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Abstract:
The literature show that β-cyclodextrin
(β-CD) have good probabilities of forming
inclusion complexes in water with ligands
having a low solubility themselves, both
in situ and in silico. Through Python,
the framework OpenMM was used to-
gether with OpenFF (developers of the
SMIRNOFF force fields (FF)) to simulate
such inclusion complexes in water with
Molecular Dynamics (MD). SMIRNOFF
uses so-called direct chemical perception,
in opposition to older FF like AMBER, to
parameterise molecules directly from the
chemical graph by the use of SMIRKS.
SMIRKS are able to recognise patterns in
molecules, making the process more effi-
cient. The goal of the MD simulations was
to introduce a biasing potential between
the β-CD and a ligand and by measuring
the distance between the two molecules in
each snapshot, finding the free binding en-
ergy of the inclusion complex. Through
Umbrella Sampling (US) and analyses by
FastMBAR, a software tool for apply-
ing the Bennet Acceptance Ratio, it was
shown that OpenMM was indeed a viable
option in this regard. Through the anal-
yses, it was revealed that a sample size
of 2000 snapshots per window in the US
and a bin size of 20 per window, both the
free energy and standard deviations con-
verged. Comparisons with the literature
showed that the method was feasible al-
though some of the free energies of the in-
clusion complexes were a bit high.
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Constants

a Acceleration
A Helmholz Free Energy
A Reduced energy matrix
C Ratio between two states in

relation to BAR
∆∆G Relative change in Free En-

ergy

∆G Gibbs Free Energy
E Energy
ϵ Dielectric constant
F Force
f Fermi Function

H Host
K Force constant
Keq Equilibrium constant
kb Boltzmann constant
L Ligand

λ Window or coordinate
state

m Mass
nλ Number of coordinate

states at λ
ϕ Dihedral angle
Q Partial charge

r Position
R Distance between two par-

ticles or molecules
R0 Reaction coordinate
∆S Entropy
σ Standard deviation

t Time
T Temperature
θ Angle
U Energy potential or inter-

nal energy
v Velocity

V Energy Potential
ζ Friction coefficient

Abbreviations

AI Artificial Intelligence
BAR Bennett Acceptance Ratio
β-CD β-cyclodextrin
CD Cyclodextrin
CM Classical Mechanics

CoM Center of Mass
ITC Isometrical Calorimetry
LJ Leonard Jones potential
MD Molecular Dynamics
NMR Nuclear Magnetic Reso-

nance

NPT Constant mole, pressure
and temperature

NVT Constant mole, volume and
temperature

PES Potential Energy Surface
PMF Potential Mean Force
QM Quantum Mechanics

US Umbrella Sampling
VdW Van der Waals
WHAM Weighted Histogram Anal-

ysis Method

Elements

Br Bromine
C Carbon
Cl Chlor
H Hydrogen
N Nitrogen

Na Natrium
O Oxygen
P Phosphor
S Sulphur
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Introduction 1
Cyclodextrins (CD) are formed of six, seven, or eight α-1,4-glycosidic covalently linked
glucopyranose units and have the common names α−, β−, and γ-cyclodextrin (see
Figure 1.1a) (Larsen et al., 2005). There exists bigger CDs, however most studies focuses
on the listed three (Larsen, 2002). CDs have a conical shape with the secondary alcohols
(OH2 and OH2) at the wide end and the primary alcohol (OH6) at the narrow and the
size of the cavity increases with sugar molecules (Sabadini et al., 2006). When forming a
ring, O5, H3, and H5 will point inwards resulting in an exterior which is more polar than
the cavity (see Figure 1.1b). These properties of cyclodextrins make it possible to dissolve
an otherwise water insoluble compound in water by letting it form an inclusion complex
with CD, which in turn makes it useful within the fields of pharmaceutical, food, and the
chemical industry (Larsen et al., 2005; Uekama et al., 1998; Davis and Brewster, 2004;
Fukahori et al., 2006).

(a) (b)

Figure 1.1. Different depictions of cyloclodextrins. (a) Cyclodextrin with n α-1,4-glycosidic linkages
where n is the number of α-pyranose. The subcased numbers relate to all atoms connected to the specific
carbon e.g. C6 is connected to H61, H62, and O6 which has H60 as the last atom. (b) Sketch of cyclodextrin
showing the position of H3, H5 (inside the CD), and H4 (pointing downwards from the primary edge).
(Larsen et al., 2005; Sabadini et al., 2006)

When solvated in water the alcohol groups will interact with the water in bulk, resulting in
the cavity being slightly less polar than the outside. The space in the cavity will be taken
up by 3-4 water molecules but these readily leave if a less polar molecule is present and of
course close enough (Szejtli, 1998; Larsen et al., 2005). This phenomenon can be explained
by the state functions (the change in Gibbs free energy ∆G, enthalpy ∆H, and entropy
∆S) and the inherent need of any compound or system to be in as a low an energy state
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Master Thesis 1. Introduction

as possible. While any system strives to have as high an entropy as possible the need of
having a low energy can overcome this energy barrier. If the water molecules are removed
from the cavity in favour of a less polar molecule, the entropy and enthalpy will decrease,
meaning that the reaction is driven by enthalpy. The decrease in entropy is due to the
system becoming less chaotic as more intermolecular bonds are able to form. The increase
in number of intermolecular bonds also decreases the enthalpy as the system becomes less
strained. The "freed" water molecules will become solvated in the rest of the water, while
the less polar molecule will form a complex with the CD (Szejtli, 1998).

Larsen et al. (2005) investigated α−, β−, and γ-CD forming inclusion complexes with
prednisolone and 6α-methyl-prednisolone in water. Isothermal Titration Calorimetry
(ITC) resulted in inclusion stability constants of 3479(139)M−1 and 1022(30)M−1 for
prednisoline and 6α-methyl-prednisolone, respectively. Nuclear Magnetic Resonanse
(NMR) showed that the more polar end of the compounds would stick out of the CDs and
into the solution while the non-polar end would be inside the cavity. When complexing
with γ-CD the association constant K would be higher than that of β-CD, however the
solubility of the inclusion complex would decrease significantly at higher concentrations,
making for a poor host. The association and solubility constants of the inclusion complex
formed with α-CD were much lower than that with β-CD

Even though the analyses mentioned above show reliable results, it can be difficult to
predict beforehand if a compound make for a good inclusion complex or not. Through
computer simulations this problem can, to some extent, be overcome. The quality and
reliability of computer chemistry have improved immensely over the last decades and have
gone from testing a few specifically chosen compounds to screen a huge number of viable
candidates through appliance of Artificial Inteligence (AI) (Steinmann and Jensen, 2021).
The next section will briefly introduce the basics of the simulation approach.

1.1 Mechanics of a chemical system

All chemical systems consists of atoms which can be split in two main particle groups;
nuclei and electrons. In Quantum Mechanics (QM) both of the particle types are allowed
to contribute whereas in Classical Mechanics (CM) only the nuclei are considered. At
velocity slower than the speed of light Newtons second law (Equation (1.1)) is used to
describe the classical mechanics i.e. the movement of the atoms and molecules: (Jensen,
2017)

F = m · a, (1.1)

where F is the force, the mass, m, is constant and a is the acceleration. A starting condition
of CM is the position of the center of mass of the particles. The force is equivalent to the
derivative of the potential V with respect to the position r, which in turn is the same as
the mass multiplied with the second derivative of the acceleration of the positions with
respect to time t. (Equation (1.2)). (Jensen, 2017)

− ∂V

∂r
= m · a, a =

∂2r

∂t
(1.2)
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1.2. Force Fields Aalborg University

1.1.1 Time dependent systems

To propagate the system in time, Equation (1.2) will has to be solved numerically. At a
given time ti the system has the position of ri. As time propagates one time step ∆t later
the new positions ri+1 can be calculated from the velocity, acceleration, etc. as a Taylor
expansion with respect to time. The simplest form of dynamics is given as the Verlet
algorithm (Equation (1.3)) (Jensen, 2017):

ri+1 = (2ri − ri−1) + a(∆t)2 + . . . (1.3)

Beyond the third order in time step the Verlet algorithm is no longer true and the
velocity is not calculated explicitly. To overcome this the Velocity Verlet algorithm is
used instead which combines the Verlet algorithm with a leap frog algorithm. The latter
(Equation (1.4)) introduces a half-step to the time step, however out of phase which is
corrected when combined into the velocity Verlet algorithm (Equations (1.5) and (1.6))
Jensen (2017)

vi+ 1
2
= vi− 1

2
+ ai∆t (1.4)

ri+1 = ri + vi∆t+
1

2
ai∆t2 (1.5)

vi = vi +
1

2
(ai + ai+1)∆t (1.6)

The Langevin equation is another method of propagating a system in time (Equation (1.7)).
One main difference from the velocity Verlet algorithm is that it introduces the friction
coefficient ζ, which is used to model to the surrounding molecules so that only the average
interactions are included. ζ is proportional to the velocity of the atoms and Frandom which
averages to zero. While ζ removes energy to the system, the random component Frandom

add energy and is associated with a temperature. Fintra accounts for the intra molecular
forces and in some cases the non-bonded forces. (Jensen, 2017)

m
d2r

dt2
= −ζ

dr

dt
+ Fintra − Frandom (1.7)

Zhang et al. (2019) recently proposed a so called "middle scheme" to the Langevin equation
(by introducing the leap-frog algorithm). They showed that this method yield more
realistic energies of the solvent than the Langevin method. As the focus of this project is
the guest-host interactions in water it makes sense to apply the Langevin Middle method.

