
Deep Clustering for Metagenomic Binning
Copyright © Aalborg University 2022

Jan Niklas Fichte, Trong Dai Ha, Jitka Polaskova

Computer Science, cs-22-mi-10-02, 2022-06

Master Thesis

S
T

U

D
E

N
T R E P O R T

Computer Science

Aalborg University
http://www.aau.dk

Title:
Deep Clustering for Metagenomic Bin-
ning

Theme:
Master Thesis

Project Period:
Spring Semester 2022
01. February 2022 - 17. June 2022

Project Group:
cs-22-mi-10-02

Participants:
- Jan Niklas Fichte
jficht20@student.aau.dk
- Trong Dai Ha
dha19@student.aau.dk
- Jitka Polaskova
jpolas20@student.aau.dk

Supervisor:
- Katja Hose
khose@cs.aau.dk
- Thomas Dyhre Nielsen
tdn@cs.aau.dk

Page Numbers:
117

Date of Completion:
June 17, 2022

Abstract:

Deep learning is an area that is only
sparsely explored for metagenomic bin-
ning. The existing deep learning-based
approaches usually preprocess raw DNA
sequences into input features such as com-
position and abundance and perform rep-
resentation learning and clustering in two
steps. The utilization of unprocessed
DNA sequences as input shows promis-
ing results for gene prediction. Joint deep
clustering leads to better results for im-
age clustering than basic approaches like
k-means clustering. In this report, we in-
vestigate the potential of joint end-to-end
unsupervised learning and the utilization
of unprocessed contigs as inputs for the
task of metagenomic binning.
We propose two new binners: Deep Con-
volutional Metagenomic Binner (DCMB)
and Deep Stacked Metagenomic Bin-
ner (DSMB). Both binners utilize KL
divergence-based joint deep clustering.
The DCMB takes unprocessed contigs and
the DSMB uses abundance and composi-
tion as inputs.
The performance of both binners is bench-
marked on the CAMI Low dataset and
compared to metagenomic binners VAMB,
MetaBat2, and SolidBin. The results show
that metagenomic information requires
preprocessing to obtain meaningful repre-
sentations and that joint end-to-end learn-
ing slightly improves the number of recov-
ered bins.

http://www.aau.dk

Acknowledgements

We want to thank our supervisors, Katja Hose and Thomas Dyhre Nielsen, for
their great input and feedback throughout the previous project and this project.
Further, we want to thank André Lamúrias for guiding us through our questions.

iv

Summary

State-of-the-art metagenomic binners usually preprocess raw DNA sequences into
input features like composition and abundance [1][2]. Moreover, existing binners
based on deep learning learn a lower-dimensional representation of the data in one
step and cluster on it in a second step.
We aim to explore the impact of joint deep clustering in metagenomic binning
and to investigate if it is possible to get meaningful results by utilizing unpro-
cessed contigs instead of abundance and composition features. Joint deep clus-
tering means that representation learning and clustering are optimized simultane-
ously.
We started with an investigation of methods and techniques that are useful to
achieve our objectives. First, we describe the bioinformatical preliminaries, includ-
ing what metagenomics and sequencing are. To not require to process the input,
we want to take unprocessed contigs as input instead of composition and abun-
dance. We outline which information composition and abundance abstracts and
how both features are obtained to better understand the usage of these features. To
understand the possibilities that exist to process contigs, we explore the basics of
deep neural networks and different deep neural network architectures. The inves-
tigated methods are based on convolutional neural networks and different variants
of autoencoders.
Further, we explore different deep clustering categories that exist and investigate
deeper in the area of joint deep clustering. Then, we explore and compare the
different state-of-the-art joint deep clustering frameworks to find a method that
is suitable in terms of architecture and resources for metagenomic binning. The
frameworks that we explore are Joint Unsupervised Learning (JULE), Deep Em-
bedded Regularized Clustering (DEPICT), Deep Convolutional Embedded Clus-
tering (DCEC) and Deep Embedding Clustering (DEC).
Based on the knowledge obtained through the background, we propose two metage-
nomic binners: Deep Convolutional Metagenomic Binner (DCMB) and Deep Stacked
Metagenomic Binner (DSMB). Both binners utilize joint deep clustering and use KL
divergence clustering as a clustering technique. DCMB is based on convolutional
autoencoders and takes unprocessed contigs as input. The raw DNA sequences

v

vi

are one-hot encoded, padded, and trimmed to a common length. DSMB is based
on stacked autoencoders and takes composition and abundance as input.
To validate the performance of the two binners, we benchmark them against the
state-of-the-art binners VAMB [1], MetaBat2 [2], and SolidBin [3] on the CAMI Low
dataset [4]. DSMB is additionally benchmarked against the mentioned binners on
the Azolla dataset [5]. With further experiments, we explore the impact of utilizing
unprocessed contigs and joint deep clustering. The benchmark showed that DCMB
does not recover any genome as assessed with AMBER. The number of genomes
recovered by DSMB is close to the number of VAMB and SolidBin. By comparing
the DSMB with a variant that does representation learning and clustering in two
steps instead of one joint step, we found out that the joint deep clustering has a
slight impact. One to two bins more are recovered if using joint learning.
In general, we observed on DCMB that unprocessed contigs alone may not be suf-
ficient to obtain meaningful bins. One of our future works includes combining
feature representation learned from raw contigs together with abundance feature
as an input of a metagenomic binner. DSMB showed that joint end-to-end learning
bears potential, and with another joint end-to-end clustering architecture it might
be possible to recover even more bins.

Contents

1 Introduction 2
1.1 Contribution . 3
1.2 Problem Statement . 5

2 Background 6
2.1 Bioinformatics . 6

2.1.1 DNA . 6
2.1.2 Metagenomics . 7
2.1.3 Sequencing . 7
2.1.4 Abundance and Composition 10

2.2 Deep Neural Networks . 11
2.2.1 Neural Networks . 14
2.2.2 Backpropagation . 17

2.3 CNN . 19
2.3.1 Convolution . 19
2.3.2 Pooling . 21

2.4 Autoencoder . 22
2.4.1 Stacked Autoencoder . 23
2.4.2 Variational Autoencoder . 24
2.4.3 Convolutional Autoencoder . 28

2.5 Clustering Techniques . 28
2.5.1 K-means Clustering . 28
2.5.2 KL Divergence Clustering . 29

2.6 Deep Clustering . 30
2.7 Joint Deep Clustering . 32
2.8 Joint Deep Clustering Methods . 33

2.8.1 Joint Unsupervised Learning 33
2.8.2 Deep Embedded Regularized Clustering 34
2.8.3 Deep Convolutional Embedded Clustering 35
2.8.4 Deep Embedded Clustering . 36
2.8.5 Discussion: Method Selection 37

vii

viii Contents

2.8.6 DCEC Description . 39

3 Methods and Implementation 42
3.1 Deep Convolutional Metagenomic Binner (DCMB) 43

3.1.1 Why a Convolutional Model? 43
3.1.2 DCMB Architecture . 44
3.1.3 Data Preprocessing . 51

3.2 Deep Stacked Metagenomic Binner (DSMB) 55
3.2.1 DSMB Architecture . 55

4 Datasets and Assessment Tools 57
4.1 Datasets . 57

4.1.1 CAMI Low Dataset . 57
4.1.2 Azolla Dataset . 58

4.2 Assessment Tools and their Measures 58
4.2.1 AMBER Overview . 58
4.2.2 AMBER Evaluation Measures 59
4.2.3 CheckM Overview . 60
4.2.4 CheckM Evaluation Measures 61

5 Experiments and Evaluation 63
5.1 Experimental Setup . 63
5.2 Deep Convolutional Metagenomic Binner (DCMB) 64

5.2.1 Experimental Scenarios with CAMI Low Dataset 64
5.2.2 Base Case . 65
5.2.3 Base Case and Its Benchmarks Against Existing Binners. . . . 67
5.2.4 Analysing the Impacts and Benefits of Joint Deep Clustering 68
5.2.5 Impact of the Length of Sequences on Binning Results 71
5.2.6 Impact of the Number of Clusters on Binning Results 72
5.2.7 Discussion and Conclusion . 73

5.3 Deep Stacked Metagenomic Binner (DSMB) 75
5.3.1 Comparison to State-Of-The-Art-Binners on the CAMI Low

Dataset . 76
5.3.2 Impact of Joint Deep Clustering on the CAMI Low Dataset . 78
5.3.3 Impact of Iterations on the CAMI Low Dataset 80
5.3.4 Impact of Joint Deep Clustering on the Azolla Dataset 81

6 Discussion 83
6.1 Discussion: Deep Convolutional Metagenomic Binner (DCMB) . . . 83

6.1.1 General Results and Observations 84
6.1.2 Impacts of Joint Deep Clustering on DCMB 85

6.2 Discussion: Deep Stacked Metagenomic Binner (DSMB) 85

Contents 1

6.2.1 Impacts of Joint Deep Clustering on DSMB 86

7 Conclusion 89

A Apendix 92
A.1 Previous Experiments . 92
A.2 Metagenomic Binner Benchmark . 92

A.2.1 Azolla Dataset . 93
A.2.2 Strong 100 Dataset . 94
A.2.3 CAMI Low Dataset . 95

A.3 DCMB additional Experiments . 95
A.3.1 Base Case Versus Result From Short Training. 95

A.4 DCMB Structure . 97
A.5 DSMB Autoencoder Structure . 99
A.6 DVMB - Deep Variational Metagnomic Binner 100

A.6.1 Idea . 100
A.6.2 Architecture . 100
A.6.3 Evaluation . 103

A.7 Implementation Source . 105

List of Acronyms 106

Bibliography 108

Chapter 1

Introduction

Metagenomic binning is a process of grouping metagenomic sequences by their
organism of origin [1]. The aim of it is to identify which known and unknown
organisms are present in an environmental sample. Environmental samples can
be a small samples of tissue, water, soil or surface that were collected for the pur-
pose of analysis [6]. Among other things, this may provide an insight into which
organisms share a habitat [7] and give an insight into biological processes. These
insights are important as they help to better understand the environment and to
make use of these processes. An example is the rice production the free-floating
water fern Azolla is used as fertilizer. Azolla lives in symbiosis with a Nitrogen
fixing cyanobacterium species [8].

The first step in metagenomic binning is to identify DNA (deoxyribonucleic
acid) sequences of the organisms in the environmental sample. The DNA con-
tains the genetic information of an organism. DNA is composed of nucleotides,
and the four nucleobases are adenine (A), guanine (G), thymine (T) and cytosine
(C). The DNA molecule is structured as a double helix. Connected are the two
strands through base pairs. Adenine and thymine form one pair, and the other
one is guanine and cytosine [9]. The DNA-sequences are identified by devices that
are called sequencers. A sequencer determines the sequences of nucleotides and
groups them into so-called reads. Reads are smaller DNA fragments which are
then put together by a so-called assembler into bigger fragments called contigs.
Contigs are only the fragments of a genome, and the task of a metagenomic binner
is to cluster all genome fragments that belongs to one genome together. In the
context of metagenomic binning, the resulting clusters are called bins.

Most metagenomic binners do not utilize deep learning methods, although
deep learning has seen a rise in popularity in recent years. Lately, deep learning
methods have been applied to various domains, which often led to performance
improvement in these areas [10]. General examples of areas non-related to metage-
nomic binning are language translation [11] and speech recognition [12]. Examples

2

1.1. Contribution 3

of deep learning application in the area of metagenomics include metagenomic
gene prediction [13] and metagenomic bacteria taxonomix classification [14].

Although deep learning is no stranger in the area of metagenomics, the ap-
plication of deep learning for metagenomic binning is still in its beginnings. The
best-known example of deep learning-based metagenomic binning is the varia-
tional autoencoder for metagenomic binning (VAMB) [1].

In a previous study, the group investigated the potential of VAMB [15]. A brief
description of our findings can be found in the appendix (Appendix A.1). This
study showed that abundance contributes little to the results.

1.1 Contribution

In this report, we want to explore which interesting possibilities deep learning
bears for metagenomic binning by taking our previous findings into account [15].
We will provide an insight into two new areas that can be explored for metage-
nomic binning. Firstly, we will investigate the potential of using an alternative in-
put feature. Secondly, we will study deep clustering methods suitable for metage-
nomic binning. Finally, we will compose new metagenomic binners, so that we can
test and evaluate the mentioned ideas in practice.

Goal 1: Exploring Alternative Input Features Metagenomic binners take one or
more input features that are provided as the input to the model. Those handcrafted
input features are usually extracted from contigs. Handcrafted features are features
that were manually designed from the original data, and created with the use of
algorithms [16]. The most common features that are utilized by several binners,
including VAMB [1] and MetaBAT2 [2] are composition and abundance.

• Composition (tetranucleotide frequency, TNF) refers to k-mer frequencies of
a particular contig [17]. K-mers are substrings of length k calculated from the
original sequence.

• Abundance refers to the similarity between aligned contigs.

An additional preprocessing step to obtain these input features is required before
binning. Therefore, we want to investigate if it is possible to compose a model that
can extract features directly from the contigs.

The first area that we want to investigate is the utilization of raw contigs as
inputs of metagenomic binning model. In contrast to composition and abundance,
contigs hold sequential information. That means that the order of nucleotides in
a contig (sequence) is not random. By abstracting those sequences, it is possible

4 Chapter 1. Introduction

to identify features. Based on those learned features, contigs can be grouped into
clusters, so-called bins.

The idea of extracting information from unprocessed DNA sequences using
deep learning method has already been documented in scientific literature. Utiliz-
ing unprocessed DNA sequences as an input into a CNN-based model has showed
promising results for metagenomic gene prediction [13]. Moreover, it has been
already proven in a study, that it is possible to extract hierarchical features from
genomic sequences [18].

Pattern recognition techniques, traditionally used for image recognition, might
be a powerful tool for extracting features from sequences for the purpose of un-
supervised clustering. In the current research, such techniques have been used
for genomic classification tasks [13], [18]. Moreover, it is also used as a tool for
extracting additional input features [19]. However, a metagenomic binner using
unprocessed contigs as the only source of information have not yet been proposed
in the scientific literature. By unprocessed contigs, we mean the original sequence
of nucleotides that has been assembled from reads.

In this project, we will investigate and validate the viability of this idea.

Goal 2: Exploring Joint Deep Clustering Methods Binning refers to the process
of clustering metagenomic contigs into the potential genomes [20]. The second
area that we want to explore are deep clustering methods that could be promising
for metagenomic binning.

Deep clustering methods usually involve feature representations learning, fol-
lowed by clustering which is done on the learned representations. Feature repre-
sentations, also known as embeddings, are machine-readable data that the deep
learning network learns from the input data [21]. Those representations are the
learned weights of the final embedding layer of the network [22].

There are multiple types of deep clustering. For instance, the deep learning-
based binner VAMB is utilizing a so-called two-stage deep clustering method.
Here, computing the feature representations and clustering forms two separable
stages. The disadvantage of this approach is the risk of getting stuck in a local
minimum because the learned representations might not be optimal for the clus-
tering task [23].

Another approach is joint clustering, where the feature representations and
clusters are learned simultaneously in an interconnected process. That way, clus-
tering is involved deeper during the model training phase.

In this report, we will provide an insight into different deep clustering ap-
proaches. Specifically, we will put our focus on the area of joint clustering. Based
on our findings, we will select a joint deep clustering approach that seems promis-
ing for metagenomic binning.

1.2. Problem Statement 5

Proposed Solution In order to interconnect our two main goals, we will propose
two metagenomic binners, that will let us explore and evaluate both of the defined
areas. The performance of these binners will then be evaluated against state-of-the-
art methods. Both of the binners will utilize the selected joint clustering technique.
This will let us explore the benefits of joint clustering for metagenomic binning.

The difference between the two binners will be in the type of input features
they are using. One of the binners will use raw contigs as inputs. The second
binner will use composition and abundance input features.

Based on our goals, we propose the two following metagenomic binners:

• Deep Convolutional Metagenomic Binner (DCMB)

The first binner combines our Goal 1 and Goal 2. It takes raw contigs as
input, and it utilizes joint deep clustering technique.

• Deep Stacked Metagenomic Binner (DSMB)

The second binner is related only to Goal 2. It takes composition and abun-
dance as input, and it utilizes joint deep clustering technique.

1.2 Problem Statement

The existing metagenomic binners don’t use unprocessed contigs as their input
features. Instead, they use hand-crafted features calculated from these contigs.
However, contigs contain sequential information that could potentially be used as
an alternative source of information for a metagenomic binner. We assume that
a sequential information-based binner could achieve competitive binning results
compared to the state-of-the-art.
Moreover, to use the full potential of a deep learning-based metagenomic binner,
the model must learn feature representations that will be optimal for the clustering
task. Typically, deep clustering has two separable phases: feature representation
learning and clustering. We will explore the options for interconnecting the two
phases. We aim to explore, whether optimizing the learned feature representa-
tions and clustering simultaneously will lead to improved clustering, respectively
binning results.
Therefore we investigate the following questions in this report:

1. Can we benefit from the sequential information in contigs and achieve com-
petitive binning results by implementing a deep learning model that will use
them as an input?

2. Can we benefit from involving clustering deeper during the training phase?

Chapter 2

Background

This chapter explores the methods, structures, and concepts crucial for deep learn-
ing and deep clustering in the area of metagenomic binner. In Section 2.2, the
fundamentals of deep neural networks are explored, and different types of deep
neural networks are examined.

The following section about the bioinformatics background is borrowed from our previ-
ous work [15].

2.1 Bioinformatics

Section 2.1.1 describes the characteristics and the general structure of DNA, the
building block of all life, while Section 2.1.2 describes the field of metagenomics.
In Section 2.1.3, the process of sequencing is explained based on the techniques
used by the Illumina and Nanopore sequencers. Lastly, the metrics important for
binning, abundance and composition are outlined in Section 2.1.4.

2.1.1 DNA

DNA (deoxyribonucleic acid) is a molecule composed of building blocks called
nucleotides. These nucleotides form long chains which coil around each other into
a structure called a double helix. Nucleotides are composed of four bases: Adenine,
Cytosine, Guanine, and Thymine, along with two other groups, a deoxyribose
group, and a phosphate group. The bases, normally represented with their initials,
are the main carriers of information in DNA and always come in pairs: A-T and C-
G. These base pairs then form larger groups called genes. Genes can have variable
length and definition, but their main distinction is that they are the smallest unit of
"useful" genetic information, i.e., information that instructs the body how to build
proteins [24].

6

2.1. Bioinformatics 7

DNA has the unique property of being able to replicate itself by first unwinding
its two complementary strands and then using each one as a template for replica-
tion. This process is also its main purpose. By doing this, DNA can pass on its
information to the next generation of organisms, thus being preserved and grow-
ing in number. It can also be mutated by the change of a random base pair, thereby
giving the organism it builds new properties and allowing it to adapt to its envi-
ronment. Using this mechanism, DNA forms the basis of evolution and all life on
Earth [25].

Long strands of DNA are bundled into packages called chromosomes. They
are unique for every organism and come in pairs (e.g. humans have 23 pairs of
chromosomes, rice has 12, dogs 39) [26]. The collection of all chromosomes in a
cell is called a genome. It represents the entire genetic material of an organism and
is present in every cell [27].

2.1.2 Metagenomics

Metagenomics is the study of environmental samples containing the DNA of mul-
tiple organisms. By treating the samples as one large genome (metagenome) we
can identify the distinct species found within that sample, and possibly even dis-
cover new ones. This also poses a challenge, as we need to invent algorithms and
methods that can process the vast amounts of data present in metagenomes and
assign it to separate genomes based on the species. Metagenomics has a wide
range of applications, ranging from the human gut microbiome to biofuel [28].

