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Chapter 1

Introduction

Acoustic reverberation can be defined as the persistence of a sound in an acoustic
space, after the source was stopped. It is a natural phenomenon, caused by the
reflection of the acoustic pressure waves against rigid obstacles. Each reflection
causes a modification in the frequency content of the sound, depending on the
physical characteristics of the environment; thus, the reflected waves which finally
reach the listener’s ears are slightly different from the ones that were emitted by
the source, and arrive after some time (delay) [1]. These two aspects have a role
in the identification of the environment characteristics and the localization of the
sound source from the human brain.

1.1 Artificial Electromechanical Reverberation

Since reverberation is ubiquitous in every day life, its presence and its charac-
teristics are very important, particularly in the context of music. For thousands
of years, reverberation has been a primary concern when designing theatres and
concert halls, in fact, too long or too short reverberation time can cause a perfor-
mance to sound chaotic or too dry [2]. The need for artificial reverberation, which
could simulate a room acoustic, emerged for the first time in the context of music
recording. It was the moment in history when music could be played in a place
different from the one where it was listened; therefore, a number of locations ded-
icated specifically to recording music started to arise: the recording studios. Soon
though, it became clear that sounds recorded in these places lacked the spatial-
ity of live music. Studios work with many different kinds of music; however, the
recording rooms are always the same and the acoustic characteristics cannot be
varied. In addition, the close placings of microphones cut a great part of the room
reverberation in any case. To overcome these issues, a number of techniques were
developed to artificially simulate the characteristics of a real environment, the first
of which were based on electromechanical principles.

1



2 Chapter 1. Introduction

The first artificial reverberator, invented in 1926 by RCA, is the echo chamber [3].
It was first developed for broadcasting applications and, after a few years, its use
was extended to musical applications [1]. It consists of an empty room, where the
walls are covered with an acoustic reflective material and are built to lack parallel
surfaces, in order to avoid unwanted resonances. A pre-recorded sound is repro-
duced inside the room by a speaker placed at a corner, a position which ensures
the excitation of a large number of modes. Microphones are then placed in various
positions, according to the wanted echo quantity, and pick up the resulting sound
pressure. Dampers can be also placed at walls, to obtain a rudimental control
over the reverberation time. The original (dry) and reverberated (wet) sounds are
then mixed together by the sound engineer in the desired proportions. The echo
chamber was the first device which allowed to apply reverb to a recorded sound
without having to move from a recording studio, however, it presented some in-
conveniences. For instance, the reverberation time was fixed, and the construction
of such an apparatus required a dedicated room.

Spring reverberation was invented in 1928 by the Bell Labs [4]. It consists of a
transducer which converts the electrical sound signal into physical displacement,
putting a spring (or multiple springs) into vibration. The springs movement is
then captured by a coil, which converts it back to an electrical signal. The resulting
sound is perceived as reverberant because the mechanical waves bounce back and
forth multiple times inside the coil, thus producing echoes. The higher the number
and the variety of springs, the more realistic the effected sound is, as the echoes
times is more variable. Springs can be put in series or parallel, or placed in liquids
such as oil to obtain different effects. This reverb system presents a big advantage
over echo chambers: it can be very small and portable, to the point that Laurens
Hammond developed his version of it to place it inside his organ, and Leo Fender
included it inside the Twin Reverb amplifier [2]. On the other hand, the springs
natural frequencies of vibration produce a typical "twang", which makes the spring
reverb very distinguishable from natural reverberation.

The first plate reverberator was invented in the late 50’s by the German com-
pany Elektromesstechnik (EMT). The functioning is similar to that of the spring
reverb, except that the coil is replaced by a metallic plate. A punctual transducer,
placed near the center of the plate, converts the sounds signal into movement and
puts the system into vibration. A pair of accelerometers then measure the displace-
ment of the plate in two different positions, providing a stereo effected sound. The
small dimensions (compared to an echo chamber) of the plate reverb allowed a
single recording studio to run many of these devices in parallel in different rooms,
without interfering with each others, meaning that it was possible to work on dif-
ferent instruments or songs at the same time. Moreover, the quality of the sound
obtained was so much appreciated that plate reverberation became an industry
standard in the 60s and 70s.
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Figure 1.1: An EMT 140 Plate Reverb (Source: [5])

1.1.1 The EMT 140 Plate Reverb

Even though many different versions of this effect were produced, the most popu-
lar was undoubtedly the EMT 140, made by EMT; for instance, it is the only reverb
used on Pink Floyd’s Dark Side of the Moon [6]. The reverberant element of the
unit consists of a 2 m × 1 m rectangular steel plate, with a thickness of 0.5 mm.
The plate is suspended in a chassis made of tubular steel, and held under tension
by two steel wires at each corner: one horizontal and one vertical. As described
above, the plate is excited by an electrodynamic actuator, and the reverberated sig-
nal is captured by two accelerometers, which measure the system displacement.
To provide control over the reverberation time, a porous panel is placed near and
parallel to the plate, with a distance that can be varied between 11 and 66 mm.
Damping is increased by approaching the panel to the plate. In fact, the presence
of the porous material modifies the impedance in the nearfield of the plate, thus
increasing radiation. More details on the damping functioning will be provided in
chapter 3.

Despite many progress on artificial reverberation have been made since the
EMT 140 was invented, its iconic sound is still sought after by musicians and
sound engineers. Nevertheless, the unit is too bulky for the majority of studios
nowadays (it weights around 240 kg), and needs constant maintenance. For this
reason, accurate digital simulations of this reverb are highly desirable.

The matter of creating digital models of existing analog devices is called Virtual
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Figure 1.2: Schematic of a generic room impulse response. (Source: [1])

Analog (VA) modeling. With VA, it is possible to get access to the sound of instru-
ments which are too rare or expensive to be bought. In addition, once developed,
VA simulations do not need to be manufactured or maintained. Analog devices
are difficult to model; they posses a component of randomness which is intrinsic in
real objects, and difficult to reproduce digitally. Moreover, the appreciated sound
characteristics are usually given by nonlinear components, and creating a mathe-
matical description of those is not always an easy task. Nevertheless, VA is getting
more and more accurate as time goes on.

In this work, a method for virtual analog simulation of the EMT 140 plate re-
verb is implemented. The model is based on physical measurements, in a tentative
to capture most of the iconic sound nuances. In addition, a technique for compu-
tational optimization is proposed, which allows to reduce the CPU load needed by
the model.

1.2 Basics of Room Reverberation

This section provides a brief illustration of the basics of natural reverberation,
which will later come in handy for understanding the main differences between
plate and room reverb, and the reasons which make the latter so iconic. The
reverberation characteristics of an environment depend on many factors such as
dimensions and material. For example, the big empty spaces of a cathedral will
determine long delays between the arrival of the source sound and the reflections,
and the stone walls will produce a large amount of late reflections, which will
form a background ambience. On the contrary, a small room with walls made of
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an absorbent material such as wood will be very dry, causing the source sound to
decade soon.

Whether we deal with a concert hall or a small recording studio, the reverber-
ant characteristics can be described by the same model. Sound reaches the listener
in stages, as shown in Figure 1.2. After a first delay T0, the direct sound arrives:
this is the signal directly emitted from the source and provides information on the
emission location. The direct sound is followed by the early reflections, which are
made of waves reflected only few times by nearby objects. These provide informa-
tion on the surrounding space: the shape and the material of the boundaries. In
the meantime, waves keep reflecting through space, generating additional reflec-
tions which form a dense echo: this stage is called late reverberation and it makes
up the tail of a reverb. The evolution of the late reverberation power over time is
called reverberation time. Sabine [7] defined it as the time necessary for the sound
to experience a 60 dB decay and denoted it T60. Moreover, Sabine was the first to
experimentally prove the close link between the T60, the size of the acoustic space
and the absorbing characteristics of the walls materials, providing an empirical
relation which is still the basis for modern studies on reverberation [8, 9].





Chapter 2

State of the Art

The previous chapter illustrated the fundamentals of natural reverberation and
provided an overview of the first methods that were invented for trying to ar-
tificially reproduce it. Due to technological limitations (electronics was in an
early stage of development, or did not even exist yet), all the solutions previously
described make use of electromechanical components to induce vibrations in a
medium and capture them back. For instance, echo chambers work by exciting a
volume of air, while plate reverb employs the displacement of a metallic medium.
As such, the result is highly dependent on external physical conditions, and ob-
taining an identical result many times is not that obvious. Moreover, since the
vibrating medium is not air, spring and plate reverb have a characteristic sound
which is different from the one produced by natural reverberation (even though
this is one of the reasons for which their popularity continues nowadays). These
problems, along with the fact that electromechanical systems are fragile, compli-
cated (if not impossible) to move and require time consuming mantainance, created
the need for more reliable systems. The answer to these problems was provided
by electronics and the invention of digital reverberation, which guaranteed repro-
ducibility, cheap systems and portability.

This section will provide an overview of the different digital reverberation tech-
niques that were developed through the years. Since this work aims to implement
a simulation of the EMT 140 plate reverb, only the methods suitable (or already
used) for this purpose will be revised. The different techniques can be divided into
four main families: Delay Networks, Convolution, Physical Modeling and Neural Net-
works. Some of these categories can overlap, however, this distinction will be useful
to group them in the next pages. At the end of the chapter, a list of commercial
plugins which emulate plate reverberation will be illustrated.

7



8 Chapter 2. State of the Art

2.1 Delay Networks

The earliest digital reverberation techniques are based on delay networks. The
idea behind these approaches is to model the room reflections with delay lines to
implement the time differences between the arrival of the different waves (echoes).
Filters are then used to shape the energy losses that occur during reflections. These
methods are among the most efficient ones and, therefore, still studied nowadays.

The first studies on digital reverberation were carried out by Schroeder in the
60s [10, 11]. In [10], together with Logan, they proposed to place comb filters in
series to simulate the arrival of the sound waves. A feedback comb filter is im-
plemented by using a delay line, therefore, the resulting output of the reverb is
perceived as several copies of the input, with a decaying level. If the delay is suffi-
ciently short, the comb filter nature of the reverb emerges and, as a consequence,
a pitched sound can be heard; in fact, it is possible to hear the normal modes of
vibration of the filter. In a second work [11], Schroeder and Logan proposed the
use of allpass filters in place of comb filters. The advantage of doing this is that,
by nature, allpass filters do not change the amplitude of the frequency response.
As a result, the presence of normal modes of vibration, typical of comb filters, can
be avoided; for this reason, allpass reverbs are said to be "colorless". In the late
70s, Moorer [12] reviewed Schroeder’s works and enhanced them by tuning the
filters parameters to simulate the geometry of various existing rooms. In addition,
he added a one-pole lowpass filter to Schroeder’s models, in order to simulate the
absorption of high frequencies by air.

