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0.1. Abbreviations vii

0.1 Abbreviations

MSC: Master’s in Science
ECTS: European Credit Transfer and Accumulation System
HVAC: Heating, Ventilation and Air conditioning
DHW: Domestic Hot Water
PG: Performance Gap
EPG: Energy Performance Gap
DK: Denmark
AHU: Air Handling Unit
HDD: Heating Degree Days
CDD: Cooling Degree Days
BE: Building Energy (indicates software)
BR: Building Regulations
PPD: Predicted Percentage of Dissatisfied
DS: Danish Standards
EN: European standards
CEN: European Committee for Standardization
BMS: Building Management Systems
IEC: Indoor Environmental Comfort
CO2: Carbon dioxide
DMI: Danish Meteorological Institute
ESBO: Early-Stage Building Optimization
CAV: Constant Air Velocity
VAV: Variable Air Velocity
TH: Til Højre (to the right)
TV: Til Venstre (to the left)
ST: Stue (ground floor)
MET: Metabolic Equivalent of Task
DRY: Danish Design Reference Year
KPI: Key Performance Index
ASHRAE: The American Society of Heating, Refrigerating and Air-Conditioning Engineers
IWEC: International Weather files for Energy Calculations
GHI: Global Horizontal Irradiance
DNI: Direct Normal Irradiance
DHI: Diffused Horizontal Irradiance
AM: Ante Meridiem
PM: Post Meridiem
MPC: Model Predictive Control
DH: District Heating
SH: Smart Home

Table 1: List of abbreviations
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Chapter 1

Introduction

Countries around the world face a key choice of boosting green transition to re-
duce global and local environmental impacts, as well as resource dependence from
imports. It includes a shift to renewable energy, manufacturing of electric vehicles
and construction of energy-efficient buildings [1]. In 2020, approximately 57 %
of the European energy demand was covered by energy imports from which 98
% were petroleum products, natural gas, and solid fossil fuels [2]. Even though
renewable energy source share doubled from 11 % in 2006 to 22 % in 2022, carbon
reductions and energy import reliance decrease are not happening fast enough in
the power sector [3]. To relief the energy demand, improve energy security and
boost the share of renewables, the building sector, which accounts for 16 % of
related emissions, needs to be optimized. It is considered a priority due to the
sector’s potential to be upgraded as the insulating materials and HVAC systems
advanced through the last decades. This can be observed in the newly constructed
buildings that follow current energy-use regulations. Although the majority of the
standards are targeting new and future buildings, it is expected that 85-95 % of
the European building stock that will exist in 2050 has already been built [4]. In
the case of Denmark, dwellings built before 1960 already make up for 70 % of the
entire stock and are considered high energy use compared with current standards.
As a result, based on the literature presented above, buildings in Denmark ac-
count for 40 % share of total countries’ energy use (space and Domestic Hot Water
(DHW) heating account for approximately 25 % [5]) and 30 % of carbon emissions.
The optimization potential is substantial and can be seen in Figure 1.1, where the
change in energy demand of the single-family houses is presented. For this rea-
son, it is vital to focus on energy improvement plans to retrofit old buildings in an
optimal and structured manner [5], as well as establish a method of maintaining
operational building stock to ensure intended efficiency.

1



2 Chapter 1. Introduction

Figure 1.1: Danish building codes from 1961 to present: Maximum allowed energy demand per year
and m2 heated floor space in a new 150 m2 residential building [6]

Nowadays building design and performance evaluation are usually based on
a nationally accepted and standardized method. Denmark is not an exception.
Building Regulations and supplementary software BE18 are primary directives
in benchmarking energy performance. However, through various studies, cur-
rently used standard calculation procedures have been reported to display devia-
tion when compared to the energy use during normal occupancy conditions. This
mismatch in theoretical and actual energy performance is defined as The Perfor-
mance Gap. The outcome of using standardized values can vary largely with some
sources estimating 34 % [7] and others up to 80 % [8] increase or decrease in energy
use during the operation. Such a magnitude of the performance gap makes it dif-
ficult to achieve model-based targets and benchmark the existing building stock.
These discrepancies interfere with an understanding of the building systems by
lacking objective and reliable information on energy use. It prevents effective man-
agement and implementation of improvements that can be utilized by prioritising
poorly performing facilities, identifies best practices that can be replicated, estab-
lishes reference points for measuring and rewarding good performance, as well as
increases general awareness of energy efficiency among building occupants that
can result in behaviour changes.

Steady-state and dynamic white-box models are usually built to assess the per-
formance of the designs and existing structures. Opposite to the black-box models,
they have observable relationships between variables. In the building case, white-
box models combine the properties and interactions between static structural parts,
the dynamic HVAC systems and the external outdoor and indoor variables. As a
result of its comprehensive nature of connections, the designers can understand
how the model came to the results and seek further improvements. It guides the
development of simulation tools and identifies the areas requiring research [9] to
reduce the performance gap. One of the findings states the significant mismatch
between standardised values used to assume user behaviour and actual values
which occur in operating buildings [10]. Correspondingly, white-box models need
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to closely represent the actual behaviour of the external factors to result in a reliant
baseline for comparison internally among the users and externally between similar
type buildings [11]. Although the discrepancies between predicted and measured
performance are unavoidable due to the complexity of the buildings and uncer-
tainties in operation, describing its magnitude and underlying causes are useful
for the development of the assessment framework, especially, of the residential
multi-storey building stock.

With the development of digitalization and its impact on domestic spaces, there
is an increase in available data that describes the building performance and occur-
ring processes in them. Integrated Smart Home (SH) systems are usually in con-
trol of automatic temperature adjustment, light brightness levels, the position of
the window openings or weather compensation. It provides insight into historical
energy use and most importantly collects and stores information from installed
sensors.

Figure 1.2: Smart Home penetration in EU (2021 estimates) [12]

The SH penetration in Europe is presented in Figure 1.2. In the year 2022, it
reaches 17 % and is expected to pass the 25 % mark by the year 2025 [12]. However,
the share of SH users is larger in Western Europe with Denmark in the front. In
2019, 23 % of SH penetration was observed in Denmark compared with 10 % of
Europe’s average [13]. Due to the steady growth of building digitalization, there is
an increase of data on actual outdoor and indoor boundary conditions which later
can be used in building the baseline models. For this reason, studies that focus on
the usage of newly obtained data are becoming increasingly relevant.
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Figure 1.3: Process flow of the Standard and Actual assessments. Modified with permission from
one of the authors’ of the SATO Deliverable 3.1 [14]

One of the objectives of this project is to determine the performance gap be-
tween the standard and actual assessments of the case building using dynamic
white-box models. The standard evaluation is based on the standard weather con-
ditions, occupancy and key component parameters which are obtained from the
national building energy design guidelines. It represents the currently used frame-
work of the performance assessment and acts as a reference while quantifying the
baseline improvements when introducing the actual inputs. The actual assessment
measures the performance under real-life weather and occupancy conditions. This
concept is based on the H2020 project [15] in SATO and Deliverable 3.1 (see Figure
1.3). It is a part of a larger objective that seeks to define which systems, energy
components and appliances should be included in the assessment framework to
efficiently monitor and manage buildings. This master’s thesis focuses on one of
the proposed KPIs such as heating energy use and aims to contribute to the devel-
opment of larger assessment framework.

Even though many studies can be found that evaluate the performance gap in
the building industry, the residential multi-storey building sector is still relevant
to be investigated. One of the challenges is occupant authority over the build-
ing. Users in residential buildings tend to have more control over systems and
envelope operation. It is less likely for predictive models to capture the dynamics
and variance of occupants’ behaviour, resulting in a usually larger energy perfor-
mance gap [16]. The research publication which collected key sources regarding
the occupant role in energy performance states that the median gap and standard
deviation are larger in residential buildings (30 % ∓51 %) than in non-residential
buildings (14 % ∓27 %). Additionally, multi-storey dwellings are more complex
and have a larger number of thermal zones compared with single-family houses
which further increases the performance gap, especially using steady-state models.
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Table 1.1: Reference studies [17] [18] [15] [19] [20] [21]

General Measurements Results

Building type Location
Built
date

Original
model
inputs

Outdoor
conditions

Indoor conditions
EPG in %
before
calibration

EPG in %
after
calibrations

Residential
Aarhus
DK

2017

Custom
occupancy

schedules

Air temperature
sensors

Air temperature,
humidity,
ventilation air
velocity, CO2,
appliance usage

Heating: -2.43 % -

Residential DK 1999 Unknown -

Clothing, frequency
of thermostat
adjustment, window
opening

- -

Non-
residential

Odense
DK

2015 Standard

Air temperature,
wind speed,
solar irradiation
obtained from
the local weather
station

Air temperature,
humidity, ventilation
air velocity, CO2,
appliance usage,
illuminance, blinds
position. Occupancy
cameras

Regulatory
performance vs.
design
certificates:
27 % to 122 %

Calibrated
model vs.
measured:
-8.4 % to
6.9 %

Residential
(multi-
storey)

DK

1970

2011
renov.

