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Abstract
This thesis is based on real-world challenges for a data-intensive application in a
data lake context, e.g. difficulties with understanding the domain and the
meaning of the data. It explores how to optimize data discovery by preserving
domain knowledge in a time-saving way.

In order to transform domain knowledge into metadata, the thesis contributes
with a definition of novel metadata concept. The metadata concept makes the
task of implementing a data catalog and building a metadata fundament
manageable and accessible. The concept guides the user to navigate through the
implementation of metadata in the data catalog and classify the data. The
concept is both tool, platform and domain independent.

Sample data and the corresponding metadata is introduced. A data catalog is
implemented, which is a collection of metadata, combined with data
management and search tools, that helps users to find the data that they need.
The catalog serves as an inventory of available data, and provides information of
the data quality. A small sandbox environment is set up with some sample data.

A custom analysis model is defined to learn how to handle the challenges. To
ensure the analyses are conducted in a reproducible manner, the scenarios are
expressed in a Quality Attribute Scenario framework. The scenario template
outlines response measures, which are measurable.
Usability and performance qualities are in focus. The usability scenarios cover
automatic, manual and semi-automatic infer of metadata into the data catalog. A
performance scenario explores how implicit infer of metadata using a structured
directory affects the fetching of data from the data lake.

The reader is guided through each analysis with a process map based on the
metadata concept and a corresponding logbook. The user actions are marked
and explained. The development logbook documents the steps in the analyses.
Issues, solutions and learnings are elaborated. A result section at the end of each
logbook clarifies the partial results.

All results are combined and grouped by usability and performance scenarios.
The results are discussed based on the metadata concept and the problem
statement. Learnings from the analyses are highlighted. Based on the usability
and performance scenarios, it can be concluded that it is possible to preserve
domain knowledge in a time-saving way and thus optimize data discovery. The
best usability results are obtained with semi-automatic infer and storage of data
in a structured directory provides the best performance.

However, it should be noted that automatic infer in some cases can be a good
choice, as it is possible to create searchable technical metadata very quickly. This
is a much better starting point than having no information in the data catalog.
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Chapter 1 - Motivation
Aarhus Vand is a large water utility company, which handles drinking water in
most of Aarhus municipality. The distribution network is divided into zones and
monitored by a number of sensors. The sensors are distributed in the network
based on domain-specific knowledge. Each sensor measures the water's
temperature, flow and pressure every minute, and data is continuously
transferred wirelessly to the backend Scada control system. A part of the
southern distribution network is illustrated in Figure 1.

Figure 1: Distribution Network

One measurement every minute, 24 hours per day, 365 days per year creates
approx 500.000 data rows. Aarhus Vand has more than 4.000 sensors. Every
year, this results in billions of data rows being created and must be handled in a
big data context. A small part of this data is uploaded to an Azure Data lake,
where they are consumed by a third party analysis tool. Every hour approx.
8.100 measurements are uploaded to the data lake. The number of records
increases by approx. 6 million measurements every month. The current files in
the data lake contain approx. 52 million records. Further details are outlined in
Appendix A.

Data is loaded into the data lake in their raw / non-conform state, so it is quick to
add new data. Since the sensor measurements are being stored without any
corresponding metadata, users find it challenging to inspect, understand and
consume the data. Thus, the deep domain knowledge about the distribution
network and the measurement’s internal relationship is lost and use of the data
may require domain expert knowledge. If data was stored in a data warehouse,
then the domain experts will interpret and combine data according to the
current need in a conforming manner. But it will be a heavy process that will
limit future use of data.
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Chapter 2 - Problem Statement
The purpose of this project is to investigate how domain knowledge can be
preserved in a data lake to improve data discovery. Managing domain knowledge
can be a time-consuming process and seems like a difficult task. Therefore, the
project intends to answer the following problem statement:

Can domain knowledge be preserved in a time-saving way into a data
lake in order to optimize the data discovery?

The criterias for domain knowledge, metadata and data discovery are
determined by a custom analysis model. The problem statement will be
elaborated through the hypothesis:

By constructing a custom analysis model, where automatic, manual,
semi-automatic and implicit ingesting of metadata are explored, it can
be evaluated whether domain knowledge in the data lake optimizes the
data discovery or not.

The current setup of the data lake at Aarhus Vand presents some real-world
challenges for the data consumers, eg.:

● Difficult to understand the domain and meaning of the data
● Impossible to know which sensors make sense to compare to get useful

information
● Time-consuming to fetch measurements from a specific period or a

certain sensor because all data are stored in one file

A metadata concept will help navigating through the exploration. Some metadata
and sample data implemented in a sandbox environment will be used as a basis
for the analyses, where the challenges are investigated and tested in different
scenarios. By performing a series of analyses the aim is to learn more about how
the problem can be handled.

2.1 Project Scope
Although the hypothesis, analysis model and analyses will be relevant to many
domains, the project will be limited to use only a subset of the data from the
drinking water domain at Aarhus Vand. Handling of access control and General
Data Protection Regulation (GDPR) issues are not in scope.