1.1.2 Importance of the time step

When running any simulation the time step is an important parameter to control. The
largest value of ∆t has to be one magnitude smaller than the fastest process in the system.
This corresponds to the lightest particle, which for most systems is the one of hydrogen
which vibrates with a frequency of 3000 cm−1 ≈ 1014s−1, which again corresponds to a
time step of one femtosecond (10−15s). (Jensen, 2017)

1.2 Force Fields

A big part of any computer simulation is to make it as cheap as possible while keeping the
quality of the calculations high enough. For this purpose Force Fields are used. Force fields
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have the advantage of adhering to the laws of classical mechanics while the parameters
of the bonded forces (bonds, angles and torsion) and non-bonded (van der Waals and
electrostatic) forces between atoms and molecules are predefined. By implementing the
force field parameters in a simulation, the calculations performed by CM becomes cheaper
as opposed to finding them directly with CM and/or QM. The force field parameters are
often derived from QM and/or CM or from experimental data. When applying force fields
the energy of each step is found by the terms of Equation (1.8) and propagated in time by
Equation (1.2). (Jensen, 2017)

EFF = Ebond + Eangle + Etorsion︸ ︷︷ ︸
bonded

+EvdW + Eelec︸ ︷︷ ︸
non−bonded

(1.8)

Figure 1.2 show the internal forces, i.e. the first three terms of Equation (1.8). The
stretching of the bond between two atoms, the angle bend of three atoms and the torsion
term which describe the dihedral angle of four atoms. Beyond the fourth atom (No bond in
Figure 1.2) the atoms can no longer "feel" each other much like the chemical shift of NMR
and vibrations in Infrared pectroscopy (IR). This is both due to the distance between the
atoms and that the atoms in between shadow the forces.

Figure 1.2. The different forces interacting in a molecule. The colour signifies which force is applied
and the arrows show the direction. Bond stretch (two atoms): green, angle bend (three atoms): yellow,
and dihedral angle (four atoms): red. The No bond signifies, that there are no direct bond between the
atoms, meaning that they only interact through intramolecular forces. Jensen (2017).

1.2.1 Intramolecular forces

The bond and angle terms (Equations (1.9) and (1.10)) can in most cases be described with
a harmonic potential which increases as the quadratic when displaced from the minimum
(or equilibrium) Equation (1.9) describes how the bond between two atoms stretches where
kr,r0 is the force constant between the atoms r and r0.

Ebond =
1

2
kr,r0(r− r0)

2 (1.9)

Eangle =
1

2
kθ,θ0(θ − θ0)

2 (1.10)

Equation (1.10) describes how the angle of three atoms bends around the middle one (see
the yellow in Figure 1.2) where kθ,θ0 is the force constant of the angle bend, and θ and θ0
represent two sets of angles.

Etorsion =
∑
i

Vi[1± cosniϕi] (1.11)

4



1.3. Selecting a force field Aalborg University

The torsional term (Equation (1.11)) accounts for the dihedral angle i.e. the orange part
of Figure 1.2. Vi is the energy barrier, which has to be overcome to rotate around the
middle bond, ϕ is the angle (again, revolving around the middle bond) and n describes
how many periods/possible the dihedral angle has. It is very much different from Ebond

and Eangle as it can revolve around the second bond (orange arrow) more or less freely
due to a low energy barrier (Jensen, 2009, 2017). Even though the energy barrier is low,
the molecule will often only have a few positions in which there is an equilibrium (Jensen,
2017).

1.2.2 Intermolecular forces

The last two terms of Equation (1.8) describe how molecules interact with each other. The
energy of van der Waals (shown below a as Leonard Jones potential (Equation (1.12)))
describes the repulsion two between non bonded particles, specifically non polar particles
or particles with non-polar areas. At a low distance, the first term of Equation (1.12)
increases the energy of EvdW due to the steric repulsion between two particles. This effect
also prevents said particles from collapsing on top of each other. The attraction term
(second term of Equation (1.12)) applies when there is a charge polarisation between two
particles, creating an induce dipole-dipole interaction.

ELJ(R) =
C1

R12
− C2

R6
, (1.12)

where ELJ(R) is the van der Waals energy as a function of the distance R, the repulsion
depends on the first term 1

R12 , the attraction term is described by 1
R6 while C1 and C2 are

constants.

The electrostatic energy depends on the partial charges of the atoms and how the electrons
are distributed in the molecules. In force fields there are no electrons, instead each atom is
assigned the partial charges QA and QB of atom A and B, respectively (Equation (1.13)).

Eel =
QAQB

εRAB
, , (1.13)

where ε is the dielectric constant, and RAB is the distance between atoms A and B.

1.3 Selecting a force field

The purpose of force fields is to make simulations cost less in regards to computer time
while at the same time retain some level of accuracy. Some force fields are parameterised
specifically for inorganic systems while other are parameterised towards organic systems.
Some are designed to handle many interactions at a cost in the level of accuracy while
others are designed to handle relatively few interactions at a high level of accuracy.

AMBER is a force field designed towards organic chemistry with a main focus on proteins
i.e. many interactions (Jensen, 2017; Case et al., 2014). The GLYCAM06 force field is
developed on the basis of AMBER but specialised towards mono- and oligosaccharides and
small molecules (Kirschner et al., 2007). When handling cyclodextrins, GLYCAM06 is a
good match, as it is written and parameterised specifically for this type of molecule. While
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both AMBER and GLYCAM06 produce reliable results, they have a steep learning curve
and requires a lot of initial programming before simple simulations can be set up. A part
of the challenge arises when trying to implement some ligand unknown to GLYCAM06, as
this has to be parameterised before running a simulation.

GLYCAM06 contains six different elements (C, H, N, O, S and P) each defined in the force
field with different parameters according to element and interaction. How an element
behaves depends on its neighbours, which is why each element (except phosphate) has
two or more (up to ten) different atom types of which there is 30 in total. Carbon alone
accounts for ten different atom types of which six are different kinds of sp3 hybridised
aliphatic carbons. (Kirschner et al., 2007) By limiting the number of atom types to 30,
parameters too similar can be avoided and the list of possible interactions are kept relatively
short. This, however is a problem with General AMBER Force Field (GAFF) as it contains
and accounts for a large number of atoms and possible combinations.

Sage, a recent addition to the many different force fields have been developed by the
Open Force Field Consortium (2022). Sage is the second generation force field of
SMIRNOFF99Frosst which was made to be a minimalistic AMBER-compatible general
force field for small molecules, specifically for drug-like molecules. SMIRNOFF99Frosst is
comparable to the physical properties of GAFF but is much less complex in its use, as it
uses the SMARTS direct chemical perception that SMIRNOFF makes possible. (Mobley
et al., 2018)

1.3.1 Chemical perception

There are two methods belonging to the term chemical perception: indirect chemical
perception and direct chemical perception. Both methods are based on the input of a
chemical graph depicting a molecule and the end result are the same. The path, however
is very much different.

Figure 1.3. Two different paths of parametrisising with indirect chemical perception (top) and direct
chemical percepttion (bottom). The atom types are based on GLYCAM06-j and so is the parameters.

The indirect method, which older programs like AMBER, GAFF, GLYCAM06, and others
use, is basically just reading of lists (Figure 1.3). An input is given, specifying two to four
atoms and how they are connected. The connection applies to the bond, angle, torsion and
Van der Waals radius. All this is specified by the use of short keywords consisting of 1 to 3
letters which then hold all the information. This means that relatively big force fields like

6



1.3. Selecting a force field Aalborg University

GAFF uses several thousand lines of code, often made through human chemical intuition
and experience. (Mobley et al., 2018) This sometimes leads to errors in the parametrisising
of the final calculations, e.g. if a planar molecule is forced to bend due to bonds, which
are not double bonds but perceived as such (Wang et al., 2006; Mobley et al., 2018).

Direct chemical perception means that the molecule is parameterised on the fly rather than
by the preset indirect chemical perception. By this method, the amount of data needed to
be read and stored is drastically lowered. With direct chemical perception the pattern of
the chemical graph is recognised (Figure 1.3). By using the pattern to assign the valence,
bond order and chemical environment the need for atom types are removed.

1.3.2 Applying SMIRKS

While the SMIRKS language is normally represented by the symbol H, C, N, and O, in
OpenFF the symbols are replaced by hashtag followed by the atom number #1, #6, #7,
and #8 respectively (Mobley et al., 2018). In SMIRKS a carbon connected to four atoms
would look like this #6X4 while a carbon with only bonds to three other atoms (i.e. one
bond being a double bond) would be represented by #6X3.

Figure 1.4. SMIRKS representation of two molecules with three matching patterns. (Mobley et al.,
2018)

SMIRKS is a smart choice due to it’s ability to recognise patterns. Figure 1.4 shows the
chemical graph of two molecules with the SMIRKS representation. There is a total of three
matches (same order of appearance of atoms) in the two molecules, making it relatively
easy to find the correct parameters and reuse those, #6X4:1 (blue) has a single (-) labelled
(green) bond to the trivalent nitrogen #7X3:2 (purple). Each of these are indexed (:1 and
:2) for special treatment, in this case to assign bond stretch parameters. The amide is
single bound to a trivalent alpha carbon #6X3 (orange) which has one bond to a carbon
and one double bond (=) to the beta-oxygen #8X1+0 (red) which is neutral, denoted by
the +0. In molecules some functional groups have a greater influence on the molecule than
others. In Figure 1.5a below, an excerpt of the XML-representation of methanol is shown.
For each force type related to the molecule in question SMIRNOFF loops over the chemical
graph and finds all the SMIRKS assosiated with the molecule.