Standard

Air temperature
obtained from
the local weather
station

Air temperature 110 % 51 %

Residential
(multi-
storey)

DK 2020 Standard -

Air temperature,
DHW use and
temperature,
AHU air frow rate

9 % -4 %

Residential
(single-
family)

DK 2017 Standard -
DHW use, operative
temperature, airflow
rate, CO2, RH

89 % -

For these reasons, this Danish residential apartment building case study is relevant
at the current time of analysis. As a reference, studies with similar focus or build-
ings’ location are presented in Table 1.1. It includes general information, output
variables, input assumptions, logged measurements and a summary of the results.

To conclude, benchmarking tools generate summary statements and communi-
cate information about the buildings’ energy performance in a format that is both
understandable and easy to use. Following this screening process, an energy ren-
ovation or user feedback proposals are selected considering a trade-off between
energy savings, investment, operation costs and emission reductions. However,
the use of standard practices when evaluating the existing buildings can lead to
a performance gap between the predicted and actual, real-life energy use. As a
result, the implementation of optimization measures is not utilized efficiently and
limits the development potential. Additionally, the residential multi-storey build-
ings matching the case scenario attributed to a larger median energy performance
gap than other types of buildings. Due to the inconsistent user behaviour, more
studies are needed to be followed to develop a better understanding of occurring
issues. For this reason, the residential multi-storey case building is benchmarked
using steady-state, dynamic standard and data-driven white-box models and the
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results are assessed to find the impact of utilized data and causes of the remaining
discrepancies.

1.1 Problem statement

The evaluation using outdoor boundary conditions is performed yearly on the
whole building level resolution during the period between 2015 and 2022. The
goal is to identify the relevance of using custom environment inputs and define
the average improvement in bridging the performance gap. The assessment under
the actual occupancy is evaluated on apartment-level resolution and is performed
for the January-September months of 2022. It focuses on energy use for heating
spaces and covers improvements in the performance gap under the acquired occu-
pancy data. The variations of data properties such as time-series are investigated
to present an optimal way of reducing the error. Also, the aim is to describe the un-
derlying causes of the remaining performance gap and conclude what type of data
is required to build a baseline when evaluating the performance of the existing
buildings.

1.2 Research questions

The following set of research questions are investigated within this case study:

Aim of the project:

"How different data quality on outdoor and indoor boundary conditions affect
the white-box model baseline for energy performance?"

Objectives:

• What climate data can be obtained from external sources and be utilized
effectively in the conventional white-box modelling software?

• How the energy performance changes when actual outdoor and indoor bound-
ary conditions are used in modelling?

• What are the remaining causes of a mismatch in the energy performance after
the introduction of the obtained data?

• What is the rate of percentage change in total energy use working with dif-
ferent resolutions of data inputs?



Chapter 2

Methodology

This chapter establishes the boundaries that define the scope of the project, focus
areas, and presents decisions which influence the choices.

2.1 Steady-state modelling

There are many methods and models that can be used to analyse the energy use of
buildings, however, there is no single one which is universally superior. It always
depends on what one wants to calculate and what data is accessible. This chapter
presents the background, advantages, disadvantages and application of the steady-
state models.

A steady-state method is preferred due to its simplicity which requires less
input data in comparison to the dynamic models. It can account for weather cor-
rection (Heating Degree Days (HDD) and Cooling Degree Days (CDD)), energy
consumption with thermostat set points, the ratio of heat loss coefficient (external
surfaces) and heating efficiency (heat pumps, boilers etc.) [22]. However, using
simplified methods can lead to reduced accuracy due to the lack of customization
provided by the steady-state model-based software. If a wide range of informa-
tion is available about the structure, systems and users, the possibility to use those
variables is limited.

An example of such limitations occurs when the internal heat supply is mod-
elled in the steady-state software BE18 [23]. The only parameters which define the
internal gains from the users and appliances are the zone area and expelled energy
during the time period (see Figure 2.1). It is convenient when designing residen-
tial buildings as inhabitant number, behaviour and use of equipment are unknown.
However, when evaluating the existing buildings and creating digital-twin models
higher input resolution can be obtained. It can be set point temperature, number
of occupants, type and efficiency of the equipment, domestic hot water use etc.
This information cannot be effectively used in steady-state models due to input

7



8 Chapter 2. Methodology

constraints.

Figure 2.1: BE18 software and example of available occupancy inputs

At present, such detailed information is rarely acquired. A small number of
building stock is equipped with sensors that track occupancy, equipment and use
of natural ventilation. As a reference, Smart Home household penetration is ex-
pected to be approximately 18 % in 2022 in Europe [24] from which only a part
of the homes will collect useful data for digital-twin design. For this reason, a
steady-state method of designing and evaluating buildings is common, especially
in the residential building sector.

2.2 Dynamic and Data-driven modelling

Even though building indoor processes are comparably stable to the other pro-
cesses used in mechanical engineering, the fluctuations create an impact on the
results when evaluations are performed over a long period of time such as daily,
monthly or yearly periods. For this reason, dynamic models of the building can
have many advantages when input criteria are fulfilled.

To begin, dynamic models without custom data inputs can partially resemble
steady-state, especially when it comes to internal gains caused by users and equip-
ment or in our case hot domestic water use. Factors which prevent use of dynamic
models:

• Lack of detailed blueprints

• Requires more labour than steady state models assuming there are no previ-
ous computer models made (which is often the case in renovation projects)

• Changes during the construction period which are not noted

• Usually required resolution of the input data of 1-hour intervals. Hard to
obtain it due to the small number of stock with SH systems
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However, if a wide range of information is available, dynamic models can be
superior due to their customization and the possibility to log various variables
throughout the systems. Some other advantages include:

• A building can be split into different zones with individual variables

• Access to integrate dynamic occupancy and equipment schedules

• Increased complexity often reduces the EPG

Figure 2.2: IDA ICE software: example of thermal zones

Following the previously mentioned example in the steady-state chapter (see
Figure 2.1), internal heat supply input variables are compared. Dynamic mod-
elling tool IDA ICE allows importing custom schedules of set points and occu-
pancy. As shown in Figure 2.3, the template schedule can be created and cus-
tomized for individual building zones. Additionally, activity level and clothing
can be added to define internal heat supply and Predicted Percentage of Dissatis-
fied (PPD) more accurately.

Fundamentally, the goals define the preferred choice of modelling, while data
accessibility dictates which modelling methods are available. Limitations can oc-
cur in both steady-state and dynamic models depending on the case project, thus
desired output and acquired input values need to be examined conjointly to result
in the optimal evaluation.
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Figure 2.3: View of the occupancy schedule on the IDA ICE software [25]

2.3 Delimitation and limitations

In this residential apartment case, both steady-state and dynamic models are used
to benchmark the building’s performance. These model designs are made by using
empirical data, obtained from reference documentation, and guidelines. The list of
local and international manuals, as well as standards that are used as a basis for
the case-building evaluation:

• Dansk standard (DS) 418 [26] – used for heat loss calculations. It covers the
outdoor and indoor temperatures for steady-state models, U-value and linear
loss calculation methods, as well as defines measurements for the estimation
of transmission areas.

• Bygningsreglementer 2010 (BR10) [27] – used to assume unknown parame-
ters of the building envelope components such as: U-value, G-values and
transmittance of the windows.

• SBI-direction 213 [28] – used as a primary manual in developing steady-
state models working with bygningsenergi 2018 (BE18) software. Unknown
ventilation rates and domestic water use are assumed based on the manual
guidelines.

• DS/EN 16798 [29] - used in defining standard DHW and user behaviour
inputs. It primarily covers operation time, indoor temperature set point and
internal gains from the equipment and users.
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All empirical data is obtained from the Building Management System (BMS),
detailed drawings and reports. No on-site inspection or qualitative analysis are
performed to validate the received documentation. It is assumed that all presented
renovation solutions are implemented into the design and no changes were per-
formed during the execution phase. The same approach is assigned to received
data. It is assumed that logs are credible and data treatment which involved han-
dling the errors was conducted prior. No analysis regarding data processing is
included in this report and only interpretations of provided data use are described.

Due to the limited extent of detail possible to conduct during the given period,
the project evaluation is narrowed down to the Heating, Ventilation and Cooling
systems (HVAC). It includes an analysis of the building section which influences
the performance of the HVAC systems such as: climate conditions, the structure
of the envelope, HVAC system components and internal gains. Even though ven-
tilation is a part of the evaluation, Indoor Environmental Comfort (IEC) is not
covered. The volume flow of each zone is assumed from the provided renovation
design documentation thus issues regarding moisture accumulation, Carbon Diox-
ide (CO2) concentration, as well as global and local discomfort, are disregarded.

