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Preface

This report serves as the primary artifact for which the author will defend his Master’s de-
gree as part of the 4+4 PHD programme at the Department of Computer Science, Aalborg
University, DEIS, under the supervision of Professor Kim Guldstrand Larsen. It details one
of the projects worked on during Part A of the programme.

The main body of the report details and extends the work Balancing Flexible Produc-
tion and Consumption of Energy using Resource Timed Automata[6] published in the
proceedings of the 11th Mediterranean Conference on Embedded Computing Resources (MECO22),
7-10 June, Budva, Montenegro. Originally [6] is written by Jonas Hansen, Kim Guldstrand
Larsen and Pieter J.L Cuijpers.

Aalborg University, August 10, 2022

Jonas Hansen
<jonash@cs.aau.dk>
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Chapter 1

Introduction

Figure 1.1: Example of a prosumer system. A number of households each associating a battery, photovoltaic solar
panels and a list of tasks to complete. Households can choose to draw power from the grid and/or from its solar
panels which in itself is dependent on the weather and the time of day.

In recent years we have seen an increase in decentralized renewable energy installa-
tions, such as rooftop solar panels, private windmills, heatpumps and onsite energy stor-
age devices. Households, factories, office buildings etc. utilizing these installations are
collectively referred to as prosumers, i.e. flexible electrical components (composites of
components) both capable of producing and consuming power depending on time and/or
non-deterministic behavior (see figure 1.1). Prosumers belong to the more general cate-
gory of Resource Systems in which timed behavior alters some kind of observable hybrid
resources, referred to as resource behavior. In general, such systems are dependent on their
resource behavior, i.e. they are capable of testing their resources in order to alter their
timed behavior. In this project we limit ourselves to resource observers in which no testing
is possible during execution. We call this subset of resource systems under said constraints
Prosumers or Networks of Prosumers. In addition to resource constraints, prosumers are also
subject to task dependencies, meaning they must complete certain tasks (which might be
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dependent on each other) in a finite amount of time.
An important challenge for a prosumer network is to balance the production and con-

sumption of energy both locally and globally. This is called load management. Poor load
management increases the strain on the power transition infrastructure, which in turn in-
creases the risk of damage to that infrastructure as well as rolling blackouts resulting from
voltage fluctuations. Good load management means to ensure that all power produced
in a network is either immediately consumed at a nearby location or is stored locally as
energy for future use [14].

Two complementary approaches for load management are energy storage in case of
overproduction, and flexible scheduling of consumption and (sometimes) production. In
traditional power grids, designed to enable consumers to draw power from producers
in a one directional transfer, storage is usually achieved by storing excess power in the
grid itself or by passive participation of customers in the form of "dumb" storage, e.g. in
batteries of electrical vehicles. Furthermore, flexible scheduling is traditionally achieved
through pricing strategies, that offer lower prices to customers who adapt their consump-
tion to match optimal production efficiency, e.g. day/night tariffs and special contracts
with industries [4]. Modern power grids, also known as smart grids, are designed for bi-
directional transfer of power because of the presence of prosumers next to the traditional
producers and consumers. This facilitates intelligent integration of collective behavior in
terms of consumption/production. Varying sizes, output and capacities of energy produc-
ing components are more easily facilitated as well. Of particular note, smart grids allow
for active participation of prosumers in order to optimize grid operations, but this requires
negotiations between prosumers and the grid aggregators that are responsible for (parts
of) the network [8].

In order to facilitate the scheduling of consumption and production by prosumers, the
MIRABEL Project [11] introduced the notion of a flex-offer, in which a prosumer specifies
upper and lower bounds to the energy profile requested for the duration of a given task,
and offers a flexible start-time for that task to be scheduled. The MIRABEL Project also
discussed how to use flex-offers as a basis for setting up contracts for the consumption
and production of energy among prosumers and grid aggregators, but the details of this
are outside the scope of this project. The original definition of flex-offer is quite restricted
in what a prosumer can express as an energy profile, in later work the flexibility models
have been generalized to include, in particular, state-based dependencies and linear time-
invariant upper and lower bounds. After extending the notion of flex-offer, the next step is
usually to study the problem of parallel composition through aggregation. By aggregating
a number of flex-offers and determining the worst- and best-case energy profile for the
aggregation, one can obtain insight in the baseline energy imbalance for a given scheduling
of prosumers. However, this does not yet solve the scheduling problem itself [3, 10, 12, 13,
15, 16] and neither does it answer whether a proposed flexoffer is satisfied by a given
prosumer.

In this project, we propose to model prosumer behavior using a variant of Hybrid Au-
tomata [7], named Resource Timed Automata (RTA). The novelty of this type of modeling,
is that it allows a grid aggregator to consider prosumers in isolation, but also treat them as
smaller or larger groups, because aggregation (i.e. parallel composition) of RTA’s always
results in another RTA. It is our expectation that abstraction techniques on RTA’s can be
developed in a similar fashion as for other types of automata, so that analysis methods for
RTA’s become scaleable. As an immediate contribution, we show in this project how to
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answer the question whether an RTA satisfies a given flex-offer as a reachability problem,
using standard methods from model-checking such as the UPPAAL toolset[5], and note
that the witnessing trace produced by these model-checkers is in fact such a schedule. Be-
fore we dive into the proposed method and formalism we spent some time on formally
defining so called Resource Systems as a generalization for the particular hybrid behavior
capturing the semantics of consumers, producers and prosumers.

