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Abstract:

The aim of this project is to analyse pat-
terns of usage in dock-based bike sharing sys-
tems in order to distinguish between different
types of stations with the end goal of being
able to predict the average daily traffic pat-
terns of stations based on spatial factors in their
service areas. The analysis is based on trip
data from bike sharing systems in New York
City, Chicago, Washington DC, Boston, Lon-
don, Helsinki, Oslo, and Madrid as well as other
data external to the systems.

In the analysis, different clustering algorithms
are introduced to cluster stations based on the
shape of their average daily traffic patterns. It
is found that using k-means clustering with five
clusters yielded clearly separate types of traf-
fic patterns which are then related to external
spatial factors using a logistic regression model.
A strong relationship between station type and
spatial factors is found for all cities, and vari-
ations between the models for different cities
are related to differences in commuting culture
between cities. Average bike share demand for
each station is modelled using a generalised lin-
ear model with a logarithmic link function, and
coupled with the logistic regression model it is
possible to predict average traffic patterns with
reasonable precision.

Finally, in a case study of the Citi Bike system
expansion in autumn 2019, the demand model
is used to optimise station placement.
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1. Introduction

In 2018, the United Nations projected that 6.7 billion people will be living in urban
areas in 2050 compared to 4.2 billion in 2018 [UN ]. One of the main challenges in
keeping such an urban growth sustainable is developing the transportation infrastruc-
ture to meet the needs of the growing population. If an increased population leads
to an increase in car-travel within the city, the road infrastructure will become more
strained over time, even with heavy investments in its expansion ad maintenance.
At the same time, private transportation of people and goods already contributes
disproportionately to environmental problems such as noise and air pollution [Eura].
Therefore, as stipulated in the UN sustainable development goal SDG 11, it is essen-
tial to the sustainable development of cities that city residents have access to high
quality public transport solutions [Uni]. By reducing car-dependence, cities can be-
come a more healthy and livable environment, and by improving sustainable transit
options, the mobility of city dwellers can be increased [Eura].

Sustainable urban mobility solutions come in many shapes and sizes, and each
mode of transport represents a trade-off between throughput and speed on one hand
and flexibility on the other. Where rail transport favors throughput and speed, and
walking favors flexibility, there is a niche with higher speed compared to walking and
higher flexibility compared to rail transport which is filled by the bicycle. Cycling
provides a cheap, efficient and sustainable transportation solution, particularly when
coupled with accommodating infrastructure. However, because cycling ordinarily
relies on individual bike ownership it can sometimes be difficult to integrate with
other mobility solutions. One way for cities to integrate cycling with other mobility
solutions and simultaneously promote cycling as a sustainable alternative transport
method is by providing access to a bike sharing system.

1.1 Bike Share Systems
The inception of bike sharing is widely attributed to the "White bikes" initiative
of 1965 in Amsterdam which was a part the white plans aimed to address social
problems and make the city more livable. While the white bikes plan was mainly
used to provoke the establishment and promote discussion about social mobility, the
plan served as an inspiration for future bike sharing programs.

1



2 Chapter 1. Introduction

Figure 1.1: Growth in number of bike sharing systems worldwide. The figure has been taken from
[DeM+21].

From the late 2000s and onward, advancements in information technology have
made implementing and managing bike sharing systems more feasible and cost-
efficient. This has led to a rapid expansion in the amount of bike share systems
worldwide. A recent report shows that around 2000 bike sharing systems are in op-
eration with a global fleet size of more than 10 million bikes as of August 2021, see
Fig. 1.1 [DeM+21].

While technological innovation has made it possible to invest more in bike-sharing
system infrastructure, there are a number of factors which contribute to the growing
popularity of bike sharing.

From the perspective of city planners, bike share systems pose an interesting
solution as planners are faced with the demands of reducing emissions, decreasing
congestion and increasing the mobility of city residents all while dealing with the
constraints of a limited budget. A bike share system serves all of those demands
while being many orders of magnitude cheaper for the city to implement than other
mobility solutions. In some cases, cities contribute little more than the public land
for parking of bicycles. [Dad12]

Among the users of the bike sharing system, an important reason listed is conve-
nience. A well-functioning bike share system works well in tandem with other modes
of public transport, and is easy to integrate into the users’ daily commute. The
pickup-and-go type system is convenient when covering distances which are too far
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to walk and too close to warrant other transportation options. One frequent use case
for bike sharing is to cover the distance between the origin of the trip and stations
for public transport such as a metro system. This is sometimes called the first mile
problem. Conversely, bike sharing can also serve as a last mile solution to cover the
part of a trip from a public transport station to the final destination. [ZQB19; MS14;
Yan+20b]

Research on the usage of bike share systems indicates that bike share trips mainly
supplant walking and public transport trips, and only to a lesser degree replace car
trips. However, if bike sharing is seen not in isolation but as one part of the urban
mobility arsenal, it can help increase the coverage and flexibility of public transport,
making public transportation a more viable mobility solution for more people. [MS14]

Bike sharing systems can come in many flavours with the two most popular being
dock-based systems where the bikes inter-lock with docking stations in fixed locations,
and dock-less systems, also called free-floating systems, where bikes can be picked up
and dropped freely within a designated area. Both types of systems have advantages
and disadvantages both for the user but also for the operator maintaining the system.
Dock-less systems give the user more freedom in where they can place the bike at the
end of the trip, but this also means that bikes are more sporadically placed and can
block sidewalks and create clutter in the streets, while having a nearby bike at the
start of the commute may be less reliable. From the operator side, re-balancing the
system i.e. moving bikes around to make them more accessible can be more costly
when the bikes are not concentrated at set locations [PZ17]. In dock-based systems,
it is only necessary to re-balance between the docking stations, but there is also a
bigger planning aspect to this type of system in terms of where to put new stations.
Modern bike share docks get some flexibility by being able to operate on solar power,
and installation is therefore as easy as bolting it into the pavement [NYC09]. While
this makes setting up new docking stations cheap and easy relative to other types
of transportation methods, they are still an added cost and an added consideration
compared to dock-less systems.

1.2 Bike Share Planning
For the users of a bike share system, there is no problem of punctuality or frequency
like there is in a typical public transport system. However, a main performance
metric which affects the users is whether docking stations are full at the destination,
or empty at the origin. Therefore, it is important that the system is balanced with
respect to how many bikes are at each station. There are three main dimensions in
which unbalance in the bike share system can be addressed [VGM11]:

• Strategic decisions concerning the overall system network including the loca-
tion and size of bike share stations.
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• Tactical design considerations where balance is built into the system by e.g.
providing incentives such as discounts to users who drop off their bike at sta-
tions low on bikes.

• Operational relocation of bicycles by the operator, e.g. using a truck.

This project will mainly concern planning at the strategic level.

When making planning decisions concerning the strategic level, either for a new
bike share system or expanding an existing one, there are many factors which can
influence the locations and dimensions of the new stations. In order to make the
best possible decisions about locations, it can be useful to apply what was learned
from existing systems. This can be done qualitatively by inspecting what works and
what doesn’t, as was done by the New York City Department of City Planning where
they conducted a feasibility study for a bike share system wherein they looked at
data from the Parisian bike share system Velib’ to get a general idea what kind of
traffic could be expected in a bike share system in a major city [New]. However,
in order to get a more detailed picture of what type and volume of traffic can be
expected in different parts of a city, it is also possible to learn from existing systems
quantitatively. If detailed trip data is available from existing systems, this could
be used to make an accurate prediction of the expected traffic at different locations
across a city.

Traditionally, obtaining detailed traffic data could be difficult. However, in recent
years cities around the world have increasingly made their data available for public
use under open licensing terms. This open data movement has also been embraced
by public and private service providers, including bike share providers who publish
anonymised historical data on trips through their systems. The availability of open
data has sparked a rise in popularity of using data-mining and data-based modelling
of bike sharing systems to analyse behavioural patterns and inform decisions about
urban planning.

1.3 Literature Review
Because of the popularity of bike share systems, there exists a wide body of studies
concerning various aspects of bike share systems. One popular class of studies con-
cerns the relationship between different social and environmental factors and bike
share usage. For an extensive overview of these types of studies, we refer to the
review paper by Eren and Uz [EU20]. Other papers concern topics such as environ-
mental impact [ZM18] or system re-balancing strategies at any of the three planning
levels [Chi+20].

Of particular relevance for this report are those pertaining to three specific types
of bike sharing problems, namely clustering, statistical modelling of station demand,
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and planning problems where optimisation methods are used to determine station
placement.

1.3.1 Clustering

Clustering is a class of machine learning algorithms which are used for categorising
a data set into a number of distinct subsets. In bike sharing, clustering is typically
used to classify stations into different categories based on the types of trips they
attract. Some stations might be the source of many commuters in the morning rush
hour, while other stations may have more leisurely trips spread throughout the day.
With the use of clustering methods, stations with similar temporal patterns can be
identified, which can be useful both for bike share system planning, re-balancing as
well as understanding urban mobility in general.

Different clustering methods have been applied on various bike share systems with
the aim of identifying common patterns. Between 3 and 5 clusters were identified as
an appropriate amount of clusters in the cities of Vienna [VM11], Chicago [Zho15]
and Paris [FAZ17], while one study found 8 clusters to be appropriate [CO14].

Clusters with different types of traffic also commonly attract different types of
users, as evidenced by the correlation between cluster type and various demographic
data such as age and gender in Chicago in [Zho15], while [VM11] and [CO14] com-
pared the cluster types with visual examinations of the station surroundings.

Different approaches to clustering of bike share traffic data include the determi-
nation of spatial communities of stations which are highly inter-connected [Bor+11],
the clustering of station occupancy data into temporal occupancy patterns [SLM15],
and the use of latent Dirichlet allocation to associate each station with one or more
categories [Cô+14].

1.3.2 Traffic Prediction

Being able to effectively model and predict the traffic in a system can be crucial
when planning to set up stations in a new area, whether establishing a whole new
system or expanding an existing system. Traffic prediction is also important in
terms of forecasting when specific stations need to be re-balanced such as to minimise
customer grievances when there are no available bikes or no space to park one. Thus,
in order to minimise customer dissatisfaction and thereby increase profitability, traffic
prediction has been under intensive study in recent years.

One of the main goals of traffic prediction is being able to identify key factors
which have a large impact on the demand [EU20]. The most simple models use his-
torical data from a station in the bike sharing system to forecast the future demand
of that station [Yan+16], although since this relies on prior data from the station,
the application of this is restricted to re-balancing purposes. Being able to associate
bike share usage with data external from the bike sharing system is far more inter-
esting in terms of planning of future endeavours. There are two dimensions to this
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problem: The spatial factors which relate bike share usage to the where and tempo-
ral factors which relates it to the when. Statistical regression has been shown to be
effective in both associating bike share usage with static spatial features such as the
land use of the surrounding area and city infrastructure [NSG19; NSG16; BB12] as
well as demographic factors [Yan+20a], and temporal effects such as precipitation,
temperature and wind speeds [XC20] or some combination of both [FIE16]. Another
way to model station usage is by using a two-tier modelling approach, which first
clusters the stations and then relates external data to each cluster [Hyl+18].

Dock-based systems also lend themselves well to graph-modelling with docking
stations serving as nodes connected by the trips between them. Graph modelling
has been shown to be useful for modelling the traffic flow between stations in order
to predict demand [Li+19] or to aid more complicated models such as Long-Short
Term Memory (LSTM) neural networks [Yan+20b]. While neural networks may
not be geared to explain the relations between variables like conventional statistical
models, they are proven effective at using both spatial and temporal data to predict
short-term demand [Ma+22] as well a incorporating more advanced types of data
such as traffic data from other public transportation systems [Zha+18].

1.3.3 Optimisation for Bike Share Planning

The location of stations is one of the essential bike share planning problems. By
establishing a set of candidate station locations as well as a suitable objective func-
tion, it is possible to use optimisation methods to obtain a configuration of station
locations which is in some sense optimal.

Factors which have been used in an objective function include maximising the
coverage of pre-specified points of high demand and points of interest by counting
the number of demand points covered by the bike share station configuration [CYI18;
AB21], as well as maximising the coverage of bikeway segments and population cen-
ters [CMF18].

Alternative factors which have also been considered include maximising bicycle
modal share in a simulated population using a genetic algorithm [Rom+12] and max-
imising the demand that is served within city zones [FR15]. Instead of maximising
desirable factors, another option is minimising undesirable factors, for example travel
distance to and from bike share stations to ensure that bike sharing is convenient for
as many users as possible [PS17].

In addition to the objective function, there is a variety of different constraints
which can be used to set up an optimisation problem. First and foremost is the budget
constraint. This can be expressed in different ways, either as the number of stations
to be placed, the number of bicycles distributed among stations or a combination of
both [CYI18; FR15]. Other constraints primarily concern either coverage of a certain
area such as being situated near a bikeway [AB21].
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1.4 Problem Statement
In the literature, the concepts of clustering and statistical modelling of bike share
trip data have been treated

However, there was found to be a certain lack of a combined analysis of traffic
patterns using both clustering and modelling of demand. In addition, the analyses
in most of the studies are restricted to a single city. It is the opinion of the authors
that a discussion pertaining to the usability of traffic prediction models between cities
could be informative in both about the generalisation ability of the models as well
as to identify differences and similarities between cities in terms of bike share usage.
In order to narrow the scope of the project, the systems which will be analysed will
be entirely dock-based. The project will also be further limited to a spatial analysis
of traffic patterns.

Based on these considerations, we have identified a problem statement which
builds upon the literature by answering the following question:

How can spatial information from a city be used to predict the shape and volume
of a station’s average daily traffic pattern in a dock-based bike sharing system, and
how does this differ between cities?

In order to answer the problem statement, we will first present theory about
different clustering methods in Chapters 2 to 4, followed by measures for cluster
validation in Chapter 5. Then, theory about generalised linear models and logistic
regression will be shown in Chapters 6 and 7. Once the theory has been established,
the bike share trip data is presented alongside the data from other sources in Chap-
ter 8, while the approach for modelling the data is shown in Chapter 9. Theory and
data meet in practice in Chapters 10 to 12. Finally, a case study on the expansion
of the bike share system in New York City can be found in Chapter 13





2. K-means

Out of the many algorithms that may be used to classify a set of data points, one
of the most popular algorithms is the k-means algorithm. The k-means algorithm
is a partitioning algorithm, i.e. the goal of the algorithm is to obtain a partition of
a data set into k groups or clusters such that an objective function is extremised.
While the k-means algorithm is somewhat elementary, its ease of implementation,
low computational complexity and convergent property makes it a very attractive
and frequently used clustering method.

The k-means algorithm is a partitional algorithm meaning that the goal of the
algorithm is to partition the data set D = {x1,x2, . . . ,xn} of d-dimensional data
points into k clusters C1, C2, . . . , Ck such that [KR05, p. 38]

1. Cj 6= ∅, j = 1, . . . , k,

2.
k⋃
j=1
Cj = D,

3. Ci ∩ Cj = ∅, i 6= j.

One simple way of partitioning D is by defining k representatives m1,m2, . . . ,mk,
one for each cluster, and then assigning each data point to the cluster with the near-
est representative [Bis06, p. 424]. This in turn introduces the problem of how to
determine these representatives. Randomly choosing data points to act as represen-
tatives will probably not yield good clustering. However, iteratively updating the
representatives based on the data points in their cluster may yield better choices and
better clustering over time. This is the idea behind the k-means algorithm.

The k-means algorithm is classically derived by minimising the Sum-of-Squares
Error (SSE) objective function. Before minimising, we define the indicator variables
rij for i = 1, . . . , n and j = 1, . . . , k as binary variables which indicate the cluster
which xi ∈ D is assigned to. More formally, we define [Bis06, p. 424]

rij =
{

1, if xi ∈ Cj ,
0, otherwise,

i = 1, . . . , n j = 1, . . . , k. (2.1)

9
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The objective function to be minimised is then

E =
n∑
i=1

k∑
j=1

rij‖xi −mj‖22 (2.2)

representing the sum of squared euclidean distances between each data point and
the representative of the cluster which the data point is assigned to. The objective
function needs to be minimised with respect to both the indicator variables rij and
the representatives mj . In practice, some data points are chosen as the initial mj .
Subsequently, E is minimised iteratively with each step consisting of two minimisa-
tions; one with respect to the rij keeping the mj fixed, and one with respect to the
mj keeping the rij fixed [Bis06, p. 425].

The minimisation of E with respect to the rij is relatively straightforward. Note
that the terms in Eq. (2.2) involving different i are independent, meaning we can
minimise for each i separately. Thus, for i = 1, . . . , n the mj which minimises the
distance ‖xi −mj‖2 is simply the one closest to xi. The rij which minimise E are
therefore the ones for which [Bis06, p. 425]

rij =

1, if j = arg min
1≤l≤k

‖xi −ml‖2,

0, otherwise.
(2.3)

Consider the minimisation of E with respect to the mj keeping the rij fixed.
Note again that the terms in Eq. (2.2) with different j are independent from each
other. Thus, for a specific j we minimise the sum

n∑
i=1

rij‖xi −mj‖22 (2.4)

which is a quadratic function ofmj . Setting the derivative of Eq. (2.4) to zero yields
[Bis06, p. 425]

2
n∑
i=1

rij(xi −mj) = 0 (2.5)

which, when solving for mj , yields

mj =
∑
i rijxi∑
i rij

. (2.6)

Note that
∑
i rij = |Cj | by the definition of rij . Thus, Eq. (2.6) is simply calcu-

lated as taking the average over all xi ∈ Cj .
The two steps of calculating Eq. (2.3) and Eq. (2.6) are repeated until some

convergence criterion has been fulfilled. One possible criterion may be to define an
ε > 0 and stop when ‖mold

j −mnew
j ‖2 < ε for two consecutive iterations of mj .

Another criterion may be to set a threshold on the number of reassignments of rij
by Eq. (2.3). The algorithm has been well documented to converge, and we will also
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provide a justification in Chapter 3. However, global convergence is not guaranteed.
A pseudo-code of the k-means algorithm involving the discussed steps can be seen
in Algorithm 1.

Algorithm 1 k-means
Input: dataset: D = {xi}, number of clusters: k

1: Initialise: mj , j = 1, . . . , k
2: while not converged do
3: for i = 1, . . . , n do
4: Find J = argmin

1≤j≤k
‖xi −mj‖2

5: Assign xi to CJ
6: end for
7: Update mj = 1

|Cj |
∑
x∈Cj x, j = 1, . . . , k

8: end while
Output: k clusters

One critical aspect of the k-means algorithm is the initial choice of the represen-
tatives mj . Typically, the first representatives are chosen randomly as either some
already existing points from the data set or as new randomly generated data points.
However, a preliminary search for good initial representatives can result in fewer
iterations being necessary for convergence as well as to avoid some local minima.

While the k-means algorithm is simple to implement and has a low complexity,
its efficiency is limited by the type of data to be clustered. For instance, the algo-
rithm performs well for data in well-separated and spherical clusters but if the data
clusters are elongated rather than spherical, the performance of the algorithm drops
significantly. This is shown in Fig. 2.1 where we have generated two types of data
and performed the k-means algorithm with initial representatives drawn randomly
from the data set. Both types of data contain two clusters of normally distributed
data points, but one data type is more elongated than the other. Despite the clusters
being clearly separated, the algorithm performs poorly for the data set containing
elongated clusters.

Another limitation of the algorithm is its use of the l2-norm as a measure of
dissimilarity between points. This again limits the type of data which is appropriate
to be used in the algorithm, and data where a different dissimilarity measure may
be appropriate is not guaranteed to be clustered correctly. However, by introducing
a more general dissimilarity measure d(·, ·) we can generalise the k-means algorithm
by minimising the more general objective function [Bis06, p. 428]

Ẽ =
n∑
i=1

k∑
j=1

rijd(xi,mj). (2.7)
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Figure 2.1: Test of the k-means algorithm using randomly generated data for k = 2. The repre-
sentative vectors are shown in black.

The minimisation of Eq. (2.7) with respect to the rij is the same as before. Each
data point should be assigned to the cluster with the most similar representative.
However, the minimisation of Eq. (2.7) with respect to the mj is more complex for
a general choice of dissimilarity measure and closed form solutions may be difficult
to determine [Bis06, p. 428]. In the absence of a closed form solution for a new
representative mj , a discrete search over all points x ∈ Cj may be made for this
representative. Thus, instead of considering mj ∈ Rd like in the k-means algorithm,
we consider only points from the data set as valid representatives i.e. mj ∈ D [Bis06,
p. 428]. These representatives are commonly called medoids and thus the algorithm
for finding them is called the k-medoids algorithm.

2.1 k-medoids

The k-medoids algorithm consists of two phases [KR05, pp. 102-104]. In the first
phase, called the BUILD phase, the initial medoids are determined. The first medoid
is chosen such that Eq. (2.7) is minimised for k = 1. Thus, the first medoid is the
data point which is the most centered in the data set. The subsequent medoids are
then chosen such that Eq. (2.7) is further minimised while keeping already found
medoids fixed. This is continued until k initial medoids are found.
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In the second phase, called the SWAP phase, a swap of each medoid with another
data point is considered. For a medoid mj representing the cluster Cj , the cost
function is evaluated for all possible swaps of mj with the points xi ∈ Cj . This is
then done for every medoid and the pair (xi,mj) which yields the greatest reduction
in cost will be swapped such that xi is the new medoid for Cj . Further swaps are then
done until some convergence criterion is fulfilled. A pseudo-code of the k-medoids
algorithm can be seen below.

Algorithm 2 k-medoids
Input: data set: D = {xi}, number of clusters: k

1: for j = 1, . . . , k do
2: Choose mj ∈ D such that Eq. (2.7) is minimised
3: end for
4: for i = 1, . . . , n do
5: Find J = argmin

j=1,...,k
d(xi,mj)

6: Assign xi to CJ
7: end for
8: Calculate current cost Ẽ
9: while Ẽ decreases do

10: for j = 1, . . . , k and all xi ∈ Cj with xi 6= mj do
11: Consider the pair (xi,mj)
12: Calculate the cost E′ if mj ← xi
13: end for
14: Choose the pair (xi,mj) with the smallest E′
15: mj ← xi
16: Ẽ ← E′

17: Reassign xi, i = 1, . . . , n
18: end while

Output: k clusters

As with the k-means algorithm, the k-medoids algorithm is best suited for spheri-
cal and well separated data. The SWAP phase also introduces a higher computational
complexity since it evaluates the cost of every possible swap. However, the k-medoids
algorithm does have advantages over the k-means algorithm. Other than being more
applicable for general dissimilarity measures, the k-medoids algorithm is also more
robust against outliers due to the objective function being a sum of dissimilarities
rather than a sum of squares [KR05, p. 117].





3. Expectation Maximisation

One of the features of partitional algorithms is the fact that each data point is as-
signed to one and only one cluster. This hard classification of data points may be
appropriate for points which are close to the centers of the clusters, but for points
between clusters the assignment to one cluster over another may seem more arbitrary.
Instead of assigning each data point to a single cluster, we can assign the point k
values, one for each cluster, which indicate how much the data point belongs to each
cluster in some sense. This type of classification is usually called fuzzy classification
[DHS01, p. 1922]. In this chapter, we will provide a clustering algorithm which
provides this kind of classification.

Recall that the Gaussian distribution over a vector x ∈ Rd is defined as [Bis06,
p. 25]

N (x|µ,Σ) = 1
(2π)d/2

1
|Σ|1/2

exp
{
−1

2(x− µ)TΣ−1(x− µ)
}

(3.1)

where µ ∈ Rd is the mean, Σ ∈ Rd×d is the covariance matrix assumed to be
positive semidefinite and |Σ| is the determinant of Σ. Suppose that we are given
a data set X = [x1 x2 · · · xn]T where each data point xi is assumed to be
drawn independently from a Gaussian distribution. Through maximum likelihood
estimation, estimates of the parameters of the distribution can be found to be [Bis06,
pp. 93-94]

µ̂ = 1
n

n∑
i=1
xi (3.2)

Σ̂ = 1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T . (3.3)

However, suppose that we are given a data set like in Fig. 3.1. By visual inspection,
we see that the most of the data is concentrated in two clusters. If we assume that
the data points are drawn from the same Gaussian distribution as before, modelling
of this data set will fail to capture this clustered structure. Rather than assuming
that each data point is drawn from a single Gaussian distribution, we can assume
that the distribution is instead a mixture or superposition of multiple Gaussians.

15
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Figure 3.1: Clusterered data set.

Thus, we will assume that the data points are drawn independently from a Gaussian
mixture model with its density given by [Bis06, p. 111]

p(x) =
k∑
j=1

πjN (x|µj ,Σj) (3.4)

where k is the given number of densities in the Gaussian mixture. In this context,
the densities N (x|µj ,Σj) are called the components of the distribution while the
parameters πj are called the mixing coefficients. Note that by integrating both sides
of Eq. (3.4) we find that

k∑
j=1

πj = 1. (3.5)

Since we also require that N (x|µj ,Σj) ≥ 0 and p(x) ≥ 0, we see from Eq. (3.4) that
πj ≥ 0 for all j. Combining this with Eq. (3.5) yields that

0 ≤ πj ≤ 1, j = 1, . . . , k. (3.6)

Thus, the mixing coefficients can be seen as probabilities. Indeed, the marginal
density of x is given by [Bis06, p. 112]

p(x) =
k∑
j=1

p(j)p(x|j) (3.7)

which is equivalent to Eq. (3.4) with πj = p(j) and N (x|µj ,Σj) ∼ p(x|j). Therefore,
N (x|µj ,Σj) can be interpreted as the density of x given the component j while πj
is the probability of picking that component.

We will introduce a k-dimensional binary random variable z = [z1 z2 · · · zk]T
where a particular entry zj is equal to 1 and all other entries are zero. Thus, there
are k possible states of z according to the placement of the non-zero entry. We will
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call these possible variables latent variables. We will define the marginal distribution
of z using the mixing coefficients such that [Bis06, p. 430]

p(zj = 1) = πj = p(j), j = 1, . . . , k (3.8)

which is equivalent to

p(z) =
k∏
j=1

π
zj
j . (3.9)

The conditional density of x given a particular value for z is given by

p(x|zj = 1) = N (x|µj ,Σj) (3.10)

which can also be written as

p(x|z) =
k∏
j=1
N (x|µj ,Σj)zj . (3.11)

We note that by using Eq. (3.9) and Eq. (3.11) we obtain [Bis06, p. 431]

p(x) =
∑
z

p(x, z) (3.12)

=
∑
z

p(z)p(x|z) (3.13)

=
∑
z

k∏
j=1

π
zj
j

k∏
l=1
N (x|µl,Σl)zl (3.14)

=
∑
z

k∏
j=1

(
πjN (x|µj ,Σj)

)zj (3.15)

= π1N (x|µ1,Σ1) + · · ·+ πkN (x|µk,Σk) (3.16)

=
k∑
j=1

πjN (x|µj ,Σj) (3.17)

which is equivalent to Eq. (3.4). Thus, we can formulate the Gaussian mixture model
using the latent variables. Since we have formulated the marginal probability p(x)
using the joint probability p(x, z), it follows that each data point xi has a corre-
sponding latent variable zi [Bis06, p. 431]. This provides an intuitive interpretation.
One of the Gaussians in the mixture must be responsible for the generation of xi
and the latent variable zi provides that information. An obvious question would be:
Given a data point x is it possible to determine its corresponding latent variable and
thus which Gaussian it came from?

