
0 Summary

In this thesis we explore borrow-checking compiler-phase of the programming language
Rust. Borrow-checking is a method of ensuring memory safety in Rust; that is the absence
of dangling pointers, data races, and references to invalid data among others. A value 42
has one owner x, in a Rust statement such as let x = 42;. The variable x will always
be the owner of the value but other parts of a program may need to access the value of
x. Lending out only read or both read and write-access are described as immutable and
mutable access, respectively. The borrow-checker phase of the Rust compiler attempts
to ensure that all loans of an owners associated value are in congruence of a simple set
of rules: at any time, many immutable loans may exist or one mutable loan may exist,
and the owner must live longer than any loan of its value.
Rice’s theorem states; all interesting questions about the input/output behaviour of

programs are undecidable [24]. Hence any program analysis, and therefore also the
borrow-checker, must be approximate. We would likely want such an analysis to al-
ways answer correctly in the rejecting case, such that we catch all problematic programs
but this leaves us with false negatives: programs which the borrow-checker rejects but
are in fact legal wrt. the stipulated borrowing-rules. This is the motivation of this thesis:
how to improve borrow-checker precision in Rust?
Research into crafting borrow-checkers are sparse but work exists in [23] on formalising

subsets of Rust into a calculus which enforces both type- and borrow-safety without the
notion of the borrow-checkers; Non-Lexical Lifetimes or Polonius. The work presents
soundness proofs and quasi-mechanical proof by way of model checking 500B programs.
We develop our own borrow-checking algorithm inspired by the inability of Non-Lexical

Lifetimes (NLL) to handle the get or insert.rsprogram and the context that NLL
provides; that is lifetimes of borrows and their potential collision with other conflicting
borrows.
This work is in conjunction with a proof-of-concept implementation of our algorithm;

mir-owner-guillotine. Our proof-of-concept is able to parse and construct our own
Intermediate Representation (IR) for a subset of the Rust Mid-level Intermediate Repres-
entation (MIR). On our IR we implement common compiler analysis algorithms; reaching
definitions analysis and liveness analysis. Finally, we implement our borrow-checking al-
gorithm on top of the built IR and liveness results to ensure that no borrows lifetimes
are intersecting when not allowed according to the Rust rules of borrowing.
We evaluate our proof-of-concept on two Rust programs which NLL currently rejects

and on a trivially borrow-wise invalid program. For NLL-rejected programs we define an
ad-hoc but promising method of obtaining MIR to test our implemented analysis with.
Furthermore, we present arguments of correctness but no formal proof for our analysis,
which is delegated for future work.
We believe the field of borrow-checking is an interesting and under-explored domain

within language formalisation and verification which warrants further investigation.

0

On Borrow-Checking Analysis Precision in Rust

Falke Bjernemose Øtker Carlsen

Cassiopeia, Department of Computer Science, Aalborg University, Denmark

fvejlb17@student.aau.dk

Abstract

We investigate the precision of existing borrow-
checking analyses; the current Non-Lexical Life-
times (NLL) and future Polonius. This is motiv-
ated by the exemplary program get or insert.rs,
which is rejected by NLL, as it employs seemingly
ordinary patterns that users might expect to func-
tion.

We aim to understand the current and future
borrow-checkers of Rust and propose our own
borrow-checking analysis on Rusts Mid-level Inter-
mediate Representation, based on the classic com-
piler liveness analysis and encoding Rusts borrow-
ing rules into overlapping borrow-expression. With
our proposed analysis follows a proof-of-concept im-
plementation in Python which passes two accept
cases currently rejected by NLL and rejects a trivi-
ally invalid program.

Out results are rebutted by unproven translation
of NLL-rejected Rust programs into MIR and lack
of correctness proof for our analysis.

1 Motivation

Borrow-checking is an analysis-technique to en-
sure memory safety and data integrity by avoid-
ing dangling pointers and race conditions. Unfortu-
nately, this analysis is difficult to perform on large,
complex codebases.

Rust; a newer systems programming-language
has risen in usage, and likeability by users in the
last decade, one again taking first-place as most
loved programming language according to Stack
Overflow’s yearly developer survey [21]. Unlike
garbage-collected languages like Java, Python, and
Go where memory is deallocated automatically -
and sometimes unpredictably - Rust takes the ap-
proach of ownership and borrowing to safely man-
age memory.

Ownership for Rust is defined as three rules:
”Each value in Rust has an owner, there can only
be one owner at a time, and when the owner goes
out of scope, the value will be dropped” [9]. Assign-

ing a variable to another variable copies the value
if this is of a compile-time known fixed type, if it is
dynamically sized the value is stored on the heap
and an assignment as before performs a shallow-
copy and additionally invalidates the first variable
- this is called a move.

Borrowing in Rust is the method for which val-
ues are lent out to be temporarily used. Instead
of pointers from languages such as C, Rust uses
references and guarantees that these point to valid
memory of some type, unlike C. These references
are either read-only, or read-write called immut-
able and mutable, respectively. To avoid data races,
whenever a mutable reference to some value is live,
no simultaneous references to the value other than
that reference may exist. [9]

While ownership and borrowing as concepts has
been proposed for programming language memory
safety in work such as [4], Rust is the first
mainstream programming language employing it.
Therefore, this work will look into Rust’s applica-
tion of the concept.

2 Introduction

Rusts default borrow-checker as of August 2022 [16]
is called Non-Lexical Lifetimes (NLL), which fam-
ously rejects the following, seemingly innocuous,
Rust program:

1 fn get_or_insert(map: &mut HashMap<u32, String>) ->

&String {↪→

2 match HashMap::get_mut(&*map, &42) {

3 Some(v) => v,

4 None => {

5 map.insert(42, String::from("init"));

6 &map[&42]

7 }

8 }

9 }

Code block 1: get or insert.rs [15]

1

The function in code block 1 takes a mutable
map as an argument in its signature, and checks if a
value exists for some index in the match-statement
in line 2. A match-statement in Rust is a pat-
tern match, HashMap::get mut() returns a value
of Enum-type Result which is either Some(v) with
the given value v, or None() with no value. If a
value exists at that index, we take the Some-branch
in line 3 and immediately return it. If not we take
the None-branch, insert a value at the index at line
5, and immediately return the freshly inserted value
at line 6. Omitting semi-colons for statements as
seen in lines 3 and 6 is Rust syntactical sugar for
implicit return.
Rust strives to allow all known-safe programs to

compile. However, there are patterns a user will
expect to be allowed, which are rejected due to
borrow-checker imprecision. These restrictions can
be consequences of borrow-checker implementation,
e.g. performance and complexity.
The get or insert.rs-program above in code

block 1 is disallowed by the Rust compiler today
because NLL believes the returned variable v which
is a reference into the map, is also live at the in-
sertion of a default value into the map. If this is
true, then we have both a mutable and immutable
reference to the map at the same time which is dis-
allowed by the Rust borrowing rules [9]. However,
we see that this is a false negative judgement of
NLL, since only one match-branch may execute for
any invocation of the method.
Exactly this imprecision of NLL for a pattern

which we would naively expect to be accepted is
the motivation for investigating borrow-checking
analysis precision in Rust. The false negative for
the get or insert.rs-program is a known limita-
tion of NLL described by the NLL RFC2094 [15],
which in turn has spawned interest in more ad-
vanced borrow-checkers such as Polonius, conceived
in blog post [13] by Niko Matsakis, also a main con-
tributor in the development of NLL. Polonius can
handle the pattern in code block 1 but Polonius
itself is still a work-in-progress.
In this thesis we will explore how a borrow-

checker for Rust may be developed which handles
the exemplary program get or insert.rs, which
NLL rejects. We begin with establishing required
compiler theory, Rust peculiarities, the NLL and
Polonius borrow-checker, and related work in Sec-
tion 3. In Section 4 we define our approach
to borrow-checking in Rust. Section 5 will dis-
cuss implementation of our borrow-checker and its
required parser and Intermediate Representation
(IR). We present and position our results in Sec-
tion 6. Lastly, in Section 8, we will conclude on the
findings of our work.

Under-approximation

Program behaviour

Over-approximation

Figure 1: Approximations of program behaviour.
Areas denote the amount of behaviour an approx-
imation could cover.

3 Background

We will explore the background for borrow-
checking in Rust and position borrow-checking
among related work. We will also provide relevant
theory required for describing our analysis.

3.1 Rust peculiarities

Rust introduces more memory safety with its
memory model with the concepts of ownership and
borrowing, such as no dangling pointers to in-
valid data, concurrent safety by borrowings effect
on data-races, and performance by richer informa-
tion on the use of values. [9] However, the borrow-
checker can never obtain perfect accuracy; reject-
ing all faulty programs and accepting all correct
programs. Rice’s theorem states: ”all interesting
questions about the input/output behaviour of pro-
grams are undecidable” [24]. We can however ob-
tain approximate answers to program properties.
These approximate answers are more useful, if they
are sound, meaning the analyser may respond with
’maybe’ if unsure but for either ’yes’ or ’no’, the an-
swer must be correct. [18]. A borrow-checker should
always be conservative, s.t. it rejects wrong pro-
grams. This is an over-approximation of the beha-
viour actual program behaviour. This relationship
is illustrated in Figure 1.

1 let x = 5;

2 let raw_ptr: *const i32 = &x as *const i32;

3 let y = unsafe { *raw_ptr };

Code block 2: Dereferencing a raw pointer by use
of unsafe

Therefore Rust introduces the unsafe-keyword,
to disable the borrow-checker for the unsafe scope
as seen in code block 2. This code compiles but may

2

exhibit undefined behaviour, e.g. if dereferencing a
raw pointer, which is normally not valid.

Using unsafe is required for operations which
the compiler analysis would always reject but the
developer attempted ensure is correct, such as im-
plementing a linked-list [20].

Rust also has a concept of moving ownership
from one variable to another, as briefly introduced
in Section 1. This can be made explicit by the
keyword move. For primitive stack allocated types,
assignments do not force a move of ownership as
these types often implement the Copy-trait. How-
ever for heap allocated memory this is the default
behaviour as copying the value from the original
variable can be computationally expensive. [7]

3.2 Dataflow analysis

Dataflow analysis reasons about the flow of data in
a program on AST or CFG IR-structures.

3.2.1 CFG

A CFG is a graph with vertices containing a se-
quence of statements, vertices contain basic blocks.
Basic blocks are a sequence of statements with only
one entry and exit point. Directional edges imply
possible flow between basic blocks.

CFG = V,E

V is a list of vertices

E is an edgelist, (source, target)

3.3 Mid-level Intermediate Repres-
entation

For Rust to adopt NLL borrow-checking, a suit-
able IR for dataflow-analysis had to be established;
Mid-level Intermediate Representation (MIR). MIR
is broadly a collection of functions with type-
declarations, for which their body is represented
as a CFG containing vertices of sequential state-
ments with flow controlled by built-in primitive
statements.

For the purposes of borrow-checking, we can omit
much of the information MIR contains and there-
fore, we will only discuss the points which are of
interest for our analysis.

For the following simple Rust program in code
block 3, we can obtain its corresponding tex-
tual MIR by using compiler-tools such as rust-
playground [6].

1 fn main(flag: bool) {

2 let mut a = 1;

3 if (flag) {

4 a = 0;

5 } else {

6 a = 42;

7 }

8 let b = a;

9 }

Code block 3: Rust program with control-flow

Rust-playground can output the textual MIR for
the above Rust program, which is only meant for
human consumption. This is however the most ac-
cessible way to achieve MIR for Rust programs,
since it does not require intimate knowledge of the
Rust compiler which we due to time-constraints
were not able to achieve.

1 fn main(_1: bool) -> () {

2 debug flag => _1;

3 let mut _0: ();

4 let mut _2: i32;

5 let mut _3: bool;

6

7 bb0: {

8 _2 = const 1_i32;

9 _3 = _1;

10 switchInt(move _3) -> [false: bb2,

otherwise: bb1];↪→

11 }

12

13 bb1: {

14 _2 = const 0_i32;

15 goto -> bb3;

16 }

17

18 bb2: {

19 _2 = const 42_i32;

20 goto -> bb3;

21 }

22

23 bb3: {

24 _4 = _2;

25 return;

26 }

27 }

Code block 4: Simplified MIR for Rust in code
block 3

Statements in MIR are assignments to loca-
tions or terminators such as goto, unreachable,

return, etc. Locations represent a path a memory
location.

3

In MIR the CFG is encoded as a sequence
of blocks named bbn − 1 for n nodes. The
edges are represented with MIR statements goto,
switchInt, return among others. The first block
bb0 is an implicit entry into the function. Con-
tinuing on, when we discuss CFGs in the context of
MIR analysis, we refer to the CFG described by the
textual MIR representation as shown in Figure 4.
MIR is on static single-assignment form (SSA),

however, when variables can have multiple values,
it uses phi-nodes [1] to merge two control-flow paths
resulting in potential multiple assignments to one
location. This is seen by the assignment of either 0
or 42 to location 2, in blocks 1 and 2.