The remainder of this report is structured as follows. In Chapter 2 we formally de-
fine Resource Systems through its semantics and derive the relevant flexibility properties
of interest. Chapter 3 formally defines Resource Timed Automata (RTA) and the par-
allel composition of such. Additionally we show how the semantics of such automata
indeed captures the flexibility properties defined previously. Chapter 4 Defines the anal-
ysis method and discusses its merits. Lastly, Chapter 5 concludes upon the main body of
the report and discusses ongoing/future projects.



Chapter 2

Resource Systems and Behavior

We now define prosumers and flexible energy behavior. We start by describing a general
notion of resource systems and reason how prosumers are a subset of this overall intu-
ition. We then proceed to define desirable flexibility properties and show how concepts of
previous literature are defined in this setting. Additionally, we introduce the properties on
which the analysis method is based on.

Intuitively, Resource systems are simply time dependent cyber-physical systems that ob-
serves or alters some resource such as water, electricity, pressure etc. We refer to this behav-
ior as resource behavior. This intuition is based on an extension to the algebraic framework
developed in [1] for timed regular languages. Flexibility analysis is the process of verifying
whether a given resource behavior satisfies some property. In general, such systems can
test their observations and act accordingly when running, however we limit ourselves to
strictly observational behavior and also to time bound properties for our analysis. These
restrictions are enforced because otherwise we lose a great deal of general decidability
which is outside the scope of this particular project.

The system types; Consumer, Producer and Prosumer are simply systems that seman-
tically adhere to some resource behavior resulting in negative, positive or mixed flow,
respectively. As such, system types are only important when analysis is ongoing an essen-
tially only applicable to instances of system behavior, not a strict label. Because of this, we
refer to all systems as prosumers and moving forward we are only concerned with their
resource flow behavior.

Moving forward we focus on electrical component defined over the resource semi-ring
(R,+, ·, 0, 1) (where + and · defines the arithmetic operations; addition and multiplica-
tion) and refer to instances1 of the flow induced by electrical components as power and
characterize it using functions of power over time P(t) : R≥0 → R. In the remainder of
this chapter we define flexibility properties in relation to the resource semi-ring. Note that
we do not in fact require the resource domain to capture a semi-ring, however in chapter
3 we implicitly define our abstraction over this semi-ring. For convenience we therefore
introduce it now.

Definition 1 (Prosumer) We define a prosumer Pros as a set of power functions.

1Instances are essentially runs of the system in question

4



2.1. Flexoffers 5

Given a power function P ∈ Pros, we define the displaced energy of Pros in P over
a time interval [t1, t2] as ∆E =

∫ t2
t1

P(t)dt and refer to it as the prosumed energy over that
interval (see Fig. 2.1). The aggregation of multiple prosumers in a network leads to adding
up their power functions.

Definition 2 (Aggregation of prosumers) For power functions P1 and P2 we define (P1 + P2)(t) =
P1(t) + P2(t) for all t. For prosumers Pros1 and Pros2 we define Pros1 +Pros2 = {(P1 + P2)(t) |
P1 ∈ Pros1, P2 ∈ Pros2}.

Power

time

τ1 τ2 τ3 τ4

τ5 τ6

Figure 2.1: An example power function P(τ) defining the rate of prosumption in time. The blue areas describe
the energy prosumed in time intervals [τ1, τ2], [τ3, τ4], and [τ5, τ6].

2.1 Flexoffers

Now that we have formally defined Resource systems and established an approach to
reason about prosumer behavior in terms of resource flow as power, we now turn to iden-
tifying the desired flexibility properties. In previous literature, the property flex-offer has
been introduced to capture power behavior in time. Flex-offers define time dependent
energy bounds for which a prosumer is willing to adhere. Since we have characterized
resource behavior as flow over time it is straightforward to define flexoffers in this setting
as energy difference over time. Intuitively, prosumers define power behavior and flexoffers
capture the integral of power over time i.e. energy, referred to as prosumption.

Flexibility analysis of prosumers consists of determining whether or not a prosumer
can adhere to a flexoffer, which consists of a set of time dependent prosumption bounds,
called energy slices. The energy slices make up a sequential pattern of energy bounds that
a prosumer is ready to commit to. (see Fig. 2.2).

Definition 3 (Energy Slices and Flexoffers) An energy slice s = ([tl , tu], [el , eu]) is a tuple
defining an observation window [tl , tu] and a bound on the energy prosumption [el , eu]. A flexoffer
F = {s1, s2, · · · sn} consists of a set of n (disjoint) energy slices. Formally, we say that a power
function P complies with F, denoted P |= F if: ∀([tl , tu], [el , eu]) ∈ F :

∫ tu
tl

P(τ) dτ ∈ [el , eu].