The key to answering this question lies in the conditional probability of z given
x. We will use γ(zj) to denote p(zj = 1|x) which can be determined using Bayes’
theorem
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γ(zj) = p(zj = 1|x) (3.18)

= p(zj = 1)p(x|zj = 1)
p(x) (3.19)

= p(zj = 1)p(x|zj = 1)∑k
l=1 p(zl = 1)p(x|zl = 1)

(3.20)

=
πjN (x|µj ,Σj)∑k
l=1 πlN (x|µl,Σl)

. (3.21)

We note that γ(zj) provides the posterior probability that x has been generated by
the j’th component, while πj is the prior probability. We will call γ(zj) the respon-
sibility that the j’th component takes for explaining x.

For a given data set X, we will denote the corresponding set of latent variables
as the n × k matrix Z = [z1 z2 · · · zn]T . Recall that the data points in X are
i.i.d. In order to estimate the parameters of the mixed Gaussian distribution we aim
to maximise the log-likelihood function given by [Bis06, p. 433]

ln p(X|π,µ,Σ) = ln
{ n∏
i=1

k∑
j=1

πjN (xi|µj ,Σj)
}

(3.22)

=
n∑
i=1

ln
{ k∑
j=1

πjN (xi|µj ,Σj)
}
. (3.23)

Before maximising the log-likelihood we note that the derivative of Eq. (3.1) with
respect to µ is

∂

∂µ
N (x|µ,Σ) = 1

(2π)d/2
1

|Σ|1/2
∂

∂µ
exp

{
−1

2(x− µ)TΣ−1(x− µ)
}

(3.24)

= N (x|µ,Σ) ∂
∂µ

(
− 1

2(x− µ)TΣ−1(x− µ)
)

(3.25)

= N (x|µ,Σ) ∂
∂µ

(
− 1

2
(
xTΣ−1x+ µTΣ−1µ− 2xTΣ−1µ

))
(3.26)

= N (x|µ,Σ)
(
− 1

2
(
2Σ−1µ− 2Σ−1x

))
(3.27)

= N (x|µ,Σ)Σ−1(x− µ). (3.28)

Using Eq. (3.1), Eq. (3.21), and Eq. (3.28), the derivative of Eq. (3.23) with respect
to µj is
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∂

∂µj
ln p(X|π,µ,Σ) =

n∑
i=1

∂

∂µj
ln
{ k∑
l=1

πlN (xi|µl,Σl)
}

(3.29)

=
n∑
i=1

∂
∂µj

∑k
m=1 πmN (xi|µm,Σm)∑k
l=1 πlN (xi|µl,Σl)

(3.30)

=
n∑
i=1

πj
∂
∂µj
N (xi|µj ,Σj)∑k

l=1 πlN (xi|µl,Σl)
(3.31)

=
n∑
i=1

πjN (xi|µj ,Σj)∑k
l=1 πlN (xi|µl,Σl)

Σ−1
j (xi − µj) (3.32)

=
n∑
i=1

γ(zij)Σ−1
j (xi − µj) (3.33)

where γ(zij) = p(zj = 1|xi). Setting Eq. (3.33) to zero and multiplying by Σj yields

0 =
n∑
i=1

γ(zij)Σ−1
j (xi − µj) (3.34)

0 =
n∑
i=1

γ(zij)(xi − µj) (3.35)

µj

n∑
i=1

γ(zij) =
n∑
i=1

γ(zij)xi (3.36)

µ̂j = 1
nj

n∑
i=1

γ(zij)xi (3.37)

where nj =
∑n
i=1 γ(zij) can be seen as the effective number of points in the j’th

cluster. Thus, the mean of the j’th cluster is estimated by a weighted average of the
data points with the responsibilities of each cluster being the weights. Through a
similar process, the maximisation of Eq. (3.23) with respect to Σj can be found to
yield [Bis06, p. 436]

Σ̂j = 1
nj

n∑
i=1

γ(zij)(xi − µj)(xi − µj)T (3.38)

which has the same form as Eq. (3.3) except with each data point being weighted
with the responsibility of its cluster.

When maximising Eq. (3.23) with respect to the mixing coefficients πj , we note
the constraint in Eq. (3.5) which needs to be taken into account. Thus, we aim to
maximise

L = ln p(X|π,µ,Σ) + λ

( k∑
j=1

πj − 1
)

(3.39)
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where λ is a Lagrange multiplier. The derivative of L with respect to πj is

∂

∂πj
L = ∂

∂πj

{
ln p(X|π,µ,Σ) + λ

( k∑
j=1

πj − 1
)}

(3.40)

=
n∑
i=1

∂

∂πj
ln
{ k∑
j=1

πjN (xi|µj ,Σj)
}

+ λ (3.41)

=
n∑
i=1

(
N (xi|µj ,Σj)∑k

l=1 πlN (xi|µl,Σl)

)
+ λ. (3.42)

Setting Eq. (3.42) to zero, multiplying by πj and summing over j yields

0 =
n∑
i=1

(
N (xi|µj ,Σj)∑k

l=1 πlN (xi|µl,Σl)

)
+ λ (3.43)

=
n∑
i=1

(∑k
j=1 πjN (xi|µj ,Σj)∑k
l=1 πlN (xi|µl,Σl)

)
+ λ

k∑
j=1

πj (3.44)

= n+ λ (3.45)

which gives λ = −n. Substituting this into Eq. (3.43) and rearranging yields

n =
n∑
i=1

N (xi|µj ,Σj)∑k
l=1 πlN (xi|µl,Σl)

(3.46)

nπj =
n∑
i=1

πjN (xi|µj ,Σj)∑k
l=1 πlN (xi|µl,Σl)

(3.47)

nπj =
n∑
i=1

γ(zij) (3.48)

π̂j = 1
n

n∑
i=1

γ(zij) = nj
n
. (3.49)

Thus, the j’th mixing coefficient is found by taking the average responsibility that
the j’th cluster takes for each data point.

We note that the estimates of the parameters in Eqs. (3.37), (3.38), and (3.49)
all require an estimate of the posterior probabilities which in turn is calculated using
the parameters. While the estimates are not in a closed form, they do suggest an
algorithm which iteratively estimates the responsibilities and parameters of the mixed
Gaussian. By initialising the parameters of the mixed Gaussian, we can estimate the
responsibilities by using Eq. (3.21) and then use these estimates to re-estimate the
parameters of the density. This will then be repeated until some convergence criterion
is fulfilled. Typically, the convergence criterion is either based on the change of the
parameters between iterations or the change in log-likelihood given by Eq. (3.23).
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The resulting algorithm is called the Expectation-Maximisation (EM) algorithm.
The estimation of the responsibilities is called the E step while the estimation of the
parameters is called the M step. A pseudo-code of the algorithm containing these
steps is given in Algorithm 3.

Algorithm 3 Expectation-Maximisation
Input: data set: X, number of clusters: k

1: Initialise: µj ,Σj and πj for j = 1, . . . , k
2: while not converged do
3: for i = 1, . . . , n and j = 1, . . . , k do
4: Evaluate the responsibilities:

γ(zij)←
πjN (xi|µj ,Σj)∑k
l=1 πlN (xi|µl,Σl)

(3.50)

5: end for
6: for j = 1, . . . , k do
7: Re-estimate the parameters:

nj ←
n∑
i=1

γ(zij) (3.51)

µj ←
1
nj

n∑
i=1

γ(zij)xi (3.52)

Σj ←
1
nj

n∑
i=1

γ(zij)(xi − µj)(xi − µj)T (3.53)

πj ←
nj
n

(3.54)

8: end for
9: end while

Output: Responsibilities γ(zij)

One of the disadvantages of the EM algorithm is the amount of calculations
required in each iteration. The algorithm also requires more iterations before con-
vergence compared to less complex methods like the k-means algorithm. However,
this relatively slow convergence time can be alleviated by initialising the algorithm
with good approximations of the parameters. For instance, it is typical in practice
to initialise the µj using means obtained from a prior application of the k-means
algorithm [Bis06, p. 438].

An application of the EM algorithm on the data set in Fig. 3.1 can be seen in
Fig. 3.2. In the figure, we have coloured each data point according to the respon-
sibility of each of the two components. For instance, if a data point xi has the
corresponding responsibilities γ(zi1) = 0.5 and γ(zi2) = 0.5, i.e. the point is in the
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Figure 3.2: Classification of data set in Fig. 3.1 using the EM algorithm.

middle of the two components, the point is coloured with equal amounts of blue and
red colour and thus appears as purple. This highlights one of the advantages of the
EM algorithm over other partitional algorithms such as the k-means algorithm which
provide a hard classification of each data point. Using a more fuzzy classification like
the EM algorithm yields greater insights into the uncertainty of the classifications of
edge cases.

One of the main advantages to the EM algorithm is its broad applicability. We
have derived the algorithm assuming a mixed Gaussian density but the same deriva-
tion can also be done for other probabilistic models. For the rest of this chapter,
we will discuss the EM algorithm in a more general setting and justify the conver-
gence of the algorithm. While doing so, we will develop the primary steps of the EM
algorithm for a general probabilistic model of the data set.

Recall that we denote the set of all observed data points as X and the set of
corresponding latent variables as Z. Suppose that we know the corresponding latent
variable of each data point. We will then denote the set {X,Z} as the complete
data set. In practice, Z is not known and we will thus call X the incomplete data
set.

Consider a probabilistic model which is parameterised by the parameter vector
θ. The aim is to maximise the likelihood function

p(X|θ) =
∑
Z

p(X,Z|θ). (3.55)

We will assume that the maximisation of p(X|θ) is difficult while the maximisation
of p(X,Z|θ) is significantly easier. We will also introduce a distribution over the
latent variables and denote it as q(Z).

We will turn our attention to the log-likelihood ln p(X|θ) and make the following
decomposition



23

ln p(X|θ) = ln p(X|θ)
∑
Z

q(Z)−
∑
Z

q(Z) ln q(Z) +
∑
Z

q(Z) ln q(Z) (3.56)

−
∑
Z

q(Z) ln p(Z|X,θ) +
∑
Z

q(Z) ln p(Z|X,θ) (3.57)

=
∑
Z

(
q(Z) ln p(X|θ) + q(Z) ln p(Z|X,θ)− q(Z) ln q(Z)

)
(3.58)

−
∑
Z

(
q(Z) ln p(Z|X,θ)− q(Z) ln q(Z)

)
(3.59)

=
∑
Z

q(Z)
(

ln p(X|θ) + ln p(Z|X,θ)− ln q(Z)
)

(3.60)

−
∑
Z

q(Z)
(

ln p(Z|X,θ)− ln q(Z)
)

(3.61)

=
∑
Z

q(Z) ln
{
p(X|θ)p(Z|X,θ)

q(Z)

}
−
∑
Z

q(Z) ln
{
p(Z|X,θ)
q(Z)

}
(3.62)

=
∑
Z

q(Z) ln
{
p(X,Z|θ)
q(Z)

}
−
∑
Z

q(Z) ln
{
p(Z|X,θ)
q(Z)

}
(3.63)

=L(q,θ) +KL(q||p) (3.64)

where [Bis06, p. 450]

L(q,θ) =
∑
Z

q(Z) ln
{
p(X,Z|θ)
q(Z)

}
(3.65)

KL(q||p) = −
∑
Z

q(Z) ln
{
p(Z|X,θ)
q(Z)

}
. (3.66)

Note that the decomposition in Eq. (3.64) holds for any choice of q(Z). The de-
composition in Eq. (3.64) can be used to define the EM algorithm in general and to
show that the algorithm does indeed converge. We first note that Eq. (3.66) is the
Kullback-Leibler distance between q(Z) and the posterior distribution p(Z|X,θ)
which satisfies that KL(q||p) ≥ 0 with equality if and only if q(Z) = p(Z|X,θ).
Thus, from Eq. (3.64) we have that L(q,θ) ≤ ln p(X|θ) i.e. L(q,θ) is a lower bound
of the log-likelihood function.

Suppose that we have a current value of θ which we denote θold. In the E step of
the algorithm we aim to maximise L(q,θold) with respect to q(Z). Since ln p(X|θold)
does not depend on q(Z) we see from Eq. (3.64) that L(q,θold) is maximised when
KL(q||p) = 0 and will in fact be equal to ln p(X|θold). This is obtained by setting
q(Z) = p(Z|X,θold). In the M step, the lower bound is maximised with respect to
the parameters θ while holding q(Z) fixed yielding new parameter estimates θnew.
Unless L(q,θ) is already maximised, its maximisation will lead to an increase in
ln p(X|θ). Substituting q(Z) = p(Z|X,θold) into Eq. (3.65) yields [Bis06, p. 452]
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L(q,θ) =
∑
Z

p(Z|X,θold) ln
{

p(X,Z|θ)
p(Z|X,θold)

}
(3.67)

=
∑
Z

p(Z|X,θold) ln p(X,Z|θ)−
∑
Z

p(Z|X,θold) ln p(Z|X,θold) (3.68)

=
∑
Z

p(Z|X,θold) ln p(X,Z|θ)−
∑
Z

q(Z) ln q(Z) (3.69)

= Q(θ,θold) + const. (3.70)

where the constant is the entropy of the q distribution and thus does not depend on
θ and

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ) = EZ|X,θold
[
ln p(X,Z|θ)

]
(3.71)

is the expectation of the complete-data log-likelihood ln p(X,Z|θ) with respect to
the latent variables conditioned on the data and the previous parameter estimations
[Bis06, p. 452]. Thus, when we are maximising L(q,θ) we are actually maximising
the expectation Q(θ,θold) with respect to the parameters θ which also justifies the
name of the algorithm.

Since q(Z) is held fixed and was determined using the old parameter values
we have that q(Z) = p(Z|X,θold) 6= p(Z|X,θnew). Thus, KL(q||p) > 0 and by
Eq. (3.64) we see that the increase in ln p(X|θ) is greater than the increase in the
lower bound. However, setting θold = θnew and repeating the E and M step it-
eratively will lead to a repeating maximisation of the lower bound and thus also
the log-likelihood until convergence. More formally, if ln p(X|θ∗) is the maximum
of the log-likelihood then for any ε > 0 there exists an iteration number such that
| ln p(X|θ∗) − ln p(X|θnew)| < ε. However, it is important to note that the EM
algorithm does not guarantee a global maximum of the log-likelihood. We will also
note that the k-means algorithm is a particular case of the EM algorithm (see [Bis06,
p. 441-444]), meaning that the previous discussion on convergence also applies to
k-means.

We will end by compiling the steps discussed above into a more general EM
algorithm.
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Algorithm 4 General Expectation-Maximisation
Input: data set: X

1: Initialise: initial parameters θold
2: while not converged do
3: Evaluate p(Z|X,θold)
4: Choose θnew such that

θnew = arg max
θ

Q(θ,θold) (3.72)

5: θold ← θnew

6: end while
Output: optimal parameters θ∗





4. Hierarchical Clustering

Clustering algorithms such as k-means aim to divide a set of data points into a pre-
determined number of subsets and then iteratively update these subsets. In contrast,
hierarchical clustering works by iteratively merging points into subsets based on a
distance criterion, thereby obtaining a hierarchy of clusters. This means that clusters
obtained from the algorithm may contain one or more subclusters which in turn may
also contain several subclusters themselves [DHS01, pp. 550-551].

The idea behind hierarchical clustering is relatively simple. In the first step, each
of the points in the data set D is assigned to their own singleton cluster, yielding n
clusters. We denote these clusters as the sets Ci = {xi} for i = 1, . . . , n. Then, in the
next step the two closest clusters are aggregated into one cluster. As an example,
{x1} and {x2} may be combined into the cluster {x1,x2} yielding n− 1 remaining
clusters. This procedure is then repeated iteratively until k clusters remain. This
bottom-up approach is called agglomerative hierarchical clustering. A pseudo-code
containing the most important steps can be seen below [DHS01, p. 552].

Algorithm 5 Agglomerative Hierarchical Clustering
Input: data set: D, number of clusters: k

1: Initialise: k̂ ← n, Ci ← {xi} for i = 1, . . . , n
2: while k < k̂ do
3: Find the nearest clusters, eg. Ci and Cj
4: Merge Ci and Cj
5: k̂ ← k̂ − 1
6: end while

Output: k clusters

One critical aspect of Algorithm 5 is how to determine the distance between
clusters and thus how to determine the two closest clusters. Some commonly used
distances are [DHS01, p. 553]:
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dmin(Ci, Cj) = min
x∈Ci,x′∈Cj

d(x,x′) (4.1)

dmax(Ci, Cj) = max
x∈Ci,x′∈Cj

d(x,x′) (4.2)

davg(Ci, Cj) = 1
ninj

∑
x∈Ci

∑
x′∈Cj

d(x,x′) (4.3)

dmean(Ci, Cj) = d(mi,mj) (4.4)

where ni = |Ci| and mi = 1
ni

∑
x∈Ci x.

Note how despite being different, all distances defined above require a measure
of distance between individual data points, which we have denoted as d(x,x′). Typ-
ically, this distance measure is defined by the l2-norm i.e. d(x,x′) = ‖x− x′‖2, but
other definitions may be more applicable depending on the data. If the data points
are in well separated spherical clusters, the choice of distance measure between clus-
ters does not matter as much, since all of the distances will usually lead to a good
clustering [DHS01, p. 553]. However, the choice of distance measure can have an
important effect on the results if clusters are close to each other or not spherical.

If dmin is chosen as the distance between two clusters, the hierarchical clustering
algorithm is sometimes called a nearest neighbour algorithm. A threshold for the
distance between nearest clusters may also be introduced as a stop criterion for this
algorithm. If that is the case, then the algorithm is called a single-linkage algorithm.
One drawback of the nearest neighbour algorithm is its handling of outlying data
points. Due to the distance measure, the algorithm may prefer joining two close but
otherwise separated clusters than joining a cluster with an outlying singleton cluster.
This is called the chaining effect [DHS01, pp.553-554]. An illustration of this can
be seen in Fig. 4.1. Another problem with the nearest neighbour algorithm is its
complexity. For a collection of n d-dimensional data points the full complexity of the
algorithm is O(kn2d) assuming that the inter-point distances are calculated using
the l2-norm which has a complexity of O(d).

When dmax is used, the distance between two clusters is determined by the most
distant points in the clusters [DHS01, p. 554]. Due to this, the algorithm is often
called the farthest neighbour algorithm. If a threshold on the distance between the
two nearest clusters is introduced as a stopping criterion, the algorithm is called a
complete-linkage algorithm. Unlike the nearest neighbour algorithm, the farthest
neighbour algorithm discourages joining close clusters together and instead may
favour adding outliers to clusters. Having a large threshold may result in few large
clusters while having low threshold may yield many smaller clusters. This distance
has the same complexity as for dmin.
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Figure 4.1: The chaining effect on randomly generated data clustered using the nearest neighbour
algorithm. The dashed line represents the smallest distance and thus indicates the clusters to be
merged leaving one large cluster and two outlying singleton clusters. In this case, using a farthest
neighbour algorithm may yield better clustering.

Both dmin and dmax present two extreme ways of defining the distance between
two clusters and both measures may be sensitive to outliers. The two measures davg
and dmean are both used as a compromise between dmin and dmax [DHS01, p. 555].
Using dmean provides the least computational complexity. However, depending on
the choice of dissimilarity measure as it may be difficult if not impossible to define
the mean vector of the cluster and the dissimilarity between these means. In cases
like this, davg may be more applicable [DHS01, p. 555].





5. Cluster Validation

One of the most important choices in the design of clustering algorithms is how to
choose the number of clusters k. For up to 3-dimensional data, visual inspection
is the most straight-forward approach to find a reasonable number of clusters. For
data of slightly higher dimension a dimensionality-reduction algorithm may be used
to project the data into a more visually friendly space. However, for high-dimensional
data visual inspection may be unfeasible and a heuristic-based method may be used
instead. Usually in practice, the clustering algorithm will have to be run several times
with different choices of k and each clustering result will be evaluated using some
predefined measure. The k which results in the best clustering in some predefined
sense will then be chosen. An abundance of research has been done to find measures
which assess the fitness of the clustering. Typically, the types of measures developed
fall into one of the two categories below [JD88, p. 161]

External measures: The validity of the clustering is determined using a priori
information.

Internal measures: The validity of the clustering is determined using only the data
itself.

We will primarily focus on internal measures since a priori information about the
data is rarely known in practice.

Figure 5.1: Generated clustered data.
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For this chapter, we will consider the generated data set in Fig. 5.1. The data
set was generated using a mixed Gaussian with three components, and by visual
inspection it also looks like k = 3 will result in the best clustering. We will use this
data set as an example to illustrate how the different measures respond for different
k. The data will be clustered using the k-means algorithm.

5.1 The Elbow Criterion
One obvious way to check the validity of the choice of k is to compute the objective
function of the clustering algorithm after convergence and see how this value behaves
for different k. Recall that for the k-means algorithm, the objective function to be
minimised is

E =
n∑
i=1

k∑
j=1

rij‖xi −mj‖22 (5.1)

wheremj is the average of the data points in Cj , and rij indicates the assignment of
xi.

The objective function in Eq. (5.1) is the sum of squared distances between each
data point and its nearest cluster representative mj . Thus, it is readily seen that
an increase in k will always lead to a decrease in Eq. (5.1) since the number of
representatives increases. Indeed, if k = n then E = 0 by setting mj = xi resulting
in each data point having its own singleton cluster. However, having n clusters does
not yield an interesting clustering result. A plot of the obtained minima of Eq. (5.1)
for different k can be seen in Fig. 5.2.

From the figure, we see that for k < 3 an increase in k leads to a sharp decrease
in the SSE. However, for k ≥ 3 this decrease is more stagnant. The point where there
is a significant change in the slope of the objective function is called the elbow of the
objective function and is typically used to determine the best k for the data set. In

Figure 5.2: Sum of squares error for k-means for different k.
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this case, k = 3 seems like a good choice since choices of larger k do not seem lead
to a significant decrease in the objective function compared to that between k = 2
and k = 3.

5.2 Davies-Bouldin Index
When deciding on the best choice of k, one needs to set a criterion which signifies
good clustering. Typically, the goal of a clustering algorithm is to obtain clusters
which are well separated from each other, while the points within each cluster are
close to each other. This intuitive idea leads to the formulation of the Davies-Bouldin
index. The goal is to define a general cluster separation measure using the intuition
from above. First, a dispersion measure Sj = S(Cj) of a cluster Cj is defined as a
function such that [DB79]

a) S(Cj) ≥ 0

b) S(Cj) = 0 if and only if xi = xl for all xi,xl ∈ Cj .

Additionally, Mi,j = M(Ci, Cj) denotes the distance between the clusters Ci and
Cj defined using an appropriate distance measure. We denote Ri,j = R(Si, Sj ,Mi,j)
as the cluster similarity measure defined as a function which satisfies the criteria

a) R(Si, Sj ,Mi,j) ≥ 0

b) R(Si, Sj ,Mi,j) = R(Sj , Si,Mj,i)

c) R(Si, Sj ,Mi,j) = 0 if and only if Si = Sj = 0

d) R(Si, Sj ,Mi,j) > R(Si, Sl,Mi,l) if Sj = Sl and Mi,j < Mi,l

e) R(Si, Sj ,Mi,j) > R(Si, Sl,Mi,l) if Mi,j = Mi,l and Sj > Sl.

The above criteria are satisfied if [DB79]

Ri,j = R(Si, Sj ,Mi,j) = Si + Sj
Mi,j

. (5.2)

From Eq. (5.2), we see that small dispersions within clusters and large distances
between clusters lead to smaller values of Ri,j . Thus, good clusterings are indicated
by small values of Ri,j . For each cluster, its worst case separation measure can be
defined as

Ri = max
j 6=i

Ri,j . (5.3)

Intuitively, this is the separation measure between Ci and the closest and most dis-
perse other cluster. The Davies-Bouldin index is then obtained by taking the average
of Eq. (5.3) over all the clusters [DB79]

DB = 1
k

k∑
i=1

Ri. (5.4)
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Figure 5.3: Davies-Bouldin index for different k.

We note that due to the definition in Eq. (5.3), the Davis-Bouldin index is only
defined for k ≥ 2. One of the advantages of the Davies-Bouldin index is its ability
to apply a broad range of different dispersion and distance measures. In the original
article by Davies and Bouldin, they chose the dispersion measure

Sj =
( 1
|Cj |

∑
x∈Cj
‖x−mj‖qp

)1/q
(5.5)

which is the q’th root of the q’th moment of the lp-norm between the data points in
Cj and the representative mj , and the distance measure

Mi,j = ‖mi −mj‖p. (5.6)

Fig. 5.3 shows the Davies-Bouldin index for different choices of k when clustering
the data set in Fig. 5.1 using k-means. We have used the measures in Eqs. (5.5)
and (5.6) with p = 2 and q = 1 which reduces Eq. (5.5) to the average euclidean
distance between the data points and their representative. As before, a lower Davies-
Bouldin index indicates better clustering which is seen for k = 3.

5.3 Dunn Index
For the Dunn index, the intuition is similar to the Davies-Bouldin index. The idea
is that we want small compact clusters and we want the clusters to be far apart. To
measure the compactness of a cluster Cj , we can for some dissimilarity measure d(·, ·)
define [Dun73]

diam(Cj) = max
x,x′∈Cj

d(x,x′) (5.7)

as the effective diameter of Cj . We can also define the distance between clusters as

dist(Ci, Cj) = min
x∈Ci,x′∈Cj

d(x,x′). (5.8)
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Figure 5.4: Dunn index for different k.

A measure of compact and separated clusters can then be defined as [Dun73]

D =
min

1≤q≤k
min

1≤r≤1, r 6=q
dist(Cq, Cr)

max
1≤j≤k

diam(Cj)
. (5.9)

The intuition is simple, the Dunn index is the ratio between the largest diameter of
a cluster and the smallest distance between two clusters. Thus, large values of the
Dunn index will indicate compact and separated clusters and thus a good choice for
k. The Dunn index can also easily be modified by replacing Eqs. (5.7) and (5.8) with
more applicable measures. Fig. 5.4 shows the Dunn index for different choices of k.
As seen from the figure, choosing k = 3 leads to the highest Dunn index.