Figure 1.5a shows the SMIRKS of a harmonic bond force (Equation (1.9)). In the case of
methanol carbon bonds to three different hydrogens with the same properties (blue). The
:1 and :2 denotes the indices of the atoms. Carbon also has a single bond to a hydroxyl
group (green). While this in reality covers two bonds (C – O – H), it is instead treated as a

7
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C–OH due to the change induced into oxygen by hydrogen. The last bond (light purple)
describes the bond of the hydroxyl group in its own right. In the case of methanol, the
bond force is relatively straight forward.

(a)

(b)

Figure 1.5. Excerpt of the XML representing the SMIRNOFF corresponding to methanol. Each
of the different forces are boldfaced for readability. The SMIRKS on the left are colour coded to the
corresponding atom or bond in the figure to the right. The colour codes correspond to the primary atoms
(HarmonicBondForce and NonbondedForce). Grey corresponds to carbon, red to oxygen, light green to
oxygen-carbon, yellow to hydrogen, light purple to hydrogen-oxygen, blue to hydrogen-carbon, and the
hydroxyl oxygen is highlighted by magenta. Note that the XML contains the units of the forces within.
(a) shows the SMIRKS harmonic bond force, (b) shows the SMIRKS nonbonded force. (Mobley et al.,
2018).

For the non bonded force type this is not the case. As can be seen on Figure 1.5b, there are
more SMIRKS than colours corresponding to the chemical graph to the right. The first line
(yellow), showing a single hydrogen is replaced by second line (blue) which is more specific
towards a hydrogen bonding with H–C– [N, O, F, S, Cl, Br]. The same is the case for the
third line (light purple), which also replaces the first lines for the specialised hydrogen in
a hydroxyl group. The last line to replace another, is the purple line which replaces the
single oxygen with the specific hydroxyl group which has two bonds, the hydrogen and
something else denoted by the *-[#1].

1.4 Reaction energies

The energy of reaction between a host and ligand is written as Equation (1.14) where ∆GH

and ∆GL are the free energies of the reaction ∆rG, respectively.

∆rG = Gcomplex −Gsolution (1.14)

Reaction (R1) show the corresponding reaction scheme:

Lsolution +Hsolution −−⇀↽−− LHcomplex (R1)

with an equilibrium constant Keq of

Keq =
[LHcomplex]

[Lsolution][Hsolution]
(1.15)
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At equilibrium ∆G = 0 and therefore

0 = ∆rG+RT lnKeq (1.16)

which can be rewritten to
−RT lnKeq = ∆rG (1.17)

where ∆rG is the free energy of the reaction, R is the gas constant 8.314 JK−1mol−1, and
T is the temperature 298.15K.

Figure 1.6 illustrates the Potential Energy Surface (PES) of Equation (1.14). The purpose
of the PES is to identify where the most likely equilibrium of a system is, corresponding to
the minima on a PES (it can be found as a function of time, distance, angle, and dihedral
angle, among others). For each minimum, there is some degree of equilibrium. In the case
of host-guest interactions, the global minimum of the PES is theoretically where the host
and ligand forms an inclusion complex.

Figure 1.6. Example of a PES between a guest and host solvated in water. The x-axis shows the
reaction coordinate R and the y-axis shows the the relative free energy.

Figure 1.6 show two points on the PES; GLH and GL +GH where each point represents a
minimum corresponding to the free energy between ligand and host at a certain distance.
The distance between guest and host increases with R. By increasing the distance in
increments the PES of the host-guest relation can be found leading to the minima in free
energy. At GLH the two molecules form an inclusion complex resulting in a low ∆G. At
distances not at GLH the systems energy is higher and increases as the energy barriers
after GLH has to be overcome. At GL + GH the distance between the two molecules is
great enough for them not to "notice" each other.

1.4.1 Relative free energy

As earlier stated, the free energy can be used as a measure of how well a host and ligand
bind to each other. Because the free energy is a state function, the path to the results
are not important in the sense that the free energy is relative. This means that when a
molecule moves from one state to another, be it solid to liquid or from solution to complex
is not that important. The reaction schemes shown in Figure 1.7 visualise the change in
energy from solution to complex.

9
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In Figure 1.7a there are two paths. 1) The "real" (horizontal) which shows the free energy
of the hosts and ligands A + H and B + H complexing in two different reactions (each of
the reactions are comparable to the one shown in Figure 1.6). 2) The alchemical (vertical)
which shows the free energy of the ligand A reacts into ligand B, the host H reacts into
the host H (spoiler, the change in free energy is zero), and the complexes AH reacts into
BH (Mey et al., 2020).

The reaction circle shown in Figure 1.7b shows change in free energy between different
complexes. The reaction circle shows the change in free energy when moving from
AH → BH → CH → and back to AH from CH. The "circle" can be enlarged as necessary
with as many components as one desires as long as the change between molecules are not
too big (Mey et al., 2020).

(a) (b)

Figure 1.7. Different free energy pathways of host-ligand interactions. H is the host, A and B are the
ligands ,and AH and BH are the respective complexes. ∆GA and ∆GB are the change in free energy from
solution to complex while ∆GAB

S and ∆GAB
H are the change in free energy from one compound to another.

(a) shows the connection between the "real" (horizontal) and alchemical (vertical) path. (b) shows how
the vertical path of (a) can be used to change the free energy between different inclusion complexes.

A given reaction in which the ligand A forms an inclusion complex with the host H (see
the horizontal part of Figure 1.7a) can be written as Reaction (R2):

A+H
∆GA

−−−⇀↽−−− AH (R2)

Similar reactions can be written for the ligands B and C:

B+H
∆GB

−−−⇀↽−−− BH (R3)

C+H
∆GC

−−−⇀↽−−− CH (R4)

If the ligands are very similar, e.g benzene and toluene the energy difference of the inclusion
complexes would also be relatively small. By assuming this, one could calculate the
difference in Gibbs free energy between the two ligands as Equation (1.18)

∆∆GAB = ∆GB −∆GA (1.18)

When finding the free energy between inclusion complexes, ∆∆G, there are two possible
methods; simulation of the whole reaction from start to end (Figure 1.7a horizontal path) or
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alchemical free energy calulations (Figure 1.7a vertical path). The first has the advantage
of revealing how the energy changes as a function of distance, however it returns only one
∆∆G. ∆∆G can be found as Equation (1.19) and expanded to Equation (1.20):

∆∆G = ∆∆GAB +∆∆GBC +∆∆GCA (1.19)

∆∆G = ∆GA −∆GB +∆GB −∆GC +∆GC −∆GA = 0 (1.20)

The problem, however is that when cleaning the equation, it will always return zero. To
counter this, the standard error of each will be included, so the free energy will be

∆∆G = 0± σ√
n

(1.21)

The argument for doing it this way is that the standard error of ∆∆G is found by

σ∆∆G =
√
2σ2

A + 2σ2
B + 2σ2

C (1.22)

The rightfulness of the method and results will then depend on Equation (1.22) instead of
the ∆∆G which will always be zero.

1.4.2 Simulating the reaction path

As mentioned earlier, Figure 1.6 shows a possible PES when separating a guest-ligand
complex, and together with Figure 1.7a it is possible to find the free binding energy of
the complex. This approach also has the possible advantage of showing how the ligand
behaves in relation to the host.

You et al. (2019) simulated the whole reaction path from solution to inclusion complex
through umbrella sampling (US) of a number of frames and finding the Perturbed Mean
Free energy (PMF) by Weighted Histogram Analysis Method (WHAM) and Multiple
Bennet Acceptance Ratio (MBAR). In umbrella sampling a set of windows (starting
configurations) is made and a biasing potential is applied. The biased energy is then
found through simulation of each window (further details will be covered in the theory).
You et al.’s method yields an estimate of the PES of the reaction from being in solution
to inclusion complex. An important aspect is that the method is comparable to how the
ligand and host interact in solution in vitro. When doing umbrella samplings, each window
is set with a specific parameter, in this case the distance R0, of Equation (1.23):

Ebias =
1

2
·K · (R−R0)

2 , (1.23)

where Ebias is the energy of the biasing potential, K is a force constant and R0 is the
measured distance. Equation (1.23) has the same functional form as Equation (1.9), only
here the particles are whole molecules. When doing this kind of simulation, the ligand and
host start at the positions of the inclusion complex and are then pulled apart frame by
frame. For each frame a specific R is set while the deviation R0 is measured and sampled.
You et al. (2019) investigated the guest-host interactions from 0 to 26Å with a step size
of 0.1Å between each window, resulting in 260 windows. Each production simulation took
2.5 ns per window, in total 650 ns.
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1.4.3 Alchemical free energy calulations

Alchemical free energy calculations is another method for finding the free energy change
from molecules in solution to molecules in inclusion complex. The method is only possible
in in vitro as the laws of physics are broken by introducing chimeric molecules. Chimeric
molecules are engineered molecules and does not necessarily exist in reality (Borsari et al.,
2020). In alchemical free energy calculation it is used to describe intermediate states, such
as the ones showed in Figure 1.8a (Mey et al., 2020). The participation of the blue part of
the molecule decreases with an increase in λ. λ is the steps or windows of the simulation,
similar to the ones described in the section above. This does not mean that the molecule
is not there, rather it’s energy contribution is decreased in favour of the orange part.

