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Chapter 1

Introduction

The evaluation of similar of musical signals is important in several fields. For
example, in on going research fields such as musical source separation, copyright
music analysis and musical identification algorithms. The aim is identifying from
two musical signals how well one is said to resemble the other. In other words,
if a person listens to two musical signals, how would they rank the likeness of
one signal to another. Improving a similarity metric has many benefits, in an
ideal case it would eliminate the use of listening tests for assessing the quality
of signal altering algorithms against a reference signal. It would also improve
the reproducability and consistency of results across these areas. It is certainly
possible to make significant statistical claims using listening tests but there is an
opportunity to reduce the introduction of biases in these tests and the associated
time and cost of listening tests are often prohibitive. This thesis will focus on the
development of a tool for replacing listening tests for musical source separation.

Figure 1.1: Source Separation Example
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2 Chapter 1. Introduction

Firstly to understand the replacement for listening tests, source separation for
musical signals must be understood. It is described as separating a mixed signal
into it’s constituent parts. For example, applied to a pop song, source separation
algorithms may render two signals such as the singing and accompaniment similar
to to Fig 1.1. Here the sources 1 and 2 refer to the vocals and accompaniment of the
pop song, the mixture is the combined audio signals the source separation system
aims to separate this mixture back into it’s constituent parts. There exist other
algorithms that separate signals in several signals too, and as such would separate a
pop song into singing, drums, guitar, other. The interest in source separation lies in
it’s many uses. Music remastering relies upon the original separated audio signals
(also called stems) which are recombined through the use modern music software.
However, if these stems are missed, source separation provides an opportunity
to remaster material that previously would have proved difficult. This has been
shown by Mark Linett in his remastering of Beach Boys albums 1.

The development of source separation algorithms is an active research area. The
evaluation of these algorithms is not standardised but there are several common
methods as discussed in chapter 2. There is significant criticism of these metrics,
however they form the basis of evaluation for literature in the research area [13].
In an effort to address the issues brought up by Cano et al [5], a perceptually
motivated metric for musical similarity is proposed to model human hearing. The
advent of new machine learning techniques, access to more data than ever before
and increase in computation power has drastically improved the results neural
networks in recent years and comparisons between neural networks and how a
human brain works motivates the strong use of such a machine learning technique.
By correlating the results of our metric with several datasets the aim of this masters
thesis is to show this new metric can accurately predict a similarity score as given
by a human listener.

1https://www.soundonsound.com/people/mark-linett-remixing-beach-boys



Chapter 2

Literature Review

2.1 Blind Source Separation

Source Separation has it’s origins in the ’cocktail party effect’ whereby individuals
are able to distinguish different conversations when multiple people are speaking
at the same time and what it would take to build a machine that would accomplish
this task [6]. In 1990 Bregman introduced Auditory Scene Analysis (ASA), a model
for how the brain understands its surroundings through sound [2]. I.e a model for
how humans can decompose mixed audio signals into the constituent components
of that mixture. ASA was then extended to Computational models in an attempt
to emulate the results of signal processing similar to the brain [3]. These signals do
not have to be people in conversation however. One major application is in Music
Information Retrieval where a musical signal such as a song is deconstructed into
the singing voice and accompaniment tracks. The first literature on blind source
separation comes from Jeanny Herault and Christian Jutten’s H-J algorithm for
separating two independent source signals [41]. This opened a new research area
and several categories of techniques have since been used when approaching the
problem of source separation.

2.2 State of the art in Source Separation

2.2.1 Machine Learning

Machine learning is the set of techniques that result in computer programs that
learn to imitate intelligent behavior. These techniques include but are not limited
to K-means clustering, logistic regression, decision trees and deep neural networks
(DNNs). DNNs have become extremely powerful and prominent in recent years
for several reasons. They directly benefit from the increase in available computing
power, the quality and quantity of data available and have shown to have applica-
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4 Chapter 2. Literature Review

tions in many research areas such as healthcare, education, chip design and in this
case music information retrieval [42]. In blind source separation machine learning,
and more specifically DNNs represents the state of the art [9]. Defossez et al shows
a hybrid demucs model which includes both spectral and waveform domain Unet
models as in figure 2.1. It builds upon the previous work by combining popular
techniques in both domains.