5.4 Silhouette Index
The silhouette method is another way to determine the validity of the clustering.
The idea is that for each data point xi assigned to some cluster Cj we will determine
if Cj is the best "fit" for xi relative to some other cluster. Due to this, the method
is only applicable for k ≥ 2. For some dissimilarity measure d(x,x′) we define the
measure [Rou87]

a(xi) = 1
|Cj | − 1

∑
x′∈Cj ,x′ 6=xi

d(xi,x′), xi ∈ Cj (5.10)

as the average dissimilarity between a data point xi and all the other data points in
the same cluster. Note however that Eq. (5.10) is only defined if |Cj | > 1 and thus
is only applicable if the clustering does not contain singleton clusters. This will be
discussed later. We will also define the dissimilarity between a data point xi ∈ Cj
and a cluster Cl 6= Cj as

d(xi, Cl) = 1
|Cl|

∑
x′∈Cl

d(xi,x′), xi /∈ Cl (5.11)
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Figure 5.5: Silhouette index for different k.

which yields the average dissimilarity between xi and all other data points in Cl.
This provides an intuitive measure of a data point’s closeness to a cluster with nearer
clusters having a smaller dissimilarity measure to xi. In this sense, the nearest cluster
to xi (apart from the point’s own cluster) has the dissimilarity

b(xi) = min
Cl 6=Cj

d(xi, Cl), xi ∈ Cj . (5.12)

The measures in Eqs. (5.10) and (5.12) provide an intuitive measure of the classi-
fication of a data point xi. If a(xi) < b(xi) then xi is on average closer to the
data points in its own cluster than the points in the second closest cluster indicating
a proper classification. However, if the opposite is true then this indicates a poor
classification. If a(xi) = b(xi), then we can not say for certain if xi belongs to its
own cluster or the second closest one. This leads to the definition of the silhouette
score for xi

s(xi) =


1− a(xi)/b(xi), if a(xi) < b(xi)
0, if a(xi) = b(xi)
b(xi)/a(xi)− 1, if a(xi) > b(xi)

(5.13)

From Eq. (5.13), we see that −1 ≤ s(xi) ≤ 1 with a higher score yielding better
clustering. We noted earlier that a(xi) is only defined if the cluster containing xi is
not a singleton cluster. If there is a singleton cluster, we will set s(xi) = 0 [Rou87,
p. 56]. To assess the validity of the clustering, we simply take the average of the
silhouette scores

S = 1
n

n∑
i=1

s(xi) (5.14)

which is called the silhouette index. A plot of the silhouette index for different k
when clustering the data set in Fig. 5.1 can be seen in Fig. 5.5. Here, we have defined
d(xi,xj) = ‖xi − xj‖2. As seen from the figure, the best clustering can be found for
k = 3.



6. Generalised Linear Models

Generalised linear models are types of statistical models which can be used to explain
the relationship between statistical variables. They are able to model more complex
interactions such as non-linear relationships between the variables.

6.1 The Exponential Family
In generalised linear models, the data is assumed to be distributed according to a
probability distribution which belongs to a general family of distributions called the
exponential dispersion family. In order to define this family, we will first present the
natural exponential family.

Definition 6.1 (Natural Exponential Family)
[MT11, p. 90] Let Y be a random variable which is distributed according to a den-
sity fY (y; θ). The density fY (y; θ) is said to be a member of the natural exponential
family of distributions if it can be written on the form

fY (y; θ) = c(y) exp
(
θy − κ(θ)

)
, θ ∈ Ω ⊆ R (6.1)

with κ(θ) being the cumulant generator.

The representation in Eq. (6.1) is called the canonical parameterisation of the
family, while θ is called the canonical parameter belonging to the parameter space
Ω. The cumulant generator is important as together with the support of fY (y, θ) it
characterises the distribution.

With the addition of another parameter, we can define the exponential dispersion
family.

Definition 6.2 (Exponential Dispersion Family)
[MT11, p. 90] A family of probability densities which can be written on the form

fY (y; θ, λ) = c(y, λ) exp
(
λ
(
θy − κ(θ)

))
(6.2)

is called an exponential dispersion family of distributions.
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The parameter λ > 0 is called the precision parameter of the index parameter. It
can be seen that by setting λ = 1, Eq. (6.2) is equivalent to Eq. (6.1). Thus, densities,
which are part of the natural exponential family are also part of the exponential
dispersion family with λ = 1.

Examples of distributions which are members of the exponential dispersion family
are the Poisson distribution, the Gaussian distribution and the binomial distribution.
For the parameters of these distributions we refer to the table in [MT11, p. 96].

An example of a distribution belonging to the natural exponential family is the
Bernoulli distribution defined by the density

fY (y; q) = py(1− q)1−y (6.3)

where p(Y = 1) = q and p(Y = 0) = 1− q. To see this, we rewrite Eq. (6.3) as

fY (y; q) = qy(1− q)1−y (6.4)

= exp
(

ln
(
qy(1− q)1−y)) (6.5)

= exp
(
y ln q + (1− y) ln(1− q)

)
(6.6)

= exp
(
y
(

ln q − ln(1− q)
)

+ ln(1− q)
)

(6.7)

= exp
(
y ln

( q

1− q
)

+ ln(1− q)
)

(6.8)

= exp
(
θy − ln

( 1
1− q

))
(6.9)

where θ = ln
(
q/(1 − q)

)
and the cumulant generator is expressed in terms of q by

ln
(
1/(1− q)

)
. To express the cumulant generator in terms of θ, we note that

θ = ln
( q

1− q
)

(6.10)

eθ = q

1− q (6.11)

eθ − eθq = q (6.12)
eθ = q(1 + eθ) (6.13)

q = eθ

1 + eθ
. (6.14)
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Substituting Eq. (6.14) into Eq. (6.9) yields

fY (y; θ) = exp
(
θy − ln

( 1
1− eθ

1+eθ

))
(6.15)

= exp
(
θy − ln

( 1 + eθ

1 + eθ − eθ
))

(6.16)

= exp
(
θy − ln

(
1 + eθ

))
(6.17)

= exp
(
θy − κ(θ)

)
(6.18)

where
κ(θ) = ln

(
1 + eθ

)
. (6.19)

Therefore, the Bernoulli distribution is a member of the natural exponential family
and thus also the exponential dispersion family with θ = ln

(
q/(1 − q)

)
, λ = 1,

c(y) = 1 and the cumulant generator given by Eq. (6.19).
The cumulant generator is particularly interesting, as the properties of the expo-

nential dispersion family depend on the cumulant generator.

E[Y ] = κ′(θ) (6.20)

Var[Y ] = κ′′(θ)
λ

(6.21)

However, the variance also depends on the precision parameter. Therefore, we
introduce a concept which is related to the variance of the distribution but which
does not depend on the precision parameter. In order to do so, we define the function

τ(θ) = κ′(θ) = E[Y ] (6.22)

which maps the canonical parameter θ from the parameter space Ω into the mean
value spaceM.

Using this function and the properties of the exponential dispersion family, we
define a function which is related to the variance but only depends on the mean value
of the distribution.

Definition 6.3 (Variance Function)
[MT11, p. 92] The variance function of the mean value of the distribution is defined
as

V (µ) = κ′′
(
τ−1(µ)

)
(6.23)

where µ = E[Y ].
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The variance function is also called the unit variance function as it will be used in
the definition of the unit deviance. Note that the variance function of the distribution
should not be confused with the variance operator which yields the variance of the
distribution.

As seen in the definition of the variance function, the mean value parameter
together with the variance function characterises the exponential dispersion fam-
ily. Therefore, the variance function together with the mean value parameter can
be seen as an alternative parameterisation of the exponential family, yielding two
parameterisations each with their own advantages.

1. κ, θ, λ

2. V , µ, λ

The advantage of θ ∈ Ω is that it resides on the real line, while µ ∈ M can be
directly measured as the mean and compared to measured values.

These two parameterisations are related by the so-called canonical link function

Definition 6.4 (Canonical Link Function)
[MT11, p. 95] The mapping between the parameterisations θ and µ which is the
inverse of Eq. (6.22)

θ = τ−1(µ) (6.24)

is called the canonical link function.

In general, the mapping g(·) from the mean to another parameter is called a link
function.

6.2 Generalised Linear Models
Based on the definition of the exponential dispersion family, we can define the gener-
alised linear model which is able to model random variables following an exponential
dispersion model. When working with generalised linear models, we will use the link
function as a mapping from the mean value to a linear predictor η = g(µ).

Definition 6.5 (Generalised Linear Model)
[MT11, p. 99] Let Y1, Y2, . . . , Yn be mutually independent random variables with

Yi ∼ ED
(
µi, V (µi)/λi

)
, i = 1, 2, . . . , n (6.25)

where ED
(
µi, V (µi)/λi

)
is an exponential dispersion family distribution with

mean parameter µi and precision parameter λi. In addition, let the variance
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function V (·) be the same for all Yi, and define the linear predictor η =
[η1 η2 · · · ηn]T such that

ηi = g(µi), i = 1, 2, . . . , n (6.26)

where g is a link function.
A generalised linear model for Y1, Y2, . . . , Yn describes the hypothesis that η

subtracted with known offset values η0 belongs to a linear subspace L, i.e.

H0 : η − η0 ∈ L (6.27)

where L is a linear subspace of Rn of dimension d.

There are thus multiple elements which need to be specified in order to obtain a
generalised linear model for the random variables Y1, Y2, . . . , Yn. The type of proba-
bility distribution in the exponential family which it is hypothesised that the random
variables follow, the link function, and the linear predictor η.

The linear predictor is related to a d-dimensional coefficient vector β via vectors
for concrete observations called model vectors. We let the model vector for the i’th
observation be given as xi = [xi1 xi2 · · · xid]T . The matrix obtained by collecting
the model vectors is called the design matrix.

Definition 6.6 (Design Matrix for Generalised Linear Model)
[MT11, p. 99] Let the n × d matrix X have rows consisting of model vectors
X = [x1 x2 · · · xn]T and let the subspace L be spanned by the columns of X
such that the hypothesis in Eq. (6.27) can be written as

η − η0 = Xβ, β ∈ Rd (6.28)

where X has full rank. The matrix X is then called the design matrix.

In other words, a generalised linear model stipulates that the mean of the obser-
vations of the random variables Y can be modelled by a transformation of a linear
relation between the design matrix and the coefficients in β

µ = g−1(Xβ) (6.29)

or equivalently
η = Xβ = g(µ) (6.30)

with the offset η0 = 0.
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6.3 Significance Tests
Upon determining the coefficients of the model, we wish to assess the significance
of the determined coefficients. This is done by statistical tests following a general
structure which is applicable to generalised linear models.

The process of determining the significance of the model and the coefficients
therein follows a pattern as follows

1. Formulate a sufficient model by including all of the parameters as terms in the
model.

2. Test whether the model can be reduced to the null model, i.e. whether we can
reject the null hypothesis. If the null hypothesis can be rejected, we know that
at least some of the parameters are necessary.

3. Test whether the model can be reduced by eliminating terms which are not
significant.

4. Analyse the residuals in order to validate the model.

The test which is used for model reduction is the likelihood ratio test. We first
define the likelihood ratio.

Definition 6.7 (Likelihood Function)
[MT11, p. 14] Given the parametric density fY (y;φ) with parameter vector φ ∈ Φd

for the observations y = [y1 y2 · · · yn]T the likelihood function for φ is the
function

L(φ;y) = c(y1, y2, . . . , yn)fY (y1, y2, . . . , yn;φ) (6.31)

where c(y1, y2, . . . , yn) is a constant.

Definition 6.8 (Likelihood Ratio)
[MT11, p. 26] Consider the null hypothesis H0 : φ ∈ Ω0 against the alternative
H1 : φ ∈ Ω \ Ω0 with Ω0 ⊆ Ω, where dim(Ω0) = m and dim(Ω) = d.

For given y1, y2, . . . , yn the likelihood ratio is defined as

λ(y) =
supφ∈Ω0 L(φ;y)
supφ∈Ω L(φ;y) . (6.32)

For each distribution in the exponential family, the unit deviance d(y;µ) is given
based on its variance function.
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Definition 6.9 (Unit Deviance)
[MT11, p. 93] Given an observation y and a parameter value µ, the unit deviance
function is given as

D(y;µ) =
∫ y

µ

y − u
V (u) du (6.33)

where V (·) is the variance function.

Using the unit deviance of the distribution and the weights if any, the residual
deviance can be defined.

Definition 6.10 (Residual Deviance)
[MT11, p. 105] The deviance of a distribution in the exponential family with weight
parameters wi, means µi and observations yi for i = 1, 2, . . . , n is given as

D(y; µ̂) =
n∑
i=1

wiD(yi; µ̂i) (6.34)

where µ̂ is the maximum likelihood estimate of µi.

These definitions are used in the likelihood ratio test.

Theorem 6.11 (Likelihood Ratio Test)
[MT11, p. 111] Let η ∈ Rn be given as a transformation of the mean values µ
of mutually independent random variables Y1, Y2, . . . , Yn following an exponential
dispersion model with the dispersion parameter σ2 = 1

λ such that

ηi = g(µi), i = 1, 2, . . . n (6.35)

and let L be a d-dimensional linear subspace of Rn.
Assume that the generalised linear model

H1 : η ∈ L ⊂ Rd (6.36)

holds with L parameterised as η = X1β1.
Consider the hypothesis

H0 : η ∈ L0 ⊂ Rm (6.37)

where η = X0β0 and m < d, with the alternative H1 : η ∈ L \ L0.
Then the likelihood ratio test for H0 has the test statistic

− 2 log λ(Y ) = D
(
µ0(β0);µ1(β1)

)
(6.38)
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where D is the deviance statistic, and µ0 and µ1 are the mean function under H0
and H1 respectively.

When H0 is true, the test statistic D
(
µ0(β0);µ1(β1)

)
will asymptotically follow

a σ2χ2(d−m) distribution.

When performing a likelihood ratio test in practice, we can thus compute the
deviance statistic D

(
µ0(β0);µ1(β1)

)
and compare it to the σ2χ2(k−m) distribution.

Typically we are looking for a 95% significance level, which means that if the deviance
is in the tails with probability 2.5% on either side of the distribution, we can reject
H0 with 95% confidence.

The deviance statistic D
(
µ0(β0);µ1(β1)

)
can be determined via the Pythagorean

relation
D
(
µ0(β0);µ1(β1)

)
= D

(
y;µ0(β0)

)
+D

(
y;µ1(β1)

)
(6.39)

relating the deviance statistic with the residual deviances, i.e. the deviances of the
means relative to the observations. [MT11, p. 112]

6.3.1 Goodness of fit

Recall that the first step in determining the significance of a generalised linear model
is to formulate a comprehensive model termed the sufficient model by including all
the available parameters as terms in the model. After formulating a sufficient model,
we can test the goodness of fit in order to determine whether it is possible to reject
the null hypothesis. [MT11, p. 112]

The goodness of fit test is a Likelihood Ratio Test where the full model, allowing
each observation to have its own mean, is compared with the null hypothesis. That
is, let Hfull : µ ∈ Rn and H0 : η ∈ L ⊂ Rd with L parameterised as η = X0β.

Since we let each observation have its own freely varying mean value, the residual
deviance D(y,µfull)) is 0. Therefore, by Eq. (6.39), the deviance statistic is equal to
the residual deviance D

(
y,µ0(β0

)
. By Theorem 6.11, when H0 is true the deviance

statistic is distributed as χ2(n− d) assuming that the dispersion σ2 = 1.
The residual deviances are sometimes alternatively referred to as the goodness of

fit statistics. In that case, the goodness of fit statistic of the model under hypothesis
H0 is denoted G2(H0). The partitioning of the deviance in Eq. (6.39) is then denoted
as

G2(H0|H1) = G2(H0)−G2(H1) (6.40)

with G2(H0|H1) = D
(
µ0(β0);µ1(β1)

)
being interpreted as the goodness of fit statis-

tic of H0 conditioned on H1 being true. [MT11, p. 113]
The goodness of fit statistics can be represented in an analysis of deviance table

as seen in Table 6.1. In the table, the deviances of the model and the residual are
laid out alongside their degrees of freedom and mean deviance. In addition, we show
their interpretation as goodness of fit of the hypotheses.
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Source f Deviance Mean Deviance Interpretation as
goodness of fit

Model Hnull k − 1 D
(
µ1(β1);µnull

) D
(
µ1(β1);µnull

)
k − 1 G2(Hnull|H1)

Residual (Error) n− k D
(
y;µ1(β1))

D
(
y;µ1(β1))
n− k

G2(H1)

Corrected total n− 1 D(y;µnull) G2(Hnull)

Table 6.1: Analysis of deviance table for the model H1 compared with the minimal model Hnull.
f indicates the degrees of freedom.

From the goodness of fit interpretation it is seen that the deviance of the resid-
ual indicates whether the model can be maintained at all by comparing it with the
percentiles of the χ2(n − k) distribution. Upon determining that the model can be
maintained, it can be examined whether the null hypothesis can be rejected by com-
paring G2(Hnull|H1) with χ2(n−k). By rejecting the null hypothesis of a model, the
model H1 has been established as a sufficient model. Subsequently, we can investi-
gate whether the sufficient model can be reduced to a model with fewer parameters,
thereby determining whether the terms in the sufficient model are necessary. [MT11,
p. 115]

When the model has been determined to be sufficient, the parameters can be
investigated to determine whether they have a statistically significant effect on the
model. This is called model reduction. Model reduction can be done by performing
a likelihood ratio test between two models at a time. If the aim is to see whether
one specific parameter should be included in the model, a likelihood ratio test can
be performed between the model including this parameter and the model without.

6.3.2 Wald Test

For generalised linear models, it is also possible to perform inference on the individual
parameters of the model directly without the need to perform successive likelihood
ratio tests. The method which is commonly used is termed the Wald test

Theorem 6.12 (Wald Test)
[MT11, p. 116] Let the hypothesis be given such that the parameter βj has a specific
value, that is, H : βj = β0,j . The hypothesis H is tested by the test statistic

uj = β̂j − β0,j√
σ̂2σ̂jj

(6.41)

where σ̂2 indicates the estimated dispersion parameter, while σjj is the j’th di-
agonal element in the dispersion matrix Σ̂. If the hypothesis H is true, uj is
approximately distributed as a standard normal distribution.
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Proof.
Omitted. The proof involves determining that β̂j is a ML estimator, which by
Theorem 2.4 in [MT11] under some regularity conditions is normally distributed.

�

The test statistic uj can be compared to the quantiles of a standard normal
distribution and rejected for large values of |uj |.

Specifically, the hypothesis H0 : βj = 0 for whether a parameter can be omitted
gives the test statistic

uj = β̂j√
σ̂2σ̂jj

. (6.42)

The p-value can then be found as p = 2
(
1 − Φ(|uj |

)
with Φ being the probit

function. The p-value is a mapping of the test statistic into the range 0 to 1, signifying
the probability that the observations follow the null hypothesis. Thus, with a low
p-value, we can reject the null hypothesis.

Equivalently, the test can be done using the test statistic zj = u2
j which can be

rejected for zj > χ2
1−α.



7. Logistic Regression

The logistic regression model has a rich history in statistics. From its first devel-
opment in the mid 20th century [Ber44] many refinements have been made to the
model [Cox58] and its usefulness in classification has been well demonstrated over
time. In its simplest form the logistic regression model is used as a binary classifier,
but several extensions have since been made to the model such as the extension to
data with multiple classes [The69].

In this chapter, we will present the method of logistic regression and its uses in
classification. We will start by considering classification of data consisting of two
classes and afterwards extend the problem to multiple classes.

7.1 Binary Logistic Regression
For a d-dimensional data point x belonging to one of two classes C1 and C2 we aim to
classify the point to the correct class. The idea in logistic regression is to compute the
posterior probability p(C1|x) based on the class conditional probability p(x|C1) and
the prior p(C1) using Bayes’ Theorem and then make a decision based on these prob-
abilities. This probabilistic view of classification is also used in fuzzy classification
algorithms such as the EM-algorithm discussed in Chapter 3. The difference however
is that in fuzzy classification p(x|C1) and p(C1) are estimated iteratively by improving
the classification of each data point, while in logistic regression the relation between
the posterior probabilities and the features of the data points will be modeled using
prior data with known classifications. Assume that we have a d-dimensional data
point x with an unknown classification. We define the label corresponding to x as

l =
{

1, if x ∈ C1,

0, if x ∈ C2.
(7.1)

Since the label is unknown, we can model it as a random binary variable following
a Bernoulli distribution

p(l) = p(C1|x)lp(C2|x)1−l (7.2)

= p(C1|x)l
(
1− p(C1|x)

)1−l
(7.3)

47
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with the posterior probability p(C1|x) as the parameter. By the Bernoulli distribu-
tion, the expected value of l will also be p(C1|x). From Bayes’ Theorem, we can write
the posterior probability of x belonging to C1 as [Bis06, p. 197]

p(C1|x) = p(x|C1)p(C1)
p(x|C1)p(C1) + p(x|C2)p(C2) (7.4)

= p(x|C1)p(C1)/p(x|C2)p(C2)
1 + p(x|C1)p(C1)/p(x|C2)p(C2) (7.5)

= ea

1 + ea
(7.6)

where
a = ln p(x|C1)p(C1)

p(x|C2)p(C2) (7.7)

is called the log-odds.
The right hand side of Eq. (7.6) is an important function and deserves its own

definition.

Definition 7.1 (Logistic Sigmoid)
The function

σ(a) = ea

1 + ea
, a ∈ R (7.8)

is called the logistic sigmoid function. [Bis06, p.197]

Some properties of the logistic sigmoid function are shown in the following propo-
sition.

Proposition 7.2 (Properties of the Logistic Sigmoid)
For the logistic sigmoid function σ(a), it follows that for all a ∈ R

a) 0 < σ(a) < 1

b) σ(−a) = 1− σ(a)

c) σ−1(a) = ln
(

a

1− a

)

d) ∂σ(a)
∂a

= σ(a)
(
1− σ(a)

)
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Proof.
Property a)

For a → ∞ we have that ea → ∞. Thus, σ(a) → 1. For a → −∞ we have that
ea → 0, yielding that σ(a)→ 0.

Property b)

σ(−a) = e−a

1 + e−a
= 1 + e−a − 1

1 + e−a
= 1− 1

1 + e−a
= 1− ea

1 + ea
= 1− σ(a). (7.9)

Property c)

σ−1(σ(a)
)

= ln
(

ea/(1 + ea)
1− ea/(1 + ea)

)
= ln

(
ea

1 + ea − ea
)

= ln ea = a. (7.10)

Property d)

Using the product rule, we have that

∂σ(a)
∂a

= 1
1 + ea

∂

∂a
ea + ea

∂

∂a

1
1 + ea

(7.11)

= ea

1 + ea
− (ea)2(

1 + ea
)2 =

ea
(
1 + ea

)
− (ea)2(

1 + ea
)2 (7.12)

= ea(
1 + ea

)2 = σ(a) 1
1 + ea

= σ(a) e−a

1 + e−a
(7.13)

= σ(a)σ(−a) = σ(a)
(
1− σ(a)

)
(7.14)

where the last equation holds due to Property b). �

The inverse of the logistic sigmoid function is called the logit function. The
introduction of these functions may seem arbitrary but the form of the logit function
is important for the model. By Eq. (7.7), we can rewrite the logit function as

a = ln
{
p(x|C1)p(C1)

}
− ln

{
p(x|C2)p(C2)

}
(7.15)

= ln
{
p(x|C1)p(C1)

p(x) p(x)
}
− ln

{
p(x|C2)p(C2)

p(x) p(x)
}

(7.16)

= ln p(C1|x) + ln p(x)− ln p(C2|x)− ln p(x) (7.17)
= ln p(C1|x) + ln p(C2|x) (7.18)

showing that the logit function is log-linear with respect to the posterior probabilities.
A great deal of simplification can be obtained by having a be a linear function of x
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which is the case if the posterior densities are part of the exponential family [Bis06,
p. 203]. Under this assumption, we can write the logit function as [Bis06, p. 198]

a(x) = wTx+ w0 (7.19)

where w is a vector of weights and w0 is a constant bias parameter. Typically,
Eq. (7.19) is written more compactly as [Bis06, pp. 204-205]

a(x̃) = w̃T x̃ (7.20)

where w̃ = [w0 wT ]T and x̃ = [1 xT ]T . We will make use of the same convention
but keeping with the previous notation such that w and x refer to w̃ and x̃.

Using the expression in Eq. (7.20), we can define the logistic regression model.

Definition 7.3 (Binary Logistic Regression Model)
[Bis06, p.205] Let x be a d-dimensional data point belonging to one of the classes
C1 and C2. Let l be the corresponding label of x such that l = 1 if x ∈ C1 and l = 0
otherwise. The relation

p(C1|x) = σ(wTx) (7.21)

with p(C2|x) = 1 − p(C1|x) and σ being the logistic sigmoid function, is called a
logistic regression model with the d-dimensional vectorw containing its parameters.

The model is equivalently formulated as

wTx = σ−1(p(C1|x)
)

= σ−1(E[l]
)
. (7.22)

Eq. (7.22) shows that the logistic regression model is a generalised linear model
with the logit function as the canonical link function and l and x as the response and
explanatory variable respectively [MT11, p. 99-100]. The equation also provides an
interpretation of the parameters of the model. For any i = 1, 2, . . . , d, a unit increase
in xi will result in a wi increase or decrease in the log-odds σ−1(p(C1|x)

)
, depending

on the sign of wi.

7.1.1 Parameter Estimation

The parameters of the model are estimated based on data points with known classi-
fications which makes logistic regression a supervised learning method for classifica-
tion. Assume that we have n data points with each point being in either C1 or C2.
For a data point xi we will assign the point a label li ∈ {0, 1} such that li = 1 if
xi ∈ C1 and li = 0 if xi ∈ C2 and let l = [l1 l2 · · · ln]T . Assuming that the data
points are mutually independent, we can write the likelihood [Bis06, p.206]

p(l|w,x) =
n∏
i=1

p(C1|xi)li
(
1− p(C1|xi)

)1−li
. (7.23)
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As usual, the estimation of w is done by maximising the likelihood. Taking the
negative log of the likelihood and using Eq. (7.6) with Eq. (7.20) yields

E(w) = − ln p(l|w,x) (7.24)

= −
n∑
i=1

ln
{
p(C1|xi)li

(
1− p(C1|xi)

)1−li
}

(7.25)

= −
n∑
i=1

(
li ln σ(ai) + (1− li) ln

{
1− σ(ai)

})
. (7.26)

where ai = wTxi. Thus, w is found by minimising E(w). The error function in
Eq. (7.26) is also called the cross-entropy error function [Bis06, p.206]. It can be
shown that the error function is convex and has a unique minimum. In order to
show this, we will first derive the Hessian matrix of Eq. (7.26).

