance

Cov[xn|z1:n−1] = E
[
(xn − x̂n|n−1)(xn − x̂n|n−1)T

∣∣z1:n−1

]
= Cov[en|n−1] := P n|n−1,

where en|n−1 := xn − x̂n|n−1. With P n|n−1 defined, xn|z1:n−1 follows the
Gaussian distribution,

p(xn|z1:n−1) = (2π)−
Nx
2 |P n|n−1|−

1
2 e
− 1

2
(xn−x̂n|n−1)TP−1

n|n−1
(xn−x̂n|n−1)

(2.11)

Substituting equations (2.10) and (2.11) into (2.9) yields

p(xn|z1:n) ∝ e−
1
2 (xn−x̂n|n−1)

TP−1
n|n−1

(xn−x̂n|n−1)− 1
2 (zn−Hnxn)

TR−1
n (zn−Hnxn)

(2.12)

where the product of the two constants of both distributions and the de-
nominator of (2.9) is left out as they form the normalizing constant for the
posterior and not vital for the further calculations.

As said, the MAP estimate is the point, denoted by x̂n|n, which satisfies

∂

∂xn
p(xn|z1:n) = 0.

Since log(·) is monotone the maximum of log p(xn|z1:n) is unchanged and it
can be shown from equation (2.12) that

x̂n|n :=
(
HT

nR
−1
n Hn + P−1

n|n−1

)−1(
P−1
n|n−1x̂n|n−1 + HT

nR
−1
n zn

)
,

by expanding, differentiating and solving for xn. The derivation steps of
this equation can be found in appendix B. The matrix inversion lemma3

simplifies the above to

x̂n|n = x̂n|n−1 + Kn(zn −Hnx̂n|n−1)

3The matrix inverison lemma or Woodbury matrix identity states that if M = A +
BCD then M−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1, where A, B, C, and D are
matrices of appropriate size.

24

where the Kalman gain is defined as

Kn = P n|n−1H
T
n (HnP n|n−1H

T
n + Rn)−1.

The prediction error is found by

en|n−1 = xn − x̂n|n−1

= F nxn−1 + wn − F nx̂n−1|n−1

= F n(xn−1 − x̂n−1|n−1) + wn

where en−1|n−1 = xn−1− x̂n−1|n−1. Letting P n−1 := Cov[en−1|n−1] we have

P n|n−1 = Cov[en|n−1]

= F nP n−1|n−1F
T
n + Rn,

by the rules of (co)variance matrices Cov[AX] = ACov[X]AT , where
vecX, vecY are stochastic vectors and A is some matrix of appropriate sizes.
Furthermore,

en|n = xn − x̂n|n

= xn − x̂n|n−1 −Kn(zn −Hnx̂n|n−1),

together with en|n−1 = xn − x̂n|n−1 and zn = Hnxn + vn, which implies

en|n = en|n−1 −Kn(Hnen|n−1 + vn)

= (I −KnHn)en|n−1 −Knvn.

By taking the covariance matrix of both side, we get

P n|n = Cov[en|n]

= (I −KnHn)P n|n−1(I −KnHn)T + KnRnK
T
n ,

which reduces to the final expression

P n = P n|n−1 − F nKnHnP n|n−1.

This way the Kalman filter equations presented in the beginning of the
chapter can be derived entirely by the MAP estimate of the Bayes filter with
Gaussian noises. It should be noted, that MAP this is not the only sense in
which the Kalman filter is optimal. The estimator is also the minimum mean
squared error estimate. Additionally, it is also optimal in the sense that it
is both an unbiased (as showed) and minimum variance estimate. [18] [16]

25

Chapter 3

A new model

Our goal is to construct a versatile mobility model which is flexible enough
to also model environmental obstacles. Supposing that walls and obstacles
exhibit a repulsive force to the movement of the device, we can attempt
to construct an implementation of the Kalman filter that simultaneously
models the user behaviour and builds a crude map of the environment based
on the inferred positions. For this section, recall the basic setup of section
2.3 on page 19. The new version of the Kalman filter is developed in an
ad-hoc and informal style.

The idea of repulsive obstacles seems plausible. First of all, users and
mobile devices does not pass through obstacles. Secondly, it is a fair as-
sumption for somewhat obvious reasons that users tend to slow down when
approaching a wall. Figure 3.1 visualizes a room from above and shows the
repulsive forces of the walls. Strictly, since we shall not consider the mass of
the user and so the term force is of course used somewhat pseudo-physically.
The repulsive forces can be incorporated as acceleration or velocity of the
device.

x

y

Repulsive force of walls

Figure 3.1: An exaggerated visualization of the repulsive forces of the walls in
some 2-dimensional room.

26

x
y

f(x,y)

Explicit formula for f(x, y)

Figure 3.2: A precisely defined
mathematical function which corre-
sponds to the basic assumptions ideas.
Everywhere the gradient points to-
wards the center of the room.

x y

g(x,y)

Density kernel estimate as g(x,y)

Figure 3.3: A probability density
function of some inferred positions
may also fulfils the basic needs. The
method used here is Gaussian kernel
density estimation.

Imagine a real mapping of the plane, g : R2 → R, of which the gradient
∇g(x, y) is a vector field describing the acceleration or velocity of the device.
Recall that the gradient ∇g(x, y) points in the direction of greatest increase
of g. So what would candidates for g look like? Depending on the infor-
mation available, an example of g could be a precisely defined parametric
function, as seen in figure 3.2, of which the parameters could be estimated
from the observations. The function seen in figure 3.2 is of the form

g(x, y) = − 1
c
√

(x− a)(x+ a)(y − b)(y + b)
, |x| < a, |y| < b,

which could represents a rectangular room [−a, a]× [−b, b].
Alternatively, as seen in figure 3.3, an empirical probability density func-

tion (also called kernel density estimate; a very short introduction to these
can be found in Appendix A on page 42) of the inferred positions might also
be a fair function for the purpose. Using the probability density function is
reasonable, a least for indoor localization, since it is not too bold to claim
that places frequently and rarely visited is respectively attractive and repul-
sive. This is consistent with the fact, that the gradient will point towards
the high density regions. Areas that are never visited (such as walls and
obstacles) will have low densities and thus be repulsive.

Now, let us clarify the ideas above in the 2-dimensional framework and
how they can be implemented.

