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0.1 Abstract

The volatility of financial assets is one of the most well researched and important variables in
finance. Being used in everything from portfolio optimization, to option pricing and further risk
management, volatility is used throughout all of finance. Volatility is somewhat predictable, but
we are not able to observe the level of volatility of a return process. Thus, volatility must be
estimated. The most common ways of doing this is using either historical returns or implied
volatilities from option pricing. With the increased availability of high-frequency data a new and
perhaps better way of estimating volatility has been developed, the realized volatility. The goal
of this thesis is to forecast this realized volatility on four cryptocurrencies, using econometric
HAR models and deep learning models. Two deep learning models are developed, one simple
feed-forward neural network and another neural network utilizing dilated causal convolutions,
inspired by Google Deep Mind’s WaveNet architecture. The main objective is to compare the
three models to understand the forecasting capabilities of deep learning in a realized volatility
setting.

The results show that the econometric HAR models perform best on the mean squared error
criterion and the simple feed-forward neural network performs best on the QLIKE criterion. This
may be indicative of the HAR models being better able to model the extreme levels of volatilities
observed and the day-to-day fluctuations. On the other hand, the deep learning models seem
better at modeling the inherent base volatility and general movements of the volatility over longer
time periods.

The results may be used as a guidance in model selection or the models may be used in an
ensemble fashion, creating more balanced forecasts. Further, the results call for further research
analyzing the differences in forecasting capabilities of the two model types.
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Chapter 1 Introduction

1.1 The Electronic Currency Bitcoin

Since the mythical author Satoshi Nakamoto published the whitepaper on Bitcoin "Bitcoin:
A Peer-to-Peer Electronic Cash System" in 2008, blockchain technologies and cryptocurrencies
have become everyday names and subject of much research. The original intend for Bitcoin was
to be "A pure peer-to-peer version of electronic cash" (Nakamoto, 2008, p. 1). The goal of
this electronic cash is to allow "...online payments to be sent directly from one party to another
without going to a financial institution" (Nakamoto, 2008, p. 1). Bitcoin, was thus invented as
an alternative to cash and other currencies, as a digital and secure medium to make transactions
with. Following Bitcoin a whole host of other cryptocurrencies have been developed, with similar
characteristics to Bitcoin.

To be viewed as a currency, a cryptocurrency must satisfy the following characteristics. Bit-
coin must be a medium of exchange, which by the fact that it enables peer-to-peer transactions,
may be deemed satisfied. It must function as a unit of account, thus, one must be able to
use bitcoin as a measure of relative worth of economic transactions (Mankiw, 2009, p. 80-81).
Lastly, it must function as a store of value, and therefore, must be able to transfer the purchas-
ing power from the present to the future (Mankiw, 2009, p. 80-81). For Bitcoin the first of the
characteristics, being a medium of exchange, seems to be satisfied, particularly because more
businesses have begun accepting Bitcoin as a payment (Yermack, 2015, p. 36-38). To function
as a store of value, a currency must be able to be securely stored and maintain a relatively stable
value in the periods between use. Ordinarily, the ability of a currency of being securely stored is
maintained by a bank. Storing cryptocurrencies is done through digital wallets, and the ability
of being securely stored is facilitated by insuring the digital wallet, often done by the digital
wallet companies. The major concern for cryptocurrencies in terms of being considered a viable
currency is its fluctuations in value. The characteristics of being a store of value and a unit of
value, is reliant on a somewhat stable value of the currency. Bitcoin shows extreme volatility
compared with other currencies, and its market value can vary greatly within a short period
of time (Yermack, 2015, p. 38-43). This challenges Bitcoin, and other cryptocurrencies, as a
currency, but enables Bitcoin to be seen and used as a speculative investment. It is this extreme
volatility that makes cryptocurrencies an interesting set of asset to consider in this thesis.
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1.2 Volatility in the Financial Markets

Volatility can, in layman terms, be described as the size of the fluctuations or dispersion of an
asset over a given period of time. It is one of the central measures of interest in finance. Volatility
is used extensively in risk management, asset allocation, derivatives pricing, hedging and many
more financial subjects (Engle & Patton, 2000, p. 237). One of the primary goals of volatility
modeling is to predict the future volatility. Being able to accurately predict future volatility,
one may better price various financial assets, select portfolios, and manage risks. Volatility is
therefore a subject of great interest for financial applications.

Being a subject of much research and application, volatility is well researched. It is, however,
not possible to directly observe volatility (Tsay, 2005, p. 98). Thus, volatility must be estimated
by the practitioner or researcher, before being modeled or used. The most common ways to
estimate volatility is by using the standard deviation of historic returns or estimating the implied
volatilty as given by options pricing theory (Tsay, 2005, p. 98) (Hull, 2015, p. 325). A third
approach, that has been increasing in its use, for estimating volatility is by using the realized
volatility Andersen et al. (2001). Estimating realized volatility however, requires access to high-
frequency intraday data, as it is computed as the square root of the sum of squared returns
Andersen et al. (2001). Realized volatility is thus the quadratic variation of the intraday returns
of an asset (Tsay, 2005, p. 141). Furthermore, estimating volatility by using realized volatility
imposes another challenge in ordinary assets. As trading does not happen continuously, all year
around, the volatility of an asset may be split into intraday volatility and overnight volatility
(Tsay, 2005, p. 141). The choice of cryptocurrencies as the assets of interest in this thesis,
is further motivated by the fact that cryptocurrencies trade continuously all year round and
thus, there are no overnight volatility. Using realized volatility as a non-parametric estimate of
volatility have been empirically shown to provide better forecasts than those of GARCH-type
and stochastic volatility models (Andersen et al., 2003, p. 618-621). Thus, studying the realized
volatility in a highly volatile asset is deemed of great relevance to the financial subject.

In modeling and forecasting realized volatility the de facto standard models are based on
the Heterogeneous Autoregressive (HAR) model introduced by Corsi (2008). The HAR-RV
model proposed by Corsi models the realized volatility as a linear function of the lagged realized
volatility using the same aggregation period, in most cases a day. Furthermore, the model
includes weekly and monthly aggregated realized volatilities (Corsi, 2008, p. 176-178). Later
studies in the modeling of realized volatility have mainly been grounded in the HAR-RV model,
while attempting to incorporate non-linearities, leverage effects, jumps etc. (Qiu et al., 2019, p.
56). The HAR-RV model and its variants have shown great forecasting performance, but the
modeling of highly non-linear relationships is challenged by the fact that they are often modeled
using linear regression. With the advance of machine learning techniques, and especially deep
learning techniques, the modeling accuracy of non-linear relationships is often increased by using
such techniques (Christensen et al., 2021, p. 1-2)
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1.3 Machine Learning

This thesis will focus on the application of neural networks or deep learning to the subject of
forecasting realized volatility. Deep learning as a subject and technique have existed for many
decades. First being introduced in the 1940s as a method of computationally representing the
learning that happens in the brain, therefore, the name neural networks (Goodfellow et al.,
2016, p. 13-19). The use of deep learning techniques were minor until 2006 when deep learning
displayed remarkable results in the recognition of handwritten digits. Since then, the use of deep
learning have exploded and is now powering many of todays technologies (LeCun et al., 2015,
p. 436-439). Deep learning as a method is very flexible and offers several ways of dealing with
highly non-linear relationships. It is this ability to handle non-linear relationships that motivates
the study of deep learning as applied to forecasting realized volatility.

1.4 Research Question

How can neural networks enhance the capability of HAR-style models in forecasting the realized
volatility of cryptocurrencies?

1.5 Thesis Structure

The thesis will be structured as follows. Chapter 2 will contain an examination of the theory
underlying volatility forecasting, cryptocurrency trading and deep learning. The time series
used will be presented in chapter 3 with an examination of their structure and characteristics.
Chapter 4 will introduce the models used in the project, the training and testing methodology,
as well as the evaluation criterions used. Chapter 5 will present the results of the analysis,
with a comparison between the econometric models as baselines and the neural network. The
discussion, chapter 6, will be revolving around the applicability of neural networks for volatility
forecasting and especially the ability of making inference on neural networks. Chapter 7 will
conclude the project
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Chapter 2 Theory

This chapter will lay the foundation for the forecasting study to be done in this thesis. 2.1
introduces the subject of volatility, describes the stylistic facts of it and how it relates to market
microstructure. 2.2 briefly examines Bitcoin and its characteristics as a speculative investment.
Lastly, 2.3 gives a summary of the history of neural networks and the developments over the past
years, the internal techniques driving the learning in neural networks, and how neural networks
are used in time series forecasting.

2.1 The Volatility of Financial Assets

The return of an asset can be computed over a chosen period of time given the prices at each
time step. If we denote the price of an asset at time t as Pt we can compute the return of the
asset between t− 1 and t as:

Rt =
Pt

Pt−1
− 1 (2.1)

This return is often referred to as the simple return (Campbell et al., 2012, p. 9-10). In
econometric settings we are most often interested in the continuously compounded return, also
referred to as the log return, given as:

rt ≡ log (1 +Rt) = log
Pt

Pt−1
= pt − pt−1 (2.2)

Here pt and pt−1 denotes the log-transformed prices at time t and t−1, respectively (Campbell
et al., 2012, p. 11). It is the volatility of these log returns that are of interest in the current
work.

One of the central theories in finance is the Efficient Market Hypothesis. The Efficient
Market Hypothesis exist in several forms, weak, semi-strong, and strong, but can generally be
summarized by the following quote:

A market is efficient with respect to information set θt if it is impossible to make
economic profits by trading on the basis of information set θt.
Some Anomalous Evidence Regarding Market Efficiency (Jensen, 1978, p. 96).

The three variants of the Efficient Market Hypothesis differs in what is included in the
information set θt. In effect the Efficient Market Hypothesis, if valid, states that given the
information set θt it is impossible to create a trading strategy that confidently generates a profit.
Seen from a forecasting perspective, the consequence of the Efficient Market Hypothesis is that

8



Chapter 2. Theory Chapter 2. Theory

we are not able to forecast asset returns, as this would allow us to create a profitable trading
strategy. The information set in the three variants of the Efficient Market Hypothesis can be
summarized as follows; the information set in the weak form hypothesis contains only present and
past asset prices, that in the semi-strong form contains also all publicly available information,
and the strong form variant is concerned with all information available, both private and public
(Timmermann & Granger, 2004, p. 17). As we are approaching the forecasting of volatility using
only past and present asset prices, all forms of the Efficient Market Hypothesis are relevant for
the analysis. It has been shown numerous times that, while the strong form version is unlikely
to hold, the weak form and in part the semi-strong form of the Efficient Market Hypothesis tend
to hold (Fama, 1970, 413-416). The results of the efficient market hypothesis is important to
this study, as it implies that we are not able to completely forecast the returns of the asset in
question. Rather, we are trying to forecast the volatility of said asset returns and studies have
shown that the volatility of asset returns are partially predictable (Timmermann & Granger,
2004, p. 25). The partial predictability of asset return volatility stems, in part, from the fact
that, although volatility is unobservable, we are able to extract some stylistic facts about the
asset return volatility (Poon & Granger, 2003, p. 481). These stylistic facts of volatility will be
introduced in Section 2.1.2.