A very helpful tool for the identification of specific genomes within a metagenome
are parts of DNA known as genetic markers. Genetic markers are DNA sequences
whose position on a chromosome is known [29]. Because of this, a genetic marker
can be used to identify species based on their genome. A special and important cat-
egory of genetic markers for metagenomic binning are single-copy marker genes,
as they have the property of occurring only once in a genome [30].

2.1.3 Sequencing

Sequencing is the process of identifying the sequence of nucleotide bases of a par-
ticular DNA molecule [31]. There are many different approaches for achieving this.
This study focuses on the process used by the Illumina and Nanopore sequencers.
We also describe the most common file types that are used in sequencing.

Nanopore Sequencing

The following description of the Nanopore sequencer is mainly based on [32]. The
name comes from the nanopore, a hole in the size of nanometers. Attached to

8 Chapter 2. Background

the nanopore is a sensor that measures the ionic current of anything that passes
through it.

In the first step, a DNA fragment is attached to the adapters of the Nanopore
device. To allow contiguous sequencing of both DNA strands, they are covalently
attached to each other. The DNA fragment is then passed through the Nanopore
and a sensor captures changes in ionic current. Worthy of note is that the first
strand that is read is called a “template read” and the complementary strand is
called a “complement read”. In the next step, the changes are separated into dis-
tinct segments in regards to mean amplitude, variance, and duration. Every base
has a different pattern of these characteristics, allowing us to translate these ionic
changes into corresponding bases. This is then translated into k-mers. K-mers rep-
resent all possible substrings of length k in a given nucleotide sequence [33], with
k here ranging from 3-6. An example of all 4-mers of the sequence "ATGCATAT"
is shown in Figure 2.1.

Figure 2.1: All possible 4-mers for the sequence "ATGCATAT"

Illumina Sequencing

The process of sequencing used by Illumina is described based on [34] and visual-
ized in Figure 2.2. In the first step, the DNA sample is randomly split into smaller
sequences. Next, complementary adapters are attached to both ends of a sequence
as a marker and the marked sequences are put on a solid plate called a flow cell
(A). In the next step, several copies of each sequence (clusters) are created by using
a process called PCR bridge amplification (B). The last step is to determine the nu-
cleotide order of the sequences (C). First, a primer is attached to the adapter on the
top of the sequence (marked here in green). Then, the complementary nucleotide
for the first nucleotide in the sequence is attached to the primer (marked in red and
yellow). These complementary nucleotides are fluorescently labeled, where each
of the 4 DNA bases has a different fluorescent label. Next, a laser scans the cluster
to determine the fluorescence, and therefore the added base. This process is then
repeated for the entire sequence until the bottom adapter (purple) is reached.

2.1. Bioinformatics 9

Figure 2.2: Illustration of the three stages (A, B and C) of Illumina sequencing[35, p. 5].

Comparison

For all DNA sequencing applications besides De novo sequencing, Illumina has a
recommended read length of 150 bp (base pairs) [36], while the MinION device
is advertised of having an unrestricted read length [37]. Practical advantages of
the Nanopore technology are that the devices are portable and start from 1000$.
On the other hand, a disadvantage of the Nanopore technology is that the read
accuracy is lower than the 99% accuracy achievable with short-read technologies
like Illumina [38]. A comparison of both devices on sequencing Campylobacter
jejuni strains showed that the MinION called 1 in 10 bases incorrectly, while the
Illumina miscalled 1 in 36 bases [39].

10 Chapter 2. Background

Assembly

After sequencing is done, we are left with many fragmented short reads that do
not provide sufficient information about the original genome. Due to this, we
need assemblers to combine these short reads into longer ones. However, this
task is challenging for many reasons, some of them being read errors, repetition
of small sequences within the original sequence, miss-assembled sequences, and
many others. Tools for dealing with this task are e.g. the Burrows-Wheeler Aligner
[40] for short read alignment and assembling, or the newer Minimap2 [41]. The
results of the assembly step can be represented as files with the .fasta or .contigs
extensions.

Other Common Preprocessing Data Structures

Sequence Alignment/Mapping - SAM Files with the .sam extension contain bi-
ological sequence data in the tab-separated format. SAM files contain an optional
header and an alignment section. The header, when present, must be located prior
to the alignment section and has to start with an "@" character. Alignment, how-
ever, starts without "@" and contains 11 mandatory fields for important alignment
information among other optional fields for additional data coming from the align-
ment.

Binary sequence Alignment/Mapping - BAM Files with the extension .bam are
essentially SAM files in a binary format for space saving. They are used as the
main input for many binners. In practice, a BAM file’s contents can be sorted by
many criteria, some of them being alignment length, read name, etc. A sorted
BAM file can sometimes speed up the binning process.

2.1.4 Abundance and Composition

The composition of a sequence is a metric that provides information about the
structure of a sequence at the k-mer level. Composition describes with which
percentage a k-mer occurs in a contig. It is represented as a vector that stores
the number of occurrences of each k-mer in the sequence. Due to the need of
comparing different sequences, the composition vector is normalized over the sum
of all counts, e.g. a normalized composition vector for AATGCAAT for the k-mers
of size 3 would be the following:

2.2. Deep Neural Networks 11

3-Mer Probability
AAT 2/6
ATG 1/6
TGC 1/6
GCA 1/6
CAA 1/6

Table 2.1: Composition example for the sequence "AATGCAAT".

We use the composition metric due to the fact that the composition of closely
related genomes is usually very similar. Most often, composition is created using
4-mers, as there is a suitable number of 4-mers. The vector of 4-mers has a size
of 136, much more than a vector of 3-mers and much less than a vector of 5-mers,
giving it a balance between expressiveness and computational cost. We have to
note that 136 is fewer than the number of 4-mers. This is the case because we have
redundant information when using all 4-mers, as there are 120 reverse complement
4-mers like GTAA - TTAC and 16 palindromes like TAAT [42, p. 5].

The other metric we use, which is the abundance or coverage of a sequence,
provides information about how similar the sequences of several aligned reads
are. Sequences with similar abundance are likely to be from the same genome.
There exist several approaches for calculating abundance. For instance, VAMB
uses reads per kilobase per million mapped reads (RPKM) as its abundance value
[43, p. 2]. The RPKM score is calculated according to the following formula [44]:

RPKM = 109 × Reads mapped to the transcript
Total reads × Transcript length

RPKM is used to essentially rescale the gene counts using the length of the gene
and the number of mapped reads.

2.2 Deep Neural Networks

Deep learning is an area of machine learning that utilizes deep neural networks
for problem-solving [45]. The concept of deep neural networks is inspired by the
neurons of the human brain [46]. The basic unit of a deep neural network is the
perceptron. The perceptron takes as input a n-dimensional input vector x with
(x1, ..., xn). Connected is a n-dimensional weight vector w with (w1, ..., wn). The
perceptron computes a single output y by the following formula [47]:

x ·w = y (2.1)

Commonly, a bias weight denoted with b is added to the formula to fit the network
better to the data. The formula to calculate the output, including the bias, is defined

12 Chapter 2. Background

as the following:
x ·w + b = y (2.2)

The bias can also be included in the weights. In that case a constant of 1 must be
added to the input.

Figure 2.3: Illustration of the perceptron. Inspired by [48].

To transform the output of a perceptron, the output can be passed through an
activation function ϕ for non-linear transformation. The most common activation
functions are:

• Sigmoid function

• Tanh function

• ReLU function

• Softmax function

Sigmoid function

The sigmoid function is defined by the following equation[47] and visualised in
Figure 2.4:

sig(x) =
1

1 + e−x (2.3)

Figure 2.4: Visualisation of the sigmoid function [49].

2.2. Deep Neural Networks 13

The sigmoid function is differentiable and monotonic. As the range of the
function is from 0 to 1, the sigmoid function is well suited for problems that involve
probabilities.

Tanh function

The tahn function is defined by equation[46]:

tanh(x) =
ex − e−x

ex + e−x (2.4)

The tanh function is visualised in Figure 2.5:

Figure 2.5: Visulisation of the tanh function.

The tanh function has a range from -1 to 1 and its shape is similar to the sigmoid
function. Additionally, the tanh function is also differentiable and monotonic. Due
to its range, the tanh function is often used for classification problems.

ReLU Function

The ReLU (Rectified Linear Unit) function is defined by the following formula [47]:

ReLU(x) = max(0, x) (2.5)

The function is illustrated in Figure 2.6.

Figure 2.6: Visualisation of the ReLU function.

14 Chapter 2. Background

The ReLU function outputs 0 if the input is ≤ 0 else the output value is equal
to the input value. The ReLU function is only non-differentiable at zero and mono-
tonic.

Softmax Function

The softmax activation function probabilistically expresses the likelihood of the
predicted values in a vector by scaling them, so that these probabilities sum up to
1 [50]. The softmax function is defined as:

so f tmax(
→
x)i =

exi

∑N
n=1 exn

(2.6)

Here, (
→
x)i is the i-th input vector, and exi is a standard exponential function

applied to each element in the vector. The denominator normalizes the output
values.

2.2.1 Neural Networks

Neural networks are created by organising different neurons into layers. A basic
neural network is illustrated in Figure 2.7.

Figure 2.7: Basic neural network structure. Inspired by [51].

The first layer of a neural network is called the input layer, and the last layer is
called the output layer. The input layer has the same size as the input vector x. The
middle layers are also known as hidden layers. In Figure 2.7, the network consists
of 3 input neurons, 4 neurons in the hidden layer and 2 neurons in the output
layer. The lines between the layers are representing the weights. In a feedforward

2.2. Deep Neural Networks 15

network, each neuron performs the following equation to compute an output y:

y = ϕ(b +
n

∑
i=1

xiwi) (2.7)

To note is that the output of the hidden layer is denoted with h.
In Equation (2.7), ϕ is an activation function, b the bias, xi is the i-th input and

wi is the weight of the i-th element.
The loss function is an essential part of training a neural network. It evaluates

to which degree can a network output the correct value for a given input, and it
compares the output with the correct value and indicates how well the network
performed. While training, the neural network tries to minimize the loss function.
There exists a wide range of loss functions where each one is suitable for a certain
problem that should be solved. Two commonly used loss functions are the cross-
entropy loss and the mean squared error loss. As we will see later in this report,
sometimes searching for the optimal solution involves working with special and
less frequently used loss functions such as the cosine similarity loss.

There are several variations of the cross-entropy loss. The most common two
are the categorical cross-entropy loss and the binary cross-entropy loss. The cate-
gorical cross-entropy loss is used primarily for multi-class classification tasks [52].
It assumes, that a single class out of several possible ones is correct. Since the target
labels are one-hot encoded, in situation where there are 4 possible categories and
first one is labeled as correct, the output vector has a shape [1,0,0,0].

LCE = −
x

∑
i=1

yilog(p(yi)) (2.8)

In Equation (2.8), yi is the truth label, p(yi) is the softmax probability of the pre-
dicted label belonging into i-th class and x is the number of classes.

The binary cross-entropy function is used for models that output a probability
between 0 and 1, and for binary classification tasks. It differs from categorical
cross-entropy loss by considering each output individually [52]. It is defined by
the following formula:

LBCE = −
x=2

∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi)) (2.9)

In Equation (2.9), yi is the correct label and p(yi) is the predicted probability. The
number of classes x is set to 2, because the truth values are either 0 or 1.

Mean squared error is used for models that output a continuous real number
and it is defined by:

LMSE =
1
N

N

∑
i=1

(yi − p(yi))
2 (2.10)

16 Chapter 2. Background

In Equation (2.10), yi is the ground truth label of the i-th data-point, and p(yi) is
the predicted label for the i-th data-point.

Cosine similarity loss is measuring the cosine of the angle between an input
vector and a predicted vector. The higher the similarity between the vector is, the
higher is the accuracy of the prediction. The loss outputs values in between −1
(perfectly opposite vectors) and 1 (identical vectors) [53]. The loss is expressed as:

LCOS = cos(θ) =
y · p(y)
∥y∥∥p(y)∥ =

∑N
i=1 yi p(yi)√

∑N
i=1 y2

i

√
∑N

i=1 p(yi)2
(2.11)

Usually, the cosine similarity loss is used to compare the similarity between
two documents [53]. However, the loss is also useful when comparing similarity
between two mathematical vectors.

Gradient descent is an optimisation algorithm that will find the minimum of a
function. In this setup, the goal is to find the set of weights for the lowest loss. It
utilizes the gradient to a function to push the weights towards the minimum of the
function. The gradient indicates the opposite direction of the minimum. Therefore,
the weights can be adjusted by updating them towards the negative of the gradient.
It is defined by following formula:

w = w− γ · ∇ f (w) (2.12)

w represents the weights of the function and ∇ f (w) the gradient of the function.
Here, γ is the so-called learning rate. The learning rate is a factor multiplied by the
gradient in order to control how big the steps that are taken towards the minimum
are. A small learning rate increases the optimization time. A too-large learning
rate can lead to missing the minimum.

The pseudocode for this algorithm is provided below [46].

Algorithm 1 Gradient Descent Algorithm

Initialize weights randomly
repeat

Compute gradients ∇ f (w)

Update weight w← w− γ · ∇ f (w)

until convergence of weights
return weights

Firstly, the weights w are randomly initialised. Next, the gradients of the pre-
diction function f with the specific values for w are computed. This process is
repeated until convergence.

2.2. Deep Neural Networks 17

2.2.2 Backpropagation

This subsection is a slightly modified version of the subsection with the same name from
our previous report [15].
Backpropagation is an algorithm used for computing the gradients of a loss func-
tion in order to determine how training examples should optimize the weights w
and biases b of a neural network. It does this in two ways:

1. It determines whether they should increase or decrease

2. It calculates the proportions of those changes in a way that optimizes the loss
function in the fastest possible way

A true gradient descent step would involve doing this for all the training exam-
ples in our dataset and then calculating the average value. The process is computa-
tionally intensive, so alternatively, data can be subdivided into minibatches with a
smaller number of examples. The other extreme would be to use just one training
example, but this turns out to be worse than the minibatch version due to being
less precise.

The Backpropagation Algorithm

In general, there are three requirements for the backpropagation algorithm:

• A dataset with input-output pairs (xi, yi), where xi is the input vector and
yi is the output vector. Given N is the size of input-output pairs, the dataset
can be represented as X = {(x1, y1), ...,(xN , yN)}

• A feedforward neural network where there are no connections between
nodes within the same layer, while being fully connected between adjacent
layers.

• An error function E(X, θ) that defines the error between correct label yi and
the predicted output p(yi). The gradients of this error function are updated
in each iteration t during the training of the neural network. An iteration of
the algorithm can be described by the following equation, where γ denotes
the learning rate and θ denotes the parameters of the network, i.e. its weights
w and biases b:

θt+1 = θt − γ
∂E(X,θt)

∂θ

18 Chapter 2. Background

Generic Backpropagation

There are five equations needed in order to understand the generic backpropaga-
tion algorithm:

• Calculate partial derivatives:

∂E
∂wk

ij
= δk

j ok−1
i (2.13)

where ∂E
∂wk

ij
is the partial derivative of the error function E in respect to weights

wk
ij. It equals to the error term δk

j (the error at node j in layer k) multiplied by

ok−1
i : the output of node i in layer k− 1.

• Calculate error terms for the output layer:

δm
1 = ϕ′o(am

1)(p(y)− y) (2.14)

where ϕ′o is the derivative of the output layer’s activation function, m is the
index of the final layer, am

1 is the product sum plus bias for node 1 in the m-th
layer.

• Calculate error terms for the hidden layers:

δk
j = ϕ′(ak

j)
rk+1

∑
l=1

wk+1
jl δk+1

l (2.15)

where ϕ′ is the derivative of the hidden layer’s activation function, ak
j is the

product sum plus bias for node j in layer k, l counts all layers from index 1
to rk+1 (the number of nodes in the next layer)

• Aggregate partial derivatives of each input-output pair:

∂E(X, θ)

∂wj
ij

=
1
N

N

∑
1

∂

∂wk
ij
(

1
2
(p(yd)− yd)

2) =
1
N

N

∑
1

∂Ed

∂wk
ij

(2.16)

• Update the weights:

∆wk
ij = −γ

δE(X, θ)

δwk
ij

(2.17)

After selecting a suitable learning rate γ and randomly initializing parameters
w, the algorithm will go through the following steps:

2.3. CNN 19

1. Calculate the forward pass of each input-output pair (xd, yd) and store a set
of three results p(yd), ak

j , ok
j for each node j in the layer k by processing values

from the input layer 1 to the output layer m.

2. Calculate the backward pass of each input-output pair (xd, yd) and store the
results of ∂Ed

∂Ek
ij

for each weight wj
ij which is connecting node i of layer k− 1 to

node j in layer k by processing all values from output layer m to the input
layer 1. This is done in the following 3 steps:

(a) Use equation (2.14) to evaluate the output layer’s error term

(b) Go backwards through the hidden layers δk
j and use equation (2.15) to

propagate the error terms from the last hidden layer k = m− 1

(c) Use equation (2.13) to calculate partial derivatives.

3. Aggregate gradients for each input-output pair ∂Ed
∂Ek

ij
to get the final gradient

∂E(X,θ)
∂wk

ij
for all input-output pairs X = (x1, y1), (x2, y2), ..., (xn, yn) by using

equation (2.16).

4. Update the weights using the learning rate γ and the sum of gradients ∂E(X,θ)
∂wk

ij

using equation (2.17).

2.3 CNN

The CNN (Convolutional Neural Network) is a type of ANN (Artificial Neural
Network) that extracts higher representations of data. It consists of a set of feed-
forward layers. CNN is mostly used for classification tasks on image data, but can
also be used for data analysis [54]. The hidden layers of CNN are called convolu-
tional layers. The two main operations within a convolutional layer are convolution
and pooling [46].

2.3.1 Convolution

Convolution is an operation that abstracts high-level features from the input. The
input of each convolutional layer is a multidimensional array. This multidimen-
sional input is referred to as a tensor. The input itself is called a channel. The
weight tensor of a CNN is called a filter or kernel. Typically, the kernel has smaller
size than the channel.

An example of a one-dimensional kernel is
⌈
1 1 1

⌉
.

20 Chapter 2. Background

With the kernel, it is possible to abstract features from the input by performing
convolution. Defined is the convolutional operation as [55]:

(f ∗ g)(i) =
m

∑
j

g(j) · f (i− j + m/2) (2.18)

Here, f is the input tensor, g is the kernel, and n and m are the lengths of the
input tensor, respectively, the kernel. The output is referred to as the feature map.
A convolution can basically be viewed as a dot product between an input and a
kernel, with the goal to obtain a feature map. The values of the kernel and the
input channel are multiplied and summed up to compute each value of the feature
map. The feature map has reduced dimensionality compared to the input. An
important parameter in the context of convolution is the stride. Stride defines, if
the convolution should be evaluated for every column and row or only for every
n-th column and row. It is also possible to have multiple input channels, where
depth refers to the number of input channels.

An example of convolution is given in Figure 2.8.

Figure 2.8: Convolution example. Here, the input matrix has a size of 5, and the kernel has a size
equal to 2 units. The stride is set to 1, and the feature map is of a size 4 [56].

A CNN has a sparse connectivity, because it detects meaningful features using
a kernel that is smaller than the input. Another characteristic of CNN is that the
weight tensor (kernel) is used at every position of the weight. This contrasts with
an ANN such as autoencoder where the weights are not shared.

Through performing convolution, the output will be shrunk to smaller dimen-
sions. This shrinking can be a problem for the following layers if the size of the
output gets very small. Another problem is that information from the edges is lost,
as the filter will take the other areas more into account due to the kernel slides. A
solution to this is to pad the input tensor around the tensor border. Commonly,
the tensor is padded with values of 0.

Here, p is the padding amount. An example of padding is given in Figure 2.9.

2.3. CNN 21

Figure 2.9: Padding example with padding set to 1 [57].

After the convolution, a non-linear activation function is applied.