Definition 4 (Prosumption equivalence) We say that power functions P1 and P2 exert equiv-
alent prosumption behavior with respect to a flexoffer F, denoted P1 =F P2 if: ∀([tl , tu], •) ∈ F :∫ tu

tl
P1(t) dt =

∫ tu
tl

P2(t) dt.
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∆E

time

τ1 τ2
τ3 τ4

τ5 τ6

s1 s2 s3
e1

u

e1
l

e2
u

e2
l

e3
u

e3
l

Figure 2.2: An example flexoffer F = {s1, s2, s3} s.t. si = ([ti
l , ti

u], [ei
l , ei

u]) for all i ∈ {1, 2, 3}. Energy slices are
defined over intervals [τ1, τ2], [τ3, τ4] and [τ5, τ6]. Here times are slice specific lower or upper time bounds, e.g.
[τ1, τ2] = [t1

l , t1
u]. The blue lines correspond to the prosumption of P defined in Fig 2.1. Clearly P |=∃ F.

Given a flexoffer F, we can restrict the behavior of a prosumer Pros to those power
functions P ∈ Pros that comply with F. If this restriction is non-empty, we say that F is
feasible in Pros, denoted Pros |=∃ F (see Fig. 2.2).

Definition 5 (Flexoffer Feasibility) Let F be a flexoffer and Pros a prosumer. We define feasi-
bility of F in Pros as follows: Pros |=∃ F iff ∃P ∈ Pros : P |= F

Alternatively, if the prosumer contains every possible power function that complies
with F, we say that Pros completely satisfies F, denoted Pros |=∀ F.

Definition 6 (Flexoffer Satisfiability) Let F be a flexoffer and Pros a prosumer. We define com-
plete satisfaction of F in Pros as follows: Pros |=∀ F iff ∀P |= F ∃P′ ∈ Pros : P′ =F P.

In addition to prosumption flexibility, in the original definition in [11], flexoffers en-
compasses a notion of start time flexibility, capturing the capacity of a prosumer to wait
before starting. For simplicity, we omit this aspect, but do note that we could extend
the method presented in this paper to handle this as well. In the following we focus on
flexoffers for which the requested start time has already been chosen.

Now that we have all the preliminary definitions in place, the balancing problem in
terms of flexoffers can be addressed by either directly analyzing an entire aggregated
prosumer or by contract negotiations between individual prosumers. A direct analysis
comes down to determining whether a zero-flexoffer is feasible in an aggregated prosumer
Pros, i.e. Pros |=∃ F0, where F0 denotes a flexoffer in some time interval for which all slices
define 0-energy prosumption bounds (or something close to 0 in a more loose analysis).

In the indirect approach, prosumers negotiate flexoffers to achieve balance. A pro-
sumer (or aggregation of prosumers) that offers to completely satisfy a flexoffer F has to
be balanced by a prosumer (or aggregation) for which the negated flexoffer −F is feasible.

Definition 7 (Negated Flexoffer) Let F be a flexoffer, then by −F we denote the negation of F
defined as follows: −F = {([tl , tu], [e′l , e′u]) | ([tl , tu], [el , eu]) ∈ F ∧ e′l = −el ∧ e′u = −eu}
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Theorem 1 (Balance) For prosumers A and B and flexoffer F, if A |=∀ F and B |=∃ −F then for
every P ∈ B with P |= −F there exists a P′ ∈ A such that P + P′ =F 0. We say that A and B are
balanced.

This theorem follows directly from the definition of satisfiability and negation. Note that,
following the scheme of Theorem 1 in practice means that Prosumer B only promises to
adhere to flexoffer −F in some way, while prosumer A promises to be follow along with
any choice of P′.



Chapter 3

Resource Timed Automata

P

y≤3
ġ=4

I

y≤10
ġ=0

C

y≤3
ġ=−5

y≥3
y:=0

switch_off

start_produce
y:=0

start_consume
y:=0

y≥3
y:=0

switch_off

Figure 3.1: RTA Pros defined over clock y and resource g. Location P describes a mode of production where
delays result in a positive rate of change of 4 in resource g. Location C describes a mode of consumption where
there is a negative rate of change of 5 in g. Location I describes an idle mode, in which the rate of change in g
is 0. The system resides in location P for 3 time units, after which it makes a transition to mode I. Similarly, in
mode C it resides for 3 time units. Mode I can be left immediately, but must be left within 10 time units. After
each transition the clock is reset to 0.

To model prosumers we develop a suitable automata formalism called Resource Timed
Automata. Extending the work on bounded infinite behavior in Energy Timed Automata
(ETA) done by Bacci et. al. in [2], we study the multi variable setting of finite behavior in
Resource Timed Automata (RTA). RTAs extends ETAs[2] in the sense that they generalize
the concept of a single energy variable into a set of resource variables. In each state of the
their execution, RTAs defines the flow of its associated resources as constant derivatives
in time. As such the resource variables themselves captures the integrated flow over time.
RTA’s are a strict subclass of Hybrid Automata [7] since the behavior of the automaton does
not depend on the value of the resources. In particular, there are no resource guards on
the transitions and no resource constraints in the states. RTA’s are reminiscent of Weighted
Timed Automata, with a crucial difference in the way in which parallel composition is
defined.