Feedback Delay Networks (FDNs) were first proposed by Stautner and Puck-
ette [13] as a way to generalize and "vectorize" networks of feedback comb filters.
Later, Jot and Chaigne [14] formalized the algorithm, providing a structure which
is still used nowadays [1]. FDNs essentially consist of a set of parallel delay lines of
different sizes and a feedback matrix, which couples the delay outputs together. A
simple FDN structure is shown in Figure 2.1. Jot and Chaigne started working on
these structures as it became clear that they could help in overcoming one of the
biggest limitations of Schroeder reverberators: low time density, i.e. the number
of echoes per second. In particular, they realized that the method previously pro-
posed by Stautner and Puckette could build up high time densities by using only
few delay lines. In addition these algorithms are usually made to be lossless [15],
meaning that no energy is lost during the delays; this allows to implement decay
using absorbent filters, thus providing control over the frequency dependent rever-
beration time, something which was not possible with Schroeder’s structures. The
characteristics illustrated above, along with the lightweight and efficient design,
make FDNs still widely appreciated and studied algorithms for modeling room
impulse responses [16, 17]. FDNs have been used in the context of plate rever-
beration simulation by Abel [18]. In this work, a hybrid approach was employed,
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Figure 2.1: A simple FDN structure, A is the feedback matrix. (Source: [15])

with a combination of a convolutional impulse response, used to model the onset,
and a FDN for reproducing the reverb tail. This was necessary because, as it will
be shown later, plate reverberation presents no early reflections, and a dispersive
behaviour, characteristics which a FDN alone cannot achieve.

2.2 Convolution

Convolution reverberation essentially consists in modeling rooms, or other rever-
beration devices, as finite impulse response (FIR) filters, to be applied to the in-
coming signal [19, 20]. It is known that linear and time invariant systems can
be completely characterized by their impulse responses (IRs) h(t). In this kind of
reverberation, the desired system impulse response is measured, through an im-
pulse or a sine sweep, or calculated mathematically through computer simulations.
Then, the incoming sound is convolved with the IR, to obtain the reverberated sig-
nal, as shown in equation (2.1), in the continuous domain.

y(t) = (x ∗ h)(t) =
∫ ∞

−∞
x(t− τ)h(τ)dτ (2.1)

Convolution reverberation is a widely used technique, as it allows to obtain
very realistic and accurate reproductions of physical systems sounds, without
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needing to previously perform time consuming and expensive simulations, pro-
vided that the IRs are correctly measured. In addition, computing an FIR can be
done in real time, without any processing delay, making convolution apparently
efficient; in practice though, this method presents many drawbacks. The first issue
is computational load: for a 1 second long IR, sampled at 48 kHz, convolution
requires to perform 48000 operations for each output sample, which doubles for
stereo signals. This is easily achieved by modern computers, but can become quite
challenging for embedded systems, especially if other operations need to be per-
formed at the same time. Another problem linked to convolution is that, once the
IR is measured, it is impossible to control the system parameters. In fact, an IR
is a "photograph" of the current system state, and cannot be modified afterwards.
In order to provide some control possibilities, the only solution is to measure sev-
eral IRs with varying parameters, and then perform some kind of interpolation
between them. The latter issue is not a big problem in the case of room modeling,
where physical characteristics do not experience big changes, but it is an impor-
tant limitation in the case of, for example, virtual analog modeling, where a high
grade of control is usually requested. For this reason, convolution for virtual ana-
log modeling is usually used in combination with other techniques which allow to
provide more control, as seen in [18].

2.3 Physical Modeling

Physical modeling is a family of sound synthesis techniques which focus on the
physics of the objects to be modeled. They consist in creating a mathematical
model of the system at hand, and then discretise it with various numerical meth-
ods. In the context of room reverberation this means to determine the value of the
sound pressure inside the acoustic space for each time instant. Physical modeling
methods allow to obtain very accurate models, controllable in every detail, in fact,
each physical parameter can be singularly adjusted. On the other hand though,
they require hard and time consuming prior studies in order to formulate a precise
mathematical model. In addition, these techniques are usually very computation-
ally demanding, to the point that, sometimes, the simulation cannot be run in real
time. This is particularly true in the case of reverbs: in fact, solving the 3-D wave
equation for large acoustic spaces in real time goes beyond the capacities of mod-
ern personal computers. In this cases, it is possible to calculate a mathematical IR,
to be convolved with the input signal.

Physical modeling for reverberation can be divided into two main groups [1].
The first one is Geometrical Acoustics: it consists in modeling sound as beams which
propagate from a source in the surrounding space, and then to model all the pos-
sible paths and consequent walls reflections. The second group contains the Wave-
Based Methods, which aim to numerically solve the wave equation. Since the first
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family is not too suitable for virtual analog modeling, this paragraph will focus
on the second one. In order to numerically simulate the wave equation, the do-
mains of definition need to be discretised. One domain is always space, which
defines the acoustic environment, the other one depends on the method: the Fi-
nite Element Method (FEM) operates on the frequency domain, whereas Finite-
Difference Time-Domain (FDTD) methods on the time domain. In the context of
reverberation, the latter methods are usually preferred because, by operating on
time, they allow to directly obtain mathematical impulse responses, as seen in [21].
FDTD methods for numerically solving partial differential equations were already
known before computers were born. In the context of room acoustic modeling,
these techniques were used for the first time in the 90s [22]. In this work, Savioja
et al. demonstrated the potentialities of wave-based techniques, which inherently
include physical phenomena such as diffraction and interference. A more detailed
description of FDTD methods will be provided in chapter 4. Digital Waveguides
Meshes (DWGs) is a technique based on FDTD methods. Smith [23] was among
the firsts to exploit this approach in the context of physical modeling, by develop-
ing simulations of several musical instruments using 1-D and 2-D interconnected
digital waveguides structures. Nevertheless, DWGs can be easily extended to 3 di-
mensions, in order to model acoustic spaces [24, 25]. The principle of this technique
is to perform a discretisation of the d’Alembert solution of the wave equation using
bi-directional delay lines with commuted losses and phase inversions. A compar-
ison between DWGs and more "classic" FDTD techniques has been done by Erkut
and Karjalainen [26, 27]. The main difference which emerges is that DWGs per-
form a discretization of the system solution, whereas in classic FDTDs the partial
differential equations are directly numerically calculated. This results in a higher
efficiency of DWGs, which, however, are less flexible. In fact, since they are based
on the lossless solution of the wave equation, any losses or nonlinearities need to
be previously calculated and lumped at the extremes of the delay lines. On the
other hand, in FDTD methods these are directly solved inside the equation.

2.3.1 Physical Modeling for Plate Reverberation Simulation

Given the accuracy and flexibility of physical modeling techniques, these have
been widely used for modeling plate reverbs, in particular FDTD methods. In fact,
contrary to other reverberation techniques such as convolution or delay networks,
creating a mathematical model of the device allows to provide control on every
single detail of it, and to directly model the widely appreciated sound character-
istics such as dispersion and absence of early reflections. In addition, since the
plate can be considered as 2-dimensional, solving the wave equation in real time is
achievable, provided that some kind of optimization is performed. As dispersion
is not so easily implementable with DWGs, physical models of plate reverbs usu-
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Figure 2.2: A 1-D digital waveguide (Source: [23])

ally employ more classic FDTD methods. First studies on the simulation of plate
vibrations in the context of acoustics were performed by Chaigne et al. [28, 29]. In
these works, classic FDTD methods are used to perform a simulation of a generic
plate vibrations using the Kirchhoff-Love model for orthotropic plates; in addition,
a thorough model for damping is developed, which takes into account thermoe-
lasticity, viscosity and radiation. Later, a similar work was developed by Bilbao et
al. [30], who implemented a simulation of a plate with physical parameters which
matched the ones of the EMT 140, using the Kirchhoff model of plates and by di-
rectly discretising the wave equation using FDTD methods. This work differs from
the ones by Chaigne et al. in the way damping is obtained. Here, a model usually
used for strings is implemented, which involves two terms representing the fre-
quency dependent and independent damping, with coefficients that are adjusted
to match the desired sound. The Bilbao model makes use of a 2-dimensional Dirac
delta for exciting the plate for modeling the punctual actuator, and free boundary
conditions, thus ignoring the presence of the steel wires. Subsequently, Arcas pub-
lished a work [31] in which he extended the solution proposed by Bilbao, including
a more accurate model for damping, which will be extensively discussed in chap-
ter 3. Arcas also dedicated his PhD studies to plate reverberation; in his thesis
[2], he proposed to numerically solve the Kirchhoff model of the plate by using a
modal approach, which will be illustrated in chapter 4. A similar modal method
has been employed by Ducceschi and Webb [32], who developed a physical model
of the EMT 140 plate reverb which can be run in real time inside a plugin. In
this work, the use of a modal approach allows to run only the most perceptually
relevant modes of the plate, thus reducing the computational power needed for
running the algorithm. Here, damping is implemented by manually setting the T60

for eight different frequency bands, a method that provides to the user more con-
trol over the output sound. Lately, Willemsen et al. [33] employed the same modal
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approach with modes reduction used by Ducceschi and Webb for implementing
a real time plugin. Here though, damping is calculated by using mathematical
models similar to the ones saw in Arcas work, except for the damping induced by
the porous medium, which is not taken into account.

2.4 Neural Networks

Neural networks are machine learning techniques fastly growing nowadays. In the
context of reverbs, these algorithms have been more extensively used for derever-
beration; however, in recent years, many black-box models of audio effects have
been proposed by using deep learning architectures [34]. Lately, a model for plate
reverberation which makes use of Deep Neural Networks (DNNs) have been pro-
posed by Martínez Ramírez et al. [35]. Listening tests reported in the study showed
that the model is capable of reproducing accurate sounds, however, the black box
modeling nature of the algorithm makes modeling parameters control quite chal-
lenging. Nevertheless, investigation of machine learning solutions for virtual ana-
log plate reverberation is beyond the scope of this project.

2.5 Commercial Plugins

Over the years, many different audio plugins which emulate plate reverberation
were introduced on the market; this section reports the most relevant ones. Since
these are commercial solutions, knowing the modeling technique which runs under
the hood is not always possible, therefore, it will be mentioned only when available.

2.5.1 Universal Audio EMT 140 Classic Plate Reverberator

One of the first commercial plate reverb plugins, the Universal Audio EMT 140
Classic Plate Reverberator [36] came out in 2010, and provides a model of the EMT
140 plate reverb. The company does not give information on the technology used.
The only available plate controls are plate type and reverberation time in seconds.

Figure 2.3: EMT 140 Classic Plate Reverberator. (Source: [36])
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2.5.2 IK Multimedia CSR Plate Reverb

Presented in 2011 as a part of the T-Racks suite, the CSR Plate Reverb [37] provides
a model of a generic plate reverb. The plugin presents two control modes: easy and
advanced. In both modes, many control possibilities are present, allowing for fine
tuning of the plate. In easy mode, the plate related controls are: diffusion, reverb
time (in seconds), low time, high frequency cutoff, high frequency damping. In
advanced mode these are, time related: reverb time, low time, crossover, high fre-
quency cutoff, high frequency damping pre delay. Reverb related: size, diffusion,
buildup disperse modulation. Color related: low cutoff frequency, low cutoff gain,
high cutoff frequency, high cutoff gain. Reflections related: time left, level left,
time right, level right. Echo related: time left, feed left, time right, feed right. The
company does not provide details on the implementation.

Figure 2.4: CSR Plate Reverb. (Source: [37])

2.5.3 Waves Abbey Road Reverb Plate

Presented in 2016 by Waves, the Abbey Road Reverb Plate [38] models the plate
reverb from the Abbey Road studios in London. For this reason, the controls are
quite limited. For what concerns the plate, it is possible to change the plate kind
and the damper amount, while the transducer and accelerometers locations remain
fixed. The company does not provide information on the algorithm nature.

2.5.4 Arturia Rev PLATE-140

The Rev PLATE-140 [39] was launched in 2019 by Arturia. The company does not
provide details on the implementation, however, they state that the plugin includes
an accurate model of the vacuum tube preamp, meaning that some virtual analog
techniques have been employed. The fact that the plate width is also controllable
suggests that some modeling methods other than convolution have been used.
Other controls include changing the plate type and controlling the preamp.
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Figure 2.5: Abbey Road Reverb Plate.