2.3.2 Pooling

A pooling layer reduces the size of the representation and achieves translational
invariance. Translational invariance means that the location of a feature will not
be taken into account [58]. Each pooling layer performs a pooling operation. The
most common pooling operations are:

• Max Pooling

• Average Pooling

Max Pooling

Instead of computing a dot-product between input and kernel, a feature map value
is computed by taking the maximum value of the region. Max pooling abstracts
the most prominent features [58] of each input region. An example of max pooling
is illustrated in Figure 2.10.

Figure 2.10: Example of max pooling. In the example, the kernel has a size of 2 units and the pooling
size is 2. For each of the coloured areas, the maximum value of the area is abstracted.

22 Chapter 2. Background

Average Pooling

Average pooling abstracts the average features [58] of each input region. Fig-
ure 2.11 visualizes the example of this operation.

Figure 2.11: Example of average pooling. In the example, the kernel has a size of 2 units and the
polling size is 2. For each of the coloured areas, the average value of the area is abstracted.

2.4 Autoencoder

This section is a slightly modified version of the subsection with the same name from our
previous report[15].

An autoencoder is an unsupervised artificial neural network that allows for the
encoding and subsequent decoding of data. In order to perform these operations,
an autoencoder is split into two parts [59]:

• An encoder f : Rn → Rp

• A decoder g : Rp → Rn

The encoder is tasked with reducing high-dimensional input data of dimen-
sion n into a lower-dimensional embedding of dimension p. The decoder, on
the other hand, tries to recreate the input data from these embeddings. In other
words, a lower-dimensional embedding of dimension p is transformed into a high-
dimensional output of dimension n. This way, the autoencoder is forced to learn
the characteristics of the input data, instead of just storing all of the input data’s
information inside of its nodes. The functions f and g that define the encoder and
decoder are trained by minimising a loss function L in the following way [58]:

L(x, g(f (x)))

This loss function is called a reconstruction loss and it is tasked with penalizing
the dissimilarity between the input x and the decoded encodings of x. The most
commonly used loss functions are the mean squared error and the cross-entropy
loss.

2.4. Autoencoder 23

Both the encoder and decoder are consisting of layers of interconnected neu-
rons, not too dissimilar from a standard neural network. They consist of an input
layer and an output layer, in addition to one or more hidden layers. Figure 2.12
illustrates this structure.

Figure 2.12: Illustration of the basic autoencoder structure. Inspired by [60].

2.4.1 Stacked Autoencoder

A stacked autoencoder is a variant of an autoencoder that consists of more than
two autoencoders stacked together. The autoencoders are stacked together layer by
layer, meaning that the first layer is pretrained before the next one. The output of
the hidden layer is the input of the next hidden layer. Layer-wise pretraining means
that the output of one layer is the input for the next one. Each layer of the staged
autoencoder is trained by minimizing the reconstruction loss in this pretraining.
After pretraining, back-propagation is used to fine-tune the autoencoder. [61]. The
general structure of a stacked autoencoder is visualized in Figure 2.13.

24 Chapter 2. Background

Figure 2.13: Example for the general structure of a stacked autoencoder. Inspired by [62].

2.4.2 Variational Autoencoder

This section is a slightly modified version of the subsection with the same name from our
previous report[15].

A variational autoencoder is a generative probabilistic model specialised for
learning latent representations [63], standing in contrast to a generic autoencoder.
A variational autoencoder learns these latent representations by modeling a dis-
tribution, often a normal distribution, over the input data. It can then reconstruct
instances similar to the original data from this distribution with some variation
added to it. The structure of a variational autoencoder is shown in Figure 2.14.

Figure 2.14: Structure of a variational autoencoder. Input data x is encoded using the encoder
qϕ(z|x) into a latent space z via a normal distribution with mean value µ and covariance σ. When
reconstructing the data using the decoder pθ(x|z), the data is sampled from the normal distribution
with added randomness ϵ. Inspired by [63]

2.4. Autoencoder 25

A variational autoencoder has to tackle the problem of the calculation of the
true posterior pθ(z|x) of a distribution being intractable. To solve this, the true
posterior distribution can be approximated with a recognition model qϕ(z|x). More
precisely, let us assume that we have a dataset X = {xi}N

i=1 that consists of N
samples of a variable x. We are now faced with the problem that the process by
which the data was generated has some latent variable z. z is generated from a
prior distribution pθ(z) and x with the likelihood pθ(x|z) [64]. The parameter θ

and the values of the latent variable z are unknown to us.
To solve that problem, the generative model tries to approximate the true pos-

terior distribution with a multivariate Gaussian. The reason for this is that the
Gaussian distribution is easy to model due to having only two parameters. The
effect of these parameters on the distribution is shown in Figure 2.15.

Figure 2.15: Illustration of the Gaussian distribution for different values of µ (mean) and σ2 (variance)
[65].

To optimize the distribution, it is necessary to learn the parameters θ and ϕ. In
the process of learning, we will use a similarity measure called Kullback–Leibler
divergence (DKL). The DKL measures how dissimilar two distributions p and q are
from each other [58]. It is defined using the following equation:

DKL(q||p) = ∑
{x}∈X

q(x) log
q(x)
p(x)

with the properties:

• DKL(q||p) = 0 iff p = q

• DKL(q||p) ≥ 0 else

This means that DKL is always greater or equal to 0 whenever the distribution
q is not similar to the distribution p. The greater the value of DKL(q||p) is, the

26 Chapter 2. Background

more dissimilar the distributions q and p are. We also need to note that DKL(q||p)
is asymmetric in regards to q and p, meaning that DKL(q||p) ̸= DKL(p||q). In the
context of deep learning, the DKL is often use to match an auxiliary q distribution
to a target distribution p. To match the distributions, the DKL(q||p) is minimised.

We can rewrite the DKL if we take the following relation with marginal likeli-
hood into account. The marginal likelihood log pθ(x(1), ..., x(N)) can be generally
written as the sum over the marginal likelihoods of the data points in the dataset
∑N

i=1 log pθ(x(i)). The marginal likelihood log pθ(x(i)) can now be rewritten as [64]:

DKL(qθ(z|x(i))||pθ(z|x(i))) + L(θ, ϕ; x(i))

This expression consists of two terms: the DKL and the ELBO (Evidence Lower
Bound), also known as the variational lower bound. The ELBO represents a lower
bound to log pθ(x(i)). Minimizing the DKL is equivalent to maximizing the ELBO.
Therefore, we can optimize the parameters θ and ϕ by maximising the ELBO using
stochastic gradient ascent during training. The ELBO itself can be rewritten to:

L(θ, ϕ; x(i)) = −DKL(qϕ(z, x(i))||pθ(z)) + Eqϕ(z|x(i))[log pθ(x(i)|z)]

During optimization, the DKL term in this equation has the purpose of regu-
larizing the parameters, while the second term represents the expected negative
reconstruction error. However, before learning can be performed, we need to repa-
rameterize the encoder. The reason for this is illustrated in Figure 2.16.

Figure 2.16: Illustration of the parameterization problem for the encoder. Inspired by [66].

In this figure, the variable z is a random variable. The problem we encounter
here is that backpropagation is not suited for passing through a random node.
Therefore, we need to outsource the property of randomness to a different node ϵ.
We do the following. First, we redefine z as a deterministic variable z = gϕ(ϵ, x). ϵ

is a component of added noise, and it is defined with a distribution p(ϵ). gϕ(·) is a
vector valued function, meaning that it takes a value as input and returns a vector.
Hence, we can reparameterize the model by adding the noise ϵ as a randomness
component, as illustrated by Figure 2.17.

2.4. Autoencoder 27

Figure 2.17: Illustration of the reparameterization trick. Inspired by [66].

For the variational autoencoder, we parameterize p(z) with the normal distri-
bution pθ(z) = N(z; 0,1). Furthermore, the recognition model is parameterized by
qϕ(z|x) = N(z; µ,σ2). With that being done, it is now possible to use the SGVB
(Stochastic Gradient Variational Bayes) estimator to learn the parameters θ and ϕ.
The ELBO of this estimator is defined as [64]:

LA(θ, ϕ; x(i)) =
1
L

L

∑
l=1

log pθ(x(i), z(i,l))− log qϕ(z(i,l)|x(i))

where

z(i,l) = gϕ(ϵ
(i,l), x(i))ϵ(l) ∼ p(ϵ)

For training, the AEVB (Auto-Encoding Variational Bayes) algorithm is used in
a minibatch version. The algorithm is visualized in Algorithm Algorithm 2.

Algorithm 2 Minibatch version of the Auto-Encoding Variational Bayes (AEVB) algorithm.

θ, ϕ← Initialize parameters
repeat

XM ← Random minibatch of M data points (drawn from full dataset)
ϵ← Random samples from noise distribution p(ϵ)
g← ∇θ,ϕL̃M(θ, ϕ; XM,ϵ) (Gradients of minibatch estimator)
θ, ϕ← Update parameters using gradients g (e. g. SGD or Adagrad)

until convergence of parameters (θ, ϕ)
return θ, ϕ

In each step, a random minibatch of size M is drawn from the dataset together
with samples from a noise distribution. Next, the gradient of the ELBO in regards
to the current values of θ, ϕ, and the samples is calculated. The parameters θ and
ϕ are updated in accordance with the gradient, and the process is repeated until
the parameters converge or we reach the last iteration.

28 Chapter 2. Background

2.4.3 Convolutional Autoencoder

The CAE (convolutional autoencoder) is an ANN structure that applies the CNN
on an autoencoder framework. The characteristic of a CAE is that the autoencoder
is built with convolutional layers. Defined is the CAE as the following [67]:

eW(x) = σ(X ∗W) = z (2.19)

dU(z) = σ(z ∗U) (2.20)

Here, W and U are tensors, and ∗ refers to the convolutional operator. Like the
plain autoencoder, the encoder transforms the input x into a latent representation
z. The decoder restores the original input. CAEs are used for example to detect
anomalies [68] or for feature extraction [69].

2.5 Clustering Techniques

In this section we explore clustering techniques that are frequently used by deep
clustering methods.

2.5.1 K-means Clustering

K-means is an iterative clustering algorithm that groups n data points into k clus-
ters. Given a dataset X = {x1, ..., xn}, the k-means algorithms forms k clusters, by
assigning each datapoint xi with i from 1 to n to one of the k clusters. The number
of clusters k is a hyperparameter. K-means is an iterative algorithm that refines
the cluster assignment for each iteration of the algorithm. For each cluster k there
exists a cluster centroid µj with j in {1,..,k}. The centroids are also referred to as
cluster centers. At the start of the algorithm, the centroids are assigned to random
data points or random points in the cluster space. In each iteration, every point
xi is assigned to the closest centroid and the centroids are refined. The distance
from the data point to the centroid is measured by a distance function such as the
Euclidean distance. K-means use the following loss function to minimize the total
mean squared error between data points and centroids [70]:

LKM =
k

∑
j=1

n

∑
i=1
||xi − µj||22 (2.21)

The loss function describes that every data point gets assigned to the centroid
with the minimum distance between the centroid and data point. After assigning
each data point to the current closest centroid, the position of each centroid gets

2.5. Clustering Techniques 29

updated. The new position for each centroid µj is calculated by the following
formula: [70]:

µj = (
1

mj
)

mj

∑
i=1

xi (2.22)

In this equation, mj represents the number of data points of the j-th cluster. The
equation shows that the centroids are updated according to their mean data point.
The assignment of each data point to a cluster and the update of the centroid is
done iteratively until the cluster assignments converge. K-means will try to cluster
the data points into a circular form, which makes this method unsuitable for certain
datasets. Additionally, the quality of the cluster assignment is highly determined
by the initial centroid assignments.

2.5.2 KL Divergence Clustering

Another centroid-based method is the KL divergence clustering. It is a soft assign-
ment clustering method, meaning that every data point is assigned to each cluster
with a certain probability [70]. First, initial centroids µj with j from 1 to the num-
ber of clusters k are obtained by running k-means. For refinement of the centroids
µj, the algorithm is minimizing KL divergence. KL divergence is a measure of a
difference between two distributions [kl], in this case an auxiliary target distribu-
tion P and a soft-assignment distribution Q. The KL divergence loss function is
utilized to minimize the distance between the two distributions and it is defined
as follows:

LKLD = KL(P||Q)∑
i

∑
j

pij log(
pij

qij
) (2.23)

Soft assignments are the current cluster predictions. Target distribution rep-
resents the ideal clusters, and it is up to the deep learning method that uses this
technique to define such ideal clusters. Target distribution takes into account high
confidence data points.

In each iteration of the algorithm, the soft assignment probability qij and the
target distribution pij are computed for each data point i and each cluster j. Next,
each cluster centroid µj is updated according to the gradients of the KL divergence
loss and the previous centroids. This process is repeated iteratively until conver-
gence, or until the maximum iteration is reached. The soft assignments for each
data point i and cluster j are computed by the following formula:

qij =
1 + ∥xi − µj∥2)−1

∑j(1 + ∥xi − µj∥2)−1 (2.24)

The target distribution to obtain the high confidence data points is calculated. It
is obtained by computing the soft cluster frequencies and defined by the following

30 Chapter 2. Background

formula:

pij =
q2

ij/ ∑i qij

∑j(q2
ij/ ∑i qij)

(2.25)

Lastly, each cluster centroid µj is updated by the following formula:

µj = µj −
λ

n

n

∑
i=1

∂LKLD

∂µj
(2.26)

In this equation, ∂LKLD and ∂µj are the gradients of the KL divergence loss and the
centroid.

2.6 Deep Clustering

Architectures like the autoencoder learn lower dimensional data representations
from the input. Clustering on these deep representations or embeddings obtained
from a deep learning method is called deep clustering. Clustering on these embed-
dings can improve the clustering results and the cluster extraction. The learning
of embeddings can be seen as a dimensionality reduction in enabling clustering on
lower-dimensional data. Deep clustering approaches vary on the used architecture,
loss functions, and algorithmic. Nevertheless, deep clustering approaches can be
sorted according to the way they structure representation learning and clustering
into the following three categories[71]:

Figure 2.18: The 3 categories of deep clustering. Inspired by [71].

The multi-step sequential deep clustering approach is split up into two stages.
In the first stage, a deep representation is obtained from the input. This represen-
tation is then utilized in the second step for clustering.

2.6. Deep Clustering 31

Figure 2.19: Multi-step deep clustering approach structure. Inspired by [71].

The joint deep clustering approach combines representation learning and clus-
tering into one step. This approach uses a combined or joint loss function to merge
the two stages into one. Such a loss typically consists of a representation learning
loss and a clustering loss.

Figure 2.20: Joint deep clustering approach structure. Inspired by [71].

Closed-loop multi-step deep clustering is similar to multi-step sequential deep
clustering. Like in multi-step, the approach consists of a representation learning
and a clustering step. The difference is that the steps alternate in an iterative loop.

Figure 2.21: Closed-loop Multi-step deep clustering approach structure. Inspired by [71].

An important part of deep clustering algorithms of any category is the loss
function. Different categories utilize different kinds of losses. Methods based on
multi-step sequential deep clustering have a reconstruction loss and a clustering
loss. The reconstruction loss is used to learn the deep learning method, and the
clustering loss to learn the clustering method.

An example of a multi-step deep clustering method is VAMB[1]. The loss of
VAMB is a composition loss of three terms. These terms are the abundance error
Eab, the composition error ETNF, and a penalization DKL term. The overall loss is
defined as:

L = WabEab + WTNFETNF + WDKL DKL (2.27)

The W denotes the weights of the terms.

32 Chapter 2. Background

The reconstruction error consists of the abundance error (Eab) and composition
error (ETNF).

Eab = ∑ ln(Aout + 10−9)Ain (2.28)

ETNF = ∑(Tout − Tin)
2 (2.29)

Here, the abundance error is defined as the cross-entropy and the composition
error as the sum of squared errors. Ain and Tin are the abundance and composi-
tion inputs vector of VAMB. Aout and Tout are the embeddings of abundance and
composition.

For regularisation purposes, the DKL was taken into account as penalization
term.

The term is defined as:

DKL(latent|prior) = −∑
1
2
(1 + ln(σ)− µ2 − σ) (2.30)

In this context, σ is the covariance and µ is the mean of a normal distribution N
described by X ∼ N(µ, σ2).

Methods from the joint deep clustering category combine the objective of repre-
sentation learning and clustering into a single one. Through that combination, it is
possible to jointly learn and optimize the feature representations and clusters. The
combined loss aims for suiting the reconstruction while considering the grouping.

An example of a joint clustering loss is the following loss[72]:

L = λLr + (1− λ)Lc (2.31)

Here, λ is a balancing hyperparameter, Lr is the loss of the representation learning
and Lc is the clustering loss.

Another loss category is the cluster assignment hardening loss. A cluster as-
signment hardening loss is used in the case that the deep clustering method is
based on cluster soft assignment. Methods that utilize such a loss have cluster
assignment probability distribution and auxiliary target distribution.

2.7 Joint Deep Clustering

Joint deep clustering, also known as combined or end-to-end deep clustering method,
jointly optimizes both representation learning and clustering [70]. The main ad-
vantage compared to the sequential deep clustering is the ability to iteratively learn
such embeddings, that are optimal for the clustering task. When the embeddings
are learned in a separate step as it is the case in sequential deep clustering, there
is a risk that the embeddings are not the most suitable for the clustering task that
is to follow. For that reason, by choosing an architecture that utilizes joint deep
clustering, we hope to obtain higher-quality clusters.

2.8. Joint Deep Clustering Methods 33

The most popular network choice for joint deep clustering are stacked and
convolutional autoencoders, described in Section 2.4. Nevertheless, some methods
learn their embeddings with feedforward neural networks and deep belief network
[70].

Joint deep clustering methods can be further classified into three main groups:
the pretraining with fine tuning, the pretraining with joint training and the joint
training [70].

Pretraining with finetuning means, that the network is first pretrained with the
reconstruction loss only. Then in the finetuning part, the clustering loss is used to
slightly manipulate the embedded space of the initialized model.

The pretraining with joint training method also pretrains the network using
only the reconstruction loss. However after the pretraining, both the reconstruction
and the clustering loss are used to manipulate the initialized embeddings.

Joint training methods then refers to methods that skip the pretraining part and
optimize the network using both the reconstruction and the clustering loss.

2.8 Joint Deep Clustering Methods

This subsection proposes an overview of several state-of-the-art deep clustering
methods.

2.8.1 Joint Unsupervised Learning

JULE (Joint Unsupervised Learning) is a CNN and agglomerative clustering-based
method that jointly learns the feature representations and clusters [73]. It is a
method for image clustering. Agglomerative clustering is a hierarchical clustering
method that first creates large number of smaller clusters and then merges them
until k-clusters are reached. The clusters are merged based on affinity. Therefore
an affinity matrix based on the embeddings is created. An affinity matrix keeps
track of the probability that two data points are related. Further to mention is
that JULE is implemented as an (RNN) recurrent neural network. In RNNs, the
neurons of a layer are connected and can take information from prior inputs into
account. Therefore they are usually used for sequential data. For a set of n input
data I = {I1,, In}, the global objective of JULE is defined as the following:

arg min
y,θ
L(y,θ|I) (2.32)

Here, L()̇ denotes the loss function, y denotes cluster IDs, and θ is a parameter
for representation learning. JULE breaks up the optimization into two alternating
steps. The cluster step is defined as:

arg min
y
L(y|I, θ) (2.33)

34 Chapter 2. Background

The representation learning step is defined as:

arg min
θ
L(θ|I, y) (2.34)

It performs clustering in the forward pass and representation learning in the back-
ward pass. The benchmark on image clustering conducted in the JULE paper
showed competitive results. For the benchmark, the performance of JULE was
compared to e.g. k-means and NCuts. On the downside, the usage of affinity
leads to high computational and memory costs on larger datasets.

