Integration of the
KUKA Light Weight Robot
in a mobile manipulator

Mikkel Rath Pedersen

Master’s Thesis in Manufacturing Technology
Department of Mechanical and Manufacturing Engineering
Aalborg University

UN,
¢ L

Q

o)
by

Q

- a

< ~

4 Y

4.
sNM pr®
Title:

Integration of the KUKA
Light Weight Robot in a mo-

bile manipulator

Semester themes:
3rd
Integrated product and

system design
4th

Manufacturing Technology

Project period:
2010/09/02
- 2011/05/31

Project group:
FIB14,33(b)

Participant:
Mikkel Rath Pedersen

Supervisor:
Ole Madsen

Amount printed: 3
Pages: 90 + Appendix

Ended: 2011/05/31

Department of Mechanical

& Manufacturing Engineering

Fibigerstraede 16,

DK-9220 Aalborg @
Phone: +45 9940 8934
Fax: 445 9815 3040
http://www.m-tech.aau.dk

Synopsis:

The following project describes the integration of the
KUKA Light Weight Robot on a new version of the
AAU-developed mobile manipulator Little Helper.
With the current configuration being analyzed to
form a basis of the design, the LHP is designed. How-
ever, due to a larger controller, the pneumatic system
is removed, resulting in the need for a non-pneumatic
tool changer. Therefore this is designed by electri-
cally actuating a commercially available one. The
LHP is designed so the capabilities exceed those of
the LH, but has yet to be built upon the completion
of this project.

After the design is complete, the work on demon-
strating the added benefits of the KUKA LWR is
carried out. This reveals that some of the added fea-
tures improve the functionality of the LHP, mainly
the use of the Fast Research Interface, which enables
realtime control of the LWR from a remote PC con-
tributes to this. Furthermore, the peg in hole task
is solved using the cartesian impedance controller of
the LWR, and a routine for calibrating a worksta-
tion coordinate system by the torque sensors is es-
tablished.

Conclusively, it is determined that the LWR indeed
increases the capabilities of the LHP, compared to
the LH.

Abstract

In 2008 the mobile manipulator Little Helper was developed at the Department of Me-
chanical and Manufacturing Engineering of Aalborg University, in order to create a more
flexible and autonomous solution than traditional automation in the industry. Research
has been made since then to improve this solution, and within the last year two EU-
funded projects have begun, with the Little Helper as a central aspect. Part of these
projects is to redesign the Little Helper to accommodate the KUKA Light Weight Robot
instead of the currently attached robot arm, to gain increased functionality in the form
of greater reach and payload and force feedback, and to utilize this in different scenarios.
The project at hand deals partially with both these aspects.

In order to design the new version, the Little Helper Plus, the configuration of the Little
Helper has been analyzed, to form a basis for the new design. This analysis reveals
the need for a more easily reconfigurable solution, in order to provide a more flexible
solution on the hardware side. After this initial analysis, the main aspect of placing the
much larger controller for the LWR, on the mobile platform is investigated. This results
in the choice of removing the pneumatic system on the Little Helper Plus, since there
is no room for it. Since the tool changing capability of the Little Helper is to be main-
tained as part of the flexibility aspect, a non-pneumatic tool changer is designed. An
analysis of the different methods of changing tools without a pneumatic system reveals
that electrically actuating an existing tool changer is the best option. As such, a fully
working electric tool changer is designed for the Little Helper Plus.

After this initial work, the Little Helper Plus is designed from the inside out, by placing
the components in CAD software and afterwards designing the chassis, cover plates,
brackets, etc. This results in a fully designed Little Helper Plus, with capabilities sur-
passing those of the Little Helper, though the actual build of the system has not been
carried out by the end of this project.

Because of this, the LWR is mounted in a temporary location, in order to investigate
the added functionality this provides. The control modes and added functionality of the
LWR is described first, to provide an understanding of this. The preliminary investiga-
tion of easier programming by moving the robot by hand, instead of using the jog keys
on the teach pendant, reveals that this seemingly more elegant programming method in

fact takes more time. This is because the position and rotation of the robot tool can

not be ensured with adequate precision when moving the robot by hand, compared to
using the jog keys.

The use of the torque sensors in the LWR for calibration purposes is investigated next,
since workstation calibration is currently done by machine vision on the Little Helper.
This reveals that a calibration adequate for parts handling and vision inspection using
the torque sensors is feasible, since a fine repeat accuracy of the calibration is obtainable.
With traditional robots, the task of placing a peg in a hole is quite difficult, due to de-
mands on accurate position and orientation of the peg relative to the hole. It is therefore
investigated how the features of the LWR can be utilized to solve this task, by comparing
a traditional, position controlled method of insertion with insertion using the cartesian
impedance controller. This confirms that the task is indeed hard to accomplish using the
position controller, whereas using the cartesian impedance controller allows for greater
error in position and rotation of the peg. Furthermore, methods for improving this task
is suggested, along with a strategy for inserting sharp-edged pegs in ditto holes.

Along with the LWR, KUKA supplies the Fast Research Interface, enabling realtime
control of the LWR through an UDP connection. Since this will be utilized in the Little
Helper Plus for sending commands from the main computer on the platform to the robot
arm, work has been done on making a full demonstration of this interface. Initially, a
console application outputting the measured torque in each joint every second is devel-
oped, to gain an understanding of how the interface works. After this a GUI application
is developed to demonstrate all of the features of the FRI, including an interface for
jogging the robot from the remote PC.

Finally an attempt on measuring the mass and center of mass using the torque sensors
has been carried out. This concludes that the precision of the torque sensors is inade-
quate for these kinds of measurements, since the measurements yield fairly inaccurate
results. This of course depends on the specific application, where this would be utilized,
since e.g. determining whether or not there are parts in a box is feasible, whereas de-
termining the actual number of parts in the box is not.

It is apparent that the KUKA LWR in most ways contribute to the functionality of
the Little Helper Plus, mainly due to the Fast Research Interface and the option to use
the built-in compliance control of the robot arm. Though some scenarios have been
investigated in this project, there are a lot of possibilities for further work with using
the LHP in general and the LWR in particular.

1

Preface

This 2-semester master’s thesis project is composed on the 3'4 and 4*" semester of Man-
ufacturing Technology at Aalborg University, from September 15¢ 2010 to May 315* 2011.
The semester theme for each semester is integrated product- and system design (3"¢)
and manufacturing technology (4").

The project is documented by a main report, with included appendices and an enclosed
CD. The main report can be read independently but is supported by the appendices
and literature references.

The references in the text are made by the IEEE method and labeled with consec-
utive numbering in square brackets, e.g. [1] or [2]. Further information about the
reference can be seen in bibliography. References to files on the CD are shown as
path\filename.type.

Figures, equations and tables are numbered by the chapter number and a consecutive
number e.g. Figure 4.1.

On the enclosed CD can be found:

e Source code for various sub-projects

— C++ applications
— KRL programs

Bibliography

Manuals regarding the LWR

SolidWorks 2010 files of the new configuration of Little Helper

Videos showing the tasks programmed on the LWR

To view the KRL source codes, it is recommended to download and install the open
source editor Notepad++-, and install the userDefinelLang.xml file found on the CD
(with instructions), to improve readability by ensuring proper highlighting of the code.
To view and compile the C++ projects, the free Visual Studio C++ Express (VC++)
2010 is needed for the two first projects, and the 2008 version is needed for the FRI

application (only for compilation). Since all of these projects require a connection to

some hardware, compilation is perhaps not required, and thus any version will highlight
the code properly. Notepad—++ will do this as well, but VC++ will show the relationship
between the source files as well as the actual code.

Besides the regular project work in this project, the following activities have been carried

out throughout the project period:

e Preparation and instruction a part of a Ph.D. course in Robot Vision

e Preparation and demonstration of the mobile robot Little Helper at a stand at the
fair FoodPharmaTech 10 (Nov. 274 - 4th 2010)

e Participation in a KUKA programming course (Basic Robot Programming, Ad-
vanced Robot Programming, some elements of Expert Robot Programming and
LWR Programming) at KUKA College in Gersthofen, Germany

e Preparation and conduction of a LWR course for the Automation Group at the

Department of Mechanical and Manufacturing Engineering

Mikkel Rath Pedersen

v

Contents

Abstract i
Preface iii
1 Introduction 1

2 Description 5
2.1 The mobile manipulator Little Helper 5
2.2 The TAPAS project 6
2.3 The KUKALWR 6

3 Thesis statement 9

I Reconfiguration of the platform 11

4 Configuration of the Little Helper 13
4.1 Components e e 13
4.2 Construction 15
4.3 Connections 17

5 Hardware changes 19
5.1 Requirements for the Little Helper Plus 21

6 Replaced components 23
6.1 Tool changing 23
6.2 Switching board 31
6.3 Visionsystem 33

7 Configuration of the Little Helper Plus 35
7.1 Main housing 35

11

7.2 Tooling L
7.3 Manufacturing of parts Lo L
7.4 Power and signal connections L.

7.5 Summary ... L e

Capabilities of the KUKA LWR

Control of the LWR

8.1 Control strategies
8.2 Controlling through the $STIFFNESS structure.
8.3 Built-in LWR functions in KRL

Programming the LWR by demonstration

10 Workstation calibration using force sensing

10.1 Theoretical solution
10.2 Test setup and programming the LWR
10.3 Accuracy of the calibration

11 Peg in hole

11.1 Using Position control oL
11.2 Using Cartesian Impedance control

11.3 Implementation in a production environment

12 Demonstration of the Fast Research Interface

12.1 Function of the FRI
12.2 Hello FRI e
12.3 Full demonstration of the FRI
12.4 Additional remarks

13 Measuring mass and center of mass of parts

13.1 Test setup and method of measurement
13.2 Determining the actual values

13.3 Accuracy of the measurements

47

49
49
51
o1

53

55
56
o8
60

65
66
67
68

71
71
74
76
85

vl

13.4 Further work on the measurements
14 Conclusion

Bibliography

Appendix

A Case: Vision-controlled robot playing NIM
A1 Overview e
A.2 Manipulation
A3 Vision e

A.4 Overall structure of the game

B FoodPharmaTech ’10
B.1 Description of the setup L.
B.2 Modifications during the fair

C Setup of the LWR
C.1 Startup and configuration of connectors
C.2 Connecting to end-effector equipment
C.3 Establishing I/Os on the controller
C.4 Temporary tools

95

100

103

103
103
105
105
107

111
111
114

s

VLt

Introduction

The use of automated solutions in manufacturing is increasing, and has been since the
first introduction of an automated robot in an industrial environment in the 60’s. Sales
did take a serious drop of 47% in 2009, but is getting back on track with an annual
worldwide sale in 2010 of about 115.000 robots (a slight increase compared to 2008).
The estimated sales of 2011 to 2013 also point towards an increase, both in annual sales
and in the number of operational robots in all industries. The reason for this is a com-
bination of more intelligent solutions, combined with both a price drop and an increase
in wages for human labor.

Although the sales and the number of robots in use are increasing in the next few years,
we have yet to see a great boom in these numbers. One reason for this is that industrial
robots have not changed that much since the 60’s, in terms of general principles. Indus-
trial robots are still stationary and not that smart and flexible, though the introduction
of machine vision has enabled robots to "see," picking up arbitrarily placed parts and
perform simple decision making regarding the part being processed, as well as perform-
ing simple quality control. Compared with the overall need for more flexible production
facilities, the traditional robot cells seem outdated, since the number of repetitive tasks,
where a robot is particularly useful, is decreasing as the flexibility of the production
facility increases.

One way to introduce flexible automation in production facilities is the use of mobile
platforms. This principle is known from service robots in particular, and the estimated
increase in sales is definitely apparent from Figure 1.1. However, the use of mobile
robots in production facilities has yet to see its breakthrough. The many advantages
of mobile robots does however look promising, since the versatility of a mobile robot

suggests it could replace human labor over time.

Service robots for professional use.
Sold units up to the end of 2009, sold units 2009 and forecast 2010-2013

25,000
20,000
15,000
2
‘c
=}
10,000
5,000 I
0
& @
O)
Sl &

HUp to end 2009 M Sales 2009 m Forecast 2010-2013

Figure 1.1: Development in the sales of service robots [1]

A fully working mobile manipulator, called Little Helper (LH), has been developed at
the Department of Mechanical and Manufacturing Engineering (M-TECH) at Aalborg
University, for both proof-of-concept and further research into the use of mobile ma-
nipulators in industrial environments. Further research is funded through the TAPAS
program, which is an EU-funded research project in collaboration with Grundfos, KUKA

and others. The manipulator is illustrated in Figure 2.1.

Figure 1.2: The mobile manipulator Little Helper [2]

Chapter 1 - Introduction 2

The goal of the TAPAS program is to create a flexible robot, capable of accomplishing
several different tasks at various locations in the production facility, with an on-board
scheduling software planning the execution of these tasks. The robot can be programmed
like any stationary robot, though an integration of the programming of the platform is
also required to integrate the mobility. The programming is however still rather time-
consuming and difficult, like in many other robot applications, greatly reducing the
flexibility and adjustments. The next step is therefore to introduce a more intuitive
method of interacting with the robot, e.g. instructing new tasks, without the need of
direct programming.

Several ways to do this is being researched all over the world, not only for mobile robots,
but also for faster reprogramming of stationary robots. One way to do this is the
established method of online programming, where the user teaches specific coordinates
to the robot through a teach pendant. This method is usually very time consuming,
and in some cases causes the rest of the production line to be stopped, making the
reprogramming cost intensive as well. The cost of reprogramming a mobile robot is
however smaller, at least if the robot is not handling a single crucial task, causing the
reprogramming process to stop the production line.

The robot company KUKA has a different answer to this, in the form of their lightweight
robot (LWR), which has also been showcased attached to a mobile platform. This 7-axis
manipulator can sense the torques in each joint, which has a number of beneficial effects.
One of the most important, in the mobile robot context, is safety, since the LWR can
detect if it is hitting an obstacle, this being both humans and production equipment.
Another beneficial effect is the much easier way of teaching new tasks to the robot, since
the user can physically move the robot to each coordinate, directly controlling each joint
angle and the position of the robot tool. The force sensing capabilities of the robot can
also reduce the need for calibration at each workstation, since the robot can 'feel' the
parts it has to manipulate.

Through both the TAPAS and GISA project, M-TECH has ordered two KUKA LWRs,
one of which is to be attached to a mobile platform similar to that of the Little Helper,
thus creating another mobile manipulator. The LWRs are delivered in February and
March 2011, but has to be implemented on the Little Helper in a minimal amount of

time. This of course raises the initial questions:

How can the KUKA LWR be installed on a mobile platform?
How can the potential of the KUKA LWR be fully utilized in a mobile appli-

cation?

Chapter 1 - Introduction

Description

This chapter aims to briefly describe parts of this project the reader should be familiar
with. The chapter is in no way meant as a full introduction to the three topics presented,
but the reader is encouraged to explore the literature for further information on each

topic.

2.1 The mobile manipulator Little Helper

This section will briefly describe the foundation of the Little Helper, and the logic be-
hind the development of it.

The whole idea behind the LH is as simple as any other idea regarding automation; to
eliminate the use of human labor for mundane, repetitive tasks. With the increasing de-
mand for flexible production, however, the disadvantages of automation becomes more
obvious, since the teaching of new routines and the configuration of workcells and pro-
duction equipment in some cases has to be changed when a new product is introduced
in the environment. Thus, there is a need for LH in the future of manufacturing, and it
is this need that originally generated the idea to essentially create a production worker
that does not require salary [2].

Built around the concept of replacing more flexible human labor, the design require-
ments were essentially that, i.e. having a high degree of automation that works out
of the box, is easily adjustable, user friendly and highly flexible, by incorporating the
system on a mobile platform. Furthermore, the quantitative requirements were to be
comparable to human labor, especially with regards to reach, payload (2kg) and time of
operation (7hr shift), with some parameters even exceeding the capabilities of a human,
for instance the precision of the manipulator [2].

Due to this being a prototype, the number of tasks the Little Helper should be able to
accomplish was limited to transport, pick-and-place, quality control and classification
operations. After the initial development, further research has been done on interacting
with multiple agents (production equipment, feeders, inspection stations etc.), perform-
ing different tasks at each agent. The Little Helper is still characterized by being a

prototype, however, and has not been tested in an actual manufacturing environment

2.2 - The TAPAS project

before the start of this project.

2.2 The TAPAS project

The TAPAS project is a partly EU-funded research project aiming to bridge the gap
between academia and industry, regarding the development of flexible automation. The
demand for both high volume and high product variety in manufacturing is directly
creating the need for flexible automation to maintain competitiveness, and the industry
is lacking both time and finances to carry out this research.

The project is a collaboration between the industry partners KUKA Roboter GmbH,
Grundfos A/S and Convergent Information Technologies GmbH and the academic part-
ners Aalborg University, Alberts-Ludwig University and DLR.

The scope of the project is divided into three objectives:

1. Robot logistics and automation, regarding part logistics, extended logistics services

and assisting the existing production equipment.

2. R&D in ICT! regarding automated mission planning and control, with respect
to path planning, navigation, scheduling and communication with the existing

production equipment and ERP system.

3. Sustainable solutions for new applications of robots, regarding testing and vali-
dation, pilot installations at production facilities and serving both the industry’s
interest in providing a wide range of products and the incorporation of the aca-

demical research in transformable automation solutions.

The project will be based on available robotic technologies, such as the Little Helper and
the KUKA LWR, so no development will be made from scratch, making the project use
case oriented, rather than technology push oriented. The works will be demonstrated
at three demos in month 6, 24 and 39 of the project, respectively. The project kicked
off in the beginning of December 2010.

2.3 The KUKA LWR

The LWR was originally developed by DLR, the German Aerospace Center, to investi-

gate the possibility of using robots on space stations, the main aspect being to develop

!Information and communication technology

Chapter 2 - Description 6

2.3 - The KUKA LWR

a light weight robot, with a high payload to weight ratio. The first configuration, called
LBR I, was developed in 1991, lacking a lot of the functionality that Aalborg University’s
LWR 44, which became available for purchase in 2008, has [3].

Figure 2.1: The KUKA LWR4+ shown beside the KCP teach pendant and the KRC2Ir controller [3]

Apart from the aspect of creating a light-weight robot, another aspect of the devel-
opment was the paradigm shift from conventional position control, where the position
and motor current is measured, to compliance control, where the torque in each joint is
measured instead of the motor current. This has some obvious benefits regarding safety,
but also increases the ease of instructing new tasks, as the operator can now physically
move the robot to each position, instead of using a traditional teach pendant.

Apart from the aforementioned paradigm shift to torque sensing in joints, the KUKA
LWR is quite unlike traditional robots in a number of ways. Traditionally, robots remain
in a stationary position in e.g. a factory, securely bolted to the floor and surrounded by
fencing to prevent harm to people or damage to equipment. Furthermore, little thought
have gone into minimizing the weight of robot arms, and the robot arm as we know it
is quite unchanged since its earliest ancestor.

During the development of the KUKA LWR, this line of thought was obviously disre-
garded. The emphasis was laid on developing a light weight robot with added function-
ality compared to traditional robot arms.

Apart from the light weight and the effectively added sense of touch, another aspect of
the LWR is that it is modeled after a human arm, resulting in the addition of an axis,
yielding a total of seven axes. This addition enables the arm to reach the same point

and orientation in space in an infinite number of orientations?, due to the robot having

2In reality of course limited by the encoders in each joint

2.3 - The KUKA LWR

a redundant joint, compared to a traditional six axis robot, which can only reach the
same point and orientation in a maximum of eight different ways. This greatly expands
the flexibility of the robot, with regards to e.g. interacting with other production equip-
ment, such as CNC milling centers.

The addition of an extra axis and the sense of touch has two great advantages in a
production environment. The extra axis offers a much greater flexibility with regards
to grasping or interacting with hard-to-reach objects, effectively reducing the need to
adapt a current production facility to accommodate robotic solutions. The other advan-
tage is in the same ballpark, since the force sensing capabilities could reduce the safety

measures required for using the robot in an environment alongside human labor.

Chapter 2 - Description 8

Thesis statement

In order to answer the initial questions, it is necessary to look at them separately, thus

dividing the project into two coupled parts:

1. The redesign of the Little Helper to accommodate the KUKA LWR, while pre-

serving the current capabilities of the mobile manipulator system

2. An investigation of the added functionality the KUKA LWR provides, with respect
to increasing the driving thoughts behind the Little Helper (e.g. flexibility and

ease-of-use)

Reconfiguration

In order to design a new mobile manipulator with the LWR as the robot arm, several
steps have to be carried out. The main task, however, is to gain an understanding of the
current configuration of Little Helper, which parts should be replaced in the new con-
figuration, and which parts should replace them in the design of the new configuration,
called Little Helper Plus. It would also be beneficial to investigate the need to add new
components for increased functionality in the reconfiguration process, or incorporate an

easy method for adding components at a later time.

The goals of the reconfiguration process are therefore:

e Analyze the current configuration

e Analyze the changes in components, and what design demands these changes fa-

cilitate
e Establish a requirements specification for the new configuration
e Redesign components to function in the new configuration

e Reconfigure the platform to accommodate the requirements specification, includ-

ing placement of components, mechanical connections and electrical wiring

Applications of the KUKA LWR

In order to fully gain an understanding of the added functionalities of the KUKA LWR,
a number of cases are investigated. The cases are chosen so they have a relevance to
the LWR on the Little Helper Plus (LHP), in order to further increase the function
of this, especially regarding the flexibility of this. The emphasis will not be placed on
creating working tasks, however, but instead on investigating the possibility of using the
LWR to solve these tasks, and gain an understanding of which benefits the LWR has
compared to traditional robots, and which problems persist in the tasks. In order to do
so, however, some configuration and installation of the robot is also required, and will
be carried out as well. The cases on the LWR will be:

Teaching new tasks to the robot by demonstration

Workstation calibration by touching edges of a worktable

Utilizing the torque sensors to solve the peg-in-hole task

Using the Fast Research Interface with the LWR

Weighing parts using the torque sensors in the robot

Chapter 8 - Thesis statement 10

Part 1

Reconfiguration of the platform

The following part describes the design and configuration of the Little Helper Plus, using
the KUKA LWR as a manipulator. Only the hardware design has been carried out in
this project, since the software architecture is still being developed as part of the TAPAS
project. The goal of this part is therefore to describe the design process of the new mobile
manipulator, with respect to installing the KUKA LWR on the mobile platform, based
on the design of the Little Helper.

The incorporation of the KUKA LWR on the mobile platform presents some problems,
which in turn leads to new design requirements, e.q. the design of an electric tool
changer. These problems, along with their solutions, are presented in the following

part as well.