RTAs are defined over a set of real valued clocks C. A clock stores the amount of time
elapsed since last reset, captured by a valuation ς : C → R≥0.
Let d ∈ R≥0, x ∈ C then ς + d is defined as: (ς + d)(x) = ς(x) + d

8
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Resetting a set of clocks r ⊆ C, captured by ς[r] is defined as: ς[r](x) =

{
0, x ∈ r
ς(x), otherwise

Additionally, clocks can be numerically tested in constraints.

Definition 8 (Clock constraint and evaluation) Let C denote a set of clocks. We define the set
B(C) of clock constraints over C, by the abstract syntax: g := x ∼ c | g ∧ g where x ∈ C,
c ∈ Q≥0 and ∼∈ {≤,≥}.
We define the evaluation of a clock constraint in some valuation ς |= g inductively on the structure
of g as follows: ς |= x ∼ c ⇔ ς(x) ∼ c and ς |= g1 ∧ g2 ⇔ ς |= g1 ∧ ς |= g2, where
g1, g2 ∈ B(C).

We denote the initial clock valuation as ς0. Let x ∈ C then ς0(x) = 0.
RTAs are also defined over a set of real valued variables E = {η1, η2, · · · , ηn} called

resources. These are captured by a valuation ρ : E → R.
For f : E → Q, η ∈ E , and d ∈ R≥0, we define the two following operations: (ρ + f )(η) =
ρ(η) + f (η) and ( f · d)(η) = f (η) · d.

To reason about observable behavior, RTAs are defined over a set of actions Act = Σ∪ ε,
where Σ is some alphabet and ε denotes the empty action.

lA
0

x ≤ 1, η̇ = −3

lA
1

x ≤ 1, η̇ = +6

lA
2

x ≤ 1, η̇ = −6

x ≤ 1∧ x ≥ 1, x := 0

(a) RTA A defined over clock x and resource η

lB
0

y ≤ 2, η̇ = +1

lB
1

y ≤ 2, η̇ = −2
η+ = 1

y ≤ 2∧ y ≥ 2, y := 0

(b) RTA B defined over clock y and resource η

Figure 3.2: RTAs A and B defined over resource η. Update rates are defined for η in each location.
lack of discrete updates of edges, simply denotes an update of 0. Note that no actions are related
to the edges of A or B. Whenever the action defined over an edge is the empty action ε, we simply
omit it from depictions.

Definition 9 (Resource Timed Automata) We define an RTA (L, L0, E, rate, inv, Act, C, E) as
a tuple consisting of:

• finite sets of clock variables C, resource variables E , and actions Act;

• a finite set of locations L, and a non-empty subset L0 ⊆ L of initial locations;

• a finite set of transitions E ⊆ L×B(C)×Act× 2C × (E → Q)× L;

• a location-rate function rate : L→ (E → Q);

• a location-invariant function inv : L→ B(C).

If a ∈ Act and (l, g, a, r, i, l′) ∈ E we say that (l
g,a,r,i−−−→ l′). Figure 3.2 depicts two small

example RTAs.
When depicting an RTA as in Fig. 3.1, an update rate rate(l)(e) = x of resource e in

location l will be annotated by writing ė = x below or above the location l, except when
the rate is 0 in which case it is left out completely. Similarly, a transition (l, g, a, r, i, l′) ∈ E
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is depicted as an arrow from l to l′ annotated with a and g. If for some clock variable c ∈ C
we have a reset (i.e. c ∈ r), this is annotated on the transition by writing c := 0. Similarly,
for a resource variable e ∈ E that has an increment or decrement i(e) = x, this is annotated
by e+ = x, unless x = 0 in which case the annotation is left out.

Definition 10 (Semantics of RTAs) Let A = (L, L0, E, rate, inv, Act, C, E) be an RTA. The Re-
source Timed Labeled Transition System (RTLTS) generated by A is defined as: T = (S, Lab, ω,−→
),
where:

• S is a set of states (configurations) defined as S = {(l, ς, ρ, τ) | (l, ς, ρ, τ) ∈ L × (C →
R≥0)× (E → R)×R≥0 ∧ ς |= inv(l)}

• Lab is a set of labels defined as Lab = Act∪R≥0

• ω : S → (E → R) defines a mapping from states to resource valuations. If s = (l, ς, ρ) ∈ S
and η ∈ E we have s(η) = ω(s)(η) = ρ(η)

• −→ is a transition relation −→= { α−→ | α ∈ Lab} defined as:

– (l, ς, ρ, τ)
a−→ (l′, ς′, ρ′, τ)

if there is an edge (l
g,a,r,i−−→ l′) s.t. ς |= inv(l), ς |= g, ρ′ = ρ[r], ρ′ |= inv(l′), a ∈ Act

and ρ′ = ρ + i

– (l, ς, ρ, τ)
d−→ (l, ς + d, ρ′, τ′)

s.t. d ∈ R≥0, ∀d′ ∈ [0, d]. ς + d′ |= inv(l), τ′ = τ + d and ρ′ = ρ + rate(l) · d

If l0 ∈ L0, ς0 |= inv(l0) and ρ : E → R, then (l0, ς0, ρ, 0) denotes an initial state of T.