Additionally, the covered zone of the case building is reduced to one staircase
(11th entrance) and the apartments connecting to it (see Figure 2.4). The building
has 5 separate HVAC systems which are assigned to each entrance. Due to the en-
velope and system layout similarities, only one HVAC system with its connecting
thermal zones is analyzed.

Figure 2.4: Zone division based on staircases and connecting apartments. Number indicate entrance
address number

Further points cover the validity and reliability of the data, also the limitation
of acquiring certain resolution information:

• Lack of weather data to incorporate all the input values that influence the
performance of the case building.

The use of custom solar radiation data is not provided by DMI [30]. Mean
radiation does not directly translate to the required climate input values of
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diffused and direct radiation. Also, limitations on the DMI data for a spe-
cific location for 2015-2022 data occur. Only 10 x 10-kilometre resolution is
achieved, while solar radiation data is used from the station in Skagen. In
addition, the last 24 hours of each year from 2015-2022 are not registered and
the missing data set is replaced with the previous days’ values.

• User behaviour is only obtained for the year 2022. Data regarding indoor
temperature set points from January 19th until August 31st is used and ex-
cludes September, October and December months.

• A simplified ESBO (Early-Stage Building Optimization) system-building tool
is used when designing HVAC systems in the IDA ICE model. Advanced
mode is not used within this project. It is not a part of the case project
complexity.

In addition, lack of information regarding the floor heating and ceiling cool-
ing sizing lead to the assumption of the sufficient designed capacity of the
elements. It also prevents accurate inputs to describe the distribution sys-
tems. As a result, a detailed analysis of the losses due to the distribution is
excluded.

• In addition, due to the existing mechanical ventilation and radiant cooling,
natural ventilation is excluded which results in closed windows at all times.
Not to get confused, infiltration is accounted for in the models.

The results and further developed conclusions are entirely based on the analyzed
case building and do not directly translate to the other projects. To be aware,
the buildings can greatly differ, and weighting factors of the analyzed parame-
ters have various implications on results and require to be accounted for. When
brands are referred to in this report, for example: software, manufacturers or ser-
vice providers; they are used only for modelling, design or information-obtaining
purposes and are not intentionally promoted.

Throughout the report, the comparisons between the simulated (measured) and
actual (real) performance are presented as ‘Percent Error’:

Percent.Error =
∣∣∣∣measured − real

real

∣∣∣∣ · 100% (2.1)
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Case building

This study focuses on a low-energy residential multi-storey building, located in
the Northern Denmark region, city of Frederikshavn (see Figure 3.1). It is a site in
an urban, semi-sheltered area that is surrounded by equal or lower-height multi-
storey and single-family houses. It is a 3-storey building with a basement and attic
that has a total floor area of 2160 square meters (m2). This project focuses on one
of the 5 sections of the building (see Figure 3.2) which has 2 types of apartments
with unique layouts.

Figure 3.1: Location of the building

General information
Location Denmark, Frederikshavn

Weather conditions
Standard: Denmark, Fredrikshavn - Skagen
Custom: Frederikshavn 10 x 10 km (see appendix C)

Gross area
Total building: 2160 m2

Simulated: 432 m2

Internal height 2.55 m

13



14 Chapter 3. Case building

3.1 Envelope

The building was erected in 1949/50 and consists of concrete basement walls, brick
superstructure and timber frame cold attic. The thickness of load-bearing walls
changes from 350 millimetres (mm) to 130 mm as the height of the building in-
crease. After the renovation in 2012/13, the external layer of 220 mm of insulation
was added to the basement and external walls providing a significant increase in
thermal resistance. The insulation in the roof was present prior to the renovation,
however, it was increased to 350 mm. It results in the U-value of 0.08 W/(m2 · K)
which fulfils the BR20 [31] requirements for the element. The windows are located
on the south, east and north facades with an angle of 20 ° from south to east. They
have integrated indoor blinds and external shading from the balconies on the south
and east facades.

Construction (see appendix A)

Floor
Basement to the ground: concrete. U-value = 4.37 W/(m2 · K)
Floor to the basement: Reinforced concrete with light insulation.
U-value = 0.77 W/(m2 · K)

Walls
Outer: brick and external insulation. U-value = 0.15 W/(m2 · K)
Inner: brick. U value = 2.3 W/(m2 · K).
Basement: Concrete and insulation. U-value = 0.16 W/(m2 · K)

Ceiling
Basement: Reinforced concrete with light insulation.
U-value = 0.77 W/(m2 · K)

Roof Wood rafters and insulation: 0.08 W/(m2 · K)
Doors External: U-value = 1.1 W/(m2 · K), g-value = 0.7 , T-value = 0.7

Windows

U-value = 1.1 W/(m2 · K), g-value = 0.7 , T-value = 0.7
Shading: multiplier for g-values = 0.71
South: area = 40.3 m2

North: area = 43.83 m2

East: area = 12.9 m2

Thermal
bridges

External window perimeter: = 0.01 W/(m · K)
External door perimeter: = 0.01 W/(m · K)
Roof / external walls: = 0.03 W/(m · K)
External wall / external slab: = 0.27 W/(m · K)
External slab / internal wall: = 0.27 W/(m · K)

Air tightness 1.5 l/(s · m2 f loor) at 50 Pa
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3.2 Heating, ventilation, and air conditioning

The occupied zones are heated by radiant floor heating with a maximum power of
99 W/m2. The system capacity is designed to maintain indoor operative temper-
atures above the standard set point value of 20 °C. The brine temperature at the
inlet is assumed to be between 35 °C to 40 °C with an estimated drop of 5 °C at the
return. The heating demand is entirely covered by the water-to-water heat pumps
which are placed in the basement. The borehole loop is used to extract or supply
the underground heat energy depending on the heating or cooling mode. The ceil-
ing cooling system is installed in the apartments located on the right side of the
staircase (see Figure 3.2). The standard maximum cooling power of 99 W/m2 is as-
sumed which counteracts the extensive solar gains that cause indoor temperatures
higher than 26 °C. The radiant ceiling cooling is connected to the heat exchanger
which energy demands are covered by the borehole loop.

The air exchange requirements are covered by balanced mixing ventilation.
Each apartment has Air Handling Unit (AHU) with a Constant Air Volume (CAV)
flow of 90 m3/h. Even though the recovery efficiency of 84 % is achieved, the
backup heating coils are installed to ensure the minimum inlet air supply of 17 °C.
Natural ventilation is possible, however, it is excluded from the simulations.

Systems

Heating

Set points: standard 20 °C
Floor heating: max power = 99 W/m2, dT = 5 °C, PI control
Heat pump: max power = 17 kW, COP = 3.6
Boreholes loop: length = 268 m

Cooling
Set point: standard 26 °C
Ceilling cooling: max power = 99 W/m2, dT = 5 °C, PI control

Ventilation

Individual AHU per apartment
Set points: inlet air heating to the 17 °C
Airflow = 90 m3/h per apartment
Recovery = 84 %
Control: Constant Air Volume (CAV)

Venting Windows closed at all times
Domestic hot
water (DHW)

Hot water tank: V = 0.5 m3, U-value = 0.3 W/(m2 · K)

Photovoltaics
A = 83 m2, orientation = 20 ° (from south to the east), tilt = 21.7 °
Overall efficiency = 0.1
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3.3 Internal load profiles

The occupancy and equipment loads are assigned for each room of the apartment
which represent one thermal zone. Apartments on the right side, st, 1, 2 (th) have a
floor area of 55 m2 and have three separate spaces: kitchen/living room, bedroom
and bathroom. On the left side, st, 1, 2 (tv) have a floor area of 73 m2 and four
separated spaces: kitchen/living room, master bedroom, bedroom and bathroom
(see Figure 3.2). The apartments are connected to the staircase which provides
access to the basement and the exit from the building. Occupancy and equipment
loads are proportional to the area of the room but share the same user behaviour
and equipment use schedule.

Figure 3.2: Example of two types of apartments

Internal loads (see appendix C)
Thermal zones Individual rooms and apartments (see Figure 3.2)

Occupancy

Apartment to the right: 2 users. Apartment to the left: 2.6 users.
Activity level = 1 MET
Schedule of the loads:
Workdays: 0.5 [7-10, 17-20], 0.25 [10-17], 0.75 [20-23], 1 otherwise
Weekends: 0.75 [7-22], 1 otherwise

Equipment
Apartment to the right: 2 units. Apartment to the left: 2.6 units.
82 W per unit.
Schedule of the loads: All days: 0.75 [8-10, 18-23], 0.5 otherwise



Chapter 4

Results: Analysis of Steady-state
models

The energy model using the latest BE18 software is designed for one of the building
sections (see Figure 2.4). BE18 is a calculation software used to document if the
building’s energy performance complies with the energy framework of the Danish
regulations. As a result, this design tool follows locally accepted guidelines. The
BE18 model of the case building is a steady-state model with a DRY climate file and
standard component as well as comfort values based on the SBi213 guidelines and
BR10 requirements. BR10 is primarily used as a reference to assume the component
performance if input data cannot be obtained. These regulations were active during
the last renovation which was completed in 2012/2013. The objective of this section
is to find the EPG of a widely used steady-state building energy performance
evaluation tool by only following guidelines. Also, to assess the magnitude of EPG
caused by simplified design interface when compared with dynamic, described in
Chapter 2.