Configuration of the Little Helper

This chapter describes the mobile manipulator as it was constructed originally, in 2008,
and the minor modifications that have been added up to the start of this project period
in September 2010. The purpose of the chapter is to describe the former configuration
of the mobile manipulator, and as such to provide an understanding of the task at hand.
The Little Helper has already been introduced, so the following will purely be a pre-
sentation of the hardware used on the Little Helper, and the interfaces between the

components that enables them to function as a system.

4.1 Components

The components that make up the Little Helper can be divided into four subsystems
that utilize technology that is widely used in the industry. It is the combination of the
technologies that is the driving force behind Little Helper. The four subsystems are:

Platform system The system enabling the mobile aspect of the Little Helper. The
platform is a commercially available, fully independent system, complete with

sensors and control software. This is also seen in AGVs! in the industry.

Manipulator system Being a further development of traditional robot solutions, per-
forming manufacturing processes, the platform is equipped with a single manipu-

lator.

Vision system Machine vision is being used more and more in the industry, adding
the sense of sight to robots. In order for the Little Helper to be sufficiently flexible,

a vision system has been incorporated for both parts detection and calibration.

Tooling system Since a single robot tool is not sufficient to satisfy the flexibility need
of the Little Helper, several tools are available for the Little Helper to use. The

tooling subsystem is also containing the actuation and tool changing mechanisms.

! Automatic guided vehicles

13

4.1 - Components

In the following, each subsystem will be described further. A later section will deal with
the construction of the system as a whole, thus showing the placement of the various

components.

Platform system

The platform system is bought as an independent system from the company NeoBotiz,
who specializes in mobile platforms. The platform comes with two laser scanners and
five ultrasonic sensors, used for navigation and path planning, a battery pack and an
onboard computer. The battery pack and onboard computer is used as common power
supply and control of the rest of the Little Helper as well. Furthermore, the onboard
computer is equipped with a touchscreen, though interaction with the robot is usually

done from a remotely connected device through VNC.

Manipulator system

More than just the actual manipulator, the manipulator system is everything enabling
the function of the manipulator. Thus, the manipulator subsystem is the actual mani-
pulator, an Adept Viper s650, the communication module Adept SmartController CX,
and the power/signal module Adept Motion Blox R60. The two latter components are
necessary for the function of the manipulator, handling the execution of programmed
routines and managing power to motors in each joint. The manipulator, however, re-
quires 230VAC, so part of the manipulator subsystem is also an inverter, converting the
24VDC from the batteries to the 230VAC required by the manipulator.

Vision system

A vision system is much more than a camera, which is obvious when looking at the
components that make up the vision system. Apart from the IEEE1394? camera, the
vision system is composed of an adjustable lens, four bar lights and a distance sensor for
calibration. The three latter components all need their separate control, giving a total of
seven different components in the vision subsystem. The use of the adjustable lens and
the distance sensor is necessary for the calibration of the Little helper, since the position

and angular tolerance of the platform is not sufficient for adequate manipulation.

Tooling

Besides the actual tools, the tooling system is everything regarding the changing, actua-

tion and carrying of these tools. As such, the tooling system is composed of a compressor

2Popular known as the brand name FireWire

Chapter 4 - Configuration of the Little Helper 14

4.2 - Construction

and air reservoir, a pneumatically driven tool changer and three different tools, that are
also pneumatically driven. These tools are a suction cup, a parallel gripper and a special-
ized pallet gripper, the combination enabling the Little Helper to perform the majority
of tasks that such a system should.

The components described in this section all have to be mounted on the platform,
composing the entire system of the Little Helper. The construction of the entire system

is introduced in the following section.

4.2 Construction

The Little Helper was designed on top of the NeoBotix platform, so the footprint of
this platform is also the allowed footprint of whatever is mounted on top of it. The
reason for this is that the control software of the platform is designed by NeoBotix for
the platform’s footprint, and as such can not avoid collision of anything outside this
footprint. On top of the platform the main housing is built, containing most of the
components mounted in a frame, which the manipulator is subsequentially mounted on
top of.

Figure 4.1 shows the entire system, and the placement of the main components.

. Tool
Manipulator
Adept Viper s650

Vision system

Main housing Tool magazine

Platform
NeoBotix MP655L

Figure 4.1: Complete system of the Little Helper

The main housing contains all the interior components necessary for the function of the
Little Helper. The main housing is shown without cover plates in Figure 4.2, along with
indications of the various components. Note that all components requiring surrounding
air or direct air intake for cooling (i.e. the compressor, power /signal module, controller

and inverter) are positioned adequately, to accommodate these demands.

15

4.2 - Construction

Welded aluminum frame Manipulator PSU and Controller Controllers
Adept SmartController CX and Motion Blox R60 (Light, lens and distance sensor)

Inverter Air reservoir Compressor
Clayton 1525 JUN-AIR 4L JUN-AIR model 4

Figure 4.2: The main housing of the Little Helper shown from two different angles without cover plates

A noteworthy aspect of the construction of the Little Helper is the relatively compact
design, with regards to the number of components. The compact design and close
fit of components, however, decrease the modularity of the solution, since it is nearly

impossible to replace or upgrade components, should the need arise.

4.2.1 Tooling

The tool of the manipulator is designed so the camera is attached to this, along with
the gripper. The fact that the camera can be moved by the manipulator enables the
use of vision for calibration at each workstation, enabling the manipulator to have an
accuracy of £0,1mm after the high precision calibration. The use of an adjustable
lens and barlights is determined by the need for Little Helper to function in changing
environments, where traditional vision systems are more or less isolated from the sur-
roundings, to provide optimal lighting. The complete tool, with the pneumatic suction

cup mounted, is shown in Figure 4.3.

Chapter 4 - Configuration of the Little Helper 16

4.8 - Connections

Distance sensor
OADM 13

Camera

Constructed parts
Prosilica EC1380

Lens
Linos MeVis-CN 16mm, 1.4

Tool changer head
Schunk SWK-011

Bar lights

NET L-IDB-Q360-W
Tool changer adapter
Schunk SWA-011

Pneumatic suction cup gripper

Figure 4.3: Tool consisting of both a gripper and a camera

4.3 Connections

An in-depth discussion and explanation of the connections between the various com-
ponents is determined to be out of the scope of this report, since the electrical system
naturally will be very different from the initial configuration. However, it is necessary
to have an overview of the required connections to incorporate this in the redesign,

therefore Figure 4.4 shows the connections graphically.

One thing to note from the figure, is the use of two power circuits rated at 24VDC
and 230VAC, respectively. It is also apparent from the figure that all components are
controlled, directly or indirectly, by the onboard platform computer.

The former configuration of the Little Helper has now been presented, to give the reader
an understanding of the aspects of the redesign. Upon redesigning the Little Helper, it
is not only necessary to focus on the required components and the placement of them,

but also to allow room for mounting, cable connections and room for ventilation.

17

4.8 - Connections

Main housing

] B
Tooling system
| Manipulator : 85y

Air reservoir

Platform system

Distance sensor
data acquisition

Electric signal Power connection

Mechanical connection ——— Pneumatic connection

Figure 4.4: Connections between the components and subsystems of the Little Helper [2]

Chapter 4 - Configuration of the Little Helper 18

Hardware changes

This chapter will provide an overview of the changes of the Little Helper, focusing only
on the change in components, and not their mutual connections. Eventually, this will
lead to a specification for the Little Helper Plus, after which the further work of placing
components, designing the main housing etc. can be carried out. One remark has to be
added to the following chapter, namely that the platform will not be changed for the
Little Helper Plus, since an identical platform from Neobotix will be bought for this.
Obviously, the most apparent change of components is the replacement of the mani-
pulator from the currently attached Adept Viper s650 to the new KUKA LWR. This,
however, necessitates a replacement of the robot controller and power supply as well.
The communication and power/signal module from KUKA is built as one unit, the
KRC2lr. This controller! is designed to fit in a standard 19" rack cabinet, with a height
of 313mm, and as such yields the main problem of the reconfiguration of the Little
Helper. The controller is shown besides the Little Helper for reference in Figure 5.1.
KUKA is currently working on a new controller model, which is much more compact,
to accommodate exactly this problem. This controller is however not available for pur-
chase during the timeframe of this project, in a configuration that incorporates the
added features of the LWR. Since the KUKA controller is much larger and bulkier than
the two currently used Adept communication and power /signal modules, the room for
other components is limited. This results in a series of choices that greatly affects the
design of Little Helper Plus.

The mere size of the new controller has an immediate effect on the space left for the
larger components mounted on the Little Helper. Several trials have been made on
placing all the components of the former configuration in the new configuration, all of
them yielding a very crammed design, with little or no room for the mounting frame,
in some cases even essential components like the tool magazine. The most successful

attempt is shown in Figure 5.2.

!The term controller will be used to describe the KRC2Ir from this point on

19

(a) Little Helper (b) KUKA KRC2Ir controller

Figure 5.1: Isometric view of the former configuration of the Little Helper shown beside the new
KUKA controller

(a) With cover plates (b) Without cover plates

Figure 5.2: The most successful attempt of incorporating all components of the Little Helper in a new
design along with the KUKA controller

Chapter 5 - Hardware changes 20

5.1 - Requirements for the Little Helper Plus

As a result of the space consumed by the new controller, it is decided that the pneumatic
system will be removed, since the compressor and air reservoir take up much of the space
on the platform. This decision, however, has some undesirable direct consequences on

the rest of the configuration:

1. All tools will then have to be electrically actuated, instead of the currently pneu-
matic actuation. This is purely an economic problem regarding the parallel grip-
per, since electrically actuated grippers are generally much more expensive than

pneumatic ones.

2. Obviously, there is no way of having a purely electrical suction cup gripper. The
suction cup gripper is very useful on the Little Helper, since this gripper is capable
of handling nearly all parts with planar surfaces. The suction cup could be main-
tained, but without the pneumatic system this would be required to be designed
from scratch, where one solution could be to use a miniature vacuum pump. This

problem is however not pursued further in this project.

3. The tool changer is based on a pneumatic system, so a new tool changing mecha-

nism has to be implemented either by buying or designing a new one.

Apart from the changes in configuration to accommodate the new manipulator, some

components are upgraded in the process as well. This is limited to:

e The vision system, where the camera and a fixed focal length and aperture lens
replaces the current. The distance sensor is removed as well, since this is rarely

used in the former configuration.

e The inverter, which is replaced by a different, more compact, model with similar

specifications.

After this initial investigation of the configuration of the Little Helper Plus, a require-

ments specification can now be established.

5.1 Requirements for the Little Helper Plus

When an overview of the components needed in the configuration of the Little Helper
Plus has been made, a basis for the further work of the reconfiguration can be established
in the form of a requirements specification. This requirements specification will directly

and indirectly determine the design of the new configuration.

21

5.1 - Requirements for the Little Helper Plus

Basically, the quantitative requirements established for the Little Helper, stated in [2],
should be fulfilled in the new configuration as well. The hardware aspects of these

requirements are:

e Maximum weight: 2kg
e Maximum dimensions: 75mm x 7bmm x 100mm
e Possible payload of parts being transported > 20kg

e Battery time: 7hr (one normal work shift)

Apart from the quantitative demands, it is decided that the Little Helper Plus should
have the same capabilities and functions as the Little Helper, i.e. there should be no
loss of functionality. An exception to this is of course the case where a feature has been
implemented on the Little Helper, but rarely or never used - this is true for e.g. the
distance sensor, which is basically never used. The capabilities of the Little Helper will

of course not be listed here, but where a function is removed it will be mentioned.

Tool changing

One of the most challenging aspects of the new configuration is the absence of a pneu-
matic system. Traditionally, robot tools are nearly always pneumatically driven, pri-
marily from an economic point of view. The same is the case for tool changers, since the
designers assume a pneumatic system is at hand for actuation of tools. As such, very
few electrical tool changers exist, and none in a size that fits the mobile manipulator (all
found electrical tool changers incorporate an electric motor on the tool changer, greatly
increasing the weight and size). The effect of this is that an electrical solution for tool

changing has to be designed.

Range

An investigation of the desired horizontal and vertical range has been made as a prelim-
inary project to [2]. The conclusion of this investigation is that the tool center should
be able to reach a point between 900mm and 1350mm above ground level, and the
horizontal stretch from the platform should be between 200mm and 450mm from the
platform.

The range of the manipulator relative to the platform is not considered to be a problem,
since the working envelope of the KUKA LWR is greater and more versatile than the
Adept $650. The range will however be considered during the rebuild.

Chapter 5 - Hardware changes 22

Replaced components

This chapter will describe the major changes in components for the Little Helper Plus,
compared to the Little Helper. The chapter will both describe redesigned solutions and

components which is merely replaced with others.

6.1 Tool changing

As previously described, a non-pneumatic automatic solution for tool changing is not
commercially available in the desired size, so a new solution has to be designed. Several
concepts have been considered, before settling on a final design. The following section
will primarily deal with the decision tree leading up to the final design, where a few key
concepts will be presented along the way, to demonstrate the line of thought throughout
the design, after which the final design is presented.

A quick scan of the market has revealed that there is practically no electrically actuated
tool changers, and the few that exists are primarily for larger welding applications, such
as the ATI Electric QC [4], making them useless for this application. Therefore, it is
necessary to design a non-pneumatic tool changer. Furthermore, it seems that nearly
all of the commercially available automatic tool changing systems operate on the same
principle, including the Schunk SWS, that is currently used on the Little Helper. This

principle will be described in the following.

Principle of the Schunk SWS

The Schunk SWS is a series of tool changers all functioning by the same principle, but
available in a wide range of sizes, capable of handling payloads from 8kg to 455kg. In
this section, the SWS-011 will be described, since this size is the one currently attached
to the Little Helper.

The principle of the Schunk SWS, as well as many other automatic tool changing sys-
tems, is a simple one, which most likely is why it is so widely used. The tool changing
system is composed of two parts; an adapter and a head, where the head is attached to
the robot tool flange, and an adapter is attached to each tool. The locking mechanism

between the two parts is a piston being pneumatically driven downwards, pushing a

23

6.1 - Tool changing

number of locking balls from the head into the adapter, fixing the adapter to the head.
The locking mechanism is shown in Figure 6.1. To release the tool, pressure is simply
applied to the other side of the piston, driving this upwards and allowing the locking

balls to move into the head.

Piston

Locking pressure in

Unlocking pressure in

Locking balls

Figure 6.1: Schunk SWS quick change system

6.1.1 Determining basic principle

The automation equipment manufacturer Schunk has a wide range of tool changers avail-
able, and have been consulted on the matter of designing a non-pneumatic solution. The
reason for this, is the notion that it would be beneficial to design a modification of a
commercially available tool changing mechanism, rather than designing and manufac-
turing one from scratch. Ole Simonsen from Schunk [5] has presented some suggestions,
where the most appealing principle is modifying either the Schunk HWS or SWS, both
shown in Figure 6.2. The HWS system is a purely manual system, since an operator is
required to release the blue arm (in Figure 6.2(a)), turn the pin to release the tool, and
turn the pin again to fasten the new tool. It is, however, fairly easy to remove the blue

arm and turn the pin by other means.

Chapter 6 - Replaced components 24

6.1 - Tool changing

(a) Schunk HWS-40 (b) Schunk SWS-011

Figure 6.2: Two different Schunk tool changing mechanisms

The suggestions given by Ole Simonsen is considered further, and a map of the possible
principles regarding these two tool changing systems is shown in Figure 6.3. The right-
most level of this tree is the mechanism that performs the actual locking mechanism in
the tool changing, and will be described later.

The pneumatic solution is shown here as well, since one possibility is to have a small
pressurized air container on the platform, which is re-pressurized when the batteries
on the platform is charging as well. However, this seemingly elegant method is quickly

ruled out, for two reasons:

1. There is currently no qualified guess as to how much air is consumed during a
normal shift, but it is considered to be too much to be contained in a pressure

cylinder of a small size.

2. To refill a pressure cylinder with a sufficient amount of air, a high pressure is
needed, which requires a high pressure pump at the charging station to obtain,

which is an impractical solution.

25

6.1 - Tool changing

I I I
I I I
| Actuation | Movement | Basis
I I I
I I I
I I I
I I I
I I I
| | | HWS modified
I I
I I |
I Manual —>» Rotation I
I I |
I I
} } } SWS modified
I I
I I I
I I I
I I I
» Non-pneumatic solution } } }
I | | HWS modified
I I
I I |
} Rotation }
|
‘ | SWS modified
Electrical } }
(/Tool changing on the rebuild ‘ }
of Little Helper } }
| Translation > SWS original
I I
I I
I I
777777777777 . I
b Compressor and | | |
| } air tank N | }
,,,,,,,,,,,, \ !
I I I
» Pneumatic solution | | Translation —»| SWSoriginal
| | I
/ I
I I I
} Small air reservoir | }
I I
I I

Figure 6.3: Multiple methods for creating a non-pneumatic tool changing system

The basic design of each branch of the tree shown in Figure 6.3 has been created in
CAD, to better visualize which solution seems the best. The electrically driven rotation
of either the pin in the HWS or a modified piston in the SWS is ruled out at this point,
due to both the size of an electrical motor with adequate torque, and the complexity
of the solution, i.e. the number of moving parts. The CAD model of these concepts is

shown in Figure 6.4.

Chapter 6 - Replaced components 26

6.1 - Tool changing

(a) Modified HWS (b) Modified SWS

Figure 6.4: Tool changing mechanisms modified by adding an electric stepper motor to actuate the

tool change

A single manual solution has been considered as well, and is shown in Figure 6.5. The
term manual in this case requires the manipulator to move during the tool change,
as opposed to having an operator change the tool. This solution is ruled out as well,
also because of the complexity and number of moving parts, and the need to modify or

redesign the piston.

(a) Locked (b) Open

Figure 6.5: Modified version of the Schunk SWS, where a rotation of a modified piston is used to
actuate the locking balls

The chosen method of tool changing is therefore a linear, electrically driven actuation
of an unmodified Schunk SWS-011. This solution has a number of benefits compared to

the others, where the most prominent are:
e Simple solution; can be designed with few moving parts

e Can be made compact

27

6.1 - Tool changing

e Does not depend on robot movement

e Original equipment is unmodified

Of course, the solution depends on the commercial availability of a small linear actuator,
which delivers sufficient force to move the piston of the SWS-011 up and down. This is

investigated in the following.

6.1.2 Choice of actuator

In order to choose a linear actuator for this application, two primary quantitative para-

meters must be known:

1. The required force to be delivered to the piston

2. The required stroke to move the piston between the locked and unlocked state

Apart from this, the qualitative demands of easy control of the actuator and a compact
overall solution should be considered.

The required stroke is easy to determine, since this can be measured from the CAD
model of the SWS-011. It is determined that a stroke of 7.5mm is required, so the
stroke of the actuator should be 10mm or higher. This is both to allow for tolerances in
the manufacturing of the fixture, and to avoid reducing the service life of the actuator,
since this is decreased when driving the actuator to its limits.

Schunk specifies a minimum operating pressure of 4.5bar to actuate the SWS-011. Given
the surface of the piston, that the locking pressure is operating on, the force moving the

piston is calculated to be:
F=P-A=045MPa - 531mm? = 238.95N (6.1)

This result suggest that Schunk has added some overhead to the result of their calcula-
tion for required pressure, to ensure correct function of the tool changer. An experiment
made by placing various weights on the piston of the SWS confirms this, as a weight of
around 2,5kg (=~ 25N) is adequate for moving the piston satisfactory. On the basis of
this, the force delivered by the actuator should be at least 30N.

Miniature linear actuators are not that hard to come by, but generally these actuators
are very small, with strokes of a few millimeters and very small tolerances, usually used
in medical applications. Very few linear actuators are made with specifications resem-
bling the quantitative demands, which are also compact in design and comes with a

controller. Firgelli Automation manufactures the PQ12, which comes in different gear

Chapter 6 - Replaced components 28

6.1 - Tool changing

ratios, where the highest gear ratio of 100:1 yields a maximum force of 35/N. This actu-
ator has a stroke of 20mm and is only 48mm long in fully retracted state.

Firgelli also supplies a small actuator controller, designated LAC (Linear Actuator Con-
troller). This controller can be programmed via USB, through Firgelli’s own software
for controlling actuators. Apart from this, Firgelli also supplies a DLL file, for creating
an application in e.g. Visual Basic or C++ to control the actuator. This fact, and the
fact that both the actuator and controller are rather small components, compared to

their specifications, supports the qualitative demands of compact size and ease of use.

6.1.3 Design of the hardware

The hardware implementation of the actuator in the tool changing mechanism is de-
signed, so the actuator is mounted directly on the piston, rather than having the actu-
ator translated from the center of the piston. This is both to save space and make the
design as simple as possible. The downside of this, however, is that the tool is mounted
away from the tool flange of the robot, to some degree reducing the effective payload of
the robot.

Firgelli supplies brackets and bolts for fastening the actuator, and there is a threaded
hole in the center of the piston of the SWS, both of which are size M3. The actuator is
mounted as shown in Figure 6.6(a).

A housing is designed to function as a common fixture for the Schunk SWS and the
actuator. It is designed so the actuator is fixed in at least one direction, to maintain
the direction of the piston during movement. Furthermore, a cover plate is mounted to
protect the piston from dust and foreign objects, which could reduce the lifetime of this.
The housing and cover plate are shown mounted in Figure 6.6(b).

An adapter plate has to be made in order to mount the mechanism on the robot tool
flange. KUKA has specified the effective payload of the robot with the gripper posi-
tioned in various distances from the center of the robot flange, and this reveals that
a displacement of the center of gravity of everything mounted on the tool flange (i.e.
gripper, tool changer, handled products, etc.) of only 25mm reduces the effective pay-
load to 5.5kg. This means that the mechanism should be mounted directly on the tool
flange, so the center of gravity is only displaced directly outwards from the flange, where
the aforementioned effect is not as profound. This is however impractical, due to the
physical layout of the robot flange, but is however solved as shown in Figure 6.6(c) and

6.6(d), with adapter plates on both the housing of the actuator and the robot flange.

29

6.1 - Tool changing

Figure 6.6: Mounting of the tool changing mechanism on the robot

6.1.4 Controlling the tool changer

As previously mentioned, Firgelli supplies a DLL file along with the LAC. The DLL
file is containing the functions to communicate with the controller via USB, and these
functions can easily be imported into applications developed in languages which support
the use of DLLs, e.g. Visual Basic, C§ or C++. The latter is chosen as the programming
for the control of the tool change, since a great deal of the future software architecture
will be programmed in this language.

Since the actuator and SWS is fixed to each other, the application is developed so the
user only has to decide to either detach or attach a tool. Apart from this, it should
also be possible to write a configuration file to the controller!. These three functions
are hard-coded into the tool changing application, so the user will only have to specify
which argument to pass when calling the program ToolChange.exe.

An in-depth description of the application written in C++ will not be presented here,
but rather an overview of the basic principles and functions used, since the application
is only calling already specified functions from the DLL file.