3.1 The 2-dimensional framework

For some preliminary analysis we use an 2-dimensional analogue to the
Kalman filter presented in section 2.3 with the acceleration, and not jerk,

27

as the driving process noise. So, we use the simplified model described by
the state model

xk = F kxk−1 + wk

where wk ∼ N(0,Qk), and

F k = I2×2 ⊗
[
1 ∆tk
0 1

]
, xk =

xk
x′k
yk
y′k

 , Qk = I2×2 ⊗
[

1
4∆t4k

1
2∆t3k

1
2∆t3k ∆t2k

]
,

where ⊗ denotes the Kronecker product1. The observation model is given
by

zk = Hxk + vk,

with H =

[
1 0 0 0
0 0 1 0

]
and vk = N2(0, σ2I). Now, how do we incorporate

the above ideas of using the gradient of g(x, y) as contributing to the velocity
of the device? One way is to interpret the gradient as a change in velocity
induced by the environment. I.e. we will simply add the components of the
gradient of g to the inferred speeds of xk.

To elaborate, the second and fourth components x′k and y′k of the state
vector xk are the intrinsic velocity of the device. Since the surroundings
contribute to the velocity the perhaps easiest way to incorporate this con-
tribution is via the control term as

xk = F kxk−1 + Bkuk + wk, (3.1)

with

Bk =

∆tk 0

1 0
0 ∆tk
0 1

 and uk = γ∇gk(x, y) = γ

[∂
∂xgk(x, y)
∂
∂ygk(x, y)

]
, (3.2)

where γ is some scalar parameter; which could be interpreted as how much
weight the environment has in the movement of the device. Note, that by
this construction γ = 0 is equivalent to the regular Kalman filter with no
control term. Also, by this construction, the scaled components of γ∇fk(x)
enter equation (3.1) in the same manner as x′k−1 and y′k−1. Thus, the scaled

1If A and B are two matrices with sizes n×m and p× q respectively then

A⊗B =

a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 ,
is the Kronecker product

28

gradient can rightly be interpreted as a velocity induced by earlier observa-
tions.

It can be disputed that this should be incorporated via the control when
we, in reality, have no control over it. Additionally, the control vector nor-
mally represents some known forced effect to the system. The point to
be noted here, is that this cannot be interpreted as a control input in the
traditional sense. This implementation is simply of greatest mathematical
convenience as it keeps the linearity of the system and makes the implemen-
tation very easy as the normal Kalman filter equations can be used (i.e. by
choosing γ = 0).

We need also discuss how to choose appropriate functions gk. Let us
choose to use the kernel density estimate to create gk. At time k, we have
only the measurements z1, . . . ,zk and state estimates x̂1|1, . . . , x̂k−1|k−1

available. (We have not yet computed x̂k|k.) Presumably, the position
estimates of are better than the raw measurements and thus the set

Sk :=
{
Hx̂1|1,Hx̂2|2, . . . ,Hx̂k−1|k−1, zk

}
, (3.3)

seems the most obvious choice to use for the kernel density estimate.
If the density estimate of the inferred positions is used we need not

estimate any parameters; the new modified Kalman filter procedure now
looks something like the following. Supposing we are at time n and just
observed zn;

i. Compute the kernel density estimate gk of the inferred past positions
together with the new observation, i.e. the kernel density of the set
Sk, defined as equation (3.3) above.

ii. Compute ∇gk(x̂k−1|k−1) and use it in uk.

iii. Compute the prediction step x̂k|k−1 by the formulas in section 2.1.

iv. Calculate the update step x̂k|n.

Essentially, the procedure is the Kalman filter with the extra calculation of
the velocity field.

An additional perk we get from the method is that we get an rough
picture of the room with the estimate density. Perhaps one can infer the
placement of obstacles (and areas of open space) by low (and high) density
regions. Perhaps this is a good place to repeat that by this method the device
is attracted to the places already visited before and repelled by places never
visited. The only way it can be said, that obstacles are taken into account
is the absence of the device in these places. Indeed, the measurement error
may give some observations of location in inaccessible places.

29

3.1.1 Performance

We use the filters on the simulated data from section 1.3. The regular
Kalman filter (γ = 0) performs very well and filters out a lot of noise, cf.
figure 3.4. Keep in mind that since we have simulated data the true position
is known. Therefore, the the Sum of Squared Errors,

SSE :=
∑
i

‖Hx̂i|i − zi‖2,

is a good measure of performance which can be computed easily. Obvi-
ously the smaller the SSE the better. The regular Kalman filter yields a
SSE = 814.9244 contrasted against the SSEraw = 968.6323 of the raw
measurements

(∑
i ‖xi − zi‖2

)
for 1, 554 observations.

The best SSE that can be achieved by scaling gradient of the kernel
density estimate when using the above environmental contribution to the
velocity though the control vector is 814.9231; a marginally better value that
the regular Kalman filter. Figure 3.6 show, perhaps alarming, the scaling-
value that achieves this minima is about γ = −0.04. This is obviously
somewhat contradicting to the general idea of the implementation.

Simplifying Bk of (3.2) even more by

Bk =

0 0
1 0
0 0
0 1

 ,
i.e. by adding the scaled gradient only to the velocity, yield a slightly better
SEE of 814.3117 at γ = −0.95. However, in both cases the improvement is
almost not noteworthy compared to the regular Kalman filter.

Plots for each state vector component in the γ = 0 Kalman filter is found
in figure 3.7

3.2 Using the extended Kalman filter

There are some obvious problems with the above approach. The imple-
mentation is undesirable and informal in many ways. Using the gradient
as a control vector does not reflect the normal interpretation of the control
vector. A remedy is to write the gradient ∇g evaluated in Hx̂k|k into the
transition matrix F k. However, this introduces non-linearity as F k now
depends on the position. Thus we want to implement the extended Kalman

30

Regular Kalman filter

X

Y

0
5

10
15

20

0 5 10 15 20

Figure 3.4: The estimated path (blue) and noisy measurements (red) from the
regular Kalman filter with no enviromental interaction.

Performance evaluation

Sample

S
qu

ar
ed

 e
rr

or

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

2.
0

True MSE of unfiltered measuments
True MSE of regular filter

Figure 3.5: The squared errors of each inferred position (blue) using the regular
Kalman filter along with the squared error of each unfiltered measurements (red).
The means of each are also plotted.