Figure 4.1: Energy use of the apartments for heating. Steady-state model (based on standard weather
and occupancy inputs) and actual yearly performance.

17
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The calculated energy use requirement for the apartment heating by the soft-
ware is presented in Figure 4.1. It is weighed against the actual heating use for the
years 2015 – 2021. The simulated result is 59 % to 136 % higher than actual energy
use. To compare, the standard dynamic model has an EPG of 6 % to 48 % (see
Chapter 5). To conclude, when buildings are designed in steady-state white-box
models (supporting reference example [21]), the performance gap can be more than
twice higher than the actual performance. For this reason, case building is further
assessed using a dynamic white-box model where zones are designed according to
the local standards and assumptions of likely occurring set points in semi-heated
areas.



Chapter 5

Results: Analysis of Dynamic
models

The dynamic model use to define the baseline of the case building is presented
in this chapter. It follows the conclusion of the Steady-state white-box model use
when working with a multi-storey residential building that displays the complex-
ity of heat transfer among thermal zones. The dynamic models take into consid-
eration the geometry of each room, heat exchange through internal walls and air
movement. It results in usually lower discrepancies and accounts for previously
mentioned flaws of steady-state models. In addition, the standard climate and user
behaviour inputs can be customised based on acquired data, which allows further
improve the models and analyse the actual boundary condition influence on the
energy performance gap. The Chapters 5.1 and 5.2 are based on the availability
of actual data and are summarized in Figure 5.1

Figure 5.1: Timeline of used data and performed analysis. Climate analysis covers Chapter 5.1 while
Occupancy analysis covers Chapter 5.2.

19
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Energy use for apartment space heating is applied as a first Key Performance
Indicator (KPI) when evaluating the output of the models. It excludes distribution
losses, heating of the common spaces such as the staircase and is measured in
megawatt hours per year (MWh). In this case scenario, a dynamic model with
standard inputs is compared with the actual performance of the building between
the years 2015 and 2021. Standard input values consist of weather data (see Table
5.1 ) of the nearest weather station available in the ASHRAE IWEC 2 [32] library
and occupancy behaviour which is based on the local standards [29] (see Table 5.2,
appendix C).

Time resolution Mean dry temperature Relative Humidity Wind direction Wind speed Direct normal radiation Diffused radiation

h °C % ° m/s W/m2 W/m2

Table 5.1: Variables and units of the weather file for IDA ICE simulation tool

Operation time Internal gains Minimum operational temperature Maximum operational temperature Domestic hot water use

h W/m2 °C °C l/m2

Table 5.2: Variables and units of the occupancy for IDA ICE simulation tool

Figure 5.2: Energy use of the apartments for heating. Dynamic model (based on standard weather
and occupancy inputs) and actual yearly performance.

As a reference, the dynamic model with standard inputs results in the com-
bined apartment space heating of 15.1 MWh per year. In comparison, it is 4.9
MWh or 48 % higher than the lowest energy use year of 2020, and 1 MWh or 6 %
lower than the highest energy use year of 2021 (see Figure 5.2). It indicates the
maximum change of 58 % caused by the climate and occupants assuming the same
integrity of the envelope and HVAC systems. Even though the predicted heating
load of the dynamic model is located in between the under and outperforming
years, the individual performance gap between the actual yearly output stresses
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the climate and occupant influence on the models’ results. For this reason, further
analysis of the boundary conditions is presented to find the causes of discrepancies
and reduce the performance gap of the displayed standard baseline.

5.1 Standard and Actual climate

The dynamic standard weather files usually consist of variables presented in Table
5.1. In this analysis, inputs are grouped into three categories: temperature, wind
speed and solar. Each category influences the energy balance in different ways.
Changes in outdoor temperature primarily affect the losses caused by heat transfer
through the envelope. The wind category includes wind speed and wind direction,
and focuses on energy loss due to the infiltration. To simplify, relative outdoor
humidity is included in the wind category as it does not impact energy balance.
The last group is solar that covers direct normal radiation and diffused radiation.
It affects passive internal gains caused by solar irradiation.

Additionally, each group presents different challenges on the feasibility to ac-
quire data which further concretes the need of evaluating them separately. For
instance, outdoor temperature sensors are the cheapest to acquire and install lo-
cally when compared to the cost of the anemometer or pyranometer used to log
wind and solar properties. Also, all meteorologic stations as a priority track out-
door temperature and then follow with the additional parameters such as wind
speed and direction. On the contrary, solar inputs create a challenge as usually
global solar radiation is measured. It cannot be divided into diffused and direct
radiation and requires to be logged separately on-site. For this reason, customiza-
tion of solar input data is difficult to acquire. As a result, only temperature and
wind categories are used in the case building scenario, while standard solar ir-
radiation values are kept. The closest weather station provides only global solar
irradiation that cannot be used directly in the white-box model and is utilized only
as a reference. The summary of the actual and standard values used in climate
input analysis is presented in Figure 5.3.

5.1.1 Outdoor temperature boundary conditions

Actual outdoor temperature is introduced, and the outcome is compared with stan-
dard model results and actual performance (see Figure 5.4). As a reference, HDD
are graphed to indicate the thermal climate conditions of each year. It is often
used as an indicator to quantify the demand for energy need to heat the building.
In steady-state white-box models, the heating requirements are considered to be
directly proportional to the number of HDD. In the case scenario, HDD is a tem-
perature difference between the mean daily temperature and 17 °C base reference
temperature which is used by the Danish Meteorological Institute. An additional



22
Chapter 5. Results: Analysis of Dynamic

models

Figure 5.3: Inputs for the 2015-2021 weather analysis.

3 °C indoor temperature increase is assumed due to electrical equipment and radi-
ation from the users which result in the minimum operating temperature defined
in local standards [30].

Reflecting the results, the largest change of 2.7 MWh or 18 % in energy use
is observed in 2020 (see Table 5.3). It also has 10 % less HDD in comparison to
the standard climate boundary conditions. Contrary, an increase of 7 % in heating
occurs in 2018 even though a similar number of HDD are reported. As none of
the other climate inputs are changed, the results imply that not only the number
but also the distribution of HDD throughout the year influence the results. HDD
cannot be used as an isolated indicator to define the change in energy use for
heating and is not directly proportional to the number of HDD in dynamic models.

Difference in Y2015 Y2016 Y2017 Y2018 Y2019 Y2020 Y2021

Heating % -9.27 2.65 -1.99 6.62 -7.95 -17.88 5.30
HDD % -0.86 0.36 0.23 -1.29 -3.71 -10.17 2.68

Table 5.3: Change of energy use when actual dry bulb temperature is introduced.
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Figure 5.4: Energy use of the apartments for heating and Heating Degree Days. Dynamic standard
model and custom model (includes inputs of actual dry bulb temperature and a standard occupancy)
are shown.

5.1.2 Humidity, wind speed and wind direction boundary conditions

In the 2nd scenario humidity, wind direction and wind velocity values are added.
Increased wind speed is proportional to the pressure on the envelope and results in
larger infiltration and is used as a reference to define changes in climate boundary
conditions. When looking into the results, the losses decreased between 10 % and
22 % compared with the dynamic model and with the previous scenario climate
condition (see Figure 5.5 and Table 5.4). As the relative humidity stays similar
throughout the years of 2015 and 2021, the mean yearly wind speed fluctuated
significantly and is the primary cause of the lower energy use in relation to the
model with a standard climate input.

Figure 5.5: Energy use of the apartments for heating. Dynamic standard model and custom model
(includes actual dry bulb temperature, humidity, wind direction and speed inputs, as well as a
standard occupancy) are shown.
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Difference in Y2015 Y2016 Y2017 Y2018 Y2019 Y2020 Y2021

Temperature case % -9.27 2.65 -1.99 6.62 -7.95 -17.88 5.30
Temperature and wind case % -13.87 -18.06 -18.24 -18.01 -21.58 -10.48 -17.61
Average wind speed m/s -6.67 -14.67 -12.00 -17.33 -16.00 -9.33 -20.00

Table 5.4: The change in percentage from the dynamic standard model when the ’actual temperature’
and ’actual temperature and wind’ climate data input scenarios are introduced. Also, a change in
the average yearly wind speed of the ’actual temperature and wind’ scenario is presented.

As presented in Figure 5.6, infiltration-caused heat losses are lower when aver-
age wind velocity decreased. For example, in the year 2019, a 16 % lower average
wind speed and a 30 % decrease in heat losses through cracks are observed.

Figure 5.6: Energy loss due to infiltration in standard, ’actual outdoor temperature’ and ’actual
outdoor temperature and wind’ scenario cases.

