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Abstract:

Combinatorial optimization offers a large range
of classic benchmark problems. However, many
real-world problems are often more complex in
nature and bounded by further constraints. In
this thesis, an autonomous robotic machine that
batches chicken fillets into trays is studied. A
combinatorial problem is solved in real-time by
combining elements from different types of op-
timization problems. It looks at items cur-
rently available and seeks to pack them as ef-
ficiently possible while satisfying the necessary
constraints.
Two models are proposed, GP and Hybrid, and
they are compared to the existing algorithm cur-
rently used. The existing algorithm already has
a good performance in practice, but it lacks
transparency for the end users. The GP and
Hybrid models are constructed as complex mod-
els, but as every step is well described and the
number of parameters are minimal, they can fa-
cilitate a better understanding for the end users.
To facilitate a comparison with the existing algo-
rithm, a simulation environment has been con-
structed that takes a variety of problem fea-
tures. The two models prove competitive against
the existing algorithm. The models are cur-
rently solved using CPLEX. Before deployment,
it must be ensured that the processing time
frame can be met, because currently they exceed
the time limit about 5-10% of the time. This can
be done by either constructing a solution heuris-
tic or by imposing certain rules.
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Chapter 1. Introduction

Chapter 1

Introduction

This thesis will use combinatorial optimization to make decisions in real-time in a robotic manufactur-
ing environment. The project is carried out in collaboration with the company Marel. The company
produces machines and equipment to be used in food processing with a focus on poultry and �sh
industries. The machines cover all links of the process, from handling live animals to cutting portions
to batching the products. This project will focus on their batching machine RoboBatcher Flex. It can
be used for many di�erent types of items, but the aim of this project will speci�cally be concerned
with chicken �llets.

1.1 The RoboBatcher Flex

The process of batching consists of grouping items into trays of an appropriate size which will be
displayed and sold at counters in retail stores. The items have to be packed in a visually appealing
way to ensure consumers will choose to put them in their shopping cart. The RoboBatcher Flex is a
completely autonomous and highly �exible system, which packs incoming items into trays using robotic
arms. It can handle up to 300 items per minute which allows 0.2 seconds to decide the allocation and
perform the action for each item. An essential trait that distinguishes it from other types of batching
machines is the ability pack the trays attractively. Other batching machines simply push items into the
trays and require human e�ort to reorganize the items afterwards, which incurs a higher cost. A brief
video of the machine in action is openly available on YouTube1. Figure 1.1 shows the RoboBatcher
Flex next to a Compact Grader, which is a di�erent type of batching machine. The RoboBatcher Flex
has between 1 to 4 robotic arms that are used to pick items and place them in the trays. The Compact
Grader has an arm for each tray, which makes planning easier.

Another major feature of RoboBatcher Flex is the autonomous tray lane system. Items are coming
in on the main conveyor belt and on both sides there are single lanes �lled with trays (only one tray
is shown in Figure 1.1). The tray lane works in a First In First Out (FIFO) manner: When the tray
at the end is �lled to the target level it can be disposed of and the remaining trays are advanced one
step ahead. At the start of the lane, a new empty tray will be introduced. This is a system that is
mechanically simple and easy to maintain, but it has some drawbacks as well. If a tray in the middle
of the belt is �lled su�ciently, it cannot be immediately disposed of and allow introduction of a new
tray. It has to wait for all trays ahead of it to be �lled and moved to the �nished product stock as
well. The FIFO nature of the tray lane creates a risk of bottlenecks, which has to be accounted for
when allocating items to the trays.

In this project, we will focus on two Key Performance Indicators (KPIs) to evaluate the performance
of a batching machine: Give-away and reject. Give-away is the positive deviation from the target tray

1https://www.youtube.com/watch?v=sOdWATSvRlc
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1.2. Making Decisions with Mathematical Optimization

(a) The RoboBatcher Flex. (b) The Compact Grader.

Figure 1.1: Drawings of two types of batching machines.

weight. It can be interpreted in the following way: An order requires trays to weigh 500 grams and the
contract will contain a �xed price per tray delivered. If a tray comes to weigh 510 grams, then 10 grams
(or 2%) of free product is given away. The give-away is calculated in percentage for each �nished tray
and averaged. There is no legal upper limit to the allowed give-away, instead it is in the manufacturer's
own interest and responsibility to minimize it. Minimizing the give-away will allow for the items to be
used for more throughput or further processed in later operations, thus increasing the manufacturer's
pro�t. The lower bound for negative give-away is dictated by EU directive 76/211/EEC [10]. For a
job of the above size of 500 grams, all trays must weigh at least 485 grams and when taking a sample
of a certain size, the average give-away must be at least 0. Despite the regulation, manufacturers
often impose even more strict rules on give-away to stay ahead of competition. This means that it is
common to start a job where the lower bound is the tray target weight.

The other KPI is reject. The items are coming in a continuous stream on the conveyor and they do not
all have to be used for the active job. An item may have a disadvantageous weight, or it may not be
possible to pick it up because the robots are busy with other tasks while it passes them. Rejected items
may be used for di�erent batch jobs, or they can be further processed to di�erent types of product.
Reject is calculated as a percentage of the items introduced to the system. The reject will act as an
indicator of the throughput as well. For a �xed give-away percentage, a lower reject means that the
throughput is higher.

There is a trade o� between give-away and reject. If reject is desired to be low, some items that do
not �t well in the trays will be used, thus increasing the give-away. If the give-away is desired to be
low, the tolerance of item weights will be smaller which increases the reject. Decision makers will have
to approximate a desired level of one of the KPIs and thereby attain an appropriate level of the other
KPI.

Items are introduced to the system with a stochastic arrival rate and the weights follow a random
distribution. Therefore Marel uses an algorithm to decide the item allocation as it arrives. It will
be referenced as the Baseline in this report. It is a sophisticated model, which undergoes continuous
additions in order to ensure full utilization of the physical machine. The model can be tuned through
multiple parameters and it can be di�cult for end users to ensure full utilization of the machine in all
scenarios. Therefore, Marel desires that a new model has as few parameters as possible for the decision
makers.

1.2 Making Decisions with Mathematical Optimization

Mathematical Optimization covers a broad range of methods to generate decisions [5]. When it was
introduced as a concept in the middle of the 1900s, it was also calledMathematical Programming which
leads to confusion, as it has nothing to do with computer programming. There are many �elds within

2



Chapter 1. Introduction

the topic, such as Linear, Quadratic, Convex, Combinatorial, or Integer Optimization. Many of the
�elds utilize an inherent convexity of a problem, and they are able to solve a model to optimality,
meaning the best possible solution for a given model can be found. This is the case for the popular
Simplex algorithm used in linear optimization. Real-world problems are often more complex than can
be formulated in a linear model. They could need to include stochasticity or integrality of certain
variables. In integer optimization, the set of feasible solutions cannot be represented in a convex
polyhedra, but methods like Gomory Cuts and Branch and Bound can still be used to solve such
a model to optimality by extending the Simplex algorithm [5, Chapter 11]. More recently, methods
like these have been mixed together intoBranch and Cut methods, for example, which is used in the
popular commercial solver IBM ILOG CPLEX [11].

Even though many models can now be solved to optimality, it may not necessarily be the right solution
to a given problem. Approaching a problem by using the optimal solution from a badly written model
will inevitably lead to failure. Therefore, it is crucial that the mathematical formulation represents
the entire structure of a problem.

Finally, deciding the desired quality of a solution is vital when approaching how to solve a problem.
There is an intrinsic trade-o� between solution quality and computational time. While Simplex can
solve a linear problem optimally, it may be advantageous to look for a method that can reach a good
solution in a shorter time frame, but not guaranteeing optimality. Real-world problems may contain
thousands or millions of variables and constraints, where it can take hours or even days to �nd an
exact solution. Some models are unsolvable with the suggested exact algorithms as the computer will
run out of memory before reaching a solution. Many of these types of problems have a tight time
frame so guaranteed optimality is not an option. They include search and rescue, container shipping,
assembly line balancing, and vehicle routing [9, 17, 31, 39]. This introduces the world of heuristics
and metaheuristics. The �eld covers algorithms such as greedy, local search, simulated annealing, or
genetic algorithms. They describe a procedure or framework in a broad sense, that has to be speci�ed
to each unique type of model. According to the No Free Lunch Theorem (NFLT) [40], no single method
is universally better than others in all types of problems, and it is therefore important to carefully
choose a method that will satisfy the desired properties of a solution.
In small or simple problems it may be advantageous to use simple local search heuristics with no or few
parameters, which converge very fast and often reach a small optimality gap in these cases [8, 15]. In
larger problems with many constraints, local optima, and a complex search space, more sophisticated
metaheuristic approaches like Evolutionary Algorithms [26, 27], GRASP [31], or Tabu Search [38] may
be more favorable.