31

SSE as a function of scaling

γ

S
S

E

−2 −1 0 1 2

81
5.

0
81

5.
5

81
6.

0
81

6.
5

81
7.

0
81

7.
5

Figure 3.6: The SSE for different values of γ which scales the gradient of the
kernel density estimate. The minima is very close to zero suggesting that the regular
Kalman filter should be used.

filter in the context of equations (2.7) on page 20 with transition function

f(x) = f(x, x′, y, y′, γ) =

x+ ∆tx′ + γ∆t ∂g∂x(x, y)

x′ + γ ∂g∂x(x, y)

y + ∆ty′ + γ∆t∂g∂y (x, y)

y′ + γ ∂g∂y (x, y)

γ

 ,

where the time indices k are omitted for ease of notation. The scaling param-
eter has now been incorporated into the state vector x = (x, x′, y, y′, γ)T .
Now, obviously f is non-linear since the the kernel density function g is.
The extended Kalman uses the Jacobian matrix of f which given by

Jf (x, x′, y, y′, γ) =

1 + γ∆t ∂

2g
∂x2 ∆t γ∆t ∂

2g
∂y∂x 0 ∆t ∂g∂x

γ ∂
2g
∂x2 1 γ ∂2g

∂y∂x 0 ∂g
∂x

γ∆t ∂
2g

∂x∂y 0 1 + γ∆t∂
2g
∂y2 ∆t ∆t∂g∂y

γ ∂2g
∂x∂y 0 γ ∂

2g
∂y2 1 ∂g

∂y

0 0 0 0 1

 ,

with F k = Jf (x, x′, y, y′, γ)|(x,x′,y,y′,γ)=x̂k|k , cf. equation (2.8) on page 21.
Note, dependence of the partial derivatives on x and y has also been left out
for easier notation. The function g(x, y) = gk(x, y), as stated elsewhere, is

32

0 500 1000 1500

0
5

10
15

20
Estimated position in x

x

0 500 1000 1500

0
5

10
15

20

Estimated position in y

y

0 500 1000 1500

−
2

−
1

0
1

2

Estimated speed in x direction

x'

0 500 1000 1500

−
2

−
1

0
1

2

Estimated speed in y direction

y'

Figure 3.7: The four components of the state vector plotted against the index with
scaling γ = 0, i.e. the is regular linear Kalman filter with no control input.

33

the 2 dimensional kernel density of the set

Sk =
{
Hx̂1|1,Hx̂2|2, . . . ,Hx̂k−1|k−1, zk

}
.

The partial derivatives in the Jacobian matrix, while they can explicitly be
computed, will not be presented here. If a Gaussian kernel is used, then

gk(x, y) =
1

n

∑
si∈Sk

1

2π|U |
1
2

exp

(
−1

2

(
[xy]− si

)T
U−1

(
[xy]− si

))
,

where |U | denotes the determinant of the 2 × 2 bandwidth matrix. Note,
that the observation model is (almost) as before with

h(x) = Hx, where H =

1 0
0 0
0 1
0 0
0 0

 .
This concludes the construction of the extended Kalman filter.

3.2.1 Performance

The results of this extended filter is seen in figures 3.8 and 3.9. The perfor-
mance of this extended Kalman filter is not as good as the linear Kalman
filter with an SSE of 920.8343. Some noise has, however, been filtered out
since the SSE of the observed positions was 968.6323, as stated above.

Figures 3.8 and 3.9 show some occasional very large fluctuations. These
instabilities ruin overall picture of the otherwise fine performance. The parts
where the extended Kalman filter behaves well, it is as good as the regular
filter. For instance, the SSE computed over the indices 100 to 500 gives
206.6812 for this extended Kalman filter and 206.3436 for the regular.

Figure 3.10 shows the estimate of γ as time progress. The parameter
increases from the initial value of 1 to 124.02. These increasing value, pre-
sumably large, may be explained by the tendency for the kernel density
estimate to “flatten out” as the number of points increase. Alternatively it
could simply be, that the extended Kalman filter diverges.

34

Using the extended Kalman filter

X

Y

0
5

10
15

20

0 5 10 15 20

Figure 3.8: The results of the extended Kalman filter as described. It is seen that
the filter is not quite as stable and have some relatively large fluctuations. These
are seen more clearly in figure 3.9.

35

0 500 1000 1500

0
5

10
15

20
Estimated position in x

x

0 500 1000 1500

0
5

10
15

20

Estimated position in y

y

0 500 1000 1500

−
5

0
5

10
15

20

Estimated speed in x direction

x'

0 500 1000 1500

0
5

10
15

Estimated speed in y direction

y'

Figure 3.9: The results of the extended Kalman filter as described. This is the
first four components of the estimated state vector x̂i|i each plotted against i.

36

Estimate of the scaling parameter

k

γ

0 500 1000 1500

0
20

40
60

80
10

0
12

0

Figure 3.10: The estimated scaling parameter γ of the extended Kalman filter as
time k increases. This is the fifth component of the estimated state vector x̂k|k each
plotted against k.

37

Chapter 4

Concluding notes

That improving the Kalman filter is hard has certainly been reaffirmed. The
Kalman filter is optimal and thus cannot be outperformed if the assumptions
indeed are valid. While these proven facts obviously should come as no
surprise the reality is that the assumptions almost never is perfectly satisfied;
and thus there should be room for improvement.

The assumptions intuitively seem to hold approximately for the simu-
lated data. For instance, we do know the measurement noise is perfectly
simulated according to the assumptions. It is not clear what is process noise
and whether it satisfies the assumptions. The abrupt starting and stopping
at way-points may also contribute larger errors.

On an entirely different point, it may problematic that the basic assump-
tions of the dependence structure in the hidden Markov model (cf. figure
2.1 on page 22) are violated as gk depends on all earlier inferred positions.

With these problems pointed out, it can safely be concluded that the very
small gain by the control implementation is not worth the extra computa-
tional effort. The regular Kalman filter performs very satisfactory. While
this heuristic approach to improve proves unfruitful there are some impor-
tant lessons to be learned (or remembered).

One of the obvious strengths of the Kalman filter is that it is recursive.
The kernel density estimate cannot, at least to my knowledge, be computed
recursively and thus has to be recomputed every iteration. This is one
obvious problem of increasing complexity of the proposed implementation.