Figure 1.8b illustrate the probability density function of the potential energy as a function
of λ = [0 : 1], respectively. The potential free energies of each λ and it neighbours
(λn−1, λn, and λn+1) has to overlap to make sure the calculations are valid (Mey et al.,
2020).

The probability of the potential energy P (Epot) as a function of λ is show in Figure 1.8b.
At λ = 0 the probability of phenol contributing to the potential energy is the highest while
it decreases as λ. The opposite is true for benzene.

(a)

(b)

Figure 1.8. Alchemical λ between benzene and phenol. At λ = 0 phenol is fully interacting, while this
is true for benzene at λ = 1. Inspired by Mey et al. (2020)

As their contribution to the SAMPL6-challenge, Caldararu et al. (2018) made a set of
alchemical simulations with 13 windows and with a production time per window of 2 ns
totalling to 26 ns.

Choosing the alchemical or reaction path

When comparing the two methods in relation to time, it is obvious that the alchemical
procedure is the more efficient (Table 1.1) (the alchemical procedure is repeated three
times with different starting conditions to remove simulation artefacts). If one wish to
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know more about the reaction path the alchemical cannot be used, as it’s only focus is the
the two extremes; in solution and in inclusion complex. The concept of the reaction path
is relatively to understand as it is very similar to how the experiment would be made in a
laboratory in opposition to the alchemical method.

Table 1.1. Comparison of two chemical simulation methods (Caldararu et al. (2018)a, You et al. (2019)b).

Alchemical path Reaction path

Number of windows 13a 260b

Production time per window 2 nsa 2.5 nsb

Number of repetitions 3a 0b

Total simulation time 78 ns 650 ns

Reaction path No Yes
Simulation time Short Medium to long
Ease of implementation Difficult Medium

A downside to the reaction path method is that a lot of windows are needed (and therefore
simulation time) to obtain a high degree of accuracy. In the specific method applied by
You et al. (2019) they increase the distance between host and guest by 0.1Å per window.
On the other hand it has the possibility of producing knowledge of how the host and ligand
might react when close together but not quite bound.
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1.5 Problem statement

Through computer simulations it is possible to investigate interactions between chemical
compounds, among others host-guest interactions. By analysing the resulting energies it
is possible to find which complexes are feasible and which are not. Although this can be
done by older programs and force fields like AMBER and GLYCAM06, these programs
have a steep learning curve.

A relatively new program OpenMM features a much more readable syntax and is
completely integrated with Python. This makes it a viable option for non-programmers. It
also features the recent force field SMIRNOFF which applies a relative new method called
"direct chemical perception" that find the chemical environment from the chemical graph
rather then a list like the older programs.

The goal of this project is as follows:

Determine and define a feasible method to apply the biasing potential on an inclusion
complex between β-cyclodextrin and different ligands using OpenMM.

14



Theory 2
This chapter will cover the theory necessary to develop and analyse umbrella sampled
simulations. First the biasing energy potential used to separate the host and ligand will
be introduced. To figure out which energy ensemble should be used, the two free energies
Gibbs and Helmholtz will be discussed. Bennett’s Acceptance Ration (BAR) will also be
discussed briefly as it is needed to analyse the results of the Umbrella Sampling (US).

2.1 Biasing energy potential

As stated in the introduction the goal of this project is to investigate the inclusion complex
of a host and ligand through computer simulation. A relatively easy method is to apply a
biasing energy potential (Equation (2.1) same as Equation (1.23)) between the Center of
Mass (CoM) of the two molecules (You et al., 2019).

Ebias =
1

2
·K · (R−R0)

2, (2.1)

where Ebias is the energy potential as a function of the measured distance R, K is a force
constant and R0 is the starting distance. The bigger difference in between R and R0 will
result in a higher potential energy Ebias. This difference is influenced (mainly) by the
forces of attraction and repulsion i.e., intermolecular forces between the host and ligand
and as such the measured distance can be used to quantify the potential energy needed
to keep a certain distance. The higher the distance is to either side the more skewed the
energy will also be to either side. If the distances has a normal distribution around the
minima, the reaction will be in an equilibrium (see Figure 2.1).

Figure 2.1. Illustration of the energy Ebias difference in λ0 and λ1 as a function of the measured
distance R between CoM of H and L. R0 is the "set" distance between host and ligand.
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Figure 2.1 illustrates the biasing energy potential Ebias. At λ0 the host, H and ligand L

are centered at the same point in space and R is distributed normally around the minima
of Ebias. At λ1 R0 is greater, however the two molecules are still close enough to interact.
This results in a left skewed distribution of R, increasing Ebias.

2.2 MBAR

Before going into too much detail, it is important to note that Bennets Acceptance Ratio
(BAR) was defined in 1976, when MD simulations was not yet on par with NVT (the
volume is kept constant). This means that the free energy was based on Helmholtz free
energy A. With this in mind, the following section shows that Gibbs free energy can just
as easily can be used.

2.2.1 Defining the energy of the system

When working with simulation of chemical systems, the aim is to achieve results similar to
those found through experimental laboratory work. Often the purpose of both experiments
and simulations are to determine whether a reaction is spontaneous or not. A good measure
for this are the state functions as described in the introduction. When the change in energy
from solvated molecules to inclusion complex is negative, the reaction is spontaneous. The
energy of a reaction can be described by Gibbs free energy and Helmholtz free energy,
which in many cases are interchangeable.

Gibbs free energy, G, is defined as Equation (2.2)

G ≡ H + TS, (2.2)

where H is the enthalpy, T is the temperature and S is the entrpy. The change in Gibbs
Free Energy ∆G is written as Equation (2.3)

∆G = ∆H + T∆S (2.3)

∆G = U + PV + T∆S, (2.4)

where U is the internal energy or the potential energy, P is the pressure and V is the
volume. The free energy can also be defined as the Helmholtz Free energy (Equation (2.5)).
(Tinoco et al., 1999)

A ≡ E − TS (2.5)

Here E is the energy of the system. At constant temperature and pressure ∆G = 0

while ∆A = 0 at constant temperature and volume. (Tinoco et al., 1999) Two generally
chosen ensembles in MD simulations are NPT (constant mol, pressure, temperature)
and NVT (constant mol, volume, temperature), the first resulting in Gibbs Free energy
(Equation (2.4)) and the latter giving Helmholtz Free Energy (Equation (2.5)) (GROMACS
development team, 2018). Laboratory experiments are mostly carried out as open systems
with ambient pressure. Therefore, when aiming to predict the energies of these experiments
through MD simulations, the NPT ensemble is used.
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2.2.2 Introducing BAR

BAR can be used to find the energy difference between two states, λl and λl+1, which
have to be close to each other. For BAR to be a viable method, the energy difference
cannot be too big, the energy potentials have to overlap and each λ has to be sampled
independent of each other. The same restrictions apply to Multistate BAR (MBAR),
however this method, as the name implies, is extended to handle more λ than just two.
The application of MBAR lets the energies of each sampled λ to affect the others until
some level of precision is reached. This allows for interpolation of the energy between each
λ, predicting the energy with fewer samples. (Shirts and Chodera, 2008; König, 2010)

∆G(λl −→ λl+1) = kbT

(∑
λl+1

f(U(λl)− U(λl+1) + C)∑
λl
f(U(λl+1)− U(λl)− C)

)
− ln

nλl+1

nλl

+ C (2.6)

nλl
and nλl+1

is the number of coordinate states at λl and λl+1, respectively and C is ratio
of the classical partition functions Zλl

and Zλl+1
given by:

C = kbT ln
Zλl

nλl+1

Zλl+1
nλ

(2.7)

and f is the Fermi Function
f(x) =

1

1 + exp x
kbT

(2.8)

As the C Equation (2.6) is an unknown factor we cannot benefit from the expression in its
current form. However, by iterating Equation (2.9) until satisfied, the value of C can be
found thereby making Equation (2.6) applicable. (Shirts and Chodera, 2008; König, 2010)∑

λl+1

f(U(λl)− U(λl+1) + C) =
∑
λl

f(U(λl+1)− U(λl)− C) (2.9)

2.2.3 Sampling for BAR

As mentioned BAR works on exactly two different configurations as will be shown in the
following. Say you have two configurations, λl and λl+1, each with a different starting
condition and you want to move λl to λl+1. This requires some amount of energy,
Ebias. As described in the introduction, EFF , contains the energy contribution from the
bonded and non-bonded forces meaning that we can write the energy of the system as
Esys = EFF + Ebias.