1.3 Motivation

To stay ahead in the market, Marel is continuously researching and developing new products as well as
improving on existing products. In the industry, the RoboBatcher Flex has already proven the ability to
satisfy the high requirements for an autonomous machine while staying competitive against both similar
and less autonomous products. If the decision process can be improved, it will be relatively cheap and
simple to implement, as no physical components need to be changed. Although the investigation of
possible improvements may be costly in time and labor, the potential increase in performance may
reward the e�ort manyfold. Marel has already put time and resources into maximizing the utility of
the RoboBatcher Flex [18, 19] as well as other products [3, 20].
A performance increase is not only a better reject/give-away-ratio, but it can also be an approach
that is more intuitive, has fewer parameters to tune, or consists of a single control knob to choose the
target in the trade-o� of reject and give-away. Any of these types of improvements will diminish the
gap between developers and decision makers, which can also be a limiting factor of performance.

In a nutshell, Marel currently uses a statistical algorithm each time an item arrives in the system in
order to allocate it to an available tray. It uses the observed history to compute expectations of the
future input.

3



1.4. Statement of Intent

This project will use combinatorial optimization (or mixed integer linear programming (MILP)) to
develop a suitable approach that seeks to simultaneously allocate a group of items to trays by using
the current knowledge on the conveyor belt instead of focusing on expectations of the future. This
leads to the statement of intent.

1.4 Statement of Intent

The intent of this thesis is to propose a method of autonomous decision making for usage in Marel's
RoboBatcher Flex, which uses a combinatorial approach by considering multiple items at once to decide
a series of allocations at a time.

To do so, a precise mathematical model representing the task has to be formulated, and a strategy to
solve it in a tight time frame will be designed. The performance will be benchmarked by constructing a
simulation environment, simulate problems with di�erent features, and compare it to a baseline method.
The goal of the method is to perform better in terms of the main KPIs Give-away and Reject while
also considering the number of parameters involved as well as complexity in implementation.
Further, experiments that change dimensions of the physical machine will be simulated in order to
evaluate potential bene�ts from altering the actual setup.

1.5 Assumptions

This section will list the simplifying assumptions that separate the model from the true world. They will
serve to limit the scope and enable the project to advance during the project period. The implications,
and how to relax them in the model, will be discussed in Chapter 5.

ˆ All incoming items are of the same type, i.e. there is no mix of �llets and drumsticks.

ˆ Items are independent and identically distributed.

ˆ Both tray lanes have the same size trays with the same target weights.

ˆ The tray lane advances exactly one tray at a time, and the advancement time is constant despite
immediately successive advancements.

ˆ Items cannot be put in a tray while the tray lane is advancing.

ˆ All robots move with the same speed.

ˆ The movement time of a robot will be estimated by a linear regression that only depends on the
travel length of a movement.

ˆ Angles of incoming items will not be considered.

ˆ Even though the RoboBatcher Flex can be set up in many di�erent ways, the work in this
project will be based on one �xed setup, except for experiments where it is clearly addressed. In
particular it will contain two robots. The speci�c setup is summarized in Appendix A.

Chapter 2 will give some more detail on the RoboBatcher Flex, which is necessary to understand the
problem at hand. Afterwards, the literature is reviewed. Chapter 3 presents a constructed simulation
model and proposes the �rst combinatorial approach by formulating and solving an optimization prob-
lem, and later data of incoming items are analyzed. Chapter 4 presents the experiments conducted
in this project, including choosing appropriate parameters, benchmarking of the proposed model, pro-
posal of a second model, and con�guration of the machine setup. Chapter 5 discusses some alternatives
to the choices made during the report and how assumptions can be relaxed. Lastly, Chapter 6 puts the
�ndings of the thesis in perspective to the long-, medium-, and short-term decision-making hierarchy.
It is concluded if the statement of intent has been ful�lled, and future research is proposed.
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Chapter 2. Background

Chapter 2

Background

The �rst section of this chapter will provide more details of the RoboBatcher Flex, because com-
prehension of the mechanics and the challenges is key to understanding the proposed approach and
reasoning. The second section will summarize relevant literature to identify usable information as well
as establishing the gap in current research.

2.1 Details of the RoboBatcher Flex

The robots move very fast and each of them are able to pick up multiple items per second. Two motions
will be applied in this project, because data shows that they di�er in time usage: pick-to-place and
place-to-pick.
Pick-to-place is the movement of picking an item on the conveyor, elevating it to a travel height (5.5
cm), moving to a tray, and de-elevating down to the tray.
Place-to-pick is the movement of elevating from a tray, moving to an item, and de-elevating down to
the item. In place-to-pick, the robot will track the item for a short time before de-elevating. It allows
the item to be picked up correctly, but it also means also means that place-to-pick will take slightly
longer.

Apart from the motion type, Marel has identi�ed three dimensions that explain the time a task takes:
the distance, the movement angle, and the rotation of the arm. In the true system, the items can
arrive in any orientation. When they are put in the tray, they will be aligned to lie properly with only
two opposite orientations. If the travel distance is short, then it may be the rotation of the arm that
limits the task time. Similarly, it has also been found that moving in an east direction does not take
the same time as moving northwest.
As stated in Section 1.5 this project will only focus on one of these dimensions - movement distance.
To facilitate the simpli�cation, a linear model will be imposed to estimate the time use. Figure 2.1
shows a scatterplot of a dataset containing movement times along with the imposed linear models. It
can be seen in the �gure that all dimensions do have an impact, as there is a large variation in time
usage for movements that have the same distance. In order to ensure enough time for a movement, a
bu�er of 5% has been added to the time usage by Marel. The company has also found that items that
are very heavy or light takes much longer to handle, and therefore they have been restricted to only
use items within the weight range[90; 350).

During the course of the project, the working area of the robots have diminished as it approached a
realistic setup. In the beginning, there would be a di�erence between the time usage for short and
long movements. But as shown in Figure 2.1, all movements take between 0.34 and 0.46 seconds. As
will be explained in Chapter 3, time is discretized into units of 0.2 seconds, so all movements in the
studied setup will take two time units in the end.

5



2.1. Details of the RoboBatcher Flex

Figure 2.1: Scatterplot of a dataset containing time used for movements of the robots. The distance travelled is on the
x-axis and time spent on the y-axis. So rotation of the arm and angle travelled is causing the variation in time usage
for a �xed distance. The black crosses mark the smallest and largest distance possible in the considered setup of the
project.

Figure 2.2 shows a simpli�ed �ow chart of the basic logic in the RoboBatcher Flex with a single robot,
a single conveyor lane and a single tray lane. It shows that all the operating parts are mutually
dependant in a nested way. Making one decision will a�ect all the other parts, and they have to be
considered in order to ensure feasibility. In the Baseline, the planning mechanism is triggered for every
item arrival, i.e. t_replan = t_a . So both will be stochastic. But in the proposed models in this
project, the planning mechanisms will be triggered in �xed time increments and thereby contain a
group of items with varying sizes. The Baseline will be described in the next subsection.

2.1.1 Superbatching

One of the main components of the Baseline model isSuperbatching. It was patented in 2016 by
Scanvaegt A/S [23], which was later bought by Marel who thereby acquired the patent as well. The
core ideas will be described here.
First, a few parameters has to be speci�ed:

ˆ Group interval: 10 grams

ˆ Target tray weight: 500 grams

ˆ Positive tolerance: 50 grams

ˆ Item weight range: [90; 350)

All weights of items and trays are grouped into intervals of 10 grams. That means that an item/tray
belongs to weight group 1 if the weight is in the interval [10; 19] while an item/tray in the interval
[400; 409] belongs to weight group 40.

Next, a desired target weight distribution is established. This re�ects the desired distribution of the
trays when an entire production job is �nished. Of course, having 100% trays in weight group 50

6



Chapter 2. Background

Figure 2.2: Simpli�ed �ow chart of the RoboBatcher Flex.
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2.1. Details of the RoboBatcher Flex

sounds ideal, but it would lead to a high reject. Let us say that the desired target weight distribution
is:

ˆ 80% trays in weight group 50

ˆ 5% trays in weight group 51

ˆ 5% trays in weight group 52

ˆ 5% trays in weight group 53

ˆ 5% trays in weight group 54

Thirdly, the discrete empirical Probability Mass Function (PMF) is estimated using previous obser-
vations for each weight group. Marel has found a good performance by using the most recent 400
items to estimate the PMF. Figure 2.3 shows the empirical PMF of a sample of size 400 drawn from
N (250; 502) where values outside the de�ned weight range have been truncated.

Figure 2.3: Empirical PMF of a sample of size 400 drawn from N (250; 502 ) where values outside the interval [90; 350)
are truncated.

Fourthly, an allocation value is assigned to all tray weight groups from 0 to 54. The allocation value
can be thought of as the expected payo� or the expected utility of a risk-neutral agent [16]. Letu(w)
be the allocation/utility function of a tray in weight group w and pi be the probability of an item
arriving in weight group i . The utility is already determined for weight groups from 50 and above:

u(50) = 0 :8 (2.1)

u(50 + k) = 0 :05; 8k 2 f 1; : : : ; 4g (2.2)

u(50 + l) = 0 ; 8l � 5 (2.3)

For the weight groups below 50, we wish to �nd the probability of reaching one of the weight groups
50-54 by using the arriving items. Let Bk be the set of ordered item group combinations that sum to
k, i.e.