Consider RTA A depicted in figure 3.2. Let s0 = (lA
0 , ς0, ρ, 0), where s0(η) = 3 be an

initial state of A. Let Ta be the RTLTS generated by A.
The transition relation of Ta defines infinitely many delay transitions from s0 eg. (lA

0 , x :

0, η : 3, 0) 0.5−→ (lA
0 , x : 0.5, η : 1.5, 0.5). It also defines a discrete transition from s0: (lA

0 , x :
0, η : 3, 0). ε−→ (lA

1 , x : 0, η : 3, 0).
Semantically, an RTA as depicted in fig 3.1 represents a set of runs, i.e. possible evolu-

tions of states and resources over time, which are defined as follows.

Definition 11 (Runs of an RTA) Given an RTA defined as (L, L0, E, rate, inv, Act, C, E), a run
(x0, t0, a0, x1, t1, a1, ..., xN , tN) of length N defines an alternating sequence of states xn, delays
tn ∈ R≥0, and actions an ∈ Act such that the run defines a path in the RTLTS generated by the
RTA.

The run is said to reach a state y = (l, ς, ρ, τ) at some time s ∈ R≥0, and y is hence called
reachable, whenever τ = s and there exists an n ≤ N such that xn = (l, ς′, ρ′, τ′) with τ′ ≤ s ≤
τ′ + tn and ς = ς′ + (s− τ′), and ρ(e) = ρ′(e) + rate(l)(e) · (s− τ′) for all e ∈ E .
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IC

x≤5
ė=0

C

x≤4
ė=−3

IP

y≤3
ė=0

P

y≤6
ė=4

x≥3
x=0

x≥2
x=0

y≥1
y=0

y≥4
y=0

Ic Ip

x≤5∧y≤3
ė=0

IcP

x≤5∧y≤6
ė=4

CIP

x≤4∧y≤3
ė=−3

CP

x≤4∧y≤6
ė=1

y≥1
y=0

y≥4
y=0

x≥3
x=0

x≥2
x=0

y≥1
y=0

y≥4
y=0

x≥2
x=0

x≥3
x=0

Figure 3.3: On the left we see two RTAs defined over resource variable e and clock x respectively y. On the right
we see the parallel composition of the two RTAs defined as the product automata of the two. The red-blue RTA
models a simple consumer. It can remain idle between 3 and 5 time units after which it can consume with rate
−3 between 2 and 4 time units. The yellow-magenta RTA models a simple producer which can idle between 1
and 3 time units before switching to producing with rate 4 between 4 and 6 time units. The parallel composition
of the two defines a simple prosumer which can exert prosumption behavior defined by the sum of production
and consumption.

Definition 12 (Network of RTAs) For 1 ≤ i ≤ m, let Ai = (Li, Li
0, Ei, ratei, invi, Acti, Ci, E)

be an RTA.
The network A is defined as the parallel composition:

A = A1 ⊗ A2 ⊗ · · · ⊗ Am = (L,L0, E′, rate′, inv′, Act′, C ′, E ′)

where:

• L = L1 × L2 × · · · × Lm

• L0 = L1
0 × L2

0 × · · · × Lm
0

• E′ = {({l1, l2, · · · lj, · · · lm}, g, a, r, i, {l1, l2, · · · l′j, · · · lm}) | ∃j ∈ [1, m] : (lj, g, a, r, i, l′j) ∈
Ej}

• rate′ =
⋃m

i=1 ratei

• inv′ =
∧m

i=1 invi

• Act′ =
⋃m

i=1 Acti

• C ′ = ⋃m
i=1 Ci

st.
⋂m

i=1 Ci = ∅
Fig 3.3 illustrates an example of two small RTA’s in aggregation. Furthermore, in fig

3.4 we visualize the valuation of the resource variable e throughout one of the runs of that
parallel composition.
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Definition 13 (Semantics of Networks of RTAs) Let A = A1⊗A2⊗· · ·⊗Am = (L,L0, E′, rate′, inv′, Act′, C ′, E ′)
be a network of RTAs. The RTLTS generated by A is defined as: T = (S, Lab, ω,−→), where

• S is a set of states defined as S = {(L, ς, ρ, τ) | L1 × L2 × · · · × Lm × (C → R≥0)× (E →
R)×R≥0 ∧ v |= I(L) ∧ ς |= inv(L)}

• Lab is a set of labels defined as Lab = Act ∪R≥0

• ω : S→ (E → R) defines a mapping from states to resource valuations. If s = (l, ς, ρ, τ) ∈
S and η ∈ E we have s(η) = ω(s)(η) = ρ(η)

• −→ is a transition relation→= { α−→ | α ∈ Lab} defined as:

– (L, ς, ρ, τ)
a−→ (L′, ς′, ρ′, τ)

if a ∈ Acti and there is an edge (li
g,a,r,i−−−→ li′), then ς |= g, ς |= inv′(L), ς′ = ς[r],

ς′ |= inv′(L′) and ρ′ = ρ + i

– (L, ς, ρ, τ)
d−→ (L, ς + d, ρ′, τ′)

s.t. d ∈ R≥0, ∀d′ ∈ [0, d]. ς + d′ |= inv′(L), τ′ = τ + d and ρ′ = ρ + rate′(L) · d,
where rate′ is defined as: rate′(L) = ∑j.η∈Ej

ratej(lj)

Let L0 ∈ L1
0× L2

0× · · · × Lm
0 , if v0 |= L0 and w : E → R, then (L0, ς0, ρ, 0) denotes an initial

state of T.
We now show how the power function exerted by prosumers modeled as RTAs can

be captured through runs. This links the original flexibility analysis to the problem of
modelchecking RTAs in general.