Esys = EFF + Ebias = U (2.10)

Because of Equation (2.10), Equation (2.6) can be extended to Equation (2.11):

∆Gbias(λl −→ λl+1) = kbT
a

b
− ln

nλl+1

nλl

+ C, (2.11)

where ∆Gbias is the free energy of Ebias. For the sake of transparency the numerator and
denominator in Equation (2.11) is assigned to a and b, respectively.

a =
∑
λl+1

f(Ebias(λl)− Ebias(λl+1) + C) (2.12)

and
b =

∑
λl

f(Ebias(λl+1)− Ebias(λl)− C) (2.13)
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From the above we can assign a part of the free energy to the biasing potential:

∆Gbias(λl → λl+1) = kbT

(∑
λl+1

f(Ebias(λl)− Ebias(λl+1) + C)∑
λl
f(Ebias(λl+1)− Ebias(λl)− C)

)
− ln

nλl+1

nλl

+C (2.14)

The application of BAR is done in two main steps: 1) the free energy of λl and λ(l+1) is
sampled and the average is found, 2) the energy of the two configurations are interpolated
and a new average is found. When applying MBAR, (step 2) BAR is extended to depend
on more configurations.

The reduced energy matrix A is made from the sampled distances. The size of A is MxN,
where M is the number of frames and N is the number of samples in each frame. A is
dimensionless. FastMBAR is used to find the potential mean force (PMF). To extend the
PMF into pertubated PMF the matrix LxN is created. When FastMBAR has finished,
the number of energies are the same as L. For an energy to be accepted into L, the energy
difference cannot be too big, otherwise it will result in +∞ and be discarded. The diagonal
of LxN is the PMF found from A, while over and under are found both through iterations
of C and comparison of the energies (if they are too big they will be counted as +∞ as
they would be too big to fit the system). (Ding et al., 2017, 2019a)

2.3 Umbrella sampling

Umbrella sampling starts with something resembling equilibrium (closed umbrella) and
then pulls or moves the system until a new equilibrium is found (fully open umbrella). In
the case of inclusion complexes, the guest is pulled from the host frame by frame. For each
frame some change in the system is measured and in this case it is the distance between
the two. To pull the host and guest apart, a starting system is made for each distance, i.e.
R0 (Equation (2.1)) is set to a specific distance. This allows the diverging distance to be
measured for each snapshot in the frame. As all of the frames are unique and have their
own starting configurations the frames can be said to be independent of each other, while
the snapshots of each frame are not.
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Method 3
This chapter aims to show how Python can be used to implement the OpenMM framework
for simple simulations and umbrella sampling. The simulation setup and the ligands in
question will be show and lastly the resulting configurations/snapshots are then analysed
by implementing FastMBAR in python.

3.1 Setting up an OpenMM simulation

The following section presents an introduction to the OpenMM framework and how to
programmatically perform simulations through the Python API.

When starting any simulation the simulation object must be built. It concist of a molecule,
a force field, a system, and an integrator. It is possible to customize all of these but here
we will focus on the simulation object and only the applied settings will be described in
detail.

3.1.1 Setting up the Molecule and ForceField

The ForceField object contains one or more forcefields which must be submitted as xml-
files or the SMIRNOFF version offxml-files.

The force field must contain the correct molecules as the topology is otherwise unknown to
the ForceField object. The molecules can be added into the force field by multiple ways
including SMILES strings and sdf-files. It is possible to add more molecules or atoms to
the force field than needed like the two ions Na+ and Cl– but one should of course not
add unnessary clutter. A complete list of ways to create the molecules can be found in the
documentation (Open Force Field Consortium, 2022).

In Listing 3.1 below, the molecule is imported from either a smiles string (ions) or a sdf-
file (host/guest molecules). The ForceField only contains the molecules which are added
through the add_molecules method.

Listing 3.1. OpenFF toolkit and Molecule

1 from openff.toolkit.topology import Molecule
2 from openmmforcefields.generators import SMIRNOFFTemplateGenerator
3
4 smirnoff = SMIRNOFFTemplateGenerator(forcefield=’openff-2.0.0.offxml’)
5
6 # Adding the two ions Na+ and Cl- as SMILES strings to smirnoff
7 # The two ions are added to ensure charge neutralization if the added molecules has a charge
8 # The ion will only be used if nesseary

19



Master Thesis 3. Method

9
10 ion_smiles = [’Na+’, ’Cl-’]
11 for ion_smile in ion_smiles:
12 ion = Molecule.from_smiles(ion_smile)
13 smirnoff.add_molecules(ion)
14
15 # Adding the host/guest molecules to smirnoff
16 sdf_files = [’host.sdf’, ’guest.sdf’]
17 for i in range(len(sdf_files)):
18 offmol = Molecule.from_file(sdf_files[i])
19 smirnoff.add_molecules(offmol)

ForceField is imported from the OpenMM and is acting in the foreground. The three xml-
files which the force field is generated from loads the specific parameters of the molecules.
’amber14-all.xml’ is a dependency of both ’tip3p.xml’ and ’GLYCAM_06j-1.xml’. The
TIP3P is added to be able to parameterise water as a solvent and GLYCAM06 is added
to provide the parameters of β-CD, specifically the residue 4GA (1,4–α-glucose).

Listing 3.2. Setting up the OpenFF forcefield

20 # Setting up the OpenMM forcefield and adding the OpenFF forcefield containing the molecules
21 # This lets the OpenFF force field work its magic in the background
22 from openmm.app import ForceField
23
24 forcefield = ForceField(’amber14-all.xml’, ’tip3p.xml’, ’amber/GLYCAM_06j-1.xml’)
25 forcefield.registerTemplateGenerator(smirnoff.generator)

The forcefield is now ready to handle the water model tip3p and the GLYCAM06-j
parameters which will be added next and the system is ready to be set up.

3.1.2 Setting up the system

Modeller

The modeller provides a representation of the molecule(s). To function properly, the force
field must contain the molecules in question. The modeller takes a the topology and
positions of the molecules, which can be loaded through the OpenMM’s PDBFile. The
topology and positions are then transfered to the Modeller object

26 from openmm.app import PDBFile
27 from openmm.app import Modeller
28
29 pdb_file = PDBFile(’pdb_file.pdb’)
30 modeller = Modeller(pdb_file.topology, pdb_file.positions)

To add water to the system, some volume is needed. The easiest is to use the padding
command, which takes some distance in nanometer as argument. However, to make a
NPT ensemble periodicity must be enforced and this requires well defined borders. The
boxVectors is used to define these and takes a tuple of three n3 vectors by Vec3().

31 from openmm.vec3 import Vec3
32
33 a_vec = Vec3(5, 0, 0)
34 b_vec = Vec3(0, 5, 0)
35 c_vec = Vec3(0, 0, 5)
36 modeller.addSolvent(forcefield, model=’tip3p’, boxVectors=(a_vec, b_vec, c_vec))
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If nothing else is given modeller.addSolvent() will automatically add counter ions to
neutralize the system if nesseary. The counter ions are by default Na+ and Cl– .

3.1.3 Making a system

The simplest system possible in OpenMM is made by the forcefield.createSystem()
and only need a topology as input which is taken from the modeller. However, this is not
enough when creating an NPT ensemble. To do so the non-bonded method need to be set
to Particle Mesh Ewald (PME), which ensures periodicity and makes it possible to keep
the pressure of the system constant.

37 from openmm.app import PME
38
39 system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)

Adding forces to a system

When working with the interactions of two or more molecules a force is needed. This can
be added to the system by the system.addForce(). A custom force was be built by the
CustomCentroidBondForce(), specifying the amount of groups (at least 2) and a energy
function. A way to define the groups will be covered in detail later.

In this project two different force functions were utilized in the system; one to center the
host and guest molecules on top of each other (Equation (3.1)) and one to keep them at a
specific distance (Equation (3.2)):

Fcenter = Kcenter · |R−R0| (3.1)

Fpull =
1

2
·Kpull · |R−R0|, (3.2)

where R is the measured distance between the two groups g1 and g2. The keyword
distance(g1, g2), is specific for CustomCentroidBondForce and finds the centroid of
the two groups e.g. the weighted geometrical center and then the distance between the
two.

Please note that the force function given in the CustomCentroidBondForce() is not
written with pythons normal math syntax and is written as a string. In pull_force the
function is further split up in three parts, each devided by a semicolon (;). The method
does not understand the phrase 0.5*K_pull*( (distance(g1, g2)- R0)^2 ), hence the
difference in syntax.

Listing 3.3. Setting up pull_force

40 from openmm.openmm import CustomCentroidBondForce
41 from openmm.openmm import unit
42
43 pull_force = CustomCentroidBondForce(2, ’0.5 * K_pull * dR^2; dR = (R-R0);
44 R = distance(g1, g2)’)
45 pull_force.addGlobalParameter(’K_pull’, 0.0 * unit.kilocalories_per_mole /
46 1.0 * unit.angtroms ** 2)
47 pull_force.addGlobalParameter(’R0’, 0.0)
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The two global parameters K_pull and R0 were added as global parameters to be able to
update them later on. When the system is finished they can be changed by the method
system.method.setParameter(’R0’, R0), where the first argument works similar to a
libary and the second argument is a variable.

The host and guest were added to pull_force as two sets of indecies. If these are taken
from a pdb-file the indecies must be arrays of the lines containing the relavant groups.

Listing 3.4. Adding a force to a system object

48 host = pull_force.addGroup(host_indecies)
49 guest = pull_force.addGroup(guest_indecies)
50 pull_force.addBond([host, guest])
51 system.addForce(pull_force)

Almost the same procedure is used for the centering force with the exception of the variable
K_center, which was the only global parameter.