Bk =
6[

n =1

�
(a1; : : : ; an ) 2 (N+ )n j

nX

l =1

al = k
	

:

Note that n goes up to 6 because this is the highest number of items that can be put in a tray. Recall

that the highest tray weight group is 54 and the lightest item group is 9; 6 =
54
9

. The probability of

Bk occurring is de�ned as:
P(Bk ) =

X

I 2 B k

Y

i 2 I

pi :

8



Chapter 2. Background

This can be used to compute the expected utility of the smaller weight groups:

u(w) =
54X

k=50

P(Bk � w ) � u(k); 8w 2 f 0; : : : ; 49g

=
54X

k=50

X

I 2 B k � w

� Y

i 2 I

pi
�

� u(k); 8w 2 f 0; : : : ; 49g (2.4)

For implementation purposes, Equation (2.4) has been found to take a long time to compute and a
recursive method has been identi�ed that will speed up the computations signi�cantly. By computing
the expected utilities starting from 49 and down to 0, it will be possible to use the early results for the
latter by using the below relation, where probabilities are only calculated one item ahead:

u(w) =
34X

i =9

pi � u(w + i ); w = 49; : : : ; 0: (2.5)

Consider the tray group 39 and note from Figure 2.3 that the smallest item group with a positive
probability is group 11 with a value of 0:005. If the next item is in this group, we can reach the tray
group 50 (39 + 11), which has an allocation value of 0.8, as shown in Equation (2.1). The probability
of the next item being in group 12, 13, 14, or 15, has probabilities 0.0025, 0.005, 0.005, 0.0075,
respectively. These items can bring the tray into group 51, 52, 53, or 54, respectively. They all have
an allocation value of 0.05, as shown in Equation (2.2). Any higher group will have an allocation value
of 0, as shown in Equation (2.3), so they are not relevant. Finally, the allocation value of tray group
39 can be computed by using Equation (2.5):

u(39) = 0 :005� 0:8 + 0:0025� 0:05 + 0:005� 0:05 + 0:005� 0:05 + 0:0075� 0:05

= 0 :0049975:

Figure 2.4 shows the allocation values from the example for all possible tray weights.

Figure 2.4: Computed allocation values for all possible tray weights.

The superbatching allocation value is one of the components of the �nal allocation value for each tray
in the Baseline algorithm. Other components include distance between item and tray, robot utilization,
and avoiding bottlenecks at the end of the tray lane. The speci�c implementation of those will not be
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2.2. Literature Review

described here. Whenever an item arrives in the system, the Baseline algorithm assigns an allocation
value to all trays according to the designed components. The item is allocated to the tray with the
highest allocation value. Pseudocode of the process is shown in Algorithm 1, where the example values
from above are included.

Algorithm 1: Simpli�ed Baseline Algorithm
Input: Group interval, target tray weight, positive tolerance, item weight range, item sample

size, desired weight distribution

1 Compute u(w) for w � 50 by Equations (2.1)-(2.3).

2 while Conveyor lane is running do
3 if Item arrives into system then
4 Update estimated PMF of 400 most recent items
5 Update u(w) by Equation (2.5) for w = 49; : : : ; 0
6 Assign all trays with the superbatching allocation value
7 Assign all trays with other values (utilization, bottlenecks, etc.)
8 Summarize all the values intoone allocation value per tray.
9 if Highest allocation value > reject thresholdthen

10 Allocate item to tray with the highest value

11 else
12 Reject item

2.2 Literature Review

This chapter will review relevant work and publications from Marel, show how robots can be used
for tasks when relevant but demand higher requirements for planning, and identify the gap between
standard optimization models and the problem at hand. Lastly, the points relevant to this project will
be summarized.

Marel already has a history of researching and publishing methods to improve existing products.
Hildebrand et al. [19] investigates the use of deep reinforcement learning in the decision process of
a RoboBatcher Flex and it shows promising results, although complex to develop. The project was
further explored in a Master's thesis by the main author [18].

Van Sprang [37] investigates application of condition based maintenance strategies at Marel. A selection
method is proposed to choose the most relevant parts of a machine. Among others, it is based on failure
rate and downtime costs and consequences. Hundscheid et al. [20] proposes a hybrid genetic algorithm
for a more simple batching machine. The problem is formulated as a k-bounded semi-online bin
covering problem.
Using bin covering and multiple subset sum for di�erent types of batching machines is a frequent
approach. The Ph.d. of Ásgeirsson [3] proposes aprospect algorithm to be used in an online bin
covering problem, which represents a machine similar to the Compact Grader. Further, it investigates
and proposes algorithms for the semi-online problem, which are later benchmarked and improved upon
by Hundscheid et al. [20]. The Master's thesis of Raaijmakers [34] analyzes di�erent types of batching
machines, represents them mathematically (including an online bin covering variant), and proposes
solution strategies for each. Finally, the performance of the batching machines is compared with
di�erent types of problem features. The author �nds that the machines have a similar performance
for jobs with small target tray weights. For jobs with large target tray weights, the give-away could
be decreased by choosing the appropriate machine. Lastly, Peeters et al. [32] takes a wider view
and analyzes the layout of the batching process - determining size and number of batching machines,
�exibility of di�erent setups, as well as introducing solution approaches.
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Chapter 2. Background

So far, there has been a lot of investigation and improvements identi�ed for many types of batching
machines. However, the RoboBatcher Flex is not as well studied yet and previously proposed algorithms
are not directly applicable. The goal of automation has increased the number of restrictions, both in
terms of occupied robots and avoiding a blocked tray lane. By NFLT it can be concluded that an
algorithm developed for a di�erent batching machine may perform well, but is not guaranteed to be
the optimal choice for the RoboBatcher Flex.

The use of robots in both production and other settings is an increasing trend. Robots can replace
manual labor for not only mundane and repetitive tasks, but also for jobs that may be dangerous
or require high precision [9, 26]. In production setups, it can be found inAssembly Line Balancing
problems which now are directed towardsRobot Assembly Line Balancing problems(RALB). The for-
mer seeks to design a production setup where the makespan of some item transformation is minimized
by choosing a series of task-to-workstation assignments. The latter consists of two subproblems - (1)
task-to-workstation assignment, like before, and (2) robot-to-workstation assignment.
Li et al. [26] seek to solve a RALB problem with a Particle Swarm heuristic as only smaller instances
are computationally feasible with CPLEX, and Janardhanan et al. [21] formulates and solves a di�er-
ent type of RALB with a Migrating Birds heuristic. Li et al. [27] also solves a type of RALB using
Genetic Algorithms and Simulated Annealing and compares it with the optimal solution from CPLEX
on smaller instances.
Other types of jobs could be Search and Rescue missions [2, 31] where implementation of clever plan-
ning algorithms and using unmanned aerial vehicles can increase the likelihood of locating missing
people, as the number of agents can be easily increased and deployment will be a faster process. In
Pedersen et al. [31] the Search and Rescue problem was formulated as a Team Orienteering Problem
which was solved using GRASP. This is di�erent from many similar Search and Rescue missions where
big helicopters with crews have to be deployed and will search in a spiral and not utilize a probability
map.
From this it can be seen that implementation of robots has great potential but increase the requirements
for planners.

Dwibedy and Mohanty [13] summarises general optimization problems in three groups: o�ine, online
or semi-online.
In an o�ine problem, all information is known at the beginning. However, in many real-life applications,
information usually arrives throughout a period of time. In an online problem, information arrives
one-by-one. In our case, it could be that one item arrives in the system at a time, and it has to be
allocated before the next item arrives. As a result, only a single item is known at each decision point.
Thirdly, in a semi-online problem, the assumption is relaxed slightly. Instead of only knowing one piece
of information at a time, a batch of information can be introduced. This relates to using the length of
the conveyor, where multiple items may be known before any of them has to be picked up. Thus there
may be a bene�t of utilizing the increased information available. While an algorithm for an o�ine
framework may solve the problem to optimality, it may not work well when applied to a more online
setting. Here, other algorithms may work better instead. The performance of online or semi-online
algorithms are usually benchmarked by acompetitive ratio, which compares the o�ine algorithm in
an o�ine framework with a more online algorithm in its designated framework. The competitive ratio
can at most be 1, as full information is always an advantage.