2.8.2 Deep Embedded Regularized Clustering

DEPICT (Deep Embedded Regularized Clustering) is a CAE-based deep clustering
method that utilizes joint clustering and reconstruction loss. The clustering loss is
based on the KL divergence technique (Section 2.5.2) [70]. DEPICT is structured
into softmax layers that are attached to a multi-layer convolutional autoencoder.
The structure of DEPICT is illustrated in Figure 2.22.

Figure 2.22: Visualization of the DEPICT structure [23].

DEPICT’s convolutional autoencoder consists of an encoder layer, a decoder
layer, and an encoder in the general structure. In the structure it is visible that a
softmax layer is attached to each encoder. LE is the clustering loss that is applied
after the first softmax layer. The reconstruction loss L2 is attached between the
decoder and the second encoder. In overall it can be said that DEPICT jointly
integrates the clusters by attaching the softmax layer in between the encoder and
decoder part. DEPICT uses an entropy loss that contains a regularisation term for

2.8. Joint Deep Clustering Methods 35

the clustering. Regularisation is added to the clustering part to avoid outliners
influencing the clusters. The benchmark on image clustering conducted in the
DEPICT paper showed competitive results. For the benchmark, the performance of
DEPICT was compared to e.g. k-means, NCuts, and JULE. DEPICT shows similar
results to JULE. To note is that the structure of DEPICT is much more memory
friendly than the one of JULE.

2.8.3 Deep Convolutional Embedded Clustering

Deep Convolutional Embedded Clustering (DCEC)[67] is a joint KL divergence
clustering method that simultaneously uses both reconstruction and clustering loss
for the task of unsupervised clustering. DCEC uses a convolutional autoencoder
structure that learns embeddings of the input data. This is followed by joint cluster
assignment and embedded feature refinement, until a stopping criterion is reached.

The method consists of two main phases. The first phase is parameter ini-
tialization, and the second phase involves parameter optimization and clustering.
In the first phase, DCEC pretrains the convolutional autoencoder using only the
reconstruction loss. This allows the network to a compute meaningful target dis-
tribution. In the second phase, finetuning is performed iteratively by using both
KL divergence loss as a clustering loss Lc, and MSE as a reconstruction loss Lr. By
incorporating the reconstruction loss, the local structure of the data is preserved
and corruption of feature space is minimized.

The resulting joint loss minimization L is an optimization problem that is solved
by a back propagation and stochastic gradient descent [67].

DCEC was benchmarked on image-based datasets MNIST and USPS, with very
good results. Compared to JULE, DCEC performed about 2% worse on the MNIST
dataset [73].

In Figure 2.23 is shown the structure of the convolutional autoencoder of the
original DCEC model. Specifically, it shows the proposed structure for the MNIST
dataset. Here, the autoencoder consists of three encoding layers Conv1, Conv2
and Conv3; and three decoding layers DeConv1, DeConv2 and DeConv3. In the
middle there is an embedding layer h of size 10, followed by a fully connected layer
FC [67].

36 Chapter 2. Background

Figure 2.23: The structure of Convolutional Autoencoders in the original DCEC model for MNIST
dataset [67].

2.8.4 Deep Embedded Clustering

Deep Embedded Clustering (DEC)[74] is one of the first methods that proposed
joint clustering learning by simultaneously learning feature representation and up-
dating cluster assignments using deep architecture. The proposed implementation
of DEC uses a stacked autoencoder as the deep neuron network to learn feature
representation as initialized parameters in the first phase. It is worth mentioning
that the authors discard the decoder part after training and only uses the encoder
with its feature representation. In the next phase, the clustering optimization is
done by iteratively computing auxiliary target distribution and minimizing the KL
divergence.

Figure 2.24: The overall structure of DEC [74].

The Figure 2.24 illustrates the DEC structure where we can see that the DEC

2.8. Joint Deep Clustering Methods 37

employs only the encoder part of the stacked autoencoder. It relies on the KL di-
vergence loss of the Student’s t-distribution P and target distribution Q to enhance
clustering result. The detail of Student’s t-distribution and target distribution cal-
culation is clarified more in section 2.8.6. DEC is the pioneer [70] that applies joint
learning in clustering, the method gives a lot of inspiration for next studies in the
field of clustering using deep neuron networks.

2.8.5 Discussion: Method Selection

After evaluating different deep clustering methods, we have concluded that Deep
Convolutional Embedded Clustering (DCEC)[67] is the best fit for our use case. In
this project, the method will be adapted for the use in metagenomic binning. When
selecting the most suitable method, we have considered several criteria. This in-
cludes computational resources required by the method, number of hyperparame-
ters that needs to be tuned, the type of joint loss function used and the specific type
of deep clustering that is utilized by the method. This section further elaborates on
each of the criterion.

Firstly, it is important that the selected method is not too computationally
heavy. Not only would such a method be impractical for the purpose of this
project. Our goal is to develop a method that could be used for metagenomic
binning in practise. Reasonable running time and consumed resources are there-
fore of a concern. Metagenomic binning is a relatively computational heavy task
that processes a large amount of data. That is why these already existing problems
could be further accelerated when using a computation heavy method. For this
reason, we eliminated a candidate solution DEPICT [23]. This model requires long
running time and requires usage of some computationally heavy libraries. An-
other potentially suitable method Convolutional Embedded Network (CEN) [75]
is designed for processing extremely large amount of data. For instance, it is us-
ing Apache Spark, an open-source analytic engine for large scale data processing
[76]. Based on our research, such design would not be efficient for the purpose
of metagenomic binning. Computational expensiveness of heavier models would
also cause another disadvantage. In case of eventually suboptimal results, it would
be very hard to discover what caused them. It could be because of unsuitabil-
ity of the CNN-based approach itself, or it could be because of the overall model
composition.

Another criterion to consider is the amount of hyperparameter tuning required.
The more parameters are there to be tuned, the more complicated and hard the
tuning process gets. In practice, such a lengthy process would create a great con-
straint for the usage of the method for metagenomic binning. Therefore, we prefer
a method with a smaller number of parameters. This criterion led to our elimina-
tion of a method JULE [73]. Even though this method meets many of our other

38 Chapter 2. Background

requirements, it is explicitly stated that tuning large number of hyperparameters
is one of the method’s disadvantages.

Next, we also consider how old the methods are. We have discovered that even
the state-of-the-art methods in this field are a few years old, and despite their age
their results are still considered as benchmarks. However, it is better if a method is
newer. This is because of the continuous development of the end-to-end clustering
methods and improved results overtime. An example of this can be seen when
comparing the methods DEC [74] and DCEC [67]. DCEC is the successor of DEC
and improves the original method by preserving the local structure of the embed-
ded data. That leads to improved results because of less disturbed feature space.
The end-to-end approach is improved in the newer DCEC by incorporating recon-
struction loss into the joint function, and therefore we eliminate the less suitable
DEC method.

The selected method also needs to support unsupervised clustering. When
searching for methods that perform CNN-based end-to-end clustering, we have
discovered that a lot of methods only support supervised learning or partially su-
pervised methods [77]. Since metagenomic binning is an unsupervised clustering
task, we had to eliminate those methods. Our requirement for the method was its
utilization of end-to-end clustering, also known as joint clustering. However, joint
clustering training can be further divided into two main categories. These are pre-
training with joint training, and joint training with fine-tuning. Pretraining with
joint training tends to outperform joint training with fine-tuning. Newer methods,
including DCEC, often belong to the first category.

Lastly, we also consider the clustering approach used in the method. For ex-
ample, we assume that agglomerative clustering might be less suitable. It might
be hard to merge clusters together when the structure of sequences is compli-
cated. Since updating the clusters is often tightly incorporated into the joint loss
function of the method, changing the clustering method requires a major change.
Ultimately, it is better to choose such method that utilizes the preferred type of
clustering algorithm. For this project, we prefer KL divergence clustering. It is
computationally more feasible compared to graph-based clustering. Further, it is
more suitable for our data compared to k-means clustering. K-means works best
on circularly distributed data points.

After evaluating all of our requirements, DCEC was selected as the arguably
best choice out of the candidate models. One of our favourite features in this model
is its utilization of KL divergence clustering. This method has a low complexity of
O(nk) where k is the number of centroids. That means that the method can scale
well for larger datasets. Furthermore, DCEC consists of building blocks that can be
modified and adjusted to the purpose of this project. Another advantage of DCEC
is its manageable number of hyperparameters that are to be tuned. Additionally,
the DCEC paper is highly cited, which is usually one of the indicators of a credible

2.8. Joint Deep Clustering Methods 39

paper. On the downside, DCEC requires a number of clusters to be defined as
one of the model’s parameters. Even though this problem presents an additional
challenge to the project, there is a number of possible workarounds and solutions
which are addressed in Section 3.1.2.

The following section will introduce the selected method DCEC in more detail.

2.8.6 DCEC Description

DCEC consists of a convolutional autoencoders (CAE) and a clustering layer. Even
though the number of convolutional layers can be changed, the original DCEC
model consists of three convolutional layers in the encoder part and three trans-
posed convolutional layers in the decoder part. The clustering layer is attached to
the last embedded layer of the CAE, containing compressed features of the original
inputs.

Each data point xi of a dataset X with X = {x1, ..., xn} is mapped into an
embedding z by a mapping function fθ , so that zi = fθ(xi). When the clustering
process is initialized, each embedding zi is mapped into a cluster soft label [67].
Soft labels are calculated using Student’s t-distribution.

Then, a target distribution is calculated [67]. Using this information, the clus-
tering loss Lc is computed as a Kullback-Leiber divergence between the soft labels
and the target distribution. Hence, soft labels are being continuously recalculated.

Figure 2.25: The overall structure of deep convolutional embedded clustering (DCEC) [67].

The overall aim of DCEC is to minimize the joint loss function L, defined as

L = Lr + γLc (2.35)

where Lr is the reconstruction loss and Lc is the clustering loss. The coefficient
γ is a value between 0 and 1 that sets the level of embedded space distortion that
is allowed [67].

40 Chapter 2. Background

The reconstruction loss is based on the mean squared error loss (MSE) and it is
defined as

Lr =
1
n

n

∑
i=1
∥g(f (xi))− xi∥2

2 (2.36)

where the loss is calculated by taking the sum of squared differences between
the inputs of the CAE encoder f (x) and the outputs of CAE decoder g(x). The
resulting value is then divided by the number of input samples n.

Clustering using KL divergence

The clustering loss is defined as

Lc = KL(P∥Q) = ∑
i

∑
j

pijlog
pij

qij
(2.37)

where the loss Lc is a Kullback-Leibler divergence between the soft assignment
qi and the target distribution pi. KL divergence measures how far are two proba-
bility distribution from each other.

First, the method computes a soft assignment between the embedded features
and initial cluster centroids assignments. Next, the mapping function and cluster
centroids are updated [67].

Soft Cluster Assignment Mapping into soft labels is done by using Student’s t-
distribution. This technique was proposed as an effective solution for visualizing
high-dimensional data into two-dimensional map [74]. Student’s t-distribution is
an infinite mixture of Gaussians, and it differs from Gaussian distribution by being
more heavy-tailed. Evaluation of a point density is less computationally expen-
sive when using Student’s t-distribution compared to Gaussian, which is a major
advantage of this approach [78].

The formula for the soft cluster assignment is defined as:

qij =
1 + ∥zi − µj∥2)−1

∑j(1 + ∥zi − µj∥2)−1 (2.38)

where zi is an embedded point i, µj is a centroid of cluster j and qij can be read
as the probability that embedding i belongs to a cluster j [74].

Target Distribution The model is minimizing KL divergence by matching soft
cluster assignments with a predefined target distribution pi. This target distribu-
tion is modelled so that the clusters are learning from high confidence assignments
and throughout the clustering iterations, the process should lead to stronger pre-
dictions. Additionally, the loss of individual centroids should be normalized to

2.8. Joint Deep Clustering Methods 41

prevent feature space distortion. This way, the model is able to train on its own
high confidence predictions in an unsupervised manner [74].

The formula for target distribution is defined as:

pij =
q2

ij/ ∑i qij

∑j(q2
ij/ ∑i qij)

(2.39)

where pij is the target probability of a sample i belonging to cluster j. f j = ∑i qij
is the soft cluster frequency, computed as the sum of all soft assignments for that
cluster.

Optimization of DCEC

Firstly, the model is pretrained with γ = 0. This is important in order to get a
meaningful target distribution. After pretraining, the cluster centers are initialized
by using k-means algorithm. Afterwards, γ is set to 0.1 and the process of updating
CAE weights, centroids and target distribution starts [67].

The weights of the CAE and cluster centroids are updated jointly using Stochas-
tic Gradient Descent (SGD). The formulas for computing the gradients for cluster-
ing loss Lc with respect to embedded point zi and cluster centroid µj are defined
as follows [74]:

∂Lc

∂zi
=

α + 1
α ∑

j
(1 +

∥zi − µj∥2

α
)−1 × (pij − qij)(zi − µj) (2.40)

∂Lc

∂µj
=

α + 1
α ∑

i
(1 +

∥zi − µj∥2

α
)−1 × (pij − qij)(zi − µj) (2.41)

where α is the learning rate.
After each few iterations, a target distribution is recalculated using the new soft

cluster assignments. In every iteration, a parameter δlabel monitors the percentage
of changed label assignments in between previous and current iteration. If the
parameter is lower than a given threshold, then the training terminates. DCEC sets
the threshold to 0.01 [67].

Chapter 3

Methods and Implementation

The previous chapter describes the principles of deep clustering and deep learning
architectures. In this chapter, we describe how the architecture of the deep cluster-
ing framework DCEC can be modified to suit the task of metagenomic binning.

In this project, we have explored two versions of end-to-end metagenomic bin-
ners. Both versions are based on the architecture of the DCEC model (Section 2.8.3).
The difference between the two is in the type of autoencoder that the models are
using. Each of the models also takes a different type of input:

1. Deep Convolutional Metagenomic Binner (DCMB)

This model is using convolutional autoencoder and takes as input raw se-
quential data - contigs. The model does not use any features obtained through
preprocessing, such as abundance and composition. The goal is to discover,
whether it is possible to learn features important for successful binning from
unprocessed reads alone, with the use of convolution. We also explore to
which degree joint clustering can improve our results.

2. Deep Stacked Metagenomic Binner (DSMB)

This model is using stacked autoencoder, and takes as input widely used
engineered metagenomic features - composition and abundance. Here, the
main goal is to discover, whether joint centroid-based clustering (Section 2.6)
will lead to more genomes being recovered, as opposed to two-stage cluster-
ing consisting of a pretraining step and a k-means algorithm.

The remaining part of this chapter describes both solutions in detail. First, we
present the DCMB solution and finally DSMB. For all these solutions, we first de-
scribe the architecture of the model, together with selected implementation details.
Next, we introduce experiments and finally their evaluation.

42

3.1. Deep Convolutional Metagenomic Binner (DCMB) 43

3.1 Deep Convolutional Metagenomic Binner (DCMB)

This section describes the general architecture and idea behind our proposed metage-
nomic binner Deep Convolutional Metagenomic Binner (DCMB). First, we will in-
troduce the basic structure of the model. Then, we continue by explaining selected
topics in more detail. Those are analyzed and assessed in Section 3.1.3.

3.1.1 Why a Convolutional Model?

There are two classic groups of deep learning methods applicable to sequential
data: recurrent neural networks (RNN) and convolutional neural networks (CNN).
Recurrent neural networks are predictive artificial neural networks with the capa-
bility to process and interpret temporal and sequential information. In RNNs, the
neurons of a layer are connected and can take information from prior inputs to
effect output, or even the current input. This create an illusion of a ’memory’ [79].

Traditionally, sequential data is used with RNN [79], and CNNs are generally
associated with image data [54]. However, the answer is not always that simple.
The specific use case and overall goals determine which method is most suitable.
Nowadays, a number of methods uses CNNs when working with sequential data.
We can mention for instance the CNN-MGP method [13].

The reasons behind that can differ. For instance, RNN takes the absolute posi-
tion of the detected patterns into account (i.e. chatbot generates a suitable answer
based on the context of a whole conversation), while CNN primarily detects the
local position of patterns (i.e. in face recognition, the model can recognize a human
eye that can be found in any part of the image). In metagenomic binning, the reads
or contigs are fragmented. Unlike other sequences such as sentences, there is no
logical beginning and end in a single contig. In alignment-free methods, it is not
known what should be the absolute position of the fragment and the detected pat-
terns. For that reason, RNN methods seem less suitable for the problem domain of
this project. Using information about the absolute position of the pattern will not
be beneficial. On the other hand, metagenomic binner might hugely benefit from
detecting patterns locally.

Secondly, CNN networks have been successfully applied for a gene prediction
problems [13, 80], where hierarchical features have been detected by CNN-based
neural network. Therefore we have an evidence, that CNNs have the ability to
learn meaningful feature representations from DNA sequences.

Based on the arguments in this section, we have decided to use CNNs in the
network architecture of our DCMB binner.

44 Chapter 3. Methods and Implementation

3.1.2 DCMB Architecture

An end-to-end clustering framework combines a network architecture with a joint
clustering method. Both the network and clustering methods should be selected
based on the intended usage of such a framework. In our case, we wanted to create
embeddings from raw contigs.

Clustering techniques that we considered are k-means clustering, graph-based
clustering, and KL divergence clustering. Choosing from those approaches, k-
means clustering is not very suitable to apply for metagenomic data, because it
tends to create round clusters. This might lead to poor results because metage-
nomic clusters are not characterized by round shapes. Graph-based clustering is
a newer and interesting approach, not yet described in the scientific literature for
metagenomic binning. The downside of graph-based clustering is that an enor-
mous amount of computational resources is required for this method. As metage-
nomic datasets are often several 100 gigabytes big [4], this approach is not suitable.
Lastly, there is the KL divergence clustering approach (Section 2.5.2). Even though
this method initially instantiates the clusters using the k-means algorithm (Sec-
tion 2.5.1), the method then continuously refines the clusters by using technique
that shouldn’t tend to round the clusters. We have decided to use this method
because we assume that it is compatible with metagenomic data.

In conclusion, we want the DCMB binner to consist of a convolutional autoen-
coder and utilize the KL divergence joint clustering method. This combination
of network and clustering methods is not new. In the recent years, several such
methods were successfully applied for clustering image datasets. The best known
examples include the DEC method [74], the DCEC method [67], and DEPICT [23].
Since the desired combination is already described in scientific literature, we de-
cided to base our implementation on one of the existing solutions, namely the Deep
Convolutional Embedded Clustering method (DCEC), described in Section 2.8.6.

To apply this method for a very specific case of metagenomic binning, numer-
ous adaptations of the approach are needed to make it possible.

The Convolutional Autoencoder of DCMB

The structure of the convolutional autoencoder of DCMB is illustrated in Figure 3.1.

3.1. Deep Convolutional Metagenomic Binner (DCMB) 45

Figure 3.1: The overall structure of the convolutional autoencoder used for the DCMB.

The input of the autoencoder are one-hot encoded sequences that are padded
with empty vectors so that they are all of the same lengths. This process is de-
scribed in detail in Section 3.1.3.

The encoding part of the autoencoder consists of three sparsely connected 1D
convolutional layers C1, C2 and C3. The decoding part consists of three 1D convo-
lutional transpose layers D1, D2 and D3, also known as deconvolutional layers. In
the middle, there is a fully connected layer z. The number of neurons in z is equal
to the number of clusters n.

The goal of a deconvolution is to upsample the input into the output of a given
dimensionality while using learnable parameters and preserving a connectivity
pattern [81].

1D convolution differs from 2D convolution mainly in the direction of the con-
volution. This refers to the direction in which filter window size (kernel) moves.
In 1D convolution, the kernel moves in a single horizontal direction from left to
right. This is demonstrated in Figure 3.2 This makes this method suitable for time
forecast data and sequential data [82].

Figure 3.2: The direction of 1D convolution.

In 2D convolution, the kernel slides in two directions, down the matrix. This is
shown in Figure 3.3. It is especially well fitting for image datasets.