8



Chapter 3 - Terminology

3.1 Data discovery
Data Discovery involves the collection and evaluation of data from various
sources and is often used to understand trends and patterns in the data. It
requires a progression of steps that organizations can use to understand their
data. Data discovery can be treated as a synonym for Knowledge Discovery in
Data (KDD) [Han2012]. The KDD process includes collecting data from multiple
data sources, cleaning, integration, task-relevant selection, transformation, and
performing analysis to gain knowledge and insights into business processes
[Nwagu2017].

In this project scope, data discovery includes the workflow of ‘find and
understand’ data, which includes integration of different sources and selection of
task-relevant data.

3.2 Data lake
A data lake stores current and historical data for one or more systems for the
purpose of analyzing the data. Data may include raw copies of source system
data and transformed data used for tasks such as reporting, visualization,
advanced analytics and machine learning. Files of different file formats generated
from different sources can be stored in a data lake [Hamadou2020]. A data lake
can be established on premises within an organization's data centers or be cloud
based using cloud services.

The data lake will typically be structured in three zones [Thomsen2022]:
- Landing zone where the raw data enters in different formats including

structured, unstructured and binary data
- Work zone where work-in-progress data is stored
- Gold zone with data that has been cleansed and processed

3.3 Data lineage
Data lineage uncovers the life cycle of data and aims to show the complete data
flow, from start to finish. Data lineage is the process of understanding, recording,
and visualizing data as it flows from data sources to consumption. This includes
all transformations the data underwent along the way; where data came from
and how the data was transformed [Gorelik2019].

3.4 Domain knowledge
Domain knowledge is knowledge of a specific, specialized discipline or field.
People with domain knowledge are often regarded as specialists or experts in
their field. Data does not “speak on its own” and attention is needed to also

9



convey information about the problem domain as well [Videla2021]. In this
project scope, domain knowledge will be expressed through metadata.

3.5 Metadata
Metadata is data about the data and provides information about one or more
aspects of data, e.g. description, data quality, value ranges, dates for creation and
update [Hamadou2020]. Metadata will give the user confidence in the data.
Metadata unlocks the value of data by improving that data’s usability and
findability.

There are different types of metadata [Atlas2022]:
● Technical: schemas, data types, models etc.
● Business: data tags, classifications, mapping to business
● Operational: process output, performance, Extract-Transform-Load jobs

This project explores technical and business metadata. When data is tagged with
metadata, it will help the user to become self-serviced in the ‘find and
understand’ data discovery process. The self-service data discovery idea is
illustrated in Figure 2.

Figure 2: Data discovery | Self-service
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Chapter 4 - Methods
This chapter outlines the method for exploring the hypothesis. A metadata
concept introduces a conceptual way of interpreting domain knowledge. Some
metadata and sample data implemented will be used as a basis for the analyses.
The scenarios will be described using a Quality Attribute Scenarios framework.

4.1 Metadata concept
To transform domain knowledge into metadata, this project contributes with the
definition of a metadata concept. The concept offers a conceptual way of
interpreting domain knowledge into different entities, including metadata types.

- Asset: a piece of data information about the data but not the data itself
- Technical metadata: column with data type and relation between assets
- Business metadata: tags based on classification and business terms
- Data store: source containing the asset, e.g. file or database

The entities are included as they precisely describe domain knowledge. The
metadata concept is visualized in Figure 3.

Figure 3: Metadata concept | Entities

Each entity in the metadata concept can be extended with properties that define
characteristics of the elements. The reason for the characteristics being chosen is
explained in the Table 1.

Type Entities Properties | Description

Asset Data asset Includes a description, a timestamp for update of the schema
and a domain expert validation flag.

Technical Column Name, data type and description. Collection of
columns makes up the schema. Changes to the
schema can be tracked in a schema registry.
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Technical Lineage Shows the relationship among the data assets.

Business Classification Describes patterns to look for as input for tagging.

Business Business term Explains domain specific knowledge.

Business Contact Person who has ownership of data and an associated role.

Business Collection Shows logical boundaries in the organization.

Data store Source Contains data in several different formats.

Table 1: Metadata concept | Properties

The metadata concept with entities is outlined as a class UML diagram at the
logical level in Figure 4. The metadata concept is tool independent and can be
implemented in any data catalog tool. Furthermore, the concept is domain
independent.

Figure 4: Metadata concept | Logical model

4.2 Sample data
The basis for the analyses are some sample data, which is a subset of the raw
data with total measurements as outlined in Appendix A. The subset covers
measurements per minute from the period 06.06 - 12.06.2022. Data is divided
into three different files:

- Measurement.csv
- SensorConfig.csv
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- Sensor.csv

The three files with sample data are uploaded in the project’s code repository
placed at Azure DevOps as described in Appendix B.

Measurement
The measurement from each sensor with a timestamp. The size of the
measurement.csv file is 125 MB and contains approx. 1.450.000 records. The
header and the first few records are shown in Figure 5.

Figure 5: Sample data | Measurement.csv
Sensor
Metadata about each sensor including parameter, unit and zone according to
Figure 6. File size is 10 KB and contains 93 records.

Figure 6: Sample data | Sensor.csv

SensorConfig
A sensor configuration file containing a few metadata about the different zones
and measurement types as displayed in Figure 7. File size is 1 KB and contains
11 records.