Figure 2.1: Hybrid Spectrogram and Waveform Source Separation Architecture [9]
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2.2.2 Waveform Domain

Wave Domain DNN models have only been explored recently with a Wavenet for
speech denoising model [26], Conv-Tasnet [21] (both adapted for musical source
separation) and Wave-U-Net being presented by Lluis and Pons [20]. There are sev-
eral advantages to source separation in the waveform domain. In spectral models,
the phase information is often discarded when the data is represented as power or
magnitude spectrograms. As a result, there is a loss of information and may cause
phase related problems. In contrast, waveform domain models do not have this
issue. Other machine learning techniques used for source separation involving
matrix factorisation may benefit from a non-negative constraint which are easily
implemented with magnitude and power spectrograms (such as NMF). Waveforms
are typically in the range of [-1,1]. [20]. Demucs when first published showed a
big improvement in source separation in the waveform domain and at the time
showed a higher signal to distortion ratio on the MUSDB dataset than any other
published work including spectral based models [10] [25].

2.2.3 Spectral Domain

The Spectral Domain has been more thoroughly explored for Source Separation of
musical signals. It is a representation of the variation of the frequencies within the
signal over time as shown in figure 2.2. The power or magnitude spectrogram is a
very common transform before separation. The Signal Separation Evaluation Cam-
paign (SiSEC) 2015 proved a significant improvement through the use of a neural
networks for source separation [22]. The model which used a spectrogram input
presents a relatively simple feed forward neural network [35]. SiSEC 2016 contin-
ues this trend with an improvement blending the previous winner with a recurrent
neural network and data augmentation [19] [36]. The best model of SiSEC in 2018
was a Deep Neural Network using multiscale multiband densenet with a spectro-
gram as an input again [33] [34]. The vast majority of the best submissions from
the SiSEC literature show how ubiquitous spectrograms and the spectral domain
are in source separation. Hybrid Demucs [9] partly uses as Unet [27] architecture
with a spectrogram as an input. There have been different techniques for the ouput
including a mask of the input, modulation [16] or a Complex as channels (where
the input real and complex parts are concatenated) spectrogram.
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Figure 2.2: Spectrogram Example from the SASSEC dataset [39]

2.3 Evaluation

Typically Source separation metrics rely upon a reference source signal from an
original mixed source such as the Signal Distortion Ratio [37]. This is then com-
pared to an algorithms resulting estimated signal. This workflow is shown in figure
2.3. For musical source separation, the original mixture is often a song and the es-
timated sources are the vocals and accompaniment. The metric scores are then
calculated with respect to reference signal I.e. isolated vocals and accompaniment
which then informs the quality of the source separation.

Some metrics such as PEASS IPS scores [11] also require the original mixed
signal as shown in the metric fig 2.4

2.4 BSS EVAL

In source separation the aim is to decompose the mixed source into its constituents.
There is a target signal (Starget(t)) which we aim to produce but in reality it is
unlikely a method will work perfectly. The estimated target signal (Ŝtarget(t)) can
be said to approximate Starget but with some additional associated error etot(t).
etot(t) can be further decomposed into three error types:

• sinter f (t): Interference from unwanted sources. E.g unwanted audio from the
original source which was not removed.
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Figure 2.3: Typical Metric Workflow

• snoise(t): Perturbation noise not from the source. E.g. noise that is contained
in the source pre-separation.

• sarti f (t): Artifacts introduced by the separation algorithm. E.g. if any values
in the padded section of the sample are non-zero.

2.4.1 Signal Distortion Ratio

The signal to noise ratio (SDR) is an almost ubiquitous metric for source separation.
It’s described by equation 2.1.