2.1.1 Realized Volatility

The estimation of the unobservable volatility of financial assets is usually done using either
conditional return variance, implied volatility or a realized measure. Probably the most used
estimator for volatility is based on the historic returns of an asset. This estimation, however, is
not an unbiased estimator of volatility, and is conditionally biased based on the data used for
estimation, i.e. the return history. Implied volatility is based on option pricing models, where
given observed derivatives prices, one can solve the option pricing models resulting in the implied
volatility (Andersen, n.d., p. 1-2) As the implied volatility is estimated using a specific option
pricing model, this volatility estimate is model dependent, which in turn means that it is a biased
estimator of volatility. The availability of high-frequency price data has made realized measures
of volatility more feasible. Realized volatility is the realization of the return variation of a given
asset over a given time horizon (Andersen, n.d., p. 1-7). As stated in the research statement, this
thesis revolves around forecasting the realized volatility of cryptocurrencies. Thus, this section
will introduce the theory behind realized volatility.

To describe the realized volatility we consider the continuously compounded log-price process
dst in given as the stochastic differential equation:

ds(t) = µ(t)dt+ σ(t)dW (t) (2.3)

where µ(t) is the instantaneous drift and σ(t) the instantaneous volatility of the log-price
process (Andersen, n.d., p. 3-5). dWt is a continuous-time Brownian motion, also referred to as
a Wiener process, with the following properties given in (Campbell et al., 2012, p. 346-349):

E[dW (t)] = 0 (2.4)
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V ar[dW (t)] = dt (2.5)

The above properties, along with the rules of stochastic differential equations, yield the
following

(ds(t))2 = (µdt+ σdW (t))2 = σ2dt (2.6)

which shows that the squared instantaneous log-price process is given by the differencing
interval dt and the squared instantaneous volatility σ2

t (Campbell et al., 2012, p.346-349). The
primary concern of this thesis is the day-ahead forecasting of daily volatility, thus, the variable
of interest is the daily volatility of the returns, not the instantaneous volatility. The return over
a given period from t− h until t is given by

r(t, h) = s(t)− s(t− h) =

∫ t

t−h
µ(τ) dτ +

∫ t

t−h
σ(τ) dW (τ) (2.7)

Thus, the return of an asset over a period from t− h to t is given by the finite integral from
t−h to t of the conditional instantaneous drift and volatility of the log-price process (Andersen,
n.d., p. 5). The quadratic variation of the return from t− h to t is then given by

QV (t, h) =

∫ t

t−h
σ2(τ)dτ (2.8)

The quadratic variation is especially interesting to our studies, as it is equal to the conditional
variance, only diverging by an error with zero mean. While the conditional variance is not
observable, as stated in Section 2.1, the quadratic variance is observable with the access to high-
frequency returns (Andersen et al., 2001, p. 44). In the diffusive process under consideration the
quadratic variance and conincides with the integrated volatility

IV (t, h) =

∫ t

t−h
σ2(τ)dτ (2.9)

which is the variation of the process between t−h and t (Andersen, n.d., p. 5). The integrated
volatility, given as RV (t, h) = σ(t, h) =

√
IV (t, h), over one day is the variable this thesis is

concerned with. Trading, however, does not happen in continuous time, and we are thus forced
to use an approximation of the integrated volatility. The integrated volatility has been shown to
be approximated by the square root of sum of squared returns over the given period:

RV (t, h) =

√√√√M−1∑
j=0

r2t−j∆ (2.10)

where M is the number of observations in over the time period, and ∆ the length of each
observation (Corsi, 2005, p. 8). This approximation has been shown to theoretically achieve
arbitrary accuracy when M → ∞ and thus the length of each observation tends to zero ∆ → 0

(Andersen et al., 2001, p. 44).
In the real markets, however, the increase in sampling frequency does have its limits. The

trading that happens on in the markets are limited by the institutional structures that they hap-
pen within. Prices are not real valued, that is they are often given to a specified precision, trading
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does not happen continuously or even at evenly spaced intervals, and market makers impose the
bid-ask spreads on the assets traded (Campbell et al., 2012, p. 84). These factors, referred to as
market microstructures, impose a challenge to precisely approximating the integrated volatility
by use of realized volatility. The choice of sampling frequency thus comes down to minimizing
the noise imposed by market microstructures and minimizing the sampling frequency (Andersen
et al., 2001, p. 48). Andersen et al. (2001) proposed a sampling frequency of five minutes, to
minimize both of the above challenges. When used realized volatility is used as a benchmark,
as is true in this thesis, the 5-min sampling frequency is found to be fairly efficient, not being
outperformed in many situations (Liu et al., 2015, p. 309-310).

The above variance measures and approximations hold for an ordinary continuous-tim diffu-
sion process. This requires the assumption that the log-price must follow a continuous sample
path process. But, this process is often violated in practice, due to the presence of jump com-
ponents in the log-price process (Andersen et al., 2007, p. 701-702). To include these jumps we
assume that the log-price process follows a continuous-time jump diffusion process

ds(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t) (2.11)

where µ(t) is again the instantaneous drift, σ(t) the instantaneous stochastic volatility process
and W (t) a Wiener process. The last term κ(t)dq(t) is the jump component, where κ(t) is the size
of the corresponding discrete jumps and q(t) is a counting process with time-varying intensity
(Andersen et al., 2007, p. 702). As the jump component is a discrete process, the quadratic
variation for the cumulative return in the period from t− h to t is now

QV (t, h) =

∫ t

t−h
σ2(τ)dτ +

∑
t−h<τ≤t

κ2(τ) (2.12)

Thus, the quadratic variation of the cumulative return process is given by the integrated
variance of the original diffusive process and the sum of jumps over the period (Andersen et
al., 2007, p. 702). The presence of a jump component in the quadratic variance in turn means
that the realized variance estimate must include both the variation occurring from the diffusive
process and the jump process. This does not change the estimation method, which is still based
on the sum of squared returns, but it changes the modeling and forecasting of this estimate. The
modeling and forecasting methods will be further developed in Chapter 2, the methodology.

We have shown in this section that using the realized variance we can obtain good estimates
of the quadratic variation of a continuous-time diffusive process and a mixed jump diffusion
model, increasing the goodness of the estimate by increasing the sampling frequency. Market
microstructure noise does however impose some challenges to the increasing sampling frequency,
and thus to minimize both the sampling frequency and the noise from market microstructures, we
choose a sampling frequency of five minutes. Using realized volatility as our volatility estimate
is both motivated by the availability of high-frequnccy returns and the applicability of realized
volatility in out-of-sample forecasting. Here realized volatility has been shown to outperform
GARCH models and stochastic volatility mdoels (Andersen et al., 2007, p. 701). The next
section will explain the characteristics of the volatility of financial assets, which guides the model
selection in the thesis.
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2.1.2 Stylistic Facts of Volatility

The volatility of a financial asset is not directly observable, although we have rather effective
approximations of it. The volatility of a return process, does however show some well-established
characteristics, which may guide us in estimation evaluation, model selection and forecasting
(Poon & Granger, 2003, p. 481-482). This section will introduce the characteristics, also known
as stylized facts, of the volatility of asset prices.

Volatility describes the variation of asset prices over a given time interval. Due to the behavior
of investors, underlying structures, market sentiment etc. we expect that the volatility of an asset
may be higher in some periods a lower in others. This effect, known as persistence or volatility
clustering, has been shown empirically to hold for the volatility of asset prices (Engle & Patton,
2000, p. 239). Essentially, volatility clustering is the phenomenon where small changes in price
are expected to be followed by small changes in price, and large changes in price be followed by
large changes in price. Thus, the magnitude of the volatility is expected to be highly correlated
to the previous values of the volatility.

The magnitude is however not expected to remain at the same level indefinitely. This is due
to the stylistic fact that volatility is mean reverting. This means that even though high volatility
is expected to be followed by high volatility, and low levels with low volatility, we may expect
that the volatility of a financial asset reverts to some normal level (Engle & Patton, 2000, p.239).
Thus, in the long term, volatility is expected to fluctuate around some arbitrary average value,
with periods of high volatility and periods of low volatility.

The fluctuations around the long-term mean of the volatility process, is however not expected
to follow a Gaussian distribution. Instead, extreme values in volatility tends to be much more
likely, than in the case of a Gaussian distribution (Engle & Patton, 2000, p. 240). Furthermore,
the sign of the returns of the asset prices carry a great weight in the volatility process. High
negative returns are expected to cause greater increases in volatility than high positive returns.
This can be explained by investors seeing increased debt-to-equaty ratios (Engle & Patton, 2000,
p. 239). Thus, the risk of investors are even further increased in the presence of negative returns
than in the presence of positive returns, even though they might imply the same rise to volatility
in the outset.

Lastly, the publication of a company’s annual reports or publication of macroeconomic an-
nouncements may entail greater volatility (Engle & Patton, 2000, p. 240). These are effects of
exogenous variables on the volatility of a financial asset. The exogenous variables themselves
might not convey information that should raise the volatility, but the mere expectation about
what the outcomes of these exogenous variables will increase volatility.

The above stylistic facts about volatility show us, that, even though we cannot observe volatil-
ity directly, some characteristics are exposed when the process is analyzed. In general volatility
is expected to revert to some long-term average, with fluctuations governed by clustering. These
fluctuations are influenced by both exogenous variables and the realizations of the return pro-
cess itself. And, lastly, the volatility process is expected to show more cases of extreme levels
than what would be expected if they were distributed as a Gaussian distribution. These stylistic
facts of volatility hold true for any financial asset. We are however especially interested in the
volatility process of cryptocurrencies, and hence the next section will be devoted to examining
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cryptocurrencies as financial assets and their characteristics.

2.2 Cryptocurrencies as a Financial Asset

Cryptocurrencies were, as explained in the introduction, invented as a means of transaction,
a decentralized digital currency, challenging the ordinary fiat currencies (Kristoufek, 2015, p.
1). With the potential to facilitate digital payments to happen without the need for a financial
institution, cryptocurrencies were promising alternative currencies, for a more efficient financial
system (Nakamoto, 2008, p. 1). The status as a currency though, has been challenged by many.
This section, will not be focused on whether cryptocurrencies can be seen as a currency, but
rather how these cryptocurrencies behave. Understanding this behavior will yield a foundation
for model selection and evaluation in the analysis to come.

In financial research and practice assets are usually classified as belonging to some category
of assets, such as commodities, equity, currencies etc. The category a certain asset belongs
to usually gives indications about the driving forces and behavior of the price of said asset.
Cryptocurrencies are hard to classify though (Aalborg et al., 2019, p. 255-256). Some studies
argue that cryptocurrencies behave similarly to gold, a commodity, but also the US dollar, a
currency (Kristoufek, 2015, p. 12). Yet others show that cryptocurrencies does not behave like
any traditional asset group, but should rather be seen primarily as a speculative investment Baur
et al. (2018). Thus, we cannot rely on the characteristics of traditional asset classes to describe
the behavior and drivers of cryptocurrencies. But, cryptocurrencies have been shown to behave
in certain ways, giving way for their own stylized facts Zhang et al. (2018).