Figure 7: Sample data | Sensorconfig.csv
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The internal relationship between the files can be described at logical level in a
class diagram with Unified Modeling Language (UML) notation. The sample data
are .csv format thus without data type, but the types are stated in the class
diagram in Figure 8.

Figure 8: Data model | Sample data

An interview with the domain expert unlocked knowledge hidden in the
SensorId, as this uses a unique template. Business specific information can be
extracted from the SensorId field. This is shown in Figure 9 where the extracted
metadata based on the template is indicated below the dashed line in the
‘Sensor’ class.

Figure 9: Data model | Sample data with metadata

The interview with the domain expert also revealed some aspects of the network
and measurements. This extended domain knowledge is reproduced in Table 2.
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Subject Domain expert knowledge

Flow Measurements with false ‘IsMid’ values have more noise as it is a
snapshot of a given minute

Pressure Values can be used to detect pressure shocks and extend lifetime

Temperature Depending on the distance to the surface

Context The fluctuations over the day have morning and evening peaks

Increased flow creates increased pressure

Increased flow does not immediately result in lower temperature

Table 2: Metadata | Domain expert knowledge

To get an idea of how to transform the domain knowledge and the metadata from
the sample data, the classes in the metadata concept logical model can be filled
with an example as shown in Figure 10.

Figure 10: Metadata concept | Logical model with sample data
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4.3 Quality Attribute Scenarios
To ensure the analyses are conducted in a reproducible manner, the scenarios
are expressed in Quality Attribute Scenarios [Bass2012, p. 196].

Quality Attribute Scenarios are a way of setting a testable frame around
a specific quality the system should have, and it provides a structured
approach for the evaluation of requirements.

To measure software we need to define the qualities we measure and some kind
of metric. The framework handles quality attributes, metrics, measurements and
uses a measurement template. The template captures requirements and
measurements in a common format. The composition of a Quality Attribute
Scenario (QAS) is illustrated in Figure 11.

Figure 11: Quality Attribute Scenario | Template

Key points of the QAS template [Christensen2020]:
- a source generates some stimulus
- arrives as some artifact in an environment
- must be dealt with a response with a satisfactory response measure

The custom analysis model constructed in chapter 6 will elaborate Usability and
Performance quality attributes in different scenarios.
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Chapter 5 - Sandbox environment
The following sections describe the implementation of a data catalog and data
lake in the sandbox environment. The setup is documented in the project’s code
repository located on Azure DevOps and available in Appendix B.

5.1 Data catalog
A data catalog is a collection of metadata, combined with data management and
search tools, that helps users to find the data that they need. The catalog serves
as an inventory of available data, and provides information of the data quality.
Searching a data catalog is a great tool for data discovery, especially for the
workflow of ‘find and understand’ data as illustrated in Figure 12.

Figure 12: Data catalog | Exploring data

The data catalog in the sandbox is using the Azure Cloud platform, since Aarhus
Vand already uses Azure Cloud. However, it is important to highlight that the
metadata concept is tool independent and can be implemented in any data
catalog tool. There are several cloud providers, e.g. Amazon Web Services, Google
Cloud Services and Microsoft Azure Cloud. Exploration of the problem is
independent of the cloud provider.

In Azure the data catalog is deployed as a part of Microsoft Purview, which is a
unified data governance service. Purview Data Catalog provides a system for
registration of enterprise data sources and a discovery service for searching data
assets. Purview is based on Apache Atlas, an open source metadata management
and data governance tool [Purview2022].

A collection of entities from the metadata concept introduced in the last chapter
can be presented in a data catalog as shown in Figure 13.
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Figure 13: Data catalog | Metadata concept

The data catalog is accessible through a web viewer and the data assets can be
found on a data map as shown in Figure 14, where relevant domains are added
as collections. The sample data belongs to the collection hierarchy Thesis
Purview / SRO data / Drinking water.

Figure 14: Data catalog | Data map

Data assets are ingested during scans and populated in the data catalog. Some of
the processes are performed automatically and others processes require manual
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interaction to enrich the metadata. Both types of processes are covered in the
analysis model as outlined in the next chapter.

5.2 Data lake
To make the architecture reproducible, the data lake is implemented via a cloud
service rather than in an on premises data center. The sample data described are
ingested. Focus is on the landing zone in the data lake architecture as shown in
Figure 15.

Figure 15: Data lake | Zones

In Azure a data lake is implemented as a standard storage account resource with
file blob storage. Content of structured and unstructured data is organized in
blob containers, where each container represents a zone [Azure2022].

A data lake storage account is implemented in the sandbox environment as
displayed in Figure 16. The data lake acts as a baseline with a landing zone
including sample data from the distribution network.

Figure 16: Data lake | Sandbox storage accounts
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Chapter 6 - Analysis Model
The analysis model used to evaluate the hypothesis is described in this chapter.
The goal is to test if domain knowledge can be preserved in a time-saving way
into a data lake in order to optimize the user's data discovery. The model consists
of a number of Quality Attribute Scenarios (QAS), which each has a description of
why it is relevant and an important architectural consideration.