SDR =

∥∥starget(t)
∥∥2∥∥sinter f (t) + snoise(t) + sarti f (t)

∥∥2 (2.1)

The signal distortion ratio is a measure of the quality of the final output relative
to the unwanted sources of distortion in the output. For calculation the numerator
in equation 2.1 is the ground truth of the model, the samples which we aim to
recover. The denominator in equation the difference between the ground truth (the
target) and the neural network output.

2.4.2 Signal Interference Ratio

The Signal Interference Ratio (SIR) is a measure of the signal to interference from
unwanted signals. As seen in equation 2.4 it is similar to SDR but omits the artifacts
and noise associated with the SDR. It can help give a better idea of the leakage of
other sources into the estimated signal relative to the reference signal.
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Figure 2.4: Extended Metric Workflow

SIR =

∥∥starget(t)
∥∥2∥∥sinter f (t)
∥∥2 (2.2)

2.4.3 Signal Artifact Ratio

The Signal Artifact Ratio (SAR) is a measure of the ratio of the estimated signal to
the artifacts found in that signal. I.e artifacts caused by the separation method. Of-
ten these artifacts are reduced in recent algorithms by making the initial reference
signal a linear combination of the estimated separated signals.

SIR =

∥∥starget(t) + sinter f (t) + snoise(t)
∥∥2∥∥sarti f (t)

∥∥2 (2.3)

2.4.4 Signal Noise Ratio

The Signal Artifact Ratio (SNR) is a measure of the estimated signal to the dif-
ference between the reference and estimated signal. It is less commonly used in
source separation.

SIR =

∥∥starget(t) + sinter f (t)
∥∥2

∥snoise(t)∥2 (2.4)
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2.5 PEASS

2.5.1 Interference-related perceptual score

The interference perceptual score (IPS) is a method of transforming a set of Signal
to Distortion ratios into a score that is more representative of the human per-
ception. This evaluation is done using the PEASS evaluation toolkit and using a
non-linear mapping using a Single-output two-layer Perceptron network with one
hidden layer [11]. The Perceptron was first introduced in 1958 by Rosenblatt [28].
It is a supervised learning algorithm that aims to model the neurons of the human
brain and while initially used in binary classifiers, it can be used with non-linear
’smooth’ activation functions to learn non-linear mappings [12]. In the mapping to
give more context to the SDR over a set of examples. The IPS score is sometimes
referred to as more important than the SDR scores individually [8].

A correlation study for the PEASS and BSS Eval metrics was performed by
Cano et al [5]. The PEASS is considered a better toolkit for analysis of musical
signals but while PEASS may work very well on the kinds of algorithms it was
designed with, it does not generalize well to other types of algorithms as the ones
used in this work. Often BSS Eval and PEASS scores were not a good predictor
of the MOS scores obtained using listening tests. This shows a clear discrepancy
between the analytical metrics used for evaluation and human listening scores. As
a result, it is unclear whether PEASS should be used to indicate how a human
would interpret the result of a seperation algorithm.

Furthermore, Ward et al [40] notes that further work is needed to reduce the
error in line with tolerable limits.

2.6 Listening Tests

Less common than Signal ratios, listening tests provide direct feedback from hu-
man listeners to evaluate separation algorithms. Advantages of listening tests re-
sult from the human interaction, and the applications for many separation algo-
rithms involve human listeners anyway. Hence, it is intuitive to perform listening
tests in the evaluation of newly developed system. There are clear disadvantages
however. It takes longer to collect data, it can be expensive and individuals or
groups can have biases which can be difficult to account for. The most common
listen test formats for separation algorithms are Mean Opinion Scores (MOS) and
MUlti-Stimulus test with Hidden Reference and Anchor (MUSHRA)
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2.6.1 Mean Opinion Scores

MOS was originally developed as an ITU standard for transmission of audio [1]
but has been co-opted for use in singing voice separation [17] [9]. The method
involved is a five point category judgement scale as shown in 2.1. The scale has
become more common in recent individual source separation research but remains
useful as a tool for comparing algorithms [5].