When modeled with a GARCH(1, 1) model, cryptocurrencies exhibit significantly positive
coefficients α and β. This indicates that the price processes of cryptocurrencies possess strong
volatility clustering (Zhang et al., 2018, p. 5957). The presence is further backed by modeling
volatility using variants of the GARCH model, all identifying volatility clustering (Takaishi, 2018,
p. 516). Modeling with the GJR-GARCH further facil

Cryptocurrencies are found to display strong volatility clustering, while research find varying
degrees of leverage, some being positive and others negative (Zhang et al., 2018, p. 5955-5957). A
study focusing on the leverage effect of the 20 largest cryptocurrencies, by market capitalization,
actually found negative leverage effects. That is, positive return shocks influence the volatility
more than negative returns Baur & Dimpfl (2018). The authors argue that the negative leverage
effects "... can be explaiend with uninformed investors’ herding, buying due to the fear of missing
out on rising cryptocurrency valuation and pump and dump schemes" (Baur & Dimpfl, 2018,
p. 151). Thus, further backing the claim that cryptocurrencies should be seen as a speculative
investment. Furthermore, cryptocurrency return series show heavy tails, thus, experiencing
extreme outcomes more frequently than would be the case in a Gaussian process. The absolute
returns are also heavily autocorrelated, while the long-range dependence of cryptocurrencies
vary between the individual cryptocurrencies. It is further shown, that the volume and price of
cryptocurrencies are shown to be power-law cross-correlated, underpinning the investor herding
and fear of missing out explaining the negative leverage effects Zhang et al. (2018). Lastly, Bitcoin
daily returns have been found to exhibit a varying mean volatility along with discontinuous

13



Chapter 2. Theory Chapter 2. Theory

return jumps (Chaim & Laurini, 2018, p. 162-163). Thus, when modeling the volatility of
cryptocurrency returns, one must account for the presence of discontinuous return jumps.

Thus, cryptocurrencies show many of the stylized facts about volatility described in Section
2.1.2. Interestingly however, cryptocurrencies tend to see negative leverage effects, that might
be explained by investor herding and pump and dump schemes. Furthermore, Bitcoin return
series displays discontinuous jumps, why it is deemed important to consider this in the modeling
of realized volatility.

2.3 Deep Learning

This section will introduce the central concepts of deep learning, the frequently used models for
time series regression and the foundation of the architecture used in this thesis.

2.3.1 Neural Network Architecture

The basic building block of a neural network is the neuron. A single neuron takes a set of inputs
X and returns a single output y. The neuron processes the information based on the weights
and biases of the neuron, as well as the activation function. Formally, a neuron can be described
as follows

y = h

(
I∑

i=1

wixi + w0

)
(2.13)

where I denotes the number of inputs and h(·) denotes the activation function (MacKay,
2003, p. 471). A simple feed-forward neural network achieves the ability of modeling non-linear
relationships through the activation function. The most used activation function today is the
rectified linear unit (ReLU):

ReLU(x) =

0 x ≤ 0

x x > 0
(2.14)

A single neuron does not make a network, and thus to achieve the network-like structure
multiple neurons are connected to form a neural network. The architecture of a neural network
consists of several layers; the input layer, the output layer, and either a single or multiple hidden
layers. Each hidden layer is made from a stack of neurons, where the number of neurons in
each layer, denotes the width of the layer. The number of hidden layers in a neural network
specifies the depth of the network (Goodfellow et al., 2016, p. 168-171) In a simple feed-forward
neural network each neuron takes all the outputs of the previous layer, transforms it according
to Equation 2.3 and returns a scalar (Bishop, 2006, p. 227-231). A single layer in the neural
network can then be described as a set of M neurons

yj = h

(
I∑

i=1

wjixi + bj

)
(2.15)
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where j = 1, 2, ...,M and b is the bias of each neuron. A typical neural network contains
more than one hidden layer, and is often described as a set of composable transformations. Thus,
if we have a neural network with two hidden layers it can be described by the function

yk = h

(
I∑

i=1

b
(2)
k + w

(2)
kj

(
h

(
I∑

i=1

b
(1)
j + w

(1)
ji xi

)))
(2.16)

where k denotes the number of neurons in the second layer, and j the number of neurons
in the first (Bishop, 2006, p. 227-231). The type of neural network described by the above
equation is known as a feed-forward network or a multilayer perceptron. This terminology can
be simplified by describing a neural network as a chain of non-linear functions, transforming
the set of input variables {xi} to a set of output variables {yk} (Bishop, 2006, p. 227-231).
Representing each layer as a function f (·)(·) we can write a neural network of depth three as:

f(x) = f (3)(f (2)(f (1)(x))) (2.17)

where f(x) then denotes the full network architecture.
A neural network is a type of machine learning, and thus the neural network must be able

to learn from the set of inputs and outputs in our data. This is achieved by optimizing the
weights {w} and biases {b} of the neural network according to some loss function J(θ), where θ

represents the weights and biases of the network (Goodfellow et al., 2016, p. 171). A common
loss function for neural networks used for regression tasks is the mean squared error (MSE)

J(θ) =
1

N

N∑
n=1

(yn − f(xn; θ))
2 (2.18)

where n = 1, 2, ..., N is the number of examples in our training set. The minimization of
the loss function is implemented using back-propagation and an optimizer, such as stochastic
gradient descent (SGD). Optimization happens by back-propagating the gradients of the loss
function with regards to the parameters θ.

Forward propagation is the transformation of the set of input variables {xi} to the set of out-
put variables {yk}, which in training is propagated further to the loss function J(θ). The learning
of the neural network then happens by using the gradients, computed by back-propagation, to
update and eventually minimize the expectation of the loss function J(θ). Essentially, back-
propagation is computing the vector of gradients of the loss function with regards to the parame-
ters, ∇θJ(θ), through the chain-rule of calculus (Goodfellow et al., 2016, p. 204). The difference
between applying the chain-rule directly to each parameter and using back-propagation, is that
back-propagation computes the gradient in a computationally efficient way.

In the minimization of the loss function J(θ) we are not computing the gradients of the
loss function using the entire set of inputs and outputs. Instead, we are back-propagating the
loss function through the network using a randomly chosen subset of the entire set of inputs and
outputs. Doing this is computationally more efficient, and allows us to perform more optimization
steps in a shorter period of time. The method of minimizing the loss functions with regards to
only a sub-sample of inputs and outputs is referred to as stochastic gradient descent (Goodfellow
et al., 2016, p. 277-282).

15



Chapter 2. Theory Chapter 2. Theory

Much research has been done trying to optimize the optimization algorithm, with alternatives
to SGD such as; AdaGrad, AdaDelta, RMSProp, etc. (Kingma & Ba, 2017, p. 4-5). Today the
most used optimization algorithm is the Adam optimizer introduced in 2015. It differs from the
classic SGD algorithm in using exponentially moving averages and squared gradients to update
the weights Kingma & Ba (2017).

In constructing the network architecture and learning rules of a neural network, there are
some important hyperparameters that must be optimized. These include, but are not limited
to, the batch size of the randomly chosen sub-samples of the set of inputs and outputs. The
optimization algorithm and the learning rate of the optimization algorithm. The epochs of the
training loop, that is the number of times the training should iterate over the entire dataset.
There are guidelines to choosing these, but in general the final choice must be found through an
iterative trial-and-error process (Goodfellow et al., 2016, p. 427-429).

Deep learning is often touted as being black-box methods that perform well at many things.
The Universal Approximation Theorem states that the feed-forward neural networks described
above are able to approximate any function going from a finite-dimensional input to a finite-
dimensional output given enough neurons Hornik et al. (1989). While this is shown to be true,
the number of hidden units needed often becomes so large that it is computationally infeasible
to use the network (Goodfellow et al., 2016, p. 199-200). Thus, to construct neural networks
that are useful in an applied setting, one must pay careful attention to the architectural choices
being made in the construction. The next section will elaborate on the common deep learning
models used in time series regression problems.

2.3.2 Deep Learning in Time Series Forecasting

Machine learning, including deep learning, has been a subject of great study within the time se-
ries forecasting community since its inception (Sezer et al., 2019, p. 3-5). Several deep learning
architectures have been used for time series forecasting including; deep multilayer perceptrons,
recurrent neural networks, convolutional neural networks, restricted boltzmann machines, deep
belief networks, autoencoders and deep reinforcement learning Sezer et al. (2019). The archi-
tecture of the deep multilayer perceptron is described in Section 2.3.2. The other architectures
use the basic principles from deep multilayer perceptrons, but vary in the way the forward prop-
agation is done, and how the input is transformed. Traditionally, recurrent neural networks
(RNNs) have been used with great success on sequence data, such as textual and speech data
in natural language processing (Lim & Zohren, 2021, p. 4). Thus, as time series essentially are
represented as a sequence of data, RNNs have seen a lot of use in the domain of time series fore-
casting. In 2017 the natural language processing community witnessed a revolution to the model
architectures used, with the introduction of the Transformer architecture Vaswani et al. (2017).
The Transformer architecture is now the foundation for most state-of-the-art model in natural
language processing. Due to the success of the Transformer architecture and the underlying
attention mechanism, the application of these in time series regression has been researched since
their inception Lim & Zohren (2021). Another application domain of deep learning is the one
dealing with visual data, from image recognition, to object detection in videos. This domain has
been dominated by convolutional neural networks since the outstanding performance of AlexNet
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in 2012 Krizhevsky et al. (2012). Where convolutional neural networks are usually done on two-
dimensional data (images etc.) they have seen some applications in time series regression. To
use convolutions on time series one method is to transform the time series into two-dimensional
representations using Markov Transition Fields or Gramian Angular Fields Wang & Oates (n.d.).
Another, more commonly used method is to use one-dimensional convolutional neural networks
on time series data, where DeepMind developed the WaveNet model for generating raw audio
van den Oord et al. (2016). Other model architectures are used for time series as well, but due to
the novelty and rationale of the convolutional network for time series forecasting and modeling,
it will be the one used in this thesis, along with a standard multilayer perceptron. The next
section will introduce the convolutional neural network and the architectural choices made when
using it on one-dimensional time series data.

2.3.3 Convolutional Neural Networks

In the multilayer perceptron described in Section 2.3.2 a neuron in a given layer is connected to
all neurons in the previous layer with its activation computed as a simple matrix multiplication
and an activation function. Convolutional neural networks (CNNs) are as the multilayer percep-
tron a type of feed-forward neural network, in that it does not contain any recurrent connections
or feedback loops. CNNs have proven useful and extremely successful in a wide arrangement
of tasks, most noticably computer vision. They achieve their efficiency by employing a special
mathematical operation on the input called a convolution (LeCun et al., 2015, p. 326). These
convolutions replace the fully connected matrix multiplication that drives the multilayer per-
ceptron, and are well-suited for structured data, such as time series, a one-dimensional grid of
observations, or images, a two-dimensional grid of pixels. The basis for the convolutional neural
networks is found in the brains primary visual cortex, where the neurons responds to very simple
abstract structures in the light coming in through the eyes. This is done through local receptive
fields, that focus on a small part of the input, scanning the entire visible area, and summing it
up

To define the convolutions consider the following function

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a) ∗ w(t− a) (2.19)

where, s(t) is the output of the convolution at time step t and a is the size of the receptive
field, or kernel size (LeCun et al., 2015, p. 332). A convolution layer is then the application of the
convolution function at all time steps in the input. The trainable parameters of the convolutional
layer is the parameters of the function x(a), thus, for a kernel with a size of a we have a trainable
parameters in the convolution layer. The benefit of the convolutional layer is its ability to process
input in a grid-like topology with fewer parameters and more efficiency.