Lemma 7.4 (Hessian of Cross-entropy Error Function)
The Hessian matrix of the cross-entropy error function in Eq. (7.26) is

H = ∇∇E(w) =
n∑
i=1

σ(ai)
(
1− σ(ai)

)
xix

T
i . (7.27)

Proof.
Using Property d) of Proposition 7.2 and the chain rule, the gradient of Eq. (7.26)
with respect to w is

∇E(w) = −
n∑
i=1

{
li∇ ln σ(ai) + (1− li)∇ ln

(
1− σ(ai)

)}
(7.28)

= −
n∑
i=1

{
li
∂ ln σ(ai)
∂σ(ai)

∂σ(ai)
∂ai

∇ai

+ (1− li)
∂ ln

(
1− σ(ai)

)
∂
(
1− σ(ai)

) ∂
(
1− σ(ai)

)
∂ai

∇ai
} (7.29)

= −
n∑
i=1

{
li

σ(ai)
σ(ai)

(
1− σ(ai)

)
xi −

1− li
1− σ(ai)

σ(ai)
(
1− σ(ai)

)
xi

}
(7.30)

= −
n∑
i=1

{
li
(
1− σ(ai)

)
xi − (1− li)σ(ai)xi

}
(7.31)

= −
n∑
i=1

{
lixi − liσ(ai)xi − σ(ai)xi + liσ(ai)xi

}
(7.32)

=
n∑
i=1

(
σ(ai)− li

)
xi. (7.33)
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The Hessian matrix of Eq. (7.26) is found by computing an additional gradient of
Eq. (7.33) with respect to wT . Doing this yields

H = ∇∇E(w) =
n∑
i=1

∂σ(ai)
∂ai

xi∇ai =
n∑
i=1

σ(ai)
(
1− σ(ai)

)
xix

T
i . (7.34)

�

Having obtained the Hessian matrix in Lemma 7.4, we can use it to show that
the error function in Eq. (7.26) is convex.

Theorem 7.5 (Convexity of Cross-entropy Error Function)
The cross entropy error function defined in Eq. (7.26) is a convex function and has
a unique minimum.

Proof.
The function is strictly convex if and only if its Hessian matrix is positive definite.
From Lemma 7.4, the Hessian matrix can be written as [Bis06, pp. 207-208]

H =
n∑
i=1

σ(ai)
(
1− σ(ai)

)
xix

T
i = XTRX (7.35)

where X = [x1 x2 · · · xn]T and R is an n× n diagonal matrix with

Rii = σ(ai)
(
1− σ(ai)

)
. (7.36)

Recall that H is positive definite if and only if uTHu > 0 for all u ∈ Rd\{0}.
Using Eq. (7.27), we can write

uTHu = uTXTRXu = (Xu)TRXu = vTRv (7.37)

where v = Xu. Recall from property a) in Proposition 7.2 that 0 < σ(a) < 1
for any a. Thus, all entries in R are strictly positive, yielding that vTRv > 0 for
all v 6= 0. By Eq. (7.37), it follows that H is positive definite. Thus, the error
function in Eq. (7.26) is a convex function of w and has a unique minimum. �

Theorem 7.5 is an important result since it allows estimation of w using con-
ventional algorithms for convex optimisation problems such as gradient-descent al-
gorithms.
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7.2 Multinomial Logistic Regression
The multinomial logistic regression model provides an extension of the logistic re-
gression model to classify data when there are k > 2 classes. In this case, we will
turn to representing the labels of each data point as latent variables. For a data point
x, we define its corresponding label as a k-dimensional vector l = [l1 l2 · · · lk]T
such that

lj =
{

1, if x ∈ Cj ,
0, otherwise.

(7.38)

Akin to the binomial case, the distribution of the label can be modelled using a Multi-
noulli distribution. The distribution is again governed by the posterior probabilities
p(Cj |x) for j = 1, . . . , k and the expected value of l is

E[l] =
[
p(C1|x) p(C2|x) · · · p(Ck|x)

]T
. (7.39)

By Bayes’ Theorem, the j’th posterior probability can be written as [Bis06, p. 209]

p(Cj |x) = p(x|Cj)p(Cj)∑k
m=1 p(x|Cm)p(Cm)

(7.40)

= p(x|Cj)p(Cj)/p(x|Ck)p(Ck)
1 +

∑k−1
m=1 p(x|Cm)p(Cm)/p(x|Ck)p(Ck)

(7.41)

= eaj

1 +
∑k−1
m=1 e

am
(7.42)

with
aj = ln p(x|Cj)p(Cj)

p(x|Ck)p(Ck)
. (7.43)

The aj defined above are called the activations of the logistic regression model and
give the log-odds of being in the j’th cluster relative to the k’th cluster [Bis06, p.
209]. The k’th cluster is sometimes called the reference cluster since all log-odds are
in reference to this cluster. The right hand side of Eq. (7.42) is a generalisation of
the sigmoid function called the softmax function.

Definition 7.6 (Softmax Function)
Let a = [a1 a2 · · · ak]T . The function

s(aj) = s(aj ;a) = eaj∑k
m=1 e

am
(7.44)

is called the softmax function.

We note that if the aj are defined as in Eq. (7.43) then the softmax function is
given by Eq. (7.42) since ak = 0.
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Proposition 7.7 (Derivative of Softmax Function)
For a chosen h = 1, 2, . . . , k, the derivative of the softmax function is given as

∂s(aj)
∂ah

= s(aj)
(
Ijh − s(ah)

)
(7.45)

where Ijh is the (j, h)’th entry in the k × k dimensional identity matrix.

Proof.
In the case where j 6= h, we have that

∂s(aj)
∂ah

= ∂

∂ah

eaj∑k
m=1 e

am
= eaj

−1
(
∑k
m=1 e

am)2
eah = −s(aj)s(ah) (7.46)

For the case where j = h, using the product rule yields

∂s(ah)
∂ah

= eah∑k
m=1 e

am
+ eah

−1
(
∑k
m=1 e

am)2
eah = s(ah)

(
1− s(ah)

)
. (7.47)

The derivatives in Eqs. (7.46) and (7.47) can be combined such that [Bis06, p. 209]

∂s(aj)
∂ah

= s(aj)
(
Ihj − s(ah)

)
. (7.48)

�

In addition, we define the vector-valued function

s(a) =
[
s(a1) s(a2) · · · s(ak)

]T
. (7.49)

We will assume that aj can be written as a linear function of x i.e.

aj(x) = wT
j x (7.50)

where wj contains the weights for the j’th label. As in the binary case, this assump-
tion is valid when the posterior densities are part of the exponential family. Under
this assumption, we can write

a = Wx (7.51)

where W = [w1 w2 · · · wk]T is a k × d matrix containing all weights of the
model. Using this, we can define the multinomial logistic regression model.
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Definition 7.8 (Multinomial Logistic Regression Model)
Let x be a d-dimensional data point belonging to one of the classes C1, C2, . . . , Ck.
Let l = [l1 l2 · · · lk]T be a latent variable of x such that lj = 1 if x ∈ Cj and 0
otherwise. The relation

E[l] = s(Wx) (7.52)

with s(a) being the softmax function taken entry-wise on a is called a multinomial
logistic regression model withW = [w1 w2 · · · wk]T containing its parameters.
The model is equivalently formulated as

p(Cj |x) = E[lj ] = s(wT
j x), j = 1, . . . , k (7.53)

with s being the softmax function.

In the binary case, we saw that the logistic regression model is a generalised
linear model under the assumption of linearity. This is also the case for multinomial
logistic regression, however it requires an extension of generalised linear models to the
multivariate case. For more information on multivariate generalised linear models, we
refer to [FT01]. For the case of multinomial logistic regression, we can alternatively
formulate the model as

Wx = g
(
E[l]

)
(7.54)

where the link function g(·) is the inverse of s(·). It can be shown that Eq. (7.54)
holds if we define the link function as

g
(
E[l]

)
=
[
g1
(
E[l]

)
g2
(
E[l]

)
· · · gk

(
E[l]

)]T
(7.55)

where [FT01, p. 73]

gj
(
E[l]

)
= ln p(Cj |x)

1−
∑k−1
m p(Cm|x)

. (7.56)

To see this, we use Eq. (7.52), the definition of s(a), and Bayes’ theorem to rewrite
Eq. (7.56) as
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gj
(
E[l]

)
= gj

(
s(a)

)
(7.57)

= ln s(aj)
1−

∑k−1
m s(am)

(7.58)

= ln p(Cj |x)
1−

∑k−1
m p(Cm|x)

(7.59)

= ln p(x|Cj)p(Cj)/p(x)
1−

∑k−1
m p(x|Cm)p(Cm)/p(x)

(7.60)

= ln p(x|Cj)p(Cj)
p(x)−

∑k−1
m p(x|Cm)p(Cm)

(7.61)

= ln p(x|Cj)p(Cj)
p(x|Ck)p(Ck)

= aj (7.62)

which shows that g
(
s(a)

)
= a. Recall that the label l was assumed to be multinomial

Bernoulli distributed. As was done when discussing latent variables in the derivation
of the EM algorithm in Chapter 3, the distribution of l given the weight matrix W
can be expressed as

p(l|W ,x) =
k∏
j=1

p(Cj |x)lj . (7.63)

Let li be the label for the i’th data point xi for i = 1, . . . , n. In order to fit the
multinomial logistic regression model, we define the label matrix as the n×k matrix
L = [l1 l2 · · · ln]T with elements lij . Assuming that the data points are mutually
independent, we can write the likelihood function as

p(L|W ,X) =
n∏
i=1

k∏
j=1

p(Cj |xi)lij . (7.64)

with X = [x1 x2 · · · xn]T . Taking the negative logarithm of Eq. (7.64) yields
[Bis06, p. 209]

E(W ) = − ln p(L|W ,X) = −
n∑
i=1

k∑
j=1

lij ln p(Cj |xi) = −
n∑
i=1

k∑
j=1

lij ln s(wT
j xi)

(7.65)
which is the cross-entropy function for multinomial classification. The weight matrix
W is thus found by minimisation of Eq. (7.65).

We will end by showing that similarly to the binary case, the error function in
Eq. (7.65) is convex and thus it can be minimised using convex optimisaion algo-
rithms.
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Lemma 7.9 (Hessian of Multinomial Cross-entropy Error)
[Bis06, p. 210] Let sj(x) = s(aj) = s(wT

j x). The Hessian matrix of the cross
entropy error function for multinomial logistic regression is a kd× kd block matrix
where the (h, j)’th block is a d× d matrix given by

Hh,j = ∇wj∇whE(W ) =
n∑
i=1

sh(xi)
(
Ihj − sj(xi)

)
xix

T
i (7.66)

Proof.
Using Proposition 7.7, the gradient of the cross entropy error function with respect
to a chosen weight vector wh is

∇whE(W ) = −
n∑
i=1

{
∇wh

k∑
j=1

lij ln sj(xi)
}

(7.67)

= −
n∑
i=1

{
lih∇wh ln sh(xi) +

∑
j 6=h

lij∇wh ln sj(xi)
}

(7.68)

= −
n∑
i=1

{
lih
∂ ln sh(xi)
∂sh(xi)

∂sh(xi)
∂ah
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∑
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=
n∑
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=
n∑
i=1

{
sh(xi)xi − lihxi

}
=

n∑
i=1

(
sh(xi)− lih

)
xi (7.74)

where we have used that
∑k
j=1 lij = 1. Taking a second derivative of Eq. (7.74)
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with respect to a chosen weight vector wj for j = 1, 2, . . . , k yields

Hh,j = ∇wj∇whE(W ) (7.75)

=
n∑
i=1
∇wjsh(xi)xi (7.76)

=
n∑
i=1

∂sh(xi)
∂aj

xi∇wjaj (7.77)

=
n∑
i=1

sj(xi)
(
Ijh − sh(xi)

)
xix

T
i (7.78)

The Hessian matrix of the error function in Eq. (7.65) is thus a kd × kd block
matrix where the (h, j)’th block is a d× d matrix given by Eq. (7.78). �

Theorem 7.10 (Convexity of Multinomial Cross-entropy Error)
The cross-entropy error function for the multinomial case defined in Eq. (7.65) is
convex.

Proof.
Similar to the proof for the binary case, we will prove that the Hessian matrix in
Lemma 7.9 is positive-semidefinite. Let H be the kd × kd Hessian block matrix
with its (h, j)’th block defined as in Eq. (7.78) and let u = [uT1 uT2 · · · uTk ]T ∈
Rkd\{0} where uj ∈ Rd for j = 1, 2, . . . , k. Then the Hessian matrixH is positive-
semidefinite if and only if

uTHu =
k∑
j=1

k∑
h=1

uThHh,juj ≥ 0. (7.79)

By insertion of Eq. (7.78), we can write

k∑
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k∑
h=1
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k∑
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k∑
h=1
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( n∑
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)
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=
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n∑
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(
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)
uThxix

T
i uj (7.81)

=
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i=1

k∑
h=1

sh(xi)uThxixTi
k∑
j=1

(
Ihj − sj(xi)

)
uj . (7.82)
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We wish to show that every term in the outer sum of Eq. (7.82) is non-negative.
We note that

k∑
j=1

(
Ihj − sj(xi)

)
uj = uh −

k∑
j=1

sj(xi)uj (7.83)

since
∑k
j=1 Ihjuj = uh. Using Eq. (7.83), we have that for every i

k∑
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)
uj (7.84)
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=
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sh(xi)uThxixTi uh −
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sh(xi)uThxixTi
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sj(xi)uj

(7.86)

=
k∑

h=1
sh(xi)fi(uh)− fi

( k∑
h=1

sh(xi)uh
)

(7.87)

where we have defined the function fi(u) = uTxix
T
i u. For every i, we have that

fi(u) = uTxix
T
i u = (uTxi)(uTxi) = (uTxi)2 ≥ 0. (7.88)

Thus, the function fi(u) is convex. Using that
∑k
h=1 sh(xi) =

∑k
h=1 p(Ch|xi) = 1,

we have from Jensen’s inequality that [Bis06, p. 56]

fi

( k∑
h=1

sh(xi)uh
)
≤

k∑
h=1

sh(xi)fi(uh). (7.89)

Using this, we have that Eq. (7.87) is non-negative for every i, meaning that
Eq. (7.82) is non-negative. Thus,H is positive-semidefinite showing that the cross-
entropy error function in Eq. (7.65) is convex. �





8. Data and Pre-processing

In order to obtain parameters for a statistical model on bike share traffic patterns,
it is necessary to obtain data on bike share trips.

Through an extensive search we have found 19 cities which have bike share trip
data openly available. These cities are listed in Table 8.1. As seen in the table, the
bike share systems have varying sizes and amounts of traffic. The number of stations
in these systems lies between 56 and 938 in 2019, while the number of trips ranges
from just 123 thousand trips among 163 stations to 26 million among 399 stations.
The systems also vary both in density and extent. In order to narrow the scope of
the project, we chose 8 cities which were used in the modelling: 4 from the United
States and 4 from Europe. From the US, these cities are in order of system size New
York City, Chicago, and Washington DC, and Boston while the cities from Europe
are London, Helsinki, Oslo, and Madrid. The cities were chosen both based on the
sizes and maturity of their bike share systems and availability of other data used
in the analysis. For the purpose of illustration, examples from the analysis will be
based on the bike share system in New York City, as this is a large system with many
stations and trips which has been the subject of many prior studies [Chi+20; FIE16;
OS15].

In addition to bike share trip data, we have compiled other types of data which
do not pertain to the bike share systems directly. These types of data include land
use data of the cities, population data, and location data of transit systems in the
cities as well as city centers. As these types of data are external to the bike sharing
systems we will refer to them as external data. The sources of the data are listed in
Table 8.2. The different types of data are described in the subsequent sections.

8.1 Bike Share Trip Data
The bike share trip data is obtained directly from the websites of the individual bike
sharing providers or from city data portals. In this project, we use data sets from
2019 as this is the most recent year with normal operation prior to the COVID-19
pandemic. All of the data sets used contain data on every individual trip made in
the system including trip duration, time of departure from the start station, start
station ID, start station name, time of arrival at the end station, end station ID,
and end station name. Not all cities provide the location of the stations in their trip
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data. For these cities, station data has been obtained from other official open data
sources such as station occupancy APIs as shown in Table 8.2.

For cities in the US, the data sets also include the type of user which used the
bicycle, primarily split between subscribers who pay an annual subscription fee and
casual users who pay for individual trips or for a limited time of use.

City System name # stations # trips 2019 Reference

Bergen Bergen Bysykkel 90 898 276 [Ber]
Boston Bluebikes 341 2 522 771 [Blu]
Buenos Aires EcoBici 417 5 238 643 [Ecoa]
Chicago Divvy 593 3 614 078 [Div]
Edinburgh Just Eat Cycles 163 123 684 [Jus]
Guadalajara MiBici 275 4 625 130 [MiB]
Helsinki Helsinki City Bikes 348 3 784 877 [Hel]
London Santander Cycles 753 8 829 104 [Trab]
Los Angeles Metro Bike Share 234 276 943 [Met]
Madrid BiciMad 214 3 956 099 [EMT]
Mexico City EcoBici 480 8 349 075 [Ecob]
Minneapolis Nice Ride 179 263 169 [Nic]
Montreal Bixi 619 5 442 288 [BIX]
New York City Citi Bike 938 20 551 396 [Cita]
Oslo Oslo Bysykkel 254 2 237 092 [Osl]
San Francisco Bay Wheels 351 2 296 199 [Lyf]
Taipei YouBike 399 26 484 903 [You]
Trondheim Trondheim Bysykkel 56 356 189 [Tro]
Washington, D.C. Capital Bikeshare 429 3 281 231 [Cap]

Table 8.1: Bike share systems around the world, including number of stations and number of trips
in 2019. The systems chosen for this project are highlighted.
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Data set Area Provider Reference

Trip Data New York City Citi Bike [Cita]
Trip Data Chicago Divvy Bikes [Div]
Trip Data Washington D.C. Capital Bikeshare [Cap]
Trip Data Boston Bluebikes [Blu]
Trip Data London Transport for London [Trab]
Trip Data Helsinki Helsinki Region Transport [Hel]
Trip Data Oslo Oslo City Bike [Osl]
Trip Data Madrid BiciMad [EMT]
Station Data Chicago City of Chicago [Citc]
Station Data Washingon D.C. Department of Real Estate Services [Citd]
Station Data London Transport for London [Traa]
Station Data Madrid BiciMad [EMT]

Land Use Data New York City New York City
Department of City Planning [New]

Land Use Data Chicago City of Chicago [Citb]

Land Use Data Washington D.C. Government of the
District of Columbia [Cite]

Land Use Data Boston Boston Planning and
Development Agency [Bos]

Land Use Data Europe European Enviroment Agency [Eurc]
Population Data US US Census Bureau [USCB]
Population Data Europe European Enviroment Agency [Eurc], [Eurb]
Transit Data All cities OpenStreetMap [Opea]
City Centers All cities OpenStreetMaps [Opea]

Table 8.2: Data sources.
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8.2 Station Service Area
Each station in the system is assigned a designated service area. These service areas
are determined using a Voronoi tessellation which defines boundaries such that land
is assigned to the closest station. The areas are then truncated such that there is
a maximum of 500 meters from the station to the furthest point in its service area
in Euclidean distance. This distance was measured using an azimuthal equidistant
projection centered at a predetermined center point of the city. We choose 500 meters
as this is assumed to be the maximum distance people are willing to walk to get to a
station. This distance also conforms to general consensus in the US of having transit-
oriented development planning areas extend between a quarter-mile and a half-mile
from a transit station [FTA02, p. 78]. Euclidean distance is used as the bike sharing
systems are in urban areas with a high density of roads and intersections. Having a
highly interconnected road network makes the Euclidean distance more likely to be
a valid metric since it will not be significantly shorter than the conventional network
distance following the road network, as suggested by [OCB14]. This simplification is
further justified if we assume that a user will walk the most direct route to a station
without taking detours. The service areas are further truncated such that they do
not span over bodies of water such as seas, rivers, and lakes when possible. This is
done by intersection with polygons from the land use data described below.

A great deal of care has to be taken when determining the span of time in which
the service areas are calculated since the number and locations of stations vary over
time. For instance in New York City, 938 unique stations have been used in the
system during the year of 2019. However, at no point in time has the system had
938 active stations simultaneously, since some stations have been created, relocated
and/or removed entirely. Thus, calculating 938 service areas will not give a repre-
sentative view of the system and how it was used at any given time. To account for
this, we calculate the service areas of the system in each day of the year. An example
of a map of the stations in New York City and their service areas for one day can be
seen in Fig. 8.1.

The relocation and removal of stations also affects other variables which are
derived from the service areas and the location of the stations. These variables
include the population density around the station, land use, and distance to nearest
transit points. To alleviate this, for each station all variables used in the modelling
are calculated for each day the station has been used and then averaged over those
days.

8.3 Land Use Data
For US cities, land use is obtained from zoning data provided by the cities. The data
contains polygons delineating each zone along with a corresponding zone code. We
classify each zone as either residential, commercial, recreational, industrial or mixed,
depending on the zone code and its stated use in the zoning ordinance. Since no
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Figure 8.1: Service areas for New York City on October 23rd 2019.



66 Chapter 8. Data and Pre-processing

historical zoning data was found, we use the most recent data as of October 2021
provided by the cities. It is probable that the zoning has changed from 2019 till 2021.
However, we operate under the assumption that the changes in this time-frame were
relatively minor with regard to the general ridership of the bike sharing systems.

For European cities, zoning data is not available in a standardised form as land
use regulations differ between countries and regions. Instead, we use land use data
from Urban Atlas 2018 in the Copernicus Land Monitoring Service provided by the
European Environment Agency. This data includes polygons representing different
land areas and a general description of their use. These areas are then classified
into the same categories as the US cities. We again assume no significant land use
changes from 2018 to 2019.

For each station, we calculated the share of each type of land use within the
service area of the station. The European land use data also contains polygons of
the cities’ road network. While the roads are a part of the stations’ service areas,
they were not included when calculating the share of land use within the service area.
We deem this as appropriate since the zoning data in the US does not separate roads
from zoning areas.

8.4 Population Data
The United States Census Bureau provides historical census data for 2019 on census
tract level and polygons of the census tracts. Using this data, we calculate the
population density of each census tract in number of people per 100 square meters.
For Helsinki, Oslo and Madrid, population estimates are provided for each polygon
in the land use data from Urban Atlas 2018. For London, population estimates from
Urban Atlas 2012 were used instead due to discrepancies found in the population
data from Urban Atlas 2018. We note that land use polygons from 2012 may differ
from those in 2018 but they will only be used to estimate the population density in
the station service area and not for land use.

We calculate the population density of each station’s service area as a weighted
average of the population densities of the census tracts or land use polygons within
the service area, where the weights are the polygons’ share of the station service area.

8.5 Transit Data
Transit data is obtained using the Overpass API from OpenStreetMap. The data
contains locations of metro stations and railway stations.

8.6 City Centers
The center of each city is obtained using the Overpass API from OpenStreetMap.
According to the OpenStreetMap wiki, city centers are located at places like cen-
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tral squares, central administrative or religious buildings and central road junctions
[Opeb]. As OpenStreetMap data is created by user contributions, the city center lo-
cations represent the consensus among the contributors. The centers have also been
checked and deemed sensible by the authors.

8.7 Pre-processing of Data
Several considerations have been made in terms of the trip data and stations used
in the modelling. We are primarily concerned with trips taken on business days
since the traffic patterns generally are more predictable due to commuting. This is
also done to ease comparison between cities since we expect the traffic patterns in
the business days to be similar for all cities. We also aim to remove as many trips
as possible which are considered recreational trips since these trips act as noise in
the commuter traffic patterns and the models. Thus, trips which do not start on a
business day are removed from the trip data along with trips which were taken on
holidays where people might use the bike sharing system more leisurely. Users who
are not subscribed to the bike sharing system are also more likely to use the bikes
leisurely rather than for commuting purposes, as shown by [NSG19]. Leisure trips
are also responsible for the majority of loop trips i.e. trips starting and ending at
the same station, as was observed by [ZWD15] and [NSG19]. Therefore, we remove
trips taken by casual users in cities where the user type is present in the data as well
as loop trips.

Typically, the providers of the bike sharing data remove trips taken by staff for
maintenance as well as trips taken to and from test stations. Trips which are up to
60 seconds long are also removed by some providers since these trips are assumed to
be false starts or users ensuring that the bike is locked. However, the pre-processing
of the data done by the providers is not consistent for all systems. Thus, to ensure
consistency in the trip data we remove all trips with a duration of up to 60 seconds.
We also remove stations which appear to be test stations or otherwise used for
maintenance purposes.

Some bike share stations have a very low amount of traffic. If a station has only 1
or 2 trips per day, then the traffic pattern of that station may be more erratic than a
typically used station. This can pose as a problem in the clustering since it can create
outlier clusters consisting of low traffic stations. In addition, calculations of external
variables derived from the stations location and service area are also prone to errors.
The bike share trip data only provides the timestamps when a trip has taken place
and not the days in which each station was active but unused. Thus, the external
variables are calculated for each day the station was used and not necessarily each
day the station was in service, meaning that days were there are no trips to or from
the station are not counted when averaging and may give a misrepresentation of the
external variables. This issue is only significant for low-traffic stations which only
receive few trips a day since they are more probable to receive no trips on a day they
were active. Therefore, in the modelling we exclude stations which have less than 8
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daily trips on average. This number is chosen based on preliminary testing to provide
a balance between clear traffic patterns while not excluding too many stations. The
number of trips and stations removed after excluding low-traffic stations can be seen
in Table 8.3.

City Pre-cleaning Post-cleaning Data Retained (%)
Trips Stations Trips Stations Trips Stations

New York City 14869054 938 13168086 857 88.56 91.36
Chicago 2663558 593 2153584 369 80.85 62.23
Washington DC 2588852 429 2285881 333 88.30 77.62
Boston 1865013 335 1547643 254 82.98 75.82
London 7719768 788 7522951 784 97.45 99.49
Helsinki 2755144 348 2677641 348 97.19 100.00
Oslo 1729194 253 1682360 251 97.29 99.21
Madrid 3015679 213 2781463 213 92.23 100.00

Table 8.3: Number of trips and stations retained after removing low-traffic stations.