46 Chapter 3. Methods and Implementation

Figure 3.3: The direction of 2D convolution.

The gene prediction method CNN-MGP [13] successfully uses connected con-
volutional layers. This method one-hot encodes DNA sequences and utilizes 1D
convolutional layers to obtain embeddings. This method inspired us to use convo-
lutional layers for the metagenomic binning task.

However, there is a major difference between the goal of CNN-MGP and DCMB.
CNN-MGP is solving a supervised learning problem. DCMB is solving an unsu-
pervised learning problem. The network has to learn to create meaningful features
without any external help. Consequently, this task is harder for the model to learn
than the gene prediction task, given the complexity and difficulty to learn useful
feature representation for metagenomic data.

More details about the network’s parameter are described in Section 5.2.2.

The Joint Deep Clustering of DCMB

The overall architecture of the DCMB is visualized in Figure 3.4.

Figure 3.4: Architecture of the DCMB.

3.1. Deep Convolutional Metagenomic Binner (DCMB) 47

Figure 3.4 shows that the whole DCMB structure is composed of the previously
described convolutional autoencoder and a clustering layer C attached to the em-
bedding layer z of the autoencoder. This clustering layer maps each embedded
point into a soft label q.

The clustering layer and the clustering loss Lc are borrowed from the DEC [74],
respectively DCEC method [67]. The clustering loss is the KL divergence between
soft labels Q and the predefined target distribution P:

Lc = KL(P∥Q) (3.1)

Soft labels Q are the cluster assignments of embedded points in each iteration.
The predefined target distribution P refers to the ideal clusters under the defined
conditions, creating a soft constraint. These conditions include assigning a higher
probability to the embedded points that are closer to the cluster centroids. Details
of this clustering technique are described in Section 2.8.3.

The reconstruction loss of the convolutional autoencoder is calculating the co-
sine similarity between the original input vectors of y and the vectors p(y) pre-
dicted by the decoding part of the autoencoder:

Lr =
Y× p(Y)
|Y| × |p(Y)| (3.2)

The final loss of DCMB is the sum of the reconstruction loss of the autoencoder,
and the clustering loss:

L = Lr + γLc (3.3)

γ controls the weight of the clustering loss in the final loss. DCMB sets γ = 0.1. If
the value was higher, the clustering loss would effect and modify the embedding
space too much, which could lead to worse clustering results [67].

The DCMB is first pretrained using only reconstruction loss. This lets the model
create a meaningful initial target distribution. After that, the whole end-to-end
model is trained using the compound loss L.

Downsampling Techniques One of the problems we had to solve is finding the
best way to compress data throughout the convolution. There are two common
approaches: max pooling and increasing the step size of the convolutional kernel,
the so-called stride. While max pooling is a fixed operation, the stride is a param-
eter of a convolutional operation that can be learned. Since we want to maximize
the learning capability of our model, we choose to use stride = 2 in all convolu-
tional and deconvolutional layers. Setting stride > 2 could lead to lost information
because the filter window size (kernel) would overlap fewer receptive fields.

48 Chapter 3. Methods and Implementation

Figure 3.5: Step size (stride) of the convolutional kernel of size 3× 3 is set to 2. In each step, the
kernel moves 2 steps forward. The red square is representing the kernel in step x, green square is the
kernel in step x + 1. There is less overlapping in between 2 consecutive steps, compared to stride=0.

Reconstruction Loss for Sparse, One Hot Encoded Data It is common for au-
toencoders, including convolutional autoencoders, to use mean squared error (MSE)
as their reconstruction loss[67]. However, reconstructing one-hot encoded data is
a challenging difficult task, and using a common loss function will often lead to
poor results. The following problems are associated with using one-hot encoded
data in autoencoders.

• MSE assumes that data are disjoint, but they are not. In each row, we want
a single value to be 1 and the rest zeros. Therefore each row is a local multi-
classification problem.

• The predominance of zeros can result in the decoder reconstructing all val-
ues as zeros because this will minimize the loss function. This can happen
especially if we use unsuitable loss functions such as MSE or Cross-Entropy.

• In our experience, the decoder tends to reconstruct all values around 0.5.

The problem can be addressed by using such a loss function that will fit the
purpose and address the issues listed above. For DCMB, we experimented with
different loss functions, including a custom loss. The best results were achieved
with cosine similarity loss (Section 2.2), which was our final choice. Literature
also recommends Dice loss [83], which however didn’t lead to good results in our
model.

Ideally, we would treat the case as a multi-class classification problem, where
each row representing one encoded nucleotide would be a multi-classification sub-
problem solved with a cross-entropy loss. The results would then be combined.

3.1. Deep Convolutional Metagenomic Binner (DCMB) 49

Using cosine similarity loss, by comparing the original vector with predicted
vector we could see that the largest predicted value in each row usually matched
the original value 1:

Original vector [0, 0, 0, 0, 1]
Predicted vector [0.15, 0.15, 0.25, 0.45]

Table 3.1: Example of reconstruction of original input vector by the decoder of DCMB.

However, the optimal loss function should push the highest value closer to 1
and the rest of the values closer to 0.

Number of Bins Estimation

One of the challenges that we were facing is that in DCMB, the number of clusters
k must be known beforehand. In metagenomic binner the number of bins is only
known beforehand for synthetic datasets. Therefore it is required to estimate the
number of bins from the input data before the binning.

One of the popular methods for finding a promising estimation of the number
of clusters is the elbow method. This method is usually used in combination with
k-means clustering. In the elbow method, the clustering algorithm is ran for a
range of a possible numbers of clusters. For each of the runs, the degree of distor-
tion is computed. The degree of distortion is the sum of squared errors between
cluster centers and cluster points [84]. The main idea of the elbow method is that
the first cluster will heavily decrease the distortion. In each run we will increase
the number of clusters until we reach a point where the distortion will decrease
steadily. The ideal number of clusters is the breaking point between the heavy and
steady decrease of the distortion [84]. To find the ideal number of clusters, the
distortion for all clusters within the range is plotted and the best number is chosen
manually. An example for the elbow method is illustrated in Figure 3.6.

50 Chapter 3. Methods and Implementation

Figure 3.6: Example of the elbow method, where the ideal number of clusters determined by the
method is 4.

The advantage of the elbow method is that the optimal number of clusters can
be reliably estimated. The downside is that the method takes time, because the
method has to run with all possible numbers of clusters within the given range.

For metagenomic binning, a popular way to estimate the number of clusters
is to determine the number of single-copy marker genes [3] [85]. Marker genes
are DNA sequences with a known position on the chromosome [29]. A single-copy
marker gene is a marker gene that occurs once in a genome. To determine the num-
ber of single-copy marker genes, SolidBin[3] and COCOCOLA[85] use FragGeneS-
can and Hmmer. FragGeneScan is a sequence analysis tool used to find genes in
short-read sequences [86], and Hmmer is a sequence analysis tool to search se-
quence databases that can be used for gene identification [87]. That means that
FragGeneScan is ran with the FASTA file of the dataset as input. FragGeneScan
tries to identify the single-copy genes in the dataset and append the found genes to
a list. If FragGeneScan doesn’t find an entry, which can be the case for long-read
datasets, Hmmer analyses the input FASTA file and try to find database entries
that match the given DNA sequences. Like in FragGeneScan, found genes are ap-
pended to a list of results. The estimated number of bins returned by this approach
is the number of items in the list of results. The advantage of this method is that
it can quickly estimate a promising number of clusters. The downside is that the
estimation is not as precise like e.g. the elbow method.

We choose to use the single-copy marker genes-based method to estimate the
number of clusters. The reason is that it can provide a good estimate without
consuming too much time. DCMB utilizes the same implementation of the single-
copy genes estimation as SolidBin and COCOCOLA.

3.1. Deep Convolutional Metagenomic Binner (DCMB) 51

3.1.3 Data Preprocessing

The general idea of the DCMB approach is an end-to-end metagenomic binner
that operates directly on unprocessed contigs. In the context of this paper, by
unprocessed contigs is meant their string representation. This is how they are
stored in a FASTA file. An example of such a string is shown in Figure 3.7

Figure 3.7: String representation of a sequence fragment, as stored in FASTA file.

We need to feed these sequential data into a convolutional autoencoder. How-
ever, the sequences cannot be loaded into the model in their original form. Con-
volutional layers require numeric input, but our inputs are DNA strings. Another
issue is the varying length of the sequences. Therefore, there are two main tasks
to solve regarding the inputs. Firstly, it is needed to transform the sequences so
that the autoencoder is able to learn meaningful representations. Secondly, it is
required for the input sequences to be of the same length.

Input Transformation

There are several ways of how to transform sequential metagenomic data into
format suitable for input into a convolutional layer. The most frequently used
method is one-hot encoding of the sequences [13]. However, some other methods
consider encoding DNA sequences into picture-like tensors [88], using graphical
representation of DNA sequences [89] and ordinal encoding [90].

One-hot encoding One of the inspirations for this approach is CNN-MGP [13].
CNN-MGP is an approach for metagenomic gene prediction that predicts genes di-
rectly from raw DNA sequences. The approach is based on CNNs. Unlike metage-
nomic binning, the input data are ORFs (open reading frames) instead of contigs.
ORFs are the area of a genome that contains amino acids [91], and each ORF is
extracted from 700 base pair fragments. The string representations are one-hot
encoded in a preprocessing step.

One-hot encodings are a way to represent categorial data in a numeric repre-
sentation. A single one-hot encoding is an array of size n, where n is equal to the
number of categories. In our scenario, each sequence is one-hot encoded into a
matrix of dimensionality [length of the sequence, 4]. The 4 refers to the 4 types of
DNA nucleobases: A, T, G and C. In this representation, each row in the matrix

52 Chapter 3. Methods and Implementation

contains three zeros and one value that is equal to 1 and represents the specific cat-
egory. For our scenario of DNA nucleotides, the following table would represent a
valid one-hot encoding scheme:

A 1 0 0 0
C 0 1 0 0
G 0 0 1 0
T 0 0 0 1

Table 3.2: Example of a valid one-hot encoding scheme for DNA-nucleotides.

Ordinal Encoding Ordinal encoding is another method to encode data. This
method was successfully applied for encoding of DNA sequences by Choong et al.
[90].

Instead of the binary array encodings of one-hot encodings, a single categoric
data point is mapped to a specific numeric value. It is important to assure, that
the numeric distances between all values are the same. For our scenario of DNA
nucleotides, the following table would represent a valid ordinal encoding scheme:

A 0.25
C 0.5
G 0.75
T 1

Table 3.3: Example of a valid ordinal encoding scheme for DNA-nucleotides.

Other Encoding Methods There are also other, less common approaches to se-
quence encoding. For instance, Yin et al. [88] takes one-hot encoding of vectors a
step further, and transforms those vectors into an image. First, the k-mers of length
k = 4 are one-hot encoded. Since there exist 256 unique combinations of 4-mers,
this gives them vectors of length 256. Each one-hot encoded vector of length 256 is
representing one image pixel. Finally, the authors transform this data into square
images [88].

Another graphical representation of DNA sequences was employed by Arias et
al. [89]. The authors also transform the original DNA sequence into square images.
Here, each k-mer in a sequence is represented by one pixel of a corresponding
intensity [89].

We have found these graphical solutions very interesting. It is a unique way of
transforming sequential data into a format that CNNs show best performance with
- images. However, we have decided not to choose any of these methods, because
there is not enough evidence whether this would work for our specific use case.

3.1. Deep Convolutional Metagenomic Binner (DCMB) 53

Conclusion One-hot encoding is not recommended for a large categorial space.
The reason for that is that the encodings would have a huge size leading to the
curse of dimensionality. Curse of dimensionality is a situation where with increas-
ing size of data, the requirements for computational resources grow exponentially.
This would become a problem, if we chose to one-hot encode k-mers of size >1.
Since we decided to encode each nucleotide individually, we only have 4 distinctive
classes.

An issue with ordinal encodings is that an order relationship between the cat-
egories is created. Through the numeric values it is assumed that in our example
G < T, which is not the case. That ordering might lead to misleading values due to
the mentioned relationship that is created.

Because of the categorial space for our data is only 4, and there is no rela-
tionship and order between the categories, we decided to use one-hot encoding
method.

Handling Missing Values

In order to one-hot encode the data, additional preprocessing steps are required.
In general the sequencing process can distort the data. If that happens and the
nucleotide cannot be identified, the raw signal is translated into an error value N
[92].

There are two basic approaches on how to handle these error values. One
common method is to clean up these error values by replacing them with the most
common nucleotide within each sequence. Second solution is to treat the error
values N as a fifth nucleotide. This would mean, that one-hot encoding method
would encode five symbols instead of four. However, this additional fifth vector
would be extremely sparse. This solution also causes the size of input data to
increase by one fifth, which is inefficient. It is also inaccurate to treat the symbol
N as a new nucleotide, since we know it is either nucleotide A, T, G or C.

Ultimately, we choose to replace error values N with the most common nu-
cleotide within the sequence. This way, the size of the encoding space is four
instead of five.

Handling Variable Input Lengths

Secondly, a standard CNN architecture requires that its input data have the same
shape and size. However, in most metagenomic datasets, the length of contigs
varies. This can be solved by applying padding and masking techniques. The
exact input shape will be specific for every metagenomic dataset.

Padding Padding means, that given the longest sequence s in the dataset, all
remaining sequences shorter than the sequence s are filled with selected artificial

54 Chapter 3. Methods and Implementation

value. Typically, this value is set to 0. Padding is used in situations, where all
sequences need to have the same length. This is an input data requirement by
some neural networks such as CNNs.

Masking The padded values are artificial and should not affect the loss and
weight values of the model. This would result in worsened performance of the
model. This is why a step called masking is applied. Masking is a method, that
indicates which elements of a matrix or vector should not be used [93]. By doing
that, the model is told to skip processing the data hidden by masking so that they
don’t affect the learning of the model.

Before applying padding step, it is important to check the dataset for outliers
and the most common length range. If there are only few sequences of much larger
size than the rest, padding all sequences to their length will cause performance
issues. Based on this knowledge, the length range for which padding will be
applied can be selected.

Solution Since we chose to use one-hot encoding, there are two ways how to pad
the sequences. Firstly, it is possible to pad the sequences with an arbitrary value
such as O, and then encode this value into its own column:

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
O (padding) 0 0 0 0 1

Table 3.4: Example of a one-hot encoding where padding has its own column.

Since padding doesn’t have a unique value, it is not possible to apply a standard
masking technique. Also, this approach also does not represent the data accurately,
because it treats padding as a nucleotide.

This is why we decided to apply the following padding method:

A 1 0 0 0
C 0 1 0 0
G 0 0 1 0
T 0 0 0 1
(padding vector) 0 0 0 0

Table 3.5: Example of a one-hot encoding where padding is attached to the end as an empty vector.

Here, we append empty vectors [0.0.0.0.] to fill the difference between the
length of a sequence and the maximum length. For fields containing the value 0,

3.2. Deep Stacked Metagenomic Binner (DSMB) 55

the output of convolutional operation will also be 0. This means that the weights
will not get affected.

3.2 Deep Stacked Metagenomic Binner (DSMB)

This section describes the general idea and architecture behind our proposed metage-
nomic binner Deep Stacked Metagenomic Binner (DSMB).

3.2.1 DSMB Architecture

The DSMB (Deep Stacked Metagenomic Binner) is our second metagenomic binner
that we propose. Compared to the DCMB, there are two major changes. One is
that we replace the convolutional autoencoder with a stacked autoencoder (Sec-
tion 2.4.1), and the second is that abundance and composition (Section 2.1.4) are
taken as input. Meanwhile, the joint deep clustering part (Section 2.6) remains the
same. The joint clustering is done by using the KL divergence clustering method,
described in Section 2.5.2. Instead of taking raw sequences as input, we decided to
take abundance and composition as inputs, similarly to VAMB [1].

For each contig, the input vector consists of an abundance vector A of size s and
a composition vector T of size 103. The vectors are computed from the BAM files
(abundance) and the FASTA file (composition) of the dataset. Those two vectors
are concatenated. The size of the abundance vector depends on the number of
BAM files linked to a dataset, and this is in most cases less than 10.

The structure of the stacked autoencoder used for DSMB (Deep Stacked Metage-
nomic Binner) is visualized in Figure 3.8.

Figure 3.8: The overall structure of the stacked autoencoder used for the DSMB.

The stacked autoencoder consists of two stacked encoders and decoders, which
were implemented through the use of Dense Layers, respectively fully connected

56 Chapter 3. Methods and Implementation

layers. Due to the relatively small size of the input vector, the size of the first
encoder layer (E1) and first decoder layer (D1) is 64 neurons. The hidden space for
the second encoder layer (E2) and the second decoder layer (D2) is of size 32. The
size of the embedding (z) is 16. Each layer is batch normalized.

The end-to-end solution is similar to the DCMB (Section 3.1.2). The differences
are that the DSMB utilizes a stacked autoencoder instead of a convolutional au-
toencoder and that it uses pre-processed composition and abundance vectors as
input. The architecture of the DSMB is visualized in Figure 3.9.

Figure 3.9: The overall architecture of the DSMB.

C represents the clustering layer. Z is the latent space of size 16, as mentioned.
Each embedding is mapped into a soft label q. In contrast to VAMB, the output
of the stacked decoder is the concatenation of abundance and composition vector
and not the single abundance and composition vector.

Chapter 4

Datasets and Assessment Tools

4.1 Datasets

For our experiments, we have chosen two different datasets. One synthetic dataset
with a ground truth, and one real-world dataset. As we want to compare the results of
our proposed binners with the results of our previous work [15], we use the same datasets
that were used in our previous work. Namely, they are the CAMI Low dataset [4], and the
Azolla dataset [5]. The following two subsections are rewritten versions from our previous
work [15].

4.1.1 CAMI Low Dataset

CAMI (Critical Assessment of Metagenome Interpretation) is an initiative to set a
standard for evaluating metagenome analyses. The organization behind CAMI is
the MICROBIOME Community of Special Interest, which aims for the advance-
ment and evaluation of computer science methods in the area of microbiome re-
search [94]. To evaluate the performance of a metagenomic binner, CAMI provides
several synthetic datasets that are used by most state-of-the-binners for benchmark-
ing [1, 2].

One of the lower complexity synthetic datasets that we already used in our
previous work [15] is the CAMI Low dataset. The CAMI Low dataset is a synthetic
short-read dataset that is part of the 1st CAMI challenge. It is a rather small dataset
having a total size of 15 GB [4]. The data contains samples from 40 genomes and
20 circular elements obtained from the short read Illumina HiSeq [95]. Circular
elements are e.g. viruses, and plasimids[95].

For evaluation, a synthetic dataset with a ground truth is an advantage, because
it is possible to assess if the contigs or base pairs are assigned into a correct bin. We
decided to use the CAMI Low dataset because it contains a ground truth, and the
performance of the binner on the dataset can be conveniently evaluated by using

57

58 Chapter 4. Datasets and Assessment Tools

CAMI’s assessment tool AMBER.

4.1.2 Azolla Dataset

As a representative of a lower complexity non-synthetic dataset, we chose the
Azolla dataset. This dataset was created by Laura W. Dijkhuizen from the Utrect
University as a subset of a larger dataset [5]. The dataset contains samples of the
aquatic fern species Azolla filiculoides [7], and it contains DNA of the Azolla plant
and several bacteria species that use the plant as habitat. A list with all organism
that are contained in the habitat is visualized in Figure 4.1 [7].

Figure 4.1: Organisms that are found in the habitat of Azolla.

Similarly to the CAMI Low dataset, this dataset is rather small with an overall
size of 10 GB. Because this dataset is non-synthetic, there is no ground truth for
evaluation. Nevertheless, the dataset can be evaluated by using the assessment tool
CheckM.

4.2 Assessment Tools and their Measures

This section explores the assessment tools AMBER and CheckM and the measures
used by these tools.