Secondly, before applying complex non-linear filters, the linear Kalman
filter (if possible) should be tested to see whether or not the extra compu-
tational effort is worth the gain (if any gain at all).

Thirdly, the extended Kalman filter can be somewhat unstable. If the
perturbations can be remedied similar extended Kalman filters in the context
of mobile localization might be a valid subject for further study.

While the Kalman filter is very versatile it is limited still to the linear
case. The non-linear extended version is sub-optimal and can have diver-

38

gence problems amongst other. An alternativ filtering-scheme if the system
is non-linear or the assumptions are invalid is the so-called particle filters,
which relies heavily on the formulas presented in section 2.5.1 about recur-
sive Bayesian estimation.

If the ideas are formulated more rigorously the extra estimated param-
eters and kernel density estimate could provide even more insight in the
surroundings and behaviour of mobile users.

Giv mig 12!

39

Bibliography

[1] R Development Core Team, R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2010. ISBN 3-900051-07-0.

[2] V. Borrel, M. D. de Amorim, and S. Fdida, “On natural mobility mod-
els,” Lecture Notes In Computer Science, vol. 3854.

[3] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for
ad hoc network research,” Wireless Communication & Mobile Comput-
ing (WCMC): Special issue on Mobile Ad Hoc Networking: Research,
Trends and Applications, vol. 2, no. 5, 2002.

[4] J.-Y. L. Boudec, “Understanding the simulation of mobility models
with palm calculus,” Performance Evaluation, no. 2007.

[5] A. Klein, “Routing protocol.” http://www.routingprotokolle.de/,
nov 2010. EADS Innovation Works, Dept. IW-SI - Sensors, Electronics
& Systems Integration, Munich.

[6] F. Rubin, “The lee path connection algorithm,” IEEE Transactions On
Computers, 1974.

[7] V. Horak and P. Gruber, “Parallel numerical solution of 2-d heat equa-
tion.”

[8] J. Kammann, M. Angermann, and B. Lami, “A new mobility model
based on maps,” IEEE Vehicular Technology Conference, 2003.

[9] R. L. Knoblauch, M. T. Pietrucha, and M. Nitzburg, “Field studies of
pedestrian walking speed and start-up time,” Transportation Research
Record, no. 1538.

[10] R. L. Olsen, J. C. P. Figueiras, J. G. Rasmussen, and H. P. Schwefel,
“How precise should localization be? A quantitative analysis of the
impact of delay and mobility on reliability of location information,”
IEEE Globecom 2010 - Communications QoS, Reliability and Modelling
Symposium (GC10 - CQRM).

40

http://www.routingprotokolle.de/

[11] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Journal of Basic Engineering, no. 82, 1960.

[12] M. S. Greval and A. P. Andrews, Kalman Filtering: Theory and Prac-
tice Using MATLAB. 2nd ed., 2001.

[13] S. Haykin, Adaptive Filter Theory. Prentice-Hall, 4th ed., 2002.

[14] F. Orderud, “Comparison of kalman filter estimation approaches for
state space models with nonlinear measurements,” 2005.

[15] K. S. Shanmugan and A. M. Breipohl, Random Signals: Detection,
Estimation, and Data Analysis. John Wiley & Sons, 1988.

[16] Z. Chen, “Bayesian filtering: From kalman filters to particle filters, and
beyond,” Statistics, 2003.

[17] P. Olofsson, Probability, Statistics, and Stochastic Processes. Wiley-
Interscience, 2005.

[18] M. I. Ribeiro, “Kalman and extended kalman filters: Concept, deriva-
tion and properties,” 2004.

41

Appendix A

Kernel density estimation

Kernel density estimation is an non-parametric approach to estimate proba-
bility density functions from which only n realisations is available. Suppose
(x1, . . . , xn) is drawn from some density f , the kernel density estimator is
then defined as

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi), (A.1)

where Kh(·) is a kernel1 with bandwith h. Figure A.2 illustrates the sum-
mation of the differently translated kernels of equation (A.1). As seen, a
bandwidth of 1 and 0.1 yield too smooth and too fluctuating respectively.
The choice of 0.39 is computed according to some rule-of-thumb, which shall
not be described here.

Obviously, the resulting function is highly dependant on the choice of
bandwidth h. The bandwidth h determines how “smooth” the estimate
is, high bandwidths yield very smooth estimates while small h gives many
fluctuations, as seen in figure A.3.

In two and higher dimensions the h is generalized to a matrix which
contains covariances. The two dimensional kernel estimate, with bivariate
Gaussian kernels, is then described by

f̂H(x) =
1

n

n∑
i=1

1

2π|H|
1
2

exp

(
−1

2

(
x− xi

)T
H−1

(
x− xi

))
,

where x is a two dimensional vector and H is the bandwidth matrix.
1A kernel Kh(x) is a function which satisfies∫

Ω

K(x)dx = 1

K(x) = K(−x), ∀x ∈ Ω,

i.e. it integrates to one (thus is a probability distribution) and is symmetric around 0.
If K(x) is a kernel, then so is Kh(x) := h−1K(h−1x). Figure A.1 shows some different
kernel choices.

42

Kernel choices

X

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gaussian: 1
2

exp

1
2
x2

Epanechnikov: 3

4
(1−x2)1[x<1]

Uniform: 1
2
1[x<1]

Triangular: (1−x)1[x<1]
Cosine: π

4
cos

π
2
x

1[x<1]
Quartic: 15

16
(1−x2)21[x<1]

Triweight: 35
32

(1−x2)31[x<1]

Figure A.1: Some different popular kernels. Note, that 1[·] here denotes the
indicator function.

43

Kernel density estimation

X

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

Figure A.2: This figure illustrates the individual kernels around each realisation
of f along with the summed resulting function.

The bandwidth is selected from rules derived from some optimality cri-
terion; the most common of which is the mean integrated squarred error
given by

e(h) = E
[∫

Ω
f̂h(x)− f(x)dx

]
,

where ĥ := argmin
(
e(h)

)
. Note, that this formula cannot be applied directly

as it involves the unknown function f . Figure 3.3 on page 27 shows an
example of 2 dimensional kernel density estimation using Gaussian kernels.