6.1 Usability
Usability is important when the user searches the data catalog, as it should be
easy to understand the data context, relationships and track the data lineage. The
response to an usability quality attribute is intended to give the user appropriate
feedback or assistance. In Software Architecture in Practice, Bass [Bass2012, p.
175] describes usability as:

Usability is concerned with how easy it is for the user to accomplish a
desired task and the kind of user support the system provides. Over the
years, a focus on usability has shown itself to be one of the cheapest and
easiest ways to improve a system’s quality.

Metadata can be inferred automatically into the data catalog during a scan. The
scanning process establishes a connection to the data source and captures data
assets with technical metadata like names, file size and columns. The scan can
also apply classification tags on data assets.

However, only a subset of domain knowledge will be captured and ingested. The
remaining part of domain knowledge must be added manually to obtain a full set
of metadata. Business terms are never inferred automatically, as they are unique
to the organization. The following usability scenarios deal with automatic and
manual ingestion of metadata.

6.1.1 Automatic infer

This scenario explores how large a subset of domain knowledge can be derived
automatically. The data catalog will be used out-of-the box with a minimum of
human intervention. The process of automatic infer metadata by running a scan
in the data catalog tool is explored in the first usability Quality Attribute Scenario
as described in Table 3.
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Scenario: As a data manager, I want to be able to ingest
metadata automatically into the data catalog by
running a scan.

Quality Attributes: Usability

Source: Data manager

Stimulus: Running a scan from the data map.

Artifact: Baseline data lake and the data catalog.

Environment: Runtime

Response: The scan completes and data assets are ingested.

Response
Measure:

All three files with sample data are ingested as data
assets.

Table 3: Quality Attribute Scenario | Usability | Automatic infer

6.1.2 Manual infer

Not all metadata can be inferred automatically in the data catalog. Manually
creating metadata allows for more detail and it is possible to add more domain
knowledge manually into the data catalog. Table 4 outlines how to do this in data
catalog tool and is the second usability Quality Attribute Scenario. The effort has
been time-limited to reflect a real-world situation with a business demand.

Scenario: As a data manager, I want to manually enrich
metadata with domain knowledge including
business terms and classification tags on assets.

Quality Attributes: Usability

Source: Data manager

Stimulus: Provide information about business terms,
classification and relationship between data assets.

Artifact: Baseline data lake and the data catalog.

Environment: Runtime

Response: Data assets are updated with data types,
classification, business terms and lineage.
Domain knowledge is searchable in the data catalog.

Response
Measure:

The work is completed within 90 minutes of work.

Table 4: Quality Attribute Scenario | Usability | Manual infer
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6.1.3 Semi-automatic infer

Obtaining a full set of domain knowledge captured into the data catalog can be
very time-consuming. Finding a time-saving way to populate metadata will be
explored in the third Quality Attribute Scenario as shown in Table 5. The effort
has been time-limited to reflect a real-world situation with a business demand.

Scenario: As a data manager, I want to import business terms
in a time-saving way and tag with custom
classification automatically.

Quality Attributes: Usability

Source: Data manager

Stimulus: Import business terms via interface and define
custom classification rules. Run a scan and edit.

Artifact: Baseline data lake and the data catalog.

Environment: Runtime

Response: Business terms are imported and the scan will tag
data assets with custom clarification.

Response
Measure:

The work is completed within 60 minutes of work.

Table 5: Quality Attribute Scenario | Usability | Semi-automatic infer

6.2 Performance
Performance is the ability to meet timing requirements for an event. The
response to a performance quality attribute is intended to be generated within a
time constraint as described by Bass [Bass2012, p. 135]:

The goal of performance tactics is to generate a response to an event
arriving at the system within some time-based constraint. The event can
be single or a stream and is the trigger to perform computation.

The sample data contains time series data and one of the biggest challenges is
that data grows over time. One measurement every minute, 24 hours per day,
365 days per year creates approx 500.000 data rows! Big data is a challenge for
relational database management systems (RDBMS). Because of the relations
between tables, a selection of data may require a time-consuming table join.

Big data is often generated by the time dimension, but the relation model ignores
the order of rows in a table. It is easier to get data in than out of a RDBMS, as
queries do not scale linearly with data size[Jacobs2009]. In the baseline data
lake, measurements are stored in one big file. Even though there are no relations
to other files, extracting data will become increasingly time-consuming.
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Structuring a directory in the landing zone might improve performance. The
directory can be divided into a hierarchy of subfolders with year / month / day.

6.2.1 Implicit infer

The performance scenario investigates how long time it takes to fetch data from
the structured directory compared to the landing zone as shown in Table 6. The
scenario contains two test periods, both of which include a specific sensorId and
a time span. Each test period is run five times and the average execution time is
calculated as a response measure, The measure is compared between structured
directory and unstructured landing zone. 25% faster is chosen as a realistic goal.

Scenario: A user fetches data from the landing zone and the
structured directory in these periods:
#1: 09.06 06:15 - 06:29
#2: 08.06 06:15 - 06:29 + 09.06 06:15 - 06:29
Only sensorId ‘DIS.D01_H_B26_BP1-M_TRYK’

Quality Attributes: Performance

Source: Data analyst

Stimulus: The user fetches the data using Python language into
an Apache Spark notebook.

Artifact: Baseline data lake with a structured directory

Environment: Normal mode

Response: All data from the period #1 and #2 and the sensorId
are retrieved.