Dilated Causal Convolutional Neural Networks

One issue of the convolutional layer when used in forecasting applications is that when processing
data for time t it utilizes both data before and after the time. This is due to how the convolution
is implemented and how the receptive field works. In image processing this is perfectly fine, but
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when processing sequential data, this poses challenges, as we wish to estimate a forecast based on
all the information available at time t and before. To overcome this issue the convolutional layers
used in this thesis is of the form dilated causal convolutions, inspired by the WaveNet algorithm
of Google Deep Mind (van den Oord et al., 2016, p. 2). The dilated causal convolutions used
in the WaveNet algorithm, and in the algorithm used in this thesis, only takes in information
from t − a to t, thus ensuring that only known information at time t is used (van den Oord
et al., 2016, p. 2). Furthermore, multiple convolutional layers is stacked on top of each other,
with an increasing factor of dilation. This means that in the first layer, the convolution is run
on all inputs, in the second the convolution is run on every second input and so forth (van den
Oord et al., 2016, p. 2). This enables the neural network to have a very large receptive field,
without needing too many parameters, and thus allowing the network to be efficient. The dilated
causal convolutional neural network will be one of the two primary neural networks that will be
compared to the standard econometric models in this thesis.
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This section will introduce the data that are being used throughout the analysis. The different
time series will be analyzed, through which a foundation for the model development will be made.
Furthermore, the statitionarity of the time series will be tested.

3.1 Overview

The thesis is based on an evaluation of deep learning methods for forecasting realized variance
in crypto currencies. The dataset used in the analysis consists of 1-minute price data from four
crypto currencies: Bitcoin (BTC), Ethereum (ETH), Ada (ADA), and Binance Coin (BNB).
The start date, end date, number of observations and the volume traded over the entire period
is listed below for each asset.

BTC ETH ADA BNB

Start Date 2018-01-01 2018-01-01 2018-04-17 2018-01-01
End Date 2021-09-21 2021-09-21 2021-09-21 2021-09-21
Number of Observations 1,956,282 1,956,200 1,791,867 1,942,619
Volume 1.816e8 2.222e9 5.930e11 3.615e9

Table 3.1: Overview of dataset start and end dates, no. of observations, and volume traded in the period.

Bitcoin was, as mentioned in the introduction, started in 2008 with the whitepaper by Satoshi
Nakamoto and is in June 2022 the largest cryptocurrency by market capitalization Nakamoto
(2008); Cryptocurrencies with Highest Market Cap - Yahoo Finance (2022). Ethereum was in-
troduced in 2014 by Vitalik Buterin and launched in 2015, with a market capitalization of $
225 billion it is the second largest cryptocurrency Buterin (2013); Cryptocurrencies with Highest
Market Cap - Yahoo Finance (2022). Ada is the native token of the Cardano blockchain plat-
form, introduced in 2017 and currently the sixth largest cryptocurrency by market capitalization
Hoskinson (2015); Cryptocurrencies with Highest Market Cap - Yahoo Finance (2022). Lastly,
Binance Coin, the cryptocurrency released by the Binance Exchange in 2017, which currently
sits as the fifth largest cryptocurrency Binance Whitepaper (2017); Cryptocurrencies with Highest
Market Cap - Yahoo Finance (2022).

The development of the price of the cryptocurrencies can be seen in Figure 3.1. As seen, all
cryptocurrencies experienced a massive price increase from the beginning of 2021 followed by a
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large decline. The price path seen in the plots speak to the extreme behavior of cryptocurrency
prices described in the introduction. Furthermore, we see that the 5-minute log-returns of the
cryptocurrencies see spikes to absolute returns of up to 20 %.
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Figure 3.1: Close Prices and Volume of Assets (own production).
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Figure 3.2: 5-min log-returns of cryptocurrencies (own production).

The realized volatility and log realized volatility of the cryptocurrencies are shown in Figure
3.3 and Figure 3.4, respectively. All cryptocurrencies exhibit rather volatile log returns as seen in
Figure 3.2, and this shows in the realized volatilities. There are some things to note however. The
realized volatility of all cryptocurrencies seem to fluctuate around some rather constant average.
Thus, the stylized fact of volatility being mean reverting seems plausible in this case. The stylized
fact of volatility clustering, suggests that high volatility should be followed by high volatility, and
low volatility by low volatility. Our time series all appear to exhibit this characteristic, albeit it
is rather vague, due to the volatility constantly being rather high.
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Figure 3.3: Realized Volatility of cryptocurrencies (own production).
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Figure 3.4: lnRV of cryptocurrencies (own production).

The characteristic that volatility is mean reverting is rather important for the ability to
model it. In time series analysis we require that the time series we are modeling are stationary.
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Stationarity can be defined in both its strict form and its weak form. Strictly stationary time
series are defined by a having joint distributions that do not change over time. That is, for
our time series of realized volatility {RVt} to be strictly stationary, the joint distribution of
(RVt1 , ..., RVtk) must be identical to that of (RVt1+t, ..., RVtk+t) (Tsay, 2005, p. 25). Weakly
stationary time series does not require the joint distributions to be identical under time shift.
Rather, a weakly stationary time series must meet two assumptions:

E[RVt] = µ (3.1)

Cov[RVt, RVt−l] = γl (3.2)

That is, the expectation of the realized variance must be constant, and the covariance between
two observations in the realized variance must only depend on the lag l (Tsay, 2005, p. 25). The
stationarity of a time series can be tested using and Augmented Dickey-Fuller test, by estimating
the test regresssion

∆RVt = ϕ0 + γRVt−1 +

p∑
i=1

ϕi∆RVt−i + εt (3.3)

where p is the number of lags to include in the ADF test (Tsay, 2005, p. 25). The null
hypothesis in the ADF test is H0 : β = 1 and the alternative Ha : β > 1. The test statistic used
is thus

ADF − test =
β̂ − 1

std(β̂)
(3.4)

The p-values of the ADF test for our four eight time series (realized volatility and log-realized
volatility) is seen in Table 3.2. As can be seen with a confidence interval of 95 % we can reject
the null hypotheses in all cases, and thus all our time series are stationary.

Adjusted Dickey-Fuller

BTC ETH ADA BNB

P-Value (RV ) 0.000000 0.000000 0.000000 0.000003
P-Value (lnRV 0.000000 0.000000 0.000000 0.000000

Table 3.2: Augmented Dickey-Fuller test for RV and lnRV (own production)

Closely related to the autocovariances of described above is the autocorrelation of the observa-
tions in the time series. As described in Section 2.2 the absolute return series of cryptocurrencies
typically exhibits strong autocorrelations. Autocorrelation can be defined as being the correla-
tion between two observations of the same time series but at different times. We have shown that
the realized volatility and log-realized volatility series we are working with are weakly stationary,
and there fore, that the autocovariance is only dependent on the lag l between two observa-
tions, and not the time of the observations. Thus, the autocorrelation between observations of
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the realized volatility is only dependent on the lag l too. Therefore, we can describe the lag-l
autocorrelation of our realized volatility (and log-realized volatilit) series as

ρl =
Cov(RVt, RVt−l)√
V ar(RVt)V ar(RVt−l

=
Cov(RVt, RVt−l)

V ar(RVt)
=

γl
γ0

(3.5)

where for weakly stationary series V ar(RVt) = V ar(RVt− (Tsay, 2005, p. 26). The autocor-
relation function is used to create the autocorrelation function (ACF) plots seen in Figures 3.5
and 3.6. The blue shaded area of the ACF plots show the significance level, of at the given lag.
Note that all realized volatility time series have significant autocorrelations up until l = 30. BTC
realized volatility shows the longest dependence of the four cryptocurrencies, while ADA shows
the shortest. Albeit, ADA does also have significant autocorrelations at l = 26 and l = 30. The
autocorrelations of the log-realized volatility time series are in general slower decaying, which is
expected as it smoothes the distributions.
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Figure 3.5: Autocorrelation function of realized variance (own production).
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Figure 3.6: Autocorrelation function of lnRV (own production).

3.2 Datasets

This section will describe the datasets used for training and testing the models of the thesis. The
datasets consist of 1359 (1253 days for ADA) days of 1-minute observations each. Each dataset
is split in a training series and a testing series. The first 30 observations are not part of either the
training and testing series, as some computations uses rolling means, and thus are only viable
from day 30 and forward. The last observation is also removed. This results in the training and
testing split seen in Tables 3.3 through 3.6.
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BTC
Train Forecast

No. Observations 930 398
Min 0.006976 0.008646
Max 0.312463 0.241197
Mean 0.035595 0.040740
Variance 0.000515 0.000600
Skewness 3.812920 2.763470
Kurtosis 30.619722 14.010251

Table 3.3: BTC dataset statistics (own cre-
ation)

ETH
Train Forecast

No. Observations 930 398
Min 0.011718 0.014873
Max 0.327716 0.382379
Mean 0.046842 0.053152
Variance 0.000653 0.001090
Skewness 3.073369 3.912822
Kurtosis 21.284050 27.439998

Table 3.4: ETH dataset statistics (own cre-
ation)

ADA
Train Forecast

No. Observations 855 367
Min 0.018103 0.018494
Max 0.353426 0.492362
Mean 0.053065 0.070949
Variance 0.000728 0.002067
Skewness 3.082102 3.240852
Kurtosis 21.198474 20.739392

Table 3.5: ADA dataset statistics (own cre-
ation)

BNB
Train Forecast

No. Observations 930 398
Min 0.012578 0.016822
Max 0.405579 0.373495
Mean 0.048076 0.060885
Variance 0.000838 0.001611
Skewness 4.101679 2.917429
Kurtosis 34.129322 13.107855

Table 3.6: BNB dataset statistics (own cre-
ation)

As can be seen in Tables 3.3 through 3.6 the mean and variance of the four time series
generally increases from the training dataset to the testing dataset. This might pose a challenge
when forecasting the realized volatility, as the dataset that the models are trained on differs in
the first and second moment from the dataset that they are tested on.

From the skewness of the eight datasets we can conclude that they are all highly skewed
to the right. That is, in all datasets most observations occur around some normal level, the
long-term average. The realized volatility cannot decrease below zero, but is able to peak to
extreme values. Thus, the right skewness of the time series is to be expected.

All our dataset are also highly leptokurtic as the kurtosis far exceeds that of a normal
distribution, where the kurtosis is three. This indicates that the distribution of the realized
volatility in our datasets are heavy tailed, and more suceptible to extreme values. According
to the stylistic facts of both volatility and cryptocurrency returns mentioned in Section 2.2 we
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expect the distributions to have heavy tails, and thus, this confirms that expectation.
The datasets introduced above all show stationary realized volatility and log-realized volatil-

ity. Furthermore, they all exhibit heavy tails, volatility clustering, and right skewness. The
econometric and deep learning models used for forecasting the realized volatility will be de-
scribed in the next section.
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Chapter 4 Methodology

4.1 Models

4.1.1 Linear Time Series Models

All econometric models used in this thesis are based on the Heterogeneous Autoregressive model
of realized volatility (HAR). The variations in the models are based around the stylized facts
of volatility that has been previously described. This section will introduce these econometric
models.