Figure 2.6: Rev PLATE-140 (Source: [39])
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2.5.5 Valhalla Plate

Launched in 2015 by ValhallaDSP, Valhalla Plate [40] is the first plugin presented
specifically as a virtual analog model. This characteristic got consumers really
interested in the product [41], as the model allowed very fine control, to the point
that it was possible to obtain almost unreal sounds. From the plate standpoint, the
plugin allows to control the size, width and material of the plate, along with the
decay rate (up to 30 seconds).

Figure 2.7: Valhalla Plate. (Source: [40])

2.5.6 Physical Audio PA1 Dynamic Plate Reverb

The PA1 Dynamic Plate Reverb [42] is the first plugin presented by the Physical
Audio company. It was launched in 2016 and it is based on the work by Ducceschi
and Webb previously mentioned [32], making this a virtual analog physical model.
As said above, here damping is implemented by setting the decay rate for eight
frequency bands, allowing for a high level of control over the plate. The other
plate-related controllable parameters are: plate material, plate size, stereo pickups
positions, plate tension, input moving.

2.5.7 UVI Plate

UVI Plate [43] was launched in 2018 by the French company UVI. It is presented
as a physical model, making this another virtual analog simulation. Among many
nice features, this plugin presents a physically based model of damping, which
takes into account also the damping induced by the porous damper, with a control-
lable decay rate. Nevertheless, no study has been published yet by the company,
therefore an evaluation of the damping model employed is not possible. This
plugin allows to control: plate area, aspect, anisotropy (in percentage), tension,
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Figure 2.8: PA1 Dynamic Plate Reverb. (Source: [42])

modulation and material. The decay rate can be controlled with a single global
parameter or with a frequency bands scheme, as seen in the PA1. In addition, it
is possible to set the amount of thermoelastic and viscous damping desired. The
possibility to control anisotropy suggests that some enhancements may have been
added to the classic Kirchhoff model.

Figure 2.9: UVI Plate. (Source: [43])

2.6 Project Goal

In this work, a physical model of a EMT 140 plate reverb is proposed, which makes
use of a modal approach and a FDTD method, and is implemented with the MAT-
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LAB programming language. A physical modeling approach was chosen as it
allows to provide control on every single detail of the plate sound. Since, as it was
previously showed, this method is quite computationally expensive, an optimiza-
tion technique was also implemented, based on linear least squares. The works
starts by developing a model previously proposed by Ducceschi and Webb [32],
implementing it with a Finite Difference Scheme which exactly solves the harmonic
oscillator equation. Then, an implementation of a physical damping is performed,
based on previous studies, which includes the dependency on the distance of the
damper panel from the plate, as it happens in the real device. Lastly, an optimi-
sation technique is proposed, based on previous studies on room reverberation,
which allows for a reduction of the number of modes to be calculated in paral-
lel, and, as a consequence, of the computational power needed. This manuscript
is organized as follows: in chapter 3, the mathematical model of the plate is de-
rived, including the damping model and the modal decomposition. In chapter 4,
the equations are discretised and considerations over the accuracy of the discrete
scheme are made. Chapter 5 focuses on the optimisation technique. In chapter 6
results are provided and, finally, chapter 7 concludes the paper.



Chapter 3

Plate Model in the Continuous
Domain

In this work, a virtual analog model of the EMT 140 plate reverb based on a physi-
cal model is built. In order to do this, the first thing to do is to develop a mathemat-
ical model which can describe the system. It was chosen to use a modal approach
similar to the one proposed by Arcas, and utilised also by Ducceschi and Webb,
described in chapter 2. In fact, it proved to achieve accurate reproductions of the
plate sound, while being more easily optimisable, contrary to the more "direct"
approach utilised by Bilbao et al. [30] . This chapter describes the plate model in
the continuous domain. First, the Kirchhoff-Love model of the plate is described,
then details on the modal decomposition are be provided, and finally the damping
model implemented is be illustrated.

3.1 Kirchhoff-Love Model

The Kirchhoff-Love model is a linear model which describes vibration of plates.
A plate is an object which extends in two spatial dimensions: x and y, with ax-
ial lengths Lx, Ly, and has a finite thickness H. This model is valid under the
assumption that H << Lx, Ly. The equation governing the plate is given by [44]:

ρHü(x, y, t) = −D∇4u(x, y, t) + f (x, y, t) (3.1)

It is a partial differential equation (PDE) in two spatial dimensions plus time. Here,
u represents the local vertical (along the z axis) displacement of the plate at the
instant t, and the domains of definition for x and y are given by the plate di-
mensions, respectively: [0, Lx], [0, Ly]. The constant ρ is the plate material density,
[ρ] = [kg/m3], f is the input forcing function, H is the plate thickness and ∇4 is a
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squared Laplacian, or biharmonic operator, defined as:

∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4 (3.2)

The constant D, sometimes referred to as the flexural rigidity, depends on the plate
physical characteristics:

D =
EH3

12(1− ν2)
(3.3)

where E is the plate Young’s modulus and ν is the Poisson’s ratio. If one divides
the right member of the equation by the constants present in the left hand side he
obtains a constant:

κ2 =
D

ρH
=

EH2

12ρ(1− ν2)
(3.4)

which is usually defined as the stiffness parameter. Therefore, the plate equation
becomes:

ü(x, y, t) = −κ2∇4u(x, y, t) +
f (x, y, t)

ρH
(3.5)

In this form, the governing PDE can be seen as an extension in two dimensions
of the linear bar wave equation [45]. As in the latter case, the presence of fourth
derivatives introduces a dispersive behaviour, which will be further investigated in
the next paragraph.

3.2 Dispersion Relation and Wave Propagation

Information on the frequency behaviour of equation (3.5) may be obtained by in-
serting a test solution of the form: u(x, t) = est+iβx, where s = σ + iω is a complex
frequency and β = βx, βy ∈ R2 are the wavenumbers, into the unforced plate
equation [45]. Doing this yieds:

s2 = −κ2β4 (3.6)

Since the equation is lossless, it is possible to set σ = 0, thus obtaining the disper-
sion relation:

ω2 = κ2β4 (3.7)

Consequently, phase and group velocities can be obtained:

cph(β) = κ|β| cgr(β) = 2κ|β| (3.8)

By using (3.7), it is also possible to express the relations above in terms of the
frequency ω:

cph(ω) =
√

κω cgr(ω) = 2
√

κω (3.9)
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Figure 3.1: Group velocity as a function of frequency.

Looking at equations (3.9), it is clear that both velocities depend on the wavenum-
ber: this means that higher frequencies travel faster than lower ones, as shown
in Figure 3.1. This is in sharp contrast to what happens in room reverberation.
Air is a non-dispersive medium, therefore, the reflected waves are not distorted,
this allows to easily recognize the direct sound and the echoes in the early part
of the reverberation (this is particularly noticeable in large spaces, for example in
the "echo" phenomenon). On the contrary, the dispersive behaviour of the plate
distorts the input signal, making it impossible to reconstruct the waveform at the
output points. In the specific case of the EMT 140, for what concerns the audio
band, the group velocity is between 20 and 628 m/s. Considering the position of
only one of the accelerometers, this means that the first wave arrives after 1 ms,
while the last one after 30.1 ms [31]. Since the human hearing is able to perceive
this delay, dispersion is probably one of the features that make the EMT 140 sound
so iconic.

3.3 Loss and Tension

The classic Kirchhoff model can be extended to take into account damping and an
applied tension, thus obtaining a general model of a stiff membrane [46]:

ρHü(x, y, t) = T0∇2u(x, y, t)− D∇4u(x, y, t)− 2σρHu̇(x, y, t) + f (x, y, t) (3.10)

where T0 is the tension and σ a damping parameter. In this form, the damping
factor represents a total, frequency independent, loss. However, when the model
will be decomposed in a modal form, it will be possible to set it in a frequency
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dependent manner. The coefficient σ is linked to the T60 by the relation:

σ = 6
ln(10)

T60
(3.11)

3.4 Damping

Damping determines the sound decay over time. It is a natural phenomenon,
which occurs due to the attenuation of acoustic waves during the course of their
path, as the vibrational energy is converted into other kinds of energy. In plate
reverberation sounds are naturally damped by the internal device structure; in ad-
dition, a porous panel can be moved near the plate to provide some control over the
decay time. According to Arcas and Chaigne [47], there are four main sources of
loss: thermoelasticicy, radiation in the free field, radiation into the porous medium
and energy losses where the plate is attached to the structure. The latter is the most
difficult to model, and a correct implementation would need to perform measure-
ments on a real physical device: for this reason it will be neglected.

3.4.1 Thermoelastic Damping

Figure 3.2: Thermoelastic Damping for the EMT 140 plate made of Carbon Steel SAE 1010.

Thermoelastic damping is particularly present in materials such as metals, which
present a high thermal conductivity, and it is due to the conversion of elastic waves
into heat. This phenomenon causes different frequencies to decay at different rates.
A relation which links thermoelastic damping to the loss coefficients σ is given in
[47]:
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σ(ω) =
ω2R1C1

2(ω2H2 + C2
1/H2)

(3.12)

which, for ω → ∞ tends to:

σ∞ =
R1C1

2H2 (3.13)

Here, R1 and C1 are coefficients which depend on the plate material characteris-
tics. Figure 3.2 reports the values of the damping coefficients σ in relation to the
frequency, relative to the thermoelastic damping. The physical parameters are the
ones for the Carbon Steel SAE 1010, namely:

R1 = 9.664× 10−3 C1 = 0.1855× 10−3

It is possible to prove that the value of σ reaches the 95% of σ∞ at around 500 Hz,
making the damping almost constant for higher frequencies.

3.4.2 Radiation Damping

Radiation damping occurs because of the conversion of vibrational energy into
acoustic energy: it is the reason why we can hear the plate vibrating. This kind
of loss is closely linked to the radiation efficiency, which is the ratio between the
sound power radiated from a source and that of a piston of the same size, moving
with the same average velocity [48]. For an infinite plate, radiation efficiency is
given by [47]:

α =
Wrad

ρacaS〈v2〉
(3.14)

where, Wrad is the total sound power radiated from the structure, ρa, ca are, respec-
tively, the density of air and sound speed in air. and 〈v2〉 is the spatial average of
the mean squared value of the transverse velocity of the structure. Another impor-
tant parameter concerning radiation damping is the concept of critical frequency
fc: it is the frequency at which the speed of bending waves in the structure becomes
equal to the one of acoustic waves on air [49]. Therefore, for frequencies above fc

the structure radiates efficiently, while below the radiated power is low. A formula
for the plate critical frequency is given by Arcas and Chaigne [47], together with a
model of radiation damping for the EMT 140. For an isotropic plate, fc is given by:

fc =
c2

a
2πκ

(3.15)

For the EMT 140 the critical frequency results: fc ≈ 25 kHz, thus, radiation is poor
in the audio band. This is indeed an important characteristics, in fact, it means
that, in the audible range, the rate of conversion of vibrational waves into sound
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is low, and thus signal loss is poor. The relation between radiation efficiency and
damping is given by:

σ =
ρaca

ρH
α (3.16)

Arcas and Chaigne retrieve a formula for radiation damping starting with a model
by Maidnaik [50], which takes the form:

σ =
1

4π2
ρaca

ρH
2(Lx + Ly)

LxLy

ca

fc
g(ψ) (3.17)

With:

g(ψ) =
(1− ψ2) ln[(1 + ψ)(1− ψ)] + 2ψ

(1− ψ2)3/2 (3.18)

and
ψ =

√
f / fc (3.19)

The values of the damping coefficients relative to radiation damping are illustrated
in Figure 3.3. As expected, damping increases sharply when getting closer to the
critical frequency.