3.4 Phi-function

Programs on static-single assignment (SSA) form
has only one definitions of variables. This is use-
ful for simplifying and optimising dataflow analysis
algorithms [1].
However, when two control-flow branches merge,

we no longer have only one assignment to each vari-
able. Therefore, we use phi-functions so that we
can combine multiple possible assignments:

ϕ(v) =

v1 if control1

v2 if control2
...

...

vn if controln

(1)

Here we yield the vn for which control-condition
is satisfied. The control-condition picks the vari-
able which was assigned in the given control-flow.

3.4.1 Liveness analysis

Liveness is a classic compiler-analysis which informs
on at which points in the program a given variable
is live. A variable is live, if its current value is
needed at a later point. [1]
We can intuitively say that every use of a variable

generates liveness and a definition kills liveness of a
given variable. We need to map statements to the
DEF - and USE-sets of variables which the state-
ment uses. For our analysis, we will operate on MIR
as discussed in Section 3.3, below we show the in-
tuitively expected location sets of DEF and USE
for two MIR-statements from get or insert.mir:

DEF ([1 = const 1 i32;]) = {1} (2)

USE([2 = HashMap::get(3, 5)]) = {3, 5}
(3)

We need to define the DEF and USE equations
for all statements in MIR to properly describe their
semantics. Unfortunately, formal semantics exist
for neither Rust or MIR, so we base our equations
on documentation in [14] and our best judgement
but note that we present no formal proof that the
following definitions are correct wrt. MIR beha-
viour.

We introduce the utility function
uses(exprMIR) → Locs which returns all loc-
ations {l | l ∈ CFG} for which they are present
in expression exprMIR. Recall from Section 3.3,
that we with CFG refer to the CFG that MIR
describes.

For an expression that contains a function-call,
we only return the locations in the function-call
arguments if they are moved, this is syntactically
written in MIR by the move keyword before a loca-
tion, e.g. switchInt(move 1);. We only include
moved locations as the move keyword signifies chan-
ging ownership of value from owner to consumer as
described in Section 3.1. This is caused by the move
invalidating the original owner as part of the mech-
anism in Rust which avoids dangling pointers, such
that only the new owner may use or borrow out the
value.

The uses function is defined in Equation 4 where
args are the set of arguments to a function-call and
call(a) is a condition which is true if the expression
contains a function-call and an expression a as ar-
guments. Both the simple expression e and argu-
ments a from call(a) are syntactical fragments of
MIR.

uses(e) =

{l | l ∈ e ∧ ¬call(a)}
{l | l ∈ call(a) ∧ call(a)} if l is moved

∅ otherwise

(4)

In the following, we misuse expected syntax of
DEF and USE by directly referencing statements
in the CFG, the correct and more verbose way
would be CFG[n] = stmtMIR and USE(n) =
{42}. For all assignment statements in MIR we
define the DEF - and USE- sets in Equations 5
and 6.

DEF ([locd = E;]) = locd (5)

USE([locd = E;]) = uses(E) (6)

4

MIR has an implicit use of location 0 for its
return;, so we define its USE as shown in Equa-
tion 7.

USE([return;]) = {0} (7)

For liveness, we define OUT [n], IN [n] as shown
in [1]:

OUT [n] =
⋃

s∈succ[n]

IN [s] (8)

IN [n] = USE[n] ∪ (OUT [n]−DEF [n]) (9)

For all statements n in the CFG, we initialise
IN [n], OUT [n] = ∅.
Computation is backwards s.t. a use of a location

generates liveness, and definition of a location kills
it. We compute iteratively until a fixed point is
reached as shown in Algorithm 1.

Algorithm 1: Liveness analysis from [1]

input : cfg, program CFG
output: IN,OUT , array of computed sets

1 foreach stmt n ∈ cfg do
2 IN [n]← ∅;
3 OUT [n]← ∅;
4 end
5 repeat
6 foreach stmt n ∈ cfg do
7 IN ′[n]← IN [n];
8 OUT ′[n]← OUT [n];
9 OUT ←

⋃
s∈succ[n] IN [s];

10 IN [n]←
USE[n] ∪ (OUT [n]−DEF [n]);

11 end

12 until IN ′[n] = IN [n] ∧OUT ′[n] =
OUT [n] foreach n;

Upon completion of Algorithm 1 we obtain the
array of live IN - and OUT -sets for all program
points in the program.

3.5 Non-Lexical Lifetimes Borrow-
Checking

In 2017 RFC 2094 [15] proposes a new borrow-
checker supporting non-lexical lifetimes.

We introduce a simple, classic borrow-checker er-
ror in code block 5 and formally explain the ap-
proach of both NLL and Polonius based on docu-
mentation available [17, 13, 8, 15].

1 let mut x: u32 = 42; // mutable u32 int

2 let y: & u32 = & x; // reference to x

3 x += 1; // use (mutate) of x

4 println!("{}", y); // use of y

Code block 5: Classic borrow-checker error pro-
gram, due to use while borrowed [17].

The issue with the Rust program in code block 5
is that while x is borrowed by y we try to mutate
it at line 3, which becomes an issue when it is later
used at line 4 by printing y.

We get an error at some statement N if:

• the statement N accesses a path P

• and accessing the path P would violate the
terms of some loan L

• and the loan L is live

A path P is an expression that leads to a
memory location to which we can assign, such as:

• x a variable is a memory location on the stack

• x.f a field of a path is a memory location

• *x.f by a pointer at field f from variable x

• (*x.f[]) some index into an array

A loan is the name for a borrow expression, e.g:
&x. A loan has an associated path P and a mode
for how it is borrowed; mutably or immutably.

The rule for an immutable loan of some path P is
P must not be modified, only read from the newly
created reference or from a subsequent immutable
loan of the path P . Similarly, for a mutable loan
of some path P , P must not be accessed in any
way except for the reference created by the borrow
expression.

Recall liveness from Section 3.4.1: A loan is live if
the reference that it created - or a derived reference
from it - may be used later.

With NLL, Rust computes lifetimes for every
reference, to decide for which set of nodes in the
MIR CFG that reference might be used. These
lifetimes are at times syntactically present in Rust
source code to assist the borrow-checker or render
better error-messages; e.g. ’a, by explicitly assign-
ing a name to a lifetime of some reference. We will
substitute the lifetime variable for the actual set of
nodes where the loan is live, e.g. ’a → {1,3,4}.

For presenting lifetimes, briefly consider the line
numbers of the classic borrow-checker error pro-
gram in code block 5 to be the indices of the CFG

5

nodes for the following. The computed, explicit life-
times are not more formally described than ’some-
thing that might be used later’ in [15, 17]. The life-
times seem to correspond with our IN [n] definition
from Section 3.4.1 as they refer to what variables
are live before the execution of a statement. We
now annotate the program with explicit lifetimes:

1 let mut x: u32 = 42;

2 let y: &'a u32 = &'b x;

3 x += 1;

4 println!("{}", y);

Code block 6: Program in code block 5 annotated
with lifetimes ’a and ’b

We see that y is live on lines 3, 4 since it will be
used by line 4 and thus lives between its declaration
at line 2 until that point, therefore we have ’a =
{3, 4}. Additionally, all the lines for which y is live,
must include the lifetime of y.

However, we have a subtyping-rule; if lifetime ’i
flows into ’j, then ’i must outlive ’j, because we
cannot have a reference to some data for which the
reference lives longer than the data as that would
leave a dangling reference.

Therefore, we are constrained on the lifetime of
’b, and this results in x having to outlive y, and
the lifetime ’b gaining those CFG nodes: ’b∪’a =
{3, 4}. Note that lifetimes for each reference is in
turn is the lifetime of its loan.

Now we have the required information to borrow-
check the program according to the definition of an
error at a statement N . Line 3 modifies the path x

(N accesses a path P). By modifying the path x,
we violate the terms of loan &x in line 2, and the
loan with lifetime ’b is live on lines 3 and 4. Thus
we have a borrow-checking error at this statement
with this context.

Using MIR makes development of the borrow-
checker easier, since development can happen on
the natural data structure for data-flow analysis
as explained in this section. This higher preci-
sion allows for and requires more fine-grained defin-
itions of the borrowing-rules. The second motiva-
tion point for developing MIR, behind simplifica-
tion and desugaring, is aiding the borrow-checker
phase [14].

Recall the prime example of NLL’s shortcoming;
get or insert.rs from code block 1:

1 fn get_or_insert<'a>(map: &'a

mut HashMap<u32, String>) -> &'a String {↪→

2 match HashMap::get(&*map, &42) {

3 Some(v) => v,

4 None => {

5 map.insert(42, String::from("init"));

6 &map[&42]

7 }

8 }

9 }

Code block 7: get or insert.rs annotated with
syntactical lifetimes

NLL rejects the program in code block 7, because
the named in-function-signature lifetime of map; the
syntactical fragment <’a> according to NLL must
last to at least the end of the function, and im-
portantly; across all possible codepaths, even those
unreachable when the borrow starts. This restric-
tion is a consequence of the implementation of NLL
as we will explore later.

Therefore, NLL rejects the program and reports
that the mutation of map at line 7 happens while a
borrow due to the Some(v) => v is still live. How-
ever, we can clearly see that the branches in the
two cases, either some value exists or it does not,
are entirely disjoint in terms of borrows: Either a
value is present in map and it is returned, or we
insert a default, and return it all the same.

In [17] it is explained that the NLL develop-
ment group had an approach to capture this type
of borrow-checker imprecision but it was computa-
tionally expensive. In that effort it was discovered
that there existed more complex patterns which
NLL could not handle, which lead to the develop-
ment of Polonius.

3.6 Polonius Borrow-Checking

Polonius argues that growing lifetimes of borrows in
a forward manner is not the best approach. Instead
Polonius searches for the origin of each reference R,
which is a set of loans which R might have origin-
ated and hence backwards. The following section is
based on [13, 17, 8].

We repeat the program annotated with lifetimes
from code block 6 in code block 8 to explain Po-
lonius.

6

1 let mut x: u32 = 42;

2 let y: &'a u32 = &'b x;

3 x += 1;

4 println!("{}", y);

Code block 8: Program in code block 5 annotated
with lifetimes ’a and ’b

We still need inference as with NLL in Section 3.5
but starting with the origin variable ’b because we
are working in the other direction. We no longer
infer the set of lines for which the variable is live,
rather the set of loans. The origin of ’b is itself;
loan {L1} because it was created right at its use.

We assign to y once which is again loan {L1}.
Had we seen more assignments to y, we would in-
stead take the union of all the loans generated by
the assignment toy. This leaves us with the conclu-
sion that all references originates in the &x expres-
sion and we have computed all the origins of this
small program.
Note how computing origins did not require the

use of lifetimes, only the dataflow relationship of
’when we create a reference, where does it get stored
to’.
Polonius slightly modifies the third rule of when

we might get an error at some program statement
N. Recall from Section 3.5: We get an error at some
program statement N if:

• the statement N accesses a path P

• and accessing the path P would violate the
terms of some loan L

• a loan L is live if some live variable has L
in its type

The change in Polonius is that we look at the
liveness of variables wrt. their types as highlighted
by the emphasised rule three above.
Consider the program in code-block 8 for which

we see that line 3 modifies the path x which is viol-
ates the terms of loan L1, much in the same fashion
as NLL in Section 3.5.
Now we need to look at which variables are live

at this line 3 program point. We see that variable
y is live because it will be used by line 4 and its
type is y: &{L1} u32 which includes the loan L1.
This causes us to register an error, due to accessing
to a path x for which a loan L1 exists violated by
this access, and L1 being live because of later use
of the same loan L1 by another reference y.

With NLL we directly compute the lifetimes of
references without a particular error in mind. This
is in contrast to Polonius which computes origins

and only uses liveness of loans through reference to
figure out if we might have a conflict.

3.7 Related work

We will look at related research using static analysis
to verify properties in Rust. The majority of cur-
rent research focuses on improving memory safety
at runtime and not explicitly crafting or formalising
a better borrow-checker.

In [20], a static taint analysis is implemented for
MIR. To accomplish this goal, the authors define
operational semantics for a subset of MIR, notably
omitting types and references. The work contrib-
utes a formalisation of MIR sufficient for taint ana-
lysis, defines a taint analysis on their semantics,
and implement the analysis as a Rust tool.

In [5], the authors applies instrumentation to the
defined semantics from [20] with the goal of verify-
ing whether Rusts borrowing system lends benefits
to static analysis. Additionally, a theoretical ap-
proach to reduce the state space of taint-analysis is
presented.