When the application is started, it first checks to see if exactly one argument is passed to
it. If one argument is passed, the applications continues to establish a connection to the
controller, regardless of the argument passed. Two connections have to be created, one to
read data from the controller, and one to write to the controller. After the connection
is established, the application checks which argument is passed, and proceeds to the

appropriate action:

! Configurations are automatically saved on the controller, even when the power is cycled, but the

possibility to quickly reconfigure the controller should be maintained just in case.

Chapter 6 - Replaced components 30

6.2 - Switching board

-config: Writes a hard-coded configuration to the controller. Though a number of
parameters are available for configuration, some of them are irrelevant for this
application, and are left out. The configured parameters are the precision, speed,
extend and retract limits of the actuator, and that the configuration should be
maintained in the memory of the controller (the latter not per se being a parameter,

but rather a necessary step in configuring the controller).

—attach: Simply writes the position of the actuator in the locked state to the controller,
which in turn applies the correct voltage to the actuator to move it to this position.
This position is found by trial-and-error after the housing has been made, and the

mechanism assembled.

-detach: Does the same as the —attach command, only for another position.

In order to write the parameters and position to the controller, all values have to be
converted to the appropriate format, in this case a very proprietary format, consisting
of a character array of size 3, containing a value representing the parameter to set, the
value to send and the bit-swapped? version of the value. This conversion and the DLL-
imported function to write to the controller and read the answer is incorporated in its
own C++ function, since this has to be done each time data is sent to the controller.
After the desired function is carried out, the application closes the connection to the
controller and exits.

A video demonstrating the tool change can be found on the enclosed CD, in
Media\Video\ToolChange.mov. This is merely a demonstration of the tool changing,
and not a real world implementation of it. It is obvious that the actuator takes some
time in changing tool, primarily with attaching the tool, since this operation requires the
most force. However, tool changing does not occur that often on the mobile manipulator,
and as such it is concluded that a slow tool change has practically no effect on the overall

efficiency of the mobile manipulator.

6.2 Switching board

When machine vision is used as a method of performing quality control, lighting is
everything. In this application, however, where vision is primarily used for pick-and-
place operations, lighting does not have to be controlled as strictly. On the Little Helper,

a light controller was incorporated to turn on/off the lights for the vision system and

ZWhere the higher order bits are swapped with the lower order bits, i.e. blocks of 8 bits are swapped

31

6.2 - Switching board

the warning lights®. The light controller also adds the possibility to strobe the lights.
However, since the development of Little Helper, it has become apparent that the added
functionality of the light controller is seldom used, since the controller is only used to
turn on or off the lights.

In the new configuration of the mobile manipulator, it is determined that this is the
only function required for both the lighting for the vision system and the warning lights.
Instead of a dedicated light controller, a method of turning any device on/off through
e.g. a USB or RS-232 interface is desired. After some investigation, the small controller
Mini-BEE from PC Control Ltd. has been bought. The Mini-BEE offers 14 switching
outputs in two circuits, which in this case most likely will be one 12VDC circuit and
one 24VDC. The drivers used by the Mini-BEE are Darlington DS2003 Drivers, and
the data sheet for these drivers state that the maximum capabilities of the drivers are
50VDC at 350mA [6]. It is however possible to achieve higher current throughputs, by
connecting devices in parallel, and making sure that all switches are turned on/off at
the same time. The Darlington drivers consist of 7 NPN transistor pairs each, the NPN
meaning that the switching occurs on the common/ground side of the circuit [6], [7].
The connection to the Mini-BEE is simple, since all devices in one circuit connect to a
common ground, and each device is connected to the positive side of the power supply
and to one of the ports on the Mini-BEE.

PC Control also supplies a DLL file along with their product, and a C++ application
has been made to control these outputs. The Mini-BEE controller needs to receive a
hexadecimal representation of 14 bits, where each bit represents the state of a channel
on the controller, either open (1) or closed (0), which turns out to be quite easy to
implement. The state of each switch is not saved when power is cycled, and the Mini-
BEE has no function to read which outputs are open and which are closed. This function
is implemented as having a simple text file containing the 14 bits, which is read at the
start of the program, after which the user specified changes are written both back to
the file and to the controller.

Even though the controller will primarily control the lighting for the vision system and
the warning lights, other uses could be implemented later, due to the number of channels
on the board, e.g. turning off the controller for the tool changer or the camera when
these are not needed. One thing to bear in mind with this, however, is the switching
transients when turning on an inductive load (e.g. an electric motor or relay). These
spikes in voltage has been accommodated in the Mini-BEE by the use of suppressor

diodes added to two of the channels. To make use of these, one simply has to connect

3Tower light signalling when the platform or manipulator is moving.

Chapter 6 - Replaced components 32

6.3 - Vision system

the power source positive (4) directly to these channels, and the spikes in voltage are
suppressed. A representation of the Mini-BEE is shown in Figure 6.7, with the warning
lights and vision lighting connected. The dotted lines represent the transient suppression
connection, and is a direct connection from positive to the controller.

The warning lights attached to the controller deserve some extra explanation. The tower
light is a Schneider Electric XVC 4B3K, with three lights in colors red, orange and green.
The data sheet of the tower light specifies that the common power input to the light
(RD wire) should be connected to common positive for switching with NPN transistors,
which corresponds with the data sheet of the Mini-BEE and NPN transistors in general.
Each of the LEDs in the tower light has its own connection to ground; orange (OR) wire

for red light, yellow (YE) wire for orange and green (GR) wire for green.

Mini-BEE

|
|

Vision lighting I 12vDC
I

24VDC C) i

OCI)OOOOOOO
!
|
|
|
|
|
|

O 0N U W N
O 0N U WN e

2 |olo|ololo]olo|d|d

2
3
N
.
£

UsB

Warning lights

Figure 6.7: Wiring of the lighting to the Mini-BEE.

6.3 Vision system

After the development of Little Helper, it has been used in a number of scenarios, both in
the laboratory and in an industrial environment. The use cases has revealed a number of
improvements, which is sought implemented in the new configuration. One of the main
improvements is regarding the vision system. Originally, this was designed to be very
flexible, with an adjustable lens, a distance sensor for calibration and a light controller
enabling advanced control of the bar lights. The light controller has been removed in
the new configuration, as mentioned in the previous section. The adjustable lens and
distance sensor, however, has not. Both of these components add a great deal of flexi-
bility to the overall system, since the vision system can be adjusted to return adequate
images of the inspection, given less than perfect conditions. However, in practice these

functions are not fully utilized, since (@) the distance sensor is rarely, almost never, used

33

6.3 - Vision system

and (b) the ability to adjust the lens parameters is only used to make sure the lens is
set to the same settings (aperture and focal length) each time an image is acquired.

In the new configuration, the vision system is redesigned, so these functions are not
maintained. Instead, a fixed lens is used and the distance sensor is removed. Further-
more, a new, smaller camera is used, since more compact cameras have become available
since the development of the Little Helper. The choices of new components for the vision
system are however out of the scope of this project, since it requires a greater analysis

and experience within the field of machine vision.

Chapter 6 - Replaced components 34

Configuration of the Little Helper Plus

The following chapter will present the design of the Little Helper Plus, from a hardware
point of view, since this project is not concerning the software and control of the solution
directly. The chapter is structured in the same way as the work flow, since the order the
placement of the various components is described in follows the order these components

were actually placed in.

7.1 Main housing

Since the major changes compared to the Little Helper are made in the main housing,
this is presented first. The function of the main housing is to fix and protect hardware,
and provide a platform for handled parts and the LWR itself. As such, a number of
brackets should be designed to mount the components, a chassis to fix everything in
place, and cover plates to protect the hardware components. The most challenging part
of this task however, is to make room for all components, while still maintaining the

mounting requirements for each component.

7.1.1 Component placement

In order to make everything fit on the platform, and thoroughly design a system like
this one, the essential task is simple: Where does everything fit? One way of answering
this question is modeling components in CAD software, and arranging them in a virtual
environment, and since CAD models of nearly all components is already at hand or
easily obtainable, this is what has been done.

In order to place all components on the platform, however, one does not have completely
free rein, since some components need cooling, some needs to be mounted in level etc.

The following aspects for this case needs to be taken into consideration:

Controller: Needs to be mounted horizontally, and needs cooling in the form of air
intake in the bottom, and exhaust on the left hand side. Also needs room for
cable connections on the front, so some free space should be available here, since

the cables protrude some distance from the controller.

35

7.1 - Main housing

Inverter: Has cable connections on the back and front, and air intake/exhaust on the

two sides.

Electrical system: Fuses, terminal strips etc. need some cooling, but not much. Easy
access has to be implemented, to enhance the possibility to make modifications or

add new components, and change blown fuses.

Being by far the largest component, the controller is placed on the platform first. This
can almost only be placed in one way, due to cooling exhaust on the left hand side, which
has to be placed in free air. Naturally, the placement of the controller almost dictates
the placement of the remaining components, which makes the task of placing these
components somewhat easier. The inverter seems to present the biggest problem, since
this is a tall component, compared to its footprint, and needs some space on all sides
for both cable connections and cooling. It seems there is only one way of placing this,
given that the air intake is to be placed in free air, and even this placement necessitates
leading the exhaust air somewhere else, as it would else lead the heated air onto the side
of the controller.

After the removal of the pneumatic system, the two larger components have now been
placed, as shown in Figure 7.1. The smaller components are to be placed on a dedicated
shelf attached to the chassis above the inverter. The electrical system will be mounted
on standard DIN 46277-3 "top hat" rails, as it is the case on the Little Helper, since this
is the most widely used standard for electrical installations. These DIN-rails are also to
be attached to the chassis. Since the remaining components are all going to be attached

to the chassis of the main housing, this is designed next.

Figure 7.1: The placement of the controller and inverter on the top plate of the platform

Chapter 7 - Configuration of the Little Helper Plus 36

7.1 - Main housing

7.1.2 Chassis

Since the chassis is the one part holding everything together, a great deal of consideration
has be taken when designing this. Not only does the chassis serve as a common fixture
for most components, but it must also withstand the weight of the robot mounted on
top, as well as the moment around the base of the robot, when this is handling parts at
the maximum of its reach.

The chassis on the Little Helper is made from aluminum profiles that are welded together,
which yields a stiff construction compared to a chassis assembled by screws. However,
the profiles used have a hollow square cross section, which has presented some problems
regarding the fastening of the manipulator and other components requiring very strong
mechanical connections. Furthermore, the attachment of new components is complicated
by the fact that new threaded holes need to be drilled in the chassis to fasten the
components.

In order to enhance the chassis on Little Helper Plus, the choice has been made to
use one of the many standardized aluminum profile systems developed explicitly for
constructing frames and chassis, in this case the HepcoMotion MCS system [8]. This
system, like most others of its kind, consists of extruded aluminum profiles in various
sizes and cross sections, along with methods of joining them together and attaching
other hardware. The chosen profiles are similar to many others, with a slot on each side
of the profile, used to attach hardware or join profiles. The used profiles are shown in
Figure 7.2.

Figure 7.2: An example of the aluminum profiles and accessories used for the chassis [8]

The chassis is built around the already added components, i.e. the controller and in-
verter. For the part of the chassis simply fixing the controller in place, and fastening
the electrical system and smaller components, the 30x30mm profiles are used. For the
mounting of the robot, however, the 30x60mm profiles are to be used, to increase the

rigidity and strength of the chassis here. HepcoMotion has several methods available

37

7.1 - Main housing

for joining profiles together, and a comparison of these methods are given in the manual
for the MCS system [8]. This comparison reveals that the simple solution of using M8
bolts for the joining of profiles yields the highest overall stiffness of the chassis, at the
cost of flexibility. This method is chosen, since a high rigidity is desired, and the need
to redesign the chassis is very small. Given the weight and payload of the LWR, and
the instructions for appropriate mounting of it, it is estimated that the stiffness of this
chassis is adequate when using the 30x60mm profiles.

One important structural aspect the chassis has a direct influence on, is where the
working envelope of the robot is placed, and by that the reach as well. As discussed
in Section 5.1, the reach has to be the same or better than the Little Helper. This is
not the only aspect controlling the mounting height of the robot, however. Due to the
kinematics of the LWR, the manipulator has a spherical volume located around joint 2
that is unreachable. This area has a radius of 400mm, the same as the length of link 2
on the manipulator, and as such poses some problems regarding the picking and placing
of parts on the platform table. The working envelope of the LWR is shown in Figure
7.3.

390

11785
1100,5
400

310,5

280

Interference radius

(a) Side view (b) Top view
Figure 7.3: Working envelope of the KUKA LWR [9]
In order for the manipulator to be able to pick and place parts on the platform, it is

obvious from the working envelope that the manipulator has to be mounted at a higher

level than the platform. However, the manipulator is not to be mounted as high as to

Chapter 7 - Configuration of the Little Helper Plus 38

7.1 - Main housing

not fulfill the quantitative demands regarding reach listed in Section 5.1.

A mounting height of the robot of 90mm compared to the platform table is considered
adequate, since it both fulfills the need for range, and allows pick and place operations
to be performed on the platform. The working envelope of the mounted manipulator is
shown in Figure 7.4. Measurements in CAD shows that the demands for reach specified
in Section 5.1 have been satisfied, the maximum range especially greatly exceeding the

required.

@

Figure 7.4: Working envelope of the LWR mounted on the chassis, the marks and gray box showing
the requirement for reach

Component brackets

The added height of the robot mounting yields the benefit of more space in the compart-
ment immediately beneath the manipulator. This space is used for a shelf containing the
smaller components, e.g. the Firelli LAC and the Mini-BEE. If needed, there is spare
room for adding an extra shelf for components, and the shelves are cheap to manufacture
and easy to attach to the chassis, due to the slots in the profiles.

Immediately next to the component shelves, the electrical system is mounted. Some
room is needed for this, due to the many power and signal connections needed, and as

such the DIN rails are mounted directly on the 30x60mm profiles. The various connec-

39

7.1 - Main housing

tions are discussed in a later section.

In order to mount the manipulator on the chassis, an adapter plate has to be manufac-
tured, to provide an interface between the chassis and the robot, since it is not possible
to attach the robot directly to the chassis. KUKA manufactures an adapter plate for
use with the LWR, but this does not fit the chassis, and is instead used as a point of
reference regarding the plate thickness and size of fasteners, and a new adapter plate is
designed.

As is the case on the Little Helper, a tool magazine is needed so the manipulator is able
to carry 2-3 tools with it. Little room is left for this, but it is estimated that there is
room for this in front of the controller, the tools suspended from the top and in front of
the part of the controller where no connections are attached. If necessary, the tool mag-
azine can instead be mounted on a piece of the aluminum profiles used for the chassis,
so the tools are not suspended as low. Regarding the construction of the tool magazine,
the exact same principle is used as on the Little Helper, where a number of pivots are
used to position the tools and hold them in place.

The mounting of the manipulator, component shelf, electrical system and tool magazine

mounted is shown in Figure 7.5.

Figure 7.5: The rest of the components are mounted on the platform

Chapter 7 - Configuration of the Little Helper Plus 40

7.1 - Main housing

7.1.3 Cover plates

In designing the cover plates, only a few aspects have to be taken into account, i.e. which
material should be used, and where there should be venting holes. However, when look-
ing at the Little Helper, a few improvements spring to mind, which is implemented in
the new design.

The cover plates of the Little Helper are made from 2mm aluminum plates, making them
rather heavy. Furthermore, when troubleshooting a problem with the Little Helper, it
is impossible to see control and warning lights on the various hardware in the main
housing without removing the cover plates. A cover plate also has to be removed to
turn on the inverter and controller for the Adept manipulator, making the Little Helper
ready for operation, which is quite inconvenient.

In designing the cover plates for this configuration, these things are taken into con-
sideration. As such, the cover plates are manufactured in transparent acrylic, so the
hardware is visible at all times, and the weight is kept at a low level. The cover plates
located on the back and left hand side of the controller are easy to design, since they
only need fastening to the chassis and venting holes where the controller has cooling
intake and exhaust. The other cover plates are harder to design, though none of them
present significant difficulties, apart from the fact that the cover plates has to be split
up into smaller, rectangular parts to ease the manufacturing process.

In order to provide easy access to the controller, electrical system and component shelves,
it is decided to design the cover plates in these areas as access doors, using hinges avail-
able from HepcoMotion, that attach directly to the chassis. This solution gives the user
an easy method for gaining access to the controller and various hardware, should the
need arise to maintain this.

Though as many cover plates as possible are designed in acrylic plates, it is hard to bend
these plates, and as such three plates have to be manufactured in aluminum plates. This
is limited to the access to the electrical system, a bracket which is also holding the table
of the platform, and said table on the platform. The two latter plates should be able
to withstand the weight of the parts carried by the robot during operation, and as such
should be stronger than acrylic plates, which is why they are designed in 3mm aluminum
plates. A rubber mat is glued to the top of the table, to avoid products moving during
transport.

The attached cover plates are shown in Figure 7.6, in both the closed and open state.

41

7.2 - Tooling

(a) Closed covers (b) Open covers

Figure 7.6: Cover plates attached to the chassis

7.2 Tooling

Though already presented to some degree, some further explanation of the tooling should
be offered. The previous Section 6.1 mostly deals with the design of the tool changer
and housing, though the interface to the LWR tool flange is mentioned as well. In this
section, the combined tooling system is presented.

As mentioned in Section 6.1, the displacement of the gripper center axis from the normal
of the tool flange results in greatly reduced effective payload of the robot, as shown in
Figure 7.7. Due to this fact it is decided to design the tool with the gripper centerline
collinear to the normal of the tool flange of the robot, so the tool is only displaced
200mm in the z-axis of Figure 7.7, giving a payload of approximately 3kg, and thus
satisfying the quantitative demand regarding payload. It is however quite inconvenient
with regard to designing the interface between tool and robot when this method is
chosen. The chosen method requires an adapter plate on both the tool and the tool
flange, which subsequently should be attached to each other. This method is however
considered adequate, given satisfactory tolerances in the manufacturing process of the
interface plates.

In order to attach the camera to the tool, this can be done quite easily, utilizing the
design of the adapter plates. By making a curved cut on the bracket for the camera
which fits the adapter plates, a single bolt is needed to fix the camera in place. The

camera is positioned so there is no rotation of the camera axis compared to the common

Chapter 7 - Configuration of the Little Helper Plus 42

7.2 - Tooling

Lxy (mm)
455
404 35kg
35% 4kg ‘

45kg
5kg

303

53— 55k
E| 6kg

E! 6,5kg ‘

20 7kg

A571BR4 ‘ Lz (mm)
AB 50 100 150 200

Figure 7.7: The effective payload of the manipulator when the tool center is displaced from the center

of the tool flange on the manipulator [9]

tool center and robot flange axis, but merely a displacement, which yields a simpler
translation between the camera center and the tool center, and does not require the
robot to turn the tool to acquire an image orthogonal to the inspected part. The tooling
system is shown in Figure 7.8, although with a different camera, since the camera to be

used has yet to be chosen.

Figure 7.8: The mounting of the camera to the tool flange

The design of the tool magazine on the Little Helper had both the function of fixing the
tools in place, and also decreased the need for precision when placing the tools, since
the small pivots on the tool magazine made sure the tools where positioned in the same

way every time. This design is maintained in the new configuration, and as such there

43

7.8 - Manufacturing of parts

is no change except the method for fixing the magazine to the platform. As previously
mentioned, the tool magazine is placed in front of the controller, at a sufficient height
as to not interfere with the cable connections to and from this. As such, a rail needs to
be constructed to fix each tool holder in place. An added advantage of the placement
of this rail is that it can be utilized to fix the table on the platform in place as well, so

this plate is fixed along all four sides. The tool magazine is shown in Figure 7.9.

Figure 7.9: The tool magazine mounted on the chassis

7.3 Manufacturing of parts

The design presented in the previous sections requires some time and work to manu-
facture, since most of it are custom parts. In the following table, an overview of the
parts to be manufactures is presented, along with an estimated time frame for the man-
ufacturing. This is mainly done so the custom parts can be manufactured before the
manipulator and platform arrives, so the new configuration will be up and running in
the least amount of time. The operations and estimated time usage is shown in Table
7.1.

Chapter 7 - Configuration of the Little Helper Plus 44

7.4 - Power and stgnal connections

Part Material Operations Time usage
Chassis Aluminum profiles Cutting, drilling, assembly 20 hours
Cover plates Acrylic plates Drilling, cutting 10 hours
LWR mounting plate Aluminum Cutting, drilling 5 hours
Component shelves Aluminum plates Cutting, drilling, bending 4 hours
Tool magazine Aluminum Cutting, milling, drilling 8 hours
Tool flanges Aluminum plates Cutting, drilling 4 hours
Camera bracket Aluminum Milling, drilling, assembly 6 hours
Actuator housing Aluminum Milling, drilling, assembly 8 hours
Total 65 hours

Table 7.1: Time usage and operations needed for the manufacturing of custom components

7.4 Power and signal connections

Figure 7.10 shows the power connections to the various components on the platform.
Since the components operate at three different voltages, it is advisable to separate the
terminal strip into three different circuits, which correspond fine with the physical lay-
out of the terminal strips, shown in Figure 7.5. In the figure showing the connections,
the warning lights and vision lights are both connected directly to power, but in reality
these are connected through the Mini-BEE, as shown in Figure 6.7. This has merely
been done to simplify the figure showing the connections.

Each of the circuits should be fused to protect the components, the most critical fuse
being the one on the positive side of the platform batteries, since a short circuit of
the combined 164Ah of the batteries could result in damage to the batteries, and even
explosion and subsequential damage to personnel and equipment. An electrician has
been consulted on the fusing of the electrical system, and recommends a 16A fuse for
the 24V DC circuit and 10A for both the 230V AC and 12V DC circuits.

Since the 230V AC circuit can not be directly grounded, the grounding on the inverter
is used. This grounding is internal and merely connects to the chassis of the inverter.
This in turn is connected to the chassis of the platform.

The signal connections for the various components are all leading to the onboard com-
puter controlling the platform, either through USB (the LAC and Mini-BEE) or Ethernet
(the KUKA controller and the camera).

45

7.5 - Summary

Vision Lighting Camera Firgelli LAC Warning lights KUKA KRC2

I 1 L
12vDC 24VDC
[L11] [
L] LT
H 10A 16A H
+_+ _|
N =+
DC-DC converter platform batteries Inverter

Figure 7.10: Electrical wiring of the various components

7.5 Summary

This concludes the design of the Little Helper Plus. The quantitative demands of the
Little Helper are satisfied, and in some cases even surpassed, e.g. for the reach of the
robot. However, the design has room for improvements, and improvements might be
added once the actual build of the manipulator is begun, since potential errors in the
design usually are spotted during this phase. However, the task of designing the Little
Helper Plus is complete, and the work on investigating the capabilities of the KUKA
LWR can begin.