No found types of common optimization problems seem to cover the objectives and constraints of the
RoboBatcher Flex in its entirety. Knapsack variations like Bin Covering or Subset Sum Problem (SSP)
can be used to seek a target weight [6, 12]. Subset Sum does not allow �lling past the target, while
Bin Covering only seeks to �ll as many trays a possible, but the level of over�ll is not considered.
Therefore, trays may achieve high give-away instead of rejecting an item when appropriate. Both of
these situations can be overcome by incorporating Goal Programming (GP) [36]. Additionally, the
underlying sequentiality of �ll order and picking items are not considered, so bottlenecks in the tray
lane may easily occur and active arms may be occupied while the item is passing.
Scheduling variations like Job-shop Scheduling or Resource Constrained Project Scheduling can take
sequentiality of trays and robots into account, but as they usually seek to minimize a makespan, the
free choice to actually use an item is missing [1, 30].
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As the incoming items are randomly distributed, it could be a possibility to use Stochastic Pro-
gramming, where uncertainty is formulated into the model in terms of possible evens and perhaps
probabilities of such events [25]. In stochastic programming, the approach is usually to maximize a
risk-neutral expected pay-o� where the probabilities for the events are explicit.
A similar method is robust optimization, where the aim is to �nd the best solution that will be feasible
in any realised scenario. The approach is often conservative, so Bertsimas and Sim [4] proposed a
method to relax the robustness slightly, as the worst-case scenario often has a very small probability.
With the given approach, it is possible to decide where to lie on the trade-o� of objective value and
probability of feasibility.
The robustness approach will be too conservative for the considered problem, but by stochastic pro-
gramming it could be an option to model the stochasticity of incoming items. However, it will �rst be
more important to use the information of realized events in terms of the currently known items on the
conveyor.

From the review, it is found that new approaches are relevant to study for the company, as overall
optimality of an (semi-)online problem is rarely found and small increases in performance may lead to
large pro�ts during the course of a year. A new mathematical formulation will have to be formulated,
as aspects from multiple types of known models are relevant, but no single model covers the problem in
its entirety. Therefore, the model will incorporate elements from several types of optimization models
and frameworks to reach a suitable representation.
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Chapter 3

The Model

This chapter will present the main model of the thesis (GP) in Section 3.2. This covers both a
detailed mathematical formulation and the solution strategy. But �rst, Section 3.1 will present the
constructed simulation application which allows for extensive experimentation in a variety of settings.
After introducing the model, Section 3.3 will mention the e�ort that has been put into the e�ciency
of the model. Finally, Section 3.4 will analyze input from three di�erent chicken �ocks.

3.1 The Simulation

Marel already has a simulation model, which is used for thorough testing as well as troubleshooting
with clients. However, it covers many dimensions and has a high level of detail. So together with the
company it was assessed that making a more simple simulation from scratch would �t this project best.
Therefore, a simulation application with a graphical user interface has been constructed, which makes
it possible to properly test the performance of the model in a variety of settings. The application is
built with the Python library tkinter . It can both visualize how the machine is acting andmonitor
the performance. It uses up to three tracks on the conveyor lane and two tray lanes. Figure 3.1 shows
the simulation model. The simulation is not continuous, but discretizes time and progresses with �xed
increments. For a comparison, Marel's existing simulation application is shown in Figure 3.2.

At every time step, all items move one �eld to the right until they are either picked up or reach the
end of the conveyor. In the current model, time is discretized into units of 0.2 seconds. This has been
deemed a �tting number because (1) two time units will be close to the mean of the time a robotic
movement takes, as can be seen in Figure 2.1. (2) it is divisible by one second, which is practical. (3)
in the true system, items spawn with at least a 0.2 second gap on the same conveyor lane, so no rules
of necessary gaps in arrival times have to be implemented. And (4) the computational demands �t the
applied approach, which will be described in the next section.

Items that are green are allocated to a tray and will be picked up when they reach the designated
�eld. Blue items are rejected and will be repurposed later. Yellow items are yet to be allocated. For
the purpose of examples in the report, the coloring of items may not follow this exact pattern.

The area of �elds and trays that each robot can reach are marked by the green areas. They remain
�xed throughout a run. When the last reachable tray is �lled, the tray lane will advance. This is
shown in Figure 3.1(b) where the lower tray lane is marked in bold because tray 15 is �lled. In the
�gure, trays 14, 13, 12, and 11 in the bottom lane have all passed the reachable area of the last robot.
They can be regarded as disposed of, but because the tray lane ends at the same spot as the conveyor
lane, they are shown until this point. When a robot is idle, its current position is shown as a yellow
dot. When it is moving, it is visualized by a red dot on the from-position and a green dot on the
to-position.
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3.1. The Simulation

(a) In a passive state.

(b) In an active state.

Figure 3.1: The constructed simulation interface in both a passive and an active state.
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Chapter 3. The Model

Figure 3.2: An example of Marels existing simulation application.

The bold dashed line is called thedecision point. Any item passing this line must be allocated to a
tray or rejected. When beginning a plan, we will look at all un-allocated (yellow) items currently in
the system. Such a plan must be �nished by the time the frontmost item passes the decision point.

To allow an allocation algorithm as much computation time as possible, it can take at most half
the time it takes to travel from the weigher until the decision point. There are 18 �elds, so with a
granularity of 0.2 seconds, the travel takes 3.6 seconds and so the claimed time horizon of an allocation
algorithm is 1.8 seconds. The claim will be reasoned with the following example:
Assume the allocation algorithm takes 0.2 seconds to execute. That means conducting a plan can
wait until the frontmost item is one �eld away from the decision point. Now, when an item reaches
that point, a plan will be conducted for all the weighed items. All items behind the frontmost will be
allocated as well, but because the allocation algorithm is so fast, there is time enough to reallocate all
the behind items before they reach the decision point - if desired. That means we can allow a longer
time horizon than 0.2 seconds.
In an opposite example, let us assume that an allocation algorithm takes 3.6 seconds to execute. Let
item 1 be introduced to the system at the weigher. Then we must immediately start the planning
process, where all currently un-allocated items are processed (only item 1). In the next time step, item
2 is introduced to the system. Because the planning process is currently running, allocation of item 2
can only occur after the active algorithm has �nished. After 3.6 seconds item 1 is at the decision point
and the allocation algorithm terminates with a plan. It can then start to allocate the newly introduced
items, including item 2. However, the algorithm takes 3.6 seconds and item 2 is only one �eld away
from the decision point, so it cannot be allocated in time.

It has been found that the middle between these two examples (a time horizon of 1.8 seconds) is the
upper limit of how long an algorithm can be allowed to run to ensure the �ow of the system. If the
algorithm takes longer, then execution will not be feasible. If the algorithm takes a shorter time, then
it will be possible to re-allocate items if it is found that they �t better elsewhere - all the way until they
reach the decision point. Using this logic, when an item passes the lightly dashed line, we must have
begun to plan where it should be allocated. And when a new planning algorithm starts, all currently
un-allocated items will be covered. Therefore, the area before the lightly dashed line is called the
decision zone. In Figure 3.1(b), we would allocate the six yellow items simultaneously. The algorithm
can take at most 9 time units to �nish, where the frontmost yellow item would pass the decision point.

Through development of the simulation app, an intense process of veri�cation and validation has been
carried out. Visualization made it possible to check if a plan is carried out in the intended manner
and solutions from an algorithm satisfy the implemented constraints. When new features were added,
they would be tested in a variety of settings and experiments to ensure feasibility with changing
problem features. The activities during a run and the end results were validated by comparing to an
expected behavior and by comparing to the existing application at Marel. The �nal app o�ers a range
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3.2. The GP Model

of �exibility in setup and choice of allocation algorithm, but setting it up remains an easy and fast
process. It has proven su�ciently credible that Marel has shown interest in adopting it to evaluate
possible gains with potential clients.

3.2 The GP Model

This section will propose an approach to solving the decision problem of the RoboBatcher Flex. It will
be the main model of the project and referenced as the GP model, because it uses Goal Programming
in the objective function. In a later chapter, a second model will be proposed as well.

It was concluded in Section 2.2 that none of the common optimization problems could be used directly
to solve the allocation problem of the RoboBatcher Flex. Therefore, a new problem will have to be
formulated from scratch, where individual components of other optimization problems will be used
when they are deemed relevant.

The main problem consists of allocating items in order to construct a complete schedule that satis�es
the moving conveyor, timing of the robots, and advancements in the tray lane. All this should be done
while trying to minimize the KPIs.

It has been decided to decompose the main problem into a series of small MILP subproblems. They
will be solved consecutively, where later subproblems will inherit consequences imposed by former
solutions. Each subproblem consists of allocating the available items to an individual tray by seeking
to approach the target tray weight. The �rst subproblems start by the end of the tray lane and move
upstream from there. If an item has not been deemed suitable for any of the trays, it will end in the
reject bin. If the last tray is �lled, an advancement point is calculated that will be imposed in the
subsequent subproblems. The process is repeated every 1.8 seconds, where a new group of items in
the decision zone is to be allocated, and a series of subproblems will solve a main problem.
By decomposing the problem, we can remove a dimension from the mathematical formulation, which
has eased the development process. Also, we can target the bottleneck of the tray lane by making
sure the last trays are considered �rst, and the computational time will only increase linearly with the
number of trays. A main drawback is that the overall search space is decreased and therefore it is
possible that a global optimum cannot be found.

