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Abstract: Treating the specifications of Structural Operational Semantics as a pro-
gramming language opens up for a variety of analysis methods which are commonly
used in research surrounding programming languages. This paper gives a type sys-
tem that uses unification to ensure specifications are well-typed and uses graph-based
analyses to ensure the bindings and premises within rules are logically ordered. This
opens up for research into the role of having a compiler-like tool available when learn-
ing and working with specifications of operational semantics.



Contents
1 Introduction 1

1.1 Errors in Structural Operational Semantics . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Incorrect Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Unused or Undefined Symbols . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Unreachable Premises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Cyclic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.5 Permanent Intermediary Terms . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.6 Unreachable Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.7 Invalid Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.8 Tautological Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Preventing errors through program analysis . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 A Compiler for Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 SOS Specifications as Graphs 7
2.1 Intra-Rule Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Benefits of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Building the Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Breadth-first Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Inter-Rule Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 A Type System for SOS 14
3.1 Preventing Errors in SOS via Types . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Transitions and Configurations . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Constraint and Definition Premises . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 Type Inference Across a Rule . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Type Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Semantac 22
4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Detecting Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Incorrect Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Unused or Undefined Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Unreachable Premises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Discussion 26

6 Conclusion 26

Bibliography 26

i



1 Introduction
Formal specifications of languages are typically complex systems and understanding the semantics
of a language by reading the rules usually involves understanding a lot of definitions and their
interplay. Any typos and small errors in these semantic definition might slow down unfamiliar
readers and can present an especially unnecessary challenge when initially reading and building
the mental model of the definitions. However mistakes do occur and Klein et al. (2012) found
that in nine published papers examined, every single paper contained some errors that all were
found during the process of mechanising and examining the semantics.

1.1 Errors in Structural Operational Semantics
To understand how the problem of errors in formal semantics can be tackled, we must first gain an
understanding of some of the errors present. We will restrict the focus to Structural Operational
Semantics (SOS) in both the big- and small-step styles. SOS is commonly used for semantics
and is characterised by being syntax-directed and based on defining transition systems and a
finite set of inference rules, which together form a semantic specification(Plotkin 2004). We can
divide errors in operational semantics into two categories, namely local and global errors.

• Local errors relate to a single rule, both with and without the involvement of the
specification-wide definitions.

• Global errors are errors involving multiple rules.

1.1.1 Incorrect Configurations

When working with operational semantics, all transition rules are part of defined transition
systems. When students of operational semantics initially start learning about these systems, we
have found it common to see rules that do not follow the definition of transition systems.

Seq: ⟨𝑆1, 𝑒𝑛𝑣, 𝑠𝑡𝑜⟩ → ⟨𝑆′
1, 𝑒𝑛𝑣′, 𝑠𝑡𝑜′⟩ 𝑒𝑣𝑛′ = 𝑒𝑣𝑛[𝑎 ↦ 1]

⟨𝑆1 ;𝑆2, 𝑒𝑛𝑣⟩ → 𝑆′
1 ;𝑆2

Figure 1: Rule with wrong variable-use and configurations.

If the rule Seq in Figure 1 is a rule in the transition system 𝐶 → 𝐶 where 𝐶 ∈ 𝑆𝑦𝑛𝑡𝑎𝑥 × 𝑆𝑡𝑎𝑡𝑒,
then it is invalid because the conclusion of the rule has a configuration which is just an element in
𝑆𝑦𝑛𝑡𝑎𝑥 instead of 𝑆𝑦𝑛𝑡𝑎𝑥× 𝑆𝑡𝑎𝑡𝑒. This error is similar to using the wrong types or numbers of
parameters for a function call, which is a normal error that most programming language compilers
can help the programmer identify. This error is local since the form of a rules configurations
compared to the definition of the transition system is local to a single rule.

1.1.2 Unused or Undefined Symbols

Other than having bad configurations, the example in Figure 1 also has the variable 𝑠𝑡𝑜 show
up in the premise, without being defined anywhere. This type of use-without-declaration and
declaration-without-use error can both be a logical mistake or the result of a typo, with a variable
like 𝑒𝑛𝑣 being mistyped as 𝑒𝑣𝑛. Having unused variables is not necessarily an error, as the use
might leave the names in to provide more clarity for the reader. The bindings of variables are
local to each rule, and as such this is a local error.
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1.1.3 Unreachable Premises

Since the typo making 𝑒𝑛𝑣 become 𝑒𝑣𝑛 in the Seq rule in Figure 1, there is no connection
between the 𝑒𝑣𝑛′ = 𝑒𝑣𝑛[𝑎 ↦ 1] premise and the initial or final configuration of the conclusion.
This means the premise is not reachable which makes it “dead code,” which might cause confusion
for people reading the rules, and could indicate an error in the rules design. It is a local error
since it is confined to a single rule.

1.1.4 Cyclic Rules

Rules can be recursive in two ways, either the premises of a rule matches itself or the final
configuration of a transition references the initial configuration.

Factorial-RT: fact𝑛 → 𝑛 ∗ fact𝑛′

Factorial-RP: fact (𝑛 − 1) → 𝑛′

fact𝑛 → 𝑛 ∗ 𝑛′

Figure 2: Rule displaying rewrite both types of broken recursion.

The two rules in Figure 2 shows both recursion through premises in Factorial-RP and re-
cursion through transitions in Factorial-RT. Transition recursion is very similar to rewrite
recursion that can happen when using rewriting semantics. These definitions are ill-defined be-
cause they are recursive without any branching behavior to handle the case where 𝑛 is 0. A
proper implementation of the factorial function in SOS could be defined with a rule to handle
the general case and a rule to handle the 𝑛 = 0 case.

Factorial-RT-1: 𝑛 > 0
fact𝑛 → 𝑛 ∗ fact𝑛′

Factorial-RT-2: fact 0 → 1

Factorial-RP-1: fact (𝑛 − 1) → 𝑛′

fact𝑛 → 𝑛 ∗ 𝑛′

Factorial-RP-2: fact 0 → 0

Figure 3: Rules with the proper semantics for factorial with recursion through transi-
tions and premises.

These examples are all based on recursion which is just one way of cyclic transitions, which in
some way can be seen as a local error if the two rules are connected because of the naming.
However, there are more subtle ways in which rules can be cyclic, take for example the following
two rules.
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Reify: 𝑛′ = 𝑛 + 1
Incr𝑛 → 𝑛′

Incrementalize: 𝑛 > 0 𝑛′ = 𝑛 − 1
𝑛 → Incr𝑛′

Figure 4: Cyclic transitions in rules that on their own makes sense.

The Incrementalize rule in Figure 4 turns a natural number into a series of increments which
can make it easier to pattern-match, whereas Reify turns an increment-expression into a number
which is useful for efficient representation. Both rules might make sense individually for different
purposes, but when they are both present they can form an infinite sequence of transitions
(Reify → Incrementalize → Reify → …).

In the rules given int the big-step style as seen with Factorial-RP in Figure 2, no transition
can ever take place because the premises never being fulfillable because of an infinite derivation
tree. This means the semantics are ill-defined. However with small-step style semantics like
Factorial-RT, many transitions will take place and such infinite transition sequences can be
useful if the transitions produce some effect. It is therefore harder to judge if cyclic transitions
are errors in some cases, but they should be seen as a global error when they occur.

1.1.5 Permanent Intermediary Terms

When working with bindings and scoping rules, it can sometimes be useful to wrap parts of the
syntax in an environment using constructs similar to the idea of Evaluation Context introduced
by Felleisen and Hieb(Felleisen and Hieb 1992). These types of constructions are also called “run-
time syntax” to differentiate them form the syntax that are part of the input program. However,
it can be all too easy to forget defining constructions for tearing these constructs down once they
can be set up.

Add-Context: ⟨𝑓(𝑣), 𝐸⟩ → ⟨𝑓.𝐸[𝑣], 𝐸⟩

Sub-Context: ⟨𝑒, 𝐸⟩ → ⟨𝑒′, 𝐸′⟩
⟨𝑓.𝐸[𝑒], 𝐸𝑠⟩ → ⟨𝑓.𝐸′[𝑒′], 𝐸𝑠⟩

Figure 5: Rules defining and using evaluation contexts.