HAR

The Heterogeneous Autoregressive model of realized volatility (HAR) is the de facto standard
for modeling realized volatility, as mentioned in Section 1.2. The HAR model is motivated by
considering that the financial markets are heterogeneous, that is, the agents in the financial
markets are not all alike. This is grounded in the Heterogeneous Market Hypothesis (Corsi,
2008, p. 178-179). The Heterogeneous Market Hypothesis deserves some study, as it is central
to all the econometric models applied in this thesis. The hypothesis states that the actors of
financial markets do not all have the same trading horizons and frequencies. Secondly, increases
in actors in the market and trading volume increase the volatilty of the market. This is seen
against the logic of the homogeneous market, where one would assume that more actors and
volume would decrease the volatility, as the price would reach the intrinsic value faster. Lastly,
markets and their memory component is also influence by the geographic locations of the traders
Müller et al. (1993).

The central concept that is incorporated into the HAR model is that of different time horizons
and frequencies. Actors trading with different time horizons all influence the market differently
and therefore the overall volatility of the market is deemed to be aggregated from these compo-
nents. These market components will be referred to as the latent partial volatility σ̃t

(·) (Corsi,
2008, p. 179). The HAR model is then constructed from three of theses latent partial volatil-
ities: σ̃t

(d), σ̃tw, and σ̃t
m, where d is daily, w is weekly, and m is monthly. To ensure that the

volatilities are comparable they are scaled to match the daily volatility. Thus, the final model
becomes:

RV
(d)
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ω

(d)
t+1d (4.1)

The computation of RV
(w)
t and RV

(m)
t is given below:
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RV
(w)
t =

1

5

5∑
i=1

RVt−i (4.2)

RV
(m)
t =

1

22

22∑
i=1

RVt−i (4.3)

The periods chosen for the weekly and monthly component is based on the average days in
a trading week and month, respectively. Since this study is centered around forecasting bitcoin
volatility, which trades 24 hours a day 365 days a year, the periods will be 7 and 30.

The HAR model is essentially a multivariate linear regression with similarities to an AR(1)
model, in that it uses one-period lagged values of the realized volatility Corsi (2008). This
model have some restrictions however. In particular, the model is not able to incorporate jumps
and leverage effects (Xu & Wang, 2014, p. 1303) (Bollerslev et al., 2020, p. 8). Thus, the HAR
variants HAR-J and HAR-RS-I will be implemented, to be able to better model the volatility, and
its stylized facts, of cryptocurrencies, as described in Section 2.2. These models have shown to be
better able to capture the fat tails, jumps and leverage effects (albeit negative) as cryptocurrencies
exhibit Xu & Wang (2014)Bollerslev et al. (2020).

HAR-J

Considering an asset that whose log-price process follows a jump diffusion process, described in
Section 2.1:

ds(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t) (4.4)

The quadratic variation of this process is then defined to be

QV (t, h) =

∫ t

t−h
σ2(τ)dτ +

∑
t−h<τ≤t

κ2(τ) (4.5)

.
Incorporation of jumps in the price process of an asset have been shown to be important

in modeling its behavior, and further, as mentioned in Section 2.2, cryptocurrency price pro-
cesses are exhibiting jump dynamics. Furthermore, realized variance converges to the quadratic
variation of the price process describing the asset being modeled. Thus, in the case of a jump
diffusion process, realized volatility would, in theory, converge to the square root of the quadratic
variation described above. Incorporating jump components in the modeling of realized volatility
is therefore deemed important.

To model the jump component and in turn the realized volatility the HAR-J, given below,
will be implemented:

RV
(d)
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + β(J)Jt + ω

(d)
t+1d (4.6)

where Jt is the jump compenent (Xu & Wang, 2014, p. 1303). The jump component is
computed as

Jt(h) ≡ max(RVt(h)−BVt(h), 0) (4.7)
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Where RVt(h) is the realized variance of a given day and BVt(h) is the realized bi-power
variation of the day (Xu & Wang, 2014, p. 1303). The realized bi-power variation is given as

BVt(h) ≡ µ−2
1

1/h∑
j=2

|rt+j∗h,h||rt+(j−1)∗h,h| (4.8)

where µt is the expectation of the absolute value of a standard normal variable, E(|Z|) =√
2/π (Andersen et al., 2007, p. 4). The realized bi-power variation of a price process be shown

to converge to the continuous-time integrated volatility

BVt(h) →
∫ t

t−1
σ2(τ)dτ (4.9)

as h → 0, that is the sampling frequency increases to infinity (Andersen et al., 2007, p. 4).
Thus, when combining the fact that the realized variance converges to the quadratic variation
described above and the realized bi-power variation converges to the integrated variance we see
that the jump component can be estimated by

RVt(h)−BVt(h) →
∑

t−1<τ≤t

κ2(τ) (4.10)

The term Jt(h) is truncated at zero, to ensure that negative values of the difference on the
left hand side is not observed (Andersen et al., 2007, p. 5).

HAR-RS-I

Leverage effects are one of the stylized facts of volatilty. As described in Section 2.1.2 the
term leverage effect refers to the fact that the volatility of a financial asset may be influence
asymmetrically by negative and positive returns, respectively. Neither the HAR model nor the
HAR-J model facilitate modeling this leverage effect in the modeling of realized volatility, and we
have seen that cryptocurrencies may be influence greatly by the leverage effects, negative leverage
effects, through herding behavior and "pump and dump" strategies. Thus, the last econometric
model that will be implemented is the HAR-RS-I model, which allows for modeling the leverage
effect Bollerslev et al. (2020). The HAR-RS-I model replaces the daily lagged realized volatility
with realized up and down semi-volatility measures Qiu et al. (2019). Realized up and down
semi-variance measures can be defined as

RS+
t =

M∑
j=1

r2t,j ∗ I(rt,j > 0) (4.11)

RS−
t =

M∑
j=1

r2t,j ∗ I(rt,j < 0) (4.12)

such that the up semi-variance is composed as the realized variance of a period considering
only the positive returns, and the down semi-variance considering only the negative returns
Qiu et al. (2019). The up and down negative variances can be shown to converge to half the
integrated variance plus the sum of squared positive and negative jumps, respectively Bollerslev
et al. (2020):
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RS+
t =

1

2

∫ t

t−1
σ2
sds+

∑
t−1≤τ≤t

J2
τ I(Jtau>0) (4.13)

RS−
t =

1

2

∫ t

t−1
σ2
sds+

∑
t−1≤τ≤t

J2
τ I(Jtau<0) (4.14)

The sum of the up and down variances thus equals the realized variance, and therefore,
replaces it in the HAR model. The final HAR-RS-I model is then:

RV
(d)
t+1d = c+ β(−)RS

(−)
t + β(+)RS

(+)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ω

(d)
t+1d (4.15)

This section has described the econometric models that will be used as a benchmark to the
deep learning models, described in next section.

4.1.2 Neural Networks

This section will describe the deep learning models used in the thesis. Overall two model ar-
chitectures are used. The first is a simple feed-forward neural network and the second a dilated
causal convolutional neural network. In total 8 distinct neural networks are trained and tested on
the four cryptocurrencies. The difference of the neural networks within the two groups of model
architectures is that a neural network corresponding to each of the HAR models is developed.
Thus, a two neural networks with the data from the original HAR model as input, two for the
lnHAR model, two for the HAR-J model and two for the HAR-RS-I model. Firstly, the model
architecture of the simple artificial neural network (ANN) is described and secondly, the dilated
causal convolutional neural network (DCCNN) architecture is described.

Feed-Forward Neural Network

All ANN models consist of 8 layers in the neural network. The activation function is the
LeakyReLU, a type of ReLU activation function where values below 0 are not zeroed, but mul-
tiplied with a small value. Furthermore, the dropout regularization technique is used. Using
dropout we introduce a probabilistic deactivation of neurons in the specific layer. That is with
a probability of 0.3 a neuron is shut down during the forward call of the neural network. In this
way we regularize the neural network as well as enabling the network to utilize larger learning
rates. The layers of neural network can be seen below in table 4.1.
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Input Neurons Output Neurons Dropout Parameter

Layer 1 (Input) 3-5 8 0.0
Layer 2 8 16 0.0
Layer 3 16 32 0.0
Layer 4 32 64 0.0
Layer 5 64 32 0.3
Layer 6 32 16 0.3
Layer 7 16 8 0.0
Layer 8 (Output) 8 1 0.0

Table 4.1: BTC-HAR OLS Regression Results (own production).

The ANN models are trained using the Adam optimizer with a initial learning rate of 0.003,
which is reduced at every 10 epoch by a factor of 10. Futhermore, the loss function that the
ANN is minimizing is the MSE loss criterion.

Temporal Convolutional Network

The DCCNN models all consist of 5 causal convolutional blocks, which include a dropout pa-
rameter of 0.2. The input to all DCCNN models are the realized volatility time series with a
look-back window of 32 days. Each consecutive causal convolutional layer has the dilation in-
creased by a factor of 2, thus ending with a dilation of 16, and therefore, only two convolutions
on the last layer. This way all inputs in the input of 32 time-steps are processed, but most
importance is given to the inputs closest to the time t. Futhermore, a 1D convolutional layer
with kernel size 1 is used to process extra inputs other than the realized volatility time series.
Thus, the jump component Jt is processed using this 1D convolution, to enable the model to
learn the best possible weight of the jump.

The HAR-RS-I-DCCNN model processes the input a bit differently than the rest of the
models. Instead of taking the realized volatility time series as input, it takes two time series as
input, the positive realized semi-variance and the negative realized semi-variance. The outputs
of the two dilated causal convolutional blocks are then processed using linear feed-forward layers.

For all models the last step is two linear layers, with the first having 32 inputs, from the
dilated causal convolutional blocks, and 32 outputs. This output is run through the ReLU
activation function, and fed into a linear layer consisting of 32 inputs and a single output, the
forecasted value. The DCCNN models are trained using the Adam optimizer with an initial
learning rate of 0.03 decreasing by a magnitude of 10 every 10 epochs. The loss function to be
minimized is the MSE loss criterion.