Figure 3.3: Radiation Damping for the EMT 140 plate made of Carbon Steel SAE 1010.

3.4.3 Damping induced by a Porous Medium

As previously mentioned, the reverberation time in the EMT 140 can be controlled
by moving a panel made of a porous material closer or further from the vibrating
plate. This method employs the impedance discontinuity created by a medium
different than air in the nearfield of the plate to increase the radiated power, thus
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increasing loss. Cummings et al. [51] studied this kind of sound damping in the
context of sound insulation for aircraft fuselages, in which a porous material, typ-
ically a thermal insulator, is placed between two (outer and inner) metallic panels.
In his work, Cummings provided an empirical model for describing the effects
on sound of a layer of porous material placed a distance away from a vibrating,
simply supported plate. The absorbent is here considered to be of semi-infinite
dimensions, and an equivalent fluid model is used to describe it, with parame-
ters obtained through empirical measurements. The acoustic impedance Z of the
porous material depends on the sound frequency and is given by:

Z( f )
ρaca

= 1 + c1ξc2 − ic3ξc4 (3.20)

while the propagation coefficient:

Γ( f )
ka

= c5ξc6 + i(1 + c7ξc8) (3.21)

where
ξ = ρ f /R (3.22)

Here, ρa, ca and ka are the density of air, sound speed and wavenumber in air, f
is the frequency in Hz and R is the material flow resistivity, measured in rayl/m
(MKS). Finally, c1−8 are coefficients measured empirically. Equivalent fluid density
ρ of the porous material and sound speed c in it can be retrieved with the relations:

c =
iω
Γ

, ρ =
ZΓ
iω

(3.23)

Later, Craik and Allard [52] revised Cummings work and proposed an analytical
model for describing the radiation of a vibration plate into a porous medium. In
this paper, Craik defines two mathematical solutions to the problem: one takes into
account the absorbent panel dimensions, and the other considers it to be infinite.
Then, he shows that the two solutions yield identical results, implying that the
simpler, infinite case can be equivalently utilised for tackling the problem. Craik’s
model considers the porous panel to be at infinitesimal distance from the metal-
lic plate and does not provide information on the dependency on the gap size,
therefore it cannot be employed to model the EMT 140 damper. However, the
paper provides an alternative equivalent fluid model for the absorbent, based on
previous studies. Material density is given by:

ρ = 1.2 +

√
−0.0364

ξ2 − i0.1144
ξ

(3.24)

While the sound speed in the medium:

c =

√
101320

ρ

i29.64 +
√

2.82/ξ2 + i21.17/ξ

i29.64 +
√

2.82/ξ2 + i24.9/ξ
(3.25)
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Where:
ξ = ρa f /R (3.26)

And R is still the flow resistivity in rayl/m (MKS).
After Craik’s publication, Cummings extended the analytical model, providing

a relation which includes the dependency on the gap size between the plate and
the absorbent [53]. This model describes the phenomenon in terms of the radiation
efficiency, which is given by:

α = ka<[F(ω)] (3.27)

Here, ka is the wavenumber in air, while F(ω) is:

F(ω) =
1 + γ

kc(1− γ)
(3.28)

Where, kc =
√

k2
a − k2

b and kb =
√

ω(m/D)1/4 is the wavenumber in the plate,
while m is the mass per unit area of the plate. Finally, γ is given by:

γ =
− exp(−2ikcd)[1− exp(−2ikdh)]

Θ− exp(2ikdh)Θ
(3.29)

and
Θ =

τ + 1
τ − 1

, τ =
kdρa

kcρ
(3.30)

Here, h is the porous material thickness, d is the distance between the material and

the plate, and kd =
√

k2 − k2
b, where k = ω/c is the wavenumber in the absorbent

material. In this work, Cummings also provides the relation which links radiation
efficiency to the T60:

α = 13.82
m

ρacaT60
(3.31)

The damping coefficients can then be obtained by using equation 3.11.
In [47], Arcas and Chaigne provide a graph showing the damping induced by

a porous medium, obtained following Cummings studies. The graph is reported
in Figure 3.4. Nevertheless, the model used for the porous material differs from
the two showed above. In this work, we tried to set different porous material
characteristics in both Craik and Cummings models, in order to visually match
the results reported by Arcas and Chaigne. Figure 3.5 shows the damping factors
obtained by using the equivalent fluid model reported by Craik for the porous
material. In this case, the flow resistivity was set to R = 20000 rayl/m, in order
to obtain comparable peak values. The distance was set to 11 mm (blu) and 17.2
mm (orange) to match the values provided by Arcas, and the thickness of the
porous panel was set to h = 0.1 m. In the case d = 11 mm the peak value is
similar to the one showed in Figure 3.4, while for d = 17.2 mm it is completely
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Figure 3.4: "Damping factor induced by the porous plate computed with Cummings model for
different distances between the plates: d = 65.8 mm (dotted); 17.3 mm (dash-dotted), 13.2 mm
(dashed); 11.0 mm (solid)." (Source: [47])

Figure 3.5: Radiation into a porous medium obtained with the model of the absorbed material given
by Craik, with a flow resistivity of R = 20000 rayl/m, for different distances of the panel from the
plate: d = 11mm (blue), d = 13.2mm (orange).
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Figure 3.6: Radiation into a porous medium obtained with the model of the absorbed material given
by Cummings, with a flow resistivity of R = 70000 rayl/m, for different distances of the panel from
the plate: d = 11mm (blue), d = 13.2mm (orange).

underestimated. In both cases, the curves trend does not match the ones provided
by Arcas. In Figure 3.6 are illustrated the damping factors obtained by using the
model reported by Cummings for the absorbent. The panel distances and thickness
are the same used with the Craik model, however, this time it was necessary to set
the flow resistivity to R = 70000 rayls/m for matching the peak values. In this case,
the curves shapes have a trend which looks more similar to the one in Figure 3.4,
however, a numerical error makes it impossible to calculate the damping factors
below 50 Hz. Since both models are affected by some issues, it was decided to
keep them inside the algorithm, letting the user choosing which one to use.

3.5 Modal Analysis

In [30], Bilbao et al. presented a physical model of the EMT 140 which works by
directly discretising the plate equation (3.10) with a space-time grid and simulating
it with a finite difference scheme. This approach allows for a fast implementation
of a physical model, while still providing control over many parameters; however,
it presents some issues. In particular, the integration of frequency damping is not
so straightforward, and the model is very computationally demanding. Another
method is to use modal analysis to decompose the Kirchhoff equation into its
normal modes of vibration. In this section, the modal decomposition of the plate
equation will be detailed, following the work by Ducceschi and Webb [32], this will
be the basis for the simulation of the system.

Modal analysis consists in exploring the circumstances in which the motion
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of an object is synchronous: under these conditions, the profile of the vibrating
object does not change, only amplitude does. From a mathematical standpoint,
this means that the problem is separable in space and time, therefore the solution to
the problem can be expressed as:

u(x, t) = Y(x)F(t) (3.32)

The expansion theorem [54] ensures that, in order to start tackling the problem,
it is possible to consider the equation without loss and forcing Therefore one can
start by trying to solve:

ρHü(x, y, t) = T0∇2u(x, y, t)− D∇4u(x, y, t) (3.33)

In this case, it can be assumed that the solution u(x, y, t) takes the separable form
[55]:

u(x, y, t) =
M1

∑
m1=1

M2

∑
m2=1

Φm1,m2(x, y)Am1,m2 sin(ωm1,m2 t + φm1,m2) (3.34)

Where M1 and M2 are supposed to be infinite, but will be limited in practice. The
modal amplitudes Am1,m2 and phases φm1,m2 can be determined from the boundary
and initial conditions. By inserting (3.34) into (3.33) one obtains:

ω2
m1,m2

φm1,m2(x, y) =
D

ρH
∇4φm1,m2(x, y)− T0

ρH
∇2φm1,m2(x, y) (3.35)

Which is a differential eigenvalue problem. Solving it, after having set boundary con-
ditions, means finding the roots ωm1,m2 of the characteristic polinomial, which are
known as eigenfrequencies, for each of which there will be an associated eigenfunc-
tion Φm1,m2(x, y). Together, these are called normal modes of vibration, and it can
be proved that they form an orthonormal set over the L2 space [54]. Since the num-
ber of eigenfrequencies is typycally infinite, it is possible to say that there exists an
infinite number of ways in which the motion of a system is synchronous.

Once obtained the form of the eigenvalue problem, it is time to insert back loss
and forcing. In this case the solution form (3.34) is not valid anymore because the
time component does not oscillate in a sinusoidal way, therefore it is possible to
write the time component in a more generic way:

u(x, y, t) =
M1

∑
m1=1

M2

∑
m2=1

Φm1,m2(x, y)qm1,m2(t) (3.36)

One can then insert the solution above into equation 3.10, multiply by another ran-
dom solution Φ(x, y)m′1,m′2

and take the inner product. Considering the orthonor-
mality of the modes it is obtained:

q̈m1,m2(t) + ω2
m1,m2

qm1,m2(t) + 2σm1,m2 q̇m1,m2(t)−
Φm1,m2(xp, yp)

ρH
P(t) = 0 (3.37)
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For more information refer to: [54, 55]. What obtained here is a system of damped,
forced uncoupled oscillators, which completely describes the system. Also, it ap-
pears clear how the damping coefficients σm1,m2 can now be set singularly for each
mode of vibration, making it possible to use the loss coefficients in the form ob-
tained in the previous section. The modal decomposition allows to solve the com-
plex PDE in equation (3.10) by only computing several oscillators in parallel. In
addition, it makes it possible to discard the unnecessary modes, in order to save
computational power. Doing this, of course, requires to know the form of the
natural modes and the eigenfrequencies, which can be calculated by setting the
boundary conditions. Being kept suspended by steel wires at the corners, the EMT
140 can be considered as freely vibrating. However, it is not so straightforward to
obtain an analytical solution for the modes of a plate with free boundaries and nu-
merical methods would be needed in order to calculate them. Nevertheless, things
are different if considering simply supported boundaries [44], namely:

u(0, y) = ∇2u(0, y) =u(x, 0) = ∇2u(x, 0) = 0

u(Lx, y) = ∇2u(Lx, y) =u(x, Ly) = ∇2u(x, Ly) = 0
(3.38)

Under these conditions, the normal modes of vibration take the form [32]:

Φm1,m2(x, y) =

√
4

LxLy
sin

m1πx
Lx

sin
m2πy

Ly
(3.39)

Where Lx, Ly are the dimensions pf the plate. The corresponding eigenfrequencies
are:

ωm1,m2 =

√
T0

ρH
(

m2
1π2

L2
x

+
m2

2π2

L2
y

) +
D

ρH
(

m2
1π2

L2
x

+
m2

2π2

L2
y

) (3.40)

The current displacement at the desired output point (xo, yo) can therefore be ob-
tained by computing the value of the modes oscillators at time t, and then project-
ing with the correct modes:

u(xo, yo, t) =
M1

∑
m1=1

M2

∑
m2=1

qm1,m2(t)Φm1,m2(xo, yo) (3.41)

A finite value for M1 and M2 will be introduced in the next chapter with the
discretisation of the model.
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Discrete Simulation

In the previous chapter, a complete mathematical description of the plate in the
continuous domain was obtained. Here, it will described how the model was
simulated with the use of a FDTD method, and the physical model algorithm will
be presented. First, a brief discussion on finite difference schemes synthesis will be
provided, which will be useful for describing the discretisation of the mathematical
equations. Then, the oscillator model used will be presented, along with accuracy
considerations. Finally, details on the optimization method used will be provided.