Figures 3.3, 3.4, and 3.5 show how the decomposition can be used to �ll a Gantt chart in successive
steps. As the last subproblems are reached, the Gantt chart will be quite full, which restricts the
feasible search space. It is an example where we look at the schedule between timet = 40 until
t = 100. A number of items has arrived in the system and they have to be allocated to trays in a way
that satis�es the constraints previously described. Figures of the complete sequence of subproblems is
provided in Appendix B.
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The next subsection will mention the variables of each subproblem as well as relevant constants and
coe�cients. Then, the mathematical formulation for a subproblem will be written in its entire form.
Afterwards, the objective and each constraint will be described in more detail and with a numerical
example when deemed appropriate.

3.2.1 Mathematical Formulation

Variables and Constants

ˆ K is the set of items in the decision zone,P is the set of items that are already allocated to other
trays, and K nP is the set of available items in the decision zone.

ˆ A is the number of �elds on the conveyor available to a robot.

ˆ N is the number of advancements in the tray lane. In general, when mentioning an 'advancement'
in this report, it refers to the tray lane, because the conveyor is moving continuously.

ˆ � is a constant to convert �eld numbers of the conveyor into time units. In this project � = 1 ,
because it is constructed so that the conveyor moves exactly one �eld per time unit, but it will
be put in the formulation for generalization.

ˆ xk;a;n is a decision variable if we pick itemk at �eld a after n advancements. Each decision has
some associated constants, and Figure 3.6 shows an example of how some of them interact:

� wk is the weight of item k.

� � k is the spawn time for item k.

� bn is the position of the tray after n tray lane advancements.

� � bn
(k;a ) is the time it takes to pick up item k at �eld a and place it into the tray at position

bn . Reversely,� (k;a )
bn

is the time to takes to travel from tray at position bn to item k at �eld
a for the next pick-up.

� Time will be calculated in a relative sense for each robot. As one �eld is passed for every
time unit, it is possible to use the current �eld and a spawn time to �gure out the current
time point. Suppose we wish to use variablexk;a;n , i.e. pick item k at the �eld a after n
tray lane advancements. Then the pick-up time for the robot is a sum of the spawn time
and the current �eld,  k + a� . The item will be put in its designated tray, when the time
reaches k + a� + � bn

(k;a ) .

� f � n gN
n =1 is the �nite sequence of time points that indicate when tray lane advancementn

starts.

� � is the time it takes to advance the tray lane.

� gn is the id of the robot available after n tray lane advancements. It can be contemplated
as a fork function that depends on the position of the tray:

gn = g(bn ) =

8
<

:

0 if robot 0 can reach tray at position bn ;
1 if robot 1 can reach tray at position bn ;

� 1 if no robot can reach tray at position bn :

The �nite sequence f gn gN
n =0 is a collection of all the robots that a tray will pass in the

current plan. Note, that the sequence has one more index than the sequence off � n gN
n =1 as

there is an arm both before and after every time point.

� The last robot is the standard point of reference when expressing� n because that is where
the tray lane advancement mechanism is triggered. Therefore, in order to �nd out when the
advancement occurs for the other robots, an o�set value, n , is introduced to identify the
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time gap. It can be seen as a function that depends on the robot available to the tray after
n tray lane advancements, n =  (gn ). In Figure 3.6 the �rst �eld of robot 1 is 16 �elds
before the �rst of robot 0, therefore  for robot 1 is 16, while  for robot 0 is 0. In that
example, the fork function will look like this:

 (gn ) =

8
<

:

0 if gn = 0
16 if gn = 1
0 if gn = � 1

ˆ x i is 1 if item i have been assigned before the current subproblem, i.e. it is 1 for anyi in P.
Each of these items have some associated values:

� j i is the �eld that the item is picked up at.
� bi is the tray position that the item is put in.
� gi is the robot that picks up the item.

ˆ d+ ; d� are continuous variables, denoting the positive and negative deviation from the remaining
target weight V . c is a cost coe�cient on the positive deviation.

ˆ d�
L is a binary variable denoting if d� is above the lower bound of a forbidden interval(mL ; mU ).

ˆ d�
p is a binary variable denoting if d� is activated.

ˆ V is the remaining target weight to hit and Vtotal is the actual target of tray weights (i.e. if tray
already contains 200g beforehand and the trays should weigh 500g, thenV = 300; Vtotal = 500.

ˆ J max
i;k;a = min f A;  k + a� �  i g is a value used to compare two items,k and i . An item k picked

at �eld a will occur at time  k + a� . J max
i;k;a is the last �eld which item i will pass before that

event.

ˆ Let N~g = f n 2 N j gn = ~g; 0 � n � N g, then N min
~g = min( N~g) and N max

~g = max( N~g). For a
speci�ed robot, ~g, they denote the �rst and last advancement point after which ~g can reach the
tray.

ˆ M is a large number used for Big-M notation.

Figure 3.6: An example of the implicit and explicit values associated with a decision variable xk;a;n .
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The Entire GP Formulation

min
x ;d+ ;d � ;d �

L ;d �
p

c � d+ + d�

s.t. V �
X

k2 K nP

AX

a=1

NX

n =0

wk xk;a;n + d+ � d� = 0

d� � mL � d�
L � Vtotal � 0

d� � mU � d�
L � 0

d�
p � Vtotal � d� � 0

d+ � (1 � d�
p ) � Vtotal � 0

AX

a=1

NX

n =0

xk;a;n � 1 8k 2 K nP

xk;a;n -1 � ( k + ( a �  n -1) � � + � bn � 1

(k;a ) � � n ) � 0 8k 2 K nP; a = 1 ; : : : ; A;

n = 1 ; : : : ; N

xk;a;n � ( k + ( a �  n ) � � + � bn
(k;a ) � � n � � ) � 0 8k 2 K nP; a = 1 ; : : : ; A;

n = 1 ; : : : ; N

xk;a;n � gn � 0 8k 2 K nP; a = 1 ; : : : ; A;

n = 0 ; : : : ; N

M +

N max
~gX

n = N min
~g

( k + a� � M ) � xk;a;n �

N max
~gX

m = N min
~g

J max
i;k;aX

j =1

((  i + j� + � bm
( i;j ) + � (k;a )

bm
) � x i;j;m ) � 0

8k 2 K nP; a = 1 ; : : : ; A; ~g 2 f gn gN
n =0

8i 2 K nP : i 6= k

M +

N max
~gX

n = N min
~g

( k + a� � M ) � xk;a;n � ( i + j i � + � bi

( i;j i ) + � (k;a )
bi ) � x i � 0

8k 2 K nP; a = 1 ; : : : ; A; ~g 2 f gn gN
n =0 ;

8i 2 P :  i + j i � �  k + a� ^ gi = ~g

( i + j i � ) � x i �

N max
~gX

n = N min
~g

( k + a� + � bn
(k;a ) + � ( i;j i )

bn
) � xk;a;n � 0

8k 2 K nP; a = 1 ; : : : ; A; ~g 2 f gn gN
n =0 ;

8i 2 P :  i + j i � �  k + a� ^ gi = ~g

xk;a;n 2 f 0; 1g 8k 2 K nP; a = 1 ; : : : ; A; n = 0 ; : : : ; N

d+ ; d� � 0

d�
p ; d�

L 2 f 0; 1g:

22



Chapter 3. The Model

Objective and Constraint Explanations

min
x ;d+ ;d � ;d �

L ;d �
p

c � d+ + d� (3.1)

s.t. V �
X

k2 K nP

AX

a=1

NX

n =0

wk xk;a;n + d+ � d� = 0 (3.2)

The objective function (3.1) uses Goal Programming to minimize the di�erence between the weight of
the tray and the target weight. The deviation is de�ned by using d+ and d� in Constraint (3.2). By
choosing this approach it can be seen as a type of SSP, but instead of only being successful if the exact
weight is reached in a binary way, a penalty is applied to deviating both below and above the target.
By incorporating the cost coe�cient c it is possible to penalize a positive deviation di�erently than a
negative deviation.

d� � mL � d�
L � Vtotal � 0 (3.3)

d� � mU � d�
L � 0 (3.4)

d�
p � Vtotal � d� � 0 (3.5)

d+ � (1 � d�
p ) � Vtotal � 0 (3.6)

The Constraints (3.3) and (3.4) are used to avoid a speci�c interval of weights, which the tray is not
allowed to lie in. This has been found necessary to avoid situations that are di�cult to get out of. If
the tray target weight is 500 grams, and the tray is �lled to weigh 450 grams, then it may take a very
long time before before an appropriate item arrives. To avoid such a situation it will not be possible to
reach a weight too close to the target weight if it remains below the acceptable level. By using Big-M
notation, Constraint (3.3) uses the binary variable d�

L to determine if the negative deviation is above
the lower threshold mL . If that is the case, Constraint (3.4) dictates that the negative deviation should
be above the upper thresholdmU as well. Figure 3.7 shows an example of an objective function, where
Constraints (3.3) and (3.4) ensures thatd� 62(mL ; mU ).
To avoid situations where both d+ and d� are active, constraints (3.5) and (3.6) ensure that only one
of the variables have a positive value - also by using Big-M notation.