Response
Measure:

Average response time is at least 25% faster from
the structured directory compared to the landing
zone in both periods.

Table 6: Quality Attribute Scenario | Performance | Implicit infer

The structuring strategy based on time is about metadata, as the naming of
folders implicitly becomes meaningful as displayed in Figure 17.

Figure 17: Data lake | Structured directory
23



Chapter 7 - Analyses and Results
Based on the sample data and scenarios outlined in the previous chapters, the
analyses in this chapter will explore how to deal with the challenges of
preserving domain knowledge in a data lake. The analyses will focus on whether
or not it is possible to optimize the data discovery.

To document the process, a simple template is set up in each section with a
development logbook that contains steps, issues, solutions, learnings and results
for each scenario. The purpose of the logbooks is to document each step in the
Quality Attribute Scenarios and make them reproducible. As a guide for
navigating through the scenarios, each analysis section contains a process map
showing the various steps in the infer process. The maps are based on the
metadata concept and user actions are marked as yellow events.

7.1 Automatic infer
This analysis explores the scenario described in the Quality Attribute Scenario |
Automatic infer. The baseline data lake in the sandbox environment is the
foundation for the work. The goal is to have metadata automatically registered as
data assets, enabling data discovery by searching the catalog. As a starting point,
the data catalog is empty and contains no data assets. The automatic infer user
actions are illustrated in Figure 18 and includes one event (yellow box):

1. Scan the baseline data lake

Figure 18: User actions | Automatic infer

7.1.1 Logbook

QAS usability | Automatic infer

Using the baseline data lake, the data manager ingests metadata automatically into
the data catalog. All three files with sample data are ingested as data assets.

Development Logbook
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Date Subject

2022-11-05 Register baseline data lake as a source to ‘Drinking Water’ collection.
Setup scan connector, use default scan rule set and run the scan.
Three assets candidates for classification and schema are extracted.
Search the data catalog for ‘sensorId’ and get two results.

Usability Issues

Issue Solutions and learnings

Schema insufficient The schema inferred automatically is not sufficient. Only
column names, but not descriptive tags, are derived. All
data types are set to strings, since the source files are csv.
This must be handled manually.

Metadata types The automatic out-of-the-box scanning only discovers
technical metadata. There is a lack of business metadata,
which has to be provided manually.

Classification missing The default scan rule set includes all supported file types
for schema extraction and classification. The system
classifications rules look for passport and credit card
numbers, date of birth, email addresses and passwords
and so on in order to tag the data assets. However, the
sample data in the baseline data lake contains domain
specific data, hence none of the data sets are classified.
Custom classifications rules need to be created.

Schema registry The schema is automatically inferred. If the schema is
changed before the next scan, the column names of the
data asset will be overridden without any warning (see
Appendix C). It is actually possible to be alerted during
ingesting via Azure event hub and messaging services to
be aware about the change [AzureEvent2022]. To be able
to use messaging in the data catalog, event hubs have to
be enabled in the settings. This is not investigated further
as it is out of project scope.

Relation not clear The three data assets are marked as related, but it is not
stated which properties link the files together. The data
manager must discover the lineage himself.
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Screenshots

Additional screenshots are added in Appendix C.
Starting point:

After initial scan:

Data discovery by searching the data catalog for ‘sensorId’:

Results

The automatic scan is capable of ingesting all data assets. But the inferred
schemas are not efficient and no business metadata tags are obtained. The
subset of domain knowledge preserved in the data lake is small. However the
user action is conducted fast and the domain knowledge can be discovered in
the data catalog.

Table 7: Logbook | Usability | Automatic infer
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7.2 Manual infer
The previous Quality Attribute Scenario pinpointed that the automatic
out-of-the-box scanning only creates a small subset of domain knowledge with
some missing elements such as:

- column data types not specified
- no classification tags of patterns
- business metadata missing
- lineage with relations between files not explicit

This analysis explores how to ingest the missing elements as described in the
Quality Attribute Scenario | Manual infer. The baseline data lake in the sandbox
environment is the foundation for the work. As a starting point, the data catalog
is populated with three data assets from the automatic scan.

The user actions are illustrated in Figure 19 and includes the following events
(yellow boxes):

1. Create business terms in the business glossary.
2. Create custom classification with description.
3. Edit data assets to update descriptions, tags and certified labels.

Figure 19: User actions | Manual infer

7.2.1 Logbook

QAS usability | Manual infer

The data manager enriches metadata manually with domain knowledge and updates
data assets with data types, classification, business terms and lineage.
Domain knowledge is searchable in the data catalog.
The work should be completed within 90 minutes of work.

Development Logbook

Date Subject

2022-11-07 Create business glossary terms in the data catalog.
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Create custom classifications for columns in data assets.
Relate business glossary to assets, change data type, add lineage and
finally label enriched data assets as ‘Certified’.
Search the data catalog for ‘sensorId’ and get two results.
Time consumption: 125 minutes

Usability Issues

Issue Solutions and learnings

Glossary taxonomy Defining business terms cannot be inferred from data
assets. It is time consuming to enter this information.
Metadata extraction from Figure 9 and domain expert
knowledge in Table 2 is captured as ‘Sensor ID template’
with related terms (see Appendix D).