If we consider the small example in Figure 5, we can see that the Add-Context rule can add a
context and the Sub-Context can evaluate expressions using the context, but a rule is missing
to unwrap the context after evaluation is finished. This type of error is relevant in specifications
that contain such intermediary constructions that are supposed to be torn down again, and that
makes this a global error since it only makes sense in the context of the failure of multiple rules
to dispose of a temporary construct.
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1.1.6 Unreachable Rules

Unreachability of rules, in this case, refers to specification where a transition system or a specific
rule is marked as the intended “starting point” of the specification, and where rules can be judged
unreachable if no possible derivation-tree or transition-sequence can lead to a rule being utilised
as a premise or a base transition.

Not: 𝑏 𝑏⇒ true

not 𝑏 𝑏⇒ false

Const: 𝑒 𝑒⇒ 𝑖
𝑒 ++

𝑒⇒ 𝑖 + 1

Print: 𝑒 𝑒⇒ 𝑖
print 𝑒 𝑠⇒ 𝑖

Figure 6: Very simple specification with just three rules.

If we let Print be the intended “starting point” of the specification in Figure 6, then we can see
that Const is possibly reachable by virtue of a matching transition system and no restrictions in
the premise of Print stop the rule from being reachable. However the Not rule is not reachable,
since none of the reachable rules has premises referring to the transition system, and none of
the final configurations in any of the reachable rules conclusions match the form of the initial
configuration of the conclusion of Not.

An unreachable rule can be a rule from a previous iteration of the specification that is no longer
needed, or it could be a rule that is intended to be reachable but some rule is missing which is
supposed to connect the unreachable rule to the rest of the rules. Reachability of rules from a
starting rule requires knowledge of all rules and is inherently a global error.

1.1.7 Invalid Syntax

A simple error that can happen when restructuring the specification or when someone inexperi-
enced works with SOS, is designing rules that do not follow the syntax given by the syntactical
categories.

𝐺 = a | b
𝐶 ∶ c → a

Figure 7: Specification where the rule will never apply.

The very simple example in Figure 7 shows a rule using a syntax element that is not defined
anywhere. Since one of the main ideas of SOS is that the rules are syntax-directed(Plotkin 2004),
these errors are trivial, but do occur and makes the specification completely ill-defined. This is
a simple local error, and the most trivial of the errors that will be discussed in this section.
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1.1.8 Tautological Rules

Some rules are so general that they always apply, and some so strict that they can never apply.
The rules in Figure 8 are examples of tautologies with the Tautological rule being of a very
general form with no restrictions and the Anti-Tautological rule never being applicable, since
the premise cannot be true.

Tautological: ⟨𝑆, 𝑠⟩ ⇒ 𝑠

Anti-Tautological: ⟨𝑆1, 𝑠⟩ ⇒ 𝑠′ 𝑠 ⊢ 𝑏 ⇒ tt 𝑠 ⊢ ¬𝑏 ⇒ tt
⟨ if 𝑏 then𝑆1 else𝑆2, 𝑠⟩ ⇒ 𝑠′

Figure 8: Two tautological rules.

The Tautological rule not having any premises is not out of the ordinary, but this type of rule
sometimes happens up when a newcomer to SOS sees a rule like Print from Figure 6 having
a premise of the form 𝑒 𝑒⇒ 𝑖 and then coming to the conclusion that some rule must have the
exact same form. This leads to rules that can be applied instead of all the other rules in the

𝑒⇒
transition system, sometimes ruining the intended semantics.

An error like the Anti-Tautological rule can happen because of simple typos, where one of
the 𝑠 references was supposed to be 𝑠′ instead, or something more fundamentally flawed in the
logic of the premises. We assume that noone purposefully adds rules to the semantics that should
never be reached, so it must be assumed to always be an error.

Since the tautology errors can be (anti-)tautological because of other rules and because they
might only be errors because they ruins the semantics of other rules as is the case with the
Tautological rule, we should classify these errors as global errors.

1.2 Preventing errors through program analysis
Now that subsection 1.1 have given us an overview of some errors that are summed up in the
table in Figure 9.

Local Global
Incorrect Configurations Cyclic Rules

Unused or Undefined Symbols Unreachable Rules
Unreachable Premises Tautological Rules

Permanent Terms

Figure 9: Overview over the types of errors discussed.

Given that we know these errors can occur in operational semantics, it is worth asking if these
problems can be found in an automated way. Analysis of programming languages and programs
are some of the core exercises of computer science, but following Rice’s Theorem we know that
many properties of programs are not decidable in the general case by any algorithm. So we need
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to think about when our algorithms are over- and under-approximative about the errors we want
to find by analysis.

To look at the possible analysis methods available for finding the errors mentioned in subsec-
tion 1.1 we split analysis into static and dynamic analysis.

1.2.1 Dynamic analysis

Dynamic error detection is performed during or after the evaluation of a program. This means
that some input program is used to analyse the semantics of the language, and because a specific
input is used, it is harder to guarantee that the results of the analysis holds for all inputs making
it approximative.

Property-based testing can be seen as a form of dynamic error detection. It generates some inputs
to evaluate with the defined language, and checks whether some property is upheld for the inputs,
and it attempts to generate enough inputs, and without enough variety, to give confidence that
the property is upheld in general, but the property does not get proven.

One prerequisite for dynamic analysis of semantics, is that an evaluator must exist for the
semantics and be able to evaluate the inputs needed for analysis. In order to make property-
based testing practical, the evaluator must be efficient enough so that many different inputs can
be tried in an attempt to reach a certain level of certainty in the approximative analysis result.

1.2.2 Static analysis

While dynamic analysis can be used to prove that some property is upheld by the language for a
given input, static analysis is not based on a given input, but analysis about the structure of the
semantics in general. Since static analyses do not use specific inputs, it is easier to have results
that are not approximative.

Type safety is perhaps the most popular example of static analysis. Types can be used to restrict
the domain of a value which can be useful for programmers to enforce properties of the program,
but can also be used by the compiler for generating better code.

1.3 A Compiler for Semantics
Creating a unified tool to perform all the analyses needed to find the mentioned errors could be
done with a program that in many ways resemble a compiler. Instead of a compiler taking a
programming language describing a program as input, this tool could take some meta-language
describing a semantic specification as input instead.

Parse Analyse

Experiment

Output Visual

Figure 10: Simple overview over a conceptual tool for semantics.

This tool could be designed with a three-step architecture similar to a normal compiler, where
the input language is parsed, analysed and then compiled. However instead of compiling it to
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executable code, the last step could allow the semantics definer to experiment on the semantic
specification they have written. These experiments could be querying how rules fit against a tree
of syntax or testing a rule to see if there are rules in the specification that satisfies the premises.

Instead of the final step being experimentation, it could also be compilation to a visual rep-
resentation. This could be graphic or a mathematical typesetting in LATEX like was done in
LETOS, which in many ways shared this idea of a compiler for semantics, though focusing more
on executability than analysis(Hartel 1999). The benefit of compiling to a typeset mathematical
solution, is that no errors are introduced in the process of transferring the specification from the
tool-readable format to the typesetting format.

To be as useful as possible for the user we can specify some goals that a tool for semantics should
satisfy in order to help the user:

1. Familiar - Specifying semantics in the tool should be similar to the way SOS is typically
taught and used in research so as to quickly let users use the tool without having to learn
a new unfamiliar language.

2. Corrective - The tool should help the user find errors in the specifications and guide them
towards a solution to problems with the semantics.

3. Single-Source - The user should not have to write the specification multiple times, as
this can introduce errors that the tool cannot find, and having semantics that have been
through mechanised error-detection be filled with errors in a transcription step would be
counter-productive.

2 SOS Specifications as Graphs
To create a tool like the one proposed in subsection 1.3, we will first need to have an idea
about which types of analyses are needed and possible in order to find the errors mentioned in
subsection 1.1. When we talk about representing semantics with graphs, we are really talking
about two types of representation, namely the flow of variables inside a single rule and the
possibility of a rule leading to another rule.