AX

a=1

NX

n =0

xk;a;n � 1 8k 2 K nP (3.7)

This constraint simply states that any of the available items can only be used at most once.

xk;a;n -1 � (

pick-up time point
z }| {
 k + ( a �  n -1) � � +

time
to place
z }| {
� bn � 1

(k;a ) �

adv
startsz}|{
� n ) � 0 8k 2 K nP; a = 1 ; : : : ; A; n = 1 ; : : : ; N

(3.8)

xk;a;n � ( k + ( a �  n ) � � + � bn
(k;a ) � � n � � ) � 0 8k 2 K nP; a = 1 ; : : : ; A; n = 1 ; : : : ; N

(3.9)

An item can be placed in the tray at the same moment as the tray lane starts or stops advancing, but
it is not possible to place it while the tray lane is moving. The �rst constraint states that if we wish
to allocate an item to a tray before the nth advancement, then the item must picked up and placed
before � n . The second constraint states that if we wish to allocate an item to a tray after the nth

advancement, then the item must be picked up and placed in the tray after� n + � . Together the two
constraints dictate that an item cannot be placed during (� n ; � n + � ); n = 1 ; : : : ; N .

Consider the following example. Figure 3.8 shows the situation at timet = 50. Suppose the tray
advancement time is three time units, � = 3 . The red items are already planned to be picked up.
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3.2. The GP Model

Figure 3.7: An example of the objective function. The tray target is 500 grams and the cost coe�cient for positive
give-away is 5. The red part marks the area, which the tray weight is not allowed to lie in.

Item 1 will be picked up at t = 51 and it will �ll the tray at position 4, i.e. trigger the advancement
mechanism. Item 2 will be picked up at t = 56 and it will �ll the tray which is currently at position
5, i.e. also trigger the advancement mechanism. We have two planned advancements,N = 2 . We are
considering if item 3 (blue) should be picked up and placed in the tray, which is currently in position
17. Because of the currently planned advancements, it may either be put in the tray, when it is at
position 17, 16, or 15.
We have spawn times for each item, 1 = 15;  2 = 16;  3 = 31. As robot 0 will pick item 1 at the �rst
�eld, the relative pick-up time is 15 + 1 � 1 = 16. Suppose it takes 3 time units to move from �eld 1 to
tray position 4, so � 1 = 16+3 = 19 . In a similar way, placing item 2 only takes 2 times units, so we can
�nd that � 2 = 23. Since� = 3 , the tray lane will be advancing when the relative time is 19, 20, 21, 23,
24, and 25. As the �rst �eld of robot 1 is 16 �elds before that of robot 0, we have  n = 16; n = 0 ; 1; 2.
For this example we will just call it  as it stays the same value with each advancement. Table 3.1
shows calculations of when item 3 can be put in either of the three tray positions, when it is picked
up at any of the available �elds. The two blue circles of Figure 3.8 shows which �elds we have found
that item 3 would be allowed to be picked up at. The �elds at the �rst circle can be used if the item
should be put in the tray at position 17. Fields of the second circle can be used if the item should be
put in the tray at position 16. With the advancements, it is not possible to put the item in the tray at
position 15, as the item will have passed by the robot area before the second lane advancement stops.

xk;a;n � gn � 0 8k 2 K nP; a = 1 ; : : : ; A; n = 0 ; : : : ; N (3.10)

This constraint states that an item cannot be picked up if no robot can reach the tray aftern increments,
i.e. when gn = � 1.
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Figure 3.8: A visualization of the situation described in the example for the tray lane constraints (3.8) and (3.9).

a  3  � b0 =17
(3 ;a )

Placed
by

Legal by
(3.8) and (3.9)

� 16
(3 ;a )

Placed
by

Legal by
(3.8) and (3.9)

� 15
(3 ;a )

Placed
by

Legal by
(3.8) and (3.9)

1 31 16 2 18 Yes 3 19 Not by (3.9) 3 19 Not by (3.9)
2 31 16 2 19 Yes 2 19 Not by (3.9) 3 20 Not by (3.9)
3 31 16 2 20 Not by (3.8) 2 20 Not by (3.9) 2 20 Not by (3.9)
4 31 16 2 21 Not by (3.8) 2 21 Not by (3.9) 2 21 Not by (3.9)
5 31 16 2 22 Not by (3.8) 2 22 Yes 2 22 Not by (3.9)
6 31 16 2 23 Not by (3.8) 2 23 Yes 2 23 Not by (3.9)
7 31 16 2 24 Not by (3.8) 2 24 Not by (3.8) 2 24 Not by (3.9)

Table 3.1: Numerical values and computations from the example explaining constraints (3.8) and (3.9). The column
'placed by' is calculated by  3 + ( a �  ) � � + � bn

3;a . If an item is picked up at t = 16 and the movement takes 2 time
units, then the robot is moving the item at t = 16 and t = 17 , and t = 18 will be the �nish time where the item is in the
tray and the robot can begin a new task.

M +

N max
~gX

n = N min
~g

(

pick-up time point
of item kz }| {
 k + a� � M ) � xk;a;n �

N max
~gX

m = N min
~g

J max
i;k;aX

j =1

((

�nishing time point
of any previous item i

z }| {
 i + j� + � bm

( i;j ) + � (k;a )
bm

) � x i;j;m ) � 0

8k; i 2 K nP : k 6= i; a = 1 ; : : : ; A; ~g 2 f gn gN
n =0 (3.11)

Constraint (3.11) is used to dictate that a robot can only perform one action at a time. It is inspired by a
constraint in scheduling, speci�cally by the sequencing section of Pritsker et al. [33]. In each constraint
we specify a robot ~g and go through all the advancement points, where robot~g can reach the tray.
In particular, it states that in order to pick up an item, k, at a speci�ed point, we must have enough
time available to place any previous itemi in its respective tray and move from there to the speci�ed
pick-up point of item k. An example is provided in Figure 3.9. The original scheduling constraint in
Pritsker et al. [33] was constructed without having to respect that using an item is optional. Therefore,
I have added some Big-M notation to make sure that the constraint can be satis�ed even if the item
is rejected.
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3.2. The GP Model

Figure 3.9: An example of the sequentiality Constraint (3.11), where the decision variable x3;5;0 is considered to be
used:
Suppose there are three items to consider, 1, 2, and 3, and there are no planned advancements. Now suppose we know
that we wish to pick up item 1 and 2 when they are located by the red circles. We are considering if item 3 should be
picked up, when it will reach the blue circle, which will occur later than items 1 and 2 are picked up. The constraints
state that in order to pick up item 3 at �eld 5, the items 1 and 2 must be picked up so early that there is time enough
to place them in the tray and travel to the blue pick location.

M +

N max
~gX

n = N min
~g

( k + a� � M ) � xk;a;n � ( i + j i � + � bi

( i;j i ) + � (k;a )
bi ) � x i � 0

8k 2 K nP; a = 1 ; : : : ; A; ~g 2 f gn gN
n =0 ; (3.12)

8i 2 P :  i + j i � �  k + a� ^ gi = ~g

( i + j i � ) � x i �

N max
~gX

n = N min
~g

( k + a� + � bn
(k;a ) + � ( i;j i )

bn
) � xk;a;n � 0

8k 2 K nP; a = 1 ; : : : ; A; ~g 2 f gn gN
n =0 ; (3.13)

8i 2 P :  i + j i � �  k + a� ^ gi = ~g:

These constraints are similar to Constraint (3.11) and an example is provided in Figure 3.10. Con-
straints (3.12) and (3.13) di�er by focusing on previously decided items, inherited from other subprob-
lems as opposed to only looking at the available items for the current tray.
Constraint (3.12) states that if we want to use an item, k 2 K nP, then for any already-allocated item,
i 2 P, that is picked up earlier than k, there must be enough time available to place itemi and move
from its tray to the pick-up location of item k.
Conversely, Constraint (3.13) states that if we want to use an item,k, then for any already-allocated
item, i , that is to be picked up later, there must be enough time to �nish placing item k as well as
move to the pick-up location of item i .
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Figure 3.10: An example of both sequentiality constraints (3.12) and (3.13), where the decision variable x2;3;0 is
considered to be used:
Suppose the system contains three items, 1, 2, and 3, and there are no planned advancements. We are currently solving
the subproblem for the tray at position 7, i.e. subproblems for trays 4, 5, and 6 have already been solved. Suppose item
1 (red) and item 3 (green) have been allocated to trays 4 and 5, respectively. Each are going to be picked up when it
reaches the �eld with its designated circle. We are now considering if item 2 (blue) should be allocated to tray 7 by
picking it at the blue circle.
Constraint (3.12) dictate that as item 1 is to be picked up before, there must be enough time to pick item 1 when it
reaches the red circle, place it in tray 4, and move from tray 4 to the blue circle before item 2 reaches that �eld. The
two movements are visualized by the red arrows.
Conversely, Constraint (3.13) dictate that as item 3 is to be picked up later, there must be enough time to pick up item
2, place it in tray 7, and move from tray 7 to the green circle before item 3 reaches that �eld. The two movements are
visualized by the green arrows.
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Solution Approach

In order to conduct a plan we must solve all subproblems within the designated 1.8 seconds. The initial
thought of this project would be to use a local search heuristic to achieve a high quality solution in a
very short time. This idea is inspired by El Yafrani et al. [15], where General Assignment Problems
are sought to be solved within 0.5 seconds using an Iterative Local Search (ILS) [29]. The paper solves
54,000 di�erent types of problems of varying di�culty with 100 to 100,000 variables and 100 to 1,000
constraints and in about 80% of the instances ILS is able to solve the problem type in less than 0.5
seconds with an optimality gap of at most 0.1.