In [2] Prusti is presented; a static analysis tool for
specifying and verifying Rust program are absent of
panics, also suited for overflow checks and, while re-
maining usable for mainstream developers without
formal verification domain knowledge. Prusti en-
codes capability information - adjacent to the
borrowing-concept - into implicit dynamic frames
logic [25], a similar logic to separation logic [22].
Prusti needs to know precise knowledge of the cap-
abilities at any program point for verification, es-
pecially framing. Authors define an algorithm to
compute precise summaries of the capabilities held
at each program point, called ’place capability sets’
(PCS). These sets are required for the ’core proof’,
when encoding the program, specifications into au-
thors intermediate verification language Viper [19]
being a heap-based imperative language with pre-
and post-conditions, and loop-invariants.

Similarly to separation logic, Viper enforces that
a field location can only be accessed when permis-
sion is held to do so, while this is held it cannot
change by others providing framing and argues the
need for PCS and capabilities. Viper field permis-
sions are tracked in the program state as affine re-
sources; they can be explicitly added or removed
from state, or implicitly dropped if not required.
Each Rust memory location is mapped to a Viper
field location.

Prusti encodes this capability information for
verifying program behaviour generally, not specific-
ally for borrow-checking.

In [12] Lindner et. al. presents a symbolic execu-
tion analysis utilising the KLEE LLVM execution

7

engine [3]. By adapting KLEE engine to analyse
LLVM bitcode from Rust programs, the authors
can statically ensure memory safety and panic-free
execution of Rust code by symbolic execution.
The analysis requires writing pre- and post-

conditions for the program being analysed, and con-
tracts (P, f,Q) P , where P,Q are first-order lo-
gic predicates being Boolean expressions on a, b for
f : a → b. These are given to KLEE’s SMT solver
and is still subject to path explosion; 2c for c con-
ditionals.
Programs checked by this work can be moved

from safe to unsafe-rust, to improve performance
and the authors argue the programs are still safe
and simpler, since no panic handling is needed.
There is no direct contribution to the accuracy
of borrow-checking, yet the work complements
borrow-checking by removing parts of a program
out of borrow-checking responsibility into unsafe.
In [23] Pearce presents ’Featherweight Rust’;

a lightweight formalism for Rust which captures
both the flow-insensitive type checker and the flow-
sensitive borrow-checking analysis which enforces
the ownership invariants. A reference implementa-
tion in Java with which Pearce has model-checked
the calculus using over 500 billion input programs
resulting in one confirmed compiler bug and other
lesser issues found.
In [11], Li et. al. presents MirChecker, an auto-

mated static analysis tool for bug-detection. By use
of numerical and symbolic information for its static
analysis to detect runtime panics and memory-
safety errors by constraint solving techniques. Most
of the found bugs are not memory-safety bugs, but
triggers of runtime panics.

4 Borrow-checking analysis

In this section we will describe our analysis, argue
it’s correctness, and explain required setup to have
mir-owner-guillotine analyse Rust programs.

4.1 Intuition

The intuition behind our analysis is that over-
approximation to all code-paths are unnecessarily
conservative, especially for the prime example of
get or insert.rs in Code Block 1, since we know
the two scopes in the match-statement are wrt.
borrowing, disjoint.
We therefore seek to show that the variable v

cannot be live, whenever we are in the scope which
mutates the map.
Figure 2 illustrates a simplified CFG of

get or insert.mir with sequential nodes

caller

match

Some None

ϕ-Some ϕ-None

return

caller

Goal-region

NLL-region

Figure 2: Simplified CFG of get or insert.mir

with v-live regions

compressed into one for brevity, based on
get or insert.mir-construction as shown in
Appendix C for which we will include details in the
following Section. The match-node signifies the
borrow of &mut map, the Some- and None-arms
the body of each case, and ϕ-Some, ϕ-None nodes
the merging of possible return value.

Recall from Section 3.5 that NLL disallows
get or insert.rs because the lifetime of v grows
to encapsulate every code-path from the match-
statement and to, at least, the function caller. In
Figure 2, this region is shown as the red NLL-region
denotes the span of code where NLL considers v

live. On the other hand, we would like for v to only
be live for the green goal-region.

We will use the insertion of the ϕ-nodes to reason
that the control-flow paths which do not include the
ϕ-node of a branch, ensures the locations used by
that branch are not live. From this follows that we
can simply use liveness to solve the imprecision of
NLL borrow-check in the get or insert.rs-case.

4.2 MIR construction

The process of analysing MIR for Rust programs
which NLL rejects is hindered, in that the com-
piler halts before textual MIR is available for the
user. This necessitates an alternative procedure for

8

obtaining MIR representing our NLL-reject cases.
This issue was also identified in [20].

The preferred method for obtaining this MIR
would likely be to modify the borrow-checking
phase of the Rust compiler to allow rejected code.
One approach could be to wrap problematic code
spans in the unsafe-keyword which disables the
borrow-checker for that scope.

Unfortunately, rust-playground [6] does not seem
to disable the borrow-checker no matter which
scopes are wrapped in unsafe-scopes and we are
not able to enable provisional Polonius features
which would allow the program to be accepted.

We opt to use a hand-crafted method of obtaining
MIR for NLL-rejected Rust programs:

1. Copy Rust program into MIR-A and MIR-B

2. Mutate control-flow paths of MIR-A and MIR-
B such that at least one path retains original
intent

3. Extract basic blocks from MIR-B encapsulat-
ing NLL-offending statements after compiling
with rust-playground

4. Merge extracted blocks into MIR-A

5. Remove artefacts from mutation in step 2, cor-
recting block-numbering collisions, and shift
control-flow statements accordingly

The correctness of our ad-hoc hand-crafted
method hinges on the fact that our substitutions
does not affect the NLL-offending statements which
we extract in step 3 above and that our reconstruc-
tion of the MIR is semantically equivalent to the
expected MIR program.

We have not found other feasible methods of ob-
taining MIR for NLL-rejected programs than our
method described here. We argue that the changes
we introduce are slight and so we expect the result-
ing MIR to be in many ways similar to actual Rust
compiler MIR.

Unfortunately, we cannot guarantee that this
method is sufficient. This diminishes the applica-
tion of any of our NLL-reject case results and war-
rants a high priority in future work.

We believe the necessity of using our analysis on
NLL-rejected MIR warrants the use of our method.

Recall the get or insert.rs-example from code
block 1:

1 fn get_or_insert(map: &mut HashMap<u32, String>) ->

&String {↪→

2 match HashMap::get_mut(&*map, &42) {

3 Some(v) => v,

4 None => {

5 map.insert(42, String::from("init"));

6 &map[&42]

7 }

8 }

9 }

To convince the compiler to output MIR, we
could for MIR-A and MIR-B comment out line 5
and replace line 3 with Some(v) => &map[&42],

respectively. By this, we obtain a MIR-A case
where we no longer insert into the map in the
None-case, resulting in no borrow of map while
NLL believes v is live. In the other case, returning
&map[&42] in the Some-case, while still a reference
into the map, the reference is no longer generated
by the match-statement, which NLL accepts.

This method produces get or insert.mirand a
loop-cond-mut program based on the Polonius test
suite. Finally, a handwritten trivially borrowing-
wise invalid MIR program is written for the negat-
ive case. These and their construction are described
in detail in Appendices C, D, and E, respectively.

4.3 Phi-nodes

Recall phi-functions from Section 3.4, used for con-
solidating multiple possible values of a conflicting
variable when merging control-flow branches.

bb1 bb3 bb2n−1

bb2 bb4

bb2n+1

. . .

. . .

bb2n

Figure 3: Hypothetical CFG illustration of inser-
tion of dashed phi-nodes for n merging branches

9

1 bb0: {

2 _1 = param(_99); // stmt to simulate param

3 _4 = &(*_1); // conditional control flow

4 _10 = discriminant(_4);

5 switchInt(move _10) -> [0_i32: bb1, 1_i32:

bb3];↪→

6 }

7 bb1: {

8 _7 = SomeOperation(_1);

9 goto -> bb2;

10 }

11 bb2: {

12 _0 = _7;

13 goto -> bb5;

14 }

15 bb3: {

16 _2 = &mut (*_1);

17 _42 = SomeOperation(_2);

18 goto -> bb4;

19 }

20 bb4: {

21 _0 = _42;

22 goto -> bb5;

23 }

24 bb5: {

25 return;

26 }

Code block 9: Hypothetical MIR hand-written to
show similar behaviour to CFG in Figure 3 example
on phi-nodes, where shared variable is location 1

In MIR ϕ-nodes are inserted after each branch,
assigning the conflicting variable into a shared loc-
ation as illustrated by Figure 3 and shown in code
block 9. We start with a conditional and setup in
block 0, lines 1-6, which are omitted from the CFG
figure. If b1 places the conflicting variable in loca-
tion 7 (line 8), and b2 places the same in location
42 (line 17), then the subgraph could be written
in MIR as shown in code block 9 for two merging
branches. MIR typically uses location 0 for return
values.
For a conditional branching in MIR with n cases,

and c branches that assigns conflicting values to
the same variable, we would have c phi-nodes in-
serted between the last block of each c branch and
the following block where control-flow merges after
branching. Blocks for which no conflicting variables
are assigned, e.g. unreachable or a block which
does not change the value, are not appended phi-
nodes.
Consider the hypothetical MIR in code block 9; if

location 1 is a mutable resource NLL would reject
the originating program, if the control-flow state-
ment that leads to either block 1 or block 3 also

uses location 1. This is problem-case 3 as described
in NLL RFC 2094 [15].

However, for each trace the use of the conflict-
ing location 1 which results in a borrow, is killed
by the ϕ-node since it by assignment uses the loca-
tion, rendering liveness able to limit the lifetime of
the borrow to that branch only. We must consider
and argue whether this is intended behaviour of the
analysis, as we will not present a formal proof for
our analysis.

In Figure 4 three subgraphs are presented for
liveness analysis; a trivial sequential case (a), a con-
ditional case (b), and a case with an infinite loop
(c). These subgraphs are hypothetical and are con-
structed based on our understanding of MIR CFGs
presented in Section 3.3 and 3.4. The naming is
as follows; c is used for a common or control-flow
dependant variable, cn are values derived from c,
v signifies a value that branches compute which
are conflicting upon merging control-flow. The loop
case has dotted and dashed back-edges from t7 sig-
nifying two possible loops back before branching,
instead of returning v we simulate a use of v with
our own keyword use. We initialise all states’ IN -
and OUT -sets to ∅ as described in Section 3.4.1.

For the linear case we see the results tabulated in
Figure 5(a). Recall that liveness analysis is back-
wards; against the flow. In q4 we have uses of both
c1 and c2 and union them to IN(q4). In q3 we
see a definition of c2 and therefore we kill its live-
ness, but since we have not defined c1 yet, we get
IN(q3) = {c1}.
In the conditional case in Figure 4(b) and res-

ults in Figure 5(b) we compute liveness much in
the same way as the linear case. Recall the defin-
ition OUT [n] =

⋃
s∈succ[n] IN [s] in Section 3.4.1.

The OUT [n] definition applied to node s1 renders
OUT [s1] = IN [s2] ∪ IN [s4] = {c} signifying the
only variables passed on to the branches is c. For
node s6 we use the variable v, which the phi-
nodes s3 and s5 define. This renders us with a
closed scope of liveness in the conditional case be-
cause of the phi-nodes and importantly wrt. the
get or insert.rs-example we see that neither c1
nor c2 are live in their opposite branches.

4.4 Loops

Cyclical paths in the CFG could be problematic
because we may no longer be able to reason as to
when a variable is dead. Fortunately, the phi-nodes
ensures this is not the case for our analysis. Con-
sider the loop-case subgraph in Figure 4(c) and its
result table in Figure 5.

The results for the loop-case show that
OUT (t7) = ∅, meaning we carry no liveness

10

c← 1 q1

c1 ← c q2

c2 ← c q3

ret c1 + c2 q4

(a) Linear case

c← 2 s1

c1 ← cs2

v ← c1s3

c2 ← c s4

v ← c2 s5

ret v s6

(b) Conditional case, ϕ-nodes dashed

c← 1 t1

c′ ← 2

t2

c1 ← ct3

v ← c1t4

c2 ← c′ t5

v ← c2 t6

use v

t7

(c) Loop case, ϕ-nodes dashed

Figure 4: CFG subgraphs for liveness analysis

LIV EIN LIV EOUT

q1 ∅ {c}
q2 {c} {c1}
q3 {c1} {c1, c2}
q4 {c1, c2} ∅

(a) Linear case

LIV EIN LIV EOUT

s1 ∅ {c}
s2 {c} {c1}
s3 {c1} {v}
s4 {c} {c2}
s5 {c2} {v}
s6 {v} ∅

(b) Conditional case

LIV EIN LIV EOUT

t1 ∅ {c}
t2 {c} {c, c′}
t3 {c} {c1}
t4 {c1} {v}
t5 {c′} {c2}
t6 {c2} {v}
t7 {v} ∅

(c) Loop case

Figure 5: Liveness results for subgraphs in Figure 4

11

through when looping back to the definition of
either c or c′. Similarly, we generate liveness for c
and c′ only at t1 and t2. This leaves us with a case
reminiscent of the conditional-case in Figure 4(b);
neither c1 nor c2 are live in their opposite branches.