9. Modelling Approach

In this chapter, we describe our approach to modelling both the shape and volume
of the average daily traffic of the bike share stations. The modelling can be done in
two parallel stages: The first stage models the shape of the traffic by clustering the
normalised traffic of each station and then relating this clustering to the external
data variables discussed in the previous chapter using a Logistic Regression (LR)
model. The second stage models the average amount of daily trips to and from each
station also using the external data as predictor variables using a Generalised Linear
Model (GLM). An overview of our modelling approach can be seen in Fig. 9.1.

Create
Traffic vectors

Clustering
Logistic

Regression

External DataBike Data

Average Daily
# Trips GLM

LR
coefficients

GLM
coefficients

ti li

Vi

Figure 9.1: Flowchart of the modelling approach.

Using the bike share trip data, we calculate the hourly number of arrivals and
departures for each station every day in which the station was used. The number of
arrivals and departures for a specific hour are counted from the start of the hour to
the end of the hour e.g. for hour 16 the arrivals and departures are counted from
16:00:00 to 16:59:59. Previous studies have established that a resolution of one hour
yields a good trade-off between temporal resolution and fluctuations [Bor+11]. If the
temporal resolution is higher, the patterns will be more different day-to-day, while
a lower temporal resolution will smooth the traffic pattern and obscure the peaks in
the pattern.
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Let Di be the set of days where station i has been used and let dd,i and ad,i be
two 24-dimensional vectors representing the hourly number of departures and arrivals
respectively for the station at day d ∈ Di starting at hour 0. Both traffic vectors are
then averaged over all days such that

di = 1
|Di|

∑
d∈Di

dd,i and ai = 1
|Di|

∑
d∈Di

ad,i

represent the average daily number of departures and arrivals for station i respec-
tively. We define the average traffic volume (or demand) of a station as

Vi = ‖di‖1 + ‖ai‖1 (9.1)

i.e. the number of departures and arrivals of the station on an average day. When
clustering, we normalise the average daily traffic of each station such that

d′i = di
Vi

and a′i = ai
Vi

(9.2)

yield the share of traffic for each hour on an average day. This is done since we
are primarily concerned with clustering the stations based on the shape of their
average daily traffic rather than the absolute amount of traffic. For instance, a
highly trafficked station may be clustered differently from another station due to the
higher amount of traffic despite them both being of the same type.

In order to mitigate the effect of the concentration of trips in the rush hours
on the traffic pattern, we also redefine our traffic vectors as the hourly differences
between the normalised number of arrivals and departures. We define the final traffic
vector for station i as the 24-dimensional vector containing the relative difference in
departures and arrivals for each hour

ti = d′i − a′i. (9.3)

The vectors obtained from Eq. (9.3) are assigned to k clusters using one of the
clustering algorithms discussed in Chapters 2 to 4. The labels obtained from the
clustering, li, for each station are then used as response variables to train a LR
model described in Chapter 7 while using the external data discussed in Chapter 8
as predictor variables. These variables are also used in the GLM where the Vi are
used as response variables. The summary statistics of the external data variables on
service area level can be seen in Table 9.1.

Combining the two models is straightforward. From the LR model, the shape of
the traffic can be predicted, while the volume is predicted by the GLM. Multiplying
the mean vector of the cluster which the station is predicted to be in with the
predicted volume will result in a prediction in how many arrivals and departures the
station will receive in each hour.
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New York City Chicago
Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Share of residential use 0.51 0.37 0.00 1.00 0.34 0.31 0.00 0.99
Share of commercial use 0.25 0.34 0.00 1.00 0.16 0.17 0.00 0.95
Share of recreational use 0.07 0.16 0.00 0.84 0.08 0.18 0.00 1.00
Population density [per 100 sq. m] 1.37 0.79 0.00 5.50 0.50 0.28 0.07 1.80
Distance to nearest subway [km] 0.35 0.26 0.00 2.11 0.60 0.47 0.01 2.67
Distance to nearest railway [km] 1.90 0.92 0.07 4.30 1.37 0.84 0.03 3.57
Distance to city center [km] 5.43 2.84 0.12 12.34 5.57 3.99 0.08 21.78

Washington DC Boston
Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Share of residential use 0.50 0.36 0.00 1.00 0.44 0.30 0.00 1.00
Share of commercial use 0.10 0.22 0.00 1.00 0.18 0.20 0.00 1.00
Share of recreational use 0.13 0.26 0.00 1.00 0.14 0.19 0.00 0.88
Population density [per 100 sq. m] 0.44 0.31 0.00 1.43 0.47 0.25 0.00 1.49
Distance to nearest subway [km] 0.64 0.49 0.02 3.48 0.88 0.81 0.02 4.56
Distance to nearest railway [km] 3.13 1.91 0.14 8.61 0.90 0.67 0.03 2.93
Distance to city center [km] 3.74 2.33 0.32 10.92 3.69 2.07 0.07 8.49

London Helsinki
Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Share of residential use 0.66 0.29 0.00 1.00 0.41 0.25 0.00 0.95
Share of commercial use 0.19 0.24 0.00 1.00 0.23 0.22 0.00 1.00
Share of recreational use 0.12 0.18 0.00 0.99 0.28 0.19 0.00 0.75
Population density [per 100 sq. m] 1.16 0.67 0.00 3.25 0.59 0.57 0.00 3.44
Distance to nearest subway [km] 0.51 0.40 0.01 2.22 1.78 1.58 0.02 6.44
Distance to nearest railway [km] 0.80 0.50 0.01 2.49 2.64 2.01 0.04 7.17
Distance to city center [km] 3.92 2.05 0.14 9.35 5.76 3.30 0.25 12.30

Oslo Madrid
Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Share of residential use 0.58 0.30 0.00 1.00 0.69 0.25 0.00 1.00
Share of commercial use 0.23 0.25 0.00 1.00 0.18 0.15 0.00 0.70
Share of recreational use 0.11 0.17 0.00 0.86 0.12 0.19 0.00 0.93
Population density [per 100 sq. m] 1.07 0.88 0.00 4.02 2.67 1.28 0.07 6.44
Distance to nearest subway [km] 0.70 0.51 0.04 3.72 0.24 0.15 0.00 0.82
Distance to nearest railway [km] 1.03 0.63 0.03 3.23 1.15 0.66 0.04 3.32
Distance to city center [km] 1.89 1.08 0.07 4.97 2.13 1.23 0.10 5.66

Table 9.1: Summary statistics of the variables used in the model.
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9.1 Preliminary Clustering Analysis
The choice of clustering method and parameters is an important part of our modelling
approach and will have a significant impact on future results. When doing clustering
of data, three key specifications need to be set beforehand. These are:

• The clustering algorithm

• The distance measure between points (and possibly clusters)

• The number of clusters

The specifications above are evaluated using the cluster validation measures pre-
sented in Chapter 5. The choice of algorithm, distance measure and number of
clusters all affect these measures which makes finding an optimal combination of
these choices particularly difficult and finding a combination which is optimal for
all cities close to impossible. The goal is to identify a clustering method which is
considered a good fit for all cities and useful for further analysis while not necessarily
optimal for all cities.

In order to test the choice of clustering algorithm, we clustered the stations in
each city for different choices of the number of clusters. In both the k-means and
EM algorithm, the distance measure was defined as the l2-norm as in their defini-
tions. For k-medoids and hierarchical clustering, we used an implementation of the
Dynamic Time Warping (DTW) algorithm which was also used in [SLM15]. The
DTW algorithm is typically used to compare time-series data while also taking tem-
poral displacement into account. In the case of bike sharing stations, having rush
hours at different times can cause this displacement. An introduction to the DTW
algorithm can be found in [Sen08]. The reason behind using different distance mea-
sures is based on the design of the algorithms. The k-means algorithm is defined by
minimising an l2-norm and thus using this distance gives this algorithm a particu-
lar advantage. However, the strength of the k-medoids and hierarchical clustering
algorithms is their flexibility with respect to the distance measure. Therefore, while
k-means always minimises the l2-norm, the performance of k-medoids and hierarchi-
cal clustering can be improved by using a different distance measure such as DTW,
and possibly exceed the performance of the k-means algorithm.

For the hierarchical clustering algorithm we define the distance between clusters
as the average distance between points in each cluster as described by Eq. (4.3).

A comparison between the clustering algorithms for all cities can be seen in
Fig. 9.2. Both the silhouette and Davies-Bouldin index indicate a clear ordering be-
tween the algorithms in terms of their performance with the hierarchical clustering
algorithm having the best performance while the EM algorithm has the worst. The
hierarchical clustering algorithm also scores significantly better in the Dunn index for
low choices of k. The EM algorithm seems to be either on par or significantly worse
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Figure 9.2: Comparison of the clustering algorithms for different choices of k for each city.
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than the other algorithms. This is curious as the EM algorithm can be seen as a gen-
eralisation of the k-means algorithm under the assumption of normally distributed
data points. The algorithm was initialised with cluster centers obtained from the
k-means algorithm and was executed 100 times, picking the result with the highest
likelihood by Eq. (3.23). The reason for the low performance may be due to the
normality assumptions not being valid and/or error in estimation of the covariance
matrices. Constraining the algorithm to only estimate the covariance matrices as
scaled identities, and thus assuming spherical clusters of data points, leads to similar
performance to the k-means algorithm. This does indicate that the data points are
approximately spherically clustered although it is unclear why this was not picked
up on by the EM algorithm. Another explanation could be that the measures used
to evaluate the clustering all prefer spherical clusters and thus constraining the EM
algorithm to provide spherical clusters gives better results in the eyes of these mea-
sures. The clustering from the EM algorithm may be deemed better when using a
measure which is more relaxed on the shape of the clusters.

From Fig. 9.2, it seems that the hierarchical clustering algorithm fits best to the
data. However, observing the clusters resulting from the algorithm reveals a large
number of singleton clusters as well as clusters only containing a couple of stations.
This may be attributed to the chaining effect discussed in Chapter 4 although these
small sized clusters were also found using the complete linkage distance measure de-
fined in Eq. (4.2). In the analysis in this project, we are not interested in clusters
consisting of a low number of outlier traffic pattern stations, but would rather obtain
clusters which better represent the general traffic patterns and are more balanced in
number of stations. Therefore, we deem that the hierarchical clustering algorithm is
not suitable for this matter. The k-means algorithm does not exhibit this behaviour
and we will thus use this in the clustering experiments.

Having chosen the clustering algorithm, the number of clusters remains to be
decided. Fig. 9.3 shows the score of the validation indices for different k when using
the k-means algorithm. Both the Davies-Bouldin and silhouette index favor few
clusters. For the sum of squares, we also observe elbows for 3 ≤ k ≤ 5 in most
cities. For values of k in this interval, the Dunn index peaks at k = 5 for all cities
except Helsinki where it peaks at k = 3. We note that in terms of bike sharing there
is a trade-off between the number of clusters and the ability to compare clusters
between cities. Fewer clusters will yield a lower resolution of the clustering but the
clustering will likely be similar between cities yielding easy comparisons. Conversely,
having many clusters may result in different types of clusters across the cities due
to local factors having a higher impact on the clustering. An argument can also be
made for preferring an uneven amount of clusters if we assume that at a given time,
some clusters will have a high amount of departures while other clusters will have a
high amount of arrivals. With an uneven amount of clusters this leaves space for a
neutral reference cluster with similar amounts of arrivals and departures. With these
considerations we deem that k = 5 is reasonable for the clustering.
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10. Clustering Results

In this chapter, we present results obtained from the k-means clustering of the traffic
patterns of stations in the bike share systems with k = 5 as specified in Chapter 9
and section 9.1. The cluster centers for each city are seen in Fig. 10.1 and the number
of stations in each cluster is shown in Table 10.1. The centers generally follow 5 types
of clusters:

Low morning source: Traffic mostly concentrated around rush hours with a clear
separation between the amount of departures and the amount of arrivals. The
morning rush hours are dominated by departures while the evening rush hours
are dominated by arrivals.

Low morning sink: Traffic mostly concentrated around rush hours with a clear
separation between the amount of departures and the amount of arrivals. The
morning rush hours are dominated by arrivals while the evening rush hours are
dominated by departures.

High morning source: Very high concentration of traffic around rush hours with
a large separation between the amount of departures and the amount of arrivals.
The morning rush hours are dominated by departures while the evening rush
hours are dominated by arrivals.

High morning sink: Very high concentration of traffic around rush hours with a
large separation between the amount of departures and the amount of arrivals.
The morning rush hours are dominated by arrivals while the evening rush hours
are dominated by departures.

Reference: Cluster which does not follow the pattern of the previous types. Used
as reference in LR modelling.

For most cities, the reference cluster contains stations which have approximately
the same number of departures and arrivals for any given time. However, in Oslo
there is a notable absence of this type of cluster. Instead, Oslo has a cluster where
departures and arrivals are balanced in the morning while in the afternoon and
throughout the evening most of the trips are departures. 23 stations or 9.2% of
Oslo’s system is comprised of these types of stations and a large majority of these

77



78 Chapter 10. Clustering Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.15

0.10

0.05

0.00

0.05

0.10

0.15

R
el

at
iv

e 
di

ffe
re

nc
e

New York City

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Chicago

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.15

0.10

0.05

0.00

0.05

0.10

0.15

R
el

at
iv

e 
di

ffe
re

nc
e

Washington DC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Boston

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.15

0.10

0.05

0.00

0.05

0.10

0.15

R
el

at
iv

e 
di

ffe
re

nc
e

London

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Helsinki

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

0.15

0.10

0.05

0.00

0.05

0.10

0.15

R
el

at
iv

e 
di

ffe
re

nc
e

Oslo

Reference High morning sink Low morning sink Low morning source High morning source

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

Madrid
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City Reference High Low Low High
morning sink morning sink morning source morning source

NYC 253
(29.5%)

63
(7.4%)

162
(18.9%)

243
(28.4%)

136
(15.9%)

Chicago 84
(22.8%)

45
(12.2%)

63
(17.1%)

99
(26.8%)

78
(21.1%)

Wash. DC 86
(25.8%)

43
(12.9%)

57
(17.1%)

75
(22.5%)

72
(21.6%)

Boston 63
(24.8%)

22
(8.7%)

50
(19.7%)

69
(27.2%)

50
(19.7%)

London 190
(24.2%)

82
(10.5%)

135
(17.2%)

221
(28.2%)

156
(19.9%)

Helsinki 108
(31.0%)

12
(3.4%)

45
(12.9%)

113
(32.5%)

70
(20.1%)

Oslo 23
(9.2%)

22
(8.8%)

52
(20.7%)

87
(34.7%)

67
(26.7%)

Madrid 59
(27.7%)

34
(16.0%)

36
(16.9%)

44
(20.7%)

40
(18.8%)

Table 10.1: Size of the 5 clusters obtained from the clustering. The size is represented as a
percentage of the total number of stations below.

stations are located in or near the Ullevål district which contains Oslo University,
see Fig. 10.2. A possible explanation of this irregular cluster may be that students
use conventional public transport such as buses, trams or the metro to arrive at the
university in the morning and then use bike sharing to depart from the university in
the afternoon. If that is the case, it shows how public transit and the bike sharing
system in Oslo complement each other for the use-case of the university students.
With the limits of the available open data it is not possible to confirm or deny this
hypothesis. Therefore, it might be relevant to either do surveys among Oslo Univer-
sity bike share users or obtain other types of data such as bike share data with user
ids from the provider or trip data from other forms of public transport in order to
further investigate this imbalance.

There are also apparent differences in the non-reference clusters across cities.
Madrid stands out in this regard, due to having three peaks in the daily traffic: one
from 7:00 to 10:00, another from 14:00 to 15:00 and a third from 17:00 to 20:00. This
is likely a consequence of the work culture in Madrid where it is customary to take
a break from work around midday and resume the workday at a later time. In New
York City, Chicago, Washington DC, Boston, and London the peaks of the morning
sources and the valleys of the morning sinks are mostly aligned at 8:00, meaning that
most of the morning commute in these cities is done from 8:00 to 9:00. However, in
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Figure 10.2: Clustered stations in Oslo. Grey stations are unclustered due to low traffic.

the afternoon commute there is a noticeable one hour shift between the peaks of the
morning sinks and the valleys of the morning sources. This may be an effect of a
more relaxed commute in the afternoon hours where punctuality is less of a concern
but it could also be an artifact of our 1-hour bins coupled with peoples work sched-
ules. For instance, it is possible that people are expected to arrive at work before
9:00 so people use the bike sharing system in the interval 8:00-9:00. In the afternoon
however, people might leave work later in the hour e.g. at 17:50 and then finish
their commute after 18:00 meaning that the arrival is counted in the 18:00-19:00 bin
resulting in the misalignment. The shape of the peaks may also show variations in
peoples work schedules across cities. In New York City, people usually depart to
work from 8:00 to 9:00 and then depart from work from 17:00 to 18:00. In Chicago,
the wideness of the peaks indicate that people depart to work from 7:00 to 9:00 and
then depart from work from 15:00 to 17:00 indicating that some people arrive at and
depart from work earlier than others.

In New York City, Washington DC, London, and Helsinki, at first sight, it seems
like in the afternoon rush hours the peaks of the morning sinks are considerably larger
than the valleys of the morning sources, i.e. there appears to be an imbalance between
arrivals and departures. In Helsinki, Oslo and Madrid, an opposite imbalance is also
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Figure 10.3: Clustered stations in Helsinki. Grey stations are unclustered due to low traffic.

seen in the morning rush hours. However as there is always one arrival for each
departure, these imbalances are likely caused by a disparity between the number
of morning sink and morning source stations. In Helsinki, where these imbalances
are most prominent, 16.3% of the stations are of morning sink types while 52.6%
are morning sources, a difference of 36.3 percentage points. This indicates that
the trips emanating from the many morning source stations are concentrated in a
few key areas which then disperse the trips back to the morning source stations
in the afternoon. When looking at the placement of the morning sink stations,
they are typically concentrated in commercial and educational areas such as in the
Helsinki city center around Kaartinkaupunki, Otaniemi which hosts a high number
of schools and universities, and the Pitäjänmäki district which contains many IT
and manufacturing companies, see Fig. 10.3. On the other hand, morning source
stations in Helsinki are mostly placed in residential areas surrounding the commercial
areas. The city which seems to be most balanced is Chicago. Here, there is only a
18.6 percentage point difference between the amount of morning sink and morning
source stations. However, using these differences to solely explain the imbalances is
not adequate. In Washington DC, there is only a 14.1 percentage point difference
meaning that other local factors may contribute to the imbalance observed before.

Another explanation for the imbalance in the arrivals and departures in the af-
ternoon hours could be that arrivals are more spread out in the afternoon. This is
for instance the case in Washington DC where departures from morning sinks are
mostly concentrated from 15:00 to 19:00 while arrivals to morning sources are pri-
marily from 17:00 and throughout the evening. This can be an effect of what was
discussed previously with bike share users having a more relaxed commute in the
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Figure 10.4: Clustered stations in Chicago. Grey stations are unclustered due to low traffic.
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afternoon or people using bike share for recreational purposes or to get to leisure
activities.

Interesting results can also be obtained by considering the stations which have
been left out of the clustering due to having less than 8 trips a day on average. As
seen in Table 8.3, there is generally a higher percentage of stations which are retained
in the European cities which indicates that nearly all parts of the systems are fre-
quently used. However, in US cities many stations, typically at the edge of the bike
sharing system, have been removed due to low traffic. The worst case is in Chicago
where about 37.77% of the stations are excluded which account for 19.15% of the
trips indicating that a large part of the system is infrequently used. This can be
attributed to many factors. One important factor is the income disparity in the city
which has increased over time in these areas [Nat]. Over time, poor neighbourhoods
like the ones containing these low traffic stations have become poorer, while rich
neighbourhoods became richer. These low-income neighbourhoods are also mainly
residential areas which in accordance with the zoning ordinance are restrictive to-
wards business developments. Coupled with the fact that these areas are not well
connected to public transit systems (see Fig. C.2) and are generally far away from the
core of Chicago, the people living in these neighbourhoods have a higher incentive
to use a car instead of bike sharing. Similar results where the outer residential areas
are geographically disincentivised from using the bike sharing system have also been
observed for the other US cities.

10.1 Logistic Regression
The coefficients obtained from the LR models trained on each city are presented in
Table 10.2. To better visualise the relationship between the external variables of a
city and the output from the LR model, heat map plots can be constructed for each
city showing the external variables and the corresponding output. This is done by
dividing the city area into 200 m×200 m cells and then calculating the values of the
external variables for each cell. These variables are then used as input for an LR
model trained on the city in order to obtain the probability of a station placed at the
center point of each cell belonging to a particular cluster. The resulting heat maps
for New York City can be seen in Fig. 10.5. Similar heat maps for other cities can
be found in Appendix C.

As seen in Table 10.2, morning sources are usually highly associated with residen-
tial land use. This is also easily observed in New York City as seen in Fig. 10.5, where
morning source stations are more likely to be in residential areas which is a pattern
that is shared between all US cities. In regards to commercial land use, stations in
New York City in or near commercial areas such as the Diamond District and the
Financial District in Manhattan, as well as along Hudson River are more probable to
be morning sink stations. This can also be seen to be the case for Washington DC.
Thus for these two cities, looking at the residential and commercial land use together
can say a lot about the type of the station. The same is valid for Boston albeit to a
lesser degree, as the coefficients for Boston are not all statistically significant.
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NYC Chicago Wash. DC Boston London Helsinki Oslo Madrid
Cluster Coef. name

High
Morning
Sink

Const. −0.247 2.193 2.210 3.623 −11.171 −3.792 19.973 −2.938
Share of residential use −4.200 −3.260 −6.538 −0.185 15.293 −2.039 −10.165 13.670
Share of commercial use 2.016 −0.511 −0.559 −0.241 13.703 1.636 −11.843 4.654
Share of recreational use −1.279 −7.586 −3.661 −3.909 6.408 2.102 −11.076 3.946
Population density [per 100 m2] −1.809 −1.886 −1.797 −6.079 −3.521 −4.598 −1.424 −2.813
Distance to nearest subway [km] −0.502 −2.349 0.332 0.014 0.083 −0.345 6.194 1.198
Distance to nearest railway [km] −0.205 −0.383 0.493 0.427 0.664 −0.024 −6.149 −2.133
Distance to city center [km] 0.152 0.080 −0.577 −0.609 −0.321 0.415 −3.707 0.034

Low
Morning
Sink

Const. 1.785 2.234 1.238 2.787 −3.956 −0.515 18.862 −2.188
Share of residential use −0.875 −1.261 −3.797 −1.147 6.567 0.333 −9.182 9.133
Share of commercial use 0.301 −1.798 −0.400 −0.661 5.758 1.266 −10.123 3.983
Share of recreational use −0.093 −2.628 −1.747 −2.090 1.863 −2.341 −11.704 1.379
Population density [per 100 m2] −0.769 −1.675 −0.713 −1.902 −1.726 −1.625 −1.760 −2.052
Distance to nearest subway [km] −1.972 −2.140 −0.341 −0.323 −0.046 −0.172 2.543 2.100
Distance to nearest railway [km] −0.143 0.138 0.351 −0.306 1.001 0.034 −3.175 −0.687
Distance to city center [km] −0.065 0.007 −0.233 −0.162 −0.356 0.102 −2.093 0.040

Low
Morning
Source

Const. −2.281 −1.507 −2.333 −0.726 −0.004 −4.019 15.057 −6.033
Share of residential use 1.708 3.955 2.904 0.134 −1.814 2.028 −10.586 −1.215
Share of commercial use −1.031 0.434 −2.536 −1.062 −2.432 −1.359 −12.577 4.138
Share of recreational use 1.544 −0.320 0.231 −3.259 −1.298 2.262 −8.750 6.801
Population density [per 100 m2] 0.271 −0.243 1.712 −0.379 1.111 1.261 1.739 1.908
Distance to nearest subway [km] 1.243 1.013 0.825 0.599 0.987 0.340 3.012 0.732
Distance to nearest railway [km] 0.283 0.654 −0.426 0.704 −0.924 0.385 −1.313 −0.868
Distance to city center [km] 0.011 −0.226 0.150 0.017 0.177 0.075 −1.880 0.242

High
Morning
Source

Const. −5.030 −1.263 −6.701 −0.657 −1.461 −2.356 10.181 −9.216
Share of residential use 3.002 6.045 5.584 0.805 −0.633 −0.564 −6.766 −1.206
Share of commercial use −3.195 −2.686 −8.969 −3.322 −2.532 −7.125 −9.546 2.369
Share of recreational use 3.623 −3.690 0.668 −5.676 −1.905 −1.580 −4.786 5.945
Population density [per 100 m2] 0.693 −0.101 2.268 −1.100 0.913 0.867 1.314 1.941
Distance to nearest subway [km] 2.950 1.441 1.230 0.469 2.241 0.222 2.585 4.715
Distance to nearest railway [km] 0.413 0.353 −0.523 0.751 −0.777 0.256 −1.507 −1.167
Distance to city center [km] −0.061 −0.376 0.686 0.045 0.112 0.359 −0.805 1.025

Table 10.2: Coefficients of LR models trained on different cities. Bold coefficients are statistically
significant (p < 0.05).
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Figure 10.5: Heat maps of probabilities of belonging to different clusters alongside external vari-
ables for New York City.
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It is important to note that there are two equally valid interpretations of this
result depending on the interpretation of morning sources and morning sinks. One
interpretation is that morning source stations have an abundance of departures in
the morning while morning sink stations have an abundance of arrivals. In this
framework, morning source stations are imbalanced due to the relatively high num-
ber of people living near these stations yielding a large amount of potential cyclists
who use these stations during their commute. Likewise, morning sink stations are in
commercial areas which have a large amount of work spaces, shops and other venues
providing many reasons for cyclists to arrive at nearby stations. Another interpre-
tation is that the imbalance in morning source stations is caused by an absence of
arrivals while for morning sink stations it is due to an absence of departures. Resi-
dential areas have little to no commercial purposes so there is little reason for people
to go to these areas in the middle of a business day. Likewise, commercial areas do
not have as many residents and therefore a low supply of cyclists. Both of these
interpretations are supported by how zoning in US cities is typically regulated. Each
type of zone is usually defined with one specific purpose in mind such as commercial
and residential use, and mixed-use zones are generally few and far between. This
leads to cities having large areas in which only commercial use is permitted and
likewise for residential use. Thus, when people are commuting in the morning they
are most likely departing from residential zones and arriving in commercial zones to
work.