With the speci�ed settings, each of the subproblems from Section 3.2 reaches about 300 variables and
300 constraints in the steady state and it turns out that the size is small enough to be able to �nd
the optimal solution within the supplied time horizon by using CPLEX. Therefore, e�ort has not been
put in developing an algorithm through a relevant heuristic, the model simply uses CPLEX instead.
A more detailed analysis of the processing time of the model is provided in Section 4.1.

3.3 Considerations of Computational E�ciency

This section will summarize some of the e�ort that has been put into decreasing the computational
complexity of the model in order to ensure a solution that is found within the designated time horizon.
In the �nal script, practical computation outside of CPLEX and translating the solutions from the
subproblems into an actual scheduled plan used about 6% of the total computation time, which is
about 0.1 second. This is deemed acceptable and therefore most e�ort has been put into formulating
the problem as e�ciently as possible to reduce the computation time in CPLEX.

In general, I have tried not to spend much initial time on writing all code as e�ciently as possible. This
is to follow the words of Donald Knuth: Premature optimization is the root of all evil [22]. Instead,
functional code has been written and if I thought there would be better ways to construct it, the idea
was written down so it could be tested later if the �rst version was not fast enough.

ˆ In order to keep loops as short as possible, distinct lists of active and disposed objects are used
and frequently updated. The time gained from this has not been tested.

ˆ In the formulation, attributes like spawn time and �eld position are used to keep track of the
time points. This may be a bit confusing and make it di�cult to read the constraints. But by
only de�ning x-variables for the items when they are in a reachable area instead of having them
depend on a global timet, I can avoid introducing variables that represent picking an item, when
it is not reachable, as well as introducing constraints that have to identify when this occurs. It
could be possible to identify the feasible time spots prior to the program, so fewer variables could
be introduced, but it would also require more translations between the current �eld of the item
and the time t. Finally, it has proven practical when debugging the code that I can quickly see
exactly where an item should be picked up.

ˆ The simulation app can run both with or without visualization . When conducting experiments
where timing is crucial, it has been run without visualization, as it takes up some of the computer
power. When visualizing, it should be possible to let the machine run while computing a new
plan within the 1.8 second time window, instead of pausing everything while it computes. Mul-
tithreading has been implemented to allow this. At each time step, the picture is updated and
the app will wait for the remainder of the 0.2 seconds that a time step takes. That gap can be
regarded as an Input/Output-bound task and thus multithreading can be used to compute the
next plan with CPLEX while letting the entire visualization run �uidly. To avoid race conditions,
only the planning algorithms can alter the objects, while the visualizer only reads values.

ˆ In the beginning, variables for all items in K were used, and if an item were already allocated
in P, the variable would be forced to 0 in an additional constraint. Later, I changed it to only
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introducing variables for items in K nP and started to check if all items are used after each
subproblem, i.e. whenK � P the subproblems for all subsequent trays have trivial solutions, as
no more items are available. When introduced, this approach yielded a 30% decrease in median
and standard deviation of computation time.

ˆ When �rst introducing the sequentially dependant constraints for the robot (3.11)-(3.13), the
computation time increased markedly. The �rst formulation was a simpler expression to read,
but it contained more inequalities. Instead, I made the expressions as compact as possible by
summing over more variables which demand fewer inequalities in the end. Also, by identifying
the speci�c items in P that may have an impact on an item k in K nP, the number of constraints
could be further reduced. Finally, Big M is chosen as small as possible, as this is recommended
by IBM to maximize the e�ciency of the algorithm in CPLEX 1.
These steps decreased the computation time by90% in both median and standard deviation.

ˆ Similar to one of the points above, after each subproblem I began to identify if the robots that
could reach the next tray were already fully utilized, in order to be able to skip the CPLEX
computations of these trays. However, this only yielded a few percentages increase in the com-
putation.

ˆ As a lot of objects with many attributes are introduced and looked up often (spawn time, weight,
conveyor lane, pick and place times, etc.), I looked into using either a regulardictionary in
Python or using a DataFrame from the pandas library. In particular I constructed a table of
robot movement times between all feasible points 10 times where 8,000 values were looked up in
each iteration. The �nal choice was easy, as this took 186 seconds using DataFrames, while it
took 0.05 seconds using dictionaries.

3.4 Input Analysis

Before conducting the experiments, we need to review how the input can look, i.e. the items coming
into the system. Marel has provided three datasets of di�erent �ocks. The information will be used
to generate instances which can represent the true problem. Two of them will be used in a few
experiments. In order to allow multiple experiments, this section will try to identify the traits that
characterize the items, so they can be simulated by random distributions.
Figure 3.11 shows a histogram of the three datasets. They will be referenced by their name in the
�gure.

When generating data at Marel, it is common to use a normal distribution to represent the weights
of the items. From the �gure, it is obvious that none of the datasets are perfectly normal. Indeed, a
Shapiro-Wilks test [35] for normality returns very signi�cant p-values for each sample. Table 3.2 shows
the mean and standard deviation of each sample and the result from the test of normality.

Sample Name Mean
Standard
Deviation

p-value

dataset_1 254 44 9:9 � 10� 22

dataset_2 252 52 1:7 � 10� 17

dataset_3 273 50 2:2 � 10� 26

Table 3.2: Mean weights, standard deviation, and p-value from Shapiro-Wilks test of normality for each of the sample
datasets.

All three samples have a 'gap' near the median. This is most apparent indataset_3 and the least in
dataset_1 . Visually, dataset_1 looks quite normal with its bell curve, though it does have a minor
gap. This is the opposite to dataset_3 which is completely bimodal and thus, it does not have only

1https://www.ibm.com/support/pages/di�erence-between-using-indicator-constraints-and-big-m-formulation
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Figure 3.11: Histogram of the weight distribution of the three supplied datasets.

one but two distinct peaks. The variation in the input is caused by previous processing of the chickens
at the manufacturer. In particular it is common that whole chickens of a certain size are selected to
be sold as whole and thus they are removed from the system before being cut to smaller pieces for the
RoboBatcher.

Using an algorithm that is tested on normally distributed data may not perform well in practice. If
the true data is shaped likedataset_1 , then the results may be representative. Butdataset_3 shows
that it is important to account for the possibility of bimodal data as well.

In the simulation experiments of this project, the data will be generated from a normal distribution
of mean 250 and standard deviation 50 by default. But experiments with generated data containing
bimodal properties and samples from actual data will be used as well.

The arrival rates of the items also play an important role in the performance of the RoboBatcher Flex.
The model contains a conveyor lane with three parallel tracks, where the arrivals are independent of
each other, as they arrive from di�erent machines. The arrival will be modeled by using the exponential
distribution for inter-arrival rates, as this is common simulation. The samples show that approximately
180 items arrive on the conveyor every minute. However, Marel states that 150 items is more common
with a two-cell robot like the one in this project. The estimate of 150 items per minute will be used,
which means 50 items per minute per track, and equivalently 1/6 items per time unit at each track.
Thus the inter-arrival rate can be modelled by Exp(1=6).
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Chapter 4

Experimental Results

This chapter will go through various experiments and present the results. First, some baseline param-
eters of the simulation and default problem features will be presented, both are the standard settings
that will be used in all experiments unless otherwise stated. Some of them have been introduced before,
and therefore they will need no explanation, others may contain a brief argument. First, the baseline
parameters:

ˆ The simulation is discrete in time with �xed increments of 0.2 second time units.

ˆ It is a terminating model with no warm-up period. In the beginning, the information is sparse
and the performance of the model here may greatly vary from the performance in the steady
state. However, the warm-up takes enough initial time that it is important to account for.

ˆ Replication length is 10,000 time units, which approximates to 30 minutes or 5,000 items. This is
because it is common for the company to simulate 5,000 items in a replication and it corresponds
to a complete �ock of chickens. For comparison Hundscheid et al. [20] simulates 10,000 items in
their batching experiments instead.

ˆ The number of replications is 3. Early experiments showed that with three replications, the half-
width of the give-away reached 0.3%, and from there the gain from increasing the replications
was marginal. This shows that the model turns out to be quite accurate with the replication
length, as 0.3% gives a slim interval. The number aligns with Law and McComas [24] where
three to �ve replications are recommended. For comparison Hundscheid et al. [20] replicates 15
times to reach a half-width of 1% of the same KPI.

The di�culty of a speci�c problem instance is characterized by the interaction of the problem features.
The points below mention the identi�ed problem features and default values used in experiments.