4.5 Identifying errors

Our borrow-checking algorithm relies on the fact
that conflicting variables keeping borrows alive for
longer than required is mitigated by ϕ-nodes killing
liveness by merging the value into a common loca-
tion. This happens
However, we need to identify borrows first which

is handled by our borrow computation algorithm,
shown in Algorithm 2. A borrow is defined in
mir-owner-guillotine as a triple of the left-hand
side location, the borrower, and the right-hand
side location, the borrowee, along with a flag for
whether this is a mutable borrow.

Algorithm 2: Borrow computation

input : cfg, program CFG
output: borrows: list of borrows

1 bs ← {};
2 bf ← {};
3 foreach stmt n ∈ cfg do
4 if n is a simple borrowing stmt then
5 bs ← bs ∪ {(n.llhs, n.lrhs, n.mut)}
6 end
7 foreach function-stmt n ∈ cfg do
8 if n is a function using a borrowed

location then
9 bf ← bf ∪ {(n.llhs, n.lrhs, n.mut)}

10 end
11 return bs ∪ bf

Algorithm 2 collects all borrows in the pro-
gram, both simple borrows such as 2 = & 1;

and more complex reborrows such as 4 =

HashMap::get(move 3); such that we carry the
borrowing of location 3 into location 4. This in-
formation would otherwise be lost due to the SSA
form of MIR.
The function overlaps is defined as shown in

Equation 10 and returns true if given borrow-
locations c1, c2 are live initially for any statement
in the CFG.

overlaps(c1, c2) =

true if ∀n ∈ CFG :

c1 ∈ IN [n]∧
c2 ∈ IN [n]

false otherwise

(10)

Algorithm 3: Borrow-checking

input : borrows: list of borrows
output: valid: boolean of borrow-check

1 foreach set s of borrows for borrowee b do
2 if |{x | x ∈ s ∧ s.mut}| ≥ 1 then
3 foreach combination c1 and c2 of s

do
4 if ¬c1.mut ∧ ¬c2.mut then
5 continue
6 end
7 if overlaps(c1, c2) ∧

(c1.mut ∨ c2.mut) then
8 return false
9 end

10 end

11 end

12 end
13 return true

The heart of our borrow-checking analysis is
shown in Algorithm 3. We take the computed bor-
rows from Algorithm 2 and split them into tuples
of a borrowee location and sets of borrows for this
location: (loc, {Borrows}).
For each combination of two borrows of a bor-

rowee, we check our following rules which are based
on Rusts borrowing rules [9]:

1. If c1 and c2 are immutable, we continue, as two
immutable references allowed.

2. If at least one of (c1, c2) are mutable and
both borrower-locations (cn.llhs) are live at the
same time, we report an error.

5 Implementation

We implement our analysis in a self-contained tool;
mir-owner-guillotine1 written in Python. Using
sly, a parser-generator library for Python, we lex
and parse MIR into our own IR for easier analysis
later on. The grammar we construct to recognise a
subset of the MIR language is found in Appendix A
and is constructed for our purposes, this also due
to no grammar being available from MIR.

While MIR is already an IR which is almost on
Single Static Assignment form [14], we chose to
make our own IR to more easily work with the
program in a form that we control. Basic blocks
have their own data-class with all concomitant data
stored locally. Edges are represented in edge-list
format, and statements are typed to make analysis

1github.com/falkecarlsen/mir-owner-guillotine

12

github.com/falkecarlsen/mir-owner-guillotine

more concise. Both blocks and statements have
appended sets of predecessors and successors. We
also choose to ignore information contained in MIR,
which is not relevant for our purposes and reduces
unnecessary complexity but are for code-generation
in later Rust compiler-stages.
We only care about types in-so-far as methods

on them dictate specific borrow-semantics:

_2 = HashMap::<u32, String>::get::<u32>(move _3,

move _5);↪→

Above we see a MIR statement from the
get or insert.mir program. HashMap::get re-
turns a Option-type, which is an enum which is
either Some(v) or None(). The method gets, by
move-semantics, location 3 and 5, which signifies
they are used and therefore not live after the state-
ment.
However, the Result-type, now stored in location

2, may be read by e.g. 7 = discriminant(2);

without being consumed, since the discriminant-
function only reads whether a value is present, i.e.
it is of type Some(v) or None(). Only later in the
example program, is 2 consumed while unwrap-
ping by casting to a Some-type:

_8 = ((_2 as Some).0: &std::string::String);

In the above, we do not care about the types of
values, beyond their dataflow interaction required
for analysis, since previous stages of the Rust-
compiler has already done type-checking and we
therefore may assume the program is correct with
respect to these completed stages. The definitions
of IN - and OUT -equations in Section 3.4.1 estab-
lish how MIR statements generate and kills liveness
of locations.
Appendix B shows a conceptual UML diagram

of our IR. The largest unit is a CFG-class containing
entry- and exit-nodes, basic blocks, and their edges.
A CFG also has methods for computing reaching-
definitions, liveness, and our borrow-checking.
A BasicBlock-class has a list of all statements

within in, along with live locations in and out of
each statement.
Similarly, a Statement-class, has all concomit-

ant data on it, methods for generating its defin-
itions and uses, whether it borrows. Depending
on the type of Statement, it overrides some of
these methods, as e.g. FunctionStatements may
reborrow and uses locations differently. We also
include PrimitiveFunctionStatements to handle
MIR’s non-assignment primitives; goto, return,

unreachable among others.

5.1 Liveness analysis

We need liveness analysis to know whether loca-
tions are live for potential conflicting borrows. The
implemented algorithm in mir-owner-guillotine

is similar to Algorithm 1 in Section 3.4.1.

We annotate each statement with the concrete
set of IN and OUT along with each node in the
CFG with its IN and OUT , corresponding to its
first and last sequential statement, respectively.
mir-owner-guillotine also outputs tabulated res-
ults of the computed liveness of each location.

5.2 Borrow-checking

Our analysis culminates in our borrow-checking al-
gorithm based on Algorithm 3 in Section 4.5. The
implemented algorithm in mir-owner-guillotine

additionally reports error-locations in the CFG by
the tuple (bbn, stmtn) signifying where in the MIR
program an error is found.

In mir-owner-guillotine we output each check
with its context of borrows currently checked and
reports the result of each of our defined borrowing-
rules, based on Rusts own described borrowing
rules in [9].

6 Discussion

The implemented mir-owner-guillotine borrow-
checking analysis accepts the get or insert.mir

presented in Appendix C, accepts the loop-cond-
mut program from the Polonius test suite [10]
presented in Appendix D and rejects the trivially
borrowing-wise faulty MIR program in Appendix E
as expected.

We argue that we capture the essence
of the NLL-problem for get or insert.rs

in our borrow-checker, implemented in
mir-owner-guillotine. Consider the bor-
rows we identify in get or insert.mirbelow.
A borrow is a five-tuple defined as
(borrowerloc, borroweeloc,mutable, bbn, stmtn).
Where bbn and stmtn denotes the indices in the
MIR program where the borrow occurs.

• Borrow(er=3, ee=1, mut=False, bb0, s1)

• Borrow(er=2, ee=1, mut=False, bb0, s3)

• Borrow(er=11, ee=1, mut=False, bb7, s0)

• Borrow(er=17, ee=1, mut=True, bb2, s0)

13

Recall for the final time get or insert.rs:

1 fn get_or_insert(map: &mut HashMap<u32, String>) ->

&String {↪→

2 match HashMap::get_mut(&*map, &42) {

3 Some(v) => v,

4 None => {

5 map.insert(42, String::from("init"));

6 &map[&42]

7 }

8 }

9 }

For which we register concurrent liveness for any
combination of borrows for which at least one of
them are mutable borrows. The relevant are loc-
ations 3, 2, 17, and 11. Location 3 signifies an
immutable reference to map used in the match-
statement, generated by &*map in line 2. Loca-
tion 2 signifies the resulting value of the call to
HashMap::get mut(&*map, &42) in line 2, specific-
ally the Option-type explained in Section 2. Loc-
ation 17 signifies the mutable reference taken to
insert default value into map, corresponding to line
5. Location 11 signifies the None-branch return of
newly inserted default value, because of last state-
ment at line 6.

1 Bcking borrowee 1 with borrows:

2 Borrow(er=3, ee=1, mut=False, bb0, s1)

3 Borrow(er=2, ee=1, mut=False, bb0, s3)

4 Borrow(er=11, ee=1, mut=False, bb7, s0)

5 Borrow(er=17, ee=1, mut=True, bb2, s0)

6 ...

7 checking Borrow(er=3, ee=1, mut=False)

8 and Borrow(er=17, ee=1, mut=True)

9 no overlap

10 ...

11 checking Borrow(er=2, ee=1, mut=False)

12 and Borrow(er=17, ee=1, mut=True)

13 no overlap

14

15 checking Borrow(er=11, ee=1, mut=False)

16 and Borrow(er=17, ee=1, mut=True)

17 no overlap

18 ...

Code block 10: Fragment of our borrow-checker
output for get or insert.mir. Note . . . signifies
omissions from output in code block 17.

Of note is the fact that we capture all expected
borrows from get or insert.rs; the three explicit
borrows at lines 2, 5, and 6 but interestingly also
the indirect borrow of v from the MIR semantics

interpretation of how the HashMap-lookup interacts
with the match-pattern.

We see from the output of all IN - and OUT -
equations for all get or insert.mir statements
in 17 that the NLL-problematic borrow by loca-
tion 2 of location 1 is only live in blocks 0, 1, 4
as a consequence of the program trace of blocks
0 → 1,→ 2 → 4 → 9, where location 2 is used
and thus killed by the phi-node of the Some-branch;
block 4. This is the clear difference between NLL
and our borrow-checker; we do not consider v from
get or insert.rs live in the None-branch.

However, we do not consider location 2 live at
the return as previously shown as the ’Goal-region’
in Figure 2 from Section 4.1. We cannot reason
about the lifetime of v after the return, at the
caller, since we have not considered interprocedural
borrow-checking analysis, just one function. We
must at least consider whether we have a sound
analysis by restricting the liveness of location 2 to,
at most, the phi-node of the Some-case, and not at
the return.

Yet, we obtain an borrow-checker which at first
seems sound with no more complexity than the clas-
sic compiler liveness-analysis and some set theory in
identifying and checking overlap of borrows. This
fact is striking considering the lack of formalisms
in defining both NLL and Polonius. We believe the
field of borrow-checking is an interesting and under-
explored domain within language formalisation and
verification which warrants further investigation.

We have unfortunately merely argued, not
proven the correctness of this analysis, which is re-
quired to properly underline and understand the
results of this work.

We believe that the analysis could be correct de-
pending on MIR semantics, for which a formal proof
is delegated to future work.

7 Future Work

We will discuss facets of our contributions which
we have identified could benefit with future work
or require future work to be fully explored. These
are

7.1 Soundness of analysis

Our borrow-checking analysis contribution would
stand stronger by having a formal correctness proof,
showing that analysis is indeed sound. In the neg-
ative case, if our analysis is not sound, we will have
learned that this approach is not sufficient for cap-
turing the borrowing rules of Rust.

14

7.2 Compare analysis against NLL
test suite

We have not been able to compare our analysis
against the same criteria that NLL or indeed Po-
lonius are. This is due to the complexity involved
in working with the Rust-compiler and extracting
MIR for the programs in the suite.
In future, the results of such a test suite

run would help indicate whether this analysis
looses or gains accuracy compared to contem-
porary techniques. For Polonius, a repository
of known problematic Rust programs are avail-
able that with mechanical translation into MIR
could, with little effort, more thoroughly test
mir-owner-guillotine.

7.3 Formalise Rusts borrowing sys-
tem

Future work should contain effort into formalising
the borrowing system of Rust, as seen in related
work [23]. This would aid in both verifying the cor-
rectness of existing borrow-checkers such as NLL
and Polonius but also assist in development of
newer borrow-checkers.

7.4 Formalisation of MIR wrt. bor-
rowing

In Section 3.4.1 we show that the simple, intuit-
ive uses and definitions in MIR are sufficient for
our analysis. However, for more complex state-
ments a better and more rigorous approach would
be welcome. Take the following statement s from
get or insert.mir:

1 _2 = HashMap::<u32, String>::get::<u32>(move _3,

move _5) -> bb1;↪→

It’s clear that DEF (s) = {2}, but later uses of 2
may or may not be used depending on their type.
If the type, as shown here, is an integer it may be
copied cheaply if multiple statements uses it. If it
is a heap-stored value, it will require an explicit
clone; .clone(), to satisfy multiple users without
potential borrowing-issues.
A more rigorous understanding of MIR’s se-

mantics are required to properly argue the cor-
rectness and construct these DEF - and USE-
functions.