4.2 Evaluation

The central comparison metrics in the thesis are the evaluation criterions introduced in this
section. An evaluation criterion describes the error of a prediction against a set of true values.
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The choice of evaluation metric, is not arbitrary, as each metric is biased in some way.
The most well-known evaluation criterion is probably the Mean Squared Error (MSE):

MSE: L(σ̂2, h) = (σ̂2 − h)2 (4.16)

where σ̂2 is the volatility proxy, and h is the volatility proxy forecast (Patton, 2011, p. 248).
As a forecast comparison metric the MSE criterion has been shown to be robust in the sense

that the ranking of two forecasts of conditional variance stays the same no matter whether a
conditionally unbiased volatility proxy or the true conditional variance is used (Patton, 2011,
p. 248). This robustness has only been shown for two evaluation criterions when comparing
forecasts of volatility proxies, the second being the quasi-likelihood (QLIKE) criterion (Patton,
2011, p. 251). The QLIKE criterion is given as

QLIKE: L(σ̂2, h) = log h+
σ̂2

h
(4.17)

As can be seen from the equations above, the QLIKE and MSE criterions differ in their
computation of the loss for each observation. This gives rise to differing characteristics of the
metrics when used as evaluation metrics. The MSE loss is computed using the standard forecast
error σ̂2 − h and is especially sensitive to extreme observations in errors and the magnitude of
the volatility proxy. QLIKE on the other hand is more susceptible to negative errors, where the
forecasted volatility is higher than the true volatility (Patton, 2011, p. 251-252). The QLIKE
and MSE metrics thus differ in their sensitivities and will yield two different perspectives on the
evaluation of the forecasting models. The overall goal of the thesis is to evaluate whether or not
the two different neural network architectures are better at forecasting the realized volatility of
cryptocurrencies. Thus, MSE and QLIKE will be the only two criterions used, as they are shown
to be the only robust loss functions when comparing volatility models.

33



Chapter 5 Results

The primary results of this thesis is the evaluation of the forecasting performance of HAR mod-
els compared to ordinary feed-forward neural networks and dilated causal convolutional neural
networks. Model setup, architecture and setup have been described in the Methodology, chapter
4. Thus, this chapter will only be on the in-sample and forecasting evaluation. First, the models
will be briefly evaluated in-sample. Evaluating neural networks ability to learn the structure of
the training data is critical, as it gives us a tool for evaluating different architectures, criterions,
optimizers, batch sizes, and training periods. The focus when doing so must be to get the model
to learn, but not overfit to the training data. Various methods for regularizing neural networks
are described in Chapter 2, Theory. Furthermore, depending on the structure and statistical
properties of the data, the batch sizes, training periods, and criterions must be fine-tuned to
achieve the best results. There are some general guidelines to how to choose these parameters,
but given the complexity and flexibility of deep learning models, much of the performance is
dependent on trial and error. The second section of the results will be devoted to evaluating and
comparing the forecasting performance of the different models. Here, the forcasting performance
will be evaluated using the evaluation criterions described in the methodology. Furthermore, a
visual inspection of the forecasted time series of the best performing models and the true realized
volatility time series will be conducted.

5.1 In-Sample Evaluation

The in-sample evaluation of the HAR models and the deep learning models will differ due to their
characteristics. Where the HAR models are fitted using the closed form OLS and contains only
few parameters, the neural networks are trained using stochastic gradient descent and contain a
far greater number of parameters. Thus, the evaluation must differ. The in-sample evaluation of
the HAR models will consider the importance of the parameters, and their performance in terms
of the forecast evaluation criterion on the training data. The in-sample evaluation of the deep
learning models will consider the minimization of the loss criterion, the number of parameters
and the forecast evaluation criterion.

5.1.1 HAR Models

As the thesis is primarily concerned with comparing and evaluating forecasting performance,
the in-sample evaluation of the HAR models will be focused around BTC. The results of the in-
sample evaluation of the HAR models on the other cryptocurrencies are similar and thus omitted
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in the main text.
The HAR models employed for forecasting the realized volatility of the cryptocurrency returns

are the HAR, lnHAR, HAR-J, and HAR-RS-I, as presented in the methodology. The original
HAR model, models the realized volatility as the sum of previous day realized volatility, RV

(d)
t ,

the averaged daily realized volatility over the past week RV
(w)
t , and the averaged daily realized

volatility over the past month RV
(m)
t . The parameters β(d), β(w), β(m), and c are estimated

using OLS and given below:

coef std err t P> |t| [0.025 0.975]

const 0.0056 0.002 3.682 0.000 0.003 0.009
Daily 0.5214 0.034 15.306 0.000 0.455 0.588
Weekly 0.2275 0.055 4.169 0.000 0.120 0.335
Monthly 0.0901 0.054 1.657 0.098 -0.017 0.197

Table 5.1: BTC-HAR OLS Regression Results (own production).

Since the thesis is focused on forecasting performance we are not removing any input vari-
ables, and thus, doing inference on the estimated model parameters, confidence intervals, and
significance levels, should be done cautiously. Nevertheless, it can be seen that the past daily
realized volatility RV

(d)
t is the most significant and driving parameter, followed by the weekly

RV
(w)
t . The autocorrelation function of the BTC realized volatility exhibited significant auto-

correlation until a lag of approximately 30, however, the first seven to ten lags were by far the
most significant. Thus, considering the autocorrelation function, the significance of the daily and
weekly realized volatilities seems plausible.

The second HAR model is the log-transformed HAR model, lnHAR, where both the depen-
dent and independent variables have been log transformed. Considering again the autocorrelation
for the log−RV of BTC in chapter 3, the log-transformed realized volatility, displayed a stronger
autocorrelation for higher lags, thus it might be expected that lnRV

(m)
t is more significant in

the log-transformed HAR model. Seen below is the results of the OLS regression on the lnHAR
model:

coef std err t P> |t| [0.025 0.975]

const -0.4544 0.113 -4.037 0.000 -0.675 -0.234
Daily 0.4710 0.036 13.021 0.000 0.400 0.542
Weekly 0.3091 0.054 5.679 0.000 0.202 0.416
Monthly 0.0964 0.050 1.937 0.053 -0.001 0.194

Table 5.2: BTC-lnHAR OLS Regression Results (own production).

As expected, the monthly lnRV
(m)
t is more significant in this model, although not by much.

Again it is the daily and weekly realized volatility measures RV
(d)
t and RV

(d)
t that are most

significant and with the highest influence.
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The previous two HAR models, have modeled the realized volatility using only aggregate
measures of the previous levels of the realized volatility. As explained previously, the price
process of cryptocurrencies are susceptible to jumps, and that, these jumps are integral in es-
timating and modeling the volatility of the return process. By describing the return process
as a continuous-time jump diffusion process, the HAR-J model have been made to account for
the jump component in the process. Thus, other than the daily, weekly, and monthly aggregate
measures of the previous level of realized volatilty, a jump compenent is included:

coef std err t P> |t| [0.025 0.975]

const 0.0004 0.000 2.347 0.019 6.52e-05 0.001
Daily 0.3054 0.037 8.211 0.000 0.232 0.378
Weekly 0.1310 0.063 2.073 0.038 0.007 0.255
Monthly 0.0667 0.081 0.819 0.413 -0.093 0.226
Jumps 2.2527 0.308 7.323 0.000 1.649 2.856

Table 5.3: BTC-HAR-J OLS Regression Results (own production).

The result of the OLS regression for the HAR-J model shown above, shows that the jump
component is by far the most important parameter when it is present.

It is established in the theory section that the volatility of cryptocurrencies exhibit leverage
effects. That is, the magnitude of the influence of negative returns on the volatility is larger than
the influence from positive returns. Contrasting to the usual characteristics of the volatililty of
return processes, cryptocurrencies have also been shown to exhibit negative leverage effects. To
model this, the HAR-RS-I, as introduced in the methodology, is employed. The results of the
OLS regression on the HAR-RS-I model for BTC is shown below.

coef std err t P> |t| [0.025 0.975]

const 0.0003 0.000 1.854 0.064 -1.52e-05 0.001
Weekly 0.1371 0.052 2.617 0.009 0.034 0.240
Monthly 0.1095 0.067 1.628 0.104 -0.022 0.241
RS+ -1.2976 0.082 -15.827 0.000 -1.459 -1.137
RS- 2.4372 0.094 25.907 0.000 2.253 2.622

Table 5.4: BTC-HAR-RS-I OLS Regression Results (own production).

As is seen in the parameter estimates above, the negative realized semi-variance has a positive
influence on the volatility of the return process, while the positive realized semi-variance has a
negative effect. The sign of the influence of the positive and negative semi-variances is consistent
throughout all the cryptocurrencies used in this thesis (see Appendix A: In-Sample Regression
Results).
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It is noted in the introduction of this section, that the main goal of this section is not
inference, but rather evaluating the regression results and in-sample predictions of the different
models. As seen above in the OLS results of the models, the variable that is consistently the least
significant is the monthly averaged daily realized volatility (variance), RV

(m)
t . The significant

and influential variable is the daily realized volatility RV
(d)
t , and the jump variable Jt and realized

semi-variances, RS+
(d)
t and RS−(d)

t .
Figure 5.1 depicts the predictions of the four HAR models on the in-sample data of BTC.

Comparing to the true realized volatility in the BTC data, the HAR and lnHAR models seem
to be quite similar. This is also expected, as the only difference between the two models is
that the dependent and independent variables have been log-transformed in the lnHAR model.
Comparing to the HAR-J and HAR-RS-I models, these models seem to be better able to capture
the extreme levels of realized volatility. However, the HAR-J model consistently is not able to
capture the low levels of realized volattility, while the HAR-RS-I model at times are more volatile
than the true realized volatility.
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Figure 5.1: In-Sample predictions for the different HAR models on the BTC dataset. True realized
volatility is the dashed line and predicted realized volatility is the solid line (own production).

The accuracy of the four models in terms of the two forecast evaluation criterions, QLIKE
and MSE, is shown in the tables 5.5 and 5.6. It is seen that the in-sample performance of the
HAR model is best on all cryptocurrencies.
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HAR lnHAR HAR-J HAR-RS-I
index

BTC 0.000268 0.000281 0.000331 0.000332
ETH 0.000365 0.000367 0.000406 0.000447
ADA 0.000446 0.000449 0.000489 0.000545
BNB 0.000473 0.000479 0.000573 0.000577

Table 5.5: MSE criterion in-sample results of HAR models (own production).

HAR lnHAR HAR-J HAR-RS-I
index

BTC -2.409417 -2.409417 -2.392299 -2.385255
ETH -2.119608 -2.119608 -2.107122 -2.095617
ADA -1.980645 -1.980645 -1.969535 -1.950203
BNB -2.101092 -2.101092 -2.081021 -2.079821

Table 5.6: QLIKE criterion in-sample results of HAR models (own production).

This section introduced the in-sample results of the HAR models employed in the thesis. No
conclusions can be made about the importance of the individual variables or the performance of
the models, as the necessary statistical tests have not been employed. However, this is not the
goal of the section, rather it is to get an overview of the in-sample performance and behavior of
the models. The next section briefly covers the in-sample results from the deep learning models
developed.

5.1.2 Deep Learning Models

The deep learning models developed in this thesis is described in the methodology. Architec-
turally there are two distinct models, the ANN, which consists of simple feed-forward layers, and
the DCCNN, which consists of dilated convolutional layers and feed-forward layers. The ANN
architecture is the simplest and most general architecture of neural networks, while the DCCNN
architecture is developed for audio processing and employs convolutions to detect and use struc-
tures and patterns in the sequential data input. The DCCNN architecture allows the neural
network to process long time-series without needing a vast number of parameters and thus, is,
in thoery, able to process sequential information more efficiently. The number of parameters in
the DCCNN models is therefore smaller than in the ANN models, as seen in Table 5.7.
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HAR lnHAR HAR-J HAR-RS-I

ANN 5537 5537 5537 5545
DCCNN 1110 1110 1115 2194

Table 5.7: Number of trainable weights in the deep learning models (own production).