Edit data assets Tagging fields is done easily by picking glossary terms
from a dropdown menu. Data type is a free text field,
which may result in incorrect values. By adding lineage
the relation between files becomes explicit.

Classification After creating custom classification they are manually
added to data asset fields in the same way as glossary
terms.

Enable trust for the user When data asset information is validated, it can be
labeled with ‘Certified’ and regarded as reliable.

Data discovery Business glossary terms and custom classification can be
filtered by when searching the data catalog.

Screenshots

Additional screenshots are added in Appendix D.

After creating business glossary terms:

Lineage:
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Custom classification:

Results

All metadata are added by manual processes, including data types, tagging, business
metadata and relation between files. The metadata from the data model of the sample
data is also applied and even the domain expert knowledge in a searchable way. In
fact, all domain knowledge is preserved in the data lake in a searchable way . But the
process is very time consuming and infeasible in a real-world scenario with several
data assets. The time limit of 90 minutes of work was not met, as the scenario took
125 minutes to conduct.

Table 8: Logbook | Usability | Manual infer

7.3 Semi-automatic infer
This analysis explores the scenario described in the Quality Attribute Scenario |
Semi-automatic infer. The analysis will explore how to properly define business
terms, so it can be imported in a time-saving manner.
The user actions are illustrated in Figure 20 and includes the following events
(yellow boxes):

1. Import business terms in the business glossary using a template
2. Create custom classification with a pattern defined as regular expression.
3. Add scan rule using the created custom classifications and run scan
4. Edit data assets to update description, check tags and set certified labels.
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Figure 20: User actions | Semi-automatic infer

7.3.1 Logbook

QAS usability | Semi-automatic infer

The data manager imports business terms in a time-saving way. After defining
custom classification rules, the tagging is done automatically by running a scan.
The work should be completed within 60 minutes of work.

Development Logbook

Date Subject

2022-11-15 Fill out template and bulk import business terms in the catalog.
Create custom classification rules and define data patterns with a
regular expression or column patterns by name.
Add scan rule set using the new custom classification rules.
New scan with custom scan rule set.
Edit data assets to update description, terms and certified labels
Time consumption: 85 minutes

Usability Issues

Issue Solutions and learnings

Business terms import Import can be done using either REST API endpoints for
create, read, update or delete actions or a term template
in .csv format [PurviewAPI2022]. In this scenario, the .csv
template is used. After a few trials with validation errors,
it was very quick to import the total glossary.
The import template is added to the code repository
placed at Azure DevOps as described in Appendix B.
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Classification rules Defining data patterns with a regular expression to
match the data stored in a data field takes a little
practice. Using https://regex101.com (online regex
builder), a regex for the unique sensor ID template is
created. But for the untrained it takes time to build a
solid regex pattern. Classification rules can also label
sensitive data in order to restrict access. However, this is
not in scope of this project.

Scan with new rule set A new scan with the custom scan rule set attached should
tag the data assets with classifications according to the
classification rule - the first few times without result!
After refactoring the classification rules and using the
‘test classification rule’ option, the assets were tagged.
This is much more time-saving than re-running a scan.

Edit Need to do tagging of imported business terms manually.

Screenshots

Additional screenshots are added in Appendix E.

After creating business glossary terms:

Template for importing business terms:

Import validation:
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Custom classification rule | Pattern of SensorId e.g. OST.B09_E_G1_BF1-M_FLOW:

Classification tag added automatically by scan:

Results

The scan results in tagging the columns with classifications. Importing the business
terms makes it fast to tag data assets with business knowledge. The time limit of 60
minutes of work was not met, as the scenario took 85 minutes to conduct. The
time-consuming part was creating regular expressions. One way to make the process
faster is to use column patterns with names, but it is not as robust as it does not look
at the actual data content. Over time, the regular expressions will be reusable for the
users, thus skipping the overhead.

Table 9: Logbook | Usability | Semi-automatic infer

7.4 Implicit infer
This analysis explores the scenario described in the Quality Attribute Scenario |
Implicit infer. A structured directory divided into a hierarchy of subfolders with
year / month / day is added to the baseline data lake. The user fetches the data
using Python programming language into an Apache Spark notebook running on
Azure. The cluster attached to the notebook has 14 GB memory and 4 cores. The
user actions are illustrated in Figure 21 and includes one event (yellow box):

1. Fetch data from source into an Apache Spark notebook

Figure 21: User actions | Semi-automatic infer
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7.4.1 Logbook

QAS performance | Implicit infer

The data analyst fetches data from a structured directory and the landing zone in the
period #1: 09.06 06:15 - 06:29 and #2: 08.06 06:15 - 06:29 + 09.06 06:15 - 06:29.
Each test period is run five times and the average execution time is calculated. The
goal for the structured directory is to be 25% faster than the landing zone.