5.1.3 Summary

To finalize, use of both actual temperature and wind inputs have a high influence
on the output results of the energy use for the space heating of the apartments.
Even though the number of total HDD per year is similar in several scenarios
(Standard, 2015 and 2017 cases), the variations of outdoor temperature follow the
fluctuation of energy use by 11 %. It implies that performance cannot be solely
judged by the accumulated HDD and more detail resolution needs to be applied
when designing dynamic models. Also, climate variables of the wind scenario,
especially wind velocity influence heat losses due to the infiltration and result in
up to 20 % change in energy use.
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5.2 Standard and Actual internal loads

Outdoor conditions can both increase and reduce energy use depending on the ref-
erence variable. During the heating season, lower outdoor temperature results in
higher thermal losses, while an abundance of sunny days increases indoor gains.
These factors of outdoor conditions are dependent on the building’s location and
can only be utilized by integrating passive design strategies. On the other hand,
indoor inputs are primarily based on user behaviour. The desired indoor tempera-
ture, presence of the occupants, equipment use, and utilization of natural ventila-
tion influence the performance of the existing buildings and result in an energy use
change. Also, with low transmission losses through the envelope and efficient re-
covery of AHU, the design process of low-energy-use buildings is strongly reliant
on the energy gains caused by the occupants and equipment. Consequently, the
deviations of actual user behaviour compared to the standard one, have a larger
impact on EPG when developing models for the case scenario type buildings.

5.2.1 Indoor temperature - set points

Figure 5.7: Inputs for the 2022 Indoor variable analysis.

This chapter follows the data-driven model analysis by using the custom set
point variations of the indoor temperature which are acquired from the case build-
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ing. It is built as an addition to the custom weather analysis where 2022 climate
data is used. Figure 5.7 presents custom and standard inputs used in performance
evaluation influenced by user behaviour.

Regarding the outdoor conditions, custom temperature, wind speed and wind
direction are used, while solar irradiation is standard (see Chapter 5.1 – weather
data). Indoor inputs are divided into three sections of temperature, occupancy,
and equipment. This chapter focuses on the evaluation of the supplied energy to
the apartments when custom set point files are used. It is done due to acquired
5-minute resolution data in the period of January 19th to August 31st, 2022.

As case building has uncommonly high data resolution, the analysis of various
time steps is performed to identify the error change. A number of sensors and
storage, as well as treatment of logged data, follow the increase in the initial costs
and maintenance. As a result, the evaluation can be used as a reference to identify
the most optimal set-up choice regarding the desired precision.

Figure 5.8: Resolution of the inputs for the 2022 indoor variable analysis

In total 18 variations are performed that are subdivided into the zones, which
represent the number of used sensors, and sample time which indicates the time
in between logged data points (see Figure 5.8).

The 5-minute logging interval is used as the highest resolution sample time is
acquired from the BMS system used in the case building. The other data sets are
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derived by averaging the original set points. For example, monthly step time is
the sum of all initial logs present during the time span and divided by the number
of inputs (see Figure 5.8). It is based on the assumption that installed sensors
store measured set points every 5 minutes and send averaged values to the BMS
system monthly. The same principle is used to derive input data for hourly, daily,
weekly and season set point files. The definition of season is: Winter 21.12.2022 –
20.03.2022; Spring 21.03.2022 – 20.06.2022; Summer 21.06.2022 – 22.09.202; Autumn
23.09.2022 – 20.12.2022.

Figure 5.9: Example of set point inputs. Single zone - weighted, apartment: 2nd floor to the right

For example, monthly step time is the sum of all initial logs present during the
time span and divided by the number of inputs (see Figure 5.9). It is based on the
assumption that installed sensors store measured set points every 5 minutes and
send averaged values to the BMS system monthly. The same principle is used to
derive input data for hourly, daily, weekly and season set point files. The definition
of season is: Winter 21.12.2022 – 20.03.2022; Spring 21.03.2022 – 20.06.2022; Summer
21.06.2022 – 22.09.202; Autumn 23.09.2022 – 20.12.2022.

Apartment st th
Room Parameter Multi-storey Single zone weighted Single zone not weighted

Living room
Min

20.74

20.10 20.18

Max
Avg

Bedroom
Min

18.28Max
Avg

Bathroom
Min

21.52Max
Avg

Table 5.5: Summary of data-based indoor boundary conditions - set points of the heating
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5-min Hourly Daily Weekly Monthly Season
Data points [-] 64512 5376 224 32 8 3
Error [%] 0.00 0.00 0.08 0.18 0.46 1.00

Table 5.6: Single zone - not weighted. Total logged data point per year and error of performance

Single zone - not weighted

The simulated models with the lowest resolution log of one set point per apart-
ment during the previously described sample times. They represent the low main-
tenance case, where one value is obtained as an average of the installed sensors
in the apartment (see equation 5.1). Room volume is not taken into consideration
thus the models are defined as single zone “not weighted”.

(Tsensor.kitchen + Tsensor.bedroom + ...)÷ nnumber.o f .sensors = TAverage.notweighted (5.1)

The difference in the performance of the supplied energy for heating to the
apartments fluctuates not more than 1 % throughout the sample time range. Most
importantly 5-minute and weekly logs result in an error of 0.2 % of the total sup-
plied heat while having a different of 2016 times of delivered data size.

As shown in Table 5.6 the number of logged data points increases exponentially
with each iteration of shorter sample time while the performance error does not
exceed 1 %. As a reference, the use of custom outdoor temperatures changes the
energy performance results by up to 18 % and wind inputs change it by up to 22
%, in the case building scenario.

Single zone - weighted

Following the zoning explanation in the previous chapter, the weighting factor of
the spaces is introduced. The resulting single set-point value per apartment is an
average of installed sensors, however, their influence is leveraged by the floor area
of the room (see equation 5.2).

Tsensor.kitchen × Akitchen ÷ Aapartment + ... = TAverage.weighted (5.2)

5-min Hourly Daily Weekly Monthly Season
Data points [-] 64512 5376 224 32 8 3
Error [%] 0.00 0.01 0.06 0.15 0.50 1.28

Table 5.7: Single zone - weighted. Total logged data point per year and error of performance
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The performance error fluctuations throughout the sample time range are ap-
proximately 1 % (see Table 5.7) as in the not weighed case scenario, however, a
difference of 2.6 % is observed between these two methods themselves.

Multi zone

The models that use multi zones scenarios include and assign schedules to each
room of the apartment. The averaging is performed only to create reduced reso-
lution variation and does not require any weighting factors. For this reason, the
multi zones model with a step time of 5 minutes utilizes all the provided set point
data potential and is considered the closest to representing the actual scenario.

The performance error fluctuations for the total supplied heating energy through-
out the sample time range of more than 2 % (see Table 5.8). Also, a difference of
4.5 % is observed between multi zones model results and single zone weighted
models. The error further increases to 7 % when comparing the single zone not
weighted models (see Figure 5.12).

5-min Hourly Daily Weekly Monthly Season
Data points [-] 193.536 16128 672 96 24 9
Error [%] 0.00 0.06 0.07 0.28 0.65 2.26

Table 5.8: Multi zone (3-room apartment example of data point count). Total logged data point per
year and error of performance

Figure 5.10: Monthly energy supply to the apartments (Multi zone, 5-minute resolution). To note,
Energy use in January covers only a part of the full month.

When the results of multi zones models are plotted as a total monthly supply
of energy, the heating months between February and May follow a downward
trend similar to the actual performance. The data-driven models result in lower
EPG when compared with the standard weather and occupancy-based model (see
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Figure 5.10). Not to forget, January includes only part of the month as limitations
occur due to data availability (see Figure 5.1)

When the results are presented in total supplied energy to the individual apart-
ment, no patterns occur, and randomness is observed. The only difference between
the standard and actual set point models is the magnitude of the error. Custom set
points reduce the extremes and bring the values closest to the actual ones.

Figure 5.11: Energy supply to the individual apartments. Multi zone

When the actual climate and set points are included in the model design, the
remaining error can be a result of internal gains due to occupant presence, equip-
ment use, and natural ventilation. Further research is proposed to account for the
remaining variables in the upcoming chapters.