4.2.1 AMBER Overview

AMBER (Assessment of Metagenome BinnERs) is an assessment tool provided by
the MICROBIOME Community of Special Interest. It was created as an evaluation
tool for CAMI datasets. AMBER creates measures that illustrate the performance
of a binner on a dataset, such as completeness and contamination. Because every
CAMI dataset is synthetic and hence contains a ground truth, it is possible to assess
which contig was matched to the correct bin by a given binner.

4.2. Assessment Tools and their Measures 59

4.2.2 AMBER Evaluation Measures

Some of the most commonly used evaluation measures in metagenomic include
completeness and contamination. Predicted bins, in this case the results of DCMB
and DSMB clustering, are compared against the ground truth bins. For synthetic
datasets it is known, which contigs belongs to which bin. These expected bins, also
known as the gold standard, are the ground truth. In cases where gold standard is
not known, other evaluation techniques have to be used instead.

AMBER tool maps each predicted genome bin into a single genome by two
different means: base pairs (bps), and sequences (contigs).

• Base pairs

Each bin is mapped to the genome that best represents the bin. This means,
that majority of base pairs in the bin belong to that genome [96].

• Sequences

Each bin is mapped to the genome that best represents the genome. This
means that most of the genome is contained within the predicted bin [96].

Completeness

The completeness, also known as sensitivity, measures the percentage of contigs or
base pairs that were expected to be found in a predicted bin and that were indeed
found there. It is defined as the following:

r =
TP

TP + FN
(4.1)

Here, TP (true positives) refers to all contigs/ base pairs that are correctly classified.
FN (false negatives) are all contigs/ base pairs that belong to the bin but weren’t
assigned into it.

Contamination

The contamination evaluates the percentage of contigs/ base pairs that have been
falsely classified into a particular bin. It is defined as the following:

r = 1− TP
TP + FP

(4.2)

Here, FP (false positives) refers to all the bins/ contigs that were assigned into a
bin, but don’t belong to it.

60 Chapter 4. Datasets and Assessment Tools

Accuracy

The accuracy evaluates, to which degree were the base pairs assigned to the correct
bin. This is calculated over the entire dataset. It is defined as the following:

a =
∑x∈X TPx

U + ∑x∈X TPx + FPx
(4.3)

Here, U is the number of unassigned base pairs, and x is a bin of the set of all bins
X.

Another important measure of AMBER is the number of recovered bins. Recov-
ered bins are all bins that recover a genome, meaning that the bin is less than 10%
contaminated and more than 50% complete.

Rand index adjusted for chance (ARI)

Rand index adjusted for chance is a commonly used measure that compares pre-
dicted clusters against the correct clusters, in this case the gold standard. The
general formula is defined as:

ARI = (RI − Expected_RI)/(max(RI)− Expected_RI) (4.4)

Here, RI refers to the actual similarity of pair-wise comparisons between the
predicted and expected results. Expected_RI is the expected similarity of these
pair-wise comparisons. The maximum Rand index max(RI) is typically set to 1.
The score ranges between −1.0 and 1.0, where value close to 0 signifies random
cluster assignment while a value close to 1 stands for a great similarity [97], [98].

4.2.3 CheckM Overview

CheckM is an assessment tool to estimate genome completeness and contamination
[99]. Unlike AMBER, CheckM evaluates metagenomes not based on a ground truth
but marker genes. Marker genes are DNA sequences where the position of the
chromosome is known [29]. Therefore, CheckM is used for non-synthetic datasets.
CheckM searches for marker genes that belong to a specific genome lineage. In this
context lineage refers to the classification of an organism in the taxonomic rank.
The taxonomic rank is visualised in Figure 4.2.

4.2. Assessment Tools and their Measures 61

Figure 4.2: The taxonomic rank starting with kingdom. Inspired by [100].

The taxonomic rank goes from kingdom to species. An example for a kingdom
is animals and an example for a species is the Homo sapiens. As some marker
genes occur several times within a lineage, it is hard to tell which taxonomy the
DNA sequence exactly belongs to. Therefore, CheckM makes use of marker sets.
Marker sets are sets of marker genes. They are used as a certain combination of
marker genes that occur only in a specific taxonomy.

4.2.4 CheckM Evaluation Measures

Like AMBER, CheckM computes the measures completeness and contamination.
Because CheckM does not evaluate a ground truth, the measures are calculated
differently from how AMBER does it.

Completeness

CheckM computes completeness by evaluating whether the marker genes that
should be in the bin are its members. This is defined by the following formula:

∑s∈M
|s ⋂ GM |
|s|

|M|

M is the set of all marker gene sets that occur in the bin, and s is a single marker
gene set of the set M. GM is the set of marker genes that belong to the bin.

62 Chapter 4. Datasets and Assessment Tools

Contamination

CheckM computes contamination by evaluating the number of multicopy genes
occurring for every marker gene set [99].

∑s∈M
∑g∈s Cg

|s|
|M|

Cg is the value for the frequency of occurrence of a gene g. Cg is N − 1 with N
being the number of occurrence if N ≥ 1. If the gene is missing, the value is set to
0.

Chapter 5

Experiments and Evaluation

In this chapter, we explore the impact of joint deep clustering on metagenomic
binning. In Section 5.2, we utilize DCMB to conduct several experiments on the
CAMI Low dataset. With these experiments, we want to investigate how does
joint metagenomic binning based on unprocessed contigs behave. We also want to
explore the potential of using raw contig as the only input to our model.

Because the architecture and the results of the DCMB are different from the
state-of-the-art binners, in Section 5.3 we utilize additional experiments using the
DSMB model. The DSMB uses composition and abundance vectors as input. On
the DSMB, we run experiments that give more insights into the impact of joint
deep clustering on metagenomic binning. The DSMB experiments are performed
on the CAMI Low and Azolla datasets.
The experiments frequently mention the following terms:

Epoch Training the model for one cycle with all data during so-called pretrain-
ing. Pretraining is an initial stage of the model training, where we only train the
autoencoder part of the model. Clustering layer is not used during this stage. The
goal of the pretraining is to get an initial meaningful feature representations. Only
the reconstruction loss is calculated.

Iteration Training the entire end-to-end model for one cycle with all data after
pretraining. In this stage, both autoencoder and clustering layer are used. Feature
representations and clusters are learned simultaneously. Both the reconstruction
and the clustering loss are calculated.

5.1 Experimental Setup

For all experiments, we are using a desktop PC provided by the AAU’s IT depart-
ment with the following specifications [15]:

63

64 Chapter 5. Experiments and Evaluation

Item Value

OS Ubuntu 21.10
Processor 11th Gen Intel(R) Core(TM) i7-11700KF @ 3.60GHz
RAM 32 GB
Graphics Card GeForce RTX 3070 Ti
Hard Drive 1000 GB SSD

Table 5.1: Hardware and OS specification of the computer used for the experiments.

By not using a cloud server like the AAU intern CLAAUDIA or Google Cloud,
we have to deal with constraints on speed and memory resources. Therefore our
setup can handle smaller datasets better as bigger ones. From the previous project
[15], we know that smaller datasets are sufficient enough to explore the general
performance of a binner. Hence these limitations are not critical.

5.2 Deep Convolutional Metagenomic Binner (DCMB)

This section describes experiments that were done to evaluate the performance of
the Deep Convolutional Metagenomic Binner (DCMB). The DCMB utilizes unpro-
cessed contigs for the joint metagenomic learning. The architecture and further
implementation details of this model are described in Section 3.1.2.

5.2.1 Experimental Scenarios with CAMI Low Dataset

The main focus of the experiments is to investigate the performance of a metage-
nomic binner that takes unprocessed DNA strings as the input and it is based on
joint end-to-end learning. With the experiments, we want to find the optimal pa-
rameters and structure that would lead to the best results. Best results mean in this
context, to obtain the highest purity, completeness, and accuracy. Ultimately, the
most important indicator of the performance of a binner is the number of recovered
genomes.

The experiments are designed with the goal to explore whether convolution-
based model taking only sequences (contigs) as input is a promising solution for
the task of metagenomic binning. We want to explore a convolutional metagenomic
binner, as such a model has not been published in scientific publications yet.

Another goal is to test the effectiveness of the selected joint clustering method,
based on KL divergence clustering technique. This approach refines clusters by
slightly modifying the embedding space after initial pretraining by using both
clustering and reconstruction loss Section 2.5.2.

The joint clustering with KL divergence is a state-of-the-art method that was
tested and proven successful on a number of image datasets. In [67], the method is
tested on MNIST and USPS datasets. On these datasets, this method utilizing joint

5.2. Deep Convolutional Metagenomic Binner (DCMB) 65

deep clustering achieved better accuracy than method that utilized plain k-means
clustering [67], [23].

However, the performance of such a method is not documented for metage-
nomic datasets. Compared to the commonly used datasets such as MNIST, metage-
nomic datasets are much larger. They are also more complex, because of the num-
ber of motives that needs to be detected for a successful clustering.

Based on our goals, we have defined the following experimental scenarios:

1. Base case and its benchmarks against existing binners.

For this scenario, we introduce our best result and compare it with results
obtained using state-of-the-art binners.

2. Analysis of the impacts and benefits of joint deep clustering.

This experimental scenario is to confirm if and how we can benefit from the
joint deep clustering with KL divergence. Additionally, we show how the
weight of the clustering loss affects the results of the joint deep clustering.

3. Impact of the length of sequences on binning result.

This experiment explores the optimal length of one-hot encoded sequences,
leading to the best results. Is it better to cut the sequences at a fixed length, or
is it better to define a maximum sequence length and use padding to resolve
the length differences? Will filtering out of very short contigs lead to better
clusterings?

4. Impact of the number of clusters on binning result.

How will the results differ, if we set the number of clusters n as the true
number of genomes within the dataset, versus if we detect the number of
clusters using the single-copy genes method from Section 3.1.2?

Each of the scenarios is further described and evaluated in the remaining part
of this chapter.

5.2.2 Base Case

DCMB Base Case Setup and Hyperparameter Configuration The model setup is
identical for all experiments if it is not stated otherwise in the experiment descrip-
tion. The decision for the setup and configuration is based on thorough testing.
For the best result obtained (DCMB Best), this setup is as follows.

Both encoder and decoder consist of three convolutional layers. The kernel of
those layers convolves over a single spatial dimension, which is well-fitting for our
sequential data The lengths of the convolutional windows are 5, 3, and 3. The
stride lengths of the convolution are set to 2. This is identical across all layers. The

66 Chapter 5. Experiments and Evaluation

numbers of output filters in the convolution are set to 32, 64, and 128. The number
of clusters is set to the number of bins contained in CAMI Low dataset, which is 60.
The embedding size is by default set to the number of clusters which is therefore
also 60. The reconstruction loss is defined by the cosine similarity loss, explained
in Section 2.2.1. The batch size is set to 256, and we use the Adam optimizer.

After each layer except the last one, we apply activation function ReLU. After
the last layer in the decoder, we apply sigmoid activation function which scales the
outputs in between the values 0 and 1.

Regarding the joint deep clustering setup, we train the model with 200 epochs,
and 700 iterations. The target distribution gets updated after every 140 iterations.
The tolerance threshold δ is set to 0.01. This means that if less than 1% of embedded
points gets reassigned to a different cluster in between 2 consequent iterations, the
training will be stopped. The weight γ of clustering loss LC is set to 0.1.

Input preprocessing differs for every dataset. In order to decide on the optimal
preprocessing steps for CAMI Low, we have done a data analysis of the dataset.

CAMI Low data analysis By analyzing the CAMI Low dataset, we found that
95% of the contigs contain less than 20000 nucleotides. Out of that number, 50%
of contigs contain less than 1000 nucleotides, while 5 contigs include more than
1000000 nucleotides. That means that the length of contigs varies from very small
to large. The distribution of the data lengths is visualized in Figure 5.1.

Figure 5.1: Distribution of the length of sequences in CAMI Low dataset.

We decided to select a common length range that will include most of the
contigs. Since 95% of contigs are shorter than 20000, we consider the remaining 5%
as outliers. We then cut those outliers at 20000 and use their first 20000 nucleotides.
During input preprocessing, we also exclude all sequences containing less than 750

5.2. Deep Convolutional Metagenomic Binner (DCMB) 67

nucleotides. We have discovered, that it is hard for the binner to correctly cluster
short contigs, and they add noise to the model.

Consequently, the length of the sequences ranges between 750 and 20000. Next,
we transform those sequences by using the one-hot encoding technique described
in Section 3.1.3. Finally, we are padding the one-hot encoded sequences using
the technique in Section 3.1.3, resulting in the final input dimension (number of
sequences, length of sequences, number of nucleotides to encode):

dimCAMILow = (19679, 20000, 4) (5.1)

5.2.3 Base Case and Its Benchmarks Against Existing Binners.

From the first look at the results it is clear that DCMB performs less well than the
state-of-the-art binners, namely VAMB, SolidBin and MetaBAT 2.

Figure 5.2: Plot representing the quality of bins on a bin level.

Figure 5.2 shows, that compared to the other binners, DCMB has the lowest
average purity. Looking at the average completeness of 0.679, DCMB outperforms
VAMB, SolidBin and MetaBAT 2 for both sequences and base pairs. Nevertheless,
it is to mention that DCMB does not recover any bin.

68 Chapter 5. Experiments and Evaluation

Figure 5.3: Plot representing the quality of
bins based on a completeness - contamina-
tion metric.

Figure 5.4: Plot representing the quality of
bins based on a contamination metric.

Figure 5.3 illustrates the quality of bins, where the bins are sorted in a descend-
ing order from those with the highest completeness and the lowest contamination,
to bins with the opposite qualities. None of the compared binners can compete
with the qualities of the bins from gold standard. However, DCMB clearly under-
performs in this evaluation, because the DCMB bins that have higher completeness
are also more contaminated. On the other hand, bins with high low contamination
have low completeness. This results in no genomes being recovered using DCMB
Best. In order for a genome to be considered recovered, the corresponding bin has
to be at least 50% complete and include less than 10% contamination.

Figure 5.4 shows the level of contamination per bin in a descending order. Even
though DCMB creates bins with low contamination, the average level of contami-
nation per bin is higher compared to the other binners. The descent of the DCMB
curve is slower.

5.2.4 Analysing the Impacts and Benefits of Joint Deep Clustering

For this experiment we compare our best result from the joint training (DCMB Best)
to the result from a two-stage version of the DCMB method (DCMB Pretraining + k-
means). The two-stage method consists of a full pretraining stage, directly followed
by clustering using a plain k-means clustering algorithm. That means that for the
two-stage version, the deep clustering method is not used. The comparison also
includes a variant of DCMB model, where after pretraining, we use only clustering
loss for the end-to-end part of the training (DCMB Clustering Loss). That means,
that after pretraining of the autoencoder, we disregard the decoder. According to
[67], by letting the clustering loss to have so much effect on modification of the
embedding space, this will result in major changes in the embedding space, which
will no longer match the original data distribution. Consequently, worse results are

5.2. Deep Convolutional Metagenomic Binner (DCMB) 69

to be expected. We want to explore if this will be apply also for the metagenomic
data.

The weight of the clustering loss in DCMB Clustering Loss increases from 0.1
to 1, and the weight of the reconstruction loss lowers from 0.9 to 0. This is inspired
by the DEC method [74]:

L = 0× Lr + 1× Lc = Lc (5.2)

To be comparable, all three results are obtained from the same test run. There-
fore, the parameters of the model, as well as architectural details, are identical for
all variants.

Figure 5.5: Plot representing the quality of
bins based on a contamination metric.

Figure 5.6: Plot representing the quality of
bins based on a completeness-contamination
metric.

The graph in Figure 5.5 shows the quality of bins considering their contami-
nation, while Figure 5.6 shows both completeness and contamination of the bins.
Even though the differences are not marginal, we observe visibly varied results.
The first difference is in the number of clusters that were created. Two-stage DCMB
(DCMB Pretraining + k-means) only created 38 clusters. The curve in both plots
also indicates the lower quality of bins compared to the other two models. DCMB
Clustering Loss, that trained with only a clustering loss is performing better than
the two-stage DCMB, but worse than DCMB Best.

In conclusion, we have achieved worse results with DCMB Clustering Loss
than we did with DCMB Best. This indicates, that by modifying the embedding
space by using only clustering loss, the embedding space is altered too much, and
it represents the original data less well. On the other hand, if we preserve the
decoder part by keeping the reconstruction loss of the autoencoder throughout the
whole training as it is done in DCMB Best, we create embeddings that are more
optimal for the clustering task.

70 Chapter 5. Experiments and Evaluation

However, the experiment showed that DCMB Clustering Loss still outperforms
the two-stage DCMB (DCMB Pretraining + K-means). That means that the learning
benefits are stronger than the disadvantage of a slight corruption of the embedding
space.

Figure 5.7: Plot representing the average quality of bins based on their average completeness and
average purity.

The quality of bins in Figure 5.7 is quite comparable among the three models,
with DCMB two-stage variant slightly falling behind the other two.

Binner Accuracy (bp) Av. purity (bp) Av. completeness (bp) ARI (bp)
Gold Standard 1 1 1 1
DCMB Best 0.33363 0.5475 0.67861 0.22901
DCMB Pretraining + Clustering Loss 0.25647 0.50073 0.67384 0.1473
DCMB Pretraining + K-means 0.28174 0.38616 0.59642 0.2008

Table 5.2: Comparison of accuracy (bp), average purity (bp), average completeness (bp), and ad-
justed Rand index (bp) between DCMB Best result, DCMB Pretraining + K-means and DCMB using
only clustering loss in end-to-end training (DCMB Clustering Loss).

Finally, the overview of main metrics is shown in Table 5.2. Looking at these
results, the better results of the two-stage clustering over DCMB Pretraining +
K-means are less obvious. It is a bit surprising that the two-stage DCMB has a
higher base-pair accuracy and a higher adjusted Rand index. However, the end-
to-end method using only clustering loss has significantly higher average purity
and completeness. The inconsistency in the results might be caused by the DCMB

5.2. Deep Convolutional Metagenomic Binner (DCMB) 71

two-stage having only a few bins with high completeness and purity, while DCMB
with clustering loss has bins of higher quality on average.

In conclusion, DCMB Best achieves the best results out of the three compared
models. Therefore, we can see a positive impact of the joint deep clustering with
KL divergence method, resulting in the highest accuracy, purity and completeness
metrics.

5.2.5 Impact of the Length of Sequences on Binning Results

It is explained in Section 5.2.2 that for the CAMI Low dataset, we select the con-
tig interval to [750,20000]. Preceding this decision was a series of experiments
that were to discover the difference in binning results for various sequence length
intervals, and the following section will introduce one of them.

This experiment compares DCMB where the contig interval is set to [750 −
20000] (DCMB: Interval) and DCMB Fixed Size with a fixed sequence length of
750. DCMB Fixed Size cuts all sequences at the length 750, and the remaining part
of the sequence is not used. Both models filter out contigs shorter than 750, as their
inclusion showed worse binning results.

Figure 5.8: Plot representing the quality of
bins based on a contamination metric.

Figure 5.9: Plot representing the quality per
bin based on a purity per bin and complete-
ness per bin.

The Figure 5.8 shows a big difference in the level of bins contamination in
between the two compared results. While DCMB Interval contains bins that are
only slightly contaminated as the curve in the graph slowly descends as expected,
DCMB Fixed Size preserves very high contamination across all its bins.

Figure 5.9 uncovers more insights into the results. DCMB Interval manages to
create some bins of relatively high completeness and purity. Meanwhile, over 90%
of bins belonging to DCMB Fixed Size have low contamination and low purity.

72 Chapter 5. Experiments and Evaluation

Figure 5.10: Plot representing average quality of bins based on their average completeness and
average purity.

Finally, Figure 5.10 confirms the previous findings as the average purity and
average completeness of the DCMB Fixed Size bins is falling well behind the DCMB
Interval.