Chapter 7 - Configuration of the Little Helper Plus 46

Part 11

Capabilities of the KUKA LWR

This part of the project will deal with investigating the capabilities of the KUKA LWR
compared to traditional robots. The majority of these tasks have an immediate use in the
mobile manipulator, which is why the following will serve as a preliminary investigation
of the added features of the LWR.

A magjor part of the following is a demonstration of the FRI, since this will most likely be
used to sending commands to the robot from the onboard computer handling the execution
of tasks. Several other cases, which are useful for the flexibility aspect of the Little Helper,
will be described as well.

Before the work on the tasks can begin, an initial setup of the LWR has been made, since
the LWR is not mounted on the mobile platform at this time. This setup is described
in Appendix C. Furthermore, the controller strategies of the LWR are described, since

these somewhat differ from the controller of traditional robots.

Control of the LWR

Since the added functionality of the KUKA LWR makes the robot quite different than
regular position-controlled robots, the control of the robot is different as well. The
following chapter aims to give the reader a basic understanding of the control structure
and added features of the LWR, in order to enhance the understanding of the following

chapters.

8.1 Control strategies

Where traditional robots only offer a single controller strategy, that handles the position
of the end-effector with respect to the robot base, the LWR offers several, which make
use of the torque sensors. The following aims to describe the function of these, and as
such does not describe the kinematics and control of each control strategy. Each control
strategy has its own number, which is used internally in the KUKA Robot Language
(KRL).

Position control (no. 10)

Being the usual controller for robots, this controller enables exact positioning of the
robot, both in joint angles and cartesian coordinates. This controller is no different
than the controller used for regular 6-axis KUKA robots, since the 7% axis of the LWR!

is fixed during motion, except when explicitly programmed otherwise.

Cartesian impedance (no. 20)

The cartesian version of the impedance controller, this controller enables the robot to
function as a virtual spring-damper system in cartesian coordinates, this being either
the world or tool coordinate system. The user can specify spring stiffness and damping
parameters in each direction and rotation, as well as maximum deviation of the TCP
and the maximum force acting on it. One other option in this control mode is to apply
a specified force in a particular direction, either a constant force or a sinusoidal force,

both in multiple directions. This control mode could be used where e.g. the robot is

LChosen by KUKA to be J3, most likely to yield the most resemblance to traditional robots

49

8.1 - Control strategies

required to fit two parts together, and has been used to place complex planar parts in

holes [10]. The virtual springs and dampers are shown in Figure 8.1(a).

Joint impedance (no. 30)

The other version of the impedance controller, which instead acts on a joint-level, where
a virtual spring and damper is inserted in each joint, instead of in the cartesian direc-
tions on the TCP. In this controller it is also possible to set stiffness and damping, along
with maximum deviation and torque in each of the 7 joints. This controller is shown in
Figure 8.1(b).

(a) Cartesian impedance control (b) Joint impedance control

Figure 8.1: The virtual spring-damper systems utilized in controller modes 20 and 30, represented

here by simple arrows.

Gravity compensation (no. 101)

Definitely being one of the more special control modes, this controller is only reacting
on the input of the torque in each joint. The robot maintains its position in this mode,
until an external torque is acting on one of the joints. In this case the robot yields,
and the robot can be manually guided, effectively making this controller a convenient
method for jogging the robot. One important precondition of the correct function of
this controller is that the load of the tool must be entered correctly, so the controller
can accurately determine the external torques, and not torques from the weight of the
tool. This controller can obviously not be used in execution of programs, however, but

is mainly for moving the robot by hand.

Chapter 8 - Control of the LWR 50

8.2 - Controlling through the $STIFFNESS structure

8.2 Controlling through the $STIFFNESS structure

The active controller and controller parameters are all handled in a single structure?
in KRL, the system variable $STIFFNESS. This variable contains all data for the con-
trollers, though some are not used depending on which controller is currently active.
The active controller is set with the first parameter, $STIFFNESS.STRATEGY, and is an
integer specifying the controller to be used. The rest of the structure are the settings
for each controller, where only the values relevant for the active strategy needs to be
specified.

There are two ways to change the values of $STIFFNESS. One way is to write directly
to the system variable, either by writing the whole structure in one, or writing spe-
cific parameters, e.g. $STIFFNESS.CPSTIFFNESS for the cartesian stiffness array, where
the latter is recommended in order to write more readable code. If this method is
used, the assignment of parameters must be written to the system variable by setting
$STIFFNESS.COMMIT = TRUE, which will write these values to the controller. Another
way to apply parameters, which is recommended by KUKA, is to create a temporary
variable with the same structure as $STIFFNESS, and assign values to this temporary
variable. When the data is to be written, one simply overwrites the $STIFFNESS sys-
tem variable with the temporary user variable - in this case there is no need to set
$STIFFNESS.COMMIT = TRUE, since the values are stored directly in the system variable.

8.3 Built-in LWR functions in KRL

Two functions has been incorporated in KRL for LWR-specific use, the TRIGBYCONTACT
and DESIREDFORCE functions. The following is merely an overview of these functions,
and a possible incorporation hereof. TRIGBYCONTACT is used for fast switching between
controllers, and this is the only use for this. The function is called with a parameter
specifying the direction and magnitude of the measured force to cause the switch between
controllers. This function could be used to e.g. move towards a surface in position
control to ensure adequate precision, and switch to cartesian stiffness mode when there
is contact between the surface and tool, in order to avoid damage to either.

DESIREDFORCE can be used in cartesian impedance mode to specify one or several forces
or torques the TCP should apply to its surroundings, this being either physical objects

or the virtual spring in the system. It is possible to apply force in all three cartesian

2A structure is a variable with custom multiple data types, e.g. three integers and one boolean,

stored in one variable

o1

8.8 - Built-in LWR functions in KRL

directions and rotations, where the force could be both constant and sinusoidal, where
amplitude, duration, rise time and fall time is customizable for each. In the case of
a sinusoidal force applied in two directions, the resulting motion of the robot can be
described via a Lissajous curve. This feature could be used to ensure prevent jamming
of parts or to ensure a correct mounting pressure in joining processes.

This concludes the description of the control of the LWR, which should form the basis

for understanding the following chapters.

Chapter 8 - Control of the LWR 52

Programming the LWR by demonstration

One of the apparent benefits of the LWR is the ability to move the robot by hand when
online programming new tasks, since the time consuming task of this is usually using
the keys on the teach pendant to jog the robot. Furthermore, it feels more natural to
grab the robot and move it by hand, than using the teach pendant. One aspect of this is
however if an adequate precision can be acquired using the available methods for moving
the robot by hand. As such, it is to be investigated which method is faster, and if the
precision of the motions can be programmed adequately by moving the robot by hand,
compared to traditional jogging.

In order to test this, three simple tasks are carried out. All of these tasks are pick and

place operations, because of the need for precision and easy programming:

Task 1 is merely picking up a pin from a hole, rotating the pin and pointing the tip to

a specific point, and inserting the pin in another hole adjacent to the first.

Task 2 is picking up a hexagonal part, moving this to a position past an obstacle, and
performing a slight variation of Task 1 afterwards, with greater distance between

the two holes.

Task 3 is a simple stacking task, and as such begins with placing a pin in a hole, after
which a hexagonal part is picked up and placed on top of it, and a round part is

finally placed on top of this.

The three tasks are increasing in difficulty - task 1 is simple and does not require great
precision, task 2 requires additional points to avoid the obstacle, and task 3 finally
requires precision in order to stack the three parts without tipping them over. A full
demonstration of the programmed tasks can be seen on video on the enclosed CD in
Media\Video\PbD.wmv.

In order to program these tasks using both methods, first a set of assumptions needs to
be established. In order to compare the two methods, it is chosen that all programming
will be carried out on the teach pendant of the robot, using the regular KUKA interface.
This interface provides easy methods for inserting motion commands, which are the main

operations in these programs. Furthermore, only the functions for moving the robot

53

by hand, which are available through the soft keys on the teach pendant are utilized;
these three functions are Gravity Compensation mode, free translation of the tool (no
rotation), and free translation and rotation around the tool z axis.

Even though one might think it is easier to program the robot, it is quickly obvious that
this method present its problems regarding the precision. Especially when inserting the
pin in the hole, the rotation of the tool needs to be very precise, something that is hard
to accomplish when moving the robot by hand, and often the angle needs to be corrected
in each point by monitoring the values of the robot position. However, when the jog
keys are used, the robot motion is very slow, which is less desirable.

The tasks are programmed once each using the two different methods, and the time
usage for the programming is noted. The time used to program the various tasks are
shown in Table 9.1.

Task Method Time (mm:ss)

1 Hand 09:12
Jog 08:21
9 Hand 14:09
Jog 10:35
3 Hand 14:17
Jog 10:33

Table 9.1: Time usage for programming the separate tasks by different methods.

It is obvious from the time it takes to program the robot by the two different methods,
that the regular method of jogging the robot using the jog keys on the teach pendant are
faster than moving the robot by hand. A quantitative estimate of the precision is not
given, but it is apparent that it is easier to ensure greater precision using the jog keys,
since motion then is limited to one axis or rotation, and can be controlled at very low
speeds. This is also apparent from the video showing the tasks, since the robot motion
programmed by using the jog keys appears more precise than the other method.

One aspect of the above is the choice of using the KUKA interface for programming
the robot. This interface has not been developed explicitly for the LWR, but is a
standard interface for all variants of the KUKA KRC2 controller. Had the interface
been developed for the LWR, methods for jogging would most likely be implemented in
a better way. A way to do this could be to enable jog strategies comparable to those of
the 6-axis mouse on the teach pendant, e.g. having one dominant axis, where the jog
motion takes place. Alternatively, this could be implemented using the Fast Research

Interface; these improvements will however not be discussed further in this section.

Chapter 9 - Programming the LWR by demonstration 54

Workstation calibration using force sensing

One of the more time-consuming, though necessary, tasks of the Little Helper is the
calibration of the transformation between the TCP and the actual workstation. The
calibration is necessary, since the precision of the platform is not very good, with re-
gards to both position and orientation.

The torque sensors in the LWR could be used for this calibration instead, by pro-
gramming the robot to feel where specific edges of the workstation are, or by having a
dedicated calibration tool, that fits in a fixture on the workstation. This exercise aims to
investigate the possibility for using the first of these techniques, and give an estimation

of the accuracy of this calibration.

Purpose: To investigate the possibility of accurately calibrating the position and ori-
entation of a workstation using the torque sensors in the LWR, i.e. without a

vision system.

Objective: To calibrate a workstation coordinate system from a set of assumptions

made on the location of certain edges, and measure the accuracy of this calibration.

Since the accuracy of the platform is known (£10mm and £5° [2]), this accuracy forms

the basis of the assumptions for the exercise.

Assumptions

Since the calibration is only relevant for the LWR mounted on the mobile platform,
some obvious assumptions can be made. The first is that the surface of the workstation
is parallel to the surface of the platform, since the platform does not rotate around any
other axis than vertical. This means that the rotation of the workstation relative to
the ROBROOT coordinate system! {R} of the robot is only around the z axis (verti-
cal). The second assumption is that the calibration takes place near a corner on the
workstation, and as such the angle between the three planes forming the corner is 90°.
This is a necessary assumption to make, in order to have some initial knowledge of the

workstation. The final obvious assumptions is the choice of tool. Which tool is used of

LA fixed coordinate system with origin in the base of the robot - common for all KUKA robots

%)

10.1 - Theoretical solution

course has to be known, since a transformation between the TCP and the workstation
needs to be made. For this exercise, a pin fixed in the 3-finger gripper is used. The
assumptions regarding the precision of the platform are mentioned later, as this has an

effect on the search area of the robot movements.

10.1 Theoretical solution

Since the rotation of the workstation coordinate system is only around the vertical axis
and the searched planes are all orthogonal, only four points are needed to determine the
position and orientation of the workstation coordinate system {WW}. The first two search
points are along the estimated x axis of the workstation, thus yielding the rotation of
the zz plane around the z axis. Points 3 and 4 are used to determine the location of
the yz and zy planes, respectively, since the orientation of the xz plane is known. The
intersection of all three planes can then be found, in order to determine the origin of
the coordinate system. The search strategy is shown in Figure 10.1, along with the
coordinate systems {W} and {R}. Note that the rotation in the figure is exactly 180°
around the z axis - this is not the case in the real application, however still a point of

reference for the further work with this exercise.

7

Figure 10.1: Search strategy of the calibration, where the circled numbers specifies the starting points
for the search, the arrows depict the search direction, and the dots specify the points measured by
contact with the workstation

Since the rotation of the coordinate system is only around the z axis, the rotation is
calculated purely by using vectors. This enables the calculation to take place in only

the 2y plane, since {IW.}? is merely the measured z coordinate of point 4. Hence, the

2The z coordinate of the origin of {WW} expressed in { R}

Chapter 10 - Workstation calibration using force sensing 50

10.1 - Theoretical solution

following vector is established:

T2 — 1

Y2 — Y1

T
PP, = (10.1)

which describes the direction of the x axis of {W}, {WW,}, expressed in {R}. The angle
between {R,} and {W,} is the angle between the unit vector in the z direction 7 and

vector P P>, which can be calculated by

To — I 1
B ITP; 7 B Y2 — 1 . | 0 ‘
a = arccos W — arccos Vi(ea —21)2+ (y2 —1)? - 1
= arccos e (102>

Vize —z1)? + (y2 — 11)?

This angle? is necessary to know in order to calculate the coordinates of the origin of
RIW}. This calculation will solely take place in the zy plane as well, and also by using
vectors. The thought is to project the]TP; vector onto the]ﬁ vector, and adding
the O—Pl> vector to this, thus yielding the xy coordinates of the projection, i.e. the two
first coordinates of the origin of {W}. The approach is visualized in Figure 10.2.

Figure 10.2: 2D-representation of the vectors used for the calculation of the transformation from {R}

to {W}

—
Using vector projection rules, the following calculation of the projection Py P; can be

made:

*Note that since arccos always yields an angle between 0 and 180°, this will be taken into consideration

in the implementation in KRL

57

10.2 - Test setup and programming the LWR

= P1P3 . P1P2 P
P1P3 = jT P1P2
|PLP|
(@3 —x)(m—x)+ (Y3 —v1)(y2 —y1) | T2 — 1
_ 4 (10.3)
V(w2 —21)? + (y2 — y1)? Y2 =y
which yields the coordinate of the origin in the xy plane:
PP-PP=— —
{WO} - OP3/ = P1P3/ + 0P, = %ﬁ PP+ OP;
| PP
_ (3 —m)(wg — 1) + (y3 — yl)(?éQ —y1) | T2 — 21 Lo (10.4)
V(w2 —21)2 + (y2 — 11)? Y2 — 1 Y1

Hence, from equations 10.2 and 10.4, the following coordinates express the coordinate

system of the workstation with respect to the coordinate system of the robot:

o @wom)E—e) o) -y) 10.5
\/(xg—x1)2+(y2—y1)22 . R o

_ (x5 —z1)(w2 — 1) + (y3 — ¥1)(y2 — y1) _ 10.6

Y V(e —11)2 + y2—y1)22 et ()
.- (10.7)
a = darccos 2 0 (10.8)

\/(xg — 1)+ (y2 — y1)?

D — o (10.9)
o (10.10)

This concludes the theoretical solution of the task, whereby the implementation of the

task can begin.

10.2 Test setup and programming the LWR

A temporary test setup for this application has been set up at the laboratory, since the
LWR is mounted in a stationary position. The test setup is merely three metal blocks
sitting on top of each other to provide a sufficient height. The metal blocks are chosen
over a constructed fixture, since the only aim of the installation is to demonstrate the

task at hand, providing sufficient resistance without moving the blocks, while at the

Chapter 10 - Workstation calibration using force sensing 58

10.2 - Test setup and programming the LWR

same time providing an easy method of adjusting the position and angle of the block to
be calibrated.

Since the setup is different than an application would be on the Little Helper, one
non-essential difference from an actual application is the starting point of the search
pattern. In an application on the Little Helper, the starting point, from which all
motions regarding the search is made relative to, would be predefined, and perhaps
common for all workstations. In this setup, however, the starting point is chosen by the
user.

The structure of the program is explained in the following, without going into the actual
KRL syntax. Since this is merely a sequential program, it is described by an enumerated

list in the order of operations.

1. Basic initialization of variables, including the $STIFFNESS structure, the active
tool and the reaction force the robot should measure when finding the block, in
this case set to bIV.

2. Declaration of an interrupt?, to be activated when the search begins.
This interrupt is declared to be activated when the measured force in the tool z
direction is above the desired reaction force. After declaration, the interrupt is

immediately switched off, to avoid miscalculation®.

3. Move to HOME position.
This is tradtitionally the start of all KRL programs, since it ensures a safe starting

point of the robot.

4. Make the robot movable by hand, so the user can move the TCP to the desired
starting position.
This is done by entering cartesian impedance mode, and setting the stiffness of the
virtual spring in the z, y and z direction to 0 N¥/m, and the stiffness in the rotation
of these axis to 200 Nm/rad, thus enabling translation, but disabling rotation of the
TCP.

5. Display a dialog message, where the program halts until the user presses OK to

continue the program, when the TCP is in an appropriate starting position.

6. Switch back to position control, and move to the first point relative to the starting

position. A rotation of 90° is made around the TCP, so the pin points straight

4Method to interrupt a program in KRL when a certain condition is met
5Since the force/torque acting on the TCP is back estimated from the torque in each joint, and the

accuracy is therefore not adequate for continuously having the interrupt enabled

59

10.3 - Accuracy of the calibration

towards the block. The distance from the starting point is chosen to be 40mm,
to overcome the tolerances of the platform in an actual application and to avoid
collision with the block.

7. Execute search motion towards the block.
Since the search motion is the same for all points, it is stored as a function. This
function executes the TRIGBYCONTACT function, enabling the robot to switch to
cartesian impedance mode upon contact with the block. The function also enables

the interrupt, and finally moves the robot slowly towards the block.

8. The controller mode is switched and the interrupt is activated when the desired
reaction force is measured.
When the interrupt is activated, it disables itself, saves the position (in {R}) and

moves the tool away from the block.
9. Move to each of the points 2, 3 and 4 and repeat steps 7-8.

10. Calculate the new workstation coordinate system, according to the equations 10.5-
10.10.

11. Take the aforementioned arccos problem into consideration, by making an if struc-
ture comparing the measured y coordinates of points 1 and 2 to determine the sign

of the angle a; if yo < y; the sign of the calculation is changed.

12. Activate the calculated coordinate system.

One note to the above is the inability of KRL to handle more than basic mathematical
calculations (though arccos is a built in function). To accommodate this, a custom
function taking the square of a single parameter has been created, and an array of
temporary values, obtained through basic mathematical operations, has been created
and utilized for intermediate results. The program can be found on the enclosed CD in
Source Codes\LWR Projects\Basecalib.src.

An initial visual inspection of the accuracy of the calibration reveals promising results,
but this of course has to be tested further. This will be dealt with in the following.

10.3 Accuracy of the calibration

In order to test the accuracy of the robot, different tests could be made. The one

chosen is a purely visual inspection, by moving the robot to predefined coordinates in

Chapter 10 - Workstation calibration using force sensing 60

10.3 - Accuracy of the calibration

the workstation coordinate system, and checking how the TCP aligns with the points.
The repeat accuracy is also tested, by comparing the values of the coordinate system
of repeated measurements with a fixed position and orientation of the block. A video
showing the measurement of the coordinate system and the test of precision is found on
the enclosed CD in Media\Video\BaseCalib.wmv.

Since the inspection of the accuracy is purely visual, and the tolerances of the marks
made on the block to inspect the accuracy can not be guaranteed, the approach in
determining the accuracy should be considered. There is indeed a significant chain of
tolerances from the production of the pin used for the calibration, the tool calibration
of this pin, and how the pin is attached in the gripper, to how the marks on the block

are measured. The following approach is therefore used:

1. Perform measurements on the block several times, with the block fixed in the same
position and rotation for each measurement.
For each measurement, the apparent error in each of the points is inspected and
noted, along with the coordinates and rotation of the coordinate system. The

latter is used to determine the repeat accuracy of the calibration.

2. Perform several measurements on the block, where the block is rotated and moved
each measurement. If the observed error in the points remain the same, the pre-
cision of the calibration is deemed satisfactory, though a quantification of the

precision of the calibration will be hard.

Initially, ten measurements on the same position of the block is made. The calculated
coordinate systems are all within +0, 5mm of each other, and within £0, 25° for a. The
observed errors of the inspection marks are within 0, 5mm, which is estimated to be the
least interval the human eye can see with some degree of certainty. The mean of the

inspected errors are shown in Table 10.1.

Point 1 ‘ Point 2
T Yy z T Yy z
1,25 0,00 0,10 | 0,65 1,00 -1,65

Table 10.1: Mean error observed in each of the two test points

The repeat accuracy of the calibration is promising, since it suggests a satisfactory accu-
racy for e.g. picking up parts. One aspect which the visualization of the measurements
reveal, however, is that the block is both turned and moved slightly for each measure-
ment. This is especially apparent from the coordinates of y and a. All the measurements

are shown in Figure 10.3.

61

10.3 - Accuracy of the calibration

547,00 173,00 -
.
* .
547,20 173,20
547,40 n - = 173,40 -
n L | n - .
. mX * Y
547,60 173,60
. S
547,80 173,80
548,00 : : : : : : : 174,00 : : ‘
0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10
141,00 175,60
140,80 175,50
140,60 175,40
z A
140,40 175,30
14020 175,20
140,00 ‘ : : 175,10

Figure 10.3: Consecutive measurements of the coordinate system; horizontal axis is the measurement

no. and vertical axis is mm (for z, y, z) or degrees (for a)

It is obvious from these measurements, that the block is rotated slightly for each mea-
surement. The most likely scenario, when looking at the data, is that the measurement
in point 1 has rotated the block slightly, although not enough to change the x coordi-
nate significantly. When looking at the z coordinate, however, which is measured at the
one location where the robot could not have influenced the position of the block (since
this is on top of it), the measurements are within +0, lmm. Compared to a specified
repeat accuracy of the robot of £0,05mm [11], the repeat accuracy of the measurement
is determined to be adequate for applications on the Little Helper Plus, given of course
that the workstation or platform does not yield when touched by the robot.

The test of the actual accuracy of the measurement is then carried out, by rotating and
moving the block within the tolerances of the platform. The measurements are shown

in Table 10.2.