A city which was expected to show a similar behaviour to this is Chicago. How-
ever, it was found that stations around commercial areas are more likely to be low
morning sources. When examining the zoning data from Chicago, it was found that
the buildings along the main roads of the city are zoned as commercial areas which
is likely the cause of the different pattern in the coefficient. However, these commer-
cial areas are also, despite their intended use, relatively lowly developed and provide
fewer work opportunities compared to areas closer to the city center. Thus, stations
which are close to these areas beside main roads may still act as morning sources
since the low amount of work opportunities provides an absence of arrivals. If this is
the case, investing more in the development of these areas could change the stations
to be more balanced throughout the day.

The above discussion can also shed some light on the predicting power of land
use in European cities where counter intuitive behaviour can be found. In London,
morning sinks are associated with both residential and commercial areas while morn-
ing sources are more associated with residential than commercial areas. Helsinki has
a similar behaviour to what was observed in US cities while Madrid exhibits the op-
posite, with stations in residential areas being more likely to be morning sinks. Oslo
also exhibits very counter intuitive behaviour with regards to the share of land use
with morning sinks being disassociated with both residential and commercial land
use although this may be an effect of the reference cluster. One reason that the Eu-
ropean cities do not share a specific pattern can be a lack of standardisation in how
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land use is regulated in the countries. European cities also generally do not separate
different zoning types to the same degree as cities in the US, yielding a higher blend
of different types of land use throughout the cities.

It is difficult to say something general about recreational use. As the primary
type of residential land use is parks, the relationship between recreational use and
cluster type might say something about the location and usage of the parks in each
city. In New York City there is a clear relationship between recreational use and
cluster type, likely due to the presence of Central Park in the middle of Manhattan
which is surrounded by residential areas. On the other hand, in Boston the model
has negative coefficients for both high morning sink and high morning source clus-
ters. In London, a relationship opposite of that to New York is observed, although
the coefficients are not statistically significant. The major parks in London are Hyde
Park and Regent’s Park which while being close to residential areas are more asso-
ciated with balanced stations, see Fig. C.5.

It was found that the station type is highly associated with the population den-
sity of the surrounding area. For all cities, morning sink stations are generally in
areas with a low population density while morning sources are in areas with a high
population density. This aligns with the expectation that people travel from their
homes in the morning and arrive later in the afternoon. One should also note the
relation between an area’s land use and its population density. Residential areas gen-
erally have a higher population density than commercial areas and thus one would
expect that the coefficients in the model with respect to share of residential use and
population density will behave similarly. While this is the case for cities in the US,
it is not the case for cities in Europe, possibly due to what was previously discussed
regarding land use differences between US cities and European cities. Thus for Euro-
pean cities, population density might be a more important predictor of station type
than how the surrounding land is used.

Another pattern shared between almost all cities is how the distance to the near-
est subway relates to the station type. In all cities apart from Oslo and Madrid,
morning source stations are generally far from the nearest subway while morning
sinks generally are closer. For most cities, it is also possible to distinguish between
the two types of morning stations with high morning source stations being further
away from the nearest subway than low morning source stations. How the station
type is related to the distance of the nearest subway can be attributed to many fac-
tors. The most straightforward interpretation is that people use bike sharing as a
first-mile solution. At the start of a user’s trip, they may use bike sharing to cover
the distance between their origin and the nearest subway station which will cover the
remaining distance making the subway station a morning sink. It should be noted
that stations close to subways are not necessarily always morning sinks since people
can also use a station after the subway in order to cover the remaining trip distance,
making the station a morning source. However, in most cities the subway network
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is more dense in downtown areas meaning the subway will likely take you within
walking distance to your place of work, lowering the need for bike sharing. This also
inspires another interpretation. Commercial areas tend to have a higher concentra-
tion of subway stations than residential areas and thus it makes sense that morning
sinks are closer to subways since they tend to be in commercial areas. Therefore,
the coefficients related to the distance to the nearest subway may be a result of a
correlation between land use and the density of the subway network.

In regards to railway stations, they share the same pattern as for subway stations
except for in Washington DC, London, and Oslo where morning sources tend to be
closer to railway stations than morning sinks. As an example, the two bike sharing
stations in London which have the highest amount of traffic are next to Waterloo
Station and King’s Cross Station, and both of these bike sharing stations are very
high morning sources. A likely explanation of this is that many people working in
the mentioned cities are living outside of the city and use railways in their commute.
Due to the low number of railway stations, an additional transportation method
may be required to cover the last mile, one of which is bike sharing. In Madrid, high
morning sinks and sources tend to be nearer to railway stations than low morning
sinks and sources indicating a combination of source and destination train stations.

Having people from outside the city using the bike sharing system can also affect
the predicting power of population density, since a large share of people going into
the bike sharing system in the morning are coming from outside the city through
railways instead of coming from residential areas inside the city.

10.1.1 Generalisation test

In order to see how a model trained on one city generalises to another city, we tested
each of the 8 models on the same data used to train the other models. The rate
at which the models predicted the cluster types correctly can be seen in Fig. 10.6.
When training and testing on the same city, we split the stations randomly into a
training set and test set with the training set having about 80% of the stations. Due
to this random split, we found that the success rates on the diagonal changed a lot
depending on the chosen seed in the random number generator. To counteract this,
we computed these success rates 50 times at different seeds and then took an average.

US cities were observed to be similar to each other and this is also shown in the
success rates. Training an LR model on a US city and then testing it on another US
city yields an average success rate of 31.17% while training on a US city and testing
on a European city yields a success rate of 28.38% on average. However, the success
rates in the quadrant of Fig. 10.6 where we train on the US and test in Europe also
have a large variance with one success rate being lower than random guessing and
one as high as 38%, the highest success rate of a model tested on a foreign city. The
poor success rate came as a result of training the model on Boston and then testing
it Oslo. These low rates are likely an effect of the different reference cluster. How-
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Figure 10.6: Success rates of models trained and tested on different cities.

ever, models trained on other US cities perform better on Oslo despite the different
reference cluster. It is seen that the model trained on Washington DC is generally
good at predicting the station type of European cities with success rates between
30% and 36% except for Madrid where the rate is 25%. In this sense, it can be said
that Washington DC is the most European-like city out of the four cities in the US.

When training on the European cities and testing on US cities, the models score
a success rate of 22.63% on average. When training on a European city and testing
on a foreign European city this average score drops to 18.13% indicating that when
predicting the type of the stations in a European city it may actually be better to
train the model on a city in the US than another European city. Most of the low
success rates are due to poor performances on models trained on Madrid as well as
other models tested on Madrid. In fact, the model trained on Madrid did not manage
to get a success rate better then randomly guessing when tested on other cities.
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Figure 10.7: Confusion matrix of LR model trained and tested on New York City. The values are
normalised with respect to the true labels.

The cluster centers in Fig. 10.1 also suggest how well a model trained on some
cities will perform on others. Despite the minor differences between the cluster
centers in different cities mentioned before, there is still a high degree of similarity
between the traffic patterns of the cluster centers in US cities indicating that a
model trained on one US city will likely perform well on another US city as was also
observed. For the European cities it was found that the cluster centers are more
different from each other which may have an influence on the generalisation of the
models.

When it comes to predicting the type of a station, some prediction errors are
more severe than others. For instance, having a high morning source station being
predicted as a low morning source station is not as detrimental when predicting the
daily traffic than if it was predicted as a high morning sink station. Thus, to better
understand the predictions of the LR model it can be useful to look a the confusion
matrix of the model. A confusion matrix of a model trained and tested on New York
City can be seen in Fig. 10.7. Note that the values in the matrix are normalised
with respect to the true labels. For instance, in Fig. 10.7 low morning source sta-
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tions are being predicted to balanced stations 26% of the time, low morning source
stations 56% of the time and high morning source stations 15% of the time. We also
note that the confusion matrix has been averaged over multiple iterations and as a
result of this, success rates on each row may not sum up to 1. Crucially however,
low morning source stations are only predicted to be sink stations under 4% of the
time. Morning sink stations are sometimes predicted to be morning source stations
but only a relatively low number of times. Thus, the model does not tend to mix up
morning source stations and morning sink stations, which was also observed on the
models trained on other cities, see Appendix B. Many stations are also incorrectly
predicted to be balanced stations, but the severity of this error is not as big as mix-
ing up morning sources and morning sinks. Thus, even though the success rates in
Fig. 10.6 can be seen as relatively low, the impact of the classifications may actually
be relatively minor in the prediction of the daily traffic.

We conclude this chapter by listing the key findings from the clustering analysis.
These are:

• Most of the cities (all of US and 3 from Europe) share the same types of stations
albeit with differences in the peaks and valleys in the rush hours which may be
attributed to local factors.

• Oslo lacks a cluster of balanced stations and instead has a cluster containing
stations which are balanced in the morning and sources in the afternoon. This
may be related to students in the Ullevål district.

• Madrid has three periods in the day with high traffic. This has been attributed
to the working culture in Madrid and their midday break.

• US cities have more low-traffic stations (under 8 trips a day on average). These
stations are primarily located at the edge of the bike sharing system in low
income areas. This was not observed in European cities.

• For the US cities, stations in residential areas are more likely to be morning
sources while stations in commercial areas are more likely to be morning sinks.
This pattern may be attributed to the zoning regulations of US cities.

• Population density is an important predictor of the station type, although this
may be due to a correlation between population density and residential use.

• In the US cities, London and Helsinki, stations close to subways are more
likely to be morning sinks while stations further away are more likely morning
sources. This may be due to people using bike sharing to cover the first mile.

• The relation between railway stations and the station type depends on how
people use the railway system in their commute. In some cities, the impact
from railway stations is similar to subway stations while in other cities morning
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sources are generally close to railway stations possibly due to working people
not living within the city.

• The model trained on Washington DC performs best on average on European
cities compared to models trained on other US cities.

• Models trained on US cities perform better on average when tested on European
cities than models trained on European cities. This is mostly because of the
poor performance of the model trained on Madrid.



11. Demand Prediction

In this chapter, we present results gathered by predicting the traffic volume of sta-
tions in the bike sharing systems as described in Chapter 9. The model uses a
Gaussian exponential family distribution with the natural logarithm as link function
as this was found to provide the best results in preliminary analyses. The result-
ing coefficients are presented in Table 11.1. A heat map of predicted demand for
200 m×200 m cells in New York City can be seen in Fig. 11.1. Similar heat maps for
other cities can be found in Appendix D.

Coef. name NYC Chicago Wash. DC Boston
Const. 5.851 4.349 4.687 4.586
Share of residential use −0.691 −0.553 0.084 0.716
Share of commercial use 0.298 0.497 0.082 0.304
Share of recreational use 0.147 −0.381 0.035 −0.157
Population density [per 100 m2] 0.264 0.728 0.638 −0.200
Distance to nearest subway [km] −0.340 −0.401 −0.381 −0.154
Distance to nearest railway [km] −0.277 −0.286 −0.080 −0.176
Distance to city center [km] −0.113 −0.085 −0.237 −0.205

London Helsinki Oslo Madrid
Const. 7.244 6.204 5.082 5.055
Share of residential use −2.327 −0.599 −0.553 −0.261
Share of commercial use −2.135 0.015 0.019 −0.130
Share of recreational use −2.11 −0.230 0.251 0.211
Population density [per 100 m2] −0.180 0.049 0.220 0.109
Distance to nearest subway [km] −0.459 −0.323 0.191 −0.296
Distance to nearest railway [km] 0.080 −0.175 −0.139 −0.116
Distance to city center [km] −0.127 −0.084 −0.366 −0.076

Table 11.1: Coefficients of demand regression model on different cities. Bold coefficients are
statistically significant (p < 0.05).
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Figure 11.1: Heat map of predicted demand and external variables for New York City.
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For most cities, stations in residential areas generally have less demand than
stations in commercial areas. However, this is with the exception of Boston which
shows the opposite behaviour and also Washington DC where land use is not as
important when predicting demand. However, population density is an important
predictor of demand, something which is shared between all cities although with
Boston and London as exceptions where a higher population density negatively affects
demand. This can be considered strange since residential areas usually have a high
population density. However, when comparing land use, commercial areas have much
more traffic than residential areas since they typically act as morning sinks i.e. many
trips end up at and depart from these stations. Having a higher population density
regardless of the type of area will always increase the demand, with the exception
of Boston and London. Thus, even though residential areas tend to have a higher
population density, the stations in these areas still typically have a lower demand
than stations in commercial areas by virtue of being in residential areas.

Distance to transportation hubs is also a good predictor of demand with stations
closer to subway and railway stations having more demand. This is also true for the
distance to the city center which was found to be significant in predicting demand
for all cities.

Residual plots for models trained on all cities can be seen in Fig. 11.2. The resid-
ual was calculated as the actual number of average daily trips minus the predicted
number. It can be observed for all cities, that the variance of the residuals increases
with respect to the predicted number of trips for each station. This is typically
an indication that a variance stabilising transformation of the response variable is
needed. However, we were unable to find such a transformation. This may be taken
as evidence that a more advanced model may be needed to predict the demand of the
stations more accurately. An important thing to note however is that the residuals
do not indicate that a linear model is inadequate at modelling the demand. One sign
which would indicate that would be if the residuals are concentrated in a non-linear
pattern such as an arch. However, this was not observed for our models.

A good way of gauging how the model acts depending on the actual traffic of the
station is by plotting the predicted number of trips for each station against the actual
number. This is shown in Fig. 11.3. On the dashed lines, the predicted demand is
equal to the actual demand and points far from the lines indicate larger errors. From
the plots, it was found that the stations in which the model has the largest error are
the ones which have a high amount of traffic compared to other stations and that the
model always underestimates the traffic volume of these stations. By inspection, it
was found that these outlying stations also produce the outliers seen in the residual
plots.

Some noteworthy outlying stations are stations next to Waterloo Station in Lon-
don in which the model underestimates the traffic volume by about 200 trips, stations
outside of Union Station in Washington DC where the model underestimates the traf-
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Figure 11.2: Residual plots of models trained on all cities.
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Test city
NYC Chicago Wash. DC Boston London Helsinki Oslo Madrid

Tr
ai
n
ci
ty

NYC 73.9 72.0 47.7 92.0 84.4 47.8 97.7 132.6
Chicago 77.0 21.4 21.8 29.1 44.7 80.0 45.0 152.1
Wash. DC 74.0 19.8 17.7 30.7 55.9 74.0 75.8 378.0
Boston 95.2 22.7 22.1 30.8 34.8 75.9 41.0 70.4
London 135.1 170.2 139.6 121.0 36.4 73.8 72.6 65.8
Helsinki 92.5 124.4 91.2 140.9 119.2 48.8 137.0 116.9
Oslo 96.6 24.1 23.2 34.2 42.2 70.2 35.7 52.0
Madrid 82.8 38.1 31.3 46.9 40.2 61.1 43.2 46.3

Table 11.2: MAE when training and testing the demand model across cities. Lower is better.

fic volume by over 300 trips, Grand Central Terminal in New York City where the
estimate is about 650 trips lower than the actual volume as well as three stations in
Chicago where the model greatly underestimates the traffic volume. Conversely, the
model seems to generally overestimate the traffic volume of station which have a low
amount of traffic.

Table 11.2 shows the Mean Absolute Error (MAE) when training and testing the
demand model across cities. The test has been done in the same manner as in the
clustering analysis, i.e. when training and testing on the same city, a 80% − 20%
random split of the complete data set was done first and when comparing between
two different cities, the model was trained on the complete data set of the train city
and tested on the complete data set of the test city. When training and testing on the
same city, we also average the error over multiple iterations. The MAE is intuitive
to use since it tells how many trips the model is off on average.

In the results from the LR model, we found that there was a similarity between
the US cities and the European cities. This can also be found in these results with the
notable exception of New York City where the demand model performs significantly
worse than other models trained on US cities. This is most likely caused by the large
amount of traffic within the system of New York City relative to the other US cities.
From Fig. 11.3, it can be seen that New York City has many stations with over 500
trips daily on average while other US cities only have stations with up to 400 daily
trips on average. This can skew the model trained on New York City to expect more
daily trips. The amount of traffic in the systems of Chicago, Washington DC, and
Boston is more comparable and thus demand models trained and tested across these
cities perform significantly better. This result indicates that if one were to plan a
bike sharing system in a new city using a demand model, then the model should be
trained on a city with an existing system which has a similar amount of traffic to
what is expected in the new city.
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London also acts as an outlier in Table 11.2 and produces very large errors for
the US cities. This may be due to both the demand model being skewed by Waterloo
station and also that the demand model for London treats higher population density
as a negative effect on demand.

We previously saw that LR models trained on US cities are generally better at
predicting the station types in European cities than models trained on European
cities, likely due to cultural differences between European cities. However, this is
not observed in the case of demand. In fact, models trained on Helsinki, Oslo,
and Madrid perform moderately well when tested on Chicago, Washington DC and
Boston. As seen in Table 11.1, there are not many differences in how the models
act. This indicates that while cultural differences between the cities can have a large
impact on the shape of the overall traffic of the stations, they have a relatively low
impact on the actual demand of the stations. Another example of this is the demand
models trained and tested across Oslo and Madrid, two cities with different cycling
culture as evidenced by the bike share traffic patterns. The demand model with the
best performance in Madrid was trained in Oslo and the model trained in Madrid
also performs relatively well in Oslo.

The main takeaways from the demand model analysis are thus as follows:

• Share of residential use negatively affects demand while share of commercial
use positively affects demand. This is with the exception of Boston where the
opposite is true and Washington DC where land use is less significant.

• Higher population density generally increases demand except for in Boston and
London.

• Stations closer to subways, railway stations and city centers generally have
more demand.

• The variance of the residuals grows with the predicted traffic volume indicat-
ing that a more advanced statistical model may be better able to model the
demand.

• The demand models tend to overestimate the traffic volume of low-traffic sta-
tions while underestimating the traffic volume of high-traffic stations.

• Performance of demand models can be heavily affected by differences in the
amount of traffic between systems. Demand models used on a new city should
be trained on a city with a similar expected amount of traffic.





12. Traffic Prediction

So far we have seen how both the type and traffic volume of a station can be modelled
based on external data. In order to combine these two results, recall from Chapter 9
that multiplying the predicted shape of the traffic with the predicted volume will give
a prediction on the hourly traffic of an average day. An example of such a predicted
traffic pattern is seen in Fig. 12.1, which shows a high morning sink station in New
York City where the combination of the models for the traffic pattern and volume
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(a) Estimated number of departures.
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(b) Estimated number of arrivals.

Figure 12.1: Predicted number of departures and arrivals for a station on W. 52nd St. & 5th Ave.
in New York City.
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has estimated the average daily traffic. In this case, the model performs very well
both in predicting the correct shape of the traffic and an appropriate traffic volume.
The predicted traffic volume was 253.45 trips while the true traffic volume was 206.26
daily trips on average, an overestimate of around 47 trips.

The example illustrates that even though the traffic volume was overestimated by
close to 23% of the actual amount, the predicted traffic pattern is reasonably close to
the actual traffic since the 47 falsely predicted trips are spread out over departures
and arrivals throughout the day.

To see how well the model generalises to new stations in the same bike sharing
system, we split the stations in each system with 80% being in the training set and
the rest in the test set. In Chapter 11, it was found that the demand prediction
behaved differently depending on the true traffic volume of the stations. Thus, to
make a more representative test set, we classified the 20% lowest traffic stations as
low-traffic, the top 20% most trafficked stations as high-traffic, and the rest as mid-
traffic stations. The test set was then constructed by picking random stations while
conserving the 20/60/20 relationship between low-, mid- and high-traffic stations.
The 20/60/20 split is of course arbitrary and other methods can be used to classify
the stations into these categories. In a preliminary experiment, we attempted to use
a k-means classification but this resulted in few high-traffic stations due to outliers.
Therefore, this more rudimentary method provided more reliable results.

12.1 Results
After constructing the test set for each city, the traffic patterns of these stations were
predicted. The MAE of the prediction for each hour can be seen in Fig. 12.2. As can
be seen in the figure, the MAE is largest during times were there is a high amount
of traffic in the system. The city were the traffic predictions have the highest MAE
is New York City, were the MAE goes up to 4 in the rush hours for both departures
and arrivals, meaning that the prediction is off by 8 trips on average. The standard
deviations also show that the error varies a lot in the rush hours. In London, the
prediction error in number of departures and arrivals is the same on average but dur-
ing the morning rush hours, the prediction error of departures has a larger standard
deviation than arrivals. This can likely be attributed to a particularly high-traffic
station near King’s Cross Station, where the number of departures was underesti-
mated by 200 in the morning rush hours and similarly for the number of arrivals, see
Fig. 12.3. This station was also wrongly predicted to be a low morning source while
it actually was an extreme case of a high morning source type station.

By making a distinction between low-, mid-, and high-traffic stations, we are able
to gauge how the traffic prediction performs for each of these three types of stations.
Figs. 12.4 and 12.5 show the Mean Error (ME) of the traffic prediction when tested
on the three types of stations. The tested stations are all from the same test set
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Figure 12.2: MAE of predicted number of departures and arrivals for each hour.
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(a) Estimated number of departures.
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(b) Estimated number of arrivals.

Figure 12.3: Predicted number of departures and arrivals for a station on Belgrove St. near King’s
Cross Station in London.

discussed previously and the models have been trained using the same training set.
Keep in mind that the test sets have varying sizes. We opt for the ME since it also
tells if the models under- or overestimates the traffic.

From the figures, we observe that the models generally underestimate the traffic
pattern of high-traffic stations which matches what was found in Chapter 11. In
Chicago, the number of departures was only underestimated in the afternoon, while
the number of arrivals were only underestimated in the morning. However, the
underestimation in the morning is likely due to the test set having many high morning
sink stations which were predicted to be low morning sink or balanced stations. An
example can be seen in Fig. 12.6 were a high morning sink station was predicted to be
a balanced station. Regarding mid-traffic and high-traffic stations, for most cities the
performance of the models slightly overestimates the traffic for low-traffic stations
which is also consistent with the analysis of the demand model. In Washington
DC and Helsinki, the performance of the traffic prediction is very similar between
low-traffic station and mid-traffic stations. This also makes sense when observing
Fig. 11.3 where both of these types of stations do not stray off from the diagonal line
too far compared to other cities.
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Figure 12.4: Mean error of predicted number of departures each hour when tested on low-, mid-,
and high-traffic stations.



106 Chapter 12. Traffic Prediction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

10

5

0

5

M
ea

n 
er

ro
r

New York City

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

10

5

0

5
Chicago

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

10

5

0

5

M
ea

n 
er

ro
r

Washington DC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

10

5

0

5
Boston

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

10

5

0

5

M
ea

n 
er

ro
r

London

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

10

5

0

5
Helsinki

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

10

5

0

5

M
ea

n 
er

ro
r

Oslo

Low-traffic stations Mid-traffic stations High-traffic stations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

10

5

0

5
Madrid

Figure 12.5: Mean error of predicted number of arrivals each hour when tested on low-, mid-, and
high-traffic stations.
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Figure 12.6: Predicted number of departures and arrivals for a station on Orleans St. & Merchan-
dise Mart Plaza in Chicago.





13. Case: The New York City
2019 System Expansion

In autumn of 2019, the Citi Bike system in New York City was expanded into a new
area straddling the boundary between Queens and Brooklyn. The area consisting of
parts of the neighbourhoods East Williamsburg, Bushwick and Ridgewood had been
identified as the next area for expansion as part of phase 3 of the New York Citi Bike
system development.

When the Citi bike system was first planned in 2009, three phases for the roll-out
of the system were laid out. The area identified for phase 1 was built in 2013, while
the area of phase 2 was split up as phase 2 in 2015-2017 and phase 3 which started
construction in 2019 and is expected to be completed in 2023. [NYC09]

While the initial phase 1 was opened all at once to ensure that the system had
enough stations from the beginning, phases 2 and 3 were and are rolled out section
by section. The section that we are looking at in this specific case study is the first
section of phase 3 in 2019. A map showing the expansion area is shown in Fig. 13.1a.

The selection of the areas for the different phases was primarily based on esti-
mated demand for a bike share system. Factors such as the amount of residents
cycling or walking to work, the percentage of workers living within 2.5 miles (≈ 4
km) or 5 miles (≈ 8 km) of their workplace as well as population density influenced
the decision. This was done in order to optimise the popularity and thereby the prof-
itability of the system, as the system was designed to operate without government
subsidies. [NYC09]

The area for the 2019 expansion scores high in all the aforementioned factors
compared to the other areas included in the phase 3 expansion, [NYC09, p.71-73]
which likely contributes to the decision by the NYC Department of Transportation
of this area as the first in phase 3.

At the start of the 2019 expansion in October, 28 stations existed in the expan-
sion area. At the end of November, 58 new stations had been placed all over the
expansion area, expanding the service area of the bike share system as well as filling
in gaps and increasing density between existing stations in the expansion area. The
existing stations as well as the stations which were placed in October and November
2019 can be seen in Fig. 13.1b. From the Department of City Planning materials, it
is not obvious which factors have influenced the placement of the stations within the
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(a) New York City station map September 2019
prior to expansion.

(b) Expansion area with existing stations in Septem-
ber 2019 in blue as well as stations placed in October
and November in red.

Figure 13.1: New York City 2019 expansion area.

expansion area. However, similarly to how the expected demand for the bike share
system has been instrumental to the selection of service areas for the different ex-
pansion phases, the demand can also be used to determine locations for new stations
within the expansion area.

13.1 Application of Demand Model
The aim of this case study is to apply the demand model established in Chapter 11 to
predict the demand in the expansion area in order to determine a station placement
configuration which maximises the demand that is served by the bike share system.

In order to do so, the model is fitted to average station data for the months of
2019 prior to October. This is to fit the model only to data which existed prior to the
expansion, as well as to make sure that the actual realised station placement does
not influence the model coefficients. The demand prediction resulting from such a
model alongside the external variables in the expansion area are shown in Fig. 13.2.
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Figure 13.2: Heatmaps showing a demand model of the expansion area. The grey outline indicates
the expansion area.
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Figure 13.3: New York City 2019 expansion area intersections in subdivided polygons.

There are in theory an infinite number of possible locations for new stations.
However, in order to limit the investigation to a finite subset of points, the set of all
road intersections in the expansion area is used as candidate points. The intersections
are determined from OpenStreetMap data using the Overpass API via the Python
package OSMnx. Due to the way roads are constructed in OpenStreetMap, separated
multi-lane roads can give a separate intersection for each road lane. Therefore,
intersections which are nearer than 20m to each other are merged to one intersection
at the mean point. In the expansion area, this yields n = 643 candidate locations as
shown in Fig. 13.3.

After calculating the predicted demand for each of these candidate locations, it
seems to be a simple optimisation problem to determine m stations which serve the
highest demand in their service area. We can define the optimisation problem as
follows.