5.2.2 Summary

Figure 5.12: Error of the custom set point models when compared with the multi zone 5-minute
resolution model
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The use of actual set points changed the EPG by 44 % from the original standard
set points and actual weather model. It is the largest alteration compared with
previously assessed changes in weather inputs. It further implies the importance
of the use of real indoor boundary conditions when creating a baseline for the
buildings. Additionally, the evaluations on data resolution show that variations in
sample time and weighting factors between sensors influence the EPG. However, in
relation to the most detailed scenario, the maximum increase in EPG stands below
8 % (see Figure 5.12). It is significantly lower than 44 % EPG of standard inputs
and suggests that the use of low-resolution data logged once seasonally improves
the design substantially.
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5.3 Causes of the remaining discrepancies

A limited amount of obtainable weather and occupancy data, inaccuracies in shape
modelling and changes during the construction prevent building an ideal white-
box model. In the case building scenario, an improvement from 26 % EPG to 17 %
is achieved after correcting for available weather and occupancy boundary condi-
tions. However, even though it is not possible to use all the information directly in
the models, thematic analysis can guide the process of explaining the origin of the
remaining mismatches. Looking into the pattern of the heating system behaviour,
comparing outdoor and indoor boundary conditions, and defining inaccuracies in
modelling, can help to adjust the models and stress the importance of further re-
search on this topic. Also, the results from thematic analysis can be viewed and
discussed freely which encourages talks on existing design faults, optimization,
and the efficient techniques of renovation. The following objective of this chapter
is to describe the underlying causes of the remaining performance gap and inves-
tigate the possible ways in which the white box models can be improved in the
future.

5.3.1 Heating control set points and actual indoor temperature

In Chapter 5.2, actual heating set points are used to account for indoor conditions.
Three variations excluding the time-stamp resolution have been analyzed that re-
sult in EPG of 17 % multiple zones, 12 % single zone weighted and 9 % single
zone not weighted. Theoretically, as a consequence of the input data describing
each thermal zone of the apartments, the highest resolution multi zones scenario is
expected to produce the best fitting of simulated and actual indoor temperatures.
However, the assumptions are not ideal and do not always represent the actual
behaviour of the systems. For example, air movement between rooms is difficult to
predict due to the unknown state of indoor partitions. It can influence the indoor
climate of the thermal zones and thus change the requirement of heating loads.
To find which set point scenario should be used as a baseline, the difference be-
tween simulated and actual indoor temperatures is plotted (see Figure 5.13). The
comparison covers the period from January until May which are primary heating
months in the case building. The remaining months from May to the end of August
are excluded to avoid discrepancies caused by overheating that are not evaluated
in this study.
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Figure 5.13: Temperature difference of actual and simulated models during the January to May
months (5-minute resolution)

60 % of the time the output indoor temperature difference of the most fitting
curve is equal to or lower than 1 °C. In four apartments out of six, the multi zones
simulation has the lowest temperature difference among the scenarios. This match
gap is noticeable in the apartment located on the left side. However, models with
a single zone set point inputs cause similar or lower differences on the right-side
apartment. As shown in Chapter 3 Figure 3.2, the volume and layout of the op-
posing apartments vary. To find the possible causes of why high-resolution input
data results in higher temperature discrepancies compared with other weighting
scenarios, a more detailed look into the individual zones are presented (see Figure
5.14).
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Figure 5.14: Temperature difference of individual zones between actual and simulated models during
the January to May months: st th, 2 th (5-minute resolution)

As shown in Figure 5.14, the leading mismatch between actual and simulated
models output occurs in the Bedroom. Multi-zone scenario underestimates the
convection between neighbouring rooms and results in indoor temperatures being
strictly close to the input set points regardless of the temperatures in other ther-
mal zones. However, actual indoor temperatures in the bedroom and living room
are assumed to be similar due to air circulation. For this reason, the single-zone
weighted scenario has lower temperature discrepancies as it takes into considera-
tion interactions between zones.

5-minute resolution simulation results and actual indoor temperatures are sum-
marized in Tables 5.15 and 5.16 for investigated apartments. The average tem-
perature difference in the bedroom exceeds the other rooms, especially, the 2 TH
apartment where an absolute difference of 2.7 °C is observed. The actual condi-
tions of the bedrooms are closer to the connecting living room than set points. It is
likely due to higher than simulated convection between two zones from which the



5.3. Causes of the remaining discrepancies 35

living room is the dominant because of the larger volume. On the other hand, two
other scenarios take into consideration the interaction between zones and result in
indoor temperatures being closer to the actual ones.

Figure 5.15: Actual and simulated temperatures of 2 TH apartment

Figure 5.16: Actual and simulated temperatures of 2 TH apartment

The standards of designing models do not describe air change rate variations
between the neighbouring rooms. The default assumption in the dynamic model
is accepted as “doors always closed” and only the fixed area of the gap is defined.
This assumption is used throughout all the dynamic simulations, and it results in
the previously described temperature mismatch. However, if the opposite, “doors
always opened” setting is used, the rooms in the same apartment function as one
thermal zone and the highest heating set point overwrites the remaining set points.
Consequently, all weighting methods are inapplicable and lead to larger deviations.

Air exchange between rooms is dependent on the internal partition position. It
is controlled by the users and therefore can be classified as a variable of occupancy
behaviour. The actual state of the doors is likely between the assumed “always
closed” and “always opened” that, as other indoor user behaviour parameters can
be standard or data-driven.
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5.3.2 Solar irradiation and indoor temperature

In Chapter 5.1, actual outdoor boundary conditions are used to reduce EPG. Out-
door temperature, humidity, wind direction and wind speed inputs are replaced
by the actual values, however, direct normal and diffused radiations are kept as
standard. Instead, actual global solar irradiation is obtained that cannot be used in
the white-box model design. Nevertheless, the standard diffused and direct solar
radiation values can be combined which results in standard global solar irradia-
tion. Having actual and standard Global solar irradiation allows us to compare the
solar loads that explain the cause of the remaining energy performance gap.

GHI = DNI ∗ cos(α) ∗ DHI

GHI - Global Horizontal Irradiance [W/m2]

DNI - Direct Normal Irradiance [W/m2]

A - solar zenith angle [◦]
DHI - Diffused Horizontal Irradiance [W/m2]

Figure 5.17: Actual and Simulated global solar irradiation boundary conditions during primary
simulated heating months (January to May)

Actual and standard global irradiation during the heating months between Jan-
uary and May are compared (see Figure F.1). A higher actual global irradiance
than assumed implies that internal gains are higher and energy use for heating is
respectively lower.
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Figure 5.18: Internal and external boundary conditions of 1 TV, living room. February 7-14, 2022

The analysis is performed for one of the apartments for 3 week period (see
appendix F) and an example week is presented in Figure F.1. It describes actual
and simulated model outdoor and indoor boundary conditions, as well as output
from the heating system. It illustrates qualitative data that entails searching across
a data set to identify, analyze, and report repeated patterns. For example, possibly
higher actual occupancy loads can be seen between the 12th and 14th (weekend).
Even though the indoor temperature profile and solar loads are similar, a simulated
model requires more energy to maintain the same indoor temperature. It is only an
assumption because higher energy use can be also caused by human design errors
or changes present during the construction which are not included when creating
a white-box model.





Chapter 6

Discussion

This chapter focuses on the obtained results in numerical and thematic analysis,
the limitations, improvements, and possible future research.

The project focuses on the creation of an energy use baseline in multi-storey
residential buildings. Steady-state and dynamic white-box models are built to
simulate the output and compare it with the actual performance. The white-box
model includes detailed three-dimensional geometry of the building and a sim-
plified HVAC system and initially is based on the standard inputs of occupancy,
heating set points and Danish Reference Year weather conditions. The white-box
model can be gradually improved towards the digital-twin model. The improve-
ments include changes to the outdoor and indoor conditions, such as the use of
actual weather data, heating set points, number of occupants etc. The boundary
conditions are the critical inputs of the energy and mass balance calculations, that
describe the physics in the white-box models. However, the software interface, lack
of information regarding the envelope, sensor accuracy, overestimated KPIs of the
components etc. limit the potential of the analysis and increase the uncertainty of
the results.

The first limitation that cannot be accounted for is the precision of the geometry
and thermal performance of the structure. For example, the conflicting information
of 200 mm and 220 mm wall re-insulation thickness is noted in the building design
documentation and detailed construction drawings. Also, the envelope tightness
is unknown thus assumptions are made. As described in Chapter 5.1, infiltration
has a significant influence on energy use for heating and changes in air leakage can
alter the importance of using actual wind conditions. However, the lack of informa-
tion on window performance is an essential limitation. The insulating properties
and ratio of transmitted solar energy are estimated following the building regu-
lations for 2010. Choices of window performance characteristics are an essential
part of passive energy optimization strategies, and the lack of precision reduces
the reliability of the models.
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The following limitations are caused by climate boundary conditions. As de-
scribed in Chapters 3 and 5.1, the data is obtained from the nearest weather station
within a 10 by 10 km area. Outdoor temperatures and wind speed can vary due to
location and surrounding structures and, as a result, influence model output. Also,
DNI and DHI are not measured at the selected station and numerical evaluation
is replaced by less credible thematic analysis. Additionally, assumptions are made
when converting standard DNI and DHI to GHI that is compared with actual solar
irradiation.