Listing 3.5. Setting up center_force

center_force = CustomCentroidBondForce(2, ’K_center * distance(g1, g2)’)
center_force.addGlobalParameter(’K_center’, 0.0 * unit.kilocalories_per_mole / 1.0 *

unit.angstroms ** 2)

OpenMM has no trouble reading PDB-files from Maestro, however the output differs.
OpenMM will include keywords like MODEL, TER and ENDMDL and also CRYST1 if
water is added. From a simulation point of view this does not mean much but if one wishes
to extract data from the PDB-files some programming is needed.

Integrators

Integrators take care of moving the simulation along in time steps. The simplest version
is the VerletIntegrator(stepSize) which takes the step size as its only argument. As
it is quite light it is a good choice for debugging the Simulation(). We will, however,
use the LangevinMiddleIntegrator(temperature, stepSize, frictionCoef) instead.
The LangevinMiddleIntegrator obviously provides more customisation off the integrator
(temperature, step size and friction coefficient) and also simulates the use of a heat bath
to keep a constant temperature in the simulation.

When creating the integrator an object is made. It can either move the simulation along on
its own or be attached directly to a simulation object. The integrator itself is independent
of the molecules, forcefield and system.

Simulation

The Simulation object is the simplest way to produce simulations. A number
of methods are directly attached to the system, where the most prominent are
theSimulation.minimizeEnergy() and Simulation.step() but also writing pdb-files and
printing how the simulation is moving along with number of steps, energy parameters,
volume, and more to either a file or the console
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The unit system used in OpenMM

The unit system in OpenMM is based on ParmED’s UnitSystem (Shirts et al., 2016).
The only difference is that the loading command is from openmm.openmm import unit.
unit() has a wide array of possible units already set up, with the possiblity to create more
if needed. To convert a unit, say joule to kilo calories, the method in_units_of(unit())
should be used (Listing 3.6)

Listing 3.6. Changing units in OpenMM

G_joule_per_mole = 4184 * unit.joule / unit.mole
G_kcal_per_mole = G_joule_per_mole.in_units_of(unit.kilocalorie_per_mole)

Gjoule_per_mole = 4184 Jmol−1 (3.3)

Gkcal_per_mole = 1kcal/mol (3.4)

3.2 Simulation setup

The simulation protocol follow You et al. (2019) in regards to the minimisation,
equalibration and production. The step length in the displacement was, however increased
from 0.1Å to 0.25Å.

For all simulations the temperature was set to 298.15K, the friction coefficient was set to
10.0 ps−1, and the step size was set to 1 fs.

3.2.1 Starting point

The starting point of all simulations containing a complex was a pdb file with the host and
chosen ligand in close proximity. The two molecules were first minimised for 4000 steps and
then pulled towards each other’s center by a force constant Kpull of 10 000 kcalmol−1 Å2.
After centering the molecules on top of each other, they were displaced to orego of the
coordinate system.

3.2.2 Displacement

The ligand was displaced from the β-CD in both the direction of the primary and secondary
end. For each displacement of the ligand, the ligand was displaced and the complex was
minimised in place. The displacement was made by moving the ligand to a set distance R0

in Python. The complex was then minimised for 1500 steps with a force constant Kpull of
1000 kcalmol−1 Å2. The ligand was displaced either 13Å (long simulation time)) or 26Å
(short simulation time) with a increment of 0.25Å

3.2.3 Production

For the production run a barostat was added to ensure periodic boundaries and the
molecules were solvated in water. The pressure was set to 1 bar and the box size was
set to 50Å on each side. The system was minimised for 1000 steps and then equilibrated
for 1 ns with a force constant Kpull of 1000 kcalmol−1 Å2.
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Short simulation time

For the short production the system was simulated for 2.5 ns with a Kpull of
100 kcalmol−1 Å2. A snapshot of the distance was taken every 1250 steps totalling to
2000 snapshots per simulation.

Long simulation time

The system was simulated for 5.0 ns with a Kpull of 100 kcalmol−1 Å2. A snapshot of the
distance was taken every 1000 steps totalling to 5000 snapshots per simulation.

3.3 Chosen ligands

For this project, six compounds were chosen as the ligands in connection with beta-
cyclodextrin (Figure 3.1). All of the ligands have benzene as a base.

(a) (b) (c) (d) (e) (f)

Figure 3.1. Six molecules, all with benzene as the central structure, used as ligands in the simulations
of the host-guest interactions with β-CD. The ligands are as follows: (a) phenol, (b) benzene, (c) aspirin,
(d) toluene, (e) chlorobenzene, and (f) 1,3-dichlorobenzene.

3.4 FastMBAR

Implemention of FastMBAR is done in four main steps (Ding et al., 2019b):

1. The files containing the snapshot information are read and assigned to a list. The
number of snapshots N per frame is recorded.

2. The reduced energy matrix, A = [MxN ] where M is the number of frames, is made
by the absolute difference between the set distance, R0, and the actual distance R.

3. FastMBAR is setup with the reduced energy matrix and number of conformations
resulting in free energies for each of the frames.

4. L = mM is introduced to the matrix B = LxN which is used to calculate the free
energies of the perturbed states. This means that the energies of all states are spread
out on a wider ’area’.
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This chapter contains the results and a following discussion of these. First the data will be
compared internally by a large number of samples and bootstrapping. Then the different
ligands will be compared with each other and the literature.

4.1 Data convergence

When doing molecular dynamic simulations time is of the essence. It is important to use
a sufficient amount of time to get reliable results while at the same time, the simulation
should also be within a realistic time span. To this end, the long simulation protocol
(Section 3.2.3) was applied to the complex containing phenol and β-CD and the snapshots
were sampled 5000 times. The potential mean force was found by applying FastMBAR
(Section 2.2) to the measured distances. The FastMBAR results were bootstrapped
1000 times with replacement. From the 5000 snapshots a number of subsets were made
nsnapshots = [10, 20, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000].

The simulations were based on an umbrella sampling with M = 52 windows. The en-
ergies from the umbrella sampling were then divided into nbins by the following scalars
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 35, 40] resulting in nbins = [52, 104, 156, 208, 260, 312, 364,
416, 468, 520, 780, 1040, 1560, 1820, 2080]. In total 165 combinations of nbins and nsnapshots

were made. As the main interest is the change in energy from solution to complex (Equa-
tion (1.14)), the minima of the complex GLH were found in the range 0Å to 4Å and a
minimum in solution GL +GH was found in the range 8Å to 13Å (see Figure 1.6 for an
example). For evaluation purposes the smallest value was subtracted from the data set
containing the free energy ∆G to give the relative change in free energy ∆∆G.

Figure 4.1. The change in free energy and standard deviation of phenol and β-CD in inclusion complex.
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Figure 4.1 show the energy and two standard deviations of phenol complexing with β-
CD from 0Å to 13Å as a function of number of snapshots per window and a bin size
of 1 per window. The smallest energy was found with a sample size of 10 snapshots per
window. The energy converges at 1 kcalmol−1 with a sample size of 500. Each of the
standard deviations are the standard deviations of the standard deviations σσ∆∆G found
by FastMBAR.

When applying FastMBAR to a set of data, each data point has to be independent of the
other. After implementing FastMBAR, the resulting free energy is no longer independent
due to how the states λl and λl+1 are handled (Equation (2.14)) (Shirts and Chodera,
2008; Ding et al., 2019a). While the free energies can simply be added to each other, this
is not the case for standard deviations. Instead each σ∆∆G has to be changed into the
variance, added together and then changed back into σσ∆∆G (Lane, 2022).

To test if σ∆∆G were independent of each other Pearson’s correlation value were found for
Equations (4.1) and (4.2). If σ∆∆G are independent of each other σσ∆∆G can be found by
Equation (4.1).

σσ∆∆G =
√

s2σ1
+ s2σ2

, (4.1)

where sσ1 and sσ2 are the variance of the standard deviation σ∆∆G. If, however the σ∆∆G

are not independent Equation (4.2) are used instead.

σσ∆∆G =
√
s2σ1

+ sσ2 + 2p · sσ1 · sσ2 , (4.2)

p is Pearsons correlation value (Lane, 2022). While there were a small discrepancy in
σσ∆∆G at low sample sizes (see the orange circle at Figure 4.1), the two methods cannot
be told apart at sample sizes larger than 250 snapshots. The correlation values were found
to be between 0.09 and 0.21. Equation (4.2) is therefore discarded and Equation (4.1) will
be applied for any further investigations.

At sample sizes of 10, 20 and 100 (orange ellipse), the standard deviations are about the
same as the corresponding free energies, hence the sample sizes are too small and will not
be a part of the further investigation. At sample sizes of 2000 snapshots to 5000 snapshots

the standard deviations ranges from 0.29 kcalmol−1 to 0.19 kcalmol−1.

Although Figure 4.1 shows the relationship between the free binding energy and the
standard deviation as a function of snapshots, it does not consider the bin size. To evaluate
how the bin size and number of snapshots affect the energy and standard deviation, they
were plotted against each other in Figure 4.2.