2.1 Intra-Rule Graphs
Definitions of structural operational semantics usually contain a myriad of rules written mostly
either in the big-step or small-step style. Rules in the big-step style often contain multiple
premises, that are all required for the rule to apply and need to be considered when working
with the rule. These rules often have an internal ordering of the premises, which is not based
on positions or clear markings, but based on which variables are used in the configurations
and expressions of the premises. Though the variables direct the ordering, not all premises are
ordered since some premises might not use variables in a way that requires any ordering.

Add: ⟨𝑒1, 𝑒𝑛𝑣⟩ ⇒ 𝑖1 ⟨𝑒2, 𝑒𝑛𝑣⟩ ⇒ 𝑖2 𝑖 = 𝑖1 + 𝑖2
⟨𝑒1 + 𝑒2, 𝑒𝑛𝑣⟩ ⇒ 𝑖

Figure 11: Add encoded in the big-step style.

The rule Add defined in Figure 11 shows premises that do not have an ordering since neither
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of the transitions resulting in 𝑖1 and 𝑖2 change the environment or produce any variables used
by the other, so no ordering is inherent in the definition. This means the configurations and
premises of Add only have a partial ordering. The equality premise uses the variables of the two
transition premises, so in actual implementation and execution of this rule, the equality premise
would be evaluated after the transition premises and the premise can therefore be seen as being
ordered after the transition premises.

To give a formal definition of this graph: Let 𝑅 be a rule where 𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑅) is the initial con-
figuration of the conclusion of 𝑅 and 𝑓𝑖𝑛𝑎𝑙(𝑅) is the final configuration of the conclusion of 𝑅
and 𝑃 is the set of premises of 𝑅. Then 𝐺𝑅 is the directed intra-rule graph for 𝑅 of the form
(𝑁(𝑅),𝐸), where 𝑁(𝑅) is the set of nodes defined as {𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑅), 𝑓𝑖𝑛𝑎𝑙(𝑅)} ∪ 𝑃 and 𝐸 is the
set of edges on the form (𝑛1, 𝑣, 𝑛2) where 𝑛1, 𝑛2 ∈ 𝑁(𝑅) and 𝑣 is a variable mentioned in both
𝑛1 and 𝑛2.

𝑖𝑖 = 𝑖1 + 𝑖2
⟨𝑒1, 𝑒𝑛𝑣⟩ ⇒ 𝑖1

⟨𝑒2, 𝑒𝑛𝑣⟩ ⇒ 𝑖2
⟨𝑒1 + 𝑒2, 𝑒𝑛𝑣⟩

{𝑒1, 𝑒𝑛𝑣}

{𝑒2, 𝑒𝑛𝑣}

{𝑖1}

{𝑖2}

{𝑖}

Figure 12: Add encoded as a graph. (Dashed nodes are 𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑅) and 𝑓𝑖𝑛𝑎𝑙(𝑅))

The result of turning the Add rule into an intra-rule graph can be visualised as shown in Figure 12.
Though the edges in the definition only have a single variable, the visual reprentation have all
edges going from one node to another be shown as one, with a set of variables showing each
connection.

2.1.1 Benefits of Graphs

Other than revealing unused variables, there are other scenarios where having a graph encoding
allows the use of existing algorithms to reveal problems in the definition.

BAdd: (𝑒1, 𝑒𝑛𝑣′) ⇒ (𝑖1, 𝑒𝑛𝑣″) (𝑒2, 𝑒𝑛𝑣″) ⇒ (𝑖2, 𝑒𝑛𝑣′) 𝑖 = 𝑖1 + 𝑖2
(𝑒1 + 𝑒2, 𝑒𝑛𝑣) ⇒ (𝑒3, 𝑒𝑛𝑣′)

Figure 13: BAdd encoded in the big-step style.

The above BAdd rule in Figure 13 contains multiple errors, but these can be hard to spot
when reading the rule. Finding the errors programmatically would be beneficial, but without a
fitting data structure it can be harder to spot a viable algorithmic solution immediately. This
is another case where working on a graph representation could prove beneficial compared to the
normal unordered definition.
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𝑖 = 𝑖1 + 𝑖2

⟨𝑒1, 𝑒𝑛𝑣′⟩ ⇒ ⟨𝑖1, 𝑒𝑛𝑣″⟩

⟨𝑒2, 𝑒𝑛𝑣″⟩ ⇒ ⟨𝑖2, 𝑒𝑛𝑣′⟩

⟨𝑒1 + 𝑒2, 𝑒𝑛𝑣⟩

⟨𝑒3, 𝑒𝑛𝑣′⟩

{𝑒1}

{𝑒2}

{𝑖1}

{𝑒𝑛𝑣″}{𝑒𝑛𝑣′}

{𝑖2}
{𝑒𝑛𝑣′}

𝑒𝑛𝑣? 𝑖?

𝑒3?

Figure 14: BAdd encoded in a graph.

When looking at the graph encoding in Figure 14, some errors might become more apparent
immediately, both to manual error-checking but also possible to automated search for errors.

The first error is the variable 𝑒𝑛𝑣 being defined but never used. This is an error in this rule and
might be caused by the user mistyping the name of the variable in one of the premises. It is
not always an error to have unused variables, because names can be left for clarity. The equality
premise defines 𝑖 but the variable is not used, and there is no real outgoing edges from the node,
making it a dead end. Being a dead end is not a problem in the case of the premise being a
constraint (like 𝑎 = True). The conclusion needs a 𝑐 variable defined, but it is not defined so
the conclusion is nonsensical.

One of the big benefits of the graph representation, is that spotting cyclic dependencies becomes
very easy with any graph algorithm that checks for cycles. An example of this is the two transition-
premises in BAdd that are mutually dependent, thereby creating a cycle in the graph.

In many ways, making sure that the intra-rule graph is a directed acyclic graph, such that we
can make a topological ordering of all the nodes. Having a topological ordering is also a valid
evaluation order of the different nodes, such that the bindings each expression needs is supplied
before evaluation.

2.1.2 Building the Graph

While the graph seems to provide good opportunities for analysis, the analysis cannot begin before
we have a way of building the flow graph. Because we do not necessarily know which premise
defines a variable, we cannot simply connect all definitions to uses. We can start building the
graph based on required variables, starting from the concluding configuration. Alternatively we
can start the analysis from the initial configuration, exploring all premises that are possible with
the currently defined variables.
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𝑖 = 𝑖1 + 𝑖2
⟨𝑒1, 𝑒𝑛𝑣⟩ ⇒ ⟨𝑖1⟩

⟨𝑒3, 𝑒𝑛𝑣⟩ ⇒ ⟨𝑖2⟩
⟨𝑒1 + 𝑒3, 𝑒𝑛𝑣⟩ ⟨𝑖⟩

𝑖2 = tt

⟨𝑥⟩ ⇒𝑒 ⟨𝑐⟩ 𝑖1 = 𝑐

𝑥 = 𝑦𝑦 = 𝑥 {𝑥}
{𝑦}

{𝑖1}

{𝑖2}

{𝑐}

{𝑖1}

{𝑖}
{𝑒1, 𝑒𝑛𝑣}

{𝑒3, 𝑒𝑛𝑣}

Req = Search from 𝑓𝑖𝑛𝑎𝑙(𝑅)

Use = Search from 𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑅)

Void = Unreachable Nodes

Figure 15: The two different searches results in different sets of nodes.

Doing both of the searches shown in Figure 15 gives us three sets of nodes.

1. Req is the set of nodes that provide variables needed for the conclusion of the rule, found
by the backwards search.

2. Use is the set of nodes that use variables given in the initial premise of the rule, found by
the forwards search.

3. Void is the set of nodes that are in the graph, but is in neither of the other sets.

These sets are interesting, because doing the search to create them reveals missing and unused
variables, and because the Void set is premises that are not reachable in the rule, and therefore
should not logically exist as they are.