ˆ Item weights are generated and drawn fromN (250; 502), inter-arrival rates are drawn from
Exp(1=6).

ˆ Target tray weight is 550 grams. This is the main problem feature that can easily be changed
by a manufacturer: the setup of the machine is �xed, the incoming items come from a farm,
but the manufacturer can choose the size of the trays he wishes to �ll. All experiments will be
characterized by having a target tray weight that is not perfectly divisible by the item mean (e.g.
not 500 or 750) as this will be an 'easy' job that is already solved well with limited room for
improvement by the Baseline algorithm.

ˆ Two robots.
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ˆ Two tray lanes with the same target tray weight. Advancement time, � , is set to one. It enables
better comparison to the Baseline, which is explained further in Section 5.3.

ˆ Three lanes for items on the main conveyor belt.

ˆ Dimensions as in Appendix A.

All experiments are run on a Windows 10 machine with an Intel Core i5-8265U 4-core CPU @ 1.6 GHz
with 8GB RAM. In experiments where the time usage is essential only one instance is run at a time,
which allows CPLEX to use multiple threads when it is bene�cial. In experiments where time usage
is not in focus, experiments are run in parallel on each core and CPLEX is set to only use a single
thread. This may increase the computation time for each replication marginally, but parallel running
allows experiments with many replications to run much faster.

4.1 Computational Time

This section will analyze the time usage of the proposed GP model in a single replication. Figure 4.1
shows a histogram of the times spent planning in a single replication. 1,116 plans have been made in
the replication where 92% of them are �nished in less than 1.8 seconds. The median computation time

Figure 4.1: A histogram of the computation times from a single replication with an imposed kernel. The vertical line
shows the time limit.

is 0.66 seconds with a standard deviation of 0.69. The median will be the point of reference instead of
the mean, because it is not as sensitive to the few outliers. The median with1:5 standard deviations
is 1:695 and approximately 90% of executions are below this level. Time spent with computations
outside solving subproblems with CPLEX are 3% on average which corresponds to 0.05 seconds in a
plan of 1.8 seconds.

The histogram shows a distribution that could be symmetric, but naturally it is truncated at 0. It
does have a long tail, which will have to be accounted for in the true system. A success rate of 92% is
satisfactory, but it does mean that every tenth plan require more time.
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A setting in CPLEX allows us to set a time limit for the computation time. If the time limit is met, the
program will return the current solution, which may not be optimal but still feasible. In the current
model, each robot can reach a total of 12 trays at all times. Thus in a plan with no advancements,
24 subproblems have to be solved. With a 1.7 second time horizon for solving the subproblems we
allow 0.1 second for the computations around the subproblems. This leaves 0.07 seconds to solve each
subproblem. However, the time limit setting of CPLEX has a minimum value of one second, so it
cannot be applied when the problem is decomposed.

An alternative method to ensure a feasible plan could be to identify the situations that make the
computation harder and take steps to reduce the variables and constraints in the subproblem. This
could, for example, be by rejecting some of the heaviest items. However, it may reduce the solution
quality but it can instead ensure a feasible plan.
Of course it would also be an option to develop an appropriate heuristic algorithm instead of using
CPLEX. In that way it would be possible to search for a solution in a �xed time frame and return
the best result afterwards. By comparing to El Yafrani et al. [15], using a simple heuristic should be
enough to reach a good or optimal solution within the time frame.

4.2 Choice of Parameters

Through development of the model, �ve parameters have been identi�ed which can impact the perfor-
mance. This section will seek to cover the trade-o� between give-away and reject and identify a set of
parameters that should reach the desired level of the KPIs. As we are looking at multiple KPIs, the
strategy is to �nd strictly dominated solutions in a Pareto e�ciency sense. The �ve parameters are:

ˆ Objective coe�cient (obj_coef )
This is the cost coe�cient, c, on positive give-away in the objective function (3.1). A high
coe�cient will penalize positive deviation harder, thus give-away will be smaller but the reject
may increase.
Values tested aref 1; 5; 10; 15; 20; 40g.

ˆ Priority sequence (priority_seq )
This is the sequence in which the subproblems are solved. An example of two di�erent sequences
are shown in Figure 4.2. Havingpriority_seq = (1 ; 1) ensures that the focus is on the last
trays, but it is worth investigating if there is a gain from having other sequences. This could
be, for example, if it is advantageous for a robot to focus on one tray lane at a time to perform
movements that are shorter.
Values tested aref (1; 1); (3; 3); (6; 6)g.

ˆ Forbidden interval (intvl )
This is the speci�ed interval (mL ; mU ) for which d� is excluded, from Constraints (3.3) and
(3.4). The interval (0; � ) speci�es that if a tray is not �lled, then the remaining weight must at
least be the item mean.
Values tested aref (0; � ); (0; � + � ); (0; � � � )g.

ˆ Force factor (force_factor )
After a tray has been stuck at the end of the lane for a certain period of time, it will be forced to
be �lled by the arrival of the next items. It will increase the give-away but it avoids bottlenecks
as it keeps the �ow going. force_factor is a parameter that expresses how long the period of
time should be, higher values indicate a longer waiting period. It depends on the length of a
conveyor, so aforce_factor of 2 means that two entire conveyor lanes pass before it will be
forced to be �lled.
Values tested aref 0:25; 0:5; 1; 2; 4g.

ˆ Data sample (data_sample)
This is the size of the data sample that is used to compute the statistics. With the GP model, the
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only estimated statistics are the mean and standard deviation of the item weights as opposed to
the Baseline, where Superbatching is incorporated and a complete PMF is estimated. Marel has
found, that a data_sample of size400 works well with their algorithm. Larger samples require
more time for computing but they facilitate a more exact estimate of the true distribution. A key
consideration of this parameter is that smaller samples are based on more recent data. When
running the RoboBatcher Flex through an entire day, the �ocks that the input arrives from
change during the production process. As seen in Figure 3.11 the di�erent �ocks may exhibit
very di�erent weight distributions. Making decisions on too large a sample will be based on
irrelevant data. All tests in this project are only conducted at most on one �ock at a time, so
larger sample sizes would show better results, but it would not re�ect the true system.
Because of these considerations, the data sample will be �xed at the level that Marel has found
suitable, 400.

Figure 4.2: Visualization of sequences in which the subproblems can be solved. Top picture is a priority_seq of (1; 1)
and the bottom picture of (3; 3). The solution sequences follow with the same pattern all the way up to the frontmost
trays.

The values combines into 270 combinations which results in a total of 810 iterations. Figure 4.3 shows
the results from all combinations of parameters on a job with a target tray weight of 600 grams and
item weights distributed by N (250; 502). This section will show multiple of these Pareto plots with a
similar construction. They all have in common that the y-axis is not the average give-away of both
trays, instead it shows the give-away from the tray lane where it is highest. This is to ensure that a
balanced solution is reached, i.e. we seek to minimize the max give-away.

The most obvious result is that an obj_coef of 1 overshadows the other parameters. It allows a small
reject but a high give-away. It is also quite far away from the other results. Other than that, the �gure
shows that the obj_coef has the expected behavior, since higher values yield a lower give-away with
a higher reject, and it can be seen that the e�ect of changingobj_coef diminishes with higher values.

Figure 4.4 shows the results without the obj_coef of 1 to be able to see more details. A solution
is better the closer it is to Origo. It is clear to see that there is not a single best set of parameters.
Some seem better than others, but any choice will lead to a certain give-away and reject where one
of the KPIs can be reduced by an increase in the other. The relationship seems linear, but it may
be a di�erent picture if a broader range of parameter values were investigated. Figure 4.4 shows that
a sequence of(6; 6) is dominated by the other two options, as other options allow lower values of
both KPIs. The sequence(1; 1) dominates the sequence(3; 3) in most cases, though there are a few
occurrences, where the result from a(3; 3) sequence is Pareto e�cient. Because the sequence(1; 1)
dominates in most cases,priority_seq is �xed to this setting.

34




	Front page
	English title page
	Contents
	Acronyms
	Preface
	1 Introduction
	1.1 The RoboBatcher Flex
	1.2 Making Decisions with Mathematical Optimization
	1.3 Motivation
	1.4 Statement of Intent
	1.5 Assumptions

	2 Background
	2.1 Details of the RoboBatcher Flex
	2.1.1 Superbatching

	2.2 Literature Review

	3 The Model
	3.1 The Simulation
	3.2 The GP Model
	3.2.1 Mathematical Formulation

	3.3 Considerations of Computational Efficiency
	3.4 Input Analysis

	4 Experimental Results
	4.1 Computational Time
	4.2 Choice of Parameters
	4.3 Benchmarking
	4.3.1 Second Attempt

	4.4 Extension: The Hybrid
	4.5 Extension: Longer Conveyor

	5 Discussion
	5.1 Model Formulation and Solution Strategy
	5.2 The Hybrid
	5.3 Implication of Assumptions

	6 Conclusion
	Bibliography
	A Specific Machine Setup
	B Scheduling by Subproblems