Chapter 10 - Workstation calibration using force sensing 62

10.3 - Accuracy of the calibration

Error point 1 | Error point 2 Measured coordinates

T y z T Yy z x Yy z a
5 00 00 |05 1,5 -1,5|-552,29 -166,27 140,20 178,61
1,5 00 00 |10 1,5 -1,5|-560,51 -156,12 140,32 -176,37
1,5 00 05 |05 1,0 -2,0 | -550,88 -162,76 140,33 179,43
20 00 -051| 15 20 -1,5|-570,44 -150,33 140,40 -172,94
1,0 -0,5 00 |00 0,5 -20|-542,82 -188,96 139,74 164,82
25 05 05|10 20 0,0 |-591,04 -142,64 140,56 -170,04

Table 10.2: Measurements on various positions and rotations of the block

Note that the two final measurements are made to test the measurements outside the
tolerances of the platform, as is obvious from the calculated rotation and position. The
remaining measurements yield somewhat promising results, since the observed errors
are relatively close to the mean of errors observed in the first 10 measurements. All the
results are found on the enclosed CD in Results\Calibration.xlsx. The precision of
the calibration is determined to be adequate for handling parts or e.g. move the camera
to a satisfactory image acquisition location for improved precision of parts handling,
or quality control of parts. Since this calibration only takes 45 seconds with the robot
moving at 30% speed, the calibration is comparable to the fast version of the vision
calibration currently used on Little Helper, though with a slightly better precision. This
calibration takes 10-30 seconds and results in an accuracy of £1,0mm [2].

The task of calibrating the coordinate system is now carried out, with respect to the
given assumptions. The basis of creating a task on the Little Helper to calibrate using
this method is then formed, since this yields an adequate accuracy compared to the high
speed calibration currently implemented using vision. For further tests of accuracy, it
is recommended to create a better test setup, that is fixed in position and rotation, to

avoid moving the block when the measurement is carried out.

63

10.3 - Accuracy of the calibration

Chapter 10 - Workstation calibration using force sensing 64

11

Peg in hole

A robot task that is traditionally very hard to accomplish for regular, position-controlled
robots, is the task of placing a peg in a hole. The reason for this is a very low permis-
sible error, both in position and rotation of the peg relative to the hole. With tight
tolerances, the task obviously becomes more difficult. This exercise aims to investigate
the possibility of using the torque sensors of the LWR to solve the peg in hole task.

Initially, the specific peg in hole task in this scenario is programmed using only the
position control mode of the robot, to determine the permissible errors if this was the
only available controller mode. After this, the task is sought solved by entering carte-
sian impedance mode, and letting the spring-damper system compensate for the error

in position and rotation.

Purpose To investigate the peg in hole task, and how this task can be solved by using

the torque sensors on the LWR.

Objective To gain an understanding of the difficulties in the peg in hole task, and to
establish a method of solving this using the LWR.

The test setup is using the same pin used for the base calibration task described in
Chapter 10, which has a conical tip. The hole is made in a plastic block, which is
fastened to the table. The hole diameter is 0, 5mm larger than the pin diameter, and
chamfered at the edge, making the test setup a relatively easy task, compared to peg in
hole tasks in assembly operations in a production environment, e.g. fitting a shaft in a
bearing.

The following will describe the different scenarios, which has been programmed. Com-
mon for the programs, is that the robot is made movable by hand, so the user moves the
robot to the starting position for the insertion of the pin, after which the robot moves
40mm (which is the height of the block, in which the hole is made all the way through)
downward in the tool direction. In order to investigate different scenarios, two different
ways to move the robot are implemented; one where the tool is merely movable in the
xyz direction, thus keeping the alignment between the hole and peg, and one where the

tool rotation is enabled as well.

65

11.1 - Using Position control

11.1 Using Position control

When attempting to solve the task using regular position control, the only thing com-
pensating for reaction forces acting on the TCP, is the current applied to the drives in
the robot, and how the position is regulated in these joints, along with the fit of the
peg and hole. Since the hole is chamfered and the peg is conical, quite large reaction
forces can be achieved when attempting to place the peg in the hole; reaction forces
which along with friction forces limits the robots ability to place the peg accurately in
the hole.

Using the position control mode, only small errors in position are permissible, due to
the large reaction forces. In the case of no rotation of the tool, the reaction force is
orthogonal to the direction of the motion, since the force causing the reaction force is
acting on the internal wall of the hole. This force is due to the inability of the drives
to keep the TCP in exactly the same position and orientation at all times, and can be
thought of as a spring stiffness k; of the system, not to be confused with the virtual
spring-damper system in the cartesian or joint impedance control modes. The stiffness
of these springs is very large!, and as such a small error in the insertion position results
in very large reaction forces Fr, and subsequential friction forces Fr, which makes the
robot unable to insert the peg in the hole. The active forces are shown in Figure 11.1,

where the force in the motion applied by the robot is denoted Fyy.

(a) Initial contact (b) Inserted contact (c) Initial contact (d) Inserted contact

Figure 11.1: Forces acting on the peg during insertion in two scenarios; (a) and (b) without rotation
of the peg and (c) and (d) with rotation of the peg. Spring forces are not shown, but are caused by the
system stiffness ks

This figure also shows the case of rotation of the peg relative to the hole. This scenario

results in an added reaction force, which subsequentially result in an increase in the

The TCP can only be translated about 5mm by hand

Chapter 11 - Peg in hole 66

11.2 - Using Cartesian Impedance control

overall friction force preventing the insertion of the pin. The reaction forces also result
in a moment acting on the peg. This moment contributes very little to the motion of
the robot, however, since the tip of the peg is a relatively great distance from the tool
flange of the robot.

Trials in each of the above scenarios have been made on the maximum permissible error,
which are shown in Table 11.1. The resulting insertions are evaluated by visual inspec-
tion, where a good insertion is a full insertion of the peg in the hole, an okay insertion
is close to good, and a partial insertion is only some of the way, after which the robot

motion stops, since the pin can not be inserted further. The conclusion stands that the

x [mm] y[mm] b[°] c[°] | Conclusion
0,0 -2,0 0,0 0,0 Partial insertion
0,0 -1,5 0,0 0,0 Partial insertion
0,0 -1,0 0,0 0,0 OK insertion
0,5 -0,5 0,0 0,0 Good insertion
0,0 0,0 1,0 -1,0 | Partial insertion
0,0 0,0 0,0 -1,0 | Partial insertion

Table 11.1: Errors in position and angle, and the resulting insertion of the peg, using the position

control mode

permissible error in both rotation and position are very small. Taking the difference
between the hole diameter and peg diameter into consideration, it is obvious that the
peg should be positioned very accurate before attempting to place it in the hole. It is
also apparent, that the contribution from the second friction force in the case of rotation
of the peg decreases the pegs ability to slide into the hole.

It is obvious from the tests why this task is traditionally hard to accomplish with posi-
tion controlled robots, as very small errors are permissible, even in this ideal scenario.

Therefore, it is investigated how the LWR can be utilized to better accomplish the task.

11.2 Using Cartesian Impedance control

The straightforward way to accomplish the task at hand, is to apply the Cartesian
Impedance controller mode, when the peg is near the hole. For this purpose, the
TRIGBYCONTACT function is utilized, and configured to switch to the Cartesian Impedance
controller when a reaction force is registered. The applied parameters for the cartesian
impedance controller are a low spring stiffness in the z and y direction, of 200N/m, for
the scenario without rotation. This scenario is similar to that in Figure 11.1(a) and

11.1(b), where the system stiffness ks now represents the low stiffness of the virtual

67

11.8 - Implementation in a production environment

spring, thus resulting in much lower reaction and friction forces. This is also obvious
from the measurements shown in Table 11.2, for the scenario without rotation of the
peg, since the peg is inserted correctly as long as the tip of the peg is within the chamfer
of the hole. Even when the pin is the farthest from the center of the hole, while still
being within the hole diameter, the maximum force exerted on the hole wall can be

calculated from the spring stiffness to be just 1/V.

x [mm] y[mm] b][°] c][°] | Conclusion
-4,5 -4,0 0,0 0,0 | No insertion (hole out of range)
-3,5 0,0 0,0 0,0 Good insertion
0,0 -4,0 0,0 0,0 Good insertion
4,8 0,0 0,0 0,0 Good insertion
0,0 5,0 0,0 0,0 Good insertion
0,0 0,0 1,0 0,0 Partial insertion
1,0 0,0 -1,0 -0,5 | OK insertion
-1,5 -1,0 -1,9 -3,0 | Partial insertion
-1,5 -1,0 -2,0 -1,0 | Partial insertion

Table 11.2: Errors in position and angle, and the resulting insertion of the peg, using the cartesian

impedance control mode.

The rotation of the peg still presents a problem, however. This has most likely to do
with the resulting moment in the peg, due to the reaction forces, being too small to
overcome the spring stiffness, since the force in the TCP is back estimated from the
joint torques. This effectively means that even setting the torsion spring stiffness of
rotations a, b and ¢ to 0 Nm/rad does not result in the peg sliding into the hole when
it is rotated more than a few angles relative to the hole. A reason for this, apart from
poor estimation, is that the wrist of the robot, where the tool flange is located, needs
to be moved quite much in order to rotate the peg around its tip; merely specifying low
torsion spring stiffness is definitely not enough to result in this motion. The permissable
error in rotation is however greater than for position control.

Based on the experiments described above, several implementation suggestions, should

the task be solved in a real environment, are presented in the following.

11.3 Implementation in a production environment

It is obvious from the permissible errors in this near ideal test setup, with a conical tip
and a chamfered hole, that some additional work is required to solve the peg in hole

task in a production environment. This is not to suggest an industrial environment is

Chapter 11 - Peg in hole 68

11.8 - Implementation in a production environment

less organized and controlled than this setup, but is regarding the shape of the parts - it
is a rare situation where e.g. one has a shaft with a conical tip to insert in a chamfered
bearing. In an industrial environment however, it is estimated that there is a very small
error in the position of the part, and even smaller on the angle, making the shape of
the peg and hole the main issue. The following will suggest methods for implementing
solutions to both of these problems, however, using the features of the LWR.

A search algorithm could be implemented fairly easy, which searches for the center of the
hole if the starting point is not adequate. Similar to the base calibration task, the peg
could touch the surface near the hole. If this surface is known relative to the robot, the
condition for determining if the hole is found could be the coordinate of the contact on
the axis orthogonal to the surface. If the surface is not known, however, the condition
could be the force in the tool z direction compared to the z and y directions. The
comparison is important, since the position of the hole could be found approximately at
the first try, resulting in the scenario in Figure 11.1(a); it is however unlikely that the
hole can be found with such great precision as to not yield any reaction force in the x
and y directions.

This does not solve the matter of small permissible errors in the angle between the peg
and hole. This has to be solved using a different approach than watching the moment
acting on the peg, since the moment around the tip of the peg can not be accurately
back estimated from the joint torques. One way could be to use the back estimation of
the forces acting on the tip of the peg in the zyz directions, as these are more accurate
than the moments. It could be checked during runtime, and even during the robot
motion downwards, if there was a reaction force in e.g. both the z and x directions,
and compensate for this by rotating the peg slightly around the y axis of the tool, to
reduce the reaction forces. Obviously, this is not enough, as seen from Figure 11.1(c).
Here the reaction force Fr can be decomposed to a reaction force in two axis in the
tool coordinate system, in which the force F); is in the positive z direction. Using the
mentioned strategy, this would cause the robot to rotate the peg the wrong direction,
increasing the angle between the peg and the hole. This could however be solved by
implementing a limit on the reaction force in the z direction, to ensure this reaction force
is from the contact with the internal wall of the hole, and not from a sliding contact on
the edge of the hole.

In terms of inserting a sharp-edged peg in a sharp-edged hole, this could be made fairly
easy if the rotation and approximate position of the hole is known. One way to do this
could be to program a robot motion similar to what a human would do when inserting

a peg in a hole. In this case, we often rotate the peg, and insert the tip of the peg into

69

11.8 - Implementation in a production environment

the hole, after which we align the rotation of the peg with the hole. A similar method
could be utilized on the robot, since the initial insertion of the tip in the hole is fairly
easy. After this, the cartesian impedance controller should be enabled with low spring
stiffness, and the peg rotated about its tip, after which the peg should slide into the
hole for further insertion.

The methods described above have not been implemented, since the goal of this exercise
has not been to program a working peg in hole skill, but rather to investigate the
challenges of the task, and provide the basis for further work on establishing a general

solution to the task.

Chapter 11 - Peg in hole 70

12

Demonstration of the Fast Research Interface

KUKA supplies the Fast Research Interface for use with the LWR, to enable real-time
control of the LWR from a remote computer, mainly for experiments in research labo-
ratories. One immediate use for this on the mobile manipulator is to facilitate control
of the robot from the remote computer on the platform. Since the current software
architecture of the Little Helper requires this connection, and there is no support for
TCP/IP connections in the KRC!, the FRI will most likely be used for the connection
to the robot. Apart from enabling control of the robot, several monitoring variables are
available as well, which could be utilized in certain other scenarios. Work has also been
done on creating an open source controller for the robot running on a remote PC [12]?,
but it is unsure if this will be utilized in the Little Helper Plus.

The structure of the FRI requires some explanation, and thus will be presented first in
this chapter. After this, an initial test program monitoring the torques in each joint
is documented in depth, and finally the full program, which enables monitoring of all

variables and control of the robot, is described.

12.1 Function of the FRI

In the following, the communication of the FRI and the structure of the packages ex-
changed between the robot and the remote PC is explained.

There are two main operating modes of the FRI; Monitor Mode and Command Mode.
In Monitor Mode, a packet containing all the available robot data is sent via UDP from
the controller (KRC) to the remote PC every cycle, and command parameters are sent
from the PC to the KRC. It is only when the FRI is in Command Mode, however, that
the command parameters for controlling the robot are utilized. The data exchange is

visualized in Figure 12.1.

!Although KUKA offers the KUKA.Ethernet package for communicating XML strings through

TCP/IP
2This article uses the XML interface, but the work has later been expanded to use the FRI for the

communication, though this is not described in papers

71

12.1 - Function of the FRI

UDP connection

Measure data (msr)

Command data (cmd)

Remote PC

Figure 12.1: Data exchange between the controller and the remote PC through the FRI

The cycle time is user specified upon opening the connection, between 1 and 100ms -
in the following implementations the default value of 20ms is used. In order to enter
and stay in Command Mode, the quality of the connection should be one of the top
two classifications of four, as specified in the FRI manual [13]. This quality is decreased
one step every time a packet is lost, and increased when a packet is received. The four

states and changes of quality is shown in Figure 12.2.

Packet received

Monitor Mode Packet received

only available Perfect
| \
i I
| \ Packet received
I N Good - | I
| \ Packet lost |
| Packet received . :
| Packet lost \ :
\
Command Mode
Connection opened Packet lost available

(friOpen)

Figure 12.2: The four quality states of the FRI, and how they change

Nearly no configuration is needed of the FRI, since this is a KUKA Technology Package
installed from the factory. There are two settings that should be entered in the controller;
the IP addresses of the KRC and the remote computer, and the mapping of 1/O to the
FRI, to enable the direct control of auxiliary equipment. These settings will not be
described here, as they are described in the user manual for the FRI [13]. The remote
PC should obviously also support the UDP protocol, since this is the protocol used by
the FRI [13].

Although the FRI comes preinstalled on the KRC, only the source code of a sample
program with a simple GUI is supplied for use on the remote PC. No installation is
required on the remote PC, to enable use of the FRI, except installing the free Visual
Studio C++ Express to compile the program, but KUKA supplies C++ header files,

Chapter 12 - Demonstration of the Fast Research Interface 72

12.1 - Function of the FRI

which ensure proper communication with the KRC, along with definition of the data

structures, when included in a user-developed program.

12.1.1 Data structure of the packages

Data exchange between the KRC and the PC is handled by two data structures, called
msr (measure) and cmd (command). These are defined in the header files as structures,
each containing substructures for groups of data. Only the substructures will be de-
scribed here, along with examples of the data contained in these, since a full description
is available in the user manual [13].

One common substructure of both telegrams is the package header head, which ensures
proper communication between the two parts. The header contains information about
the binary size of the package, and the sequence count, which is compared between the
two telegrams, to calculate the latency and packet loss. Another common substructure
is krl, which is a set of 16 integer, 16 floating point and 16 boolean variables, that
are all user assignable, and as such can be used to transfer data both to and from the
remote PC, depending on which parent structure is used. If msr is used, the values are
sent from the KRC to the PC, and vice versa (see Figure 12.1). Note that the FRI does
not have to be in Command Mode to change the values of cmd.krl.

Apart from the two substructures already mentioned, the following substructures are

available in the msr telegram:

msr.intf which contains information about the status of the FRI, such as the time
stamp of the connection, state of the FRI (monitor/Command Mode) and quality
of the connection. This structure has its own substructure, msr.intf.stat, which
contains the statistics based on the sequence count, such as latency, package loss

etc.

msr.robot contains general information about the robot, i.e. if the power for the drives
are on, which controller strategy is active and the operating temperature inside

each joint.

msr.data is the largest of the substructures. In this substructure, the position data of
the the robot is sent, in both the joint space and cartesian frame, along with the ac-
tual joint torques, and the estimated external joint torques and TCP force/torque
values. The Jacobian matrix and the mass matrix are contained in the structure

as well.

73

12.2 - Hello FRI

In the cmd telegram, only the cmd. cmd? substructure is available, apart from the cmd . head
and cmd.krl structures previously described. This substructure is similar to msr.data,
since it contains the commanded positions and stiffness/damping parameters, also both
in joint space and cartesian frame, as well as an additional joint torque or TCP force/torque
to be exerted, similar to the DESIREDFORCE command in KRL. These data are used to

control the robot, and can be specified from the remote PC.

12.1.2 Programming from the remote PC

To facilitate communication through the FRI, KUKA has supplied a number of C++
header and source files. The function of the supplied files is to establish the connection,
and define the various package structures, as well as supply easier interaction to the

FRI. The supplied header and source files are:

friComm.h which is the definition file for the various structures, along with initialization

of internal variables to ease the programming further on.
friUdp.h is the header file for the UDP connection.

friUdp.cpp is the source file for the UDP connection, with functions for sending and

receiving the packages.

friRemote.h which defines the friRemote class, that aims to ease the programming by
providing a number of standard functions e.g. for sending data or controlling the

robot.

friRemote.cpp is the source file for friRemote.h, which defines the functions previ-

ously mentioned.

Note that the two latter files are not necessarily needed, but greatly assist in program-
ming, since the functions supplied in these files make the communication with the robot

much easier.

12.2 Hello FRI

In order to learn the basics of programming an application that communicates with the
KRC through FRI, a simple console application has been developed. The sole purpose of

the application is to establish a connection to the FRI, and maintain this connection until

3Denoted cmd.data in the FRI manual [13], which is an error

Chapter 12 - Demonstration of the Fast Research Interface 74

© 0 N ke W N

e e
gl W N = O

17
18
19
20
21
22
23
24
25
26

12.2 - Hello FRI

the program is terminated. When the program is running, it outputs the timestamp,
sequence count and the estimated external torque in each joint to the console every
second. The following will describe the program in depth, to provide the reader with an
understanding of how programming to the FRI is carried out.

At the beginning of the program, a number of variables are declared, mainly the variables
for the msr and cmd telegrams, along with the variable myFRI of the friRemote class.
After the declarations are made, a handshake to the FRI is carried out, by doing an
initial data exchange and filling the msr and cmd variables on the remote side with data.
The current timestamp of the KRC is saved in a variable as well, to later determine
when to output data to the console. The source code is as follows:

int main (int argc, char *argv[]l)

{

// Declaration of variables

int wait = 1; // Wait 1 second between writing data to console

friRemote myFRI; // The class providing easier communication functions

tFriMsrData msr; // The measure telegram, of type tFriMsrData

tFriCmdData cmd; // The command telegram, of type tFriCmdData

FRI_QUALITY myQUAL; // The quality of the connection

// Initial data exchange

myFRI.doReceiveData() ; // Receive data from the KRC

msr=myFRI.getMsrBuf () ; // Fill the msr buffer in the friRemote class with the data from KRC
cmd=myFRI.getCmdBuf () ; // Initially fill cmd buffer in this application with data from the KRC
myFRI.doSendData(); // Send data back to the KRC

// Save the current timestamp

double time = msr.intf.timestamp;

After the initial data exchange and declaration of variables, the connection is established
and maintained until the program is terminated. This is done through a simple for loop,
with no end condition, in which certain values are extracted each cycle time, and data
exchange is carried out. In the beginning of this loop, it is sometimes necessary to
write values to the cmd structure, to ensure proper data exchange. Apart from this, the
sequence count in the msr and cmd structures should match, before data exchange is

carried out. The source code for the first part of the for loop is as follows:

for(;;)

{
// Handshaking via the user variables, used to ensure data exchange
myFRI.setToKRLInt (1,1); // Write value 1 to user variable TO_INT[1]
myFRI.setToKRLReal (0,myFRI.getFrmKRLReal(1)); // Write user variable back to controller

// Save the current quality of the connection

myQUAL = myFRI.getQuality();

// Send back the correct sequence count, so the packages match
cmd.head.reflSeqCount=msr.head.sendSeqCount;

// Data exchange

myFRI.doReceiveData() ;

75

27
28
29

12.8 - Full demonstration of the FRI

msr=myFRI.getMsrBuf () ;
myFRI.getCmdBuf ()=cmd;
myFRI.doSendData();

In order to only output the measured torques each second, and not every time a package
is received, an if structure is made to ensure this. If the saved timestamp when the
connection was established is less than or equal to the current timestamp minus the
wait variable, the timestamp, sequence count, quality and joint torques are printed to
the console, after which the time variable is update with the current timestamp, and
the loop continues. Notice the two different ways of accessing the data; in line 34, the
data is accessed directly, and in line 35, the data is accessed by using a function in the

friRemote class:

if (time<=msr.intf.timestamp-wait)
{
// Output data to the console
cout << " " << endl;

cout << "Timestamp: " << msr.intf.timestamp << endl;

cout << "SequenceCounter: " << myFRI.getSequenceCount() << endl;

cout << "FRI quality is: " << myQUAL << endl;

cout << "Joint torque vector is: " << endl;

// For loop to print the names for each joint as well as the external joint torque
for(int J=0;J<LBR_MNJ;J++)

{
cout << "J" << J+1 << " " << msr.data.estExtJntTrq[J] << endl;
}

cout << "Waiting for " << wait << " second..." << endl;

cout << endl;
// Update the timestamp
time = msr.intf.timestamp;

}
} // End of for loop
return 0;

} // End of program

After this initial program has been developed, and an understanding of the header
and source files supplied by KUKA is gained, development of the main program to

demonstrate all features of the FRI is begun.

12.3 Full demonstration of the FRI

In order to fully demonstrate the capabilities of the FRI, a Windows application has been
developed, which aims to cover all functionality of the FRI. The goal of this application

is therefore to establish and maintain a connection to the KRC, continuously display

Chapter 12 - Demonstration of the Fast Research Interface 76

12.8 - Full demonstration of the FRI

data of the connection and the robot itself, as well as provide means of controlling the
robot using the predefined controller strategies. This application is greatly inspired by
the user interface supplied as an example by KUKA, since some of the main objects
and methods of this application has been incorporated in the same way. The supplied
example, however, solely enables joint position control of the robot, and not joint or

cartesian stiffness. This has been incorporated in the example at hand.