Listening Quality Scale
Quality Score
Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

Table 2.1: MOS scale

MOS is often used as an extra metric to provide further analysis of source
separation systems. It is mostly used in literature for comparative studies on the
same dataset (typically MusDB) [10] [9] [20]. However, in the meta-analysis, SiSEC
campaigns there are no perceptual evaluations.

2.6.2 MUSHRA

MUSHRA is a methodology for conducting listening tests. It is based on a 0-
100 scale that is defined in ITU-R recommendation BS.1534-3 [4]. The MUSHRA
method defines the method of collection with the aim of reliable and repeatable
results. The assessor should evaluate the audio on a scale of 1-100 continuous
scale which are derived from the adjectives as seen in table 2.5

Figure 2.5: MUSHRA scale

MUSHRA has been used in evaluating singing voice separation and in investi-
gations into different source separation metrics [40]. MUSHRA to the knowledge
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of the author has not been used as a metric in any source separation literature. It
is included in many datasets however.

2.7 Datasets

2.7.1 SEBASS

A Consolidated Public Data Base of Listening Test Results for Perceptual Evalua-
tion of BSS Quality Measures is a collection of 5 musical datasets that have been
used widely in source separation literature [15]. Each subset of data contain the
signal mixtures, reference signals, separated signals, a label of the human listener,
the separation algorithm and also human perception scores collected using the
MUSHRA methodology as discussed in the previous section 2.6.2. The data is
available online 1 and provides over a gigayte of data in total.

In table 2.2, the breakdown of the subsets within SEABASS is available. The
datasets with parenthesis are split to prevent unwieldy excel datasheets. The list
below references where each dataset was first presented or used in literature.

SASSEC Stereo Audio Source Separation Evaluation Campaign [39]

SiSEC08 The 2008 Signal Separation Evaluation Campaign [38]

SAOC First Stereo Audio Source Separation Evaluation Campaign [39]

PEASS-DB Subjective and objective quality assessment of audio source separation
[11]

SiSEC18 The MUSDB18 corpus for music separation[38] [25]

Dataset Algorithms Separations Listeners Size Number of Rating Scores
SASSEC 11 14 6 333Mb 2730
SiSEC08 9 14 14 282Mb 2156
PEASS-DB 6 10 7 83Mb 560
SiSEC18 (1) 21 6 19 912
SiSEC18 (2) 27 9 14 359Mb 1008
SiSEC18 (3) 26 9 11 792
SAOC (1) 7 14 12 1512
SAOC (2) 6 14 9 615Mb 1008
SAOC (3) 6 14 8 896

Table 2.2: Subset Datasets available in SEABASS

1https://www.audiolabs-erlangen.de/resources/2019-WASPAA-SEBASS

https://www.audiolabs-erlangen.de/resources/2019-WASPAA-SEBASS
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2.7.2 MUSDB-HQ

An extension of the MUSDB dataset that has been widely used in recently literautre
is the MUSDB-HQ dataset [24]. This is a source separation dataset containing the
reference mixtures and separate tracks for the same 150 songs contained in the
MUSDB [25] but instead of being stored as compressed .mp4 files they are stored
in raw wav files at a sample rate of 16kHz.At this time there does not appear to
be any papers for any algorithms with rating scores for these files. The dataset is
publicly available online 2

2https://zenodo.org/record/3338373

https://zenodo.org/record/3338373
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Design

To model how a human would score the similarity of two musical signals, two
important design aspects arise. What is the best technique for a machine to learn
such a process and what data should be presented to the model to learn from. The
state of the art for many forms of artificial intelligence relies upon Neural Net-
works. A Neural Network is a machine learning technique vaguely inspired by the
human brain through the use of layers of ’neurons’ [29]. These layers are then con-
nected together in different model architectures to make a Deep Neural Network.
A deep neural network can be thought of as a universal function approximator
which can produce a arbitrarily complex function. The universal approximation
theorem shows that any function can be modelled [7]. However in reality, neural
networks will not achieve this function perfectly for a number of reasons including
poor or limited data, a finite amount of a computing time and complexity of the
network required.