7.5 Lattice liveness analysis

For liveness analysis as described in Section 3.4.1
we use dataflow-equations for all statements both

before and after their execution as described in [1].
However, we could have taken the approach of

lattice based liveness analysis as which we will
show in the following. The construction of lattice
and constraint rules for MIR syntax in this section
are heavily inspired by toy imperative languages
and constraint variables constructions, as described
in [18].

We use the parameterised powerset lattice of loc-
ations which depends on the locations in the actual
MIR program being analysed as shown in Equa-
tion 11 and Figure 6.

L = (P({Locs}),⊆) (11)

∅

{1} {2} {3}

{1, 2} {2, 3} {1, 3}

{1, 2, 3}

Figure 6: Example powerset lattice of locations for
Locs = {1, 2, 3}

For any statement v in the nodes of our CFG we
have a a constraint variable JvK that is the subset
of Locs which are live before this node.
We define JOIN(v) in Equation 12 to handle

the combining of live locations from successors to
a node v in a merging branch. For this we define
the order-relation as ⊑=⊆, which leaves us with
⊔ = ∪. [18]

JOIN(v) =
⋃

l∈succ(v)

JlK (12)

Additionally, we also need a utility function
uses(E) which denotes the locations used in an ex-
pression. This expression

We must define how the statements in MIR af-
fect the liveness of locations. This is simple for the
primitives as they only use locations and therefore
generate liveness as seen in Equation 13.

switchInt(E)];

drop(E);

}
JlK = JOIN(v) ∪ uses(E)

(13)

15

Since MIR is mostly on SSA form, the bulk of
statements are assignments. This The constraint
rule for assignments is shown in Equation 14.

l1 = E : JvK = JOIN(v) \ l1 ∪ uses(E) (14)

The return; statement in MIR has an implicit
use of location 0 and therefore we define its con-
straint rule as shown in Equation 15. We do not
have any successors for a return as our analysis is
intraprocedural, therefore we simply generate live-
ness for location 0.

return; JvK = 0 (15)

For all other statements for which no locations
are used nor any are defined, the constraint rule is
simply as shown in Equation 16.

JvK = JOIN(v) (16)

We would need to show that our powerset lattice
is a complete lattice, the functions JOIN(v) and
locs(E) are monotonic, to apply the Kleene the-
orem [18] and know that our resulting least fixed
point is unique.

8 Conclusion

In this work we have presented the ownership and
borrowing concept of newer and well-liked [21] pro-
gramming language; Rust. The main problem we
aim to answer is; why is borrow-checking precision
seemingly imprecise for unassuming code-patterns.
The prime example is clearly get or insert.rs,
also exemplified by rust-lang RFC2094 [15].

We make the the following three contributions in
the effort to solve this problem:

8.1 Understanding NLL and Po-
lonius

We believe the how and why NLL and Polonius
works for borrow-checking is not entirely clear,
which research into both verifying and formalising
Rusts borrowing system support [23, 20, 5, 2].

In Sections 3.5 and 3.6 we explain as clearly as
we are able, how these are defined, based on public
documentation.

8.2 Liveness-based borrow-checking
analysis

We define our own borrow-checking analysis based
on liveness and tightly in contrast to definitions of
NLL and Polonius, hence not based on established
formalisms. We show how our analysis handles con-
ditional branches and merges, loops, and how we
identify borrowing errors.

8.3 Prototype of our borrow-
checking analysis

We implement our liveness-based borrow-checking
analysis into a proof-of-concept Python tool called
mir-owner-guillotine. For parsing textual MIR,
we define a grammar for textual MIR that, while
restricted in the subset of MIR which it accepts,
handles all statements that we have observed in our
research textual output of MIR.
mir-owner-guillotine parses textual MIR in-

put into our own IR, which lends convenient struc-
tures and functions for liveness and our borrow-
checking analysis. If not resource limited, we would
have liked for mir-owner-guillotine to be integ-
rated into the Rust compiler.

Acknowledgements

We would like to thank our supervisors René
Rydhof Hansen and Danny Bøgsted Poulsen for
their guidance and feedback.

16

References

[1] Andrew W Appel. Modern Compiler Imple-
mentation in C. Cambridge University Press,
1998.

[2] Vytautas Astrauskas et al. ‘Leveraging Rust
types for modular specification and veri-
fication’. In: Proceedings of the ACM on
Programming Languages 3.OOPSLA (2019),
pp. 1–30.

[3] Cristian Cadar, Daniel Dunbar, Dawson R
Engler et al. ‘Klee: unassisted and automatic
generation of high-coverage tests for complex
systems programs.’ In: OSDI. Vol. 8. 2008,
pp. 209–224.

[4] Dave Clarke and Sophia Drossopoulou. ‘Own-
ership, encapsulation and the disjointness
of type and effect’. In: Proceedings of the
17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages,
and applications. 2002, pp. 292–310.

[5] Simon Vinberg Andersen Felix Cho Petersen
Mathias Knøsgaard Kristensen. ‘Rust’s Bor-
row System in Static Analysis’. PhD thesis.
Master’s thesis. Aalborg University, 2022.

[6] integer32llc. rust-playground. https : / /

github . com / integer32llc / rust -

playground. [Online; accessed 09-01-2023].
2023.

[7] rust lang. Ownership and moves. https://
doc.rust- lang.org/rust- by- example/

scope/move.html. [Online; accessed 19-01-
2023]. 2023.

[8] rust lang. The Polonius Book. https : / /

rust-lang.github.io/polonius/. [Online;
accessed 18-01-2023]. 2023.

[9] rust lang. The Rust Book: Understanding
Ownership. https://doc.rust-lang.org/
book/ch04-01-what-is-ownership.html.
[Online; accessed 19-01-2023]. 2023.

[10] rust lang/polonius. polonius/inputs/issue-
47680/issue-47680.rs. https : / / github .

com/rust-lang/polonius/blob/master/

inputs / issue - 47680 / issue - 47680 . rs.
[Online; accessed 19-01-2023]. 2023.

[11] Zhuohua Li et al. ‘MirChecker: detecting bugs
in Rust programs via static analysis’. In: Pro-
ceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Se-
curity. 2021, pp. 2183–2196.

[12] Marcus Lindner, Jorge Aparicius and Per
Lindgren. ‘No panic! Verification of Rust pro-
grams by symbolic execution’. In: 2018 IEEE
16th International Conference on Industrial
Informatics (INDIN). IEEE. 2018, pp. 108–
114.

[13] Nico Matsakis. An alias-based formula-
tion of the borrow checker. http : / /

smallcultfollowing . com / babysteps /

blog / 2018 / 04 / 27 / an - alias - based -

formulation - of - the - borrow - checker/.
[Online; accessed 20-12-2022]. 2018.

[14] Nico Matsakis. RFC 1211. https://rust-
lang . github . io / rfcs / 1211 - mir . html.
[Online; accessed 19-12-2022]. 2015.

[15] Nico Matsakis. RFC 2094. https://rust-
lang . github . io / rfcs / 2094 - nll . html.
[Online; accessed 20-12-2022]. 2017.

[16] Niko Matsakis. Non-lexical lifetimes (NLL)
fully stable. https://blog.rust-lang.org/
2022/08/05/nll-by-default.html. [On-
line; accessed 19-12-2022]. 2022.

[17] Niko Matsakis. Rust Belt Rust Conference
Talk: Polonius: Either Borrower or Lender
Be, but Responsibly. Youtube. url: https://
www.youtube.com/watch?v=_agDeiWek8w&

t.

[18] Anders Møller and Michael I Schwartzbach.
‘Static program analysis’. In: Notes. Feb
(2012).

[19] Peter Müller, Malte Schwerhoff and Alex-
ander J Summers. ‘Viper: A verification in-
frastructure for permission-based reasoning’.
In: International conference on verification,
model checking, and abstract interpretation.
Springer. 2016, pp. 41–62.

[20] Emil Jørgensen Njor and Hilmar Gústafsson.
‘Static Taint Analysis in Rust’. PhD thesis.
Master’s thesis. Aalborg University, 2021.

[21] Stack Overflow. Most loved, dreaded, and
wanted. https://survey.stackoverflow.
co/2022/#section-most-loved-dreaded-

and - wanted - programming - scripting -

and - markup - languages. [Online; accessed
19-12-2022]. 2022.

[22] Matthew J Parkinson and Alexander J
Summers. ‘The relationship between separ-
ation logic and implicit dynamic frames’.
In: European Symposium on Programming.
Springer. 2011, pp. 439–458.

17

https://github.com/integer32llc/rust-playground
https://github.com/integer32llc/rust-playground
https://github.com/integer32llc/rust-playground
https://doc.rust-lang.org/rust-by-example/scope/move.html
https://doc.rust-lang.org/rust-by-example/scope/move.html
https://doc.rust-lang.org/rust-by-example/scope/move.html
https://rust-lang.github.io/polonius/
https://rust-lang.github.io/polonius/
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://github.com/rust-lang/polonius/blob/master/inputs/issue-47680/issue-47680.rs
https://github.com/rust-lang/polonius/blob/master/inputs/issue-47680/issue-47680.rs
https://github.com/rust-lang/polonius/blob/master/inputs/issue-47680/issue-47680.rs
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://rust-lang.github.io/rfcs/1211-mir.html
https://rust-lang.github.io/rfcs/1211-mir.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://blog.rust-lang.org/2022/08/05/nll-by-default.html
https://blog.rust-lang.org/2022/08/05/nll-by-default.html
https://www.youtube.com/watch?v=_agDeiWek8w&t
https://www.youtube.com/watch?v=_agDeiWek8w&t
https://www.youtube.com/watch?v=_agDeiWek8w&t
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages

[23] David J Pearce. ‘A lightweight formalism for
reference lifetimes and borrowing in Rust’.
In: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 43.1 (2021),
pp. 1–73.

[24] Henry Gordon Rice. ‘Classes of recursively
enumerable sets and their decision problems’.
In: Transactions of the American Mathemat-
ical society 74.2 (1953), pp. 358–366.

[25] Jan Smans, Bart Jacobs and Frank Pies-
sens. ‘Implicit dynamic frames: Combin-
ing dynamic frames and separation logic’.
In: European Conference on Object-Oriented
Programming. Springer. 2009, pp. 148–172.

18

A MIR grammar

1 <mir> ::= <function>

2 <function> ::= "fn" <name> "(" <param> ")" "->" <ret-val> "{" <bblist> "}"

3

4 <param> ::= (<name> ("," <name>)*)+

5 <stmtlist> ::= <stmtlist> <statement> | <statement>

6 <bblist> ::= <bblist> <block> | <block>

7 <statement> ::= <LOCATION> "=" <stmttype> ; | "goto" "->" <bb> ";" | "unreachable" ";" | "return" |

"primitives" | "assert" ;↪→

8

9 <stmttype> ::= <LOCATION> | <constant> | <borrow> | unreachable | return | function_call | move

10

11 constant ::= CONST NUMBER _ TYPE

12 borrow ::= REF source | REFMUT source

13 source ::= (source) | LOCATION | DEREF LOCATION

14

15

16 move ::= MOVE "(" valueargs ")"

17

18 function_call ::= generic COLONTWICE method_call (valueargs) goto_block

19 method_call ::= METHODNAME | METHODNAME turbofish

20 turbofish ::= COLONTWICE "<" typeargs ">"

21 generic ::= generic COLONTWICE "<" typeargs ">" cast

22 | TYPENAMES "<" typeargs ">" cast

23 | TYPENAMES

24 | generic cast

25 | "<" generic ">"

26 cast ::= AS TYPENAMES < typeargs > | empty

27 typeargs ::= typearg "," typeargs | typearg

28 typearg ::= TYPENAMES | REF TYPENAMES | REFMUT TYPENAMES

29

30 method_call ::= METHODNAME | METHODNAME turbofish

31 turbofish ::= COLONTWICE "<" typeargs ">"

32 typeargs ::= typearg "," typeargs | typearg

33 typearg ::= TYPENAMES | REF TYPENAMES | REFMUT TYPENAMES

34 valueargs ::= valueargs "," valuearg | valuearg

35 valuearg ::= LOCATION | MOVE LOCATION | valuearg_constant (reuse from stmt)

36 | CONST STRING | STRING

37 | mode "(" LOCATION "." NUMBER ":" TYPENAMES ")"

38 | mode "(" LOCATION "." NUMBER ":" TYPENAMES ")"

39 goto_block ::= ARROW BB

40 goto_cond_block ::= ARROW "[" goto_params "]"