Furthermore, obtained occupancy data and software input requirements re-
sulted in approximations. The heating set points are logged starting from the 19th

of January 2022 and continue further into the year. The missing January indoor
boundary conditions are assumed to be equal to the first recorded data points
of the thermal zones. The same estimation is done for 2 week period before the
starting point of the simulation which is used to stabilize the system by taking
into consideration the thermal inertia of the components. These assumptions re-
duce the result validity of the heating energy use during January month which
is used in EPG identification for total and individual apartment baseline. In ad-
dition, standard inputs are used for occupancy and equipment thermal loads. It
prevents numerical analysis and quantifying the EPG change that likely causes the
remaining discrepancies.

Lastly, the objective that covers the rate of percentage change in total energy use
working with different resolutions of data inputs is limited by the accessible informa-
tion on the financial aspect of the data storage. A one-dimensional approach is
taken in this study when assessing the importance of time stamps of the measured
indoor boundary conditions. Only the change in EPG is quantified when different
resolution is used and highly valuable financial aspects of data storage and treat-
ment are neglected. It results in a simplified objective that covers only a small part
of the initially targeted goal.

6.1 Future work

The Master Thesis covers only a small part of the research theme and does not
utilize the created model to its full potential. Further paragraphs present the im-
portance and possible paths for future research.

Most importantly, the additional assessment of results can be performed by
using the designed IDA ICE white-box model. Due to time constraints, this project
primarily focuses on energy use for heating apartments. Even though the results
include data on cooling loads, distribution losses and various KPIs of the HVAC
components, no qualitative or thematic analysis is performed. This indicated a
further potential of continuing with an already built model and comparing actual
with a simulated performance at different detail levels. For example, the COP
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of the heat pump is already accessible in steady-state and dynamic models, as
well as actual performance measurements are logged. The minimum, maximum
and seasonal performance can be identified and compared with the characteristics
provided by the producer.

Equally, it is important to continue the research with various types of multi-
storey residential buildings to create a more robust pool of samples. Only one
scenario is covered when answering the raised research questions in this project.
The same objectives can have significantly different results when different types,
shapes, structures or occupancy loads are modelled. For example, high variations
in EPG are noticed in previously presented studies (see Table 1.1). Deviations
from 2 % to 110 % are observed before calibrations and 4 % to 51 % after. However,
only one scenario evaluates EPG before and after calibration in a similar energy
performance building as in this project. It indicated a lack of study cases to validate
the proposed baseline methods and establish an optimal modelling approach

Additionally, the project is limited to two software: BE18 for steady-state white-
box models and IDA ICE for dynamic white-box models. Different modelling tools
can produce another outcome due to the various weighting factors, interface and
compatible time stamp resolutions. For this reason, it can be relevant to replicate
the study based on the software preferable in other countries.

Figure 6.1: Example of Energy Performance Gap and Cost to resolution change

Finally, the previously mentioned potential to further interpret the importance
of the sample resolution is suggested. Due to the increase in digitalization and use
of the indoor climate monitoring tools, the field of data science regarding building
stock evaluation is increasing in value. If the data point costs are quantified in this
project, the cost-to-performance proportion can be plotted (see Figure 6.1). It is a
step forward in finding a method to choose the optimal setup of the monitoring
tools to baseline the performance of the buildings.
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Example on the future work: power peaks of the heating system
One of the objectives of SATO project is to define which systems, energy compo-
nents and appliances should be included in the assessment framework to efficiently
monitor and operate buildings. Identification of the EPG is the first step towards
the development of reliable methods for optimization of the building energy use,
fault detection and diagnosis. An example of plausible optimization can be seen
in the Actual heating load pattern (see Figure F.1).

Figure 6.2: Example of average daily space and DHW heating load profile. The image is taken from
the study conducted in Denmark [33] (Supporting study that focuses on the District Heating plant
peak loads: Turin, Italy [34])

In the actual scenario, a combination of high heating power between 6-12 AM
and larger solar loads during the daytime lead to a 1-2 °C temperature increase.
Minimum heating is required until the temperature falls back to the set point. The
actual temperature usually hits the set point between 12 PM - 6 AM when the
heating power starts increasing again and peaks after 6 AM. As shown in Figure
6.2), most of the energy used in the cities matches the case buildings’ heating pro-
file. Heating during peak hours is disadvantageous for the client due to increased
prices and the energy provider as higher than average capacity supply systems
need to be installed to cover peak loads. Even though the total heating energy
demand is lower in the actual case scenario, the financial result can be similar
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or even unfavourable compared with an evenly distributed heating pattern. The
same question is raised when evaluating the benefits of implementing night set-
back. Night set-back is a mode that reduces the heating set point during the night
period while the users are asleep. It does not compromise thermal comfort as the
lower temperatures are acceptable and usually preferable [35] [36]. Even though
this control strategy reduces the energy use for heating, it results in high heat-
ing power during peak demand hours. Based on the case building performance
and energy price fluctuations the set-back control can reduce or increase the costs
regardless of the lower energy demand.

In the showcased apartment scenario (see Figure F.1), the indoor temperatures
are notably higher than the heating set point during the 12 AM to 12 PM hours
and similar until 6 AM. This temperature rise is likely caused by solar gains and
occurring heating delays due to the use of floor heating. If a digital-twin model
with a lower EPG would be used as a part of the Model Predictive Control (MPC)
system, the delays could be accounted for and distributed heating pattern achieved.
It would potentially result in reduced heating costs and balanced loads on the grid.





Chapter 7

Conclusion

The evaluation of the Danish multi-storey residential building is performed in con-
nection to EPG identification to establish the energy use baseline of space heating.
The objectives of this project focus on quantifying the discrepancies between the
dynamic model output when standard and actual boundary conditions are used.
It covers the investigation of available data, its utilization and its impact on perfor-
mance. Additionally, the rate of percentage change in energy use is presented and
concludes on the importance of sampling time in creating a baseline. To finalize,
the thematic analysis is conducted to explain the remaining mismatch of the en-
ergy use for space heating and identify the data that could improve the model and
further reduce the EPG.

Energy use for apartment space heating is a main KPI when evaluating the
output of the models. Starting with the climate analysis, standard input values are
based on the weather data of the nearest weather station available in the ASHRAE
IWEC 2. The data-driven climate conditions include the outdoor temperature,
wind direction and wind speed sampled from the nearest weather station available
in the DMI database. The solar data is excluded from the quantitative evaluation
due to the unfeasible utilization of Global Solar Irradiation when working with the
IDA ICE modelling software. The yearly energy use values are benchmarked dur-
ing the period between 2015 and 2022. Overall, the use of both actual temperature
and wind speed has a high influence on the output results of the energy use for the
space heating of the apartments. The implementation of actual outdoor tempera-
ture followed the fluctuation of energy use by 11 % while the introduction of wind
parameters affected heat losses due to the infiltration and resulted in performance
changes of up to 20 %. Progressing into the indoor boundary conditions, the stan-
dard and actual heating set point values are introduced. The standard inputs are
based on the DS16798 occupancy description while the data-driven model uses the
actual set points logged on-site. The use of actual heating set points changed the
EPG by 44 % from the standard occupancy – actual weather model. It is the largest
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alteration compared with previous assessments and it supports the assumption
that low-energy use buildings are greatly dependent on occupant behaviour and
less on the outdoor boundary conditions.

Additionally, the rate of percentage change in total energy use working with
different resolutions of data is quantified by modifying previously covered ac-
tual set point inputs. The comparison between timestamps of 5 minutes, hourly,
daily, weekly, monthly and seasonal (3-month) intervals are performed. Also, three
weighting factors are applied for each interval: multi-zone – one room represents
one thermal zone thus individual set point inputs are used; single zone weighted
– apartment represents one thermal zone and one set point input is used which is
weighed taking into consideration volume of the rooms; single zone not weighted
– apartment represents one thermal zone and one set point input is used which
does not take into consideration the volume of the rooms (see Chapter 5.2). The
evaluations on data resolution show that variations in sample time and weighting
factors between sensors influence the EPG. However, in relation to the most de-
tailed, 5-minutes scenario, the maximum increase in EPG stands below 8 %. To
put into perspective, it is significantly lower than 44 % EPG of standard inputs
and suggests that even the use of low-resolution data has a substantial effect on
creating a baseline.