44

Bandwidth illustration

X

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

h = 0.39
h = 0.1
h = 1
True distribution

Figure A.3: Three different kernel density estimates, all using Gaussian kernels,
of 100 realisations from a standard Gaussian distribution. The data is illustrated
as black ticks on the x-axis.

45

Appendix B

Derivation notes

Substituting (2.12) into (2.5.2) yields

0 =
∂

∂xn

(
− 1

2
(zn −Hnxn)TR−1

n (zn −Hnxn)

− 1

2
(xn − x̂n|n−1)TP−1

n|n−1(xn − x̂n|n−1)

)
=

∂

∂xn

(
− 1

2
(zTn − xTnH

T
n)(R−1

n zn −R−1
n Hnxn)

− 1

2
(xTn − x̂Tn|n−1)(P−1

n|n−1xn − P−1
n|n−1x̂n|n−1)

)
=

∂

∂xn

(
− 1

2

(
zTnR

−1
n zn − zTnR

−1
n Hnxn

− xTnH
T
nR
−1
n zn + xTnH

T
nR
−1
n Hnxn

)
− 1

2

(
xTnP

−1
n|n−1xn − xTnP

−1
n|n−1x̂n|n−1

− x̂Tn|n−1P
−1
n|n−1xn + x̂Tn|n−1P

−1
n|n−1x̂n|n−1

))
=

∂

∂xn

(
− 1

2
zTnR

−1
n zn + zTnR

−1
n Hnxn −

1

2
xTnH

T
nR
−1
n Hnxn

− 1

2
xTnP

−1
n|n−1xn + xTnP

−1
n|n−1x̂n|n−1 −

1

2
x̂Tn|n−1P

−1
n|n−1x̂n|n−1

)
= (zTnR

−1
n Hn)T −HT

nR
−1
n Hnxn − P−1

n|n−1xn + P−1
n|n−1x̂n|n−1

=
(
HT

nR
−1
n zn + P−1

n|n−1x̂n|n−1

)
−
(
HT

nR
−1
n Hn + P−1

n|n−1

)
xn

which is equivalent to

xn =
(
HT

nR
−1
n Hn + P−1

n|n−1

)−1(
P−1
n|n−1x̂n|n−1 + HT

nR
−1
n zn

)
.

46

When differentiating, we use the linearity of the differential operator along
with the standard rules of vector calculus

∂

∂x
xTA = A,

∂

∂x
Ax = AT , and

∂

∂x
xTAx = 2Ax,

where the last equality only hold if A is a symmetric matrix.

47

Appendix C

R-scripts

These are the essential ’stripped’ programs used during the project. Most of
the R work done was left out of the report. There was not enough room for
the scripts that produce all the figures. Only the bare minimum is included
here from which most of the above can be derived fairly easily.

Note, that some scripts may have to be executed before others.

###
Path finding with Lee algorithm
Written by Anders Bilgrau
Last revisited: 26th of May , 2011
###

set.seed (8)

#
Constructing a layout map:
#

n <- 200
L <- matrix(1, n, n)
L[c(1,n),] <- 0
L[,c(1,n)] <- 0
L[n*0.4 , 1:(n*0.8)] <- 0
L[(n*0.4):n, n*0.8] <- 0
L[1:(n*0.4), n*0.4] <- 0
L[n*0.4 , c((n*0.45):(n*0.55), (n*0.15):(n*0.25))] <- 1

#
Picking (non) random waypoints
#

Destination
x <- 20
y <- 60

Starting points
x.start <- c(0.70*n, 0.05*n, 0.90*n, 0.45*n, 0.05*n, 0.75*n)
y.start <- c(0.70*n, 0.75*n, 0.60*n, 0.05*n, 0.05*n, 0.95*n)
m <- length(x.start)

image (1:n, 1:n, log((L-1)*(-1)), col = "Black",
xlab = "X", ylab = "Y", font.main = 3, axes = FALSE ,
main = "Example of a layout matrix")

axis (1); axis (2)
points(x, y, pch = 16, cex = 1, col = "Red")
points(x.start , y.start , pch = 16, cex = 1, col = "Blue")
text(x.start , y.start , paste("WP", 1:m), pos = 3, cex = 0.8)
text(x, y, "Destination.", pos = 3, cex = 0.8)

#
Computing the matrix
#

48

u <- L*matrix(0, n, n) # 1/n^2
u[x,y] <- 1
k <- 1

while (sum(L != 0) - sum(u > 0) != 0) {
for (i in 2:(n-1)) {

for (j in 2:(n-1)) {
if (u[i,j] == 0 &

(u[i+1, j] == k | u[i-1, j] == k |
u[i, j+1] == k | u[i, j-1] == k)) {

u[i,j] <- L[i,j]*(k + 1)
}

}
}
k <- k + 1

if (k %% 10 == 0) {
cat("Iteration =", k, "\n")
cat("Missing zeros:", sum(L != 0) - sum(u > 0), "\n")
flush.console ()

}
}
u[L == 0] <- Inf

#
Path finding & plotting
#

pdf(file = "LeesAlgorithm.pdf")
jet.colors <-

colorRampPalette(c("#00007F", "blue", "#007 FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#7 F0000"))

image (1:n, 1:n, matrix(0,n,n), col = "Black",
xlab = "X", ylab = "Y", font.main = 3,
main = "Path finding using the Lee algortihm")

image (1:n, 1:n, u, col = jet.colors (255), add = TRUE)
contour (1:n, 1:n, u, add = TRUE , nlevels = 50,

col = "#FFFFFFF0", drawlabels = FALSE)

for (k in 1:m) {
x.path <- rx <- x.start[k]
y.path <- ry <- y.start[k]

while (rx != x | ry != y) {
uu <- u[(rx -1):(rx+1), (ry -1):(ry+1)]
direc <- which(uu == min(uu), arr.ind = TRUE) - 2
rx <- rx + direc [1]
ry <- ry + direc [2]
x.path <- c(x.path , rx)
y.path <- c(y.path , ry)

}
lines(x.path , y.path , col = "Black")

}
points(x,y, col = "White", pch = 16, cex = 0.8)
points(x.start ,y.start , col = "Black", pch = 16)

dev.off ()

R-script C.1: This script computes and produce plots of the path between points
using the Lee algorithm.