2.1.3 Breadth-first Search

Both of the searches can use the same algorithm to search for variables. Given a rule 𝑅 we have
the set of nodes 𝑁(𝑅) where 𝑛 ∈ 𝑁(𝑅), we can have 𝑟𝑒𝑞𝑠(𝑛) be the set of variables mentioned
in 𝑛 that are used but not defined in 𝑛 and 𝑝𝑟𝑜𝑣(𝑛) be the set of variables that are defined in 𝑛.
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1 findproviders(source_node) =
2 nodes <- empty set
3 edges <- empty set
4 for each variable v in reqs(source_node)
5 providing_node <- none
6 for each node n in N(R)
7 if v is in pros(n)
8 if node = none
9 providing_node <- n

10 else
11 throw DoubleDefinitionError
12 if node = none
13 throw NoDefinitionError
14 else
15 nodes <- nodes U { providing_node }
16 edges <- edges U {
17 (source_node , v, providing_node)
18 }
19 return (nodes , edges)

Figure 16: The findproviders algorithm that either builds a graph of the source node
and all nodes that provide variables, or exits with a bind error.

1 dfs(find, seen_nodes , edges , node_stack) =
2 if node_stack is empty then
3 return (seen_nodes , edges)
4 else
5 n <- head of node_stack
6 tail <- tail of node_stack
7 (p,e) <- find(n)
8 unseen_nodes <- p \ seen_nodes
9 new_node_stack <- tail + unseen_nodes

10 return dfs(
11 find,
12 seen_nodes U {n},
13 edges U e,
14 new_node_stack
15 )

Figure 17: The BFS algorithm used to search backwards through nodes.

Given a rule 𝑅, and definitions of 𝑟𝑒𝑞𝑠(𝑛) and 𝑝𝑟𝑜𝑣(𝑛), the searching algorithm will return a graph
with the nodes required to reach the conclusion by calling it as dfs(𝑓𝑖𝑛𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠, ∅, ∅, [𝑓𝑖𝑛𝑎𝑙(𝑅)])
which we can call dfs𝑏𝑎𝑐𝑘. The algorithm shown in Figure 17 also works for the forwards search
from 𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑅), if the method findreceivers is defined as findproviders from Figure 16
but with the definition of 𝑟𝑒𝑞𝑠(𝑛) and 𝑝𝑟𝑜𝑣(𝑛) swapped. Thus we have dfs𝑓𝑜𝑟𝑒 defined as
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dfs(𝑓𝑖𝑛𝑑𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠, ∅, ∅, [𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑅)]) which means we can build both the graph showing both
the edges needed to get to the final configuration, and the edges reachable from the initial config-
uration. When we have both of these graphs, we can find the unreachable nodes, by combining
the nodes from either graph, so 𝑣𝑜𝑖𝑑𝑅 is 𝑁(𝑅) ∖ 𝑁(dfs𝑏𝑎𝑐𝑘) ∪ 𝑁(dfs𝑓𝑜𝑟𝑒).

2.2 Inter-Rule Graphs
The other type of graph is one showing the connections between different rules. This graph is
also a directed graph similar to the intra-rule graph, but the nodes are individual rules and the
edges are the connections between the rules caused by transition premises.

𝑒⇒ ∈ 𝑆𝑦𝑛𝑡𝑎𝑥 × 𝐼𝑛𝑡𝑒𝑔𝑒𝑟
𝑏⇒ ∈ 𝑆𝑦𝑛𝑡𝑎𝑥 × 𝐵𝑜𝑜𝑙𝑒𝑎𝑛
𝑠⇒ ∈ (𝑆𝑦𝑛𝑡𝑎𝑥 × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
𝑒 = 𝑒 + 𝑒 | 𝑒 ++
𝑏 = 𝑏 = 𝑏 | true | false
𝑠 = while 𝑏 do 𝑠 | skip

Add-One: 𝑒 𝑒⇒ 𝑖 𝑖′ = 𝑖 + 1
𝑒 ++

𝑒⇒ 𝑖′

Add: 𝑒1
𝑒⇒ 𝑖1 𝑒2

𝑒⇒ 𝑖2 𝑖′ = 𝑖1 + 𝑖2
𝑒1 + 𝑒2

𝑒⇒ 𝑖′

Eq-True: 𝑒1
𝑒⇒ 𝑖1 𝑒2

𝑒⇒ 𝑖2 𝑖1 = 𝑖2
𝑒1 = 𝑒2

𝑏⇒ tt

While-True: 𝑏 𝑏⇒ 𝑡𝑡 (𝑆, 𝑒𝑛𝑣) 𝑠⇒ 𝑒𝑛𝑣′ ( while 𝑏 do𝑆, 𝑒𝑛𝑣′) 𝑠⇒ 𝑒𝑛𝑣″

( while 𝑏 do𝑆, 𝑒𝑛𝑣) 𝑠⇒ 𝑒𝑛𝑣″

Figure 18: A full specification involving containing two rules.

A key difference is that in order to gain insights from the rules, we will have to limit which edges
are created. Many transition premises in SOS apply to many rules, such as 𝑒1 ⇒𝑒 𝑖1 in If-True
that applies to both Add and Add-One, because it is so general that it matches every single
rule for expressions. This can be seen in two ways, either because the premise uses the variable
𝑒 and the two initial configurations of the rules matches the grammar, or because it uses the
transition system ⇒𝑒 which the two rules use. The use of the transition system is the more clear
reason why the rules are connected, but looking at the actual syntax can be used when some
constructs like while loops that often are defined in terms of themselves and if expressions.
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Add-OneAdd

If-TrueWhile-True

Figure 19: Graph of the specification defined in Figure 18.

The graph in Figure 19 shows the specification from Figure 18 turned into an inter-rule graph.
In this graph it is not immediately obvious if there is any problems with cyclic errors like the
ones discussed in subsubsection 1.1.4. The While-True is possibly a rule where there is a risk
of an infinite derivation. This reason While-True is the only risky rule is because rules like
Add only reference themselves as a sub-expression, which does not have the risks that rules like
While do as explained in subsubsection 1.1.4.

To get more out of an inter-rule analysis, we define the inter-rule graph as having both weak edges
that can be a sub-expression reference and strong edges that only allow direct grammar-matching.

Add-OneAdd

If-TrueWhile-True

Figure 20: Graph of the specification defined in Figure 18, with strong edges shown in
bold.

Given the specification 𝑆 then 𝑅 is the set of rules in 𝑆 and 𝐺𝑆 is the inter-rule graph of 𝑆 of
the form (𝑅,𝐸𝑠, 𝐸𝑤) We define 𝐸𝑠 as the set of edges on the form (𝑟1, 𝑟2) where 𝑟1, 𝑟2 ∈ 𝑅 and
𝑠𝑡𝑟𝑜𝑛𝑔𝑚𝑎𝑡𝑐ℎ(𝑟1, 𝑟2) holds. We define 𝐸𝑤 in the same way as 𝐸𝑠 except 𝑤𝑒𝑎𝑘𝑚𝑎𝑡𝑐ℎ(𝑟1, 𝑟2) has
to hold instead.

In the context of the specification given in Figure 18, we say that ⟨𝑒⟩ 𝑒⇒ ... is a category-
matching transition while the transition ⟨𝑒 ++ ⟩ 𝑒⇒ ... is a production-matching transition. Using
this, we say that the property 𝑠𝑡𝑟𝑜𝑛𝑔𝑚𝑎𝑡𝑐ℎ(𝑟1, 𝑟2) holds if any of the production-matching
transition premises 𝑟1 matches the conclusion of 𝑟2. This can be seen in the way the the
third premise of the While-True rule matches the conclusion of While-True itself, mean-
ing 𝑠𝑡𝑟𝑜𝑛𝑔𝑚𝑎𝑡𝑐ℎ(While-True,While-True) holds. The property 𝑤𝑒𝑎𝑘𝑚𝑎𝑡𝑐ℎ(𝑟1, 𝑟2) holds if
any of the category-matching transition premises in 𝑟1 matches the conclusion of 𝑟2. We can see
that 𝑤𝑒𝑎𝑘𝑚𝑎𝑡𝑐ℎ(If-True,Add) holds, because both the first and second premise of If-True
is a category-matching transition premise that matches the conclusion of Add.
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3 A Type System for SOS
If a language is created to specify semantics for the tool proposed in subsection 1.3, then it opens
up for one of the most useful techniques for enforcing properties about languages, namely static
type checking. Static type checking is a formal verification technique that is used to enforce
certain correctness properties of programs in a language by creating a type system and excluding
all programs, which are not well-typed under this type system, from the set of valid programs.