Figure 4.2 shows two contour plots with the change in free energy and standard deviation
of phenol complexing with β-CD from 0Å to 13Å as function of bins per window (x-axis)
and snapshots per window (y-axis). The white areas show the combination of bin size and
number of snapshots per window where the energy cannot be calculated (Not a Number
(NaN)). For instance at 250 snapshots per window the bin size has to be lower than 15
bins per window, to produce meaningful data. The NaN’s were sorted based on the data
of the PMF’s; if even one NaN was present in the 1000 bootstraps both the data set of the
PMF and standard deviation were discarded.
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The energy scale of Figure 4.2a goes from dark (low energy) to bright (high energy). The
lowest energies are found with a sample size of 250 to 750 snapshots and increasing sizes
(1 to 30 bins per window), while the highest are found with a sample size of 2000, 3000
and 4000 snapshots with a bin size ranging from 6 to 20 bins per window. The energy
seems to stabilise with a sample size bigger than 2000, at least when the number of bins per
window are below 30. When looking at the change in free energy, it will always be tempting
to pick the lowest energy. It is, however, important to take the standard deviation into
consideration (Figure 4.2b). This shows that with a sample size of 250 snapshots yields a
standard deviation which is about a quarter of the corresponding change free energy. A
sample size of 5000 snapshots on the other hand yield the lowest standard deviation at all
bin sizes.

(a) (b)

Figure 4.2. The change in free energy of the inclusion complex between phenol and β-CD and the
corresponding standard deviations of a bootstrap with a total of 165 data points. (a) shows the change
in energy ∆∆G = (G1 −G0) −Gmin from solution to complex. (b) shows the standard deviation of the
∆∆G.

From 2000 snapshots to 5000 snapshots the change in relative free energy is very small
and likewise for the standard deviation. If more samples equals better, then a sample size
of 5000 snapshots would inherently be better than one with 2000 snapshots. While this
is the case, at least when considering the standard deviation, the increase in precision
is negligible (the difference is approximately 0.16 kcalÅ−1). The measured energy is also
about equal with a sample size above 2000.

4.1.1 Partial conclusion

In the above it is shown that the energies and standard deviations converge with a sample
size of more than 750 depending on the bin size. With an increasing bin size it is necessary
to sample more snapshots to get meaningful answers. This makes sense as there should be
a certain amount of data per bin in order to trust the results.

All of the different sample sizes were split into the aforementioned bin sizes. This could
either produce some number or a NaN, depending on the sample size versus bin size. With
a sample size of 10 snapshots, only the bin size of 1 yielded a number. In fact the sample
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size had to consist of 2000 snapshots or more before all the bin sizes (the maximum was 40
bins) yielded a number. With a sample size of 2000 and a bin size of 20 or 40 per window,
there would be an average of 100 or 50 snapshots per bin in each window, respectively.
The general thought is that more data equals higher precision, however the increase in
precision vs. time spent collecting the data also has to be considered. A sample size of
2000 snapshots and a bin size of 20 per window were found be a good compromise between
precision and time spent collecting the data.

4.2 Analysing phenol in inclusion complex with b-CD

The focus of the analysis above was to find sufficient analysis parameters through
data convergence. The following will focus on the direct implications of letting phenol
(Figure 3.1a) forming an inclusion complex with β-CD. For readability, the minimum of
∆G was normalised to zero.

The two PES shown in Figure 4.3 are based on the same data, although the method differs
a bit. The energy of the secondary PES of Figure 4.3a is found by moving R0 = −26Å
to R0 = 0Å whereas the secondary PES of Figure 4.3b is found starting with R0 = 0Å
moving to R0 = −26Å. It is clear that the initial starting point affects where on the PES
the standard deviation appears even though (on visual inspection) it appears to increase
with the same rate. The minima in the free energy of both figures appear at the same R0

as will be covered in the following. The primary part of the PES is produced from the
same data and moves from 0Å to 26Å.

Figure 4.3a shows the free energy of binding between phenol and β-CD in the interval
−26Å to 26Å. Due to computation limits, the analysis was split in two from −26Å to 0Å
and 0Å to 26Å. The arrows along R0 show where the minima were found in the following
ranges: ±[0 : 4],±[8 : 12],±[14 : 24]. The β-CD shape shows how the ligand was pulled in
relation to β-CD.

Moving from R0 = 0Å in the secondary direction first shows a minimum of ∆G =

0kcalmol−1 at about R0 = 2Å after which the energy increases to ∆G = 4.5 kcalmol−1

with a sharp peak (R0 = 7Å). At R0 = 10.5 the next minimum is found ∆G =

2.25 kcalmol−1 and the energy rises slowly again until R0 ≈ 16Å where it falls again
towards R0 = 24Å. In the primary direction there are two sharp minima from R0 =

0Å to −2Å showing the supposedly best binding distances in this direction, although the
binding energy is better in the secondary direction. The slope between the minimum and
peak at R0 = −2Å to − 7Å seems very linear when compared to the primary direction,
which might be caused by the narrow pathway and lesser room for rearrangement of the
ligand inside the cavity of the host. In the range of R0 from −8Å to −12Å there are
several energy minima where one might expect a single larger one. The energy decreases
from there towards R0 = −24Å.

Even though there are obvious differences in the behaviour depending on the primary
and secondary pathway of phenol leaving β-CD, the minima are found to be in the same
regions. This can probably be ascribed to the difference in size of two ends β-CD. The
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(a)

(b)

Figure 4.3. Phenol in inclusion complex with β-CD. The arrows show the different minima found along
R0. (a) ∆G was found from −26Å to 0Å (primary path) and 0Å to 26Å (secondary path) while (b) was
found from 0Å to ± 26Å (both paths). This means that the initial values were different, mainly affecting
the standard deviation but also the free energy path.

behaviour of the standard deviation on the other hand is more difficult to reason for
(Figure 4.3b). As stated earlier, the data was split in two due to computational limits. As
the two data sets are calculated independently of each other, this probably accounts for the
discontinuity of the standard deviation. The energy calculations of the two pathways were
started at 0Å towards −26Å and 0Å towards 26Å for the primary and secondary path,
respectively. The standard deviations in the primary pathway seem to become increasingly
larger, the further from R0 = 0 they move. A possible explanation is that the calculations
of FastMBAR becomes more uncertain as the energy diverges from its origin. On a side
note, it is interesting that the standard deviations of the primary path in both Figures 4.3a
and 4.3b starts to increase after approximately 5Å.

In conclusion, the secondary pathway shows a better binding affinity between phenol and
β-CD (Figure 4.3b). The height of a β-CD is about 8Å, which might explain the following
minima in free energy, at least in the secondary pathway (Davis and Brewster, 2004). If
the benzene ring interacts with the relative open cavity of β-CD and the alcohol interacts
with the water, it can explain the minima. It might also because the alcohol of the phenol
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interacts with one of the secondary alcohols while the benzene ring of the phenol interacts
with the cavity. The standard deviation also seem to decrease in the region of the different
minima, suggesting that the complex becomes more stable. The corresponding minima
of the primary path are not as distinct, which might be ascribed to the primary end
of β-CD being more narrow than the secondary. This might decrease the possibilities for
interactions between the benzene ring and the cavity of the β-CD. The standard deviations
slowly increase with the distance from R0 = 0 in the primary pathway.

After 25Å in either direction there is a drop and peak in the energy which seem out of
order with the rest of the data (Figure 4.3b). This is thought to be an artefact caused by
the boundary conditions being overstepped; the simulation run for 26Å in either direction.
As the box size is 50Å on all sides and has periodic boundaries the simulation will able to
"feel" itself when half of the box size is overstepped. For this reason the boundary will be
set to be ±25Å in the following analyses.

4.2.1 Benzene and β-CD

Figure 4.4. Benzene

The only difference between the two molecules, benzene (Figure 3.1b) and phenol, is that
in phenol one hydrogen is replaced by an alcohol group. This makes benzene less soluble in
water compared to phenol and it would make benzene more energetically favoured inside
the cavity rather than outside. Figure 4.4 shows the free energy between benzene and
β-cyclodextrin. While the PES is similar to the one of phenol and β-CD, there is a slight
disconnect in the free energy at R0 = 0 between the primary and secondary path. This
is probably an artefact owing to the fact that the primary and secondary path are two
different data sets.

The first half of the slope in the secondary direction from R0 ≈ 2Å has quite a
steep increase and lessens at R0 ≈ 4Å. This might owe to the height of β-CD
(4Å on each side of R0 = 0), as the benzene get more room to wiggle and find a less
strained placement. The following peak at R0 ≈ 7Å is relative sharp at the left side, while
smooth at the right side. There is a clear minimum at R0 ≈ 10Å after which the free energy
is relatively stable until R0 ≈ 20Å where it drops towards R0 = 24Å. The free energy
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of the primary path is lower than the secondary path although the minima are located in
the same regions (the first minimum at both paths are almost indistinguishable). The free
energy has approximately the same drop after the first peak (R0 ≈ 5.5Å). The primary
path towards the first peak seem more linear (much like phenol), than its corresponding
slope at the secondary path, probably owing to the lack of room. It is interesting to note
that the standard deviation is higher for the primary path than the secondary. So while
the more energetically favourable path is the primary, the higher standard deviation of the
free energy indicate that it is more unstable. The lower free energy in the primary pathway
might be ascribed to the less exposed cavity of the β-CD, reducing the interactions between
the guest and host, thereby lowering the pull from the non-polar inside of β-CD.

Table 4.1. The free binding energy between host and ligand found in the literature and at the primary
and secondary paths. All ∆G have the unit kcalmol−1. The free energies of ∆Gprimary and ∆Gsecondary are
found by Equation (1.14) All ∆G have the unit kcalmol−1. aLewis and Hansen (1973), bGómez-Orellana
and Hallén (1993).