###
Path finding with the heat equation
Written by Anders Bilgrau
Last revisited: 26th of May , 2011
###

#
Initializing
#

library(numDeriv)
library(akima)

par(ask = FALSE)
options(digits = 22)

#
Constructing a layout map:
#

49

n <- 200
L <- matrix(1, n, n)
L[c(1,n),] <- 0
L[,c(1,n)] <- 0
L[n*0.4 , 1:(n*0.8)] <- 0
L[(n*0.4):n, n*0.8] <- 0
L[1:(n*0.4), n*0.4] <- 0
L[n*0.4 , c((n*0.45):(n*0.55), (n*0.15):(n*0.25))] <- 1

#
Picking (non) random waypoints
#

Destination
x <- 20 # sample (1:n, 1)
y <- 60 # sample (1:n, 1)

Start
set.seed (8)
m <- 6
x.start <- c(0.70*n, 0.05*n, 0.90*n, 0.45*n, 0.05*n, 0.95*n) # sample (1:n, m)
y.start <- c(0.85*n, 0.60*n, 0.75*n, 0.05*n, 0.10*n, 0.95*n) # sample (1:n, m)

image (1:n, 1:n, log((L-1)*(-1)), col = "Black",
xlab = "X", ylab = "Y", font.main = 3,
main = "Example of a layout matrix")

points(x, y, pch = 16, cex = 1, col = "Red")
points(x.start , y.start , pch = 16, cex = 1, col = "Blue")
text(x.start , y.start , paste("WP", 1:m), pos = 3, cex = 0.8)
text(x, y, "Destination.", pos = 3, cex = 0.8)

#
Computing the heat matrix
#

u <- L*matrix(0, n, n) # 1/n^2
u[x,y] <- 1
uu <- matrix(0, n, n)
sims <- 3000
k <- 0.5

for (t in 1:sims) {
for (i in 2:(n-1)) {

for (j in 2:(n-1)) {
uu[i,j] <-

u[i,j] + k*((u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1])/4 - u[i,j])
}

}
uu <- L*uu
u <- uu # Absorbing boundaries
u[x,y] <- 1 # Constant temperature

if (t %% 10 == 0) {
cat("Iteration =", t, "\n");
flush.console ();

}
}

#
Example of finding of path
#

#load (" HeatEquation.Rdata ")

lu <- log(u)

f <- function(val) {
rval <- round(val , 0)
return(

interpp(rep((rval [1] -2):(rval [1]+2) , each = 5),
rep((rval [2] -2):(rval [2]+2) , 5),
as.vector(t(lu[(rval [1] -2):(rval [1]+2) ,(rval [2] -2):(rval [2]+2)])) ,
val[1], val [2])$z

)
}

x.route <- rx <- x.start [1]
y.route <- ry <- y.start [1]
h <- 0.25

50

eps <- 0.5

while (abs(x - rx) > eps | abs(y - ry) > eps) {

df <- grad(f, c(rx,ry))
rx <- rx + h*cos(atan2(df[2],df[1]))
ry <- ry + h*sin(atan2(df[2],df[1]))

x.route <- c(x.route , rx)
y.route <- c(y.route , ry)

}

#
Plotting
#

#pdf (" HeatEquation.pdf ")
jet.colors <-

colorRampPalette(c("#00007F", "blue", "#007 FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#7 F0000"))

image (1:n, 1:n, matrix(0,n,n), col = "Black",
xlab = "X", ylab = "Y", font.main = 3,
main = "Path finding using the Heat equation")

image (1:n, 1:n, log(u), col = jet.colors (255), add = TRUE)
contour (1:n, 1:n, log(u), add = TRUE , nlevels = 150,

col = "#FFFFFFF0", drawlabels = FALSE)
for (j in 1:m) {

x.route <- rx <- x.start[j]
y.route <- ry <- y.start[j]
while (abs(x - rx) > eps | abs(y - ry) > eps) {

df <- grad(f, c(rx,ry))
rx <- rx + h*cos(atan2(df[2],df[1]))
ry <- ry + h*sin(atan2(df[2],df[1]))
x.route <- c(x.route , rx)
y.route <- c(y.route , ry)

}
lines(x.route , y.route)

}

points(c(x, x.start), c(y, y.start), pch = 16, cex = c(0.6,rep(1,m)),
col = c("White", rep("Black",m)))

#dev.off ()

R-script C.2: This script computes and produce plots of the path between points
using the Heat equation.

###
Simulation of a Indoor dataset
Written by Anders Bilgrau
Last revisited: 26th of May , 2011
###

#
Initializing
#

library(numDeriv)
library(akima)

#
Constructing the layout map
#

size <- 20 # (meters)
n <- 200
L <- matrix(1, n, n)
L[c(1,n),] <- 0
L[,c(1,n)] <- 0
L[n*0.4 , 1:(n*0.8)] <- 0
L[(n*0.4):n, n*0.8] <- 0
L[1:(n*0.4), n*0.4] <- 0
L[n*0.4 , c((n*0.45):(n*0.55), (n*0.15):(n*0.25))] <- 1

#
Picking (non) random waypoints
#

51

wp.x <- n*c(0.70 , 0.05 , 0.90 , 0.45 , 0.05 , 0.95 , 0.20 , 0.50 , 0.92 , 0.23 , 0.75)
wp.y <- n*c(0.85 , 0.60 , 0.75 , 0.05 , 0.10 , 0.95 , 0.35 , 0.65 , 0.23 , 0.89 , 0.50)
m <- length(wp.x)

#
Computing all Heat matrices
#

matrices <- list()

for (k in 1:m) {

Computing the heat matrix with source in (wp.x[k], wp.y[k])

sims <- 5000
u <- uu <- matrix(0, n, n)
u[wp.x[k], wp.y[k]] <- 1

st <- proc.time ()
for (t in 1:sims) {

for (i in 2:(n-1)) {
for (j in 2:(n-1)) {

uu[i,j] <-
u[i,j] + 0.5*((u[i-1,j]+u[i+1,j]+u[i,j-1]+u[i,j+1])/4 - u[i,j])

}
}
u <- L*uu # Absorbing boundaries
u[wp.x[k], wp.y[k]] <- 1 # Constant temperature at destination

}
matrices [[k]] <- u
cat(paste("Heatmap with source in WP", k, "of", m, "computed in",

round((proc.time () - st)[3]%/%60), "minutes.\n")); flush.console ();
save(matrices , file = "matrices.Rdata")