3.1 Dense Layers

A dense layer is comprised of many neurons which receive an input from previous
layers or inputs from data. They compute this data and then feed the output
forward to the next layer. The formula for each dense neuron can be seen in
equation 3.1 where x is the input to the neuron, w is a learned weight associated
with the neuron and b is the bias, another learned parameter. f is an activation
function which calculates the output y based upon the input parameters. It is
non-linear and there are several widely used activation functions today.

y1 = f (w1 ∗ x + b1) (3.1)

A layer of a DNN may be made up of hundred or thousands of these neurons
(typically a power of two). Each Dense node in a layer is connected to every node

13



14 Chapter 3. Design

in the previous and next layer. The equation for this next node after being passed
the output of the first layer is shown in equation 3.2.

y2 = f (w2 ∗ f (w1 ∗ x + b1) + b2) (3.2)

For a deeper neural network a more complex function can be learned. This
corresponds to better performance on a given task.

3.2 Convolutional Layers

A Convolutional layer is another form of popular layer in machine learning. These
layers contain a set of learned filters (also called kernels). This form of layer is
particularly useful when deal with image data as the layer is shift invariant [23].
The kernel is usually much smaller than the image and convolved with it to create
an activation map. The weights of kernel are learned parameter. An activation map
represents which part of the input to the layer is most salient. For example, given a
convolutional filter of size 3x3 as in figure 3.1 the kernel is tuned for vertical lines
as a feature. When passing over a vertical line the activation will be at it’s most
salient. Hence, the activation map is effectively showing us where the feature, in
this case a veritcal line, is located in the image.

-1 9 -1
-1 9 -1
-1 9 -1

Table 3.1: Vertical Edge Detection Filter

This activation map is then used as the input to a non-linear activation function
like a dense layer. This allows the convolutional layer to learn non-linear features.
Typically, multiple convolutional layers are used where the output from one is
passed to the next. This allows for more complex features to be learned the deeper
the network. Convolutional layers are made up of multiples of these filters, again
usually as a power of two.

3.2.1 Activation Functions

Activation functions are used to give layers in neural networks non-linearity [18].
There are many popular functions some of which are shown in figure 3.1. The
choice of activation function is dependant on the application and data. The Rec-
tified Linear Unit function known as Relu is extremely popular. However, for
negative values the gradient of Relu is 0. During training of a neural network this



3.3. Preprocessing and Features 15

means if the input are negative the network will not learn from the new informa-
tion. If there are negative values tanh may be appriote but only if the values of the
inputs are bounded between -1 and 1. For the data in the SEABASS dataset, there
are positive and negative values greater than 1 and less than -1. The exponential
linear unit (elu) would be appropriate in this case then and is defined in equation
3.3.

Figure 3.1: Activation functions

Elu(x) =
{

x x > 0
α.(xα − 1)) x <= 0

}
(3.3)

3.3 Preprocessing and Features

3.3.1 Average Rating Scores

The audio and rating scores form the raw data for the inputs to the model. How-
ever there is a huge variation in the rating score between listeners. A result of
this is that when trained on raw data, the model finds it extremely tough to learn
anything significant. A possible solution to this is to average the rating scores be-
tween the listeners. This increases the quality of the data by showing what the
average person would rate the separation. In the SASSEC dataset there are 10
listeners which results in a 90% reduction in data point. The averaging of rating
score significantly reduces the amount of data however. This trade-off is necessary
as models trained with the raw data consistently produced a constant rating score
irrespective of the input audio. This shows that the raw features are not meaning-
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ful. There is too much variance in the rating scores per listener for the network to
learn to predict rating scores. A model was trained with the raw data and during
inference on the SAOC dataset the predicted rating score would always output
34.051 as shown in figure ??. The average rating score within the total dataset was
36.470 showing this averaging and the failure of the model to learn.

3.3.2 Spectrograms and Museval features

Convolutional data works best on image data. There is a history of convolutional
neural networks for audio as discussed in 2.2.3. For the input tot he convolutional
layers the raw audio is converted into spectrograms. For each channels in an audio
track a spectrogram is calculated over a time step of 4096 samples. There 4096
faster transform bins per time step and the hop length is 1024. This results in a
spectrogrm of with dimensions 1024 x 485 for each channel. An example of which
can be seen in figure 3.2.