4.1 Finite Difference Schemes Synthesis

Finite difference schemes is a modeling technique based on FDTD methods. Essen-
tially, it consists in discretising the domains of definition with finite sampling steps,
thus creating a space-time grid. As previously mentioned, Bilbao et at. [30] used
this method for creating a physical model of the EMT 140. In their work, equation
(3.10) (with an added term for frequency dependent damping) was simulated by
using a 3-dimensional grid, which allowed to obtain a direct approximation of the
system solution u(x, y, t) in the form un

l,m where l, m are the spatial sampling steps
defining the grid point, and n indicates the time sample.

In the present work, a change of coordinate system was performed, in order
to decompose the full plate equation into a series of modes, which are nothing
but uncoupled damped harmonic oscillators. Looking at equation (3.37) (ignoring
the input component), it can be noticed how the modal description is independent
from the space coordinates; indeed, these are not present in the relation for the
eigenfrequencies obtained in (3.40) either. This means that the oscillators configu-
ration is valid for each spatial point, and that the projection on the desired spatial
coordinates can be simply obtained with a multiplication by the correspondent
modes. For this reason, the only physical quantity which needs to be discretised
is time. In order to do this, it is first necessary to set a sampling step k, which for
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audio applications is usually linked to the sampling frequency fs by:

fs = 1/k (4.1)

Therefore, the time component is discretised in the form: t = nk, where n =

0, 1, 2, . . . is a positive integer. This allows to approximate a time-dependent func-
tion q(t) with the discrete series: qn.

It is now possible to define the shift operators:

et+qn = qn+1 et−qn = qn−1 (4.2)

Which are the basis for formulating more complex operators, in particular different
approximations of the first order derivative:

δt+ :=
1
k
(et+− 1) ≈ ∂

∂t
δt− :=

1
k
(1− et−) ≈

∂

∂t
δt· :=

1
2k

(et+− et−) ≈
∂

∂t
(4.3)

These are the backward, forward and center difference approximation respectively. If
applied to the series qn the difference operators yield:

δt+qn =
qn+1 − qn

k
(4.4)

δt−qn =
qn − qn−1

k
(4.5)

δt·qn =
qn+1 − qn−1

2k
(4.6)

which are essentially different versions of finite difference quotient. The operators
above can be then combined for obtaining higher order derivatives approximations,
for example the second order derivative can be approximated by:

δttqn := δt+δt−qn =
qn+1 − 2qn + qn−1

k2 (4.7)

By using the Taylor expansion it is possible to calculate the accuracy of the dif-
ference operators. If one applies the operator (4.4) to the continuous function q(t)
and expands in Taylor series obtains:

δt+q(t) =
q(t + k)− q(t)

k
=

1
k
[kq̇(t) +

k2

2!
q̈(t) + . . . ] = q̇(t) +O(k) (4.8)

Therefore, the forward operator approximates the first derivative with an accuracy
which scales with the first power of k, indeed, it is said to be first order accurate.
It can be proven [45] that the same result is obtained if expanding the backward
operator. In the case of the centred operator (4.6), one obtains:

δt·q(t) = q̇(t) +O(k2) (4.9)
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which states that this operator is more precise than the other two, being second
order accurate. Finally, the same procedure can be used to find out the accuracy of
the approximation of the second derivative (4.7), obtaining:

δtt =
∞

∑
n=1

2k2(n−1)

(2n)!
d2n

dt2n =
d2

dt2 +O(k2) (4.10)

which means that this operator is second order accurate too.

4.2 Simple Harmonic Oscillator

In order to obtain a discrete model for (3.37), it is possible to start by considering
the lossless, unforced case: the simple harmonic oscillator (SHO).

q̈(t) = −ω2
0q(t) (4.11)

where ω0 is the frequency of oscillation. A finite difference scheme for equation
(4.11) can be obtained by using the operator (4.7) applied to the discrete series qn:

δttqn = −ω0qn (4.12)

and expanding the operator yields

qn+1 − 2qn + qn−1

k2 = −ω0qn (4.13)

Rearranging, one obtains the explicit recursion relation:

qn+1 = (2−ω2
0k2)qn − qn−1 (4.14)

which is equal to that of a two-pole IIR digital filter. In fact, the corresponding
frequency response consists of a single peak, centred around ω0.

In [45], Bilbao provides a thorough discussion on the discrete SHO and, by
performing a frequency domain Von Neumann analysis he gets to the stability
condition for the scheme (4.14)

k < (2/ω0) fs > π f0 (4.15)

In addition, Bilbao proves that, in the discretisation process, numerical approxima-
tions introduce an error in the oscillating frequency, which results being:

ω =
cos−1(1− k2ω2

0/2)
k

(4.16)

Which is higher than the real frequency ω0
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4.2.1 Accuracy of the SHO

As before, Taylor expansions can be used to calculate the accuracy of the scheme
(4.14). First, it is necessary to apply the discrete operators to a continuous function
of time q(t):

δttq(t) + ω0q(t) = 0 (4.17)

Applying the formula for the accuracy of the second order operator in equation
(4.10) to the equation above yields:

d2

dt2 q(t) + ω0q(t) +O(k2) = 0 (4.18)

Since the continuous SHO equation is of the form (4.11), it is clearly visible here the
presence of an additional residual error, which is of order k2. Thus, it is possible to
say that scheme (4.14) is second order accurate.

4.2.2 Exact Scheme for the SHO

Once considerations over oscillating frequency and accuracy of the discrete scheme
(4.14) have been investigated, it is possible to introduce a numerical integrator
which exactly solves (4.11). This is, again, provided by Bilbao [45] and takes the
form: [

δtt +
2(1− cos(ω0k))

k2

]
xn = 0 (4.19)

By expanding the operators, it is possible to obtain the recursion relation:

qn+1 = 2 cos(ω0k)qn − qn−1 (4.20)

The precision of the actual oscillating frequency can be obtained by taking the z
transform of (4.20):

z− 2 cos(ω0k) + z−1 = 0 (4.21)

The solutions of the equation above are:

z = e±iω0k (4.22)

Therefore, the oscillating frequency is exactly ω0.
In order to calculate the accuracy, it is again possible to employ the Taylor

expansion of the finite difference operator (4.7) applied to a continuous function
of time q(t). Expanding the operator inside square brackets in equation (4.19) and
using (4.10) together with the cosine Taylor expansion yields:

∞

∑
n=1

2k2(n−1)

(2n)!
d2n

dt2n + (−1)n−1 2ω2n
0 k2(n−1)

(2n)!
=

=
∞

∑
n=1

2k2(n−1)

(2n)!

(
d2n

dt2n + (−1)n−1ω2n
0

) (4.23)
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Bringing out from the sum the common term

d2

dt2 + ω2
0 (4.24)

equation (4.19) can be rewritten in terms of big O notation:

(1 +O(k2))

(
d2

dt2 + ω2
0

)
q(t) = 0 (4.25)

The residual can be simplified out and, consequently, the relation above proves
that scheme (4.19) solves the SHO exactly.

4.3 Lossy Oscillator

In order to simulate the modes of vibration, it is necessary to insert loss to the
SHO equation. This can be acheved by adding a term dependent on the first time
derivative, thus obtaining:

q̈(t) + ω2
0q(t) + 2σ0q(t) = 0 (4.26)

which has the same form of equation (3.37), with no forcing. As mentioned in the
previous chapter, σ0 > 0 is the damping parameter, which sets the decay rate for
the system.

A finite difference scheme for equation (4.26) can be obtained in a similar way
as for the SHO, by applying the difference operators (4.7), for the second order
derivative and (4.6), for the first order derivative, to a discrete series qn:

δttqn = −ω0qn − 2σ0δt·qn (4.27)

The expansion of the discrete operators yields the recursion relation for the lossy
oscillator:

qn+1 =
2−ω2

0k2

1− σ0k
qn − 1 + σ0k

1 + σ0k
qn−1 (4.28)

With frequency domain Neumann analysis it is possible to obtain the stability
condition for the scheme (4.28) [45]:

k < 2/ω0 (4.29)

It is important to notice that this condition also provides a limit for ω0 in relation
to k. Therefore, when simulating the plate, the above relation also imposes a re-
striction over the maximum number of modes and, as a consequence, the values
M1 and M2, seen in equation (3.41). In particular, for a sampling frequency of
fs = 44100 Hz, the highest possible mode results being fmax = 14037 Hz.
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4.3.1 Exact Scheme for the Lossy Oscillator

Previous paragraphs allowed to obtain a set of discrete rules which can be used to
obtain a simulation of the plate modal equations (3.41) and (3.37), together with
discrete values which allow to select a finite number of modes. Indeed, this ap-
proach is exactly the one employed by Ducceschi and Webb [32] for their EMT
140 simulation. Nevertheless, in a previous section it was seen that discretising
the SHO by directly substituting the difference operators yields slightly inaccurate
results, and that an exact integrator exists for the harmonic oscillator. As a matter
of fact, an exact solution can be obtained also for the lossy oscillator, as it will be
illustrated in this paragraph.

In order to obtain the exact integrator, one can start by considering the lossy
equation (4.26) and then apply the variable transformation:

X(t) = eσ0tq(t) → q(t) = X(t)e−σ0t (4.30)

The chain rule for derivatives yields:

d
dt

Xe−σ0t = Ẋe−σ0t − Xσ0e−σ0t (4.31)

and
d2

dt2 Xe−σ0t = Ẍe−σ0t − Ẋσ0e−σ0t −
(
Ẋσ0e−σ0t − Xσ2

0 e−σ0t) (4.32)

By substituting into (4.26) and rearranging one obtains:

Ẍ + ω̃2
0X = 0 (4.33)

with
ω̃0 =

√
ω2

0 − σ2
0 (4.34)

It appears clear that equation (4.33) has the form of a SHO, therefore, an exact
scheme exists and is again given by (4.19), which, in the new variable X, takes the
form:

X(t + k) + X(t− k)− 2X(t) cos(ω̃0k) = 0 (4.35)

Substituting back for q(t) yields:

q(t + k) = 2e−σ0k cos(ω̃0k)q(t)− e−2σ0kq(t− k) (4.36)

If a discrete series qn is used instead of a continuous function, one obtains the
recursion relation which exactly solves the lossy oscillator

qn+1 = 2e−σ0k cos(ω̃0k)qn − e−2σ0kqn−1 (4.37)

Finally, the scheme above takes a operator form:(
δtt +

2e−σ0k

k2 (eσ0k − cos(ω̃0k)) +
et−
k2 (e−2σ0k − 1)

)
qn = 0 (4.38)
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Through Taylor expansion, it is possible to prove that the integrator above provides
an exact solution to the oscillator (4.26).