Let I = {i} with |I| = n be the set of candidate locations for the placement of a
station and compute the expected demand ei for each i ∈ I. Let S ⊆ I with |S| = m
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be the set of chosen candidate locations, and define the indicator variables

si =
{

1 if i ∈ S,
0 otherwise.

(13.1)

The optimisation problem can then be formulated as

maximise
S⊆I

∑
i∈I

eisi, (13.2)

s.t.
∑
i∈I

si = m. (13.3)

However, if the demand in the service area of the stations is the sole criterion for the
selection of stations, the selected stations will be grouped together in the locations
where the expected demand is the highest without regard for factors such as spac-
ing between the stations, meaning that some demand is served by multiple stations
simultaneously. Therefore, it is necessary to introduce a constraint to the optimisa-
tion problem to ensure a wider coverage. One such constraint could be to define a
minimum distance dmin between selected stations. Doing this, the more constrained
optimisation problem is

maximise
S⊆I

∑
i∈I

eisi, (13.4)

s.t.
∑
i∈I

si = m, (13.5)

min
i,j∈S, i 6=j

d(i, j) > dmin, (13.6)

where d(·, ·) is the geodesic distance between two locations.
The problem with this kind of nonlinear constraint is that this combinatorial

optimisation problem becomes difficult to impossible to solve using typical optimisa-
tion methods. At the same time, selecting m = 58 stations out of n = 643 possible
locations yields more than 2 · 1083 combinations, so it is impossible to compute the
suitability of all combinations within any reasonable amount of time.

One solution to this problem is to divide the area into subsections. In Fig. 13.3, a
subdivision of the expansion area into 13 sub-areas is seen. In each of these sub-areas
there are just 33 to 87 intersections, making the problem much more tractable. The
number of stations to place in each of the areas can then be determined by dividing
the total number of stations to place in the expansion area by the population in
each sub-area similarly to how the NYC department of City Planning determined
the expansion areas. This yields from 1 to 8 stations to be placed per sub-area
in addition to the existing stations in each area if any. The number of different
combinations of station selections in each sub-area then varies from 83 to 2.5 billion
which is much more suitable for optimisation by exhaustion.
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(a) Selected intersections. (b) Real implemented locations.

Figure 13.4: New York City 2019 solutions.

13.2 Comparison of Solutions
With a minimum distance between the stations of dmin = 250 m and demand predic-
tions obtained from the model illustrated in Fig. 13.4a, the optimal solution is seen
in Fig. 13.4a. For comparison, the realised solution as implemented by the Citi Bike
system is seen in Fig. 13.4b.

Comparing the determined optimal solution to the implemented solution using
the objective function for the optimisation in Eq. (13.2) shows a clear advantage
to the solution determined by the optimisation procedure, with a score of 6749.2
for the implemented solution vs. a score of 8513.6 for the solution obtained by the
optimisation. It is thus clear that the solution determined serves more expected
demand than what was really implemented. However, this conclusion comes with a
number of caveats which can be divided into three categories.

Problems with the solution obtained by optimisation: The way of determin-
ing the optimal solution by subdividing the expansion area has the major flaw
of border effects. As the optimisation of station placement is done separately in
each subdivision in isolation, a station in one sub-area can be placed close to a
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station in another sub-area. This occurs for example in the center of Fig. 13.4a.

Selection of objective function: The objective function is designed purely to op-
timise the demand met by the bike share stations. As the optimisation is per-
formed with regard to this objective function. At the same time, the Depart-
ment of Transportation likely has other considerations which weigh on their de-
cision of station placement as evidenced by their choice of station locations in
Fig. 13.4b. They may for example put more weight on the even distribution of
stations throughout the area. If these other considerations are not reflected in the
objective function, it is only natural that a solution which is designed to optimise
a certain objective function performs better than a solution which is designed to
optimise a different unknown objective.

Real life considerations: When looking purely theoretically at station placement,
we do not have to concern ourselves with factors such as whether there is space
on the street or sidewalk for a bike share station, or potential complaints from
residents. The selection of station locations by the Department of Transporta-
tion may be based on opaque criteria, but it is through this non-rigid selection
process that they can accommodate practical concerns about fitting in to the
urban environment. With that being said, an optimisation approach with inter-
sections as candidate locations can be a suitable first step, which can then be
further refined by subsequent consideration of practical considerations followed
by feedback rounds to gather input from local residents.

13.3 Comparison of Predicted Traffic
In order to get an idea of how well the model predictions of the traffic at the stations
matches with the real world, we use the models to predict the traffic patterns includ-
ing both the predicted cluster type and volume of traffic for each selected station in
the expansion area. This can be seen in Fig. 13.5a. The model is trained on data
from September 2019 and thus has no prior knowledge about the new stations. For
comparison, the real traffic data from November 2019 is shown in Fig. 13.5b.

From the figures, it seems like the predicted clusters line up relatively well with
the actual traffic types. Reference clusters are placed along the western side, while
low morning sources are in the central part of the expansion area. In the actual
traffic, there is mainly a mixture of reference stations and low morning sinks on the
western side, while the central parts have a mixture of low morning sources and high
morning sources as well as reference clusters. While the cluster classification is not
completely accurate, for most stations, the actual traffic pattern is either the same
as, or an adjacent type from the predicted one.

For the volume, the prediction consistently underestimates the amount of traffic
with only a handful of exceptions at the edge of the expansion area where the model
overestimates the traffic. In short, while the models are not completely inaccurate,
they fail to predict the large concentration of trips in the middle of the expansion
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(a) Selected intersections with predicted cluster and
predicted amount of traffic. Model trained on data
from September 2019.

(b) Real implemented station locations in November
2019 with traffic data.

Figure 13.5: New York City 2019 stations with colours corresponding to traffic pattern cluster
type and sizes corresponding to number of trips.

area. This may be related to the fact that most of these stations were still new in
November 2019, and might attract more trips than it would otherwise do. However,
since the models predict the average traffic pattern and do not take sudden surges in
traffic into account, the behaviour of the real stations may get closer to the predicted
behaviour over time.



14. Conclusion

The aim of this project was to develop a way to predict average daily traffic pat-
terns of stations using a combination of clustering analysis and statistical modelling.
In accordance with this, several clustering methods and statistical tools have been
presented and used to inform decisions in the design of the models.

A preliminary clustering analysis found that using k-means with five clusters
yielded good separation between stations based on the shape of the traffic patterns.
These traffic patterns are shared between the cities, albeit with some differences
which can be attributed to local factors in each city. The clusters were classified as
low morning source, high morning source, low morning sink, and high morning sink
as well as a balanced reference cluster for all cities except for Oslo. In the further
analysis, it was found that the cluster type of a station is strongly associated with
how the surrounding area of that station is used. For instance in the cities in the
US, land use such as residential and commercial use were important predictors of
station type, possibly due to zoning regulation standards in the country. Common
between all cities is that population density is a powerful predictor of station type
with morning sources being in highly populated areas. City infrastructure in terms
of location of transit systems can also be a good predictor of station type, however
this is highly dependent on how people tend to use these systems in their commute,
particularly if the transit trips are contained within the city boundaries or if they
stem from workers commuting into the city.

Findings from the clustering were also reflected in the demand models, with
morning sinks having a higher increase in demand due large concentrations of trips
in these stations, while population density is also a very important predictor of de-
mand. Distance to city center was also found to be very important for demand which
is in line with observations from previous studies.

When testing the models between cities, it was found that local differences can
play a large role when predicting the cluster type of stations in the bike sharing sys-
tem. Models trained and tested between US cities perform better on average than
models trained and tested between European cities when predicting station types,
which may be due to more cultural homogeneity between cities in the US. This in-
dicates that if one were to predict the cluster types of potential stations in a new
city based on a model trained on a city with an existing bike sharing system, then
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similarity in culture can be very important for the accuracy of the model. However,
cultural differences were not found to be important when predicting the demand
of the demand of the stations. Instead, differences in overall traffic of the systems
can be a bigger contributor to prediction error, meaning that the expected overall
amount of traffic in a city has to be taken to account in the planning process of a
new bike sharing system when using demand models from other cities.

Combining the prediction of traffic shape and demand resulted in the prediction
of average daily traffic which had a reasonable precision when tested on stations in
the bike sharing systems, with the highest prediction error being in New York City
where the prediction was off by 8 trips on average in the rush hours. The error of
the traffic estimation is also very dependent on the actual demand of the station,
where the models tend to underestimate the traffic for high-traffic stations while also
overestimating the traffic for low-traffic stations. The demand model was applied
to the case of Citi Bike’s system expansion in the autumn of 2019 with a simple
optimisation problem concerning the placement of new stations. While the obtained
solution was predicted to cover more demand, it did have a lower coverage of the
area. When testing the traffic prediction on the obtained stations, it was found that
the traffic of the real implemented stations was more concentrated in the middle of
the expansion area than expected from the model, meaning that more can still be
learned with regards to how urban features can affect bike sharing as a whole.
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A. Clustering Results
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Figure A.1: Results of clustering for New York City.
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Figure A.2: Results of clustering for Chicago.
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Figure A.3: Results of clustering for Washington DC.
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Figure A.4: Results of clustering for Boston.
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Figure A.5: Results of clustering for London.
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Figure A.6: Results of clustering for Helsinki.
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Figure A.7: Results of clustering for Oslo.
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Figure A.8: Results of clustering for Madrid.





B. Confusion Matrices For All
Cities

Figure B.1: Confusion matrix of LR model trained and tested on New York City. The values are
normalised with respect to the true labels.
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Figure B.3: Confusion matrix of LR model trained and tested on Washington DC. The values are
normalised with respect to the true labels.

Figure B.2: Confusion matrix of LR model trained and tested on Chicago. The values are nor-
malised with respect to the true labels.
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Figure B.4: Confusion matrix of LR model trained and tested on Boston. The values are normalised
with respect to the true labels.

Figure B.5: Confusion matrix of LR model trained and tested on London. The values are nor-
malised with respect to the true labels.
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Figure B.6: Confusion matrix of LR model trained and tested on Helsinki. The values are nor-
malised with respect to the true labels.

Figure B.7: Confusion matrix of LR model trained and tested on Oslo. The values are normalised
with respect to the true labels.
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Figure B.8: Confusion matrix of LR model trained and tested on Madrid. The values are nor-
malised with respect to the true labels.





C. Logistic Regression
Heatmaps
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Figure C.1: Heat maps of probabilities of belonging to different clusters alongside external variables
for New York City.
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Figure C.2: Heat maps of probabilities of belonging to different clusters alongside external variables
for Chicago.
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Figure C.3: Heat maps of probabilities of belonging to different clusters alongside external variables
for Washington DC.
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Figure C.4: Heat maps of probabilities of belonging to different clusters alongside external variables
for Boston.
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Figure C.5: Heat maps of probabilities of belonging to different clusters alongside external variables
for London.
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Figure C.6: Heat maps of probabilities of belonging to different clusters alongside external variables
for Helsinki.
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Figure C.7: Heat maps of probabilities of belonging to different clusters alongside external variables
for Oslo.
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Figure C.8: Heat maps of probabilities of belonging to different clusters alongside external variables
for Madrid.
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Figure D.1: Heat map of predicted demand and external variables for New York City.
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Figure D.2: Heat map of predicted demand and external variables for Chicago.
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Figure D.3: Heat map of predicted demand and external variables for Washington DC.
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Figure D.4: Heat map of predicted demand and external variables for Boston.
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Figure D.5: Heat map of predicted demand and external variables for London.
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Figure D.6: Heat map of predicted demand and external variables for Helsinki.
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Figure D.7: Heat map of predicted demand and external variables for Oslo.
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Figure D.8: Heat map of predicted demand and external variables for Madrid.
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1. Introduction

2. Literature Review

The widespread adoption of bike sharing and micro-mobility in cities all
over the world in the past decade has spurred a significant research effort on
analyzing demand patterns and trying to optimize the management of these5

systems. After the COVID-19 pandemic, Hensher (2020) and others argue that
changes in urban mobility have accelerated, paving the way for approaches that
include micro-mobility as a crucial component, as it represents an eco-friendly
and socially distanced mode of transportation, and can complement mass transit
in normal times, as discussed by Saltykova et al. (2022), and providing a much10

needed “last-mile” service, as shown by Zhang et al. (2019).
In the context of this work, we will focus our literature review on the pre-

diction of demand patterns in bike sharing systems and its relation to the built
environment and to other variables such as transit stations. We will therefore
divide existing studies in three categories, based on their main methodology:15

spatial and temporal clustering of stations and communities, short- and long-
term traffic prediction, and analyses of the effect of the built environment on
bike sharing usage. For a more complete review of the large body of work on
bike sharing system, we refer the reader to Eren and Uz (2020); Albuquerque
et al. (2021).20
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2.1. Clustering

Clustering is an operation that divides stations into groups, based on spatial
or temporal characteristics of the demand. Purely spatial clustering aims at the
definition of neighborhoods in the bike sharing graph, showing areas with high
internal connectivity, i.e., many trips within the neighborhood. On the other25

hand, spatio-temporal clustering aims at finding stations with similar patterns
in the variation of their hourly demand, distinguishing, e.g., groups of stations
that have a particularly high demand for bicycles in the morning, or receive a
high influx of bikes in the afternoon.

The main objective of spatial clustering is to define cycling neighborhoods,30

which can then be used to determine the type of mobility enabled by the sys-
tem: Lee et al. (2021) argue that neighborhoods clustered around mass transit
hubs and that consist mostly of shorter trips are consistent with the use of
the system as last-mile coverage for multimodal trips which also involve pub-
lic transit, while longer trips across different neighborhoods might indicate a35

purely cycling commute. Clustering, as well as other graph-based metrics, can
be used to improve short-term flow prediction, considering recent demand and
common patterns inside and between different neighborhoods, as done by Yang
et al. (2020c). The same type of analysis can also be applied, as Zhang et al.
(2021) did, to dockless bike sharing systems, determining the mobility between40

different areas and using local demand clusters as starting point to build the
system-wide graph.

Spatial patterns can also be used to determine the impact of rare or anoma-
lous events: one example is the disruption in urban mobility caused by public
transit strikes, whose effect on bike sharing demand and geographic patterns45

was shown to be significant by Yang et al. (2022). These analyses of anomalous
events can also help shed light on normal usage by contrast. During the Covid-
19 pandemic, a spatial analysis by Pase et al. (2020) of the New York City bike
sharing system showed that users favored longer trips, often between distant
neighborhoods, with respect to the pre-pandemic baseline: this is consistent50

with the reported reluctance to use mass transit services in 2020, as they were
seen as high-risk environment for potential contagion.

Spatio-temporal clustering has been applied on trip data from several cities,
often with common results: an analysis in Vienna by Vogel and Mattfeld (2011)
used 5 clusters, relating the daily activity patterns to likely user profiles and55

distinguishing between stations used mostly for leisure and by tourists and sta-
tions used by commuters for their daily trips to work. Similar results were found
for the Chicago bike sharing system by Zhou (2015), although two of the 5 clus-
ters were characterized by extremely low usage. An analysis of the fraction of
subscriber traffic, as compared to daily pass users (i.e., most likely tourists or60

temporary visitors, while subscribers are often daily commuters) and an analysis
of the imbalance in traffic patterns between the mornings and evenings allowed
the authors to determine the set of stations most likely used by commuters,
relating the results to land use type and the directions of travel. The presence
of well-connected and protected bike lanes is also noted as a potential factor65
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increasing long-distance trips, as users are encouraged to cycle if the route is
safe and quick.

The opposite approach to the definition of clusters can be adopted: instead
of clustering based on the demand patterns and analyzing the correlations with
land use and nearby public transit stations, Côme and Oukhellou (2014) divided70

the Paris system into clusters by considering the land use features, comparing
the resulting patterns for each cluster. While this approach is not an instance
of spatio-temporal clustering, as it only uses spatial information to arrive at the
cluster definition, the resulting analysis is similar, showing strong differences in
the patterns for residential and commercial areas.75

2.2. Traffic prediction

Predicting traffic patterns is crucial in bike sharing systems, as the short-
term trends are crucial for effective rebalancing, while longer-term trends can
be used for proper planning, and this topic has been the subject of intense study
in the past decade. The spatial and temporal aspects that affect future traffic80

are the same that need to be considered for the clustering, and several works
exploit different combinations of input parameters, along with historical and
immediate trends, to perform the prediction.

The two main approaches to demand prediction are to either model the traf-
fic as a stochastic process, using statistical knowledge to determine the most85

likely future behavior, or to use a purely learning-based approach, trading the
explainability of the model for the generalization and pattern-matching capa-
bilities of deep neural networks.

We first consider the model-based approach: the first simple applications
of models to traffic prediction consider individual stations Yang et al. (2016),90

creating simple heuristics to predict future demand based on historical behav-
ior Sathishkumar et al. (2020). More complex models consider clusters of sta-
tions based on geographical and past trip information Li et al. (2015), allowing
a coarser-grained prediction on the cluster level and a finer-grained one for indi-
vidual stations Li and Zheng (2019). The correlation between close-by clusters95

is another significant piece of information, which can help predict spikes in de-
mand Chen et al. (2016), and graph information in general can be a powerful tool
to predict future behavior Yang et al. (2020c,a). The stochastic nature of traffic
demand can also be taken into account, using Markov modeling and birth-death
process theory to include uncertainty in the model Zhou et al. (2018). This type100

of models allows for a more precise estimation of future risk, which is particu-
larly important when planning and managing the system, as average behavior
might not be enough to provide full service availability even in worst-case sce-
narios of high and unbalanced demand Hulot et al. (2018). In order to further
improve worst-case performance, risk and extreme value theory can be used105

effectively Sohrabi et al. (2020).
The use of Long Short-Term Memory (LSTM) networks has proven to be

effective to capture temporal relations, both on the individual station level and
for the network as a whole Wang and Kim (2018), and these networks can ac-
commodate information such as public transit stops and schedules Zhang et al.110
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(2018), which can be extremely important to gauge the last-mile effectiveness
of the service. The combination of recurrent and convolutional networks can
exploit both spatial and temporal information at the same time, leading to a
more complete learning model Xiao et al. (2021) which can perform better. The
new attention-based neural network architecture can further improve prediction115

performance by considering data at different timescales, which is often problem-
atic for standard LSTM. Learning models can also benefit from more complex
representation, which can either rely on graph models Yang et al. (2020b) or
be learned directly as a spatio-temporal graph along with external information
such as the hour and weather Li et al. (2019).120

2.3. Effect of the urban environment

Noland et al. (2016) estimated Bayesian regression models of trips at sta-
tions in order to examine the effects of bicycle infrastructure, population and
employment, land use and transit access. They found that their model could
show the effects of the factors, but that the models were not well suited for125

predicting the traffic the next year.
Daddio (2012) used an adjusted regression model on data from Washington,

D.C. and found five statistically significant factors affecting the number of trips,
including population, density of retail stores, and locations of metro rail stations.
They used the model to make a heatmap of the expected number of trips in130

Washington D.C.
Hyland et al. (2018) is one paper where clustering and modelling are com-

bined, using the cluster membership as a term in a mixed model to increase the
accuracy of the model. They focus on modelling the number of trips to each
station using mixed effect models. In order to improve the model, they proposed135

clustering stations according to the percentage of arrivals in the morning, trips
by members, weekend trips and afternoon trips.

3. Data and Methods

The data used in this paper include both bike sharing trip data and general
information about the built environment (land use, census, and subway station140

location data), and have been obtained from a variety of open data sources
listed in Table 1. The data and their processing are discussed in detail in the
following sections.

3.1. Bike Sharing Trip Data

The bike sharing trip data is obtained directly from the websites of the145

individual bike sharing providers or from city data portals. In this paper, we
use datasets from 2019, as this is the most recent year with normal operation
prior to the COVID-19 pandemic. All of the datasets used contain data on every
individual trip made in the network including trip duration, time of departure
from the start station, start station ID, start station name, time of arrival on150

the end station, end station ID, and end station name. Not all cities provide

4
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Dataset Area Provider Source link

Trip Data New York City Citi Bike https://ride.citibikenyc.com/system-

data

Trip Data Chicago Divvy Bikes https://ride.divvybikes.com/system-

data

Trip Data Washington D.C. Capital Bikeshare https://www.capitalbikeshare.com/

system-data

Trip Data Boston Bluebikes https://www.bluebikes.com/system-data

Trip Data London Transport for London https://cycling.data.tfl.gov.uk/

Trip Data Helsinki Helsinki Region Transport https://hri.fi/data/en_GB/dataset/

helsingin-ja-espoon-kaupunkipyorilla-

ajatut-matkat

Trip Data Oslo Oslo City Bike https://oslobysykkel.no/en/open-data/

historical

Trip Data Madrid BiciMad https://opendata.emtmadrid.es/Datos-

estaticos/Datos-generales-(1)

Station Data Chicago City of Chicago https://data.cityofchicago.org/

Transportation/Divvy-Bicycle-

Stations-All-Map/bk89-9dk7

Station Data Washingon D.C. Dept. of Real Estate Services https://opendata.dc.gov/datasets/

DCGIS::capital-bike-share-locations/

about

Station Data London Transport for London https://api.tfl.gov.uk/

Station Data Madrid BiciMad https://opendata.emtmadrid.es/Datos-

estaticos/Datos-generales-(1)

Land Use Data New York City NYC Dept. of City Planning https://www1.nyc.gov/site/planning/

data-maps/open-data/dwn-gis-

zoning.page

Land Use Data Chicago City of Chicago https://data.cityofchicago.org/

Community-Economic-Development/

Boundaries-Zoning-Districts-current-/

7cve-jgbp

Land Use Data Washington D.C. District of Columbia https://opendata.dc.gov/datasets/

DCGIS::zoning-regulations-of-2016/

about

Land Use Data Boston Boston Planning and Develop-
ment Agency

https://data.boston.gov/dataset/

zoning-subdistricts1

Land Use Data Europe European Enviroment Agency https://land.copernicus.eu/local/

urban-atlas/urban-atlas-2018

Census Data US US Census Bureau https://www.census.gov/data.html

Census Data Europe European Enviroment Agency https://land.copernicus.eu/local/

urban-atlas/urban-atlas-2018

Transit Data All cities OpenStreetMap http://overpass-api.de/

Table 1: Data sources.

the location of the stations in their trip data. For these cities, station data has
been obtained from other official open data sources such as station occupancy
APIs as shown in Table 1.

For cities in the United States, the datasets also include the type of user155

which used the bicycle, primarily split between subscribers, who pay an annual
fee to use the system for the whole year, and casual users, who pay for individual
trips or to use the system for a short period of time (typically less than a week).

3.2. Station Service Area Determination

In order to match each station in the network to the land use features of160

its catchment area, we assign a designated service area to each station in the
network. These service areas are determined using a Voronoi tessellation, which
defines boundaries that assign each point in the city to the closest station. The
areas are then truncated, so that there is a maximum Euclidean distance of
500 meters from the station to the furthest point in its service area. The 500 m165

limit is a conservative approach, which assumes that users are not willing to walk
any further to reach a bike sharing station, and the use of Euclidean distance
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is a minor approximation in urban areas with a dense street grid, as shown
experimentally in O’Brien et al. (2014). This simplification is further justified
if we assume that a user will walk the most direct route to a station without170

taking detours. The service areas are further truncated such that they do not
span over bodies of water such as seas, rivers, and lakes. This is done by using
polygons in the land use data described below.

A great deal of care has to be taken when determining the span of time in
which the service areas are calculated, since the number and locations of stations175

vary over time. For instance, in New York City, 938 unique stations have been
used in the network over the year 2019. However, at no point in time have these
938 stations been used simultaneously, since some stations have been created,
relocated and/or removed entirely. Thus, calculating 938 service areas will give
an unrepresentative view of the network and how it was used. To account for180

this, we calculate the service areas of the network in each day of the year. An
example of a map of the stations in New York City and their service areas for
October 23rd can be seen in Fig. 1.

The change in the service areas due to relocation and removal of stations
affects other variables that we consider, such as the population around the185

station, land use, and distance to nearest transit points. To alleviate this, all
variables used in the model for each station are calculated for each day the
station has been used and then averaged over those days. This includes not
only variables derived from the placement of the station and its service area,
but also the daily number of trips at the station.190

3.3. Land Use, Census, and Transit Data

For U.S. cities, land use is obtained from zoning data provided by the city
governments. The data contains polygons defining each zone, along with a
corresponding zone code. We classify each zone as either residential, commercial,
recreational, industrial or mixed, depending on the zone code and its stated use195

in the zoning ordinance. Since no historical zoning data were found, we use the
most recent data provided by the cities as of April 2022. It is probable that the
zoning has changed since 2019, but we assume that the changes in this time-
frame were relatively minor and insignificant to the general ridership of the bike
sharing networks.200

For European cities, zoning data is not available in a standardized form, as
land use regulations differ between areas. Instead, we use land use data from
Urban Atlas 2018 in the Copernicus Land Monitoring Service provided by the
European Environment Agency. This data includes polygons of different land
areas, along with a general description of its use. These areas are then classified205

in the same way the US cities. As above, we assume no significant land use
changes occurred between 2018 and 2019.

For each station, we calculated the share of each type of land use within the
service area of the station. The European land use data also contains polygons
of the cities’ road network. While the roads are a part of the stations’ service210

areas, they were not included when calculating the share of land use within the
service area. Since the zoning data in the US does not separate roads from

6
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5 km(C) Stamen Design. (C) OpenStreetMap contributors.

Station
Service Area

Figure 1: Service areas for New York City on October 23rd 2019.

zoning areas, this leads to a fairer comparison and a more uniform model of the
zoning.

Historical census data for U.S. cities in 2019 is provided by the United States215

Census Bureau on the census tract level, along polygons of the census tracts.
We used these data to calculate the population density of each census tract,
measured in persons/100 m2. For European cities, population counts are pro-
vided for each polygon in the land use data from the Urban Atlas 2018. We
calculated the population density of each station’s service area as an average220

of the population densities of the census tracts or land use polygons within the
service area, weighted by their share of the service area. Finally, transit data
was obtained using the Overpass API from OpenStreetMap. The data contains
locations of subway and railway stations.