Figure 3.2: Constant, average output example

Features are also calculated explicitly from the raw audio. These features are
the SDR, SIR, SAR and SNR. They are calculated using the museval python library
[32].
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Figure 3.3: Spectrogram Example

3.3.3 Model Architecture

One of the most popular types of model for image classifacation is the VGG model.
It has a series of convolutional layers followed by dense layers. The dense layers
compute features of the spectrogram and the dense layers are used in VGG net to
classify images. For this application, the network is used to predict a rating score
and is therefore a regression model. The model employs series of convolutional
layers with increasing filter sizes but using the Elu activation function. The max
pooling is removed and batch normlisation is added after each convolutional layer.
Due to constraints on the computing power available the layers in this model are
smaller than are seen in VGG [30].

Aswell as the features generated by the convolutional layers, the SDR, SAR,
SIR and SNR are calculated. These features are then concatenated at the beginning
of the dense layers. This combined feature generation produced the best results
compared using only one set of features. The model architecture is visualised in
figure 3.4. For hyperparameters, the batch size is set to 8, this is constrained by the
computing power available. The optimizer Adam with a learning rate of 0.01 and
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a mean squared error loss function is utilised.
After each dense layer there is a dropout layer. Dropout is a regularisation

technique which attempts to reduce the likelihood of overfitting and co-adaptation
for a model. During each time step during training, a random set of neurons
are turned off. When data is passed through the model, this means the neurons
contribution to the next layer is not used and the weight of that neuron is not
updated in that timestep. It prevents co-adaptation whereby different neurons
have highly correlated behavior I.e. they have the same weights. Overfitting occurs
when the network is large enough to ’learn’ all of the inputs and outputs, this
results in poor generalisation during inference when previously unseen data is
used as input [31].

After each convolution layer and before the activation function, batch normali-
sation is applied. Batch normalisation standardises input to a layer for each mini-
batch [14]. A mini-batch is a set of inputs which is less than the total total data. E.g
For the input to the first convolutional layer, a mini-batch is a set of 8 two channel
spectrograms.

Figure 3.4: Model Architecture

The model is comprised of blocks of these convolutional and dense layers setup
as shown in 3.5

3.3.4 Implementation

The model is implemented in Python 3 and Tensorflow 2. It is a free and open
source library for machine learning. Dataset is loaded and the explicit features
are calculated in the generate_dataset function. During development this allowed
for greater flexibility with experiments for different models, features and hyper-
parameters. however, this flexibility means there are no precalculated datasets.
Preprocessed datasets such as those stored in hdf5 files are typically faster to load



3.3. Preprocessing and Features 19

Figure 3.5: Block Architecture View
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Block Units Kernel Size Strides
Batch

Normalisation
Activation
Function

Padding

Conv Block 1 32 5x5 2,2 Yes Elu Same
Conv Block 2 32 3x3 2,2 Yes Elu Same
Conv Block 3 164 3x3 2,2 Yes Elu Same
Conv Block 4 64 2x2 2,2 Yes Elu Same
Conv block 5 128 2x2 2,2 Yes Elu Same

Table 3.2: Convolution Block Definitions

Block Units Activation Dropout
Dense Block 1 256 Elu 0.2
Dense Block 2 256 Elu 0.2
Dense Block 3 128 Elu 0.2
Dense Block 4 64 Elu 0.2
Output Block 5 1 None None

Table 3.3: Dense Block Definitions

and increase the speed of training. In training this model, the time to load the data
proved a significant bottleneck.

Training for this model was done using the University of Aalborg machine
learning workstation and took approximately 72 hours on a Nvidia TITAN X Pascal
graphics card. The code for this project is available at:

https://github.com/dwoodw/audio-perception-loss.