Before being ready to introduce an input signal, it is necessary to make some
considerations on the stability condition for the exact scheme (4.38). This can be
achieved by employing a frequency domain Von Neumann analysis. Considering
the recursion (4.37), the first thing to do is to insert a test solution qn = zn, with z =

esk and s being a complex frequency. By doing this, one obtains the characteristic
equation:

z− 2e−σ0kcos(ω̃0k) + e−2σ0kz−1 = 0 (4.39)

Rearranging, the relation above takes the form of the quadratic equation

z2 − 2e−σ0kcos(ω̃0k)z + e−2σ0k (4.40)

Following Bilbao [45], stability is ensured if the roots of the characteristic equation
are bounded by unity and, since the one above is a quadratic equation this is true
if:

| − 2e−σ0kcos(ω̃0k)| − 1 ≤ e−2σ0k ≤ 1 (4.41)

Which is true for any k.
Therefore, the use of the exact scheme allows not to impose any limit on

the maximum number of modes, contrary to what happened with the non-exact
scheme, where the maximum frequency of vibration was given by (4.29). This al-
lows to keep each normal mode up to the limit of the audio band (it is not necessary
to go further, as it would be a waste of computational power).

4.3.2 Forcing

Everything said until now is valid in the case of unforced oscillators, nevertheless,
in order to obtain an outcoming sound it is necessary to provide an excitation for
the scheme. The forced oscillator takes the form:

q̈(t) + ω2
0q(t) + 2σ0q(t) = p(t) (4.42)

Where the time function p(t) represents an input signal. For equation (4.42) an
exact integrator does not exist, however, it is possible to expand equation (4.38) in
Taylor series and add a number of terms to the external forcing, in order to obtain
a correction up to a desired order. Doing this yields:

G(k)
(

d2

dt2 + 2σ0
d
dt

+ ω2
0

)
qn = 0 (4.43)

where

G(k) = 1− σ0k +
k2

12

(
d2

dt2 + 2σ0
d
dt

+ 8σ2
0 −ω2

0

)
+O(k3) (4.44)
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By substituting the derivatives with discrete operators, it is possible to obtain a
correction to the input signal in the form

p(t)→
(

1− σ0k +
k2

12
(
δtt + 2σ0δt· + 8σ2

0 −ω2
0
))

pn (4.45)

4.4 An Update Equation for the Modes

The last paragraphs allowed to derive all the tools for writing an (almost) exact
numerical integrator for calculating a single mode on MATLAB, as it will be shown
later on. It is important to notice that, if expanding the operators in (4.45), a future
point pn+1 is needed, which, of course, is not known. However, it is simply possible
to shift the whole series one sample back without affecting the outcoming sound,
indeed, doing this simply introduces a one-sample delay in the output, which is
not perceived by the ear. The recursion relation for a single mode qm1,m2 takes the
form:

qn+1
m1,m2

= 2e−σ0k cos(ω̃0k)qn
m1,m2

− e−2σ0kqn−1
m1,m2

+
1− σ0k

12
pn

m1,m2
+

+

(
5
6
− σ0k +

2
3
− σ2

0 k2 − ω2
0k2

12

)
pn−1

m1,m2
+

1− σ0k
12

pn−2
m1,m2

(4.46)

Where the exciter pn
m1,m2

consists of:

pn
m1,m2

=
Φm1,m2(xp, yp)

ρH
Pn (4.47)

and Pn is a sampled version of the input signal. In order to retrieve the output
signal, e number of these update equations equal to the maximum number of
modes need to be calculated in parallel. Then, the displacement at the output
point can be obtained through the use of equation (3.41).
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Optimisation

In the previous chapters, a complete computational model for the EMT 140 plate
has been presented, which includes a physical model for damping and employs
a modal decomposition, then simulated by using an exact numerical integrator.
With the configuration previously detailed, the resulting number of modes is above
20000 and, unfortunately, calculating such a high number of oscillators in parallel
in real time is beyond the capabilities of most modern devices. In [32], Ducceschi
and Webb proposed a method for discarding less perceptually relevant modes
which is based on psychoacoustic considerations, later employed also by Willem-
sen et al. [33]. This technique founds itself on the logarithmic nature of human
hearing: since the modes of vibration are approximately evenly spaced along the
frequency axis, this means that in a higher octave band more modes will be present.
Thus, it is possible to discard higher modes without too much effect on the output
quality.

In this work, it was decided to employ a different method, based on least
squares optimisation, which is in part similar to the one proposed by Maestre et
al. [56]. The idea behind this solution is to calculate the analytic impulse response
of the plate, starting from the modal decomposition, select the most relevant peaks
from the magnitude spectrum and perform least squares approximation to find the
new modal weights, in fact, as it will be shown later, the input and output modes
can be considered as a single one. In this chapter, this process will be detailed: first,
some considerations on least squares approximation will be made, then it will be
explained how this method was used in the context of this work.

5.1 Least Squares Regression

Least Squares (LS) is a form of linear optimisation. Considering a set of measure-
ments yn, taken for different known parameter values xn (explanatory variables),
least squares starts from the assumption that these can be linked by a linear rela-
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Figure 5.1: Graphical visualisation of the least squares data model.

tion, however, the yn are affected by some measurement noise εn. Therefore, it is
possible to write:

yn = pxn + εn (5.1)

Where p is a scalar weight (or slope). LS regression aims to find the p which
minimises the sum of squared errors:

η(p) =
1
2

N

∑
n=1

(yn − pxn)
2 (5.2)

Essentially, what LS looks for is the best slope which fits the measurements, as
shown in Figure 5.1. Equation (5.2) can be written in vector form as.

η(p) =
1
2
‖y− px‖2 (5.3)

Considering the norm as the Euclidean one, and writing it as an inner product:

η(p) =
1
2
(y− px)T(y− px) (5.4)

In order to find the proper weights, it is possible to derive the expression above,
set it equal to zero and solve for p. The fact that the error is a quadratic function of
p, and that what multiplies p2 must be positive ensures that the found value will
be a minimum. Taking into account the linearity of the transposition operator one
then obtains:

popt =
yTx
xTx

(5.5)

Which is a solution to the LS problem.
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5.1.1 Multiple Explanatory Variables

A more complex case is encountered when the measurements depend on more
than one explanatory variable, and, as a consequence, multiple weights need to be
found. This situation takes the math form

yn = ∑
m

pm(xn)m + εn (5.6)

In this case, the error function to minimise becomes:

η(p) =
1
2
‖y−∑

m
pmxm‖2 (5.7)

It is now possible to define the matrix X, whose columns are made of the explana-
tory vectors, meaning that to each column will correspond one pm. Thus, the error
function can be written:

η(p) =
1
2
‖y− Xp‖2 (5.8)

Which, again, can be written in an inner product form

η(p) =
1
2
(y− Xp)T(y− Xp) (5.9)

Even though matrices are now considered, it is still possible to use calculus to find
the analytic solution to the LS problem. Deriving the error function with respect
to p, imposing it equal to zero and solving yields a solution similar to (5.5):

popt = (XTX)−1XTy (5.10)

5.1.2 Complex Variables

As it will be illustrated in the next paragraph, it is of interest the case where the
data vector y and the explanatory variables X are complex, while the weights p are
real. In this case, considering the complex norm, the error function becomes:

η(p) =
1
2
‖<(y)−<(Xp)‖2 +

1
2
‖=(y)−=(Xp)‖2 (5.11)

Again, by expanding the norms, deriving with respect to p and imposing every-
thing equal to zero one obtains:

popt = (<(XT)<(X) +=(XT)=(X))−1(<(XT)<(y) +=(XT)=(y)) (5.12)
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5.2 Modes Optimisation

Following the approach proposed by Maestre et al. [56], it was chosen to perform
an optimisation over the frequency domain. The basic idea is to calculate the an-
alytic frequency response of the plate, in order to obtain a representation in the
frequency domain, find the most prominent peaks, their bandwidth and their fre-
quency location and, finally, build another frequency response using only those
peaks. As it will be illustrated, the peaks heights are given by the modal weights,
which are relative to each eigenfrequency. With this method, single eigenfrequen-
cies are "lost", meaning that the new peaks will not necessarily correspond to the
analytic modes. For this reason, new modal weights need to be found: the least
squares technique will be used for this purpose.

5.2.1 Frequency Response

The first step for the optimisation is to calculate the frequency response of the plate
in the continuous domain. To do this, the Fourier transform of the modal equations
obtained in chapter 3 will be calculated.

In order to obtain the frequency response it is possible to start considering the
single mode (m1, m2) equation (3.37) previously obtained, when the input has the
impulsive form

P(t) = δ(t− t0) (5.13)

Under this condition, taking the Fourier transform yields:

−ω2Qm1,m2(ω) + ω2
m1,m2Qm1,m2(ω) + 2iωσm1,m2Qm1,m2(ω) =

Φm1,m2(xp, yp)

ρH
(5.14)

Solving for Q(ω) one obtains the frequency response of a single mode

Qm1,m2(ω) =
1

ρH
Φm1,m2(xp, yp)

(ω2
m1,m2 −ω2 + 2iωσm1,m2)

(5.15)

In order to calculate the output of the whole system in the frequency domain, it is
useful to consider the case where the equation consists of a single mode, in which
case the equation (3.41) becomes:

u(xo, yo, t) = q(t)Φ(xo, yo) (5.16)

Since the modes do not depend on time they are not affected by the transformation,
therefore taking the Fourier transform becomes:

U(xo, yo, ω) = Q(ω)Φ(xo, yo) (5.17)
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where Q(ω) is given by (5.15). With the help of the linearity property of the Fourier
transform it is possible to extend the equation above to the full case, thus obtaining
the complete frequency response of the plate in the continuous domain.

U(xo, yo, ω) =
M1

∑
m1=1

M2

∑
m2=1

1
ρH

Φm1,m2(xp, yp)Φm1,m2(xo, yo)

(ω2
m1,m2 −ω2 + 2iωσm1,m2)

(5.18)

Looking at the equation above, it is important to notice that the input-output modes
are now combined into a single coefficient, which can be defined as

ΦTOT
m1,m2 :=

Φm1,m2(xp, yp)Φm1,m2(xo, yo)

ρH
(5.19)

This coefficient is the one that sets the modes height. Finally, equation (5.18) can
be rearranged:

U(xo, yo, ω) =
M1

∑
m1=1

M2

∑
m2=1

Xm1,m2(ω)ΦTOT
m1,m2 (5.20)

where
Xm1,m2(ω) :=

1
ω2

m1,m2 −ω2 + 2iωσm1,m2
(5.21)

5.2.2 Least Squares

In order to perform least squares it is first necessary to discretise the frequency
axis, obtaining a vector ωi with i = 1, 2, 3, . . . , N and ωN/(2π) = 20 kHz. This
way, one gets a number of observations from the actual impulse response (5.20):

U[ωi] =
M1

∑
m1=1

M2

∑
m2=1

Xm1,m2[ωi]ΦTOT
m1,m2 (5.22)

In vector form, the equation above becomes:

y = XΦTOT (5.23)

where X is a matrix whose columns contain the frequency observations for each
mode, and ΦTOT is a column vector containing the total modal weights correspon-
dent to each mode. Following the least squares formulation (5.6), it is possible to
consider y as the measurements vector, which in this case contains the target.