Ligand pH ∆Gliterature ∆Gprimary ∆Gsecondary

Phenol 7 −4.6± 1.4a −2.08± 1.56 −2.55± 1.01
Benzene 7 −2.77± 0.19b −2.42± 1.25 −3.68± 1.11

Table 4.1 shows ∆G found in the literature and the primary and secondary path of phenol
and benzene. The free energy between β-CD and benzene shows good compliance with
the literature in the primary direction, while the secondary free energy is within the scope
if the standard deviations are taken in to consideration. The free binding energies of
phenol are off by about a third. The found binding energies of benzene are lower than
those of phenol, in contrast to what is found by the literature (Lewis and Hansen, 1973;
Gómez-Orellana and Hallén, 1993).

4.3 Simulating aspirin and β-CD in inclusion complex

Aspirin has previously been shown to form a good inclusion complex with β-CD both
experimentally and through MD simulations (Fukahori et al., 2006; You et al., 2019).
There are some differences in the approach developed by You et al. (2019) and this project
which will be covered first. Second the results will be evaluated and compared with the
previous findings.

4.3.1 Comparing parameters

You et al. (2019) chose three specific conformations of β-CD, previously shown to have a
high population i simulations. In opposition, this project let both the β-CD and ligand
change their confirmations freely. The only external force applied (in both works) was
Equation (1.23). It is important to note that the only purpose of Equation (1.23) was to
keep a certain distance between the ligand and the host, and not steer the molecules along
a path. Accordingly, both the host and ligand were free to move about in relation to each
other.
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In the current method, the distance per window was set to 0.25Å in opposition to 0.1Å.
With a total distance of 26Å in each approach, this gave 104 windows and 260 window in
total, respectively. While You et al. (2019) did not report how many snapshots they
sampled, the initial resolution was higher than the one used here. A reason for the
difference between the free binding energies in this project and You et al. (2019) might be
the number of bins per window. For each window You et al. (2019) divided their data into
two bins of 0.05Å, whereas the current project divided the data into 20 bins per window
of 0.0125Å with an average of 100 snapshots per bin. Although not reported here, it was
observed that a simulation with a larger distance per window resulted in a PES with a
similar shape but ultimately further off the experimentally found free binding energies.

If the method, described in this project, is to be applied for further research, it might be
prudent to investigate how a decreasing distance between each window with a set number
of snapshots and an increasing number of bins per windows correlates. The aim of this
investigation should be to optimise the wall-time used on simulations as the equilibration
and production runs are by far the more expensive/time-consuming part of the analysis.

4.3.2 Inclusion complex between aspirin and β-CD

Figure 4.5 shows the free energy of the inclusion complex between aspirin and β-CD
together with the three PMF’s of You et al. (2019): Conf 1, Conf 2, and Conf 3. The
graphs show much of the same features as phenol and benzene (Figures 4.3b and 4.4)
so here the main focus will be on similarities and differences between the two data sets.
Please note that the carboxylic acid group of aspirin in this project was not deprotonated
and the pH of the water was 7. You et al. (2019) did not report a specific pH, although
they did compare their results with data from Fukahori et al. (2006), whom reported a pH
of 1.75 (Table 4.2).

Figure 4.5. Plot showing the free energy between β-CD and aspirin. The red, green and blue graphs
are taken from You et al. (2019) and show their results of US-sampling with aspirin and β-CD. The β-CD
shape shows the direction of the ligand’s placement at the start.

While there are some differences between the PES of aspirin and Conf 1, Conf 2, and Conf
3, the minima and peaks are positioned in the same ranges of R0 (Figure 4.5). The lowest
absolute free energy is found at the primary direction of β-CD, while the highest energy
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barrier is found in the secondary direction (Table 4.2). The opposite is observed for the
data of You et al. (2019).

Table 4.2. The free binding energy between host and ligand found in the literature and at the primary
and secondary paths. All ∆G have the unit kcalmol−1. *=calculated from Ka and the relationship
Keq = Ka

Kd
and Equation (1.17). **=Assumed, as nothing else was reported. aFukahori et al. (2006), bYou

et al. (2019) in silico.

Ligand pH ∆Gliterature ∆Gprimary ∆Gsecondary

Aspirin 1.75 −3.74± 0.41a* / /
Aspirin 6 −2.33a* / /
Aspirin 7 / −4.18± 1.09 −5.12± 1.36

pH ∆GConf 1 ∆GConf 2 ∆GConf 3

Aspirin 7** −2.8b −2.7b −1.8b

Figure 4.6 shows the inclusion complex between β-CD and aspirin at different R0

corresponding to the different minima for the primary pathway (Figure 4.5). At R0 = −24

there seem to be no interaction between the two molecules. This, however, increases as
the distance becomes smaller.

(a) (b)

(c) (d)

Figure 4.6. Snapshots of the inclusion complex between aspirin and β-CD at (a) R0 = −24, (b)
R0 = −10, (c) R0 = −5, and (d) R0 = −2. The red and white bonds represent oxygen and hydrogen.
The green and brown bonds represent the carbon bonds in the host and ligand, respectively.
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Please note how the shape of the β-CD seem less distorted as R0 is decreased. At
R0 = −24Å and R0 = −10Å (Figures 4.6a and 4.6b) there is at least one glucose ring
which is turned around. Although difficult to see, the glucose rings become more evenly
distributed at R0 = −5Å and at R0 = −2Å the cone-like shape which is expected of a
β-CD in complex, is visible. The decrease in distortion as a function of a smaller distance,
is substantiated the fact that this is where the global minimum was found and with the
expectation of a more stable β-CD when is forms an inclusion complex with a ligand in
water (Larsen et al., 2005; Sabadini et al., 2006).

4.4 Comparison of similar compounds

Figure 4.7 shows the free binding energy between toluene, chlorobenzene, and
1,3–dichlorobenzene and β-cyclodextrin. The three compounds show similar behaviour
along the secondary pathway whereas the primary pathway is more differentiated. Toluene
has the lowest free binding of the three compounds shown here. As toluene is highly
alphatic this in unexpected, especially because the free energy barrier is relatively high,
even higher than that of benzene (Figure 4.4). This suggests that β-CD has a relative
short reach in relation to toluene. Chlorobenzene and 1,3–dichlorobenzene each have a
PES which are somewhere in between those of the inclusion complexes between β-CD and
phenol, β-CD and benzene (Figures 4.3b and 4.4), as well as β-CD and aspirin (Figure 4.5).

Figure 4.7. Toluene, chlorobenzene and 1,3-dichlorobenzene in complex with β-CD. The arrows
correspond to the different energy minima found. Note: No second minima could be found for toluene in
the primary pathway (no arrow).

According to Table 4.3 toluene, chlorobenzene, and 1,3–dichlorobenzene have the best
binding affinity in the secondary direction of β-CD. Toluene has by far the highest free
binding energy in the primary direction. Even so, in order to reach the solution, it needs
to overcome an energy barrier equal to those of chlorobenzene and 1,3–dichlorobenzene
at R0 ≈ −7Å. From this perspective it seems unlikely that toluene will make an inclusion
complex with β-CD at the primary direction, whereas it seems more likely to happen with
the two other compounds.
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Table 4.3. The free binding energy between host and ligand found in the literature and at the primary
and secondary paths. All ∆G have the unit kcalmol−1. *=calculated from Ka and the relationship
Keq = Ka

Kd
and Equation (1.17). aSanemasa and Akamine (1987), bTakuma et al. (1990).

Ligand pH ∆Gliterature ∆Gprimary ∆Gsecondary

Toluene 7 −2.93± 1.36a* −1.52± 1.5 −3.47± 1.46
Chlorobenzene 7 −3.01± 1.36b* −3.13± 1.83 −3.44± 1.74
1,3-dichlorobenzene 7 / −4.11± 1.2 −4.18± 1.67

4.5 A critical perspective

The method in this project did not control how the host and ligand faced each other.
This means that both molecules had the possibility of rotating around their own axes as
they were pushed by the water molecules and their inter acting forces. As all ligands were
relatively small, their free rotation would probably not influence the free energy much on
its own. However, by analysing the free energies it was shown that the direction of the
β-CD in relation to the ligand did matter in this regard. The distance was only measured
from CoM to CoM of the two molecules without regard to the intended direction of the
β-CD.
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Conclusion 5
It has been shown that it is possible to use OpenMM and OpenFF to simulate inclusion
complexes between a ligand and host, in this case β-CD. The relative new force field Sage
(openff-2.0.0.offxml) was used to parameterise the ligands through direct chemical
perception, while the parameters for β-CD were taken from GLYCAM06. Through
umbrella sampling, a set of simulations were carried out ranging from −26Å to 26Å
with an increment of 0.25Å where free energy of the inclusion complexes were found.
For each window in the umbrella sampling, the distance between the ligand and β-Cd
were controlled by an external biasing energy potential. In each snapshot, the distance
was measured and analysed by FastMBAR. The resulting potential energy surface showed
good compliance with other simulation works from the literature, even though the free
energies were a bit higher. This might be explained by the larger distance increment
used in this project and at the same time a smaller number of initial windows in the
umbrella sampling. The described simulation method applying the biasing potential on
inclusion complexes between β-CD and each of the following ligands: benzene, toluene and
chlorobenzene showed good correpondance with results from laboratory experiments with
similar parameters.
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