The resulting data-driven model of previously described inputs results in over-
estimated EPG of 17 %. To further explain the discrepancies, the comparison is
performed between standard and actual Global Solar Irradiation or GHI. The dis-
tribution of GHI during the primary heating months between January and May
shows an approximately 25 % higher actual solar irradiation than standard. It
indicated higher actual solar gains and, as a result, lower energy use for space
heating. It supports the assumption that the use of actual solar irradiation further
reduces the EPG.
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A.0.1 Detailed drawings

Figure A.1: Example of detailed ground floor plan drawing

Figure A.2: Example of detailed 1st floor cross-section drawing
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A.0.2 U-values

Figure A.3: External wall U-value

Figure A.4: Roof U-value
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Figure A.5: Floor to the basement U-value

Figure A.6: Floor to the ground (staircase) U-value
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Figure A.7: Floor to the ground U-value
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Figure B.1: BE18 - input values
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Figure B.2: BE18 - results
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70 Appendix C. Dynamic state standard model

Figure C.1: 3D model (IDA ICE) - facade north

Figure C.2: 3D model (IDA ICE) - facade south
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C.0.1 Thermal zones

Figure C.3: Thermal zones - basement level

Figure C.4: Thermal zones - ground-floor level
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Figure C.5: Thermal zones - 1st floor level

Figure C.6: Thermal zones - 2nd floor level
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C.0.2 Standard geometry, climate and occupancy inputs

Figure C.7: IDA ICE standard inputs
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Figure C.8: IDA ICE standard climate file description
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Figure C.9: IDA ICE standard occupancy file description based on DS16798
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D.0.1 Actual climate inputs and simulation results

Figure D.1: 2015 climate file description with custom outdoor temperature, humidity, wind direction
and wind speed inputs
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Figure D.2: 2015 model results with actual climate inputs
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Figure D.3: 2016 climate file description with custom outdoor temperature, humidity, wind direction
and wind speed inputs
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Figure D.4: 2016 model results with actual climate inputs
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Figure D.5: 2017 climate file description with custom outdoor temperature, humidity, wind direction
and wind speed inputs
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Figure D.6: 2017 model results with actual climate inputs
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Figure D.7: 2018 climate file description with custom outdoor temperature, humidity, wind direction
and wind speed inputs
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Figure D.8: 2018 model results with actual climate inputs
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Figure D.9: 2019 climate file description with custom outdoor temperature, humidity, wind direction
and wind speed inputs
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Figure D.10: 2019 model results with actual climate inputs
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Figure D.11: 2020 climate file description with custom outdoor temperature, humidity, wind direc-
tion and wind speed inputs
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Figure D.12: 2020 model results with actual climate inputs



90 Appendix D. Dynamic state climate models

Figure D.13: 2021 climate file description with custom outdoor temperature, humidity, wind direc-
tion and wind speed inputs
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Figure D.14: 2021 model results with actual climate inputs
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Figure D.15: 2022 climate file description with custom outdoor temperature, humidity, wind direc-
tion and wind speed inputs
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Figure D.16: 2022 model results with actual climate inputs
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D.0.2 Heating and Cooling Degree Days for years 2015-2022
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98 Appendix E. Dynamic state set point models

Apartment st th
Room Parameter Multi-storey Single zone weighted Single zone not weighted

Living room
Min

20.74

20.10 20.18

Max
Avg

Bedroom
Min

18.28Max
Avg

Bathroom
Min

21.52Max
Avg

Table E.1: Summary of data-based indoor boundary conditions - set points of the heating

Apartment st tv
Room Parameter Multi-storey Single zone weighted Single zone not weighted

Living room
Min 21.16 20.83 21.10
Max 22.52 21.63 21.44
Avg 21.79 21.19 21.25

Bedroom
Min

19.00
20.83 21.10

Max 21.63 21.44
Avg 21.19 21.25

Bathroom
Min

23.06
20.83 21.10

Max 21.63 21.44
Avg 21.19 21.25

Room
(second

bedroom)

Min
21.17

20.83 21.10
Max 21.63 21.44
Avg 21.19 21.25

Table E.2: Summary of data-based indoor boundary conditions - set points of the heating

Apartment 1 th
Room Parameter Multi-storey Single zone weighted Single zone not weighted

Living room
Min 17.24 17.10 17.10
Max 19.57 19.63 19.67
Avg 18.51 18.42 18.44

Bedroom
Min 16.75 17.10 17.10
Max 19.72 19.63 19.67
Avg 18.36 18.42 18.44

Bathroom
Min 17.32 17.10 17.10
Max 19.73 19.63 19.67
Avg 18.59 18.42 18.44

Table E.3: Summary of data-based indoor boundary conditions - set points of the heating
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Apartment 1 tv
Room Parameter Multi-storey Single zone weighted Single zone not weighted

Living room
Min 17.24 17.36 17.44
Max 23.11 21.22 20.35
Avg 21.33 19.91 19.24

Bedroom
Min

17.54
17.36 17.44

Max 21.22 20.35
Avg 19.91 19.24

Bathroom
Min 17.50 17.36 17.44
Max 24.76 21.22 20.35
Avg 20.87 19.91 19.24

Room
(second

bedroom)

Min
17.50

17.36 17.44
Max 21.22 20.35
Avg 19.91 19.24

Table E.4: Summary of data-based indoor boundary conditions - set points of the heating

Apartment 2 th
Room Parameter Multi-storey Single zone weighted Single zone not weighted

Living room
Min 17.57 17.59 17.48
Max 22.75 21.31 21.12
Avg 20.85 19.87 19.68

Bedroom
Min

17.87
17.59 17.48

Max 21.31 21.12
Avg 19.87 19.68

Bathroom
Min 16.99 17.59 17.48
Max 22.87 21.31 21.12
Avg 20.55 19.87 19.68

Table E.5: Summary of data-based indoor boundary conditions - set points of the heating

Apartment 2 tv
Room Parameter Multi-storey Single zone weighted Single zone not weighted

Living room
Min 17.38 17.45 17.45
Max 20.72 20.30 20.32
Avg 19.12 18.92 18.96

Bedroom
Min 17.74 17.45 17.45
Max 18.61 20.30 20.32
Avg 18.38 18.92 18.96

Bathroom
Min 17.29 17.45 17.45
Max 21.17 20.30 20.32
Avg 19.78 18.92 18.96

Room
(second

bedroom)

Min 17.42 17.45 17.45
Max 20.78 20.30 20.32
Avg 18.77 18.92 18.96

Table E.6: Summary of data-based indoor boundary conditions - set points of the heating





Appendix F

Causes of discrepancies

101



102 Appendix F. Causes of discrepancies

Figure F.1: Internal and external boundary conditions of 1 TV, living room. February 7-14, 2022
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Figure F.2: Internal and external boundary conditions of 1 TV, living room. March 7-14, 2022
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Figure F.3: Internal and external boundary conditions of 1 TV, living room. April 4-11, 2022
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G.0.1 Thesis contract
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108 Appendix G. Additional documentation

G.0.2 Abstract - Cisbat 2023

Title suggestion:
The energy performance gap: How much does the influence of model

input parameters in dynamic white-box models really matter?

1. Aim of research (max 200 words)
There is a known energy performance gap between the design and the actual en-
ergy use in buildings. Many areas have been shown to cause this gap, including
unrealistic model inputs on occupant presence and behavior, the adopted energy
management heuristics, faults occurring in building systems, or benchmarks com-
paring building performance. Nevertheless, efforts have been made to bridge this
gap. However, each building is unique and requires tailored design inputs. Hence
there is still a lack of knowledge on the influence of parameters affecting the mod-
els for building benchmarks, especially in residential buildings.

Moreover, the market has reached a turning point where it must advance be-
yond simply certifying the energy performance of buildings with standard design
input parameters. This study aims to address the latter by quantifying the discrep-
ancies between two defined assessment types; standard and actual evaluation of
building performance compared to measured energy use. Furthermore, this study
is part of the bigger picture contributing to defining which systems, energy com-
ponents, and appliances should be included in a developed framework assessment
to monitor and manage buildings more efficiently.

2. Scientific methodology (max 200 words)
Two defined assessments have been introduced in this study. The standard as-
sessment is based on standardized weather files, occupant presence, and other
building system parameters. It represents the currently used methodology of the
Danish Energy Performance certification. On the contrary, the actual assessment is
based on real-life weather- and occupant conditions.

These two assessments were modeled in the white-box building performance
simulation (BPS) tool, “IDA ICE”. The latter was compared to a total of 1-year
measurements of heating energy use in the case study, a multi-storey building ren-
ovated in 2013 in the North of Denmark. Furthermore, each assessment has been
evaluated for its relevant input parameter sensitivity (variations of inputs in the
weather file, occupant presence, heating setpoints, window opening, and other in-
ternal input boundary conditions). The actual occupant presence was determined
through a measurement campaign in January 2023 in the case study, while the
heating setpoints and window openings data were extracted through the building
management system.
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3. Results obtained (max 200 words)
The comparison of the two assessment types against the historical data showed a
rate of percentage change of 17 % (actual assessment) and 26 % (standard assess-
ment) performance gap. Both comparisons were mainly caused by discrepancies in
the occupant behavior (heating setpoints, window opening, and actual presence)
and weather conditions. Furthermore, variations and aggregation of the heating
setpoints and zone multipliers were performed to investigate the effects of simpli-
fying these BPS models, which were significant. The sensitivity analysis showed
that the occupant behavior (heating setpoints) was the most sensitive parameter
to model changes. Occupants in residential buildings often have a larger control
of their indoor environment than in office buildings. Especially in cold climates
with the need for heating, occupant behavior (heating setpoints) has been shown
to influence the performance gap greatly.

This study shows that modeling a baseline for design needs considerations
of actual conditions to provide robustness and accurate predictions of, e.g., the
building energy use in operation.
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