Finding Modal Peaks

At this point, it is necessary to examine y for finding the most prominent peaks. In
the algorithm, this is achieved by using the MATLAB function findpeaks, which
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Figure 5.2: Results provided by the findpeaks function applied to a section of the target frequency
spectrum.

returns the local maxima of a vector and their bandwidth. The function is run over
the magnitude spectrum, the absolute value of y

The function is set to measure the peaks widths at half height, in fact, this is
quantity is linked to the damping factor. Given a peak bandwidth w and center
frequency ω0, it is possible to define the Q-factor as:

Q =
ω0

w
(5.24)

The damping coefficient is then calculated using

σ0 =
1

4Q
(5.25)

Figure 5.2 shows the results of the findpeaks function applied to a section of the
target frequency spectrum.

Modes Rejection

Once the frequency peaks and their bandwitdh have been obtained, it is possible
reject some of them, in particular the least prominent, for further optimisation. In
order to do this, the target frequency response is divided into frequency bands,
and each band is singularly analysed with findpeaks.

There are different ways to split the frequency axis. One, employed by Maestre
[56], is to exploit the logarithmic nature of human hearing and subdivide the fre-
quencies in a log scale. In particular, Maestre makes use of the Bark scale, which
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Figure 5.3: Modal density of the EMT 140 in modes per Hertz, calculated with the relation provided
by Arcas [31].

consists of 24 frequency bands, called critical bands, based on psychoacoustic prin-
ciples. The Bark scale is linear below 500 Hz and approximately logarithmic above.
Because of this structure, the width of higher bands is greater in terms of Hertz,
this results in cutting more frequencies in the higher parts of the spectrum. The
bark scale approach is based on the idea that, since human hearing is logarithmic,
higher octaves contain more modes, thus, cutting more high frequencies will not
impact the quality of the output .

Another possible method is to split the frequency axis in linear bands, and cut
an equal number of modes from each. This approach founds itself on the fact
that the EMT 140 possesses an approximately constant modes density [31], as it is
possible to see in Figure 5.3. Thus, rejecting the same number of frequencies from
evenly subdivide bands will not affect this property. In this work, both methods
were implemented and results obtained with the two approaches will be provided
in chapter 6.

Optimised Impulse Response

With the selected peaks it is possible to calculate the new optimised impulse re-
sponse. If the optimal modes are called ωk, with k = 1, 2, . . . , Mo; Mo being the
total number of optimal modes, it is possible to write:

Xk[ωi] :=
1

ω2
k −ω2

i + 2iωiσk
(5.26)
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Hence, the optimised impulse response, written in vector form becomes:

Uopt = XkΦopt
k (5.27)

However, it is now clear that the optimal modal weights Φopt
k are still missing.

Nevertheless, the least squares problem to be solved is shaping up: the matrix X
can be considered as the explanatory variable which, when multiplied by a scalar
weight Φopt needs to get close to the observation y. Hence, the LS error function to
be minimised becomes:

η(Φopt) =
1
2
‖y− XΦopt‖2 (5.28)

Both y and X, being frequency responses, are complex, however, the modal weights
need to be real by definition. Thus, the problem is solved by using equation (5.12)
obtained in the previous section.



Chapter 6

Results & Evaluation

This chapter will illustrate two different methods that were used to evaluate the
algorithm. One, the technical evaluation, is based on analysis of measurements and
the other, the perceptual test, is based on a questionnaire. Unfortunately, during
the course of the project, there was no access to an actual EMT 140 plate reverb unit;
therefore, it was impossible to make a thorough comparison between the model
and the device. In particular, extensive measures on the quality of the damping
model implemented could not be carried out, as no reference sound was available.
One way to test the sound quality of the algorithm could have been to compare
it with other commercial plugins based on physical models, such as the Physical
Audio PA1, or the UVI Plate; in particular, the latter features a physical model of
damping as well. Nevertheless, since the plugins are not open-source, it would
have been complicated to understand the reasons for any discrepancies in terms
of sound quality; moreover, making a comparison with other simulations would
not have provided much useful information. Consequently, extensive tests on the
algorithm sound quality and the performances of the damping model are left for
future work, and the testing focused on the the optimisation. In particular, the
technical evaluation consisted in measuring the differences between the frequency
responses of the plate with all the modes, and the optimised versions of it. In the
perceptual test, subjects were asked to listen to different audio files to which the
reverb was applied, in different optimisation versions. Then, they had to rate how
much difference they perceived with a reference audio, made with the full plate.
While processing the audio files, the running times were also measured, in order
to understand if the plate could be operated in real-time.

6.1 Measurements Setup

In order to test the optimisation performances, the plate parameters were set to be
always the same, this way no bias was introduced. The algorithm allows to choose
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whether to output a mono or a stereo signal, the latter is obtained by simply en-
abling another virtual accelerometer placed at a different position on the plate, as
it happens on the real EMT 140. This allows to produce interesting sounds, percep-
tually speaking; nevertheless, each accelerometer has its own frequency response,
therefore, it would have been necessary to analyse each one of them separately,
something which would not have added meaningful information to the tests. For
this reason, all the testing were conducted by enabling only one accelerometer.
Below are listed all the physical parameters used for the tests.

• Horizontal Length: Lx = 2 m.

• Vertical Length: Ly = 1 m.

• Thickness: H = 0.5 mm.

• Input Position: (0.52Lx, 0.53Ly), choosen following Ducceschi and Webb [32].

• Output Position: (0.47Lx, 0.62Ly), again following Ducceschi and Webb.

• Material: Carbon Steel SAE 1010. For which: E = 2 × 1011 Pa, ν = 0.3,
ρ = 7.872× 103 kg/m3.

• Distance of the porous panel: 0.03 m. Chosen to be half-way between the
possible extremes positions in the real device.

As seen in chapter 3, the damper model by Cummings showed trends more similar
to the one reported by Arcas. Nevertheless, it also presented some troubles in
calculating the damping coefficients in the lower frequencies. For this reason, the
damper model by Craik was used during the testing.

6.2 Frequency Bands & Modes Rejection

Modes rejection in this algorithm works this way: the computed, full (containing
all the modes) frequency response is divided into frequency bands as explained
in chapter 5; then, for each band, the findpeaks function is run, which outputs
all the found peaks, their location and their width. Once all this data is obtained,
it is possible to reject some of the peaks found, in particular the least prominent
ones. This is done based on a variable that sets the maximum number of peaks per
frequency band, and needs to be set by the user, depending on the desired grade
of optimisation. In the testing, this parameter was chosen empirically: first, it was
checked the number of modes per band found by findpeaks, then the peaks limit
was reduced until the algorithm could run in real-time.



6.2. Frequency Bands & Modes Rejection 49

Figure 6.1: Example of the optimisation run on the first linear band, with the maximum modes
number per mand set to 20. The blue line indicates the full plate frequency spectrum, the orange
line is the optimised one.

As previously said, two different ways of splitting the frequency axis were
employed, one logarithmic-based and one linear-based. The first follows the Bark
scale, which consists of 24 critical bands, whose limits are:

[20, 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000,

2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 20000]
(6.1)

The lowest and highest values were set to be limits of the audio band. As it was
mentioned above, this scale is based on the logarithmic nature of the human hear-
ing; therefore, higher octaves contain more frequencies and, in this case, modes.
For this reason, by using the Bark scale, the rejected modes will be mostly in the
higher part of the spectrum. The maximum numbers of peaks chosen for the ex-
periments with the Bark scale were 600 and 300. The first one was selected because
it allowed to run the algorithm in real-time, while still maintaining a high sound
quality, the latter was chosen to observe how much quality was lost by rejecting a
high number of modes.

The other frequency splitting method employed was linear. As before men-
tioned, this scale was chosen in order to preserve the constant modes density,
which is a characteristic of the EMT 140. In this case, the frequency axis was split
linearly in bands large 100 Hz. As expected, since the bands are thinner than in the
Bark scale, the modes numbers were much lower than in the other case. Therefore,
the maximum number of peaks selected in this case were 20 and 10, chosen with
the same criteria explained above. Figure 6.1 illustrates an example of the opti-
mised frequency response; here a linear splitting was performed and a maximum
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number of 20 peaks per band was set. It is possible to see how the less prominent
peaks are being ignored.

6.2.1 Running Times

Before moving to the measurements results, it is necessary to make some consid-
erations over the running speed of the algorithm. In order to calculate it, it was
measured the time taken by the audio loop for processing a 5-seconds impulse
with the MATLAB tic toc function. It should also be pointed out that these mea-
surements were obtained with the mono version of the algorithm, and that a stereo
sound requests more time to run. Nevertheless, in order to obtain a proper real-
time version of this model, it would be necessary to make a porting to C++, and the
use of this language would allow to perform many more low-level optimisations
to speed up the code, with respect to MATLAB.

Full No Cut Bark 600 Bark 300 Linear 20 Linear 10

20.433976 s 8.628766 s 3.906116 s 2.577829 s 4.132802 s 2.017438 s

Table 6.1: Times in seconds to process a 5-seconds impulse by various versions of the algorithm

Table 6.1 shows the measured times taken by the audio loops for processing a 5-
seconds impulse. In particular, "Full" refers to the plate with all the modes, "No
Cut" indicates an optimised version of the plate with no peaks rejected, obtained
with linear splitting, meaning that all the peaks found by findpeaks were kept.
"Bark 600" and "Bark 300" refer to the optimisation obtained by dividing the fre-
quency axis with the Bark scale, and setting the maximum peaks number to 600
and 300 respectively. Similarly, "Linear 20" and "Linear 10" refer to the linear split-
ting of the frequency axis, and the numbers indicate the maximum modes per band
that were set. It can be noticed how all the performed optimisations allowed to run
the model in real-time: in fact, the processing time is lower than the 5 seconds of
the requested signal. On the contrary, both the full plate and the "No Cut" ver-
sions would not allow to perform real-time computation. In particular, the time
requested to compute the full plate output is more than four times higher than the
length of the requested signal.

6.3 Technical Evaluation

In order to perform a technical evaluation, it was decided to compare the frequency
responses of the full plate and the optimised versions, which are both computed
during the optimisation process. The comparison was performed following a paper
by Ryder [57], in which the correlation coefficient is used for frequency response
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Figure 6.2: Correlation coefficients for each Bark band. The blue line is relative to the "No Cut"
version, the orange line to the "600" version and the yellow one to the "300" version.

analysis. Ryder defines the correlation coefficient as:

σcorr =
∑N

x=1 xiyi√
∑N

x=1 x2
i ∑N

x=1 y2
i

(6.2)

In this case, X = x1, x2, . . . , xN and Y = y1, y2, . . . , yN are the magnitudes of the
frequency responses of the optimised and full plate respectively. The correlation
coefficient has values between −1 and 1, where 1 indicates perfect correlation,
namely X and Y are identical, 0 indicates absence of correlation and −1 negative
correlation. Therefore, the closer σcorr is to 1 the better it is. For each optimised
version, it was decided to compute the correlation coefficient for both the whole
spectrum and for the single frequency bands, in order to check where the modes
are cut the most. The next paragraphs will illustrate the results of the measure-
ments performed. For both the Bark and the linear splitting will be reported: the
correlation coefficient of the "No Cut" version, and the two optimised versions with
the modes limited.

6.3.1 Bark Bands

Figure 6.2 shows the correlation coefficients of the Bark optimised plates, for each
frequency band. For each line, the correlation is calculated with respect to the full
plate frequency response, calculated with all the modes. It is clearly visible how, by
employing this scale, modes are cut only in the highest part of the spectrum, in fact
the correlation coefficients drop in the highest bands when a maximum number of
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Figure 6.3: Correlation coefficients for each Linear band. The blue line is relative to the "No Cut"
version, the orange line to the "20" version and the yellow one to the "10" version.

modes is set. Nevertheless, this method allows to maintain a high grade of fidelity
until around 10 kHz, if at least 300 modes per band are kept. As a matter of fact,
σcorr remains above 0.95 under that frequency.