ρ(e)

time0 1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

Figure 3.4: An arbitrary run of the parallel composition depicted in Fig 3.3. Time intervals defined by the distance
between dashed lines denotes delays in locations: (IC IP), (IC P), (CP), (CIP), (IC IP).

Resource Timed Automata as in definition 9 can straightforwardly be used to model
prosumers as in definition 1. After all, let e be a resource variable of an RTA representing
energy, then we can associate any given run (x0, t0, a0, . . . , xN , tN) of that RTA with an
energy function E such that, if the run reaches state y = (l, ς, ρ, τ) at time t = τ, then
E(t) = ρ(e). If the transitions of the RTA do not contain instantaneous changes to e, this
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function E is differentiable and its derivative P(t) = Ė(t) is a piece-wise constant power
function, and aggregation of prosumers according to definition 2 and parallel composition
of their RTA models according to definition 12 coincide as follows.

Theorem 2 Given two RTA’s X and X′ defined over a resource variable e, if X has a run with
associated power function P and X′ has a run with associated power function P′, then X ⊗ X′ has
a run with associated power function P + P′.

If the transitions of the RTA do contain instantaneous changes, the notion of flexibility
analysis still makes sense for runs, because it only checks the prosumed energy and does
not rely on differentiability as such.



Chapter 4

Flexibility Analysis using Uppaal

Our final step in performing flexibility analysis is to discretize the RTAs that model our
prosumers and make their parallel composition suitable for analysis in the Uppaal mod-
elchecker [5]. First, we give a discretization procedure from RTAs to Timed Automata, and
finally we discuss how to capture a flexoffer as a discrete observer automaton. This re-
duces flexibility analysis to reachability problems that can then be efficiently solved using
Uppaal.

Given a parallel composition of RTAs as a model of an aggregation of prosumers,
we are left with the problem of modelchecking this model. Our tool of preference is
Uppaal, because its approach to reachability analysis using randomized depth-first search
is expected to scale well for the type of problem that we are studying in this project.
Uppaal, however, is not able to check continuous system dynamics. Therefore we adapt a
known discretization technique[9], to turn a parallel composition of RTAs into a parallel
composition of Timed Automata extended with integer variables and hybrid clocks1 that
can be analyzed using Uppaal. We use primarily Uppaal Classic in order to conduct
verification on the discretized prosumers. To simulate runs we use Uppaal SMC which
gives us the option to simulate sample runs under certain constraints at a known time
horizon.

The basis of the discretization, is that we restrict the runs of our RTA to those in which
discrete timesteps are made. This will lead to a subset of the original set of runs of the RTA,
but if a schedule is found in the discretized automaton we are certain it also exists in the
original RTA. The first step in the discretization is to introduce, for every resource variable
e in the RTA, two discrete variables E and RateE - keeping track of the resource and its rate
- together with an update automaton (see Fig. 4.1) that updates E using the value of RateE
whenever one time unit has passed in the Timed Automaton model (E := E + RateE).
The second step is to remove the continuous behavior of e from the RTA, and replace it
with communication to the update automaton, adjusting the value of RateE and updating
E with possible instantaneous changes. This removal results in a timed automaton (see
Fig. 4.2), and placing multiple of such timed automata in parallel with a single copy of
each update automaton provides a discretization of the parallel composition of RTAs as a
whole. Lastly, whenever RateE is updated we must insure that a pending update to E has

1These clocks are not part of the discretization technique but rather helps give insights on sample runs of the
system
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Figure 4.1: An update automaton for resource e consists of two locations which updates the discrete variable E
with the rate Rate() (a function that returns the accumulated rate of e) whenever 1 time unit has passed. the
variable rE is a so-called hybrid clock, describing the real evolution of e over time. Synchronization on channel
obs insures correctly timed observation of rates in the FlexObserver automaton. synchronization on channel go
insures that E is updated before any updates to RateE. The location at the top is so-called urgent insuring that
no delays can occur in this location.

already occurred. We therefore introduce so-called broadcast synchronization on channel
go making all transitions that update RateE input enabled on said channel. Whenever
the update automaton is altering E it communicates to all components that it needs to
make the update before RateE is altered anywhere. For convenience, instead of having one
RateE for each resource variable, for M prosumers we instead define the array structure
RateE[M] for each resource variable. Here RateE[id] defines the prosumer specific rate of a
given resource in order to more easily distinguish between them. Furthermore, we define
function Rate() which simply evaluates the sum of all RateE[id].