A type system comprises of a set of rules that associates the constructs in a language with a type,
and a program is then considered valid only if types associated with the constructs are the ones
expected in the context of the construct. By checking types it should be possible to reduce the
set of specifications that can be defined using the meta-language to a subset that excludes many
nonsense specifications from being considered valid. The meta-language for defining operational
semantics should have a type system, that resembles the types in normal SOS specifications,
namely a type system based around syntactical categories.

3.1 Preventing Errors in SOS via Types
To understand which of the errors mentioned in subsection 1.1 we will be able to find using
type-checking, we first need to understand the type system of normal SOS specifications.

3.1.1 Variables

The variables in the inference-rules of SOS specification are often on the form 𝑒′1 where 𝑒 is defined
to be a meta-variable in a syntactical category. The definitions of the syntactical categories are
important to the SOS specifications, and are often done by direct definition of a set like {𝑖 | 𝑖 ∈ ℕ
and 𝑖 > 0} or by specifying the formation rules that define the elements of the set(Hüttel 2010).

𝑆 = (Expr, 𝑒⇒, Integer) where
=> 𝑒 ⊂ Expr × Integer

𝑖 ∈ Integer Integer = ℤ 𝑒 ∈ Expr 𝑒 ∶∶∶∶= 𝑒 + 𝑒 | 𝑖

Add: 𝑒1
𝑒⇒ 𝑖1 𝑒2

𝑒⇒ 𝑖2 𝑖 = 𝑖1 + 𝑖2
𝑒1 + 𝑒2 ⇒ 𝑖

Figure 21: A simple semantic specification for the transition system 𝑆 done as SOS.

The use of meta-variables and variables can be illustrated with the specification defined in Fig-
ure 21 which shows variables both of a described syntactical category (the meta-variable 𝑖) and a
category defined via formation rules (the meta-variable 𝑒). This inclusion of the meta-variables
in the naming of the variables can be seen as a form of explicitly declaring the types of variables,
which is also commonly seen in languages like C where variables are defined by a type annotation
like int a or Fortran where the type of a variable can be dependant on the first letter of the
variable name, such as i1 being an integer. If this naming scheme is used in the meta-language,
then the type of a variable can be found by looking up the name in the meta-variables defined
in the specification.
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3.1.2 Transitions and Configurations

Similarly to the variable types, Figure 21 also shows the transition system 𝑆 with the transition
relation defining the left-hand configuration as being an element in Expr and the right-hand
configuration being an element in Integer. This means a transition such as 𝑖1

𝑒⇒ 𝑖2 is invalid,
as the element (𝑖1, 𝑖2) is not in the set Expr× Integer, and if we can find this via type-checking
then we could detect a whole class of errors related to configuration of the wrong form.

Furthermore, because we are given the definition of the transition relation
𝑒⇒, we are able to

infer the variables 𝑎 and 𝑏 when given a transition on the form 𝑎 𝑒⇒ 𝑏 which we could use to
avoid the need for explicit type annotations of 𝑎 and 𝑏 in this case.

3.1.3 Constraint and Definition Premises

Many rules have premises that consists of expressions other than just the requireming a certain
transition to be possible. This can be seen in the example by looking at the third premise of the
Add rule, which uses an equality as a further requirement. In this case the equality also acts
as the definition of the 𝑖 variable, but cases such as 𝑖 < 4 is also sometimes used to constrain
the rules further. Since the constraint has to hold for the rule to hold, we could require that
cases like an equality-check has both sides of the expression be of identical types, which would
not only allow us to rule out premises such as 𝑖1 = 𝑒2 that will never hold, but also to infer the
value of 𝑎 in a premise such as 𝑖1 = 𝑎 to be the same as 𝑖1.

3.1.4 Type Inference Across a Rule

When we think of premises such as 𝑎 = 𝑏 and 𝑏 = 1, it might be intuitive that 𝑎 an integer
because 𝑏 is, but this is not as simple when defining an algorithm to perform type-checking. If
a naive sequential type-check is performed on the sequence of expressions (𝑎 = 𝑏) → (𝑏 = 1), we
might already encounter an error upon checking 𝑎 = 𝑏 because the type-checker has no idea the
type of either variable, since it has not checked 𝑏 = 1 yet. We can modify the naive algorithm
to still allow infering the type of 𝑎 by either reordering the expressions or by using typevariables
for variables until they are inferable.

We can easily reorder the (𝑎 = 𝑏) → (𝑏 = 1) sequence, but if we are given the sequence (𝑎 =
𝑏) → (𝑏 = 𝑐) → (𝑐 = 𝑎) and told that 𝑏 is an integer, it can be hard to know which order the
variables should be checked in to come to the conclusion that 𝑎, 𝑏 and 𝑐 all are of the same type
(and same value as well).

One idea to avoid reordering is to have any unknown variable be of a type that is a super-
type for all types such as what TypeScript does with the any type. The benefit of this is that
it is simple and efficient to implement, but the drawback that type information does not get
propagated backwards and would this let (𝑎 = 𝑏) → (𝑎 = 1) → (𝑏 = ∅) be correct according to
the type-checker.

A more sound alternative is to give every variable with no inferable type a unique type-variable
and have inference generate constraints, also called equalities, for these type-variables that can
be used to propagate type information backwards. This would mean type-checking a sequence
like (𝑎 = 𝑏) → (𝑏 = 1) would first infer 𝑎 to be of the unknown type 𝑥 and 𝑏 to be of type 𝑦 with
the constraint that 𝑥 = 𝑦, and then add another constraint that 𝑦 = ℤ. A final step could then
collapse it the constraints so we get that 𝑎 and 𝑏 both are of the type ℤ. To simplify, we can see it
as immediate back-propagation in the simple example, so that type-checking (𝑎 = 𝑏) → (𝑏 = 1)
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will infer 𝑎 and 𝑏 to be of type 𝑥, and then in the second step we can infer that 𝑏 must be ℤ,
but it is already 𝑥 so we perform substitution of 𝑥 with ℤ.

This method of inference is known as unification and is the type inference method we will be
using because of the benefits just mentioned. Unification is a algorithm for solving equations
between symbolic terms that can be used in type inference algorithms to create a uni-directional
type inference. Unification-based type inference is useful for infering types when the code in
such a way that variables can be used before being declared lexically, and since rule premises are
supposed to be an unordered set, this kind of type inference seemed a natural fit.

3.2 Type Rules
We have derived the type rules of the language from the implementation and present them as
inference rules. Since these inference rules are syntax-oriented, they can only be understood with
the context of the grammar, so we include also the grammar in Figure 22.

syn ∈ 𝑆𝑦𝑛𝑡𝑎𝑥
𝛼 ∈ TypeVars
𝑥 ∈ Identifiers

arr ∈ Arrows
𝑝 ∈ PrimitiveType

cnf ∶∶= ⟨(cnfs , )...cnfs⟩
cnfs ∶∶= cel...cel

tr ∶∶= cnf arr cnf
prem ∶∶= tr | 𝑒 | 𝑒 := 𝑒

cel ∶∶= syn | xe | ( cnfs )
cat ∶∶= category 𝑥 = 𝑇
sys ∶∶= system 𝑇 arr 𝑇

meta ∶∶= meta 𝑥 = 𝑇
rule ∶∶= rule 𝑥 prem...prem --- tr

𝑆 ∶∶= cat...cat , sys...sys , meta...meta , rule...rule

𝑇 ∶∶= 𝛼
| 𝑝
| syn
| (𝑇 x )...𝑇
| (𝑇 U )...𝑇
| 𝑇 →𝑇

xe ∶∶= 𝑥
| 𝑇 _𝑥
| 𝑥 :𝑇
| xe [𝑥 ↦ 𝑒 ]

𝑒 ∶∶= xe
| 𝑒 ( (𝑒 , )...𝑒 )
| 𝑒 = 𝑒
| 𝑒 != 𝑒

Figure 22: A grammar of the Semantec language.