Besides the correlation per band, it was also calculated an overall correlation
coefficient for each version by taking into account the whole spectrum; these are
shown in Table 6.2. It can be seen how, by considering the full spectrum at once,
the optimisation did not reflect much on the value of σcorr. This means that, even
when a high number of peaks is cut, such as in the "300" case, a overall high grade
of fidelity is maintained.

No Cut Bark 600 Bark 300

σcorr = 0.966459323 σcorr = 0.966451306 σcorr = 0.966438318

Table 6.2: Correlation coefficients for the full frequency responses of the Bark optimised plates

6.3.2 Linear Bands

Figure 6.3 shows the correlation coefficients of the linear optimised plates. In this
case the plot is more messy, as the number of bands is much higher. Nevertheless,
it can be seen how the optimisation in this case lowers the correlation coefficient
in the whole spectrum, in fact, peaks are not cut only in a specific area anymore.
In the "10" case, the coefficient is even lower at lower frequencies, indicating that
findpeaks found more peaks in that region, hence, more modes are rejected.
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The overall correlation coefficients are reported in Table 6.3. Here, it is visible
how the linear optimisation yields a lower overall σcorr, in fact, the coefficients
relative to the Bark optimised versions are higher than the ones obtained with the
linear optimisation. Since, as seen in Table 6.1, the running times are similar for
the two optimisation versions, the correlation results suggest that the Bark scale
might be the best choice for optimising the plate. Nevertheless, this will need to
be confirmed by the perceptual test, in fact, cutting more on the high frequencies
might result in a non desirable timbre change.

No Cut Linear 20 Linear 10

σcorr = 0.966460369 σcorr = 0.940931853 σcorr = 0.882173353

Table 6.3: Correlation coefficients for the full frequency responses of the Linear optimised plates

6.4 Perceptual Test

Along with the technical evaluation, also a perceptual test was carried out, in
order to observe the effects of the optimisation on the perceived sound, and if
subjects could hear differences between the two kind of optimised plates. The
test was structured with a MUSHRA method [58]; the name stands for MUltiple
Stimuli with Hidden Reference and Anchor, and it is an experiment methodology
originally designed for testing audio compression. In this evaluation, subjects are
provided a reference audio file, which is uncompressed and it is specified to be
the reference. Then, testers need to rate several compressed versions of the first
audio, without knowing the compression characteristics. Among the files to rate
are included: a copy of the reference file and at least one anchor file, which is
another copy of the first file, lowpassed at 3.5 kHz. It is specified that audio clips
should not be longer than 20 seconds to avoid fatiguing of listeners and to reduce
the total duration of the test.

In this test, three audio clips were used: a drum loop, an acoustic guitar riff
and some vocals. The drums were recorded with the Modo Drum plugin,1 by IK
Multimedia, the guitar and vocals were downloaded from a sample library. Atten-
tion was payed to make sure that the audios were not already reverberated. The
files lengths were, respectively: 12, 9 and 11 seconds. It was decided to select
single instrument clips, in order for the subjects to have less instruments to focus
on at the same time. Drums and vocals were selected as it was seen that online
reviews of reverbs, in particular of plate reverb plugins, typically use these instru-
ments sounds for testing; an acoustic guitar was chosen too because it has a very
well known timbre. For each audio clip, eight files were presented to the testers.

1www.ikmultimedia.com/products/mododrum
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One was the reference file, placed first in the list, which consisted in the audio clip
processed with the full plate. The latter seven were: an hidden reference file, the
300 and 600 Bark and the 20 and 10 linear optimised versions, the linear "No Cut"
version (chosen because it has the highest correlation coefficient among the two
No Cut versions) and the anchor, made by lowpassing the reference file at 3.5 kHz.
The order of the files to rate was randomised, so for each clip the position of the
various versions was not the same, this in order not to introduce any form of bias.

After collecting personal data, such as age, gender and education, users were
asked to indicate their experience with music, in particular, if they played an in-
strument, how much music they listened to per day and if they had any experience
in music recording or producing. After these questions, subjects were shown three
screens, one for each instrument, where the eight clips were presented one below
the other. Here, they were asked to rate the files from the second to the eighth
compared to the first one, by using sliders in a range from 0 to 100, where 0 was
said to mean "bad quality" and 100 "excellent quality". After the rating section, as a
last question, testers were presented the dry (with no reverberation applied) drum
loop and the fully wet (reverberated) version of it, made with the full plate. They
were then asked to indicate their general opinion on the reverberation effect. This
was done to collect some thoughts on the quality of the reverberation effect, even
though, as previously said, more thorough testing on the reverb sound need to be
performed. Since the survey had to be run from remote due to Covid-19 related re-
strictions, participants were asked wear headphones for the test, and to indicate the
model. The questionnaire was implemented and run using PsyToolkit [59, 60], a
free-to-use toolkit for programming and running surveys, chosen because it allows
to easily upload media files. Unfortunately, the toolkit did not allow to personalise
much the GUI, and all the files had to be presented together, included the refer-
ence. This fact introduced some confusion in some participants, in particular some
of them reported that it had been difficult to identify the reference file. Moreover,
since the test had to be conducted remotely, no clarification about this issue could
be provided during the course of the test. Another problem arose in the displaying
of the length of the audio clips, in particular, for some of them it was much longer
than the real one, nevertheless, the files played normally. Information about this
issue was provided before starting the test.

6.4.1 Survey Results

In total, twelve people participated to the test, they were between 23 and 47 years
old, with a mean age of 29. All the participants except one had at least a Bachelor’s
Degree, some in engineering and others in arts. Among the participants, 10 either
played an instrument for more than 4 years, or are used to listen to music for at
least 2− 3 hours a day. The instruments played by the subjects are of various kinds,
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Figure 6.4: Average ratings for the drum samples. From left to right: Hidden Reference, No Cut,
Bark 600, Linear 20, Bark 300, Linear 10, Anchor.

and included the test samples instruments: drums, guitars and vocals. Moreover,
seven participants stated to have experience in music production and/or recording.
Eleven subjects stated to have used over-ear headphones during the questionnaire,
of various brands, whereas one used in-ear ones.

Drum Samples

Figure 6.4 displays the average ratings for the drum samples. The graph provides
many information: first of all, the anchor got an overall low rate. This is a good
fact: this file was missing all the high frequencies, and this rating means that testers
payed attention to these details. The second interesting detail which emerges from
the picture is that the Bark 600 version got a rating which is higher than both the
No Cut version and the hidden reference. Even though this result could be biased
by many testing uncertainties, such as the different headphones used by the sub-
jects, or the different environment in which they were, it indicates that the Bark
optimisation yields surprisingly good results. This is confirmed by the fact that
also the Bark 300 version got an higher rating with respect to both the linear ver-
sions, even though Bark 300 has a higher level of optimisation than the Linear 20,
as it is reported in Table 6.1. These results act also as a confirm that the correla-
tion studies yielded accurate results, in fact, the overall correlation coefficient of
the Bark 300 optimised spectrum is higher than the one relative to the Linear 20
version, this can be seen by comparing Tables 6.2 and 6.2.
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Figure 6.5: Average ratings for the guitar samples. From left to right: Hidden Reference, No Cut,
Bark 600, Linear 20, Bark 300, Linear 10, Anchor.

Guitar Samples

The results obtained with the guitar samples, depicted in Figure 6.5 are more uni-
form. Again, the anchor was correctly recognised and, this time, so were the
hidden reference and the No Cut versions, which got the highest ratings. In spite
of this, the Bark 300 version obtained a surprisingly good result again, this time
even higher than the Bark 600. While the latter fact might be due to some bias, this
is still a confirm of the good quality of the Bark optimisation.

Vocals Samples

The vocals samples average ratings are illustrated in Figure 6.6; it is possible to
observe how, again, the anchor was correctly recognised. This time, however, it is
clearly visible how both the linear optimised versions got really low ratings. Such
a result cannot be justified only by a bias in the test, and means that the linear
optimisation introduced some strange artifacts, particularly evident in the vocals
samples. The ratings obtained by the other samples are another confirm of the
good quality of the Bark optimisation.

6.5 Final Considerations

The results of both the technical evaluation and the perceptual test indicate that
the optimisation technique implemented is able to maintain a high grade of qual-
ity with respect to the original sound while, the same time, allowing for a drastic



6.5. Final Considerations 57

Figure 6.6: Average ratings for the vocals samples. From left to right: Hidden Reference, No Cut,
Bark 600, Linear 20, Bark 300, Linear 10, Anchor.

reduction of the computational power requested by the plate for running, as re-
ported in Table 6.1. In addition, the outcome of the two experiments show that
the Bark scale is probably the best way for dividing the frequency axis when per-
forming the least squares optimisation. In fact, the audio files processed this way
obtained the best results in terms of both correlation coefficient and perceptual
rating, while still requiring at least 80% of time less to compute with respect to the
non-optimised version of the plate. These results also indicate that the overall cor-
relation coefficient, if accompanied by psychoacoustic considerations, is a reliable
indicator for measuring the differences between two frequency responses.

In the last question, in which subjects had to provide their personal opinion on
the reverberation effect, the comments were generally positive, nevertheless, the
majority of them stressed the fact that the effected sound was too wet. This is true
indeed, in fact, it is very rare to use a reverb in a completely wet mode. In spite of
this, it was decided not to mix the wet and dry sounds to let the testers focus on
completely on the reverberation effect. In the context of a practical use of the plate
simulation, this would be used for sure with a wet/dry control, for deciding how
much reverb to introduce. Nevertheless, as previously mentioned, further testing
need to be conducted to test the overall sound quality of the plate model.





Chapter 7

Conclusion & Future Work

In this work, a physical model of an EMT 140 plate reverb was implemented with
MATLAB and presented, along with an optimisation technique which allows to
reduce the computational time. In particular, the algorithm includes a physically-
based damping, with two damper models, several materials, an exact numerical
integrator for solving the modes equation and an optimisation techniques based
on linear least squares, which allows to analyse the frequency spectrum in linear or
Bark bands. An evaluation was performed, which indicated that the Bark scale is
the best way for analysing the plate, and that the optimisation allows to reduce the
computational time by the 80% without affecting too much the sound quality. Not
having a real EMT 140 at hand made it impossible to perform a sound comparison
for understanding if the simulation is actually cabable of accurately emulating the
plate. Nonetheless, the overall opinions on the reverb given by the testers were
positive.

In the future, many improvements could be performed on the model. The first
and most obvious would focus on building a real time plugin with the C++ lan-
guage. As previously mentioned, since it allows to work at a lower level, the use of
this programming language would speed up the computation even more, allowing
to run the stereo version of the plugin in real-time. Possible further work include
a more accurate model for the damper, based on measurements on a real EMT
140 device, and the formalisation of a spatial extended punctual actuator. In fact,
at the moment, the exciter is considered being concentrated on one spatial point,
and modeled with a Dirac delta, while in the real case it has a spatial extension.
Another improvement would involve to link the damper position to the T60, thus
providing a control similar to the one present on the real device, which indicates
the decay time at 500 Hz. Having an actual EMT 140 unit at hand to measure
would allow to perform a comparison with the algorithm sound. This would also
make possible to better tune the optimisation, by finding several fixed values for
the maximum modes limit for choosing between sound quality and performances.
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