}

#
Computing all m*(m -1) possible paths
#

all.paths <- list()

for (k in 1:m) {

u <- log(matrices [[k]])

f <- function(v) {
rv <- round(v, 0)
interpp(rep((rv[1] -1):(rv[1]+1) , each = 3),

rep((rv[2] -1):(rv[2]+1) , 3),
as.vector(t(u[(rv[1] -1):(rv[1]+1) ,(rv[2] -1):(rv[2]+1)])) ,
v[1], v[2])$z

}

path <- vector("list", m)

for (i in (1:m)[-k]) {

x.path <- rx <- wp.x[i]
y.path <- ry <- wp.y[i]
h <- 0.75
eps <- 1

while (sqrt((wp.x[k] - rx)^2 +(wp.y[k] - ry)^2) > eps) {
df <- grad(f, c(rx,ry))
rx <- rx + h*cos(atan2(df[2],df[1]))
ry <- ry + h*sin(atan2(df[2],df[1]))
x.path <- c(x.path , rx)
y.path <- c(y.path , ry)

}
path[[i]] <- (size/n)*cbind(x = x.path , y = y.path)

}
all.paths [[k]] <- path
cat(paste("All paths to WP", k, "computed.\n")); flush.console ();

}

#
Simulating walk
#

Choosing the random waypoints

52

rw <- sample (1:m, 50, replace = TRUE)
rw <- rw[c(TRUE , rw[-1] != rw[-n.wp])] # We walk to a new WP each time!

Combining paths and simulating speed and waiting times

walk <- NULL

for (i in 1:(length(rw) - 1)) {
p <- all.paths [[rw[i+1]]][[rw[i]]]
l <- (size/n)*h*(dim(p)[1] - 1)
s <- rnorm(1, mean = 5, sd = 0.25) * 1/3.6
p <- cbind(p, t = seq(0, l/s, length.out = dim(p)[1]))
wait <- rexp(1, rate = 1/20)

if (i > 1) {
p[, 3] <- p[, 3] + walk[dim(walk)[1], 3] + wait

}
walk <- rbind(walk , p)

}

#
Simulating observation set
#

sample.rate <- 1 # samples pr. second
tmax <- walk[dim(walk)[1] ,3]
ts <- seq(0, tmax , by = 1/sample.rate)

pos <- function(t) {
cbind(x = approxfun(walk[,3], walk[,1], yleft = NA, yright = NA ,)(t),

y = approxfun(walk[,3], walk[,2], yleft = NA, yright = NA ,)(t),
t = t)

}

std <- 0.5 # Adding Gaussian noise
obs.path <- pos(ts)
obs.path <- cbind(obs.path , zx = obs.path [,1] + rnorm(length(ts), 0, std))
obs.path <- cbind(obs.path , zy = obs.path [,2] + rnorm(length(ts), 0, std))
obs.path <- as.data.frame(obs.path)

save(obs.path , file = "obs.path.Rdata")

#
Real time plotting
#

real.time <- TRUE

jet.colors <-
colorRampPalette(c("#00007F", "blue", "#007 FFF", "cyan",

"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))
image ((1:n)*size/n, (1:n)*size/n, log((L-1)*(-1)), col = "Black",

xlab = "X", ylab = "Y", font.main = 3,
main = "Trace of simulated walk")

lines(obs.path [,1:2], col = "Blue")
points(obs.path [,1:2], pch = 16, cex = 0.6 , col = "Blue")
points(obs.path [,4:5], pch = 1, cex = .6, col = "Red")
points(wp.x*size/n, wp.y*size/n, pch = 16, cex = 1, col = jet.colors(m))
text(wp.x*size/n, wp.y*size/n, paste("WP", 1:m), pos = 3, cex = 0.8)

R-script C.3: This script simulates the data presented in the introduction.

###
A indoor localization Kalman filter algorithm
Written by Anders E. Bilgrau
Last revisited: 26th of May , 2011
###

#
Initialzing
#

library(numDeriv)
library(akima)
library(MASS)

#
Implementation of the regular Kalman filter
#

53

use.enviroment <- FALSE
if (use.enviroment) {

scale <- seq(-2, 2, by = 0.01)
} else {

scale <- 0
}

sse <- NULL
all.x.upd <- list()

st <- proc.time ()

for (gamma in scale) {

Initalization

x.upd <- matrix(c(17,0,16,0), 4, 1)
x.pre <- matrix(NA, 4, 1)
P.upd <- list(diag (4))

xs <- obs.path[, 1:3]
zs <- obs.path[, 4:5]

std <- 2
n.it <- nrow(xs)

Running the Kalman filter

for (i in 2:n.it) {

dt <- xs$t[i] - xs$t[i-1]
F <- diag (2) %x% matrix(c(1,0,dt ,1), 2, 2)
Q <- diag (2) %x% matrix(c(dt^4/4, dt^3/2,dt^3/2,dt^2), 2,2)
H <- matrix(c(1,0,0,0,0,1,0,0), 2, 4)
R <- diag (2)*std
B <- matrix(c(dt ,1,0,0,0,0,dt ,1), 4, 2)
I <- diag (4)
u <- matrix(0, 2, 1)

If use.enviroment == FALSE or scale == 0 the gradient of the
kernel density estimate is not used! If scale == 0, u is simply
zero , and it is a normal Kalman filter.

if (use.enviroment) {
f <- function(val , dens) {

ix <- min(which(abs(dens$x - val [1]) == min(abs(dens$x - val [1]))))
iy <- min(which(abs(dens$y - val [2]) == min(abs(dens$y - val [2]))))
interpp(rep(dens$x[(ix -1):(ix+1)], each = 3),

rep(dens$y[(iy -1):(iy+1)], 3),
as.vector(t(dens$z[(ix -1):(ix+1),(iy -1):(iy+1)])) ,
val[1], val [2])$z

}
set <- cbind(x.upd[c(1,3), 1:(i-1)], t(zs[i,]))
dens <- kde2d(set[1,], set[2,], n = 50,

lims = c(range(set[1,]),range(set[2,])) + c(-1,1,-1,1))
val <- x.upd[c(1,3), i-1]
u <- gamma * matrix(grad(f, val , dens = dens), 2, 1)