Figure 4.2: The discretized posumer automaton consists of a copy of the RTA prosumer automaton from which
references to resource variables e have been removed and to which communications updating the rate RateE[id]
have been added. Here id is the prosumer id. Note that the updates to RateE[id] on the transitions reflect changes
in the rate rather than the actual rate specified in the corresponding locations of the original RTA in Fig. 3.1. The
edge from location I2 to I1 defines a so-called select statement on type time_t, a bound integer type in the range
[0, 10]. this edge defines 11 different edges, one for each integer value in the range. This captures the original idle
location’s choice of delay described in Fig. 3.1.

As a final step, in order to actually conduct analysis on a given flexoffer, we model
the flexoffer as an observer automaton (see Fig. 4.3) which is placed in parallel with the
discretized RTAs and update Automata. We exploit the syntactic features of Uppaal for
this, and encode a flexoffer and its associated slices into appropriate data structures: slice_t
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and f lex_t. The type slice_t defines a struct of four integer variables t1, t2, el and eu and the
type f lex_t defines a struct of one array of slices called slices of size S, mimicking definition
3. The FlexObserver automaton waits for the relative time in which the next slice will occur.
After entering slice i, the observer keeps track of the prosumption DeltaE occurring during
the slice. If DeltaE violates the prosumption bound specified by the slice after duration
dur, the observer moves to location NotSatisfied and deadlocks. Upon reaching the end of
the last slice, if no violation has occurred thus far the observer moves to location Satisfied,
indicating that the flexoffer is indeed feasible for that particular execution.

Figure 4.3: The FlexObserver automaton. When observation concludes it will be deadlocked in location
NotSatis f ied or Satis f ied. Some locations are so-called committed (indicated by the letter C) which means that
time cannot pass in such a location and the next transition must include such locations. In this case it renders the
parallel composition deadlocked.

We can now verify whether a flexoffer is feasible using Uppaal by querying simply if
there exists a run in which the location Satisfied is reached. Furthermore we can ask to
generate such a run, which provides us immediately with a viable schedule witnessing
that the flexoffer is feasible in the prosumer aggregation. Satisfiability of a flexoffer can be
verified by querying for each discrete run in the interval defined by the flexoffer whether
location Satisfied is reachable. In the current model, the quantification of runs must be in-
putted manually through variable f however this could easily be automated as extensions
of Uppaal itself. Naturally these quantifications only works because we are dealing with
the discrete domain and therefore are guaranteed to have finitely many distinct runs cap-
tured by a given flexoffer. As an illustration, in Fig. 4.4 we show a run as it was generated
for a parallel composition of 4 prosumers as defined in Fig. 4.2. Individual schedules for
the prosumers were generated and can be inspected using the concrete simulator option
in Uppaal, but are left out of the illustration.

We now conduct a small sample flexibility analysis on said four prosumer composition,
which we refer to as Pros. Let F = {([1, 2], [0, 0]), ([3, 5], [−20,−21]), ([7, 9], [11, 12])} be a
flexoffer. Observe that flexoffer F describes perfect balance in time interval [1, 2] a relatively
large amount of consumption in [3, 5] and a notable production excess in [7, 9]. We can
check whether F is feasible in Pros: Pros |=∃ F by asking Uppaal whether there exists a
run of Pros where location Satis f ied is reached. This property turns out to be true and
therefore Pros |=∃ F is also true. To check whether Pros satisfies F: Pros |=∀ F we verify
whether location Satis f ied is reachable for some run in Pros for each possible combination
of prosumption values in each slice. In Uppaal we simply verify the property for each of
the following flexoffers:
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Figure 4.4: A sample run of the parallel composition of four discretized prosumers as depicted in Fig. 4.2. rE
and E describes the real respectively discrete prosumed energy. For 0 ≤ i ≤ 3, RateE[i] describes the individual
rate of prosumer i with Rate() describing the accumulated rate. Here the rates are depicted with an offset for
convenience.

• {([1, 2], [0, 0]), ([3, 5], [−20,−20]), ([7, 9], [11, 11])},

• {([1, 2], [0, 0]), ([3, 5], [−20,−20]), ([7, 9], [12, 12])},

• {([1, 2], [0, 0]), ([3, 5], [−21,−21]), ([7, 9], [11, 11])},

• {([1, 2], [0, 0]), ([3, 5], [−21,−21]), ([7, 9], [12, 12])}

This property turns out to be true and therefore Pros |=∀ F is also true. Initial experi-
ments in Uppaal show that up to 100 simple prosumer models like the one depicted in Fig.
4.2 can still be verified within 10 seconds, so the approach seems to scale well in practice
for the kind of modelchecking problems we are studying.

The reason for this, is that the randomized depth first search as implemented in Uppaal
is generally fast for problems in which a correct run exists and only one valid run needs
to be generated. Naturally, if a correct run does not exist, the entire statespace needs to
be generated, which grows exponentially with the number of prosumers, resources and
clocks.



Chapter 5

Conclusion

5.1 Conclusion

We have shown how to use Resource Timed Automata to model prosumer behavior, and
how to interpret flexibility analysis as reachability problems on a parallel composition of
such automata. We have furthermore shown how to translate these automata into Timed
Automata extended with integer variables and hybrid clocks by adapting a standard dis-
cretization techniques for use with the resource-additive parallel composition defined for
RTAs. Initial results on the use of Uppaal Stratego for finding prosumer schedules that
satisfy a given load balancing condition are hopeful. Nevertheless, a more realistic case
study still needs to be explored in order to confirm that the schedulability problem indeed
scales well under randomized depth-first search whenever a solution exists.