41 goto_params ::= goto_params "," goto_param | goto_param

42

43 goto_param ::= NUMBER "_" TYPENAMES ":" BB | OTHERWISE ":" BB

Code block 11: MIR EBNF created for mir-owner-guillotine

19

B Conceptual UML diagram mir-owner-guillotine IR

enum.Enum

ir.BasicBlock

name:
stmts:
succ:
pred:
def_in:
def_out:
live_in:
live_out:

__repr__(self):

ir.Borrow

borrower:
borrowee:
mutable:
bb_index:
stmt_index:

__hash__(self):
__eq__(self, other):
__repr__(self):

ir.CFG

entry:
exit:
bbs:
edges:
entry:
exit:
_types:

find_and_set_entry_exit(self):
add_edge(self, pred: int, succ: List[int]):
fill_in_bb_pred_succ(self):
finalise_cfg(self):
index_of(self, elem):
add_bb(self, node: BasicBlock):
__repr__(self):
pprint(self):
compute_reaching_definitions(self):
compute_liveness(self):
compute_borrows(self):

ir.Definition

location:
bb_index:
stmt_index:

__eq__(self, other):
__hash__(self):

ir.FunctionArg

mode:
location:
constant:
type:

ir.FunctionStatement

function_method:
function_type:
function_args:
bb_goto:

reborrow(self, borrows: Set['Borrow']):
gen_uses(self):

ir.Mode

NONE:
MOVE:
NOT_MOVE:
COPY:ir.PrimitiveFunctionStatement

primitive_type:
primitive_args:
bb_goto:

gen_uses(self):

ir.Statement

stmt_type:
lhs_location:
mutable:
value_type:
rhs_location:
rhs_value:
pred:
succ:
def_in:
def_out:
live_in:
live_out:
defs:
uses:

borrow(self):
gen_defs(self):
gen_uses(self):

ir.StatementType

ASSIGN:
FUNCTION_CALL:
PRIMITIVE:
UNREACHABLE:
RETURN:
GOTO:

ir.ValueType

CONST:
LOCATION:
BORROW:
DEREF:
CALL:
UNWRAP:

Figure 7: UML diagram of mir-owner-guillotine IR

20

C get or insert.mir program construction

To prepare get or insert.mir for analysis by mir-owner-guillotine we have to modify it, since NLL
rejects the program.
We construct to imagined Rust programs from get or insert.rs; MIR-A in code block 12 and MIR-B

in code block 13. For completion, we add a required main function and import the HashMap standard
library type that we use for get or insert.rs.

1 use std::collections::HashMap;

2 fn main() {}

3 fn get_or_insert (map: &mut HashMap<u32, String>) -> &String {

4 match HashMap::get(&*map, &22) {

5 Some(v) => v,

6 None => {

7 //map.insert(42, String::from("init"));

8 &map[&42]

9 }

10 }

11 }

Code block 12: MIR-A Rust program, map insert at line 5 commented out

1 use std::collections::HashMap;

2 fn main() {}

3 fn get_or_insert (map: &mut HashMap<u32, String>) -> &String {

4 match HashMap::get(&*map, &22) {

5 Some(v) => &map[&42],

6 None => {

7 map.insert(42, String::from("init"));

8 &map[&42]

9 }

10 }

11 }

Code block 13: MIR-B Rust program. Return of control-flow reference reborrowed into v at line3 is
removed. Instead we remove a fresh reference of the same location in the map: &map[&42].

Below in code blocks 14 and 15, we have the full - and unfortunately very verbose - output of the
MIR textual generation from rust-playground. We believe it is important to show the entirety of the
generated MIR for completeness.

1 fn main() -> () {

2 let mut _0: (); // return place in scope 0 at src/main.rs:2:11: 2:11

3

4 bb0: {

5 return; // scope 0 at src/main.rs:2:13: 2:13

6 }

7 }

8

9 fn get_or_insert(_1: &mut HashMap<u32, String>) -> &String {

10 debug map => _1; // in scope 0 at src/main.rs:3:19: 3:22

11 let mut _0: &std::string::String; // return place in scope 0 at src/main.rs:3:55: 3:63

12 let mut _2: std::option::Option<&std::string::String>; // in scope 0 at src/main.rs:5:9: 5:33

21

13 let mut _3: &std::collections::HashMap<u32, std::string::String>; // in scope 0 at src/main.rs:5:22:

5:27↪→

14 let _4: &std::collections::HashMap<u32, std::string::String>; // in scope 0 at src/main.rs:5:22: 5:27

15 let mut _5: &u32; // in scope 0 at src/main.rs:5:29: 5:32

16 let _6: &u32; // in scope 0 at src/main.rs:5:29: 5:32

17 let mut _7: isize; // in scope 0 at src/main.rs:6:5: 6:12

18 let _8: &std::string::String; // in scope 0 at src/main.rs:6:10: 6:11

19 let _9: &std::string::String; // in scope 0 at src/main.rs:9:7: 9:16

20 let _10: &std::string::String; // in scope 0 at src/main.rs:9:8: 9:16

21 let mut _11: &std::collections::HashMap<u32, std::string::String>; // in scope 0 at src/main.rs:9:8:

9:11↪→

22 let mut _12: &u32; // in scope 0 at src/main.rs:9:12: 9:15

23 let _13: &u32; // in scope 0 at src/main.rs:9:12: 9:15

24 let mut _14: &u32; // in scope 0 at src/main.rs:9:12: 9:15

25 let mut _15: &u32; // in scope 0 at src/main.rs:5:29: 5:32

26 scope 1 {

27 debug v => _8; // in scope 1 at src/main.rs:6:10: 6:11

28 }

29

30 bb0: {

31 _4 = &(*_1); // scope 0 at src/main.rs:5:22: 5:27

32 _3 = _4; // scope 0 at src/main.rs:5:22: 5:27

33 _15 = const _; // scope 0 at src/main.rs:5:29: 5:32

34 // mir::Constant

35 // + span: src/main.rs:5:29: 5:32

36 // + literal: Const { ty: &u32, val: Unevaluated(get_or_insert,

[], Some(promoted[1])) }↪→

37 _6 = _15; // scope 0 at src/main.rs:5:29: 5:32

38 _5 = _6; // scope 0 at src/main.rs:5:29: 5:32

39 _2 = HashMap::<u32, String>::get::<u32>(move _3, move _5) -> bb1; // scope 0 at src/main.rs:5:9:

5:33↪→

40 // mir::Constant

41 // + span: src/main.rs:5:9: 5:21

42 // + user_ty: UserType(0)

43 // + literal: Const { ty: for<'a, 'b> fn(&'a HashMap<u32,

String>, &'b u32) -> Option<&'a String> {HashMap::<u32,

String>::get::<u32>}, val: Value(<ZST>) }

↪→

↪→

44 }

45

46 bb1: {

47 _7 = discriminant(_2); // scope 0 at src/main.rs:5:9: 5:33

48 switchInt(move _7) -> [0_isize: bb2, 1_isize: bb4, otherwise: bb3]; // scope 0 at

src/main.rs:5:3: 5:33↪→

49 }

50

51 bb2: {

52 _11 = &(*_1); // scope 0 at src/main.rs:9:8: 9:11

53 _14 = const _; // scope 0 at src/main.rs:9:12: 9:15

54 // mir::Constant

55 // + span: src/main.rs:9:12: 9:15

56 // + literal: Const { ty: &u32, val: Unevaluated(get_or_insert,

[], Some(promoted[0])) }↪→

57 _13 = _14; // scope 0 at src/main.rs:9:12: 9:15

58 _12 = _13; // scope 0 at src/main.rs:9:12: 9:15

59 _10 = <HashMap<u32, String> as Index<&u32>>::index(move _11, move _12) -> bb5; // scope 0 at

src/main.rs:9:8: 9:16↪→

60 // mir::Constant

61 // + span: src/main.rs:9:8: 9:16

22

62 // + literal: Const { ty: for<'a> fn(&'a HashMap<u32, String>,

&u32) -> &'a <HashMap<u32, String> as Index<&u32>>::Output

{<HashMap<u32, String> as Index<&u32>>::index}, val:

Value(<ZST>) }

↪→

↪→

↪→

63 }

64

65 bb3: {

66 unreachable; // scope 0 at src/main.rs:5:9: 5:33

67 }

68

69 bb4: {

70 _8 = ((_2 as Some).0: &std::string::String); // scope 0 at src/main.rs:6:10: 6:11

71 _0 = _8; // scope 1 at src/main.rs:6:16: 6:17

72 goto -> bb6; // scope 0 at src/main.rs:6:16: 6:17

73 }

74

75 bb5: {

76 _9 = _10; // scope 0 at src/main.rs:9:7: 9:16

77 _0 = _9; // scope 0 at src/main.rs:9:7: 9:16

78 goto -> bb6; // scope 0 at src/main.rs:10:5: 10:6

79 }

80

81 bb6: {

82 return; // scope 0 at src/main.rs:12:2: 12:2

83 }

84 }

85

86 promoted[0] in get_or_insert: &u32 = {

87 let mut _0: &u32; // return place in scope 0 at src/main.rs:9:12: 9:15

88 let mut _1: u32; // in scope 0 at src/main.rs:9:13: 9:15

89

90 bb0: {

91 _1 = const 42_u32; // scope 0 at src/main.rs:9:13: 9:15

92 _0 = &_1; // scope 0 at src/main.rs:9:12: 9:15

93 return; // scope 0 at src/main.rs:9:12: 9:15

94 }

95 }

96

97 promoted[1] in get_or_insert: &u32 = {

98 let mut _0: &u32; // return place in scope 0 at src/main.rs:5:29: 5:32

99 let mut _1: u32; // in scope 0 at src/main.rs:5:30: 5:32

100

101 bb0: {

102 _1 = const 22_u32; // scope 0 at src/main.rs:5:30: 5:32

103 _0 = &_1; // scope 0 at src/main.rs:5:29: 5:32

104 return; // scope 0 at src/main.rs:5:29: 5:32

105 }

106 }

Code block 14: MIR-A MIR output from rust-playground

23

1 fn main() -> () {

2 let mut _0: (); // return place in scope 0 at src/main.rs:2:11: 2:11

3

4 bb0: {

5 return; // scope 0 at src/main.rs:2:13: 2:13

6 }

7 }

8

9 fn get_or_insert(_1: &mut HashMap<u32, String>) -> &String {

10 debug map => _1; // in scope 0 at src/main.rs:3:19: 3:22

11 let mut _0: &std::string::String; // return place in scope 0 at src/main.rs:3:55: 3:63

12 let mut _2: std::option::Option<&std::string::String>; // in scope 0 at src/main.rs:5:9: 5:33

13 let mut _3: &std::collections::HashMap<u32, std::string::String>; // in scope 0 at src/main.rs:5:22:

5:27↪→

14 let _4: &std::collections::HashMap<u32, std::string::String>; // in scope 0 at src/main.rs:5:22: 5:27

15 let mut _5: &u32; // in scope 0 at src/main.rs:5:29: 5:32

16 let _6: &u32; // in scope 0 at src/main.rs:5:29: 5:32

17 let mut _7: isize; // in scope 0 at src/main.rs:6:5: 6:12

18 let _8: &std::string::String; // in scope 0 at src/main.rs:6:10: 6:11

19 let _9: &std::string::String; // in scope 0 at src/main.rs:6:16: 6:25

20 let _10: &std::string::String; // in scope 0 at src/main.rs:6:17: 6:25

21 let mut _11: &std::collections::HashMap<u32, std::string::String>; // in scope 0 at src/main.rs:6:17:

6:20↪→

22 let mut _12: &u32; // in scope 0 at src/main.rs:6:21: 6:24

23 let _13: &u32; // in scope 0 at src/main.rs:6:21: 6:24

24 let _14: std::option::Option<std::string::String>; // in scope 0 at src/main.rs:8:7: 8:43

25 let mut _15: &mut std::collections::HashMap<u32, std::string::String>; // in scope 0 at

src/main.rs:8:7: 8:43↪→

26 let mut _16: std::string::String; // in scope 0 at src/main.rs:8:22: 8:42

27 let _17: &std::string::String; // in scope 0 at src/main.rs:9:7: 9:16

28 let _18: &std::string::String; // in scope 0 at src/main.rs:9:8: 9:16

29 let mut _19: &std::collections::HashMap<u32, std::string::String>; // in scope 0 at src/main.rs:9:8:

9:11↪→

30 let mut _20: &u32; // in scope 0 at src/main.rs:9:12: 9:15

31 let _21: &u32; // in scope 0 at src/main.rs:9:12: 9:15

32 let mut _22: &u32; // in scope 0 at src/main.rs:9:12: 9:15

33 let mut _24: &u32; // in scope 0 at src/main.rs:5:29: 5:32

34 scope 1 {

35 debug v => _8; // in scope 1 at src/main.rs:6:10: 6:11

36 let mut _23: &u32; // in scope 1 at src/main.rs:6:21: 6:24

37 }

38

39 bb0: {

40 _4 = &(*_1); // scope 0 at src/main.rs:5:22: 5:27

41 _3 = _4; // scope 0 at src/main.rs:5:22: 5:27

42 _24 = const _; // scope 0 at src/main.rs:5:29: 5:32

43 // mir::Constant

44 // + span: src/main.rs:5:29: 5:32

45 // + literal: Const { ty: &u32, val: Unevaluated(get_or_insert,

[], Some(promoted[2])) }↪→

46 _6 = _24; // scope 0 at src/main.rs:5:29: 5:32

47 _5 = _6; // scope 0 at src/main.rs:5:29: 5:32

48 _2 = HashMap::<u32, String>::get::<u32>(move _3, move _5) -> bb1; // scope 0 at src/main.rs:5:9:

5:33↪→

49 // mir::Constant

50 // + span: src/main.rs:5:9: 5:21

24

51 // + user_ty: UserType(0)

52 // + literal: Const { ty: for<'a, 'b> fn(&'a HashMap<u32,

String>, &'b u32) -> Option<&'a String> {HashMap::<u32,

String>::get::<u32>}, val: Value(<ZST>) }

↪→

↪→

53 }

54

55 bb1: {

56 _7 = discriminant(_2); // scope 0 at src/main.rs:5:9: 5:33

57 switchInt(move _7) -> [0_isize: bb2, 1_isize: bb4, otherwise: bb3]; // scope 0 at

src/main.rs:5:3: 5:33↪→

58 }

59

60 bb2: {

61 _15 = &mut (*_1); // scope 0 at src/main.rs:8:7: 8:43

62 _16 = <String as From<&str>>::from(const "init") -> bb6; // scope 0 at src/main.rs:8:22: 8:42

63 // mir::Constant

64 // + span: src/main.rs:8:22: 8:34

65 // + user_ty: UserType(1)

66 // + literal: Const { ty: fn(&str) -> String {<String as

From<&str>>::from}, val: Value(<ZST>) }↪→

67 // mir::Constant

68 // + span: src/main.rs:8:35: 8:41

69 // + literal: Const { ty: &str, val: Value(Slice(..)) }

70 }

71

72 bb3: {

73 unreachable; // scope 0 at src/main.rs:5:9: 5:33

74 }

75

76 bb4: {

77 _8 = ((_2 as Some).0: &std::string::String); // scope 0 at src/main.rs:6:10: 6:11

78 _11 = &(*_1); // scope 1 at src/main.rs:6:17: 6:20

79 _23 = const _; // scope 1 at src/main.rs:6:21: 6:24

80 // mir::Constant

81 // + span: src/main.rs:6:21: 6:24

82 // + literal: Const { ty: &u32, val: Unevaluated(get_or_insert,

[], Some(promoted[1])) }↪→

83 _13 = _23; // scope 1 at src/main.rs:6:21: 6:24

84 _12 = _13; // scope 1 at src/main.rs:6:21: 6:24

85 _10 = <HashMap<u32, String> as Index<&u32>>::index(move _11, move _12) -> bb5; // scope 1 at

src/main.rs:6:17: 6:25↪→

86 // mir::Constant

87 // + span: src/main.rs:6:17: 6:25

88 // + literal: Const { ty: for<'a> fn(&'a HashMap<u32, String>,

&u32) -> &'a <HashMap<u32, String> as Index<&u32>>::Output

{<HashMap<u32, String> as Index<&u32>>::index}, val:

Value(<ZST>) }

↪→

↪→

↪→

89 }

90

91 bb5: {

92 _9 = _10; // scope 1 at src/main.rs:6:16: 6:25

93 _0 = _9; // scope 1 at src/main.rs:6:16: 6:25

94 goto -> bb10; // scope 0 at src/main.rs:6:24: 6:25

95 }

96

97 bb6: {

98 _14 = HashMap::<u32, String>::insert(move _15, const 42_u32, move _16) -> bb7; // scope 0 at

src/main.rs:8:7: 8:43↪→

25

99 // mir::Constant

100 // + span: src/main.rs:8:11: 8:17

101 // + literal: Const { ty: for<'a> fn(&'a mut HashMap<u32,

String>, u32, String) -> Option<String> {HashMap::<u32,

String>::insert}, val: Value(<ZST>) }

↪→

↪→

102 }

103

104 bb7: {

105 drop(_14) -> bb8; // scope 0 at src/main.rs:8:43: 8:44

106 }

107

108 bb8: {

109 _19 = &(*_1); // scope 0 at src/main.rs:9:8: 9:11

110 _22 = const _; // scope 0 at src/main.rs:9:12: 9:15

111 // mir::Constant

112 // + span: src/main.rs:9:12: 9:15

113 // + literal: Const { ty: &u32, val: Unevaluated(get_or_insert,

[], Some(promoted[0])) }↪→

114 _21 = _22; // scope 0 at src/main.rs:9:12: 9:15

115 _20 = _21; // scope 0 at src/main.rs:9:12: 9:15

116 _18 = <HashMap<u32, String> as Index<&u32>>::index(move _19, move _20) -> bb9; // scope 0 at

src/main.rs:9:8: 9:16↪→

117 // mir::Constant

118 // + span: src/main.rs:9:8: 9:16

119 // + literal: Const { ty: for<'a> fn(&'a HashMap<u32, String>,

&u32) -> &'a <HashMap<u32, String> as Index<&u32>>::Output

{<HashMap<u32, String> as Index<&u32>>::index}, val:

Value(<ZST>) }

↪→

↪→

↪→

120 }

121

122 bb9: {

123 _17 = _18; // scope 0 at src/main.rs:9:7: 9:16

124 _0 = _17; // scope 0 at src/main.rs:9:7: 9:16

125 goto -> bb10; // scope 0 at src/main.rs:10:5: 10:6

126 }

127

128 bb10: {

129 return; // scope 0 at src/main.rs:12:2: 12:2

130 }

131 }

132

133 promoted[0] in get_or_insert: &u32 = {

134 let mut _0: &u32; // return place in scope 0 at src/main.rs:9:12: 9:15

135 let mut _1: u32; // in scope 0 at src/main.rs:9:13: 9:15

136

137 bb0: {

138 _1 = const 42_u32; // scope 0 at src/main.rs:9:13: 9:15

139 _0 = &_1; // scope 0 at src/main.rs:9:12: 9:15

140 return; // scope 0 at src/main.rs:9:12: 9:15

141 }

142 }

143

144 promoted[1] in get_or_insert: &u32 = {

145 let mut _0: &u32; // return place in scope 0 at src/main.rs:6:21: 6:24

146 let mut _1: u32; // in scope 0 at src/main.rs:6:22: 6:24

147

148 bb0: {

149 _1 = const 42_u32; // scope 0 at src/main.rs:6:22: 6:24

26

150 _0 = &_1; // scope 0 at src/main.rs:6:21: 6:24

151 return; // scope 0 at src/main.rs:6:21: 6:24

152 }

153 }

154

155 promoted[2] in get_or_insert: &u32 = {

156 let mut _0: &u32; // return place in scope 0 at src/main.rs:5:29: 5:32

157 let mut _1: u32; // in scope 0 at src/main.rs:5:30: 5:32

158

159 bb0: {

160 _1 = const 22_u32; // scope 0 at src/main.rs:5:30: 5:32

161 _0 = &_1; // scope 0 at src/main.rs:5:29: 5:32

162 return; // scope 0 at src/main.rs:5:29: 5:32

163 }

164 }

Code block 15: MIR-B MIR output from rust-playground

Applying our hand-crafted MIR construction from Section 4.2, we complete the following modifications
to MIR-A to render our final MIR for get or insert.mir:

We extract the blocks from MIR-B denoting the insertion of the default value. This is blocks 2, 6, 7.
We see that the blocks 8 and 9 in MIR-B are identical to blocks 2 and 5 in MIR-A, with the exception
of location numbering. These two pairs of blocks are resulting from the &map[&42] returning statement
in line 8 for both code block 12 and 13. We also see the use of promoted constants for &42 which we
simply inline into the HashMap insert in line 29 in code block 16.

Next we remove the type declarations and insert dummy line 2 in code block 16 to emulate the map
argument. This is required because we do not support type declarations in mir-owner-guillotine.

Lastly we insert the extracted blocks from MIR-B identified above, that is blocks 2, 6, and 7 which
we insert at as-is, the successor in the None-case of the switchInt in 1, line 10 in code block 16. We also
insert 8 and 9 from MIR-B for the &map[&42] returning statement.

This leaves us with MIR-A, with blocks 2 and 5 removed, with blocks 2, 6, 7, 8, 9 from MIR-B
inserted and thus we need to adjust block numbering to account for the insertion of these five blocks.
The identified subgraph from MIR-B is transformed: 2, 6 → 5, 7, 8, 9. The entirety of the MIR-A
graph sans the &map[&42] returning statement is slightly transformed: blocks 0, 1, 3, 4, 6→ 9. For both
transformations we change the index, predecessor- and successor control-flow primitives to reflect this
change.

Finally, we are rendered the resulting MIR in code block 16.

27

1 bb0: {

2 _1 = HashMap::new(const 42_u32);

3 _3 = &(*_1);

4 _5 = const 42_u32;

5 _2 = HashMap::<u32, String>::get::<u32>(move _3, move _5) -> bb1;

6 }

7

8 bb1: {

9 _7 = discriminant(_2);

10 switchInt(move _7) -> [0_isize: bb2, 1_isize: bb4, otherwise: bb3];

11 }

12

13 bb2: {

14 _17 = &mut (*_1);

15 _18 = <String as From<&str>>::from(const "init") -> bb5;

16 }

17

18 bb3: {

19 unreachable;

20 }

21

22 bb4: {

23 _8 = ((_2 as Some).0: &std::string::String);

24 _0 = _8;

25 goto -> bb9;

26 }

27

28 bb5: {

29 _16 = HashMap::<u32, String>::insert(move _17, const 42_u32, move _18) -> bb6;

30 }

31

32 bb6: {

33 drop(_16) -> bb7;

34 }

35

36 bb7: {

37 _11 = &(*_1);

38 _12 = const 42_u32;

39 _10 = <HashMap<u32, String> as Index<&u32>>::index(move _11, move _12) -> bb8;

40 }

41

42 bb8: {

43 _0 = _10;

44 goto -> bb9;

45 }

46

47 bb9: {

48 return;

49 }

Code block 16: get or insert.mir

28

1 bb 0 liveness:

2 stmt:0 live in: set() live out: {1}

3 stmt:1 live in: {1} live out: {1, 3}

4 stmt:2 live in: {1, 3} live out: {1, 3, 5}

5 stmt:3 live in: {1, 3, 5} live out: {1, 2}

6 ==========

7 bb 1 liveness:

8 stmt:0 live in: {1, 2} live out: {1, 2, 7}

9 stmt:1 live in: {1, 2, 7} live out: {1, 2}

10 ==========

11 bb 2 liveness:

12 stmt:0 live in: {1} live out: {17, 1}

13 stmt:1 live in: {17, 1} live out: {17, 18, 1}

14 ==========

15 bb 3 liveness:

16 stmt:0 live in: set() live out: set()

17 ==========

18 bb 4 liveness:

19 stmt:0 live in: {2} live out: {8}

20 stmt:1 live in: {8} live out: {0}

21 stmt:2 live in: {0} live out: {0}

22 ==========

23 bb 5 liveness:

24 stmt:0 live in: {17, 18, 1} live out: {16, 1}

25 ==========

26 bb 6 liveness:

27 stmt:0 live in: {16, 1} live out: {1}

28 ==========

29 bb 7 liveness:

30 stmt:0 live in: {1} live out: {11}

31 stmt:1 live in: {11} live out: {11, 12}

32 stmt:2 live in: {11, 12} live out: {10}

33 ==========

34 bb 8 liveness:

35 stmt:0 live in: {10} live out: {0}

36 stmt:1 live in: {0} live out: {0}

37 ==========

38 bb 9 liveness:

39 stmt:0 live in: {0} live out: set()

40 ==========

41 Borrow-checking:

42 Bcking borrowee 1 with borrows:

43 Borrow(er=3, ee=1, mut=False, bb0, s1)

44 Borrow(er=2, ee=1, mut=False, bb0, s3)

45 Borrow(er=11, ee=1, mut=False, bb7, s0)

46 Borrow(er=17, ee=1, mut=True, bb2, s0)

47 checking Borrow(er=3, ee=1, mut=False, bb0, s1)

48 and Borrow(er=2, ee=1, mut=False, bb0, s3)

49 both immutable, don't care about overlap

50

51 checking Borrow(er=3, ee=1, mut=False, bb0, s1)

52 and Borrow(er=11, ee=1, mut=False, bb7, s0)

53 both immutable, don't care about overlap

54

55 checking Borrow(er=3, ee=1, mut=False, bb0, s1)

56 and Borrow(er=17, ee=1, mut=True, bb2, s0)

29

57 no overlap

58

59 checking Borrow(er=2, ee=1, mut=False, bb0, s3)

60 and Borrow(er=11, ee=1, mut=False, bb7, s0)

61 both immutable, don't care about overlap

62

63 checking Borrow(er=2, ee=1, mut=False, bb0, s3)

64 and Borrow(er=17, ee=1, mut=True, bb2, s0)

65 no overlap

66

67 checking Borrow(er=11, ee=1, mut=False, bb7, s0)

68 and Borrow(er=17, ee=1, mut=True, bb2, s0)

69 no overlap

70

71 Bcking borrowee 2 with borrows:

72 Borrow(er=8, ee=2, mut=False, bb4, s0)

73 no mutable borrows for: 2, have 1 immutable borrows, all good.