In general, the greater the number of parameters used in a neural network, the more complex a
function the neural network is able to represent. This is proven by the Universal Approximation
Theorem, described in the theory. However, as also noted in the theory section, some deep
learning architectures have proved better at specific tasks than others. Recurrent neural networks
and dilated convolutional neural networks, have proven superior in tasks involving sequential
data, to the standard feed-forward neural network. Therefore, the dilated causal convolutional
neural network is employed to model and forecast the realized volatility of cryptocurrencies. The
models are trained on a batch size of 8 and for 20 epochs. Training the models takes around
1.14 minutes for the ANN models and 2.30 minutes for the DCCNN models. As stated there are
general guidelines for developing efficient and accurate neural networks, but no rules. Therefore,
a lot of the task in developing deep learning models is to fine-tune the network architecture and
hyperparameters by trial and error. The neural networks in this thesis are the result of many
iterations of fine-tuning the following parameters:

Batch size.- Learning rate.-

Optimizer.- Loss criterion.-

Regularization.- Number of layers.-

Width of layers.- Convolution parameters.-

Dropout parameters.- Scaling method.-

Normalization.-

The final models employed is described in the methodology and the in-sample accuracy
computed by the MSE and QLIKE criterions are displayed in Tables 5.8 and 5.9 for the ANN
models and Tables 5.10 and 5.11 for the DCCNN models below.

HAR-ANN lnHAR HAR-J HAR-RS-I
index

BTC 0.000439 0.000566 0.000376 0.000508
ETH 0.000606 0.000662 0.000525 0.000647
ADA 0.000827 0.001090 0.000713 0.000855
BNB 0.000667 0.000217 0.000627 0.000849

Table 5.8: MSE criterion in-sample results of ANN models (own production).
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HAR lnHAR HAR-J HAR-RS-I
index

BTC -5.415063 -5.415063 -5.190651 -4.363010
ETH -5.060013 -5.060013 -4.905804 -4.073563
ADA -5.551744 -5.551744 -4.762834 -3.892110
BNB -4.959763 -4.959763 -4.810081 -4.023506

Table 5.9: QLIKE criterion in-sample results of ANN models (own production).

The best ANN model in terms of MSE for BTC, ETH, and ADA is the one based on the
HAR-J data, whereas the best for the BNB cryptocurrency is the lnHAR model. In general,
however, all models, except the BNB-lnHAR model, perform worse than their standard econo-
metric counterparts on the in-sample data with the MSE criterion. This is not the case for
the QLIKE criterion, where the ANN models consistently beats their econometric counterparts.
The important thing to note is that, in the number of parameters may allow the deep learning
to overfit to the training data, and thus, the only truly important metrics are the forecasting
performance, as this allows us to gauge the generalization ability of the deep learning models.

The DCCNN models in general perform better on the MSE criterion than the ANN models
and worse on the QLIKE criterion. The best model for the MSE criterion is the model with
HAR data input on BTC, ETH, and ADA, whereas the lnHAR is performining the best on the
BNB cryptocurrency. For the QLIKE criterion the HAR-J-DCCNN model performs the best on
all cryptocurrencies. It is again the case that the DCCNN models all outperform the standard
econometric HAR model on the QLIKE criterion and is worse on the MSE criterion, on the
in-sample data.

HAR lnHAR HAR-J HAR-RS-I
index

BTC 0.000375 0.000399 0.005682 0.000382
ETH 0.000493 0.000503 0.000597 0.000519
ADA 0.000749 0.000772 0.000927 0.000802
BNB 0.000594 0.000171 0.000637 0.000560

Table 5.10: MSE criterion in-sample results of DCCNN models (own production).
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HAR lnHAR HAR-J HAR-RS-I
index

BTC -4.663832 -4.663832 -2.928715 -4.765283
ETH -4.284034 -4.284034 -3.714721 -4.343763
ADA -4.044130 -4.044130 -3.632308 -4.121609
BNB -4.293869 -4.293869 -3.820101 -4.049508

Table 5.11: QLIKE criterion in-sample results of DCCNN models (own production).

5.2 Forecasting Performance

This section will compare the forecasting performance of the econometric and deep learning
models on the data left out for testing. The testing data is the same for both the neural
networks and the econometric models. The only difference is that the econometric models are
re-calibrated at each time-step, thus using an adaptive rolling window for retraining. This is not
done on the neural networks as the evaluation time for all models combined would amount to
approximately 320 hours.

5.2.1 Comparison of Evaluation Criterions

In Tables 5.12 and 5.13 the results of the one-step ahead forecast evaluations are shown for
the MSE criterion and the QLIKE criterion, respectively. It is evident from the results that
the standard econometric results perform better across the board on the MSE criterion. The
best model for forecasting in when evaluated by the MSE criterion, is the HAR model for ADA
and the lnHAR model for BTC, ETH, and BNB. These two models does not incorporate any
additional regressors other than RV

(d)
t , RV

(w)
t and RV

(m)
t . Thus, in the settings used here,

the additional regressors does not seem to add further forecasting performance compared to
the standard HAR model. This is also seen in the deep learning models, where the realized
volatility for all cryptocurrencies, except BTC, is best predicted using the HAR-ANN model.
BTC, however, shows that for the MSE criterion, the best deep learning model for forecasting
the realized volatility is the HAR-RS-I-DCCNN model. This may be caused by the realized semi-
variances, and thus leverage effects, have a larger influence on the BTC realized volatility. The
HAR-RS-I-DCCNN model is the only model that incorporates the realized semi-variances over a
longer timeframe (32 days), and thus, the influence of the leverage effects may not be immediate,
and persist over time. In general, however, the standard econometric models performs the best on
forecasting the realized volatility of all cryptocurrencies, when evaluated by the MSE criterion.
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Index ADA BNB BTC ETH
Model

HAR 0.001396 0.000874 0.000344 0.000657
HAR-ANN 0.002056 0.001151 0.000518 0.000955
HAR-DCCNN 0.002225 0.001581 0.000558 0.001173
HAR-J 0.001535 0.001065 0.000447 0.000736
HAR-J-ANN 0.002244 0.001328 0.000586 0.001039
HAR-J-DCCNN 0.002447 0.001416 0.011308 0.001142
HAR-RS-I 0.001685 0.000976 0.000408 0.000763
HAR-RS-I-ANN 0.002871 0.001966 0.000724 0.001303
HAR-RS-I-DCCNN 0.003624 0.001616 0.000461 0.001399
lnHAR 0.001407 0.000866 0.000341 0.000651
lnHAR-ANN 0.003487 0.002250 0.001034 0.001420
lnHAR-DCCNN 0.002263 0.001652 0.000595 0.001192

Table 5.12: MSE criterion results for all models on the four cryptocurrencies. Best model for each cryptocurrency is
boldfaced (own production).

The superiority of the standard HAR models is not evident in the evaluation of forecasting
performance using the QLIKE criterion though. Here the deep learning models consistently
outperform the standard econometric HAR model, with the lnHAR-ANN model performing the
best on all cryptocurrencies. As described in the methodology, the QLIKE criterion is especially
sensitive to downside errors, that is when the forecasted volatility is higher than the true volatility.
The MSE criterion, is more susceptible to extreme values however, and thus, it would seem that
the standard HAR models are better able to capture the jumps and extreme levels of volatility
of the cryptocurrencies. Referring to the stylized facts of volatility, the standard HAR model
seem to be modeling the volatility clustering, fat tails and jumps in volatility, whereas the deep
learning models are better at capturing the long-term tendencies and mean reversion in the
realized volatility. This, of course, is speculation, as we would need to conduct extensive tests
to be able to conclude anything.
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Index ADA BNB BTC ETH
Model

HAR 0.021539 0.016688 0.010722 0.013507
HAR-ANN -4.350425 -4.660872 -5.226993 -4.797500
HAR-DCCNN -3.804357 -4.037620 -4.311311 -4.077711
HAR-J -1.697530 -1.857860 -2.252019 -1.993235
HAR-J-ANN -4.141295 -4.609692 -4.896517 -4.616358
HAR-J-DCCNN -3.346927 -3.547818 -2.423480 -3.509326
HAR-RS-I -1.660325 -1.869390 -2.253699 -1.983087
HAR-RS-I-ANN -4.261471 -4.327744 -4.684976 -4.314452
HAR-RS-I-DCCNN -3.511995 -4.226131 -4.407700 -3.856696
lnHAR -1.706124 -1.880472 -2.275557 -1.998397
lnHAR-ANN -5.513195 -5.458666 -5.994108 -5.176487
lnHAR-DCCNN -3.870313 -4.060311 -4.346369 -4.118026

Table 5.13: QLIKE criterion results for all models on the four cryptocurrencies. Best model for each cryptocurrency is
boldfaced (own production).

5.2.2 Best Models

The best model for forecasting the realized volatility of the four cryptocurrencies in terms of
the MSE criterion is the standard lnHAR model, and in terms of the QLIKE criterion, it is the
lnHAR-ANN models. In figure 5.2 the predictions made from the best MSE model and the best
QLIKE model is seen plotted against the true realized volatility.
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Figure 5.2: Best models for each cryptocurrency in terms of MSE and QLIKE. Top row is best
model in terms of MSE and bottom in terms of QLIKE. Dashed line is true realized volatility and
solid predicted (own production)

Judging from the plots above, the HAR models is better at capturing and following the
day-to-day variation in the realized volatilty, while the deep learning models in general predicts
a lower value of the realized volatility. Both models types are equally good at predicting the
extreme values in the realized volatlity, although the tendency is that the forecasted value is
too low. In general, the conclusion of the model experiments must be that the deep learning
models seem better able to capture the long-term mean and stay on the lower side of the realized
volatility, while the standard HAR models are better able at capturing the day-to-day variation
of the realized volatility.
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Chapter 6 Discussion

The discussion will attempt to provide answers, ideas and perspectives on the following questions:

• What interpretation could be made from the results?

• What direction could further research take?

• What might these results be used for?

6.1 Interpretation of Results

The results presented in Chapter 5 shows that the standard econometric HAR models perform
best at forecasting the realized volatility of cryptocurrencies when evalauted on the MSE loss
criterion. This might be evidence of the HAR models ability to model the extreme values and
day-to-day fluctuations in the realized volatility. On the other hand, the ANN models showed
better performance on forecasting the realized volatility of the cryptocurrencies when evaluated
on the QLIKE loss criterion. Thus, the ANN models seem better a level of realized volatility that
is not too large. In other, words this might show that the ANN models are better at modeling
the latent strucure of the realized volatility of the cryptocurrencies.

The DCCNN models performed better on the MSE criterion than the ANN models, but worse
than the HAR models. Further, they performed worse than the ANN models on the QLIKE crite-
rion, but better than the HAR models. The mediocre performance of the DCCNN models might
be due to the fact that they contained far less parameters compared to the ANN models, and
thus were not able to sufficiently model the realized volatility of the cryptocurrencies. To enable
the DCCNN models to perform better one might consider increasing the look-back window of
the DCCNN models, thus enabling more information to be inputted to the model. This would
automatically increase the number of parameters as a larger number of dilated causal convolu-
tional layers would have to be used. Another direction to go would be increasing the number
of linear layers used after the dilated causal convolutional blocks, to enable the neural network
to further increase the model complexity of the model for the forecasted realized volatility. This
would again increase the number of neural networks, and increase the number a lot more than
with the extra dilated causal convolutional layers.