The type environment Ε is a partial function from identifiers or arrows to types. It is used to
store information about bindings and allow us to pass this information around in a single object.

Ε ∶ (Identifiers ∪ Arrows) ⇀ Types

typeVars is a function for getting the set of all type variables in the environment, which is useful
for creating fresh type variables.
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typeVars(𝐸) = ⋃
𝑇∈ran(𝐸)

𝑡𝑣(𝑇 )

tv(𝑡) =

⎧{{{
⎨{{{⎩

{𝛼} if 𝑡 = 𝛼
tv(𝑇1) ∪ ... ∪ tv(𝑇𝑛) if 𝑡 = (𝑇1 x )...𝑇𝑛
tv(𝑇1) ∪ ... ∪ tv(𝑇𝑛) if 𝑡 = (𝑇1 U )...𝑇𝑛
tv(𝑇1) ∪ tv(𝑇2) if 𝑡 = 𝑇1 →𝑇2
∅ otherwise

Σ denotes a substitution function, which is a mapping from type variables to types. It is used
for substituting type variables after constraints have been made on them, and to do this we have
some helper functions. subst𝑇 is used for recursively applying Σ to a type. subst𝐸 and subst2𝐸
are used for recursively applying Σ to the codomain of the type environment.

Σ ∶ 𝛼 ⇀ 𝑇

subst𝐸(Σ,𝐸) = subst2𝐸(Σ,𝐸, ∅)

subst2𝐸(Σ,𝐸in, 𝐸out) =
⎧{
⎨{⎩

subst2𝐸(Σ,𝐸tmp, 𝐸out[𝑥 ↦ subst𝑇 (Σ, 𝑇 )]) if 𝐸tmp[arr ↦ 𝑇] = 𝐸in
subst2𝐸(Σ,𝐸tmp, 𝐸out[𝑥 ↦ 𝑇 ]) if 𝐸tmp[arr ↦ 𝑇] = 𝐸in
𝐸out otherwise

subst𝑇 (Σ, 𝑇 ) =

⎧{{
⎨{{⎩

𝑇2 if 𝛼 = 𝑇 and 𝑇2 = Σ(𝛼)
(subst𝑇 (Σ, 𝑇1) x )...subst𝑇 (Σ, 𝑇𝑛) if (𝑇1 x )...𝑇𝑛 = 𝑇
(subst𝑇 (Σ, 𝑇1) U )...subst𝑇 (Σ, 𝑇𝑛) if (𝑇1 U )...𝑇𝑛 = 𝑇
𝑇 otherwise

normalize is used to normalize the substitutions by recursively applying Σ to itself until a fixed
point is reached.

normalize(Σ1) = {norm(Σ1, Σ1, ∅) if Σ1 ≠ norm(Σ1, Σ1, ∅)
Σ1 otherwise

norm(Σpre, Σin, Σout) = {norm(Σpre, Σtmp, Σout[𝛼 ↦ subst𝑇 (Σpre, 𝑇 )]) if Σin = Σtmp[𝛼 ↦ 𝑇 ]
Σout otherwise

The type rules use the four judgement forms listed below.
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Decl: Ε ⊢𝐷 any ⊣ 𝐸
Check: Ε ⊢𝐶 any ⊣ 𝐸,Σ
Infer: Ε ⊢𝑅 any ∶∶ 𝑇 ⊣ 𝐸,Σ
Unify: Ε, Σ ⊢𝑈 𝑇 𝑇 ⊣ Σ

Decl is used for updating the environment with declarations. Check is used for type-checking
rules. Infer is used for infering the types of expressions and configurations. Unify is used for
unifying types by generating type substitutions.

The ∅ symbol is used to denote empty functions.

The 𝐸𝑛...𝑚 form is used for concatenating multiple environments into one, which.

Spec:

𝐸𝑛
0 = ∅

(𝐸𝑛
1 ⊢𝐷 𝑐𝑎𝑡1 ⊣ 𝐸𝑛

1 )...(𝐸𝑛
𝑛−1 ⊢𝐷 𝑐𝑎𝑡𝑛 ⊣ 𝐸𝑛

𝑛)
𝐸𝑚

0 = 𝐸𝑛
𝑛

(𝐸𝑚
0 ⊢𝐷 𝑠𝑦𝑠1 ⊣ 𝐸𝑚

1 )...(𝐸𝑚
𝑚−1 ⊢𝐷 𝑠𝑦𝑠𝑚 ⊣ 𝐸𝑚

𝑚)
𝐸𝑜

0 = 𝐸𝑚
𝑚

(𝐸𝑜
0 ⊢𝐷 𝑚𝑒𝑡𝑎1 ⊣ 𝐸𝑜

1)...(𝐸𝑜
𝑜−1 ⊢𝐷 𝑚𝑒𝑡𝑎𝑜 ⊣ 𝐸𝑜

𝑜)
(𝐸𝑜

𝑜 ⊢𝐶 𝑟𝑢𝑙𝑒1 ⊣ 𝐸𝑝
1 , Σ1)...(𝐸𝑜

𝑜 ⊢𝐶 𝑟𝑢𝑙𝑒𝑝 ⊣ 𝐸𝑝
𝑝 , Σ𝑝)

cat1...cat𝑛 , sys1...sys𝑚 , meta1...meta𝑜 , rule1...rule𝑝

Meta: 𝑥 ∉ domain(Ε)
Ε ⊢𝐷 meta𝑥 =𝑇 ⊣ 𝐸[𝑥 ↦ 𝑇 ]

Cat: 𝑥 ∉ domain(Ε)
Ε ⊢𝐷 category𝑥 =𝑇 ⊣ 𝐸[𝑥 ↦ 𝑇 ]

System: arr ∉ domain(Ε)
Ε ⊢𝐷 system𝑇1 arr 𝑇2 ⊣ 𝐸[arr ↦ (𝑇1 →𝑇2)]

Rule:

Ε0 ⊢𝐶 prem1 ⊣ 𝐸1, Σ1
...
subst𝐸(Σ(𝑛−1)..1, Ε𝑛−1) ⊢𝐶 prem𝑛 ⊣ 𝐸𝑛, Σ𝑛
subst𝐸(Σ𝑛...1, Ε𝑛) ⊢𝐶 𝑡𝑟 ⊣ 𝐸𝑚, Σ𝑚
Ε0 ⊢𝐶 rule𝑥 prem1...prem𝑛 --- tr ⊣ 𝐸0, ∅

Trans:

𝐸0(arr) = 𝑇1 →𝑇2
Ε0 ⊢𝑅 cnf1 ∶∶ 𝑇3 ⊣ 𝐸1, Σ1
subst𝐸(Σ1, Ε1) ⊢𝑅 cnf2 ∶∶ 𝑇4 ⊣ 𝐸2, Σ2
𝑇1 = subst𝑇 (Σ2...1, 𝑇3)
𝑇2 = subst𝑇 (Σ2...1, 𝑇4)

Ε0 ⊢𝐶 cnf1arr cnf2 ⊣ 𝐸2, Σ

Figure 23: Type rules for checking.

18



Figure 23 shows the top-level rules. Spec defines the order in which top-level terms are evaluated
- first cat, sys, and meta terms are used to update the environment, which simply adds them to
the environment. Then all the rules are checked, but the checking of one rule does not affect the
environment for the next rule.

Rule defines the evaluation for the components of the rule. While there is an order to this,
the order does not matter because unification will ensure that the types match up regardless of
order.