74 borrow-check thinks program is valid? True

Code block 17: Result of mir-owner-guillotine by passing get or insert.mir as input

30

D Loop-cond-mut (issue-47680) program construction

For development of Polonius, a suite of test-cases are constructed. The following example is known as
Issue-476802.

NLL rejects the program, despite being able to handle the conditional mutation of a control-flow
variable in the simple if-statement case. However, when looping the same construct, NLL rejects it. This
limitation is also the case for the get or insert.mir-program.

1 struct Thing;

2

3 impl Thing {

4 fn maybe_next(&mut self) -> Option<&mut Self> { None }

5 }

6

7 fn main() {

8 let mut temp = &mut Thing;

9

10 loop {

11 match temp.maybe_next() {

12 Some(v) => { temp = v; }

13 None => { }

14 }

15 }

16 }

Code block 18: Rust source code for loop with conditional mutation

Above Rust does not compiler under NLL, so to obtain MIR for analysis we simply introduce a mutable
variable a and mutate that instead of the temp variable which is used in the conditional control flow at
line 11. The resulting MIR-A is shown in code block 19

1 struct Thing;

2

3 impl Thing {

4 fn maybe_next(&mut self) -> Option<&mut Self> { None }

5 }

6

7 fn main() {

8 let mut temp = &mut Thing;

9 let mut a = 0;

10

11 loop {

12 match temp.maybe_next() {

13 Some(v) => { a = 1; }

14 None => { }

15 }

16 }

17 }

Code block 19: Modified loop-cond-mut example with substituting mutation onto other variable

2https://github.com/rust-lang/polonius/blob/master/inputs/issue-47680/issue-47680.rs

31

https://github.com/rust-lang/polonius/blob/master/inputs/issue-47680/issue-47680.rs

1 fn <impl at src/main.rs:3:1: 3:11>::maybe_next(_1: &mut Thing) -> Option<&mut Thing> {

2 debug self => _1; // in scope 0 at src/main.rs:4:19: 4:28

3 let mut _0: std::option::Option<&mut Thing>; // return place in scope 0 at src/main.rs:4:33: 4:50

4

5 bb0: {

6 Deinit(_0); // scope 0 at src/main.rs:4:53: 4:57

7 discriminant(_0) = 0; // scope 0 at src/main.rs:4:53: 4:57

8 return; // scope 0 at src/main.rs:4:59: 4:59

9 }

10 }

11

12 fn main() -> () {

13 let mut _0: (); // return place in scope 0 at src/main.rs:7:11: 7:11

14 let mut _1: &mut Thing; // in scope 0 at src/main.rs:8:9: 8:17

15 let mut _2: Thing; // in scope 0 at src/main.rs:8:25: 8:30

16 let mut _4: std::option::Option<&mut Thing>; // in scope 0 at src/main.rs:12:11: 12:28

17 let mut _5: &mut Thing; // in scope 0 at src/main.rs:12:11: 12:28

18 let mut _6: isize; // in scope 0 at src/main.rs:13:9: 13:16

19 scope 1 {

20 debug temp => _1; // in scope 1 at src/main.rs:8:9: 8:17

21 let mut _3: i32; // in scope 1 at src/main.rs:9:9: 9:14

22 scope 2 {

23 debug a => _3; // in scope 2 at src/main.rs:9:9: 9:14

24 let _7: &mut Thing; // in scope 2 at src/main.rs:13:14: 13:15

25 scope 3 {

26 debug v => _7; // in scope 3 at src/main.rs:13:14: 13:15

27 }

28 }

29 }

30

31 bb0: {

32 _1 = &mut _2; // scope 0 at src/main.rs:8:20: 8:30

33 _3 = const 0_i32; // scope 1 at src/main.rs:9:17: 9:18

34 goto -> bb1; // scope 2 at src/main.rs:11:5: 16:6

35 }

36

37 bb1: {

38 _5 = &mut (*_1); // scope 2 at src/main.rs:12:11: 12:28

39 _4 = Thing::maybe_next(move _5) -> bb2; // scope 2 at src/main.rs:12:11: 12:28

40 // mir::Constant

41 // + span: src/main.rs:12:16: 12:26

42 // + literal: Const { ty: for<'a> fn(&'a mut Thing) ->

Option<&'a mut Thing> {Thing::maybe_next}, val: Value(<ZST>)

}

↪→

↪→

43 }

44

45 bb2: {

46 _6 = discriminant(_4); // scope 2 at src/main.rs:12:11: 12:28

47 switchInt(move _6) -> [0_isize: bb1, 1_isize: bb4, otherwise: bb3]; // scope 2 at

src/main.rs:12:5: 12:28↪→

48 }

49

50 bb3: {

51 unreachable; // scope 2 at src/main.rs:12:11: 12:28

52 }

53

32

54 bb4: {

55 _7 = move ((_4 as Some).0: &mut Thing); // scope 2 at src/main.rs:13:14: 13:15

56 _3 = const 1_i32; // scope 3 at src/main.rs:13:22: 13:27

57 goto -> bb1; // scope 2 at src/main.rs:13:29: 13:30

58 }

59 }

Code block 20: Resulting MIR of modified loop-cond-mut program

Unfortunately, mir-owner-guillotine is not mature enough to handle all the constructs of the MIR.
We therefore omit function signatures and location type-declarations s.t. we render only basic blocks.
We can only analyse a single function at a time, so the removal of maybe next-function on the Thing

struct is required.

We must also modify the MIR to mutate the temp variable instead of our inserted a in the resulting
MIR in code block 20 of modified program in code block 19. This is achieved by removing all assignments
to location 3, and inserting the assignment of location 7 to location 1 in line 25. This assignment acts
as the phi-node between the two predecessor blocks of block 1; namely block 0 and block 4.

1 bb0: {

2 _1 = &mut _2; // scope 0 at src/main.rs:8:20: 8:30

3 goto -> bb1; // scope 2 at src/main.rs:11:5: 16:6

4 }

5

6 bb1: {

7 _5 = &mut (*_1); // scope 2 at src/main.rs:12:11: 12:28

8 _4 = Thing::maybe_next(move _5) -> bb2; // scope 2 at src/main.rs:12:11: 12:28

9 }

10

11 bb2: {

12 _6 = discriminant(_4); // scope 2 at src/main.rs:12:11: 12:28

13 switchInt(move _6) -> [0_isize: bb1, 1_isize: bb4, otherwise: bb3]; // scope 2 at src/main.rs:12:5:

12:28↪→

14 }

15

16 bb3: {

17 unreachable; // scope 2 at src/main.rs:12:11: 12:28

18 }

19

20 bb4: {

21 _7 = move ((_4 as Some).0: &mut Thing); // scope 2 at src/main.rs:13:14: 13:15

22 _1 = move _7;

23 goto -> bb1; // scope 2 at src/main.rs:13:29: 13:30

24 }

Code block 21: Modified MIR which mir-owner-guillotine can analyse

Note that the removal of the function type declarations makes us forget that location 1 is of type &mut
Thing.

33

Passing the modified MIR in code block 21 into mir-owner-guillotine returns the following output:

1 bb 0 liveness:

2 stmt:0 live in: {2} live out: {1}

3 stmt:1 live in: {1} live out: {1}

4 ==========

5 bb 1 liveness:

6 stmt:0 live in: {1} live out: {1, 5}

7 stmt:1 live in: {1, 5} live out: {1, 4}

8 ==========

9 bb 2 liveness:

10 stmt:0 live in: {1, 4} live out: {1, 4, 6}

11 stmt:1 live in: {1, 4, 6} live out: {1, 4}

12 ==========

13 bb 3 liveness:

14 stmt:0 live in: set() live out: set()

15 ==========

16 bb 4 liveness:

17 stmt:0 live in: {4} live out: {7}

18 stmt:1 live in: {7} live out: {1}

19 stmt:2 live in: {1} live out: {1}

20 ==========

21 Borrow-checking:

22 Bcking borrowee 1 with borrows:

23 Borrow(er=5, ee=1, mut=True, bb1, s0)

24 Bcking borrowee 2 with borrows:

25 Borrow(er=1, ee=2, mut=True, bb0, s0)

26 Bcking borrowee 4 with borrows:

27 Borrow(er=7, ee=4, mut=True, bb4, s0)

28 borrow-check thinks program is valid? True

29

30 Process finished with exit code 0

Code block 22: Result of mir-owner-guillotine by running on loop-cond-mut MIR

34

E Trivially borrowing-wise faulty MIR program

1 bb0: {

2 _1 = HashMap::new(const 42_u32); // make some var to ref to

3 _2 = &(*_1); // immut ref to map for reading

4 _3 = HashMap::<u32, String>::get::<u32>(move _2); // get val, semantics say result (loc 3) is now

also a borrow of same type, to arg borrow (loc 2)↪→

5 _4 = &mut (*_1); // mut ref to map for writing

6 _5 = ((_2 as Some).0: &std::string::String); // use of get-val, which generates liveness of borrow(3

-> 1), but mut borrow above?!↪→

7 _0 = &mut (*_4); // finally use of mut ref to map, which is made live here

8 return;

9 }

Code block 23: Hypothetical, hand-written MIR, which interleaves mutable and immutable borrows of
the same location.

1 bb 0 liveness:

2 stmt:0 live in: set() live out: {1}

3 stmt:1 live in: {1} live out: {1, 2}

4 stmt:2 live in: {1, 2} live out: {1, 2}

5 stmt:3 live in: {1, 2} live out: {2, 4}

6 stmt:4 live in: {2, 4} live out: {4}

7 stmt:5 live in: {4} live out: {0}

8 stmt:6 live in: {0} live out: {0}

9 ==========

10 Borrow-checking:

11 Bcking borrowee 1 with borrows:

12 Borrow(er=2, ee=1, mut=False, bb0, s1)

13 Borrow(er=3, ee=1, mut=False, bb0, s2)

14 Borrow(er=4, ee=1, mut=True, bb0, s3)

15 checking Borrow(er=2, ee=1, mut=False, bb0, s1)

16 and Borrow(er=3, ee=1, mut=False, bb0, s2)

17 both immutable, don't care about overlap

18

19 checking Borrow(er=2, ee=1, mut=False, bb0, s1)

20 and Borrow(er=4, ee=1, mut=True, bb0, s3)

21 BCK ERROR: found overlap at b_i: 0, s_i: 4

22

23 borrow-check thinks program is valid? False

Code block 24: mir-owner-guillotine output on MIR in code block 23

35

	0 Summary
	1 Motivation
	2 Introduction
	3 Background
	3.1 Rust peculiarities
	3.2 Dataflow analysis
	3.2.1 CFG

	3.3 Mid-level Intermediate Representation
	3.4 Phi-function
	3.4.1 Liveness analysis

	3.5 Non-Lexical Lifetimes Borrow-Checking
	3.6 Polonius Borrow-Checking
	3.7 Related work

	4 Borrow-checking analysis
	4.1 Intuition
	4.2 MIR construction
	4.3 Phi-nodes
	4.4 Loops
	4.5 Identifying errors

	5 Implementation
	5.1 Liveness analysis
	5.2 Borrow-checking

	6 Discussion
	7 Future Work
	7.1 Soundness of analysis
	7.2 Compare analysis against NLL test suite
	7.3 Formalise Rusts borrowing system
	7.4 Formalisation of MIR wrt. borrowing
	7.5 Lattice liveness analysis

	8 Conclusion
	8.1 Understanding NLL and Polonius
	8.2 Liveness-based borrow-checking analysis
	8.3 Prototype of our borrow-checking analysis

	References
	A MIR grammar
	B Conceptual UML diagram mir-owner-guillotine IR
	C get_or_insert.mir program construction
	D Loop-cond-mut (issue-47680) program construction
	E Trivially borrowing-wise faulty MIR program