Development Logbook

Date Subject

2022-11-22 Period #1: 09.06 06:15 - 06:29
- Fetch data from period #1 into a dataframe using ‘loc’

which selects data by columns.
- Average faster execution time: 58,6%

2022-11-23 Periode #2: 08.06 06:15 - 06:29 + 09.06 06:15 - 06:29
- Two files from the structured directory need to be

combined in order to find the proper results.
- Average faster execution time: 69,8%

Performance Issues

Issue Solutions and learnings

Combine files After some failed attempts, the Python ‘glob’ module
solves the challenge [GlobModule2022]. Glob patterns
specify sets of filenames with wildcard characters
similar to regular expressions [GlobPattern2022].
This enables iterating over the structured directory and
loading only files of interest. This glob pattern find
filenames from all month in year 2022 on days 08+09:

SQL-like search A Python panda dataframe loads all data to the notebook
before selecting the result. To avoid this, the PySpark
library processes and combines data before they are
loaded to the notebook [PySpark2022].
The PySpark library applies spark.sql() to run arbitrary
SQL-like queries on a dataframe saved as a table.
Each row in the dataframe gets a filepath added:
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Screenshots

Additional screenshots are added in Appendix F.
Python notebooks are uploaded in the code repository (Appendix B)
Structured landing zone - test #1:

Structured landing zone - test #2:
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Results

Test period #1 Structured (ms) Unstructured (ms) Difference (%)

Run #1 110 350 68,6

Run #2 160 300 46,7

Run #3 110 290 62,1

Run #4 120 300 60,0

Run #5 150 340 55,9

Average 130 316 58,6

Test period #2 Structured (ms) Unstructured (ms) Difference (%)

Run #1 200 600 66,7

Run #2 200 560 64,3

Run #3 140 610 77,0

Run #4 160 560 71,4

Run #5 180 590 69,5

Average 176 584 69,8

Table 10: Logbook | Performance | Implicit infer
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7.5 Discussion
To get an overview, all the results found in the above analyses based on the
Quality Attribute Scenarios formulated in the analysis model, are gathered
together and discussed in this section. The purpose of the analyses is to test if
domain knowledge can be preserved in a time-saving way into a data lake in
order to optimize the user's data discovery. Each analysis has its starting point
in the metadata concept. Therefore, the overview is divided according to the
highlighted words in bold and placed on a scale, where ‘High’ is best.

7.5.1 Usability

The usability quality is investigated through three Quality Attribute Scenarios
with different user actions. The response measure for the scenarios indicates
how easy it is for the user to accomplish the scenarios as described in Table 11.

Metadata concept Infer type

Entities Type Automatic Manual Semi Legend

Data asset Asset Full

Column Technical Partly

Lineage Technical None

Business term Business

Classification Business

Total scale Low High Medium

Domain knowledge

Time consumption

Data discovery

Total scale Low Medium High

Table 11: Results | Usability

Looking at the metadata concept, automatic infer is at the low end of the scale,
while manual infer is at the high end and in the middle is semi-automatic infer.
In terms of optimizing the data discovery, the picture is different: at the high end
is semi-automatic infer, in the middle is manual infer while automatic infer still is
at the low end. The above result table is based on the result section from the
logbooks:

Automatic infer
The automatic scan is capable of ingesting all data assets. However, the
inferred schemas are not efficient and no business metadata tags are
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obtained. The subset of domain knowledge preserved in the data lake is
small. However the user action is conducted fast and the technical
metadata is searchable and can be discovered in the data catalog.

Manual infer
All metadata are added by manual processes, including data types, tagging,
business metadata and relation between files. The metadata from the data
model of the sample data is also applied and even the domain expert
knowledge in a searchable way. In fact, all domain knowledge is preserved in
the data lake in a searchable way . But the process is very time consuming and
infeasible in a real-world scenario with several data assets. The time limit of
90 minutes of work was not met, as the scenario took 125 minutes to conduct.

Semi-automatic infer
The scan results in tagging the columns with classifications. Importing the
business terms makes it fast to tag data assets with business knowledge. The
time limit of 60 minutes of work was not met, as the scenario took 85 minutes
to conduct. The time-consuming part was creating regular expressions. One
way to make the process faster is to use column patterns with names, but it is
not as robust as it does not look at the actual data content. Over time, the
regular expressions will be reusable for the users, thus skipping the overhead.

7.5.2 Performance

Performance quality is explored through one Quality Attribute Scenario with two test
periods. The results are evaluated by comparing the average execution time in
milliseconds from the structured directory versus the unstructured landing zone as
outlined in Table 12.

Results period #1 Results period #2
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Metadata concept Average results

Source Structured Unstructured Difference

Period #1 130 ms 316 ms 58,6 %

Period #2 176 ms 584 ms 69,8 %

Total scale High Low Legend

Domain knowledge Full

Time consumption Partly

Data discovery None

Total scale High Low

Table 12: Results | Performance

Looking at the metadata concept, fetching data from the structured directory is at the
high end of the scale, unstructured landing zone is at the low end. In terms of
optimizing the data discovery, the picture is the same: at the high end is structured
directory while unstructured landing zone still is at the low end. The above result
table is based on the logbook:

Structured directory
Selection from the structuring directory based on time provides the user with
useful knowledge about when the data is created. Combined with glob
pattern, the fetching process only loads files of interest and serves the proper
file paths. This approach is extremely efficient, very scalable and offers the
user a quick data discovery with finding data. In addition, the user benefits
from the SQL-like syntax. It is also possible to introduce additional parameters
in the glob pattern, e.g. sensorId.