Similarly Trans has an order that does not matter due to unification. The type substitutions
are collected first, and then the substitutions of the types are compared for equality with the
expected types.
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Def: Ε0 ⊢𝑅 𝑒1 ∶∶ 𝑇 ⊣ 𝐸1, Σ1 subst𝐸(Σ1, Ε1) ⊢𝑅 𝑒2 ∶∶ 𝑇 ⊣ 𝐸2, Σ2
Ε0 ⊢𝑅 𝑒1 := 𝑒2 ∶∶ 𝑇 ⊣ 𝐸2, Σ2...1

Conf-1:

Ε0 ⊢𝑅 cnfs1 ∶∶ 𝑇1 ⊣ 𝐸1, Σ1
...
subst𝐸(Σ(𝑛−1)...1, Ε𝑛−1) ⊢𝑅 cnfs1 ∶∶ 𝑇𝑛 ⊣ 𝐸𝑛, Σ𝑛

Ε0 ⊢𝑅 ⟨(cnfs1 , )...cnfs𝑛⟩ ∶∶ (𝑇1 x )...𝑇𝑛 ⊣ 𝐸𝑛, Σ𝑛...1

Conf-2:

Ε0 ⊢𝑅 cel1 ∶∶ 𝑇1 ⊣ 𝐸1, Σ1
...
subst𝐸(Σ(𝑛−1)...1, Ε𝑛−1) ⊢𝑅 cel1 ∶∶ 𝑇1 ⊣ 𝐸𝑛, Σ𝑛
Ε0 ⊢𝑅 cel1...cel𝑛 ∶∶ (𝑇1 x )...𝑇𝑛 ⊣ 𝐸𝑛, Σ𝑛...1

Syn: Ε ⊢𝑅 syn ∶∶ Syntax ⊣ 𝐸, ∅

Prod:

Ε0 ⊢𝑅 𝑒1 ∶∶ 𝑇1 ⊣ 𝐸1, Σ1
...
subst𝐸(Σ(𝑛−1)...1, Ε𝑛−1) ⊢𝑅 𝑒𝑛 ∶∶ 𝑇𝑛 ⊣ 𝐸𝑛, Σ𝑛
Ε0 ⊢𝑅 (𝑒1 , )...𝑒2 ∶∶ (𝑇1 x )...𝑇𝑛 ⊣ 𝐸𝑛, Σ𝑛...1

Var-1: 𝑥 ∉ 𝑑𝑜𝑚(Ε) 𝛼 ∉ typeVars(Ε)
Ε ⊢𝑅 𝑥 ∶∶ 𝛼 ⊣ 𝐸[𝑥 ↦ 𝛼], ∅

Var-2: 𝐸(𝑥) = 𝑇
Ε ⊢𝑅 𝑥 ∶∶ 𝑇 ⊣ 𝐸, ∅

VarT:

Ε0 ⊢𝑅 𝑥 ∶∶ 𝑇2 ⊣ 𝐸1, Σ1
subst𝐸(Σ1, 𝐸1) ⊢𝑈 𝑇1 𝑇2 ⊣ Σ2
Σ = Σ2...1
𝑇 = subst𝑇 (Σ, 𝑇1)

Ε0 ⊢𝑅 𝑥 ::𝑇1 ∶∶ 𝑇 ⊣ 𝐸1[𝑥 ↦ 𝑇 ], Σ

TVar: Ε0 ⊢𝑅 𝑥 ::𝑇 ∶∶ 𝑇 ⊣ 𝐸1, Σ
Ε0 ⊢𝑅 𝑇 _𝑥 ∶∶ 𝑇 ⊣ 𝐸1, Σ

Bind:

𝐸0 ⊢𝑅 𝑥𝑒 ∶∶ 𝑇xe ⊣ 𝐸1, Σ1
subst𝐸(𝐸1, Σ1) ⊢𝑅 𝑥 ∶∶ 𝑇𝑥 ⊣ 𝐸2, Σ2
subst𝐸(𝐸2, Σ2...1) ⊢𝑅 𝑒 ∶∶ 𝑇𝑒 ⊣ 𝐸3, Σ3
subst𝐸(𝐸3, Σ3...1), Σ3...1 ⊢𝑈 𝑇xe (𝑇𝑥 →𝑇𝑒) ⊣ Σ4
𝐸0 ⊢𝑅 𝑥𝑒 [𝑥 ↦ 𝑒 ] ⊣ subst𝐸(𝐸3, Σ4...1), Σ4...1

Figure 24: Type rules for inference part 1.
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Equal:

𝐸0 ⊢𝑅 𝑒1 ∶∶ 𝑇1 ⊣ 𝐸1, Σ1
𝐸1 ⊢𝑅 𝑒2 ∶∶ 𝑇2 ⊣ 𝐸2, Σ2
𝐸2, Σ2...1 ⊢𝑈 𝑇1 𝑇2 ⊣ Σ3

𝐸0 ⊢𝑅 𝑒1 = 𝑒2 ∶∶ subst𝑇 (Σ3...1, 𝑇1) ⊣ 𝐸2, Σ3...1

NEqual:

𝐸0 ⊢𝑅 𝑒1 ∶∶ 𝑇1 ⊣ 𝐸1, Σ1
𝐸1 ⊢𝑅 𝑒2 ∶∶ 𝑇2 ⊣ 𝐸2, Σ2
𝐸2, Σ2...1 ⊢𝑈 𝑇1 𝑇2 ⊣ Σ3

𝐸0 ⊢𝑅 𝑒1 != 𝑒2 ∶∶ subst𝑇 (Σ3...1, 𝑇1) ⊣ 𝐸2, Σ3...1

Call:

𝐸 ⊢𝑅 𝑒0 ∶∶ 𝑇0 ⊣ 𝐸0, Σ0
subst𝐸(𝐸0, Σ0) ⊢𝑅 𝑒1 ∶∶ 𝑇1 ⊣ 𝐸1, Σ1
...
subst𝐸(𝐸𝑛, Σ𝑛...0) ⊢𝑅 𝑒𝑛 ∶∶ 𝑇𝑛 ⊣ 𝐸𝑛, Σ𝑛
𝛼 ∉ typeVars(𝐸)
subst𝐸(𝐸𝑛, Σ𝑛...0) ⊢𝑈 𝑇0 (((𝑇1 x )...𝑇𝑛) →𝛼) ⊣ Σ𝑛+1
𝑇 = subst𝑇 (Σ(𝑛+1)...0, 𝛼)

𝐸 ⊢𝑅 𝑒0 ( (𝑒1 , )...𝑒𝑛 ) ∶∶ 𝑇 ⊣ 𝐸𝑛, Σ(𝑛+1)...0

Figure 25: Type rules for inference part 2.

Figure 24 defines the rules for inferring types of from terms.
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Unify-Prim: 𝑝1 = 𝑝2
𝐸,Σ ⊢𝑈 𝑝1 𝑝2 ⊣ Σ

Unify-Prod:

𝐸,Σ0 ⊢𝑈 𝑇 𝑎
1 𝑇 𝑏

1 ⊣ Σ1
...
subst𝐸(Σ(𝑛−1)...0, 𝐸), Σ(𝑛−1)...0 ⊢𝑈 𝑇 𝑎

𝑛 𝑇 𝑏
𝑛 ⊣ Σ𝑛

𝑛 = 𝑚
𝐸,Σ0 ⊢𝑈 ((𝑇 𝑎

1 x )...𝑇 𝑎𝑛 ) ((𝑇 𝑏
1 x )...𝑇 𝑏𝑚) ⊣ Σ𝑛...0

Unify-Func: 𝐸,Σ0 ⊢𝑈 𝑇 𝑎
1 𝑇 𝑏

1 ⊣ Σ1 subst𝐸(Σ1, 𝐸), Σ1 ⊢𝑈 𝑇 𝑎
1 𝑇 𝑏

1 ⊣ Σ2
𝐸,Σ0 ⊢𝑈 (𝑇 𝑎

1 →𝑇 𝑎
2 ) (𝑇 𝑏

1 →𝑇 𝑏
2 ) ⊣ Σ2...0

Unify-Var: 𝐸,Σ ⊢𝑈 𝛼 𝑇 ⊣ normalize(Σ[𝛼 ↦ 𝑇 ])

Unify-Union: 𝐸,Σ0 ⊢𝑈 𝑇 𝑎
𝑚 𝑇 𝑏 ⊣ Σ1 1 ≤ 𝑚 ≤ 𝑛

𝐸,Σ0 ⊢𝑈 ((𝑇 𝑎
1 U )...𝑇 𝑎𝑛 ) 𝑇 𝑏 ⊣ Σ1...0

Swap-Var: 𝐸,Σ0 ⊢𝑈 𝛼 𝑇 ⊣ Σ1 𝑇 ≠ 𝛼2
𝐸,Σ0 ⊢𝑈 𝑇 𝛼1 ⊣ Σ1

Swap-Union: 𝐸,Σ0 ⊢𝑈 ((𝑇 𝑏
1 U )...𝑇 𝑏

𝑛) 𝑇 𝑎 ⊣ Σ1 𝑇 𝑎 ≠ ((𝑇 𝑎
1 U )...𝑇 𝑎

𝑚)
𝐸,Σ0 ⊢𝑈 𝑇 𝑎 ((𝑇 𝑏

1 U )...𝑇 𝑏𝑛) ⊣ Σ1

Figure 26: Type rules for unification.