In conclusion, cutting the contigs at a fixed length in the lower range of the
interval proved not to be a good practice. When we use the full range of sequence
lengths, we have to use a lot of padding vectors which might not be optimal for the
learning of the model. However, this experimental scenario has demonstrated that
the model can learn so much more from the contig interval, than from contigs cut
at a fixed length in the lower range of the interval. This means, that the important
information that lets the model correctly bin a contig is often not contained within
the first 750 nucleotides of the sequence. Longer contigs are the ones that are most
often binned correctly by the DCMB model.

5.2.6 Impact of the Number of Clusters on Binning Results

State-of-the-art binners usually manage to create many fewer genomes than there
are according to the gold standard. For our experiments, we set the number of
clusters to the real number of genomes that are included in the datasets. However,
this number is typically not known. This is why the following experiment shows
results where we use the single-copy genes method to identify the number of clus-
ters instead of specifying it manually. When using the single-copy genes method,

5.2. Deep Convolutional Metagenomic Binner (DCMB) 73

DCMB discovers 37 bins (DCMB: 37 Clusters). We compare this result with DCMB
Best, where the number of clusters is 60 (DCMB: 60 Clusters), and DCMB where
the number of clusters is set to 20 (DCMB: 20 Clusters).

Figure 5.11: Plot representing the quality of
bins based on their average purity and aver-
age completeness.

Figure 5.12: Plot representing the quality of
bins based on a completeness - contamina-
tion metric.

We had an assumption that when dividing the sequences into fewer clusters,
the average completeness would be higher, and our results would be closer to the
state-of-the-art binners. Looking at Figure 5.11 and Figure 5.12, this doesn’t prove
to be a trend. The average quality of the bins doesn’t show a dramatic difference
among the variants. However, DCMB Best still wins by a slight margin. DCMB:
20 Clusters has a slightly higher average completeness but then falls behind in
both accuracy and purity. Having fewer bins also results in the bins being more
contaminated, which is shown in Figure 5.12.

5.2.7 Discussion and Conclusion

From the result we can see that DCMB is able to learn some meaningful infor-
mation. However, the signal is not strong enough for DCMB to be used as a
stand-alone binner. One of the reasons behind these results might be the larger
dimension of the data. In the experiments we have explored different settings, and
different types of data preprocessing, as shown in experimental scenario 3. The
settings we experimented with included various combinations of loss and activa-
tion functions, tuning of convolutional hyperparameters and tuning of parameters
of the end-to-end model. However, no settings allowed us to obtain more sig-
nificant result. Significant results in this context mean to obtain a recovered bin.
Our experiments show that it is very hard for convolutional autoencoder to extract
meaningful information from raw contigs.

In Section 5.2.5 we have observed that the results tend to improve when using
only long contigs of length 20000. However, then there wasn’t enough data left

74 Chapter 5. Experiments and Evaluation

for a proper results, because 95% of sequences are shorter than this value. We can
speculate that short contigs don’t contain enough information needed for good
clusterings.

This trend is the opposite of what we expected. We assumed that the model will
learn better from shorter sequences. Due to the limited computational resources,
we are limited to six convolutional layers. We expect that this might not be enough
to identify the features in large sequences.

As we were unable to recover bins with DCMB, we conclude that the architec-
ture is not fitting for the task of metagenomic binning. We assume that a more
complicated architecture might be needed in order to capture the large number of
motives that are to be detected in metagenomic data. Nevertheless, there might
be opportunities to utilize the DCMB model. One idea could be to use feature
embeddings obtained from DCMB as an additional input feature of another binner
such as VAMB or DSMB.. This is inspired by the method introduced by Tran et al.
[19]. This method uses natural language processing to obtain embeddings, which
are later used as an additional input feature. However, the results from DCMB
indicate the presence of a lot of noise. This could eventually cancel the positive
contribution of such a feature.

In conclusion, the current quality of embeddings is not comparable with the
embeddings quality of other binners, namely VAMB, SolidBin and MetaBAT 2.
Based on these observations, we will now focus on testing the joint deep clustering
method using handcrafted features.

5.3. Deep Stacked Metagenomic Binner (DSMB) 75

5.3 Deep Stacked Metagenomic Binner (DSMB)

Due to the less significant results of DCMB, it is challenging to explore the ef-
fects of the joint deep clustering on this binner. Additionally, the results are hard
to compare with the ones of the state-of-the-art binners SolidBin [3], MetaBat2
[2], and VAMB [1]. Therefore, we want to run experiments to explore a stacked-
autoencoder-based metagenomic binner that takes composition and abundance as
input.

With these experiments, we want to achieve two objectives. First we want to
briefly find out how the DSMB approach performs compared to the state-of-the-art
binners SolidBin [3], MetaBat2 [2], and VAMB [1]. Thereafter we utilize several
experiments to explore the impact of joint deep clustering.

To investigate these objectives, we defined the following experimental scenar-
ios:

1. Comparison to State-Of-The-Art-Binners on the CAMI Low Dataset
This scenario explores how the best DSMB setup performs compared to the
state-of-the-art binners SolidBin [3], MetaBat2 [2], and VAMB [1].

2. Impact of Joint Deep Clustering on the CAMI Low Dataset
In this scenario, we compare how the does the best version of DSMB per-
form compared to a setup that doesn’t utilize joint deep clustering and an
overfitted version. The setup that doesn’t utilize joint deep clustering is uti-
lizing k-means on the learned embeddings in a two-steps approach. In this
experiment we want to find out how big the impact of joint deep clustering
is.

3. Impact of Iterations on the Joint Deep Clustering on the CAMI Low Data
This experiment is a follow-up experiment to the previous one. We run the
DSMB with different number of iterations to investigate the impact of itera-
tions on the binning result.

4. Impact of Joint Deep Clustering on the Azolla Dataset
In this scenario, we explore how the best DSMB setup and the setup that
doesn’t utilize joint deep clustering perform on the Azolla Dataset compared
to the state-of-the-art binners SolidBin [3], MetaBat2 [2], and VAMB [1]. With
this scenario, we want to find out if the behavior on a non-synthetic long-read
dataset is different compared to the synthetic short-read CAMI Low dataset.

For the settings, it is to mention that we use the Adam optimizer, and the batch
size is set to 256. Besides the output layer of the decoder, where we used the
sigmoid function as the activation function, the ReLU function is utilized as an
activation function. The reconstruction loss is defined by the mean square error

76 Chapter 5. Experiments and Evaluation

loss. The embedding size is 16. For experiments on the CAMI Low dataset the
number of clusters is 60, and for experiments on the Azolla dataset the number
of clusters is 18. 60 is chosen, as it is the CAMI Low gold standard. As VAMB
recovers 18 clusters on the Azolla dataset, we chose to take the same number. The
weight γ of clustering loss LC is set to 0.1.

We ran the DSMB with different settings on the CAMI Low dataset and found
out that the best parametric settings are with 100 epochs pretraining of the stacked
autoencoder and 900 iterations for the entire DSMB. This setting of epochs and
iterations is used as the benchmark for the following experiments under the name
"DSMB Best". The same settings are also the best settings on the Azolla dataset.

Further to note is that the gold standard of the CAMI Low is 60 bins for re-
covered bins and 1 for measures like accuracy (bp), average purity (bp), average
completeness (bp), and ARI (bp).

5.3.1 Comparison to State-Of-The-Art-Binners on the CAMI Low Dataset

To find out how the binner performs in comparison with SolidBin, MetaBat2, and
VAMB, we plotted the results of the DSMB with the described settings to the results
of the CAMI Low benchmark from our previous work [15].

First, we compared the number of recovered bins, as visualized in Figure 5.13.

5.3. Deep Stacked Metagenomic Binner (DSMB) 77

(a) < 10% Contamination results

(b) < 5% Contamination results

Figure 5.13: Comparison of the number of bins recovered between MetaBat2, SolidBin, VAMB, and
DSMB on the CAMI Low dataset.

It is visible that the number of recovered bins of VAMB and DSMB is very close.
Given a contamination of < 10%, VAMB recovers 13 bins with a completeness of
at least > 50%, while DSMB recovers 12 bins. For the completeness of > 90% it is
visible that DSMB recovers 2 more bins than VAMB. DSMB also recovers more bins
than VAMB for a contamination level of < 5% and > 90% completeness.

We can conclude that VAMB recovers more bins with lower completeness on
the CAMI Low dataset, but DSMB recovers more bins with high completeness.
Compared with the insignificant results of the DCMB, DSMB performs well. Com-
paring the performance of DSMB on the CAMI Low dataset, we can see that DSMB
performs in the range of the state-of-the-art binner.

To evaluate the performance of the state-of-the-art binner further, we compare
the accuracy (bp), the average purity (bp), the average completeness (bp), and the

78 Chapter 5. Experiments and Evaluation

adjusted Rand index (bp) of the CAMI Low benchmark. The results are visualized
in Table 5.3.

Binner Accuracy (bp) Average purity (bp) Average completeness (bp) ARI (bp)
MetaBAT2 0.831 0.958 0.581 0.902
SolidBin 0.639 0.638 0.775 0.628
VAMB 0.561 0.824 0.564 0.614
DSMB 0.617 0.767 0.883 0.539

Table 5.3: Comparison of the accuracy (bp), the average purity (bp), the average completeness
(bp), and the adjusted rand index (bp) of MetaBat2, SolidBin, VAMB, and DSMB on the CAMI Low
dataset.

The comparison shows that DSMB has the third highest purity and the highest
overall average completeness. In contrast, the accuracy is the second lowest and
the ARI is the lowest. Compared to VAMB, DSMB achieves better results for the
accuracy and average completeness. Like VAMB, DSMB is not close to the high
results of MetaBAT2.

5.3.2 Impact of Joint Deep Clustering on the CAMI Low Dataset

The comparison with the state-of-the-art binners showed that the DSMB performs
well. To get an understanding of how much the joint deep clustering (Section 2.7)
architecture of the DSMB contributes to the results, we compared the best DSMB
settings (DSMB Best) with a two-stage (Section 2.6) setting (DSMB Pretraining +
k-means), and a setting that is overfitted (DSMB Overfitted), on the CAMI Low
dataset.

For the DSMB Best and DMSB Overfitted, we learn the representation and
clustering jointly. For the overfitted version we run the DSMB with 100 epochs and
11200 iterations. In the context of this experiment, two-stage means that we first
learn the representation and then cluster on this embedding.

We created the DSMB Pretraining + k-means by pretraining the stacked autoen-
coder with 100 epochs, and then we ran k-means on the obtained representations.

For the overfitted setting the number of iterations is set to 11200. The results
are illustrated in Figure 5.14.

5.3. Deep Stacked Metagenomic Binner (DSMB) 79

(a) < 10% Contamination result

(b) < 5% Contamination result

Figure 5.14: Comparison of the recovered bins between the best setting DSMB, the overfitted DSMB
and the two-stage DSMB

The results show that DSMB with the best settings performs only slightly better
than the approach where it doesn’t make use of the joint deep clustering. This
means that learning the representation and clusters jointly is just slightly better
compared to clustering directly on the learned representations. The difference is
only one additional bin for contamination < 5% and completeness from > 70% til
< 90% . For a contamination of < 10%, both settings recover the same number of
bins. In contrast, DSMB performs far worse than the best setting when overfitted.
Here, the number of recovered bins fluctuates between 4 to 5 bins, depending on
the completeness and contamination level.

For a more in-depth evaluation, we looked into the completeness - contam-

80 Chapter 5. Experiments and Evaluation

ination trade-off of this benchmark. This trade-off substracts the contamination
from the completeness for each bin. The bins are sorted in descending order. The
trade-off is visualized in Figure 5.15.

Figure 5.15: Completeness - Contamination trade-off of the DSMB Best Settings, DSMB Two Stage
(Pretraining + k-means), and the DSMB Overfitted.

In the plot it is visible that the overfitted DSMB finds fewer 100 % complete
bins than the best or two-stage settings. Further, it is visible that the trade-off for
the best and two-stage settings are pretty similar.

5.3.3 Impact of Iterations on the CAMI Low Dataset

Since the previous experiment only showed a limited improvement of the cluster-
ing results on CAMI Low by using joint deep clustering, it is now in our interest
to explore if the results actually gradually improve with increasing number of iter-
ations. To explore this scenario, we ran the DSMB with 100 epochs and a varying
number of iterations. The results of the experiment are visualized in Table 5.4 and
Table 5.5.

Binner contamination
> 50 %

completeness
> 70 %

completeness
> 90 %

completeness
DSMB Best 50 Iterations < 10% 9 8 8
DSMB Best 100 Iterations < 10% 10 9 8
DSMB Best 400 Iterations < 10% 9 9 7
DSMB Best 900 Iterations < 10% 12 11 10
DSMB Best 1200 Iterations < 10% 10 10 10

Table 5.4: Comparison of the number of bins recovered for DSMB with 100 epochs and a varying
number of iterations from 50 to 1200. Contamination of 10%.

5.3. Deep Stacked Metagenomic Binner (DSMB) 81

Binner contamination
> 50 %

completeness
> 70 %

completeness
> 90 %

completeness
DSMB Best 50 Iterations < 5% 9 8 8
DSMB Best 100 Iterations < 5% 7 7 7
DSMB Best 400 Iterations < 5% 6 6 4
DSMB Best 900 Iterations < 5% 10 10 9
DSMB Best 1200 Iterations < 5% 8 8 8

Table 5.5: Comparison of the number of bins recovered for DSMB with 100 epochs and a varying
number of iterations from 50 to 1200. Contamination of 5%.

The tables show that the number of recovered bins is getting bigger for a con-
tamination of < 10% when 100 iterations is reached. Then the number of recovered
bins decreases, just to be improving at 900 iterations, where the maximum number
of bins was recovered. Thereafter the number of recovered bins declines again.
From the table it can be concluded that considering the number of recovered bins
there is a local maximum at 100 iterations and a global maximum at 900 iterations.

That means that the joint deep clustering is not steadily improving the number
of recovered bins. Comparing the results for a contamination of < 5%, slightly
fewer bins are recovered after 400 iterations than there are after 50 iterations.

5.3.4 Impact of Joint Deep Clustering on the Azolla Dataset

So far, we performed experiments on the synthetic short read CAMI Low dataset.
To evaluate the performance for non-synthetic long-read data, we ran DSMB with
the best and two-stage setting on the Azolla dataset.

The best settings for the Azolla dataset are found with 100 epochs and 900 itera-
tions, and this is therefore similar to the best settings for the CAMI Low dataset. To
compare the results with the state-of-the-art binners SolidBin [3], MetaBat2 [2], and
VAMB [1] we plotted the DSMB results together with the results of our previous
work [15].

The results for completeness and contamination are illustrated in Figure 5.16.

82 Chapter 5. Experiments and Evaluation

(a) Completeness results

(b) Contamination results

Figure 5.16: Completeness and Contamination results for the Azolla dataset.

Regarding completeness, DSMB Pretraining + k-means and DSMB Best find
the smallest number of bins that are over 70% complete. For completeness be-
tween 70 and 90%, VAMB recovers 1 bin more than DSMB Best. Looking at results
for completeness over 90%, DSMB Best recovers 2 bins more than the two-stage
(Pretraining + k-means) DSMB.

Regarding contamination, the only binner that has less contaminated bins than
DSMB is VAMB. The two-stage DSMB recovers 2 more bins with 0% contamination
than DSMB Best.

The reason for that behavior is that the two-stage DSMB recovers more bins
with less completeness but also less contamination, compared to DSMB Best.

Chapter 6

Discussion

In this chapter, we will discuss different aspects of the project and report. We will
present an overview of both metagenomic binners that we created throughout the
project. Next, we will list the main challenges we faced and sum up the main
findings from our experiments. Lastly, we will provide an explanation behind the
main discoveries and outline some suggestions for further work.

6.1 Discussion: Deep Convolutional Metagenomic Binner
(DCMB)

While we were creating a metagenomic binner that will take raw contigs as its in-
puts, we discovered two main challenges. One challenge is to design a deep neural
network that can effectively learn feature representations from our sequential data.
The second challenge is to find such data preprocessing steps that will lead to the
best clustering results. The clustering algorithm itself does not need any special
adjustments for clustering on sequential data embeddings. The success of cluster-
ing lies mainly in constructing a network that will compress the input data into
meaningful representations.

We can be more specific and present some of the bigger challenges that we
faced. Firstly, suitable data preprocessing has a major effect on the final results.
We had to find a way to handle varying length of the sequences (contigs). This
was solved by selecting an interval of the sequences lengths. This interval would
be specific to every dataset. The reason is that this interval should cover the most
common contig length after filtering out short contigs. For CAMI Low, this inter-
val was [750, 20000]. Next, the sequences were one-hot encoded. The encodings
shorter than the maximum length were padded with zeros.

In general, the problem with using raw contigs as an input feature is their
length. If we wouldn’t select a maximum length at which we cut the remaining

83

84 Chapter 6. Discussion

part of the contig, we would have a huge input data dimension. The cause is
that the longest contigs, even in a synthetic CAMI Low dataset, contain a few mil-
lion nucleotides. Processing such a length would require enormous computational
resources. Additionately, the ratio of 0s to 1s would further increase due to the
required padding. Further, this would negatively affect the learning capability of
the model. It would be too difficult for the model to learn meaningful feature
representations.

For comparison, the dimension of CAMI Low after cutting sequences at the
length 20000 is 20000× 4 = 80000. The dimension of MNIST dataset is 28× 28 =

784.
Secondly, we found out that it is difficult for an autoencoder to reconstruct one-

hot encoded inputs. Our experiments showed that the decoder tends to reconstruct
all inputs in about the same value (such as 0.5), instead of either 0 or 1. This was
partially solved by using a suitable loss function, namely cosine embedding loss.

6.1.1 General Results and Observations

Our experiments showed, that DCMB has some learning capability. However, it
is not enough to recover any genome. In our best run, we achieved the model’s
accuracy of 0.33. Even though a third of the contigs are clustered correctly, the
clusterings also contain a lot of noise. That compromises the positivity of the
result. The current quality of the embeddings is not comparable with the quality
of other binners, namely VAMB, MetaBAT2, SolidBin, and also our second binner
DSMB.

We still think that feature representations obtained from raw contigs could be
used as an alternative to the composition (TNF) input feature. It is likely that
feature representations from raw contigs don’t have potential to replace the abun-
dance feature. However, they could be used in combination with the abundance as
an input to another model.

All in all, we attempted to learn feature representations from raw contigs, and it
turned out that the problem is very difficult. That is due to the length of sequences
and the overall hardness of the problem. These make it uneasy for a model to learn
meaningful embeddings.

We have learned that the DCMB model has more difficulty clustering correctly
short contigs than it has when clustering longer contigs. We achieved a higher
clustering accuracy when we filtered out contigs shorter than 750. We observe this
because short contigs can fit well in many genomes. They don’t contain enough
information to be clustered correctly.

On the other hand, large contigs perhaps include enough information. How-
ever, our computational resources didn’t allow us to scale the architecture of the
model to the point where it would be able to effectively abstract all important

6.2. Discussion: Deep Stacked Metagenomic Binner (DSMB) 85

features.
It is possible that the architecture of our autoencoder wasn’t optimal for the

task. Some ideas for future work include composing a more complicated CNN-
based autoencoder with more encoding and decoding parts. It would also be
interesting to experiment with Long short-term memory (LSTM) autoencoder ar-
chitecture or combining the two mentioned.

6.1.2 Impacts of Joint Deep Clustering on DCMB

The experiments showed that DCMB benefits from the deep joint clustering method.
This was demonstrated in experiment 5.2.4. The difference in the results is not
drastic, and the improvement is more like fine-tuning. However, we do observe
slightly better results by employing this technique. Even though the metrics regis-
tered some improvement with joint deep clustering, the results were not significant.
The method didn’t help to recover any genomes. In order to investigate the im-
pact of the joint deep clustering further, we created a second binner, Deep Stacked
Metagenomic Binner (DSMB) and focused on clustering hand crafted features.