Unstructured landing zone
No implicit knowledge is offered from the unstructured landing zone. When
storing all the measurements in one large file in the landing zone, the user
must load the entire file to fetch the desired data. This is inefficient and the
performance degrades significantly over time, as time series data grows over
time. Thus the data discovery will be worse. Querying data from the
dataframe columns is more time consuming to write than the Pyspark
SQL-like syntax.
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Chapter 8 - Conclusion
The purpose of this project is to investigate how domain knowledge can be
preserved in a data lake to improve the user data discovery. Managing domain
knowledge can be a time-consuming process and seems like a difficult task.
Therefore, the project intends to answer the following problem statement:

Can domain knowledge be preserved in a time-saving way into a data
lake in order to optimize the user's data discovery?

In order to answer the problem statement, a hypothesis is set up, which involves
constructing a metadata concept and an analysis model with scenarios. The
concept provides the user with an overview of the different metadata entities.
The hypothesis is evaluated using a small sandbox environment with sample
data.

By constructing a custom analysis model, where automatic, manual,
semi-automatic and implicit ingesting of metadata are explored, it can
be evaluated whether domain knowledge in the data lake optimizes the
data discovery or not.

The hypothesis is verified, as it is possible to evaluate the extent to which
domain knowledge can be preserved in a time-saving way into a data lake in
order to optimize the user's data discovery.

Usability
The result of the usability part of the analysis model is visualized using a scale. At
the high end is semi-automatic infer, in the middle is manual infer while
automatic infer is at the low end. For each infer type, the domain knowledge and
time consumption is analyzed to determine whether data discovery has
improved.

The best optimization of data discovery is obtained by manual and
semi-automatic infer. The most time-saving method is semi-automatic.

However, it should be noted that automatic infer in some cases can be a good
choice, as it is possible to create searchable technical metadata very quickly. This
is a much better starting point than having no information in the data catalog.

Performance
For the performance part of the analysis model, the result is very significant.
Fetching data from a structured directory versus the unstructured landing zone
is more than twice as fast. Looking at the metadata concept, fetching data from
the structured directory is at the high end of the scale, unstructured landing zone
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is at the low end. Combined with the glob pattern, the structured directory
performs great. The faster data can be retrieved, the faster discovery.

The structured directory with implicit domain knowledge is extremely
efficient, very scalable and offers the user a quick data discovery.

Depending on data use, it can be considered to introduce additional parameters
in the glob pattern, e.g. sensorId.

Answer to Problem Statement
Based on the results from the usability and performance part of the analysis
model, the following answer to the problem statement is given:

Based on the usability and performance scenarios, it can be concluded
that it is possible to preserve domain knowledge in a time-saving way
and thus optimize the data discovery. The best results are obtained with
semi-automatic infer and storage of data in a structured directory.

8.1 Reflections
The work to investigate the problem statement has been a learning journey in
how to handle some real-world challenges for a data-intensive application in a
data lake. The journey has not been straightforward, thus it is valuable to
highlight some learnings.

Key takeaways:
● One of the most important learnings has been the importance of

developing a concept that is both tool, platform and domain independent.
● Another learning is the value of enabling the user to become

self-serviced.
● The metadata concept makes the task of implementing a data catalog and

building a metadata fundament manageable and accessible.
● The concept guides the user to navigate through the implementation of

metadata in the data catalog, classify the data and add business
knowledge.

● Users can expand the metadata concept according to their experiences.
● Costs of running a data catalog in Azure are billed per capacity hour

unlike other cloud resources.
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Appendix

A. Production environment | Size

The data lake was started up in Azure in September 2021 where a small amount
of sensor measurements were uploaded to the landing zone. Since November
2021 and until the summer of 2022, measurements from 45 sensors have been
uploaded. It corresponds to approx. 6 million measurements every month (60
minutes x 24 hours x 31 days x 45 sensors x 3 types).

Every hour measurements per minute are uploaded for the last six hours. The
size of files placed in the landing zone are 0,7 MB and contain 8.100 records.

The uploaded files are handled in a data factory, where an Extract - Transform -
Load (ETL) process appends delta measurements to the files in the publish zone
with raw data. The current size of files placed in the publish zone are 3,2 GB and
contain approx. 52.000.000 records.

A1 Landing zone
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A2. Gold zone
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B. Sandbox environment | DevOps

The infrastructure behind the sandbox environment can be described as code
using the Azure Resource Manager templates and is available in the project’s
code repository placed at Azure DevOps. Sample data, python notebooks and the
business terms template are also uploaded to the repository.

Until the exam at 16th December 2022 there is granted anonymous access to the
DevOps: https://dev.azure.com/mth-thesis/Data-lake-sandbox/_git/Sandbox

B1. Repository content
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C. Automatic infer | Screenshots

C1. Initial scan

C2. Data discovery | Browse assets
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C3. Data discovery | Asset overview

C4. Schema registry after change
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D. Manual infer | Screenshots

D1. Business glossary terms

D2. Data discovery | Filters
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D3. Data discovery | Asset schema

D4. Data discovery | Domain expert knowledge
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E. Semi-automatic infer | Screenshots

E1. Business glossary terms

E2. Classification rules

50



F. Implicit infer | Screenshots

F1. Unstructured landing zone | Test #1
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F2. Unstructured landing zone | Test #2
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