3.4. Data Processing225

The modeling of the traffic patterns needs to take several factors into ac-
count: firstly, the weekly cycle has a strong effect on user behavior, with distinct
patterns on weekdays and weekends. Since weekday traffic is significantly more
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City Pre-cleaning Post-cleaning Data Retained (%)

Trips Stations Trips Stations Trips Stations

New York City 14869054 938 13168086 857 88.56 91.36

Chicago 2663558 593 2153584 369 80.85 62.23

Washington D.C. 2588852 429 2285881 333 88.30 77.62

Boston 1865013 335 1547643 254 82.98 75.82

London 7719768 788 7522951 784 97.45 99.49

Helsinki 2755144 348 2677641 348 97.19 100.00

Oslo 1729194 253 1682360 251 97.29 99.21

Madrid 3015679 213 2781463 213 92.23 100.00

Table 2: Number of trips and stations retained after removing low-traffic stations.

intense, with a correspondingly stronger impact on planning and management
considerations, we only consider business days in our analysis. This also sim-230

plifies the comparison between different cities, as tourist and leisure traffic is
much more unpredictable and strongly depends on individual landmarks and
attractions, which are naturally different for different cities. Furthermore, we
removed all trips that do not start on business days from the dataset, excluding
both weekends and public holidays. Furthermore, we excluded two more kinds235

of trips: loop trips, i.e., trips that have the same departure and arrival point,
which are often recreational Zhao et al. (2015), and trips taken by temporary
users (in cities which have this distinction in the dataset), who are most likely
tourists visting the city for a short period Noland et al. (2019). Finally, trips
shorter than 60 seconds are considered as false starts or users ensuring that their240

bike is locked, so they are removed as well.
We also removed stations which are suspected to be test stations or otherwise

used for maintenance purposes, as well as stations that have a very low traffic.
If a station has only 1 or 2 trips per day, individual users can have a significant
effect on traffic patterns. This can bias the analysis, introducing outliers with245

limited value to the overall system; therefore, we remove any stations with fewer
than 8 daily trips (counting both departures and arrivals) from our analysis.
The number of trips and stations removed in our data processing can be seen
in Table. 2.

3.5. Modeling Approach250

Our modeling approach follows other spatio-temporal clustering works, di-
viding bike sharing stations into groups based on their daily arrivals and de-
partures. However, we perform a further step and attempt to connect traffic
patterns with other features of the urban environment, building a predictive
model that can be generalized to other neighborhoods and cities. An overview255

of our modelling approach can be seen in Fig. 2. The data obtained from the bike
sharing system are used to determine a traffic pattern vector for each station.
Stations are clustered into a predetermined number of classes, which represent
different types of traffic patterns in each system. Finally, logistic regression is
used to determine a station’s class based on external features such as land use,260

population density, and distance from public transit stations and stops.

8
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Bike Data
Create

Traffic vectors

k-means
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External Data

Model
coefficients

t̃i

Figure 2: Flowchart of the modeling approach.

Using the bike sharing trip data, we calculate the hourly number of arrivals
and departures for each station for every business day in which the station was
used. The number of arrivals and departures for a specific hour are counted from
the start of the hour to the end of the hour, e.g., the arrivals and departures are
counted from 16:00:00 to 16:59:59. Let Mi be the set of days in which station
i has been used. We then define the two 24-element vectors dm,i and am,i,
representing the departures and arrivals from and to station i in each hour of
day m, respectively. In order to mitigate the effect of the concentration of trips
in the rush hours on the traffic pattern, we consider the flow to the station,
defined as the difference between the number of arrivals and departures:

fm,i = am,i − dm,i. (1)

The traffic flow for a given hour is then positive if there are more arrivals than
departures, and negative in the opposite case. The hourly traffic flow is then
averaged over all days and normalized:

f̃i =

∑
m∈Mi

fm,i∑
m∈Mi

∑23
h=0 am,i(h) + dm,i(h)

. (2)

The normalization is performed in order to focus the clustering on traffic pat-
terns, not on the absolute number of arrivals and departures to each station.

We then used the classical k-means algorithm to divide the stations into
classes based on their traffic patterns. The algorithm is a partitional algorithm265

which divides the data points into k clusters, minimizing the distance between
data points in a shared cluster while maximizing the distance between data
points in different clusters. To initialize the algorithm, the number of clusters
and an appropriate distance measure have to be chosen beforehand. While
Sarkar et al. (2015) used a distance measure based on the Dynamic Time Warp-270

ing (DTW) algorithm to account for temporal displacement of traffic patterns,
we found that the Euclidean distance led to similar results, while being less
computationally demanding, so we adopted that approach. The definition of
the number of clusters k is more complex, as several clustering measures exist.
In this paper, four of such measures have been used. The Davies-Bouldin, Dunn,275

and Silhouette indices, which were first presented in Davies and Bouldin (1979),
Dunn (1973) and Rousseeuw (1987), respectively, all measure the cohesion and
separation of clusters based on distances between data points and between clus-
ters. These metrics are calculated for different choices of k. Clustering is better
if it leads to high values of the Dunn and Silhouette indices and low values280
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of the Davies-Bouldin index. The fourth clustering measure used is the Sum
of Squared Errors (SSE) between data points and their closest cluster centres,
which is also the error minimized by the k-means algorithm.

The labels obtained from the clustering are used as dependent variables in
a multinomial Logistic Regression (LR) model which models the probability285

of a station being in a specific cluster assuming that the log-odds of being
in the cluster with respect to the reference cluster is a linear combination of
independent variables. As independent variables, we use the urban and transit
data for each station described in Sec. 3.3. Since the service areas of the stations
can vary over time, so can these variables. Thus, each variable is averaged290

over the days in which the station was in use. The summary statistics on the
independent variables on the service area level are listed in Table 3.

4. Results

4.1. Clustering

The number of clusters has been determined by observing the clustering295

measures and the resulting cluster centres for different choices of k while also
considering the future use of the clustering in the model and in the comparison
between cities. For instance, when relating the clustering to other geographical
features and comparing between cities, it is preferable to have the same number
and types of clusters for each city in order to ensure that the differences in the300

models are due to the inherent differences in the cities and not due to a different
clustering. There is also a trade-off between resolution of the clustering and the
ability to compare clusters between cities. A lower amount of clusters will yield
a lower resolution of the clustering but the clustering will be similar between
cities yielding easy comparisons. Conversely, having a high amount of clusters305

may result in different types of clusters across the cities due to local factors
impacting the clustering.

The clustering measures for different k can be seen in Fig. 3. The Davies-
Bouldin and Silhouette index generally prefer fewer clusters. The opposite is
true for the sum of squares metric which decreases as k increases. In fact, the310

sum of squares will always decrease as a function of k and thus an elbow criterion
is typically used such that for a chosen k′ the decrease in SSE is significantly
smaller for k > k′ than for k < k′. From the sum of squares, we thus find that
3 to 5 clusters seem to be reasonable choices. For most of the cities the Dunn
index seems to prefer 5 clusters over 3 or 4 clusters.315

With the above considerations, we determined that five clusters provide an
adequate clustering for each city that also lends itself to comparisons between
cities. The resulting cluster centres are shown in Fig. 4 and the size of each
cluster is shown in Table 4. This clustering generally leads to 5 distinct station
types: high morning sources which receive a large intake of trips in the morning,320

low morning sources which does the same albeit to a lesser degree, high morning
sinks and low morning sinks which act opposite to high morning sources and
low morning sources, and a fifth cluster which will act as a reference. There are
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still interesting differences between the cities. In almost all cities, the reference
cluster has a very low relative difference, meaning that the number of departures325

and arrivals at a station within the cluster is highly balanced at any given time.
However, in Oslo there is a notable absence of this type of cluster. Instead, Oslo
has a cluster where departures and arrivals are balanced in the morning while
in the afternoon and throughout the evening most of the trips are departures.
23 stations or 9.2% of Oslo’s network is comprised of these types of stations330

and a large majority of these stations are located in or near the Ullev̊al district
which contains Oslo university. A possible explanation of this irregular cluster
may be that students use conventional public transport such as buses, trams or
the metro to arrive at the university in the morning and then use bikesharing
to depart from the university in the afternoon. Whether this is because the335

students are using the bicycles for recreational purposes or for other reasons, this
may show how public transit and the bikesharing system in Oslo complement
each other for the use-case of the university students.

Differences also lie in the non-reference clusters across cities. Madrid stands
out in this regard, due to having three peaks in the daily traffic: one from 6 to340

10, another from 13 to 15 and a third from 17 to 19. This is likely a consequence
of the work culture in Madrid where it is customary to take a midday break
from work and resume the workday at a later time. In New York City, Chicago,
Washington DC, Boston, and London the peaks of the morning sources and the
valleys of the morning sinks are mostly aligned at 8:00, meaning that most of345

the morning commute in these cities is done from 8:00 to 9:00. However, in the
afternoon commute there is a noticeable one hour shift between the peaks of the
morning sinks and the valleys of the morning sources. This may be an effect of
a more relaxed commute in the afternoon hours where punctuality is less of a
concern but it could also be an artifact of our 1-hour bins coupled with peoples350

work schedules. For instance, it is possible that people are expected to arrive at
work before 9:00 so people use the bikesharing system in the interval 8:00-9:00.
In the afternoon however people might leave work later in the hour e.g. at 17:50
and then finish their commute after 18:00 meaning that the arrival is counted
in the 18:00-19:00 bin resulting in the misalignment. The shape of the peaks355

may also show variations in peoples work schedules across cities. In New York
City, people usually depart to work from 8:00 to 9:00 and then depart from work
at 17:00 to 18:00. In Chicago, the wideness of the peaks indicate that people
depart to work from 7:00 to 9:00 and then depart from work from 15:00 to 17:00
indicating that some people arrive at and depart from work earlier than others.360

In New York City, Washington DC, London, and Helsinki, there appears
to be an imbalance in the afternoon rush hours with the peaks of the morn-
ing sinks being considerably larger than the valleys of the morning sources. In
Helsinki, Oslo and Madrid, an opposite imbalance is also seen in the morning
rush hours. These imbalances are possibly caused by a disparity between the365

number of morning sinks and morning sources. In Helsinki, where these imbal-
ances are most prominent, 16.3% of the stations are of morning sink types while
55.7% are morning sources, a difference of 39.4%. This indicates that the trips
eminating from the many morning source stations are concentrated in a few key
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areas which then disperse the trips back to the morning source stations in the370

afternoon. When looking at the placement of the morning sink stations, they
are typically placed in few work-related areas such as in the Helsinki city centre
around Kaartinkaupunki, Otaniemi which hosts a high number of schools and
universities, and the Pitäjänmäki district which contains many IT and manu-
facturing companies. On the contrary, morning source stations in Helsinki are375

mostly placed in residential areas around the work-related areas. The city which
seems to be most balanced is Chicago. Here, there is only a 18.9% difference be-
tween the amount of morning sink and morning source stations. However, using
these differences to solely explain the imbalances is not adequate. In Washing-
ton DC, there is only a 16.5% difference but the system is less balanced than380

Chicago meaning that other local factors may contribute to this imbalance.
The clustering also suggest how well a model trained on some cities will

perform on others. Despite the minor differences mentioned before, there is still
a high degree of sameness between the US cities indicating that a model trained
on one US city will likely perform well on another US city. The same can not be385

said for the European cities where the clusters are more varied. Whether this
is due to cultural differences or other factors it may prove problematic for the
models and their accuracy .

4.2. Modelling

The coefficients obtained from the LR models trained on each city are pre-390

sented in Table 5. To better visualise the relationship between the external
variables of a city and the output from the LR model, different heat maps were
constructed for the city. This was done by dividing the city area into 200m
× 200m cells and then calculating the share of different land uses, population
density, and the distance to the nearest subway and railway from the centre395

of the cell. These variables were then used as input for a LR model trained
on the city to obtain the probability of the centre of each cell being in each
cluster. The resulting heat maps for New York City can be seen in Fig. 5. It
is seen that stations in commercial and industrial areas such as the Diamond
District, the Financial District, and along Hudson River are more probable to400

be morning sink stations while morning source stations are more likely to be in
residential areas and areas with a high population density. This is also readily
seen in the coefficients for the model where high morning sink stations have a
significantly higher coefficient for share of commercial use while the opposite is
true for residential use. Looking at the coefficient for share of residential use and405

comparing between cluster types, it is seen that there is a gradual change of this
coefficient with high morning sinks having the lowest value, then low morning
sinks, low morning sources and finally high morning sources with the highest
coefficient. It is important to note that there are two equally valid interpreta-
tions of his result depending on the understanding of a morning source station.410

Morning source stations are generally unbalanced with respect to the number
of arrivals and departures. One interpretation is that this imbalance is caused
by an abundance of departures in the morning. This is easily explained by the
relatively large number of people in residential zones compared to other zones
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yielding a large amount of potential bikers who commute to commercial areas.415

Another interpretation is that the imbalance is caused by an absence of arrivals.
Residential areas have little to no commercial purposes so there is little reason
for people to be in these areas in the middle of a business day. Both of these
interpretations are supported by how zoning in US cities are usually regulated.
There is a high degree of separation between different types of areas and their420

uses. This leads to cities having large areas in which only commercial use is
permitted and likewise for residential use. Thus, when people are commuting in
the morning they are most likely departing from residential zones and arriving
in commercial zones to work. By the discussion above, it stands to reason that
the coefficient for the share of commercial use will have a monotone decrease425

from high morning sinks to high morning sources, an opposite pattern to the
share of residential use. This is mostly the case for the US cities except for
Chicago where the low morning source cluster has the highest coefficient.

In the European cities, is it difficult to detect a general pattern which is
shared between the cities and with the US cities. In Helsinki and Madrid,430

there is a monotone decrease in the coefficient for share of commercial use,
as was seen in the US cities. When looking at the share of residential use,
in Helsinki the coefficients are higher in morning sources than morning sinks
although without a monotone increase as was seen in the US cities. In Madrid,
there is a monotone decrease in these coefficients, an opposite behaviour to what435

is seen in US cities. In London both the share of residential use and commercial
use have high coefficients for morning sinks and low coefficients for morning
sources. In the US cities, zoning regulations lead to a high degree of separation
between residential and commercial areas, which led to general patterns in the
coefficients. However, in European cities this separation is much less prominent.440

In London, residential areas are much more scattered around the city except for
core business districts. This was also observed in the other European cities.
This difference in zoning standards between the US cities and the European
cities may affect the predicting power of models trained on a US city and tested
on European cities and vice versa. Thus, the share of land use can be deemed445

more important when the models are only trained and tested on US cities.
Another good indicator of the station type is the distance to the nearest

subway with morning sink stations being closer to subways than morning source
stations. This also gives some insight into how people are using bike-sharing
in conjunction with subways. At the start of a user’s trip, they may use bike-450

sharing to cover the distance between their origin and the nearest subway which
will cover the remaining distance. It should be noted that stations close to
subways are not always morning sinks since people can also use a station after
the subway in order to cover the remaining trip distance, making the station a
morning source. However, in most US cities the subway network is more dense in455

downtown areas meaning the subway will likely take you within walking distance
to your place of work, lowering the need for bike sharing. The proximity to
a railway station is significant for most cities when the station is a morning
source type. In most cities, morning source stations are further away from
railway stations with the notable exceptions of Washington DC and London460
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Figure 5: Heat maps of probabilities of being in different clusters.
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where morning source station are closer to railway stations. The most trafficked
bike sharing stations in Washington DC and London are located outside of
Union Station and Waterloo Station which are the main railway stations in
their respective cities. This may be related to people who are living outside of
these cities commuting by railway into the cities and then use bike sharing for465

the rest of the commute.
In order to see how a model trained on one city generalises to another city,

we tested each of the 8 models on the same data used to train the other models.
The rate at which the models predicted the cluster types correctly can be seen
in Fig. 6. When training and testing on the same city, we split the stations470

randomly into a training set and test set with the training set having about 80%
of the stations. The results show that models trained on US cities perform well
on other US cities with the exception of Washington DC. Excluding success rates
of models trained and tested on the same city, success rates when testing on
Washington DC ranged from 26% to 30% while for the other US cities, success475

rates ranged from 32% to 38% when training on US cities. This difference in the
success rates is most likely due to the abnormal reference cluster in Washington
DC which is more morning source-like than in the other clusters. When looking
at the European cities separately, the model trained on Oslo is substantially
more accurate when tested on Helsinki rather than London or Madrid. Likewise,480

the model trained on Helsinki performs particularly well on Oslo with almost
twice the accuracy of random guessing. This suggest that Helsinki and Oslo are
the most similar European cities. The model trained in London also performs
best on Helsinki however the same performance is not seen when training the
model in Helsinki and testing it on London. Madrid also serves as an outlier485

since the success rate of the model trained in Madrid range from 9% to 14%
when testing on other cities, a significantly worse result than expected from
randomly guessing. However, models trained on other cities seem to perform
substantially better when tested on Madrid with success rates ranging from 23%
to 33%.490

When comparing between US cities and European cities, both New York
City and Helsinki stand out as cities where other models perform particularly
well. When testing on New York City using models trained all other cities
except for Washington DC and Madrid, the success rates range from 32% to
36%. In Helsinki, the range changes to 30%-39%.495

5. Conclusion

We conclude that this is a paper
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New York City Chicago

Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Share of residential use 0.51 0.37 0.00 1.00 0.34 0.31 0.00 0.99

Share of commercial use 0.25 0.34 0.00 1.00 0.16 0.17 0.00 0.95

Share of recreational use 0.07 0.16 0.00 0.84 0.08 0.18 0.00 1.00

Population density [per-

sons/100 m2]

1.37 0.79 0.00 5.50 0.50 0.28 0.07 1.80

Distance to nearest sub-
way [km]

0.35 0.26 0.00 2.11 0.60 0.47 0.01 2.67

Distance to nearest rail-
way [km]

1.90 0.92 0.07 4.30 1.37 0.84 0.03 3.57

Distance to city center
[km]

5.43 2.84 0.12 12.34 5.57 3.99 0.08 21.78

Washington DC Boston

Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Share of residential use 0.50 0.36 0.00 1.00 0.44 0.30 0.00 1.00

Share of commercial use 0.10 0.22 0.00 1.00 0.18 0.20 0.00 1.00

Share of recreational use 0.13 0.26 0.00 1.00 0.14 0.19 0.00 0.88

Population density [per-

sons/100 m2]

0.44 0.31 0.00 1.43 0.47 0.25 0.00 1.49

Distance to nearest sub-
way [km]

0.64 0.49 0.02 3.48 0.88 0.81 0.02 4.56

Distance to nearest rail-
way [km]

3.13 1.91 0.14 8.61 0.90 0.67 0.03 2.93

Distance to city center
[km]

3.74 2.33 0.32 10.92 3.69 2.07 0.07 8.49

London Helsinki

Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Share of residential use 0.66 0.29 0.00 1.00 0.41 0.25 0.00 0.95

Share of commercial use 0.19 0.24 0.00 1.00 0.23 0.22 0.00 1.00

Share of recreational use 0.12 0.18 0.00 0.99 0.28 0.19 0.00 0.75

Population density [per-

sons/100 m2]

1.16 0.67 0.00 3.25 0.59 0.57 0.00 3.44

Distance to nearest sub-
way [km]

0.51 0.40 0.01 2.22 1.78 1.58 0.02 6.44

Distance to nearest rail-
way [km]

0.80 0.50 0.01 2.49 2.64 2.01 0.04 7.17

Distance to city center
[km]

3.92 2.05 0.14 9.35 5.76 3.30 0.25 12.30

Oslo Madrid

Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Share of residential use 0.58 0.30 0.00 1.00 0.69 0.25 0.00 1.00

Share of commercial use 0.23 0.25 0.00 1.00 0.18 0.15 0.00 0.70

Share of recreational use 0.11 0.17 0.00 0.86 0.12 0.19 0.00 0.93

Population density [per-

sons/100 m2]

1.07 0.88 0.00 4.02 2.67 1.28 0.07 6.44

Distance to nearest sub-
way [km]

0.70 0.51 0.04 3.72 0.24 0.15 0.00 0.82

Distance to nearest rail-
way [km]

1.03 0.63 0.03 3.23 1.15 0.66 0.04 3.32

Distance to city center
[km]

1.89 1.08 0.07 4.97 2.13 1.23 0.10 5.66

Table 3: Summary statistics of the variables used in the model.
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City Reference
High Low Low High

morning sink morning sink morning source morning source

New York City
253

(29.5%)
63

(7.4%)
162

(18.9%)
243

(28.4%)
136

(15.9%)

Chicago
84

(22.8%)
45

(12.2%)
63

(17.1%)
99

(26.8%)
78

(21.1%)

Washington DC
86

(25.8%)
43

(12.9%)
57

(17.1%)
75

(22.5%)
72

(21.6%)

Boston
63

(24.8%)
22

(8.7%)
50

(19.7%)
69

(27.2%)
50

(19.7%)

London
190

(24.2%)
82

(10.5%)
135

(17.2%)
221

(28.2%)
156

(19.9%)

Helsinki
108

(31.0%)
12

(3.4%)
45

(12.9%)
113

(32.5%)
70

(20.1%)

Oslo
23

(9.2%)
22

(8.8%)
52

(20.7%)
87

(34.7%)
67

(26.7%)

Madrid
59

(27.7%)
34

(16.0%)
36

(16.9%)
44

(20.7%)
40

(18.8%)

Table 4: Size of the 5 clusters obtained from the clustering. The size is represented as a
percentage of the total number of stations below.
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New York City Chicago Washington DC Boston London Helsinki Oslo Madrid
Cluster Coef. name

High
Morning
Sink

Const. −0.247 2.193 2.210 3.623 −11.171 −3.792 19.973 −2.938
Share of residential use −4.200 −3.260 −6.538 −0.185 15.293 −2.039 −10.165 13.670
Share of commercial use 2.016 −0.511 −0.559 −0.241 13.703 1.636 −11.843 4.654
Share of recreational use −1.279 −7.586 −3.661 −3.909 6.408 2.102 −11.076 3.946
Population density [per 100 sq. m] −1.809 −1.886 −1.797 −6.079 −3.521 −4.598 −1.424 −2.813
Distance to nearest subway [km] −0.502 −2.349 0.332 0.014 0.083 −0.345 6.194 1.198
Distance to nearest railway [km] −0.205 −0.383 0.493 0.427 0.664 −0.024 −6.149 −2.133
Distance to city center [km] 0.152 0.080 −0.577 −0.609 −0.321 0.415 −3.707 0.034

Low
Morning
Sink

Const. 1.785 2.234 1.238 2.787 −3.956 −0.515 18.862 −2.188
Share of residential use −0.875 −1.261 −3.797 −1.147 6.567 0.333 −9.182 9.133
Share of commercial use 0.301 −1.798 −0.400 −0.661 5.758 1.266 −10.123 3.983
Share of recreational use −0.093 −2.628 −1.747 −2.090 1.863 −2.341 −11.704 1.379
Population density [per 100 sq. m] −0.769 −1.675 −0.713 −1.902 −1.726 −1.625 −1.760 −2.052
Distance to nearest subway [km] −1.972 −2.140 −0.341 −0.323 −0.046 −0.172 2.543 2.100
Distance to nearest railway [km] −0.143 0.138 0.351 −0.306 1.001 0.034 −3.175 −0.687
Distance to city center [km] −0.065 0.007 −0.233 −0.162 −0.356 0.102 −2.093 0.040

Low
Morning
Source

Const. −2.281 −1.507 −2.333 −0.726 −0.004 −4.019 15.057 −6.033
Share of residential use 1.708 3.955 2.904 0.134 −1.814 2.028 −10.586 −1.215
Share of commercial use −1.031 0.434 −2.536 −1.062 −2.432 −1.359 −12.577 4.138
Share of recreational use 1.544 −0.320 0.231 −3.259 −1.298 2.262 −8.750 6.801
Population density [per 100 sq. m] 0.271 −0.243 1.712 −0.379 1.111 1.261 1.739 1.908
Distance to nearest subway [km] 1.243 1.013 0.825 0.599 0.987 0.340 3.012 0.732
Distance to nearest railway [km] 0.283 0.654 −0.426 0.704 −0.924 0.385 −1.313 −0.868
Distance to city center [km] 0.011 −0.226 0.150 0.017 0.177 0.075 −1.880 0.242

High
Morning
Source

Const. −5.030 −1.263 −6.701 −0.657 −1.461 −2.356 10.181 −9.216
Share of residential use 3.002 6.045 5.584 0.805 −0.633 −0.564 −6.766 −1.206
Share of commercial use −3.195 −2.686 −8.969 −3.322 −2.532 −7.125 −9.546 2.369
Share of recreational use 3.623 −3.690 0.668 −5.676 −1.905 −1.580 −4.786 5.945
Population density [per 100 sq. m] 0.693 −0.101 2.268 −1.100 0.913 0.867 1.314 1.941
Distance to nearest subway [km] 2.950 1.441 1.230 0.469 2.241 0.222 2.585 4.715
Distance to nearest railway [km] 0.413 0.353 −0.523 0.751 −0.777 0.256 −1.507 −1.167
Distance to city center [km] −0.061 −0.376 0.686 0.045 0.112 0.359 −0.805 1.025

Table 5: Coefficients of LR models trained on different cities. Bold coefficients are statistically
significant (p < 0.05).

24

182 Appendix E. Paper Draft




	Front page
	Title page
	Preface
	Contents
	1 Introduction
	1.1 Bike Share Systems
	1.2 Bike Share Planning
	1.3 Literature Review
	1.3.1 Clustering
	1.3.2 Traffic Prediction
	1.3.3 Optimisation for Bike Share Planning

	1.4 Problem Statement

	2 K-means
	2.1 k-medoids

	3 Expectation Maximisation
	4 Hierarchical Clustering
	5 Cluster Validation
	5.1 The Elbow Criterion
	5.2 Davies-Bouldin Index
	5.3 Dunn Index
	5.4 Silhouette Index

	6 Generalised Linear Models
	6.1 The Exponential Family
	6.2 Generalised Linear Models
	6.3 Significance Tests
	6.3.1 Goodness of fit
	6.3.2 Wald Test


	7 Logistic Regression
	7.1 Binary Logistic Regression
	7.1.1 Parameter Estimation

	7.2 Multinomial Logistic Regression

	8 Data and Pre-processing
	8.1 Bike Share Trip Data
	8.2 Station Service Area
	8.3 Land Use Data
	8.4 Population Data
	8.5 Transit Data
	8.6 City Centers
	8.7 Pre-processing of Data

	9 Modelling Approach
	9.1 Preliminary Clustering Analysis

	10 Clustering Results
	10.1 Logistic Regression
	10.1.1 Generalisation test


	11 Demand Prediction
	12 Traffic Prediction
	12.1 Results

	13 Case: The New York City 2019 System Expansion
	13.1 Application of Demand Model
	13.2 Comparison of Solutions
	13.3 Comparison of Predicted Traffic

	14 Conclusion
	Bibliography
	Data References
	A Clustering Results
	B Confusion Matrices For All Cities
	C Logistic Regression Heatmaps
	D Demand Model Heatmaps
	E Paper Draft