12.3.1 Description of the GUI

When opening the program, the user is met by a simple GUI with a section, displaying
the quality and mode of the connection, as well as the power state of the robot, along
with a button to start or stop the connection. Apart from this, a button to write both
the cmd and msr packages to an XML file has been implemented, in order to easily view
or save the data of the robot. The main part of the GUI is a number of tabs, which
enables the user to switch between various data to view, as well as a tab to control the
robot. The GUI is shown in Figure 12.3, with the Connection Stats tab selected.

|
i | Qualty lode: or Important FRI
Start/stop button - } B oo EE ¢ variables
1 S e i
Comectin St | Rabct Data | Lser Vaabes | Conmend Mode| |
Connection status bar —

—— Tab groups
Curert system time (o) 1831754
Avg. Latency {ms) 182
Avg. Answer rate (s): 1
Awg. Jiter fms): 04579268
#ug. Dropped packages 0
Tot. Dropped packages 1763
Desired MSR sample time 20
Desred CD sampls tme 2

Write current package
[WsrRipionit | || < to an XML file

Figure 12.3: The GUI for the FRI interface, in its initial state

The available tabs in the application are:

Connection stats which displays various connection statistics from the msr. intf struc-

ture

77

12.8 - Full demonstration of the FRI

Robot data which displays the data of the robot from the msr.data structure. There
is a second tab control in this view; one for the joint-specific data, such as tempera-
ture of the drives, measured torque, joint positions, etc. and one for the cartesian
data, such as measured external force/torque on the TCP and the cartesian posi-
tion of the TCP.

User variables displays the 6 user variable arrays. The 8 first booleans, both to and
from the remote PC is mapped to the 8 inputs and outputs on the KRC respec-
tively, as described in Appendix C.3, and as such are highlighted. This data view

is linked to both the msr.krl and cmd.krl structures.

Command Mode enables control of the robot from the GUI, through the cmd.cmd
structure, by enabling the switching between controllers, and providing jog keys
for joint and cartesian position, as well as an interface to enter stiffness, damping

and additional force/torque to be exerted.

Only the data of the currently selected tab is updated continuously, in order to limit the
work load on the remote PC. The GUI is updated every cycle, but in order to ensure
proper quality of the connection, it is not feasible to have the connection to the KRC
and the GUI functions running simultaneously on the same thread. The solution to this

is explained in the following.

12.3.2 Exchanging data

In order to implement two separate threads in the application, one for handling the
connection to the FRI, and one to handle the GUI, the BackgroundWorker .NET class
is utilized in the application. This class does in fact enable a process to run on a
separate thread, and provides events and properties to easily incorporate another thread
in an existing application. In this application, the BackgroundWorker is handling the
connection and data exchange to the KRC, through the DoWork event, which is raised
when the user presses the start button. The DoWork event continues to loop through the
connection sequence, until the user cancels the connection. This loop fills the connection
buffers as previously mentioned, and calls an optional command function, for controlling
the robot, performs data exchange to the KRC, as well as reporting the progress of the
connection.

When using the BackgroundWorker to e.g. update a GUI, as is the case here, one
should avoid doing this through the regular DoWork event, but instead do it through the

ProgressChanged event, since this event is not executed on the same thread as DoWork.

Chapter 12 - Demonstration of the Fast Research Interface 78

12.8 - Full demonstration of the FRI

The ProgressChanged event is raised every time the ReportProgress method is called,
which is a method for reporting the percentage completion of the separate thread?, and
is called in the last step in the DoWork event. As such the ProgressChanged event is
effectively executed every cycle time of the FRI, albeit on a separate thread. When the
ProgressChanged event is raised, it merely updates the GUI, by a custom function.
This function will not be described in depth in the following, since a great deal of the
function is merely writing variables to text boxes or labels. However, some intricacies
in reading certain variables will be described, since these are not obvious from the FRI

documentation. The scenario described above is visualized in Figure 12.4.

| FRIThread_ProgressChanged

| Start/stop pressed

Connection
running?
Yes

Start the connection ---1%--- — Report progress R R IR ! Reset the GUI

No

|
|

|
|

|
|

|
|

|
|
| |

|
|

|
|

|
|

|
|

|
1 :
| } Yes
| v !
|

|
|

|
|

|
|

|
|

|
|

|
|
| |

|
|

|
|

|
|

|
|

|
|

|
|

|

Receive data
Fill buffers
Command the robot
Send data

Update the GUI

A 4

—

Report no progress

A 4

Stop the connection
Reset the GUI

Write progress to
status bar

|

Figure 12.4: The main function of the FRI application. Dashed lines are called automatically, and
indicate a change of thread, and dashed boxes indicate a separate function.

As previously mentioned, the updateGUI function only updates the current tab, to
optimize performance. This is done by a simple switch structure, checking which tab is
selected. An exception from this is the boxes in the top of the GUI, showing the quality
of the connection etc. These boxes are colored depending on their value, and as such are
only updated when e.g. there is a change in the quality, by comparing the current value

with the value of the text boxes. There is no problem in reading the connection stats

4Although in this application is reporting the sequence count modulo 100, since no defined end of

the connection is available

79

© 0w N O Ok W N

12.8 - Full demonstration of the FRI

and writing these to the GUI, since these are simple integers or floats, only requiring a
conversion to string before being written.

When reading the robot data, which are all specified in arrays of floats, the program
should of course loop through these arrays in order to write each value to a specific cell
in the robot data data view. This is done by a simple for loop, with the end condition
being 7, for the number of joints in the LWR. For the cartesian position, however,
this is specified in the 3 x 4 matrix [Raxs P3|, specifying rotation and position of the
TCP, which is cast as a vector of size 12, and as such requires some extra coding to be
represented correctly.

The user data tab containing the user variables to the FRI is also straight-forward,
at least for the integer and float variables, thus one for loop running from 1 to 16 is
handling the update of all the user variables. The boolean variables are stored in a
single 16-bit integer, the binary representation specifying which variables are true or
false. This is common for each of the msr and cmd structures, and as such needs to be
decoded in order to work with the checkboxes in the columns specifying the boolean
data. This is done in two different ways, both using bitwise operators. For the user
variables from the KRC (msr.krl.boolData), a bitwise AND operator (&) between the
binary representation of the integer, and a binary with 1 on the ith place, created by
performing a bitwise left shift on 1 by 4 bits (1<<i), is carried out. If this operation
results in a non-zero value, the ith value is 1 (or true), otherwise 0 (or false). This
method is also known as bit masking.

The data being sent to the robot is calculated in a similar way. An integer with value
0 is initialized before the loop, and is filled with the values in the for loop. The loop
investigates whether or not the ith checkbox is checked, and returns 1 or 0 depending
on the value (?71:0). On the returned value, a bitwise left shift of ¢ bits are made, and
this value is appended to the current value of the integer to be sent by a bitwise OR
assignment (|=). Since any bitwise shift operation on 0 still results in 0, only the values
corresponding to a checked box is sent. The code performing both operations is shown

below, as part of the loop updating the user variables.

unsigned short boolData = 0;
for (int i=0;i<16;i++)

{

this->dataGridViewUserData->Rows[i]->Cells[2]->Value = (msr.krl.boolData & (1 << i));
boolDatal|= (this->dataGridViewUserData->Rows[i]->Cells[5]->Value ? 1:0) << i;

}
cmd.krl.boolData = boolData;

Chapter 12 - Demonstration of the Fast Research Interface 80

12.8 - Full demonstration of the FRI

The Command Mode tab is always updated, but some additional information regarding
the Command Mode is required in order to explain this update function. Instead, the

update function is explained as part of the following.

12.3.3 Commanding the robot

In order to control the position of the robot through the FRI, the cmd.cmd structure
is utilized. This structure contains the same parameters as the $STIFFNESS structure
in KRL, as well as an additional parameter cmd.cmd.cmdFlags. This parameter speci-
fies which settings are sent from the remote PC, and must be specified before sending
any of the other parameters of cmd.cmd. One problem with this, however, is the value
of cmdFlags, which is an integer, which in its binary representation specifies the sent
settings, similar to the cmd.krl.boolData variable. This value cannot be changed in
Command Mode, however, so before switching controller or sending additional parame-
ters, the FRI connection should be in Monitor Mode.

Another aspect in controlling the robot, is that the active controller of the robot cannot
be changed through the FRI. That is, if the user wishes to command cartesian position
and stiffness, the LWR must first be set in cartesian impedance mode, since it is insuffi-
cient to just command the cartesian position and stiffness through FRI when the robot
is in another controller mode.

These two aspects of controlling the robot through FRI are solved by having a KRL
program running on the controller simultaneously. This program loops until terminated
by the user, and carries out a switch statement every loop. This switch statement

6" integer, is changed from the remote PC, and

checks if a specific user variable, the 1
as such switches the controller strategy accordingly. An example could be if the FRI
is in Command Mode, and the cartesian impedance controller is active on the KRC,
the user wishes to change to joint position control, while still maintaining the ability to
control the robot. The user then writes the value 10 (for joint position control) in the
last field of the FRM_INT column in the User Variables tab. The program running on
the KRC then switches to Monitor Mode, enables a pre-defined $STIFFNESS structure
for position control and switches the FRI back to Command Mode.

In the application on the remote PC, this change also changes the GUI of the Command
Mode tab, according to the selected controller, since different values are permissible in
each of these. Examples of the layouts of the command tab is shown in Figure 12.5. For
the joint position controller, the layout is similar to that of the joint impedance control
mode; stiffness parameters are however not available. The stiffness parameters are also

reset to their default values when the controller is changed. When the updateGUI func-

81

12.8 - Full demonstration of the FRI

tion is called, the measured joint positions or cartesian coordinates are written to the

text boxes next to the jog keys.

Connection Stats | Robot Data | User Vanab\esl Command Mode | Connection Stats | Robot Dats | User Variables ‘ Command Mode

Control strategy Control strategy

) {10) Position Control () (20) Cartesian impedance @ (30) Joirt impedance (© {10) Position Control @ (20) Cartesian impedance © (30) Joint impedance

Joint posttion Joirt stiffness parameters Cartesian postion Cartesian stiffness parameters

Jog keys Fosition Stiffness Damping Add.FT Jog keys Position Stiffness Damping Add FT
A [:] 0013696 0000 [[p7 = o = X E] 519512 200 [7o = o =
A202 E] 35,02805 100000 [[0.70 H o : Y E] 0,1372847 200 B Ao s [0 z
E1J2 E] -0.000145 000 [7 H o = z E] 475,3623 200 [P g o T
A4 E] 55,00085 wm [[p7 = o = ARZ) E] 179,948 2000 £ 70 = o =
A4JS [:] 0,000702 100000 [[0.70 H o : BIRY) E] 0.00024887 2000 B o s [0 z
ASJE E] 90,0017 m [[p70 H o = CIRX) E] -179.999 w000 [7o s [0 n
ABI7 E] 0005273 100000 =] [070 =1 0 = 3 E] 0,000145 100000 |5 [070 0

Jogapeed (1) 50 |2 ogspeed () [0 [+

(a) Joint impedance mode (b) Cartesian impedance mode

Figure 12.5: The difference in the Command Mode tab of the GUI depending on the selected controller

The FRI Command Mode is not developed for sending specific coordinates to the motion
planner of the robot, which presents some problems in jogging the robot. The difficulties
are different for the joint and cartesian controller mode, which is why these are explained
separately in the following. All of the actions described in the following are part of the
function doCommandMode, that is carried out in the BackgroundWorker, before each
package is sent to the KRC.

Joint position and stiffness

Since the coordinates sent through the FRI are apparently not sent to the motion planner
of the KRC, it is assumed from the function of the FRI that it is instead sent to the
joint interpolator in the case of commanding joint positions and stiffness. Due to this,
only an increment in position can be sent, and this increment needs to be sufficiently
small, so that the LWR can carry out the motion within one cycle time, the default
being 20ms. Since the maximum velocity of all joints without payload is 112°/s (except

joint 5, which is 180°/s) [9], the following value for maximum increment applies:

imaz = 112°/s-0,020s = 2,24° ~ 0, 04rad (12.1)

Chapter 12 - Demonstration of the Fast Research Interface 82

12.8 - Full demonstration of the FRI

Since this does not take the acceleration of the robot into consideration, it only applies
when the robot is in motion. Therefore the maximum increment the user is able to send
to the joints of the robot is set to 0,01rad, which is chosen to be adequate for jogging
the robot.

Before calculating the new joint positions of the robot, the actual commanded position
of the robot is first saved in the array, that later is sent to the KRC. The reason the
commanded position, and not the measured, is sent to the KRC is that in the case of
joint stiffness mode there is a deflection of the virtual springs - if the measured position
was used here, the robot would slowly move towards the ground, since the deflected
state would then be sent as the new position.

The program then checks if any jog button is pressed. If a jog key is pressed, the new
joint position of the specific joint is saved in the array. The increment is calculated as
the maximum increment multiplied with —1 or 1 for the direction of the motion and the
desired speed of the jog motion, specified in the box below the jog keys.

In the friRemote.cpp source file, a function has been added to easier command the
robot, and this function is utilized in the application. This function takes two argu-
ments; the joint position array, and a boolean specifying if the function should do data
exchange with the KRC. The latter is not the case here, since this is handled by the
previously mentioned BackgroundWorker class. The function makes sure the interface
is in Command Mode and sets the cmd.cmd.cmdFlags appropriately, as well as doing
data exchange if this is specified.

In the case of the joint impedance controller, there is a separate function for this. This
functions also accepts arrays of stiffness, damping and additional torque exerted in each
joint. The function checks if any of the parameters are NULL (i.e. is not specified),
and sets the cmdFlags appropriately depending on which parameters are specified. All
parameters are sent every cycle time, but only changed if the user presses the Apply
parameters button in the GUI.

The joint positions and stiffness parameters can now be commanded, when ensuring
the change of controller through the user variable previously mentioned. The cartesian

position, however, requires some additional work.

Cartesian position and stiffness

Since the cartesian position of the TCP is specified through the FRI as the 3x4 [R3x3 P3]
matrix, cast as an array of size 12, commanding the position directly presents some prob-
lems. First of all, the method for obtaining the rotation matrix is to be determined, and

secondly a method for writing increments in angles to this rotation matrix is developed.

83

12.8 - Full demonstration of the FRI

The rotation matrix can be calculated in different ways, depending on the order in
which the rotations about the axes are carried out, and if the rotations are around the
fixed coordinate system (fixed-angle rotation) or the rotated coordinate system (Euler
angles). Since the a, b and ¢ angles in KRL are the rotations about the z, y, and z axes,
respectively, it is estimated that the rotation matrix is calculated in this order as well.
This is confirmed by making test calculations comparing the rotation angles shown on
the teach pendant with the rotation matrix sent through FRI, as well as confirming that
the rotations are carried out using Euler angles [14]. This conclusion yields the rotation

matrix, where ca = cos(a) and so forth [14]:

Rzryixi(a,B,7) = Rz(a)Ry(B)Rx(7) (12.2)
[ca —sa 0 cB 0 sp 1 0 0
= sa ca O 0 1 0 0 ey —sy | (12.3)
0 0 1 —sB 0 ¢b 0 sy cy
[cacB casPBsy —cysa sasy + cacysp
= cfsa cacy+ sasfBsy cysasf — casy (12.4)
—sp cBsy cBey

Although the angles resulting in the rotation matrix as received through msr.data.cmdCartPos
can be determined from the rotation matrix, two solutions of the set of three angles exist

that give the same rotation matrix. Therefore, it is determined to implement a function

in the KRL script for changing controllers, that writes the angles to the user variables

when switching to the cartesian impedance controller of the robot. Upon switching to

this controller, the program on the remote PC saves the current position directly from

the msr.data.cmdCartPos variable, and the angles from the user variables. The incre-
ments in position or angles are then calculated in the same way as for the joint position
controller, depending on which button is pressed. The rotation matrix is calculated

each time the doCommandMode function is carried out, since most entries in this matrix
depends on several angles. In the case the user presses one of the position buttons, this

is written directly to the array, since no operation is required on this. The maximum
increment each cycle for the cartesian position is set to bmm.

Similar to the joint impedance mode, there is a function for controlling the robot in
cartesian impedance mode. This function takes the same arguments as the one for joint
impedance, along with an additional parameter for the extra axis, joint 3, sent through

the joint position array. That is, if the user presses the last jog button, controlling the

374 joint, an increment is made in the joint value for this, resulting in the zero space

motion, where the position and rotation of the TCP is maintained as a constraint, but

Chapter 12 - Demonstration of the Fast Research Interface 84

12.4 - Additional remarks

the rest of the robot is moved since joint 3 is rotated.

The method for applying cartesian stiffness, damping and additional force/torque on
the TCP are implemented in the same way as the joint impedance mode.

This concludes the description of the FRI. However, since the development of the appli-
cation has been marked by a lot of trial and error programming, due to only having a
superficial documentation for the FRI, the following will describe which aspects of the
application could be made differently, since work with the FRI will most likely continue

after the conclusion of this project.

12.4 Additional remarks

The following section will deal with the functions of the FRI, that is not implemented in
this application, as well as improvements in the application. The reason for this is to aid
the further work with the FRI, when the LWR is mounted on the mobile platform, since
the FRI will most likely be utilized for control of the robot from the main computer on
the mobile platform.

One aspect that immediately springs to mind is to implement a simple form of motion
planning in the application, enabling the user to send the coordinates of a point in space,
after which the robot moves to this point regardless of the distance to it. This can be
implemented relatively simple, since the distance to the point can be calculated, and a
number of points on the path can then be sent to the robot each cycle time. This has not
been the aim of this exercise, however, but is estimated to be a simple implementation,
depending on the kind of motion carried out (linear, point-to-point etc.).

Another part of the application, that could have been made differently, is the method
for commanding the robot in the cartesian space, which has been described in the pre-
vious section. Instead of sending the angles through the FRI user variables, one of the
two solutions of the angles could be determined from the rotation matrix, and used for
the calculation of the new rotation matrix. Although the same increment in each of
the two calculated solutions result in different rotation matrices, the orientation of the
TCP would be the same, meaning it is up to the cartesian interpolator in the KRC to
determine the shortest path, which is why this solution could work. This has not been
tried, but could be sought implemented, to overcome some of the current limitations of
the interaction between the KRL script and the application running on the remote PC.
This concludes the exercise of demonstrating the features of the FRI, since all the func-
tions of this interface is available in the application. The source code and Visual Studio

project files can be found on the enclosed CD in Source codes\LWR-Projects\FRI-Panel.

85

12.4 - Additional remarks

Chapter 12 - Demonstration of the Fast Research Interface 86

13

Measuring mass and center of mass of parts

In order to move the LWR by hand in Gravity Compensation mode, precise load data
has to be entered in the KRC, in order for the controller to accurately estimate the
externally applied torque in each joint. Along with the mass of the part, the position of
the center of mass, and the moment of inertia around the three axes has to be entered.
This makes it cumbersome to enter Gravity Compensation when the robot is handling
parts, and more so when the load data is not known beforehand. This exercise aims to
overcome this problem, by using the torque sensors to determine the load data. Another
likely scenario of using the torque sensors to determine mass, is the case of weighing
a box filled with parts, to determine the number of parts in the box. This of course
necessitate some knowledge of the dimensions of the box. The following will only deal

with the measurement on unknown parts.

Purpose: To determine if an accurate measurement of the mass and center of mass of

an unknown part using the torque sensors of the LWR is feasible.

Objective: To measure the mass and center of mass of a known part, and test the

precision of these measurements by comparing them to the actual data.

13.1 Test setup and method of measurement

A simple test setup has been created for this exercise, composed of a thick metal plate
with three holes, and a pin in the plate used as a handle for the gripper. The aim of the
test setup is to provide a method for displacing the center of mass (CM) with respect
to the tool flange on the robot. This is effectively done by inserting the pin in one of
three holes, where the first hole corresponds to a displacement of the center of mass
along one axis (z), the second is along two axes (z,z) and the third is along all three
axes. In order to further displace the center of mass in the z direction as well, a spacer
can be placed between the pin and the plate, giving a total of 6 scenarios to measure.
The test part is shown in Figure 13.1. The pin is hexagonal, since this is estimated to
increase the 3-finger gripper’s capability to fix the part even when the center of mass is

displaced in the = or y direction, as opposed to a cylindrical pin.

87

18.1 - Test setup and method of measurement

Figure 13.1: The part used for the measurements, shown with the position of the holes and the

coordinate system for measurements

In order to determine the mass and center of mass, four measurements have to be carried
out. All of these measurements will calculate the value from a specific joint torque. For
the measurements of the CM, the mass of the part will be used as well, since the torque
divided by the mass results in the distance to the CM. The measurements can be made
in only three robot positions, since one position can be used to determine two values for
the CM. The measurement strategy and values used for the measurements are shown
in Figure 13.2. The joint torques and displacements correspond to equations 13.1 -
13.5 stated below. In the robot position shown in Figure 13.2(a), the weight F, can be
determined by the measured torque in joint 2 divided by the constant distance to the

tool flange, after which the mass of the part can be determined:

T T .
F, = —=—— F 13.2 13.1
Fg
= —9 13.2
-m 9, 82m/2 (13.2)

Note that the torque in joint 4 could be used instead, but tests show that there is an
error in the estimated external torque in this joint, after the robot is moved to the
measurement position!. The error is not present in joint 2, which is why this is used.

In the second position shown in Figure 13.2(b) and 13.2(c), the center of mass in the z
and x axis can be determined. The position of C M, however has to corrected, since the
calculated distance is from the center of joint 6 to the center of mass, and not from the

origin of the coordinate system shown in Figure 13.1.

CM,= 0,141m+d=0,141m + % (Figure 13.2(b)) (13.3)
CM, = d=1 (Figure 13.2(c)) (13.4)

!The error is approximately —1,2Nm, and can be removed by briefly entering Gravity Compensation

mode, and going back to Position Control mode

Chapter 13 - Measuring mass and center of mass of parts 88

18.1 - Test setup and method of measurement

(c) Measuring C'M, (d) Measuring C M,

Figure 13.2: Strategy for measuring the mass and coordinates of the center of mass in each axis. The

shown coordinate system is the tool coordinate system, in which the measurements are made

Likewise, in the last position, the center of mass in the y direction can be determined:
CMy =d=7 (Figure 13.2(d)) (13.5)

Since the method for determining the mass and center of mass has now been established,
the implementation is made afterwards. This will not be described here, since the robot
program is straightforward. The source code is however available on the enclosed CD
in Source codes\LWR projects\WeighPart.src for further study.

In order to determine the accuracy of the measurements, it is however necessary to
determine the actual mass and center of mass of the part in the various scenarios, which

is described in the following.