We note that, in principle, RTAs are a subclass of hybrid automata, so they could be
studied using modelchecking tools that are specific for this extended formalism as well.
This would avoid the necessity of discretization, but to the best of our knowledge there
are no tools available yet that support randomized depth-first search for this extension.
Furthermore, we suspect that RTAs have decidability advantages that do not hold for
hybrid automata in general, but this is left as a topic for future research.

5.2 Future Work

In this last section we outline ongoing projects at the time of writing. A general point of
note is that the prosumer flexoffer analogue defined in chapter 2 is an instance of a larger
abstraction property. In this report, the restricted version has been outlined because that
was all that was needed for the technique in question. However, a more powerful general
abstraction has been developed of which the previously defined is simply a special case of.

As mentioned earlier, we use the classic implementation of Uppaal, however the TIGA
and STRATEGO version have also been used for some of the projects listed below. Through
TIGA we get tools for synthesizing controllers for more complex abstractions such as
Timed Games. This is useful when considering Resource Systems that are subject to some
optimization such as safe ranges in resource variables. Uppaal Stratego presents means for
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conducting Statistical learning on Stochastic Priced Timed Games which again expands the
on which types of statistical optimization problems we can conduct on Resource Systems.

5.2.1 Exact Analysis

The biggest shortcoming of the discretization method described in this report is the in-
ability to exactly capture the behavior of prosumers. Another method has therefore been
developed based on solving linear arithmetic expressions. Because of the various restric-
tions enforced on RTAs distinguishing them from Linear Hybrid Automata we are guar-
anteed that any RTA can be described as a finite number of linear inequalities. Such linear
systems of inequalities can be solved very efficiently using methods such as quantifier
elimination. An ongoing project aims at exploiting these properties in order to generate
easily analyzable system abstractions.

5.2.2 Energy Contracts

Exploring the balancing property as defined in definition 1 serves as the foundation for
casting energy based assume-guarantee properties into this restricted hybrid domain of
which RTAs are defined. Enriching an existing formalism such as I/O-Timed Automata
with resource information gives insight into scheduling properties and abstraction prob-
lems. It is strongly suspected that established abstraction methods and operations such as
the quotient operation in this setting could help solving the balancing problem for large
scale resource systems.

5.2.3 Bounded Infinite Runs

From a theoretical point of view the RTA formalism is interesting because it expands on the
already established framework of ETA. Investigating how the multi variable setting affects
state of the art techniques and decidability results could help identifying an exact frontier
of decidability. Of particular note is the bounded infinite run problem in the multi variable
setting. This problem has already been shown to be decidable for a realistic restricted
version of ETAs. A RTA analogue of this result would be a significant contribution.

5.2.4 Regularity

Based on the characterization briefly described in Chapter 2 there is evidently some grounds
for developing a Resource analogue Kleene theorem. Such a theorem could help in iden-
tifying frontiers of decidability and also serve as mathematical foundation for time bound
reachability. This project is in its infancy at the time of writing but it is suspected that the
method developed in project 5.2.1 gives rise to a general framework based on a resourced
timed language.

The main idea is to first cast the notion of Resource System into an algebraic framework
in the same manner as in [1].

Semantically, Resource Systems defines sequential discrete behavior enriched with tim-
ing and resource information. The goal is to capture both event based and state based
resource behavior, which can be accomplished by characterizing it as a mix of an event
sequence and signals in which timing is also captured as signals. In this context, signals
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are viewed as functions from the non-negative real line R≥0 to some discrete observation
alphabet Σ.

We define this mix of event-sequence and signals as the free shuffle under an appro-
priate reduction congruence of certain monoids, each representing a different formal as-
pect of the behavior; time, resource and discrete actions. First we define the semi-ring
W = (W,⊕,⊗, 0, 1) which we will refer to as the resource semi-ring (the same structure
defined in 2). The monoid W⊕ over W generated by ⊕ defines the resource arithmetic.
We define N+ as the monoid over the hybrid timeline R×N generated by + (arithmetic
addition), which defines both discrete and continuous resource behavior. Lastly the free
monoid Σ∗ defines discrete observations.

Let W be an m-element set and {N+w | w ∈ W} be m distinct copies of N+. Then we
define the Timed resource signal-event monoid defined as: F = Π

w∈W
N+w Π Σ∗ where Π

defines the free shuffle under a reduction congruence. A typical element of F looks like:

2.5a ∗ y ∗ 5.7b ∗ c ∗ x ∗ 1.3d

where a, b, c, d ∈ W and x, y ∈ Σ. Delays are annotated with a rate from W and discrete
resource updates happens before observations.

The monoid F induces a morphism flow which maps discrete updates to 1a for a ∈ W
and elements of Σ to ε respectively (with ε the zero element of Σ∗). The result is a natural
concatenation of flows in distinct time intervals.

This project focuses on using the algebraic framework in order to define notions of
regularity and also arrive at exact definitions for the Resource Systems lying on the frontier
of decidability for (time bound) reachability which is expected to be strictly related to
regularity.
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