All in all, it is quite interesting that the ANN model seems better at modeling the realized
volatility when evaluated by the QLIKE loss function, and especially why there is an difference
between the HAR model and the ANN model. To better understand this difference, a direction
of further research could be to analyse the residuals of the two models on the cryptocurrencies.
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This would allow us to gain an understanding of where the models differ significantly in their
predictions, whether it is in times of high volatility or low volatility, or when the level of volatility
changes. Further, one could run the models on a larger set of data, to check if the difference
persists in other asset classes with other volatility characteristics.

6.2 Usability of Results

The results and the interpretation described above could have multiple uses in the financial
research or application. As the results show that the ANN model is best on the QLIKE criterion
and the HAR model is best on the MSE criterion, one could argue that an ensemble model would
perform more well rounded in a practical setting. In most areas of use the most important thing
about the volatility models used are their ability to compute an unbiased and accurate forecast
of the volatility. Furthermore, it is important that the volatility model can predict jumps and
extreme levels of volatility as these are especially important in risk management and option
pricing. An ensemble model would be a model which takes the output of both the ANN model
and the HAR model and use both in a separate model, either by a weighted average or another
regression. The ensemble model should then be able to take the best of both of the models and
therefore generate a more well rounded, and unbiased, estimate of volatility.

Furthermore, the results might be used as a guidance towards choosing the right model
type for modeling the realized volatility of cryptocurrencies and perhaps other assets. That is,
practitioners may use the results to make an informed decision about which model to employ in
their work. For example, if a pratitioner were most concerned with modeling the extreme levels
of volatility, he/ she should go with the HAR model as it would perform best at that task, if
considering the results of this thesis. On the other hand, if the practitioner were most concerned
with not predicting a too large level of volatility, say for option pricing, he/ she should go with
the ANN model.

The conclusion of the discussion must be that more research is needed to understand the
differences between the performance of the two model types. Furthermore, one could experiment
with adding more parameters to the DCCNN models to analyze if the DCCNN models are capped
in their performance by the relatively low number of parameters. The usability of the results
are twofold; firstly, the results may be used to motivate a development of an ensemble model
to create a model balanced realized volatility forecast, and secondly, the results may be used a
guide for choosing the right model type for the specific task at hand.
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Chapter 7 Conclusion

This thesis set out to answer the research statement:

How can neural networks enhance the capability of HAR-style models in forecasting
the realized volatility of cryptocurrencies?

To accomplish this four HAR-style models were implemented as baseline models. The Het-
erogenous Autoregressive (HAR) model and the lnHAR models are the standard models used,
which are developed based un the Heterogenous Market Hypothesis. The Heterogenous Mar-
ket Hypothesis in general concerns itself with the differing trading horizons and frequencies of
traders. This leads to the HAR model which includes an averaged daily, weekly and monthly
component of the realized volatility. To allow better represent the stylized facts of volatility
the two models, HAR-J and HAR-RS-I, are implemented as well. The HAR-J tries to model
the realized volatility using both the realized volatility and a jump component in the regression
model, thus attempting to include volatility jumps in the model. Similarly, the HAR-RS-I model
includes the positive and negative realized semi-variances, to model the leverage effects seen in
volatility.

The deep learning models used in the thesis are of two architectures. The first is the simple
ANN model, consisting only of linear feed-forward layers. The second is a dilated causal convolu-
tional neural network, inspired by the WaveNet algorithm devised by Google’s Deep Mind. Both
architectures are implemented in four ways, each according to one of the HAR models mentioned
above.

The results of the thesis is that on forecasting the one-day ahead realized volatility of the
cryptocurrencies the HAR model performs best when evaluated on teh MSE criterion, while the
ANN model performs best on the QLIKE criterion. Thus, the econometric HAR models seem to
be better at modeling the day-to-day movements in the volatility while the ANN models seem to
be better at modeling the latent structure of the volatility. The DCCNN models perform worse
than the ANN on QLIKE and better on MSE, while performing worse on the MSE and better
on the QLIKE criterion than the HAR models.

More research is needed to better understand the differences between the model predictions
of the realized volatility. This may be done either by a more in-depth scrutinization of the
predictions of the models on the data in this thesis or by evaluating the models on other asset
classes with different volatility characteristic.

The results of the thesis can possibly be used in two ways. Either, by using the as a guidance
to model selection or by using the models in an ensemble fashion to achieve a more balanced
forecast of realized volatility.
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Appendix A OLS Regression Results for
HAR Models

coef std err t P> |t| [0.025 0.975]

const 0.0056 0.002 3.682 0.000 0.003 0.009
Daily 0.5214 0.034 15.306 0.000 0.455 0.588
Weekly 0.2275 0.055 4.169 0.000 0.120 0.335
Monthly 0.0901 0.054 1.657 0.098 -0.017 0.197

Table A.1: BTC-HAR OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const 0.0081 0.002 3.721 0.000 0.004 0.012
Daily 0.5239 0.034 15.488 0.000 0.458 0.590
Weekly 0.1867 0.055 3.394 0.001 0.079 0.295
Monthly 0.1135 0.059 1.914 0.056 -0.003 0.230

Table A.2: ETH-HAR OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const 0.0130 0.003 3.991 0.000 0.007 0.019
Daily 0.5375 0.035 15.569 0.000 0.470 0.605
Weekly 0.1535 0.058 2.667 0.008 0.041 0.267
Monthly 0.0628 0.074 0.853 0.394 -0.082 0.207

Table A.3: ADA-HAR OLS Regression Results (own production).
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coef std err t P> |t| [0.025 0.975]

const 0.0071 0.002 3.650 0.000 0.003 0.011
Daily 0.4683 0.034 13.656 0.000 0.401 0.536
Weekly 0.1476 0.059 2.502 0.013 0.032 0.263
Monthly 0.2287 0.052 4.384 0.000 0.126 0.331

Table A.4: BNB-HAR OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const -0.4544 0.113 -4.037 0.000 -0.675 -0.234
Daily 0.4710 0.036 13.021 0.000 0.400 0.542
Weekly 0.3091 0.054 5.679 0.000 0.202 0.416
Monthly 0.0964 0.050 1.937 0.053 -0.001 0.194

Table A.5: BTC-lnHAR OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const -0.4419 0.110 -4.021 0.000 -0.658 -0.226
Daily 0.5753 0.034 16.818 0.000 0.508 0.642
Weekly 0.1813 0.051 3.565 0.000 0.081 0.281
Monthly 0.1096 0.049 2.216 0.027 0.013 0.207

Table A.6: ETH-lnHAR OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const -0.6295 0.144 -4.385 0.000 -0.911 -0.348
Daily 0.5907 0.034 17.223 0.000 0.523 0.658
Weekly 0.1222 0.052 2.338 0.020 0.020 0.225
Monthly 0.0836 0.061 1.372 0.170 -0.036 0.203

Table A.7: ADA-lnHAR OLS Regression Results (own production).

53



Appendix A. OLS Regression Results for HAR ModelsAppendix A. OLS Regression Results for HAR Models

coef std err t P> |t| [0.025 0.975]

const -0.4184 0.096 -4.358 0.000 -0.607 -0.230
Daily 0.5183 0.034 15.038 0.000 0.451 0.586
Weekly 0.1989 0.054 3.675 0.000 0.093 0.305
Monthly 0.1577 0.048 3.256 0.001 0.063 0.253

Table A.8: BNB-lnHAR OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const 0.0004 0.000 2.347 0.019 6.52e-05 0.001
Daily 0.3054 0.037 8.211 0.000 0.232 0.378
Weekly 0.1310 0.063 2.073 0.038 0.007 0.255
Monthly 0.0667 0.081 0.819 0.413 -0.093 0.226
Jumps 2.2527 0.308 7.323 0.000 1.649 2.856

Table A.9: BTC-HAR-J OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const 0.0008 0.000 3.399 0.001 0.000 0.001
Daily 0.3981 0.037 10.871 0.000 0.326 0.470
Weekly 0.1364 0.066 2.058 0.040 0.006 0.266
Monthly 0.1405 0.085 1.657 0.098 -0.026 0.307
Jumps 0.2659 0.282 0.944 0.345 -0.287 0.819

Table A.10: ETH-HAR-J OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const 0.0016 0.000 4.277 0.000 0.001 0.002
Daily 0.4441 0.043 10.350 0.000 0.360 0.528
Weekly 0.1832 0.071 2.595 0.010 0.045 0.322
Monthly 0.0329 0.105 0.313 0.754 -0.173 0.239
Jumps -1.2629 0.376 -3.362 0.001 -2.000 -0.526

Table A.11: ADA-HAR-J OLS Regression Results (own production).
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coef std err t P> |t| [0.025 0.975]

const 0.0008 0.000 2.955 0.003 0.000 0.001
Daily 0.2000 0.038 5.220 0.000 0.125 0.275
Weekly 0.0186 0.069 0.271 0.786 -0.116 0.154
Monthly 0.2272 0.060 3.767 0.000 0.109 0.346
Jumps 3.8413 0.517 7.424 0.000 2.826 4.857

Table A.12: BNB-HAR-J OLS Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const 0.0003 0.000 1.854 0.064 -1.52e-05 0.001
Weekly 0.1371 0.052 2.617 0.009 0.034 0.240
Monthly 0.1095 0.067 1.628 0.104 -0.022 0.241
RS+ -1.2976 0.082 -15.827 0.000 -1.459 -1.137
RS- 2.4372 0.094 25.907 0.000 2.253 2.622

Table A.13: BTC-HAR-RS-I Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const 0.0004 0.000 1.883 0.060 -1.75e-05 0.001
Weekly 0.1299 0.059 2.216 0.027 0.015 0.245
Monthly 0.1989 0.075 2.652 0.008 0.052 0.346
RS+ -0.8742 0.085 -10.245 0.000 -1.042 -0.707
RS- 1.8377 0.094 19.614 0.000 1.654 2.022

Table A.14: ETH-HAR-RS-I Regression Results (own production).

coef std err t P> |t| [0.025 0.975]

const 0.0011 0.000 3.363 0.001 0.000 0.002
Weekly 0.1564 0.063 2.492 0.013 0.033 0.280
Monthly 0.0607 0.093 0.649 0.517 -0.123 0.244
RS+ -1.3680 0.116 -11.776 0.000 -1.596 -1.140
RS- 2.2589 0.126 17.920 0.000 2.011 2.506

Table A.15: ADA-HAR-RS-I Regression Results (own production).
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coef std err t P> |t| [0.025 0.975]

const 0.0002 0.000 0.789 0.430 -0.000 0.001
Weekly -0.0270 0.060 -0.451 0.652 -0.144 0.090
Monthly 0.3669 0.052 7.090 0.000 0.265 0.468
RS+ -1.7607 0.113 -15.619 0.000 -1.982 -1.539
RS- 2.8298 0.133 21.297 0.000 2.569 3.091

Table A.16: BNB-HAR-RS-I Regression Results (own production).
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