Chapter 4

Evaluation and Results

The aim of audioConv is to replace or supplement the evaluation of blind source
separation systems. The ideal model should predict the rating scores as accurately
as possible. In order to do so, there should be a strong correlation between the
predicted rating score and the listener rating scores in the datasets. For each data
point we compute the predicted rating score and compare that with the user rating
scores.As the ubiquitous measure of blind source source separation, as a bench
mark a comparison should be made to the SDR’s correlation with the user rating
scores.

4.1 SASSEC

The SASSEC dataset is a subset of the SEASBASS. From 2008, it is oldest dataset
used. It contains 2731 different trials and shows a correlation of 0.497 between the
SDR and the listener rating scores. The audioConv metric shows a correlation of
0.814. A significant improvement in correlation over just the SDR as seen in figure
4.1 & 4.2
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Figure 4.1: SASSEC SDR v Listener scores

Figure 4.2: SASSEC audioConv v Listener scores
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4.2 PEASS-DB

The PEASS-DB contains 490 datapoints and shows a very weak correlation between
the listeners rating scores and the SDR of 0.153 in 4.3. The audioConv model shows
a very weak correlation of 0.044 in 4.4. The model also fails to predict any rating
scores between [0,14] and [66.100].

Figure 4.3: PEASS SDR v Listener Scores
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Figure 4.4: PEASS audioConv v Listener Scores

4.3 SiSEC08

The correlation is 0.538 for the SDR and 0.821 for the audioConv metric. Once
again showing significant improvement over a large dataset.



4.3. SiSEC08 25

Figure 4.5: SiSEC08 SDR v Listener Scores

Figure 4.6: SiSEC08 v Listener Scores





Chapter 5

Further work

5.1 Datasets

In the duration of the project two different problems were presented as difficult to
overcome. Firstly, the quality of data proved to be a significant issues. This is not
due to the method of collection but because there are very few publicly available
datasets. I recommend that a further dataset is collected using the most current
source separation models. Neural networks benefit in general from more good
data and I believe that the model would improve if a larger dataset was available.
The methodology of collecting this dataset should also take into account some sort
of training for the listeners to produce more consistent rating scores as this proved
to be a problem throughout this project.

5.2 Model Architectures

The number of neural network architectures is always growing with larger and
larger models proving to be the state of the art in many research areas. The nvidia
titan that this model was trained on has 12Gb of memory which was the constraint
for the size of the model. New hardware improvements could support bigger
models that may perform better, for example convolutional layers the size of newer
VGG style models.

Other types of network architecture could be employed to improve the model
outcomes too. One further way of approaching this project that was not explored
was treating it like a classification problem. Wavenet is an audio generator in the
time domain and predicts the next point in the waveform by classifying what the
most likely outcome would be. A similar approach could be adopted in model by
aiming to classify the model into a rating score. This would also bound the output
of the output of the model between 0 and 100.

27
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Other features could also be produced for concatenation in the dense layers.
Peaq is an audio evaluation metric for perceived audio quality. It could not be used
in this case as there are separations in the dataset that do not contain voices and
this is a requirement for Peaq. A model trained only for singing voice separation
could used this feature.



Chapter 6

Conclusion

The goal of creating a new metric for blind source separation has not fully been
realised but this thesis shows the potential of such a goal. Further work is needed
to improve audioConv. The PEASS dataset shows only a very weak correlation
and is definitely not ready to replace the SDR as the measure of blind source
separation. However, for the large dataset the audioConv metric shows signifi-
cant improvement over the SDR proving the potential of a Neural Network based
model for evalua There are several suggestions in section 5 improve the model but
the biggest issue is that the data available is extremely noisey and while data aug-
mentation helps, the reduction in the size of the dataset results in too little data for
the model to learn significantly. However, it is clear that there is meaningful infor-
mation within the datasets and the correlations reflect that a future model could
potentially imporve upon and replace the current practice of SDR only evluation.

Furthermore, the analysis of the dataset shows the drawback of using only
SDR and in source separation models the use of only the SDR can now seen as
potentially inaccurate in representing and comparing results.
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