}

Prediction step

x.pre <- cbind(x.pre , F %∗% x.upd[, i-1] + B %∗% u)
P.pre <- F %∗% P.upd[[i-1]] %∗% t(F) + Q

Update step

z <- matrix(c(zs$zx[i], zs$zy[i]), 2, 1)
yhat <- z - H %∗% x.pre[, i]
S <- H %∗% P.pre %∗% t(H) + R
K <- P.pre %∗% t(H) %∗% solve(S)

x.upd <- cbind(x.upd , x.pre[, i] + K %∗% yhat)
P.upd[[i]] <- (I - K %∗% H) %∗% P.pre

if (i %% 100 == 0 | i == n.it | i == 2) {
cat("Iteration", i, "of", n.it , "completed.\n"); flush.console ();

}
}

sse <- c(sse , sum(sqrt((x.upd[1,] - xs$x)^2 + (x.upd[3,] - xs$y)^2)))
all.x.upd [[which(gamma == scale)]] <- x.upd
cat("gamma =", gamma ,"done\n"); flush.console ();

54

}

#
Performance
#

plot(scale , sse , xlab = expression(gamma), ylab = "SSE", type = "l",
main = "SSE as a function of scaling", font.main = 3, axes = FALSE)

axis (1); axis (2);

Measurement SSE:
m.SSE <- sum(sqrt((zs$zx - xs$x)^2 + (zs$zy - xs$y)^2))
m.SSE

Regular Kalman filter SSE:
reg.kf.SSE <- sse[scale == 0]
reg.kf.SSE

Best enviromental Kalman filter SSE:
env.kf.SSE <- min(sse)
env.kf.SSE
scale[which.min(sse)]

a <- proc.time () - st
a

R-script C.4: This script implements and computes the results shown and dis-
cussed in chapter 3 of the new Kalman filter.

###
A indoor localization using the Extended Kalman filter algorithm
Written by Anders E. Bilgrau
Last revisited: 26th of May , 2011
###

#
Initialzing
#

library(numDeriv)
library(MASS)
library(akima)

#
Auxillary funcitons
#

These assmue the global object "dens" and "dt"

g <- function(val) {
ix <- which.min(abs(dens$x - val [1]))
iy <- which.min(abs(dens$y - val [2]))
interpp(rep(dens$x[(ix -1):(ix+1)], each = 3),

rep(dens$y[(iy -1):(iy+1)], 3),
as.vector(t(dens$z[(ix -1):(ix+1),(iy -1):(iy+1)])) ,
val[1], val [2])$z

}

dg <- function(val) {
grad(g, val)

}

f <- function(x) { # x = (x, xp , y, yp , kappa)
x.new <- x[1] + dt * x[2] + dg(val = x[c(1 ,3)])[1] * x[5] * dt
xp.new <- x[2] + dg(val = x[c(1 ,3)])[1] * x[5]
y.new <- x[3] + dt * x[4] + dg(val = x[c(1 ,3)])[2] * x[5] * dt
yp.new <- x[4] + dg(val = x[c(1 ,3)])[2] * x[5]
return(c(x.new , xp.new , y.new , yp.new , x[5]))

}

#
Implementation of the Extended Kalman filter
#

Initalization

xs <- obs.path[, 1:3]
zs <- obs.path[, c(4:5 ,3)]

x.upd <- matrix(c(17,0,16,0,1), 5, 1) # Initial values

55

x.pre <- matrix(NA, 5, 1)
P.upd <- list(diag (5))

std <- 2
n.it <- nrow(xs)

Running the Kalman filter

st <- proc.time ()
for (i in 2:n.it) {

Computing density

set <- cbind(x.upd[c(1,3), 1:(i-1)], t(zs[i ,1:2]))
dens <- kde2d(set[1,],set[2,], n = 100,

lims = c(range(set[1,])+c(-2,2), range(set[2,])+c(-2,2)))

Defining matrices

dt <- xs$t[i] - xs$t[i-1]
F <- jacobian(f, x = x.upd[, i-1])
Q <- rbind(cbind(diag (2) %x% matrix(c(dt^4/4, dt^3/2,dt^3/2,dt^2),2,2),0),

c(0,0,0,0,1))
H <- matrix(c(1,0,0,0,0,1,0,0,0,0), 2, 5)
R <- diag (2)*std
I <- diag (5)

Prediction step

x.pre <- cbind(x.pre , F %∗% x.upd[, i-1])
P.pre <- F %∗% P.upd[[i-1]] %∗% t(F) + Q

Update step

z <- matrix(c(zs$zx[i], zs$zy[i]), 2, 1)
yhat <- z - H %∗% x.pre[, i]
S <- H %∗% P.pre %∗% t(H) + R
K <- P.pre %∗% t(H) %∗% solve(S)

x.upd <- cbind(x.upd , x.pre[, i] + K %∗% yhat)
P.upd[[i]] <- (I - K %∗% H) %∗% P.pre

if (i %% 10 == 0 | i == n.it | i == 2) {
time.left <- (((proc.time () - st)[3]/i)*(n.it - i))%/%60
cat("Iteration", i, "of", n.it , "completed.\n");
cat("Estimated time remaining:", time.left , "minutes.\n"); flush.console ();

}
}
cat("Total running time =", (proc.time () - st)[3]%/% 60)

#
Performace
#

Measurement SSE:
m.SSE <- sum(sqrt((zs$zx - xs$x)^2 + (zs$zy - xs$y)^2))
m.SSE

Enviromental Kalman filter SSE:
env.SSE <- sum(sqrt((x.upd[1,] - xs$x)^2 + (x.upd[3,] - xs$y)^2))
env.SSE
x.upd[,ncol(x.upd)]

R-script C.5: This script implements and computes the results of the extended
Kalman filter shown and discussed in chapter 3

56

	Preface
	Table of Contents
	Introduction
	Mobility models
	Path finding
	The Lee algorithm
	Using the heat equation

	The used mobility & observation model

	Kalman filtering
	Prediction step
	Update step
	An implementation of a Kalman filter
	Extended Kalman filter
	Derivation of the Kalman filter
	Recursive Bayesian Estimation
	Kalman filter as a special case of the Bayes filter

	A new model
	The 2-dimensional framework
	Performance

	Using the extended Kalman filter
	Performance

	Concluding notes
	Bibliography
	Kernel density estimation
	Derivation notes
	R-scripts