89

13.2 - Determining the actual values

13.2 Determining the actual values

In order to determine the center of mass of the object, the well known formula for the
center of mass of a system is used, which is the mean position of each part r;, weighted

by their mass m; [15]:

_ YT
ﬁ_ﬁ

In the calculation, only the contribution from the pin, spacer and plate are used, and as

(13.6)

such the bolts used to fasten the pin and spacer, are not calculated, along with the holes
in the plate, since neither of these have a great impact on the location of the center of
mass. Their weight contribution is however taken into consideration, by weighing these
parts along with the pin, spacer and plate.

The calculation has been made in MATLARB, since it is straightforward to program a loop
running through the various scenarios in this software. The MATLAB file created for this
calculation is available on the CD, in Source codes\MATLAB\Center-of-mass.m. The
results of the calculation and the measurements of weight is shown in Table 13.1, where

the long and short pin refer to the scenarios with and without the spacer, respectively.

Scenario Point Pin m [g] CM, [mm] CM, mm] CM,. [mm]

1S 1 Short 2023 0,0 0,0 -59,2
2S 2 Short 2023 43,0 0,0 -59,2
3S 3 Short 2023 43,0 -23,3 -59,2
1L 1 Long 2089 0,0 0,0 -85,7
2L 2 Long 2089 41,6 0,0 -85,7
3L 3 Long 2089 41,6 -22,6 -85,7

Table 13.1: Actual mass and center of mass of the 6 scenarios

After the calculation of the actual values have been carried out, the measurements are
carried out. The measurements and an evaluation of the accuracy of the measurements

are described in the following section.

13.3 Accuracy of the measurements

To determine the accuracy of the measurements, 5 measurements have been carried
out in each of the scenarios. Furthermore, a zero point measurement without a part is

carried out for both the long and short pin? giving a total of 40 measure points. The

2Since there are different starting positions for the long and short pin

Chapter 13 - Measuring mass and center of mass of parts 90

18.3 - Accuracy of the measurements

measure data is available on the CD in Results\WeighPart.x1sx When looking at the
measurements of mass, shown in Figure 13.3(a), it is obvious that there is a significant
error in the measured value. This error does not correspond perfectly with the zero
point measurements, the mean of which are 510g and 549¢ for the short and long pin,
respectively. The zero point error does however have an effect, since the measured masses
are all greater than the actual. The mass measured in point 3 have a greater error than
in the other points. Upon inspecting the test setup and method of measurement, this
change in the error is obvious, since the center of mass in this point is shifted in the
direction of d in Figure 13.2(a). When adding the distance from point 3 to point 1 in
this direction to the calculation of the mass, the error is approximately the same as for

the other points. The corrected values are shown in Figure 13.3(b).

2300 ‘
o5 200 ¥ g
2 & ¥
= 2100t g ; |
2000 : ‘ ‘ ‘ ‘ ‘
15 25 35 L 2L 3L
Scenario
(a) Measured values
2300
55 2001 1
2 X ¥ K
= 21001 g ; ¥ R
2000 ‘ ‘ ‘ ‘ ‘ ‘
15 25 35 L 2L 3L
Scenario

(b) Corrected values

Figure 13.3: Measurements of mass for the various scenarios, and the corrected values - the line shows

the actual mass of the part

A way to compensate for this distance, and a more appropriate way to measure truly
unknown parts, would be to set joints 5 and 6 to free motion, by setting the stiffness to
0 Nm/rad in joint impedance mode when measuring the mass. This would result in the
center of mass settling on the vertical axis beneath the tool flange, which in turn would

make the measurement of mass accurate for all scenarios. It is however hard to say if

91

18.3 - Accuracy of the measurements

this is possible, since the shift in the center of mass in this case should overcome the
friction in the joints.

Since the position of the center of mass is calculated from the mass of the object, the
aforementioned errors are persistent in these values as well. The measured positions
are shown in Figure 13.4. It is obvious that if the mass was determined correctly, the
measurements of the center of mass would only suffer from the inaccuracy of the torque
sensors in each measurement. When the mass is measured inaccurately, the results for
the center of mass becomes the combination of the error from two torque sensors, instead

of just one.

230~

A0~ g e ‘ ® 1, Short
' 2S5 * - 4 2, Short
50~ P N . 3, Short

. ~ 1, Long
60~ 18 x e 2, Long

Z [mm]

3, Long

704 ' *35 X Actual CM

<L

Figure 13.4: Measurements of the centers of mass compared to the actual values

The mean of the errors of the measurements compared to the calculations are given
in Table 13.2. The great error in CM, can be explained by looking at the zero point
measurements. This reveal that while the mean of the torques used to determine C M,
and C'M, are less than 0,05Nm in the zero position, the measurements of torque T,
which is used to determine C'M,, averages 0,11 Nm. This error is persistent, even if
the torque sensors are calibrated before the measurements. One plausible explanation
of this is slightly incorrect payload data of the 3-finger gripper, since this should be
entered accurately to enable the controller to neglect the contribution from the tool

when performing measurements on the parts.

Chapter 13 - Measuring mass and center of mass of parts 92

18.4 - Further work on the measurements

CM, [mm] CM, [mm] CM, [mm]
1S -2,8 -2,3 17,8
28 -3,8 0,5 15,1
3S -6,5 0,9 24,5
1L 1,8 15 13,7
2L 3.1 0,1 12,3
3L 5.1 2,2 23,5

Table 13.2: The mean of the errors in measurements of center of mass

Upon inspecting the results described above, it is determined that using the torque
sensors to accurately measure the mass and center of mass of unknown objects, can not
be done with a satisfactory precision, at least not using the method described above.
A zero point calibration has been attempted, by moving the robot to the measurement
position before picking up the parts, and saving the measured torques. These torques
are then subtracted from the measurements when these are performed on the part. This
method does however not yield promising results, since the error in both mass and center
of mass is approximately the same.

Apart from this, the moment of inertia is not measured, which is required to move the
robot in Gravity Compensation mode?. Due to these two facts, suggestions on how to
improve the measurements and incorporate a measurement of the moment of inertia are

described in the following.

13.4 Further work on the measurements

Due to the precision of the torque sensors, one immediate implementation that springs
to mind, is to compensate for the variance in these measurements. One way to do this,
is to save the measured external torque in each joint several times, and use the mean
of these measurements. The time between the measurements does not have to be great,
and as such is not estimated to have a great effect on the overall time of the program.

Another immediate improvement of the method is to make sure the center of mass
is centered directly in a neutral position on the vertical axis of the tool flange, when
measuring the mass, methods of which are also mentioned above. It is however uncertain
if the displacement of the center of mass from the vertical axis is enough to overcome
the friction in the joints, thus enabling the part to center itself in the neutral position.

Another method could be to incorporate a function in the program, that monitors the

®Not exactly required, but entering 0kg - m? for the moment of inertia results in accelerated rotation

when even a small external torque is applied to the tool

93

18.4 - Further work on the measurements

estimated external torques, and accordingly rotates joints 5 and 6, in order to minimize
the external torque, thus resulting in a neutral position.

The method described above could be utilized to determine the mass and center of
mass of the tool, in this case the 3-finger gripper. Although the mass of the tool can
be determined fairly accurately, to determine the center of mass analytically would be
difficult. Therefore, an estimate of the center of mass was entered when the tool was
calibrated - it is however uncertain if the method described above would yield a more
accurate result than the estimation. The moment of inertia is also still to be determined.
One way to do this, is by the definition of torque as the rotational analogue of Newton’s
second law of motion, 7 = Ja [15]. Since the acceleration can be specified for a motion
in KRL, the moment of inertia can be determined from the measured external torque.
This is however not exactly feasible in KRL, since this is a very basic programming
language. Instead the FRI could be used, since the user could write a simple program
performing the desired motion and collecting the data for the calculation.

In order to test the effect of the mentioned improvements, some implementations has
been carried out, i.e. measuring the torque several times and taking the mean of the
measurements, and setting the robot in joint impedance mode before determining the
mass. However, tests show that these implementations have nearly no effect on the
accuracy of the measurement. It does, however, yield more consistent results, most
likely due to the implementation of several measurements. This exercise as such forms
the basis of further work with establishing a task for measuring unknown parts, which in
turn has to be carried out. It is however estimated that the mentioned implementations
will have a significant effect on the precision of the measurements, though a precise

measurement is still not feasible.

Chapter 13 - Measuring mass and center of mass of parts 94

Conclusion

The following chapter describes how the thesis statement has been fulfilled, as well as
describing the work carried out in the project. Like the project at hand, the following

is divided into the two major parts of the project.

Design of the Little Helper Plus

The design of the original Little Helper has been analyzed, in order to form a basis for
the design of the Little Helper Plus, and this analysis has revealed the needs for a more
easily reconfigurable solution. Furthermore, it is investigated what major changes in
the hardware will be necessary, mainly limited to a new robot, the KUKA LWR, and
controller. It is decided to acquire an identical platform to use on the LHP, since there
is already experience in using this platform at the department.

The requirements specification for the configuration of the LHP sets up the quantitative
demands regarding reach and dimensions of handled parts, which are similar to that of
the original Little Helper, to ensure there is no loss of functionality except where this
makes sense, e.g. by removing the distance sensor on the tool, since this is seldom used.
This has been done to make sure the functionality of the Little Helper Plus is greater
than that of the Little Helper. Furthermore, it is decided to remove the pneumatic
system, i.e. the air reservoir and compressor, since these are both large components,
and it is difficult to fit these in the LHP, due to the larger controller for the LWR. This
however requires an electrically actuated tool changer.

Since no compact, electrical tool changer is available, this is designed to ensure the tool
changing capability of the Little Helper Plus. A number of options has been investi-
gated, primarily regarding electric actuation of a commercially available tool changer.
The choice has been made to use the same pneumatic tool changer of the Little Helper,
the Schunk SWS-011, and instead to actuate this using a small, linear actuator on the
Little Helper Plus. A housing for this is designed, and the control of the actuator is
programmed, resulting in a fully working electric tool changer.

When an overview of the required components on the LHP has been established, the
redesign is carried out. This has been done in CAD, by placing the larger components

top of the platform and afterwards designing the chassis and fasteners and placing the

95

smaller components. For the chassis, it is chosen to use standard extruded aluminum
profiles, since these are easy to reconfigure and to attach extra hardware to, should
the need arise. The LWR is mounted on the chassis in such a way that it can reach
the parts being transported on the worktable of the LHP, and the reach of the LWR
is determined to exceed the quantitative demands. Furthermore, the cover plates pro-
tecting the hardware from dust and foreign objects are designed to provide easy access
and visual inspection of the various components, since this was not implemented on
the original Little Helper. Finally, a schematic of the power connections for the overall
system is established, after the which the design is complete. The Little Helper Plus
has not been built by the end of this project, however, but is planned to be completed
in the beginning of June 2011.

Capabilities of the KUKA LWR

The LWR is mounted in a temporary location, to investigate the added features of the
LWR in the context of the mobile manipulator. Initially, the method of jogging the robot
by hand for teaching new routines are investigated. This method seemingly provides an
easier method for online programming the robot, thus adding to the flexibility of the
LHP. However, tests show that programming the robot in this way, at least through
the KUKA HMI, is in fact not faster than programming using the teach pendant to jog
the robot. Furthermore, it is also harder to ensure an accurate position and rotation of
the TCP when moving the robot by hand. It is however possible that another interface
could be developed, which would utilize this function better, for example through the
Fast Research Interface.

Since the positioning tolerances of the platform is not adequate for handling parts on
a workstation, a calibration has been developed on the LWR, using the torque sensors
to touch points on the edges of a workstation. Tests show that this calibration is fairly
accurate, with a repeat accuracy of £0,5mm and 0,25°, tested with the workstation
within the tolerances of the platform. This is more accurate than the fast version of the
vision calibration currently used on LH. The accuracy is determined to be adequate for
handling parts, and to be a supplement to the two forms of vision calibration, since this
method both in time consumption and accuracy falls between these two methods.

The classic peg in hole task have been programmed on the LWR, in both the position
control mode and the cartesian impedance control mode. It is obvious that when using
regular position control, it is hard to insert the peg in the hole, requiring tight tolerances
on position (+£0,5mm) and even tighter on the rotation of the tool relative to the hole

(£0,5°). This is much easier using the cartesian impedance controller mode since the

Chapter 14 - Conclusion 96

peg is conically shaped, however still requiring small tolerances on the angle. Finally,
an evaluation on the measures to improve the task is presented. This concludes that,
instead of letting the peg slide into the hole, a search algorithm should be implemented
to determine the position and rotation of the hole, by measuring the reaction forces
acting on the tip of the peg. Furthermore, a method for inserting a sharp-edged peg in
a ditto hole is suggested.

In order to provide a method for communicating with the robot through an ethernet con-
nection, the use of the Fast Research Interface is investigated. Since this is a fairly new
KUKA Technology Package, some difficulties in using the interface and commanding the
robot have presented themselves. Therefore, an initial console application, outputting
the joint torques of the robot on the remote PC, has been developed. After this ini-
tial exercise, a Windows GUI application has been developed, in order to make a full
demonstration of the FRI. This application enables the user to monitor all system vari-
ables of the FRI: The connection statistics, robot data (such as position and torque)
and the user variables. Furthermore, a method of jogging the robot through the FRI
is implemented, by using the Command Mode of the interface. This enables realtime
control of the robot with a cycle time as low as 1ms, though only the default cycle time
of 20ms has been tested. This application should form the basis of further work with
the FRI, since it provides methods for overcoming the various pitfalls that have been
encountered when using the FRI.

Finally, the precision of the torque sensors is tested, by developing a method for weigh-
ing unknown parts and determining the center of mass of these. It is however apparent
that the torque sensors are not very accurate, since the precision of these measurements
on mass are approximately within 80¢g, and the center of mass within 5mm. Therefore
methods of improving the measurements have been suggested, though preliminary tests
of these measures show little improvement in the accuracy.

The overall conclusion of this project is that the KUKA LWR in most ways contribute
to the function of the Little Helper, mainly by increasing the flexibility of the overall
system. This is mostly due to the Fast Research Interface, which enables control of the
robot with a high sample rate, and the compliance controller modes, enabling the robot
arm to behave like a virtual spring-damper system. Though some scenarios have been
investigated in this project, there are a lot of possibilities for further work with using
the LHP in general and the LWR in particular.

97

Chapter 14 - Conclusion

98

1]

2]

Bibliography

Statistical Department of IFR, “Press release charts”, http://wuw.
worldrobotics.org/downloads/PR_2010-09-14_charts.pdf, September 2010.

Simon Bggh, Mads Hvilshgj, Christian Myrhgj, and Jakob Stepping, “Fremtidens
produktionsmedarbejder - udvikling af mobilrobotten lille hjeelper”, Master’s thesis,
Aalborg University, June 2008.

Rainer Bischoff, “From research to products: The development of the kuka light-
weight robot”, Presentation at the 40th International Symposium on Robotics
(ISR), March 2009.

ATT Industrial Automation, “Electrical tool changer for heavy automation”, http:
//www.ati-ia.com/Library/documents/ElectricQC.pdf, October 2010.

Ole Simonsen, “Elektrisk veektgjsskifter”, email correspondence, October 10, 2010.

National Semiconductor, DS2003 High Current/Voltage Darlington Driver, March
12, 2010, http://www.national.com/ds/DS/DS2003.pdf.

Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Oxford University
Press, Inc., fifth edition, 2004.

HepcoMotion, MCS aluminium frame and machine construction system iclud-
ing MFS fencing system, March 8, 2009, http://www.hepcomotion.com/en/

literature-mcs-machine-construction-system-pg-16-get-31.

KUKA Roboter GmbH., Light Weight Robot 4+ Assembly Instructions, July 6,
2010.

Paolo Robuffo Giordano, Andreas Stemmer, Klaus Arbter, and Alin Albu-Schéffer,
“Robotic assembly of complex planar parts: An experimental evaluation”, in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.

KUKA Roboter GmbH, Lightweight Robot 4+ Operating Instructions, February 25,
2011.

99

http://www.worldrobotics.org/downloads/PR_2010-09-14_charts.pdf
http://www.worldrobotics.org/downloads/PR_2010-09-14_charts.pdf
http://www.ati-ia.com/Library/documents/ElectricQC.pdf
http://www.ati-ia.com/Library/documents/ElectricQC.pdf
http://www.national.com/ds/DS/DS2003.pdf
http://www.hepcomotion.com/en/literature-mcs-machine-construction-system-pg-16-get-31
http://www.hepcomotion.com/en/literature-mcs-machine-construction-system-pg-16-get-31

BIBLIOGRAPHY

[12] Mathias Schopfer, Florian Schmidt, Michael Pardowitz, and Helge Ritter, “Open
source real-time control software for the kuka light weight robot”, in Proceedings
of the 8th World Congress on Intelligent Control and Automation, 2010.

[13] KUKA Roboter GmbH, KUKA.FastResearchInterface 1.0, April 14, 2011.

[14] John J. Craig, Introduction to Robotics - Mechanics and Control, Pearson Educa-
tion, Inc., third edition, 2005.

[15] Raymond A. Serway and John W. Jewett Jr., Physics for Scientists and Engineers
with Modern Physics, Brooks/Cole - Thomson Learning, sixth edition, 2004.

[16] KUKA Roboter GmbH., KRC2Ir Operating Instructions, Februrary 2, 2011.
[17] Alexander Rommel, “Fri questions”, Email correspondence, March 16, 2011.

[18] Various, “Easiest i/o setup on krc2lr”, Forum on the internet, March 28,
2011, http://www.robot-forum.com/robotforum/kuka_robot_forum/easiest_
io_setup_on_krc2lr-t6997.0.html.

[19] KUKA Robot Group, DeviceNet for KR C2 edition2005 and KR C2 sr, December
13, 2007.

BIBLIOGRAPHY 100

http://www.robot-forum.com/robotforum/kuka_robot_forum/easiest_io_setup_on_krc2lr-t6997.0.html
http://www.robot-forum.com/robotforum/kuka_robot_forum/easiest_io_setup_on_krc2lr-t6997.0.html

Appendix

Case: Vision-controlled robot playing NIM

This chapter describes the implementation of machine vision on a robot cell, and the
creation of a game of NIM where a user can play against the robot. The case is done as
preparation for instructing a Ph.D. course in Robot Vision, where the Ph.D. students

are given the task to complete this very case.

Purpose: To gain an understanding of machine vision routines and robotics in general,
and to implement this understanding in a real-world scenario, to give satisfactory

guidance at the aforementioned Ph.D. course.

Objective: To have a fully working NIM game, where a user can play against a vision-

controlled robot.

A.1 Overview

The following provides the reader with an overview of the setup of this case, as well
as the game of NIM. The equipment used for this case is an available robot cell at the
Department of Mechanical and Manufacturing Engineering at Aalborg University. NIM
is chosen as the game, since it has a fairly simple logic to maximize the potential of
winning, and is an easy-to-manipulate game, meaning the robot can easily move the

pieces.

A.1.1 The game of NIM

The game of NIM is quite simple; it consists of n pieces, lying on a surface. Each of the
two players take turn in removing between 1 and a maximum of k pieces. The game can
be played in two ways; usually it is played as a misére game, where the player who takes
the last piece loses, but can also be played as a normal type game, where the person to
make the last move (i.e. take the last piece) wins. The game can be played with any
number of pins n and any k, with k£ obviously being much smaller than n.

The strategy of the game is fairly simple, as a good player can make sure to remove

103

A.1 - Overview

n modulo k + 1! in a normal play game, obviously still making a legal move, i.e. not
removing 0 pins. This always leaves one extra piece than a multiple of k for the opponent
to remove, effectively making the first player the winner. In a misére game, the optimal
strategy is to remove one piece less than n modulo k + 1.

If both players follow this strategy, the player to start always loses a misere game, and
always wins a normal play game, except when n modulo k + 1 initially is 0 for a normal
type game or 1 for a misére game.

In this case, the game is played as a misere game, with n = 13 and k = 3.

A.1.2 Setup

As mentioned, the setup for this case is an available robot cell at Aalborg University.
The cell is purely used for educational purposes like this case. A representation of the

robot cell with the equipment used for this case can be seen in Figure A.1.

.\ Camera

@ Gam®\

Pneumatic suction cup tool =]

Figure A.1: The robot cell used for the NIM game

The purpose of this case is to establish communication between the camera and the
robot, effectively enabling the robot to see the individual pieces, and remove the required
amount. For safety purposes, the robot should also remove the desired number of pieces
for the user, so there is no risk of harming the human player. In the following, the
manipulation of the game and the image processing will be presented, followed by a

description of the communication interface and the overall structure of the game.

'Modulo: In this case, the remainder on division of n by k + 1

Appendiz A - Case: Vision-controlled robot playing NIM 104

A.2 - Manipulation

A.2 Manipulation

The manipulator of the cell is an Adept Cobra s600 SCARA 4-axis robot arm. This is
a fast moving robot, usually used for pick-and-place operations and material handling.
It is controlled by an Adept SmartController, connected to a remote PC through an
ethernet connection. On the computer, the user can write a program in the V+ language,
native to Adept products, and run it directly on the controller. The language handles
everything related to the controller, e.g. robot movements, communications and I/0O
operations.

To begin with, an empty script has been made, with nothing but an initialization of a
TCP/IP server, running on the controller, followed by an empty loop, running until the
program is terminated. This will enable any hardware or software capable of sending

TCP/IP commands, to send instructions directly to the controller.

A.3 Vision

The camera is attached directly to the computer, through an IEEE 1394-connection, and
image processing is handled by the computer through the Vision Builder for Automated
Inspection (VBAI) software by National Instruments. This program can handle image
acquisition, enhancement and calibration, parts inspection through built-in algorithms,
as well as setting up complex pass/fail criteria for parts inspection.

Before using software for image enhancement, the user should make sure there are
optimal conditions for the clearest possible image acquisition, this primarily regarding
lighting. Good lighting will result in a clear image being captured, reducing the need
for image enhancement, and thereby reducing the processing time. In this case, it is
also important to avoid shadows, since the purpose of the camera is to determine the
location and amount of the game pieces, which are black on a light surface. For this
case, three light bars are used, to provide adequate lighting and avoid shadows cast by
the game board.

In the following, the image calibration and enhancement routines will be described.

A.3.1 Calibration

The image calibration is done to precisely obtain a relationship between the dimensions
of the game area and the image, usually in terms of mm/pizel, and to place the reference
coordinate system for the camera {C'}, used to determine the coordinates of each game

piece.