Figure 26 defines the rules for unifying types.

Unify-Union picks a case of the union non deterministically. In our implementation it tries the
cases in a deterministic order and picks the first one that succeeds.

4 Semantac
Now that we have an overview of the types of error-detection we want to perform, we can create
a more concrete architecture of the tooling proposed in subsection 1.3.

4.1 Implementation
We know that the tooling will need to parse some form of semantics specification that allow for
analyses like the ones described in section 2 and 3. Thus the initial step of the tool must be
parsing a specification for use in the other tools.
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Parse

Type Analysis

Intra-Rule Graph Analysis
Bind Analysis

Dead Premise Analysis

Inter-Rule Graph Analysis

Output LaTeX

Output Errors

Match Experimenter

Figure 27: Graph showing the data-flow between and ordering of the stages of Seman-
tac.

Every analysis mentioned uses the specification, however the inter-rule graph analysis need the
types given to perform matching on the different configurations. Thus it also depends on the
output of the type analysis and must be run after it. The type-check and intra-rule error-detection
are shown as bein parrallel processes since the algorithm for checking binds via intra-rule graphs
does not use the types of the variables, and the type-checking relies on unification that do not
care about premise ordering. After the last analysis is done, Semantaccan either output the
errors found in the analysis, output a LATEXrepresentation of the specification or allow the user
to interactively test which rules matches certain inputs.

4.2 Detecting Errors
To evaluate on the usefulness implementation of the semantics tool described in subsection 4.1,
we can look at how it handles the errors mentioned in the introduction (subsection 1.1).

1 category Int = "Integer"
2 category Id = "Identifier"
3 category Stmt = Syntax
4 category S in Stmt
5

6 category Env = Int -> Id
7 category env in Env
8

9 system (Syntax x Env) => (Syntax x Env)
10

11 rule Seq
12 <S_1, env, sto> => <S_1', env', sto'>
13 evn' := evn[a |-> 1]
14 -------------------------------------
15 <S_1 ";" S_2, env> => <S_1' ";" S_2>

Figure 28: The Seq rule from Figure 1 written in the Semantacsyntax.

The semantics specification in Figure 1 is written in the syntax parseable by Semantac. It
contains definitions for the syntactical categories Id, Int and Stmt, with the variable S being
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an element in Stmt. Furthermore it defines env as being a function going from Id to Int. Lastly
it defines the transition system as being an arrow ⇒∶ (Syntax × Env, Syntax × Env).

4.3 Incorrect Configurations
One of the first errors we looked at, was the case where the configurations defined in a rule,
did not match up with the definition of the transition system the configuration is being used in.
This was the main error that the type-checker is used to find, and is visible both in the missing
environment from the conclusion of Seq where the environment is missing, and in the transition
premise of the rule where sto is inserted.

1 Type Error: Mismatch between configuration and defined
2 transition system.
3 The type of the configuration at example.sem:10:1 to
4 10:16 does not match the type given in the definition
5 of the transition system: =>
6

7 The type of the configuration:
8 Stmt x Env x #a
9

10 10 | <S_1, env, sto> => <S_1', env', sto'>
11 | ^^^^^^^^^^^^^^^^
12

13 The system specifies that it should be:
14 Syntax x Env
15

16 7 | system (Syntax x Env) => (Syntax x Env...
17 | ^^^^^^^^^^^^^^
18

19 These two types should match , but they do not.
20 Reason: The tuple -types are not the same length
21

22 in Configuration [example.sem:10:1 to 10:16]
23 in Premise [example.sem:10:1 to 10:38]
24 in Rule "Seq" [example.sem:9:1 to 13:37]

Figure 29

The error in Figure 29 shows the type-system displaying an error about the mismatch between
the configuration form used in the transition premise and what the transition system defines the
initial configuration form to be. The error shows the user both what the types that mismatch are,
where in the code the types are defined and a reason why the types do no match. This hopefully
is enough to show the tools users which changes are needed in the semantic specification for the
configurations and transitions to make sense.
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4.4 Unused or Undefined Symbols
Some of the other very important errors for rules in the specification to make sense is the use
of variables. As mentioned earlier, the logic of the rules are based on the ordering of premises
through the use of variables, so having problems with unused or unbound variables can change
the ordering of premises and thus the logic of the rules.

1 Bind Error: Unbound variables in a premise of the rule.
2 The unbound variables are: sto
3

4 12 | <S_1, env, sto> => <S_1', env', sto'>
5 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6

7 Variables need to be defined in the initial
8 configuration of the rule, in the conclusion
9 of a transition premise or by a definition

10 premise such as 'sto := 2'
11

12 in Rule "Seq" [example.sem:11:1 to 15:37]

Figure 30

The error displayed in Figure 30 tells the user that one or more variables in a premise is not
bound, and where the variable should be in order for it to be defined. The error of unused
variables are nearly identical with the explaining message being about the variables not being
used in other premises and that is should be marked as unused, so that the tool can insure that
the users intent is to not use it.

4.5 Unreachable Premises
Problematic bindings and typos can lead to premises that are essentially “dead code” that will
never be reached. This is likely never the users intent, because if it is a legacy premise it is
expected that the user comments out the premise, since leaving a premise gives the impression
that the premise is still important.

1 Bind Error: a premise of the rule is not reachable via
2 any variables.
3 None of the variables in the premise are used in rules
4 required to reach the conclusion or reachable from the
5 initial configuration.
6

7 11 | evn' := evn[a |-> 1]
8 | ^^^^^^^^^^^^^^^^^^^^^
9

10 in Rule "Seq" [example.sem:9:1 to 14:41]

Figure 31
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The error in Figure 31 is relatively small and simply informs the user that no variables are being
used outside the premise in a way that is crucial to the logic of going from the rules initial
configuration to the rules final configuration.

5 Discussion
The type checker uses the unification algorithm, which to some extent has the drawback of making
type errors harder to explain because of the prevalence of type variables in type matching, the
possibility in some type systems of infinite types and the difficulty in algorithmically knowing
which type is the correct one in the users eyes. This could possibly have been solved by using
the results of the intra-rule graph analysis which gives a valid ordering of the different uses of a
variable when there is one. The type Given this information, we could run the inference algorithm
on the premises in the given order, which might allow us to simplify the type inference algorithm.
This could perhaps lead to a simpler design, but since the type checker was already working
by the time where binding analysis was implemented, we did not pursue this. However, having
the type checker work independent of binding analysis does have the advantage of allowing us
to report type errors while there are bindings errors. This extra information could perhaps be
helpful in diagnosing the problem with the specification.

Some aspects of the type rules specification can perhaps be simplified - in particular the specifi-
cation might perform more substitutions than necessary. This is an artifact of us having derived
a pure mathematical specification from an imperative-style implementation which mutates the
substitutions and bindings, and which carries a context.

6 Conclusion
Treating Structural Operational Semantics as a programming language is an approach that al-
lows various techniques to be applied to specification to detect errors which are common in
research around programming languages. There are many known tools and techniques not tried
in this paper, which could possible allow greater results for detecting errors in semantics, and
the approach of treating semantics as a language might allow more flexibility in using over- or
under-approximative results to help a language designer. It might be interesting using this tool
as a base for researching if having a compiler-like tool available actually help people initially
getting into workng with and creating SOS specifications.
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