105

A.3 - Vision

The calibration in this case is done with a printed grid of dots with 8 mm spacing, which
is placed in the same height as the game surface. In VBAI, the calibration routine is
started, and the user can directly select a method based on the grid of dots. Afterwards,
the user can adjust the threshold of the image to correctly identify all dots, and enter
the physical distance in mm between the dots. The last step is to indicate the axes of
the desired {C'} on the image. In this case, the axes of {C'} is chosen to correspond with
the axes of the manipulator’s coordinate system {M}, with a simple translation in the
xy plane. The origin of {C'} is chosen arbitrarily, and afterwards taught to the robot,

making the translation of the coordinate of each game piece as easy as possible.

A.3.2 Image enhancement

Although the image calibration routine has a built-in threshold setting, further enhance-
ment of the image is required to accurately determine the amount and locations of the
game pieces. VBAI has a built-in module called Vision Assistant, which runs a sequence
of user-specified image enhancement routines on a specified region of interest (ROI) of
the image. In the following, only the routines used in this case are described. The steps

can be seen in Figure A.2.

E e G‘L Haoph| Elﬁ.ﬁ:‘

Original Image Threshold 1 Fill holes 1 Erode objects 1 Lookup Table 1

Figure A.2: The image enhancement steps carried out

After the Vision Assistant is run, the game pieces are easily recognized by the computer.
Note that the image enhancement is only applied to the specified ROI. The direct effect

of each step in the Vision Assistant is shown in Figure A.3.

B

(a) Acquired image (b) Thresholding) Fill holes) Erode objects

Figure A.3: Image enhancement of the acquired image

After the image enhancement procedure, it is easy for the Detect Objects algorithm to

detect the number of game pieces, and the xy location of each game piece.

Appendiz A - Case: Vision-controlled robot playing NIM 106

W N

A.4 - Overall structure of the game

A.4 Overall structure of the game

VBALI is used for everything related to the vision system and the game logics. The only
thing handled by the SmartController is a continually running while-loop, waiting for
input from a TCP/IP client, that tells the robot what to do (in this case VBAI). This
input is specified in the V+ script, and in this case is a string. This effectively means
that nearly the whole program is made in VBAI, though both programs must be running

for the game to work.

A.4.1 Communicating with the robot

Basically, the V4 script can run at all times, even when programming is done in the
VBALI program. This is due to the nature of the V+ script. This is basically a TCP/IP
server initialization, followed by a while-loop based on the value of a variable that always
evaluates as true, i.e. making the while loop run continuously. In this while-loop, a
handshake procedure first ensures the connection is established, if it is the first time the
client connects.

After the handshake has been made, the server waits for a specific type of command to
be sent by the client. The string must however follow the form established in the V+
script. This form is established to be:

tag,z,y,z,yaw,pitch,roll,approach,depart

where z,y, z, yaw, pitch, roll are the cartesian coordinates and rotational angles the
robot should operate in, approach, depart is the distance from the operating point the
robot approach from/depart to, respectively. tag is used to initialize a certain set of
procedures on the robot, e.g. pick up objects, place objects, go to initial position etc.
In this case only one tag that picks up pieces and discards them at a fixed location is
used, but more tags have been used for test purposes.

After the SmartController receives the string from the client, the string is decomposed
to an array and stored in a set of variables for later use. After this, the case structure is
initialized. Only the case that picks up objects is described in the following. The code

is presented in the following, with inserted comments after semicolon (;).

; Save received world coordinates in a single location variable:

SET pickup_vision = TRANS(my_x,my_y,my_z,my_wx,my_wy,my_wz)

; Instruct the robot to move to my_approach mm above the received coordinate:
APPRO pickup_vision, my_approach

107

© 0 N O«

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A.4 - Overall structure of the game

; Monitor for errors, and execute program error.trap if errors occur:
REACTE error.trap
; Move in a straight line to the received coordinate:
MOVES pickup_vision
; Halt until the robot motion is completed:
BREAK
; Turn on suction for the tool:
SIGNAL 3001
; Move my_depart mm vertically away from the coordinate:
DEPART my_depart
BREAK
; Move to the specified dropoff location:
MOVE #dropoff
BREAK
; Turn off suction for the tool:
SIGNAL -3001
; Send string back to client with result of operation, and type result to terminal
IF error == O THEN
WRITE (lun, handle) "OK"
TYPE "Sent OK to VBAI"
ELSE
WRITE (lun, handle) "9999"
TYPE "::error"
END
error = 0
BREAK
REACTE error.trap

The use of the BREAK command ensures the robot completes the motion before sending
OK back to the client. This effectively ensures the client waits for the robot to complete
the case, before the client continues.

With the tag described above, it is therefore possible to send the tag followed by a set
of coordinates through the TCP/IP connection. Upon receiving this string, the robot
moves to the specified location, picks up one game piece and drops it at a specified
location, before sending the "OK" string back to the TCP/IP client.

A.4.2 Picking up several pieces

Picking up a single game piece is of course not sufficient, so a loop is introduced in
the VBAI script to pick up the desired amount of pieces. The location of each game
piece is determined by the previously mentioned Detect Objects algorithm, and stored
individually in temporary variables for each piece. The Index Measurements module is
then introduced in the VBAI routine that picks up objects, allowing operations on the
1th object detected, in this case extracting the location of the game piece.

The location of the ¢th piece is then transformed by adding the taught xy coordinates of

Appendiz A - Case: Vision-controlled robot playing NIM 108

A.4 - Overall structure of the game

the origin of {C'}, relatively to the robot. Finally, the TCP/IP IO module is introduced,
and set up to send the previously mentioned string, and wait for the "OK" string in
return before proceeding. It is however important to flush the TCP/IP buffer before
sending and receiving any commands, but this is easily done in the VBAI module.

The final step is to increment the loop counter, which is reset to 1 before the loop state.
This is used as a condition for when the loop should exit, since the counter expresses

the number of objects removed in the current turn.

A.4.3 Game structure

In the following, the overall game structure is presented. The sub-structures have been
described in the previous sections. The overall structure can be seen in Figure A.4,
where c¢ is the counter, n is the total number of pins remaining and p is the number
of pins to remove the current turn. Note that the referenced Turn variable updates

whenever the desired amount of pieces is removed, either by the system or the user.

Start

Acquire and enhance
image, L o
Detect objects

Connect via TCP/IP,
Prompt for starting player

Turn = User———
i ylumn =System

Prompt user for Computer calculates
pieces to remove pins to remove

%

Remove pieces ﬁ—c =p—
—C#p

n=1
v
Game over

Figure A.4: Structure of the VBAI script; c is the counter, n is the total number of pins remaining

and p is the number of pins to remove the current turn

The game logic is implemented as described in Section A.1.1, meaning the computer
calculates the number of pins to remove for it to win, so the robot always wins if the

user starts.

109

A.4 - Overall structure of the game

This concludes the case, since the only thing left is to add interfaces for the user,

displaying the state of the game, which will not be covered here.

Appendiz A - Case: Vision-controlled robot playing NIM 110

FoodPharmaTech '10

During the 274 to 4t of November 2010, Aalborg University presented the Little Helper
at the fair FoodPharmaTech, regarding in particular manufacturing equipment for the
food industry, at Messecenter Herning. This chapter describes the preliminary work of
preparing the stand and the fair in general.

RoboCluster is a network of different industrial and academic participants in the field
of robotics and automation in Denmark. To profile itself, RoboCluster appeared at a
stand at FoodPharmaTech, and Aalborg University was subsequentially contacted by
RoboCluster, regarding having LH at their stand. Besides LH, two other installations
where presented; a manipulator from Universal Robots, demonstrating the principle
of vertical farming, and a PLC-controlled palletizing robot by MRN Robotics. The
following will only go into detail about the installation demonstrating Little Helper’s

capabilities.

B.1 Description of the setup

To demonstrate the capabilities of Little Helper as a flexible robot, a setup to demon-
strate some of the key features of LH in a single case. To do just that, it was decided

to go with the following setup at the stand, focusing on a game of NIM:

1. A visitor starts the game, and selects which player to start, the visitor or Little

Helper
2. Little Helper moves to the station, where the NIM game pieces are laid out

3. The visitor and Little Helper take turns in removing pieces, as described in chapter

A

4. After the game is over, Little Helper moves to one of two stations, containing a

prize for the winning visitor, and one for the losing, respectively

5. Little Helper picks up the prize, and delivers it to the user at a fixed station

111

B.1 - Description of the setup

This scenario effectively demonstrates the aspects of vision, classification, pick and place,

and transportation of parts.

B.1.1 Preparation at AAU

Most of the preparation was done by making a mockup of the stand in the workshop
at AAU. This mockup consisted of four stations with separate purposes, as described
above. Each workstation is specified in the software P1tf{GUI, which is used as a frontend
for editing maps and roadmaps for the platform, and controlling the platform directly,
without third-party applications.

A central problem in preparing the stand was that the GUI for instructing new work
routines is developed in MATLAB, which has to be version 2007 to communicate with
LabView, which controls all minor hardware components. The site license for the 2007
version of MATLAB, however, has expired before the preparation of the stand was
begun. Therefore, the central routine could not be programmed in the MATLAB GUI,
and was instead defined in Vision Builder, as LabView VIs' can be executed directly
from this software. The developed control of Little Helper and the control used in this

application can be seen in Figure B.1.

PlatformCTRL Central control
PlatformCTRL
1 / Central control
S ey ey o I
I | AdeptDesktop E—

Vision Builder

(a) Original control (b) Control used at the fair
Figure B.1: Original and modified control of Little Helper

AdeptDesktop

<>

Vision Builder

One benefit of using Vision Builder as the main control is that all of the NIM game de-
scribed in chapter A can be used again, so the only development is the routine of driving
to the stations. One problem, though, is that the calibration routines are developed in
MATLAB, so there is no way to calibrate the manipulator when it arrives to a station,
which is required to obtain a greater precision than that of the platform.

In order to gain the required precision, a fixed transformation can be made, since the
height of the game table is independent of the location of the platform, and the trans-

formation between the camera and tool is constant. When these transformations are

Wirtual Instruments, the native file format for LabView files

Appendixz B - FoodPharmaTech 10 112

B.1 - Description of the setup

known, it is fairly easy to pick up the game pieces from the locations calculated from
the acquired picture. The location of the prize is taught as a fixed location, since there
is only one prize at each station, and the prizes are large enough to be picked up in spite
of the poor precision of the platform.

Since control of the platform and the minor hardware components have already been
developed in LabView, these VIs are called from Vision Builder when needed. The Vs

used in this application do the following:

e Turn on or off warning lights on the platform

Move platform to specific station

e Turn on or off lights for the camera

Control the focus and aperture of the camera lens

Each of these VIs is called when needed, and requires different inputs, usually in the
form of strings or integers, e.g. the VI that moves the platform to a station requires the
station’s name as an argument, and the lens control requires the values for focus and
aperture of the lens.

The use of LabView VIs greatly reduces the work effort in creating routines, and the
control of the game is pretty straight-forward to make in Vision Builder, since it has
already been programmed for the Ph.D. course.

The whole routine is then programmed, albeit only in a mock environment. The next

step is to create the setup at the fair, which is covered in the following section.

B.1.2 Preparation at the fair

Upon arriving at the fair, a new map and roadmap is created. The map describes the
environment the platform operates in by edges and areas of operation, and is used by
the platform for localization. The roadmap is used when the platform is moving, and
contains information about work stations and the paths between them. Both of these
are fairly simple to create in the software PItfGUI. After both maps are created, the
vision routine has to be recalibrated, due to the different lighting at the fair, and the
height of the tables containing prizes has to be re-teached. Apart from this, no other

adjustments has to be done, and the game is up and running.

118

B.2 - Modifications during the fair

B.2 Modifications during the fair

During the fair, it became obvious that the chosen setup did not attract the visitors
in a satisfactory manner, likely due to the need for user interaction to make LH move.
A Dbetter way to attract visitors to a stand regarding robots, is to have the robots
move continuously. Due to this observation, another routine was created at the fair.
The routine was simply to have Little Helper move outside the designated area, and
move amongst the visitors at the fair. This routine demonstrated an important aspect
of the platform, since it successfully avoided the visitors standing in its way, even in
complex situations, where Little Helper was nearly completely surrounded. The routine
did not, however, demonstrate any of the aspects demonstrated in the NIM game, since
a necessary safety precaution was to disable the power to the robot arm, when the
platform was out of the designated area. The evasion of interfering visitors and the
appearance of the robot in the visitor’s domain, however, did however attract a lot of

attention.

Appendixz B - FoodPharmaTech 10 114

Setup of the LWR

Since the new platform, which the LWR is to be mounted on, is not delivered by the end
of this project, the LWR has to be temporarily mounted in order to use it for Part II
of this project. This gives one benefit, however, that the actual installation and initial
configuration can take place before the actual construction of the new configuration of
the Little Helper.

Due to the lack of the platform, the need for a temporary solution and the ability to move
the installation on short notice (due to a major upcoming renovation of the laboratory),
the robot is temporarily mounted on a table, so the table functions as both a mounting
place and a workstation for the robot. The table is mounted on a pallet, to enable the
mobility of the installation, and the controller and various components are placed on
the pallet underneath the table, in order to have the largest possible workplace on the

table. The installation is shown in Figure C.1.

Figure C.1: The temporary installation of the LWR

115

C.1 - Startup and configuration of connectors

C.1 Startup and configuration of connectors

The KUKA LWR does not work out of the box without some configuration, which is
why a visit from KUKA technicians was included in the purchase of the first robot,
and this initial configuration will not be described here. There is some aftermath from
this preliminary configuration though, which are some necessary installation steps to
have a fully operational robot. Mainly, this is limited to the construction of two plugs,
that are to be inserted in the KUKA controller, the X15 and the X11. There are two
reasons for this; that KUKA is not allowed to supply these two connectors along with
the robot, since both interfaces are used for external safety equipment, and that the
configuration of both plugs are almost different for each installation, depending on the

safety equipment used in the installation.

The X15 connector is a power limitation connection for the robot, which reduces the
power of the robot to 80W. This connector can be wired to external safety equipment,
such as light barriers or gate switches, and can thus be used as a safety measure [16]. For
this application, however, the connector is simply wired to a switch, so the operator can
disable or enable the power limitation as he sees fit. The wiring of the X15 interface is
shown in Figure C.2. Notice that the used switch is dual channel, since both connections

has to be switched at the same time.

Figure C.2: The wiring of interface X15

The X11 connector is used for external emergency stops, either directly wired to the
interface or linked together by a higher-level controller. For this application, a single
emergency stop is wired directly to the interface, so the operator can activate the emer-
gency stop from a safe distance of the robot. The emergency stop has to be dual channel,
in order to ensure the function in case one of the connections fail [16]. The wiring of
interface X11 can be seen in Figure C.3, where only the relevant pins for this particular
wiring are designated. Pin numbers 7 and 26 are for channel A and B for the emergency

stop, and must be connected to test outputs A and B, respectively pins 1 and 20. The

Appendiz C - Setup of the LWR 116

C.2 - Connecting to end-effector equipment

remaining connections are for various other safety measures, which are not needed in

this application, and as such are bridged directly.

PR9RORIYIFYFYPOYFOOOOOOO
B8B8BBoo8dd8Booooo0oo0o0o0

Figure C.3: The wiring of interface X11

After the wiring of these two connectors, the robot arm is fully functional, though lacking
tools and I/O possibilities.

C.2 Connecting to end-effector equipment

The LWR, that is to be placed on the mobile platform, is delivered in the Flectrical
Energy Supply system configuration. This configuration has 14 electrical connections
through the arm, along with a 100Mb ethernet connection, from the base to the end-
effector. Connector plugs are delivered with the robot, but have to be soldered to the
devices that need a connection through the arm. In order to quickly change which con-
nections are run through the arm, a connector box is made, containing the electrical and
ethernet connection. This box has 14 screw terminals and a female ethernet connector,
all wired to their respective connectors on the base of the robot. The connector box is

shown in Figure C.4.

117

C.3 - Establishing 1/O0s on the controller

Figure C.4: The connector box used for the electrical connections through the arm

C.3 Establishing I/Os on the controller

The KUKA LWR is delivered without any available input/output possibilities, and as
such third-party equipment has to be bought and configured in order to gain the desired
I/Os. After consulting KUKA [17] and a robot forum on the internet [18], both sources
suggest using the DeviceNet connection on the robot controller, and an external I/0O
module, where the Beckhoff BK52XX modules are recommended, due to both the low
cost and the ease of setup of these modules. This is also a modular solution, which
enables an expansion of the I/Os should the need arise. Due to a long delivery time
on some products from Beckhoff, the components are chosen to give the least delivery

time, enabling a delivery of just three working days. The components received are:

BK5250 Bus Coupler which is the common bus, handling the connection between

DeviceNet and the connector blocks attached to the bus coupler
KL2404 digital output 4-channel digital outputs (2 pcs)
KL1404 digital inputs 4-channel digital inputs (2 pcs)

KL9010 bus end terminal closing the connection from the bus coupler to the I/O

modules

The connection needs some configuration, since the 5-pin connection of the DeviceNet
requires power and signal connections, and the bus coupler and digital outputs require
power as well. Since the DeviceNet connection, bus coupler and digital outputs all
require 24VDC, a common power supply is used for this. The 2-channel signal part

of the DeviceNet connection need to be shielded, where the shield of both connections

Appendiz C - Setup of the LWR 118

C.3 - Establishing 1/0s on the controller

needs to be connected to a common pin on the DeviceNet connector. Besides this, each
end-point of the DeviceNet connection needs a 121€ resistor! [19]. The complete wiring
of the Beckhoff I/O module to the controller is shown in Figure C.5.

24VDC (-)

1210 +/-1% 1210 +/- 1%
AA
VWA

E
| B
|
| N
=
8|

“H
F

=)

E

>Nz SHE SHE>Ns

EOM

s
i
¥
;
 ;

Ve
DeviceNet (X801 on MFC card) in CAN-H

KUKA KRC2Ir controller SHIELD
CAN-L

13

]
(=] |

V-

>ug>me|
| Bl =g B I

DeviceNet Cable
(length approx. 2m)

I

i >mi
| ®m
BN Sl SHE>N

>0
O‘ll.

W2
>z SHE SEESESE

R ETEE

>lE GHE SHEGEE
>Nz SN CAEGNS
EONE CNg GHEenE

| I
Fon

1
]

Figure C.5: Wiring of power and DeviceNet connection from the controller to the Beckhoff BK5210

After the wiring of the connector, the KUKA controller needs to be configured to use the
Beckhoff module. This is done in two configuration files, DEVNET.INI and I0SYS.INI.
The first configuration file specifies the settings for the DeviceNet connection, such
as debug information, log file generation and MACID of the devices attached to the
controller?. The second file is the configuration for the I/O system, and specifies which
interface is used for each input and output. In this case, DeviceNet is enabled in the
configuration file, and it is specified how the controller should map the I/Os. This
is done by adding the two lines OUTBO=11,0,x1 and INBO=11,0,x1 to the file, which
specifies input and output (IN/OUT), with a byte offset of 0 bytes each (BO), on MACID
11, with 0 bytes offset and an address width multiplier of 1, meaning 1 byte total. After
this configuration, the Beckhoff device is attached to the controller, and the 1/O driver

of the controller is restarted, after which the I/0O is functional.

DeviceNet is developed so that a lot of devices can be connected in a network, which is the reason

the endpoints of the system need to be specified
2The MACIDs are unique addresses for each attached device, specified on the BK5250 via two dials

119

C.4 - Temporary tools

C.4 Temporary tools

Since no electric gripper is available in the laboratory, and the electric gripper for the
new configuration of the Little Helper is not chosen and bought yet, a temporary solution
has to be made. At KUKA College, Gersthofen, a fixed pin tool was used to demonstrate
the capabilities of the LWR, and a copy of this tool has been made in the laboratory
as well. This tool is only useful for simple movement operation, while also acting as a
handle for moving the robot in Gravity Compensation mode, and is as such not suitable
for actual robot tasks, but more for demonstration of the capabilities of the KUKA
LWR. The demo tool is shown in Figure C.6(a).

Since a gripper is needed for some of the exercises on the LWR, a pneumatic gripper
is chosen, since a gripper is available in the laboratory along with pneumatic valves,
actuated by a 24VDC signal. Therefore, the tasks in Part II of the project is carried out
on the second LWR, with pneumatic energy supply system, consisting of two pneumatic
hoses and a 12-pole electrical connection through the manipulator. The gripper chosen
is a Schunk JGZ-64 3-finger concentric gripper, and a new set of jaws is designed, with
a 60° tip, so the gripper can pick up both planar and round parts, since two of the jaws
then provide a plane surface, with the third jaw pressing the part against this plane.

The gripper with the new jaws is shown in Figure C.6(b).

(a) Demo tool (b) Schunk 3-finger gripper

Figure C.6: The two temporary tools used on the LWR

Appendiz C - Setup of the LWR 120

C.4 - Temporary tools

After the initial installation, configuration of I/O system and design of temporary tools,
the robot is fully functional with the facilities needed for the further work with demon-

strating the capabilities of the robot.

121

	Abstract
	Preface
	1 Introduction
	2 Description
	2.1 The mobile manipulator Little Helper
	2.2 The TAPAS project
	2.3 The KUKA LWR

	3 Thesis statement
	I Reconfiguration of the platform
	4 Configuration of the Little Helper
	4.1 Components
	4.2 Construction
	4.3 Connections

	5 Hardware changes
	5.1 Requirements for the Little Helper Plus

	6 Replaced components
	6.1 Tool changing
	6.2 Switching board
	6.3 Vision system

	7 Configuration of the Little Helper Plus
	7.1 Main housing
	7.2 Tooling
	7.3 Manufacturing of parts
	7.4 Power and signal connections
	7.5 Summary

	II Capabilities of the KUKA LWR
	8 Control of the LWR
	8.1 Control strategies
	8.2 Controlling through the $STIFFNESS structure
	8.3 Built-in LWR functions in KRL

	9 Programming the LWR by demonstration
	10 Workstation calibration using force sensing
	10.1 Theoretical solution
	10.2 Test setup and programming the LWR
	10.3 Accuracy of the calibration

	11 Peg in hole
	11.1 Using Position control
	11.2 Using Cartesian Impedance control
	11.3 Implementation in a production environment

	12 Demonstration of the Fast Research Interface
	12.1 Function of the FRI
	12.2 Hello FRI
	12.3 Full demonstration of the FRI
	12.4 Additional remarks

	13 Measuring mass and center of mass of parts
	13.1 Test setup and method of measurement
	13.2 Determining the actual values
	13.3 Accuracy of the measurements
	13.4 Further work on the measurements

	14 Conclusion
	Bibliography

	Appendix
	A Case: Vision-controlled robot playing NIM
	A.1 Overview
	A.2 Manipulation
	A.3 Vision
	A.4 Overall structure of the game

	B FoodPharmaTech '10
	B.1 Description of the setup
	B.2 Modifications during the fair

	C Setup of the LWR
	C.1 Startup and configuration of connectors
	C.2 Connecting to end-effector equipment
	C.3 Establishing I/Os on the controller
	C.4 Temporary tools