6.2 Discussion: Deep Stacked Metagenomic Binner (DSMB)

Based on the difficulties we had when using raw contigs as input, we decided
to focus on the hand crafted features, namely composition and abundance. We
assumed that we could achieve significant results with a suitable autoencoder ar-
chitecture. The reason is that those features are proven to be a sufficient source of
information for successful clustering results by other binners. That would let us
study the effect of the deep joint clustering with more certainty.

DSMB differs from DCMB mainly in the type of autoencoder network. Here,
we used stacked autoencoder with fully connected layers. The main challenge from
the implementation point of view was correct computation and normalization of
the abundance and composition features. It was also important to determine the
optimal number of encoding and decoding layers. However, the configuration of
the stacked autoencoder was less difficult than it was for the convolutional au-
toencoder in DCMB. DSMB requires fewer hyperparameters to tune. The joint
optimization of feature representations and clustering remained the same as in
DCMB. That is why we explained DSMB more briefly, even though it has at least
equal importance in the project.

The assumption about the bigger significance of the results when using tradi-
tional features has proven to be correct. In general, the results are comparable to
the state of the art results, especially VAMB. Therefore, hand crafted features are a
better source of information than unprocessed contigs.

86 Chapter 6. Discussion

6.2.1 Impacts of Joint Deep Clustering on DSMB

Through our experiments in Section 5.3.2 and Section 5.3.3 we observed a slight
improvement when jointly optimizing feature representations and clusters. This is
opposed to the two-stage method where we ran a clustering algorithm k-means on
feature representations created in pretraining.

Similarly to what we observed with DCMB, the improvement is again more
like fine-tuning. Most of the experiments managed to recover between 1 to 2 more
bins when using the joint method. There is a high probability of recovering more
bins when adding this optimization step, however, that is not guaranteed. This
is not an unusual observation for a fine-tuning optimization technique: it does
not always have a significant impact, especially if the weights of the model were
already well-adjusted from the pretraining step.

We have observed that with metagenomic data the model is prone to overfit-
ting. This is not something that was reported for the original DCEC model [67].
To mention is that the DCEC run with image data. Due to this behavior, we have
found the stopping criterion originally proposed for DCEC ineffective. The origi-
nal stopping criterion is looking at the percentage of embedded points that were
reassigned to a different cluster in between two consequent iterations. Even after
adjusting the threshold tolerance to a higher number, the stopping criterion has
proven to be unreliable. This is why we decided to use an early stopping criterion
instead.

Updating Target Distribution The experiment in Section 5.3.3 has shown that
the improvement of clustering results is not continuous as we would expect. We
observed that the number of recovered genomes, as well as other measures, re-
peatedly improves and worsens again throughout the iterations. We discovered
that this behavior might be affected by updating the auxiliary target distribution.
The original DCEC method recalculates this distribution after every 140 iterations.
Even though this updating interval is configurable, we didn’t observe any bene-
fits of this action for metagenomic data. The left graph in Figure 6.1 shows that
when the target distribution is updated, the clustering loss Lc jumps up, to par-
tially decrease again throughout the following iterations. It is expected to observe
the clustering loss to get bigger when the target distribution is updated. However
here, the total loss L gets gradually bigger. This is not something we should be
observing. The loss L is the sum of the clustering loss Lc and the reconstruction
loss Lr:

L = 0.9× Lr + 0.1× Lc (6.1)

The right graph in Figure 6.1 shows the development of loss functions without
target distribution updating. In this case, the loss smoothly converges.

6.2. Discussion: Deep Stacked Metagenomic Binner (DSMB) 87

Figure 6.1: Trends of loss functions during the training process. The left graph shows the loss trends
for DCMB, where target distribution updates after each 500 training iterations. The right graph
shows the loss trends for DCMB model where target distribution does not update.

Figure 6.2 shows that recalculating the target distribution does not provide any
observable benefits to the training process. Moreover, the setup without the target
distribution update achieves slightly better results overall.

Figure 6.2: Trend of the number of recovered genomes throughout the model training. The graph
shows the number of recovered genomes after varying the number of training iterations. It compares
a setup where the target distribution updates every 140 intervals (blue lines), and a setup where the
target distribution doesn’t update (orange lines). Each line connects results for a specific contamina-
tion level (<5% or <10%), and completeness level (>50%, >70%, >90%).

Therefore for metagenomic binning, we would recommend only calculating the

88 Chapter 6. Discussion

target distribution one time during the 0th iteration and then minimizing the KL
divergence between soft cluster assignments and this initial target distribution.

At the moment, the number of clusters has to be estimated in a separate step.
Future work would include incorporating the number of clusters estimation into
the end-to-end solution.

In conclusion, the deep joint clustering method that we explored in this project
is not computationally expensive when using handcrafted features, and most of
the time, it leads to improved results. The main disadvantage of this method is its
tendency to overfit metagenomic data. If this problem is resolved, the joint deep
clustering using the KL divergence clustering technique will be a viable optimiza-
tion technique for improving binning results.

Chapter 7

Conclusion

In this chapter, we reason how the content of the report answers the questions
formulated in the problem statement in Section 1.2.

The report first explains the fundamentals required for answering the problem
statement questions. This is why we introduced the field of (meta)genomics, de-
scribed the structure of DNA, and explained the sequencing process (Section 2.1).
Since our problem definition requires an understanding of the deep learning field,
we have also explained the basic idea behind deep neural networks and the build-
ing blocks that such networks consist of (Section 2.2).

To find the answers to our problem statement questions, we have created and
evaluated two new metagenomic binners: Deep Convolutional Metagenomic Bin-
ner (DCMB) and Deep Stacked Metagenomic Binner (DSMB). Both of the binners
consist of an autoencoder part and a deep clustering part. Each of the binners
was designed with a specific purpose. With DCMB, we explored the potential of
raw contigs as input features. With DSMB, we studied the impacts of joint deep
clustering on the number of recovered genomes. The ultimate goal was to explore
innovative solutions that could be useful for improving the metagenomic binning
results of existing and future binners.

The problem statement itself consists of two questions. The first question in the
problem statement asks:

• Can we benefit from the sequential information in contigs and achieve com-
petitive binning results by implementing a deep learning model that will use
them as an input?

Hand-crafted input features used by many binners are extracted from raw DNA
sequences in an additional preprocessing step. We explored if it is feasible to skip
this step by using raw contigs as inputs. Such a solution eliminates the need for
additional preprocessing and makes use of sequential information that is found in
raw contigs. To answer the question, we created Deep Convolutional Metagenomic

89

90 Chapter 7. Conclusion

Binner (DCMB). We have discovered that feature representations can be learned
from sequential data with a convolutional autoencoder. We explained the archi-
tecture of this metagenomic binner and why we think the presented architecture
is suitable for our problem. One of our main challenges was adapting a convolu-
tional autoencoder for sequential input data. Typically, CNN-based autoencoders
are trained with image datasets. Throughout the first part of Chapter 5, we doc-
umented our experimental setup and scenarios that explore the potential of using
unprocessed contigs as input features in our DCMB model. These experiments
showed that the feature representations obtained from raw contigs alone are now
powerful enough, and the binner does not achieve competitive results when clus-
tering on them. Finally, the problem statement question is answered throughout
Section 5.2.7 and Chapter 6, Section 6.1.

With our current implementation of DCMB, we can not benefit from raw con-
tigs being the only input feature of a stand-alone binner. Nevertheless, we have
gained interesting insights into the problem area. This includes detection of cer-
tain learning abilities of such binner. We believe that with different architecture
and sufficient computational resources, utilizing raw contigs in a metagenomic
binner might still bear potential.

The second question formulated in the problem statement asks:

• Can we benefit from involving clustering deeper during the training phase?

To answer this question, we first needed to get a deeper understanding of the
problem area. This is why throughout Chapter 2, we explained deep clustering
methods and clustering techniques commonly used in those methods. In conclu-
sion, we decided to focus specifically on joint deep clustering methods. Those
are methods that involve clustering within the training process, as they optimize
feature representations and clustering simultaneously. We described selected joint
clustering frameworks and analysed their clustering techniques. We decided to use
a joint clustering method that utilizes KL divergence clustering technique. This
method initializes clusters on learned embeddings with k-means and then refines
them using the KL divergence. Currently, this method is used by a few existing
frameworks, including DCEC and DEC.

We experimented with this joint deep clustering method in our DCMB binner,
where the experiments showed improvement in some metrics. The less significiant
DCMB results made it uneasy to observe the effects of joint clustering. To inves-
tigate the effects of joint clustering better, we implemented a second binner called
Deep Stacked Metagenomic Binner (DSMB). This binner takes abundance and com-
position as input features, and it recovers a competitive number of genomes. We
explained the architecture of this binner and the reasoning behind it. After eval-
uating a series of experiments in Chapter 5, we answered the problem statement
question in Chapter 6 Section 6.2.

91

In summary, we have discovered that in most cases, we do benefit from the uti-
lization of the joint deep clustering method in metagenomic binning. We showed
that by using this method, we can optimize the learned feature representations and
recover a slightly larger number of genomes.

Future work would include integration of the number of the bins estimation
and improved overfitting prevention.

Appendix A

Apendix

A.1 Previous Experiments

The following section describes the findings of the group’s previous report [15].
One of the aims in the previous report was to explore how the binning results

of VAMB compare to the state-of-the-art binners MetaBAT2 [2] and SolidBin [3].
MetaBAT2 utilizes probability-based abundance and composition scores and

then performs an LPA (label propagation algorithm) for clustering. SolidBin per-
forms a type of spectral clustering with incorporated pairwise constraints. To com-
pare the performances, a metagenomic binning benchmark was conducted on the
datasets CAMI low [4], Azolla [7] and Strong100 [101]. To access the quality of
the resulting bins, a tool AMBER [102] (Assessment of Metagenome BinnERs) was
used for the Strong100 and Azolla dataset, and a method CheckM [103] for the
Cami low dataset. The average size of the datasets was around 15 GB. Figures
and tables with the results of the benchmark can be found in Appendix A.2 of the
Appendix. Briefly, the results of the benchmark showed, that VAMB trades off low
completeness for low contamination, and SolidBin trades off high completeness
for high contamination. MetaBAT2 showed the most consistent results without
trading off completeness and contamination.

A.2 Metagenomic Binner Benchmark

This section provides the results of the benchmark with the binners SolidBin,
MetaBAT2 and VAMB of our previous report [15].

92

A.2. Metagenomic Binner Benchmark 93

Dataset VAMB MetaBAT2 SolidBin

Azolla 18 17 11
Strong 100 60 69 42
CAMI Low 13 30 15

Table A.1: Recovered bins for every binner and dataset.

A.2.1 Azolla Dataset

(a) Completeness results

(b) Contamination results

Figure A.1: Results of the benchmark performed on the Azolla dataset.

94 Appendix A. Apendix

A.2.2 Strong 100 Dataset

(a) Completeness results

(b) Contamination results

Figure A.2: Results of the benchmark performed on the Strong 100 dataset.

A.3. DCMB additional Experiments 95

A.2.3 CAMI Low Dataset

Binner contamination
> 50 %

completeness
> 70 %

completeness
> 90 %

completeness
Gold Standard < 10% 60 60 60
Gold Standard < 5% 60 60 60
MetaBAT2 < 10% 30 27 22
MetaBAT2 < 5% 30 27 22
SolidBin < 10% 15 13 12
SolidBin < 5% 12 11 10
VAMB < 10% 13 12 8
VAMB < 5% 12 11 7

Table A.2: Completeness and Contamination of the CAMI Low dataset

A.3 DCMB additional Experiments

A.3.1 Base Case Versus Result From Short Training.

The purpose of this experiment is to show if there is an improvement in results
between the improperly trained DCMB model (DCMB Short Training) and DCMB
Best. This is to explore the learning power of the properly trained DCMB Best
model.

Comparing our best result with the result from short training in Figure A.3,
it can be noted that the model can learn partially correct information throughout
the training, even though the quality of learned features is not sufficient for a
competitive result. Both experiments were run with the number of clusters set to
60. DCMB Best ended with 52 clusters, while the DCMB Short Training model
was only able to identify 12 clusters. This indicates that DCMB Best learns enough
information to identify the requested number of clusters.

Figure A.3 shows the quality of bins taking both completeness and contamina-
tion into account, while Figure A.4 shows the quality of bins when only looking
at how much contaminated they are. In both graphs, the properly trained DCMB
model produced bins of strongly better qualities.

96 Appendix A. Apendix

Figure A.3: Plot representing the quality of
bins based on a completeness - contamina-
tion metric.

Figure A.4: Plot representing the quality of
bins based on a contamination metric.

Figure A.5: Plot representing the quality of bins based on purity and completeness for each bin.

Figure A.8 illustrates the quality of each bin, considering their completeness
and contamination. The DCMB Best contains 3 bins that are more than 40% com-
plete and more than 40% pure, and it contains 19 bins that are more than 20%
pure and more than 20% complete. Meanwhile, DCMB Short Training contains a
single bin that is 100% complete and extremely highly contaminated, and the rest
of the bins are only around 10% complete, with 2 bins being more than 80% pure.
This indicates that DCMB Short Training contains 1 huge bins and a couple of very
small bins.

A.4. DCMB Structure 97

Binner Accuracy (bp) Av. purity (bp) Av. completeness (bp) ARI (bp)
Gold Standard 1 1 1 1
DCMB Best 0.33363 0.5475 0.67861 0.22901
DCMB Short Training 0.09066 0.51048 0.91841 0.00391

Table A.3: Comparison of accuracy (bp), average purity (bp), average completeness (bp), and ad-
justed Rand index (bp) between DCMB Best result, and DCMB Short training.

Table A.3 provides an overview of the basic metrics for both compared models.
DCMB Best achieves a decent base-pair accuracy of 0.33 and adjusted Rand index
of 0.23. Although a lot of noise is present in the results, the presented metrics
indicate some success in the binning process. In comparison with the poor results
of DCMB Short Training, we can state that the results are not accidental, and DCMB
demonstrates a learning potential.

A.4 DCMB Structure

The following figure is additional material that shows the implementation struc-
ture of DCMB.

98 Appendix A. Apendix

Figure A.6: Detailed illustration of the DCMB structure with attached clustering layer.

The encoder takes encoded raw contigs cut to the size of 20000 base pairs as
input. Through 3 convolution layers, embeddings of size 60 are obtained. The
embeddings are input to the decoder and the clustering layer.

The decoder takes embeddings of size 60 as input, and outputs encoded vectors
of size 20000. Bins are obtained through the clustering layer.

A.5. DSMB Autoencoder Structure 99

A.5 DSMB Autoencoder Structure

The following figures are an additional material that shows the implementation
structure of the encoder and the decoder of DSMB.

Figure A.7: Detailed illustration of the DSMB encoder.

The encoder takes concatenated abundance and composition vectors as input.
Each of these vectors has a size of 104. Through 3 dense layers, embeddings of size
16 are obtained.

100 Appendix A. Apendix

Figure A.8: Detailed illustration of the DSMB decoder.

The decoder takes the embeddings of size 16 as input. The outputs are concate-
nated abundance and composition vectors of size 104.

A.6 DVMB - Deep Variational Metagnomic Binner

A.6.1 Idea

The main idea of this model is to apply and verify a deep metagenomic architecture
in a joint learning context. We have decided to base this approach on the DCEC and
to use a variational autoencoder as a network structure. We utilize a variational
autoencoder because we want to use a network similar to VAMB.

A.6.2 Architecture

The overall DVMB structure (Figure A.13) is based on the DCEC model (Sec-
tion 2.8.3) in which we replace the convolutional autoencoder (CAE) by the vari-
ational autoencoder (VAE). Similarly to the DSMB, DVMB takes TNF and abun-
dance as its input (Section 5.3) and consists of two main parts:

• The variational autoencoder for constructing feature representations from the
input data (TNF and Abundance)

A.6. DVMB - Deep Variational Metagnomic Binner 101

Figure A.9: The overall structure of the VAE used for the DVMB.

Figure A.10: Detailed illustration of the encoder.

The encoder_input layer has 104 input neurons and processes the concatena-
tion of TNF and abundance vectors. The outputs will be passed into a dense
layer which has 64 hidden neurons where embeddings are generated. The
two embeddings (z_mean and z_log_variant) are organized in two separated
32-neurons dense layers. Finally, two embedding layers are sampled into the
sampling layer.

102 Appendix A. Apendix

Figure A.11: Detailed illustration of the decoder.

The decoder is connected to sampling layer and use its input to reconstruct
z_mean and z_log_variant embeddings. It enhances the encoder’s perfor-
mance through backpropagation process.

• The clustering layer Section 2.8.6 accepts input from the most data-rich parts
of the latent space (µ (mean)) and optimizes the predicted soft labels q for all
data point over the iterations. The following figures will demonstrate how
the clustering layer is integrated into the DVMB’s overall structure.

Figure A.12: Illustration of DVMB model which performs end-to-end learning.

By combining the clustering layer and the VAE, we form the DVMB joint clustering
method:

A.6. DVMB - Deep Variational Metagnomic Binner 103

Figure A.13: The overall overview of DVMB.

A.6.3 Evaluation

We validated the DSMB against the DVMB on the CAMI Low dataset. The CAMI
Low dataset was chosen as we wanted to take advantage of the supported ground
truth for a more accurate evaluation. This section will explain how we evaluate the
DVMB against the DSMB. Mainly, we want to compare the contribution of the joint
clustering to the results. For this experiment, we used mostly the same settings
for the DSMB and DVMB as described in section 5.3. For each run, we changed
the number of trained iterations. For consistency with other parts in this report,
we select the three train iterations: 100, 900, and 1200 for this experiment. To
validate the DVMB’s joint clustering performance in comparison with the normal
two-stage training, we execute one additional two-stage "Pretraining + k-mean"
experiment where we pretrain DVMB’s variational autoencoder in 100 epochs and
then perform k-means on the feature representation which obtained after retrain.

104 Appendix A. Apendix

Result and observations

Tool Contamination
> 50%

Completeness
> 70%

Completeness
> 90%

Completeness
0 DVMB 1 Iter 10% 6 6 6
1 DVMB 1 Iter 5% 5 5 5
2 DVMB 100 Iter 10% 4 4 4
3 DVMB 100 Iter 5% 3 3 3
4 DVMB 900 Iter 10% 6 5 5
5 DVMB 900 Iter 5% 5 4 4
6 DVMB 1200 Iter 10% 7 6 6
7 DVMB 1200 Iter 5% 4 3 3

Table A.4: DVMB results.

Tool Contamination
> 50%

Completeness
> 70%

Completeness
> 90%

Completeness
1 DSMB 100 Iter 10% 14 13 13
2 DSMB 100 Iter 5% 12 11 11
3 DSMB 900 Iter 10% 7 7 6
4 DSMB 900 Iter 5% 7 7 6
5 DSMB 1200 Iter 10% 11 11 9
6 DSMB 1200 Iter 5% 10 10 9

Table A.5: DSMB results.

Figure A.14: DVMB & DSMB 5% Contamination comparison.

The comparison in Figure A.14 extracts bin reconstruction results from the highest
quality criteria. From the graph in Figure A.14 we can conclude the following:

A.7. Implementation Source 105

• The DSMB model is outperforming the DVMB in all of the experiments.
DSMB creates more qualified bins (double the number of high quality bins
after 100 iterations) on the CAMI Low dataset [4] using the AMBER tool
[102]. This might be due to the fact that the VAE part of the DVMB involves
two separated embeddings (mean and variance), and with additional inter-
fere from the clustering layer, we need a more sophisticated mechanism than
the one proposed by the DCEC.

• The joint structure in this case does not show significant improvements when
compared with the "Pretraining + k-means" setting. We can only see small
improvement at 1200 train iterations.

A.7 Implementation Source

• DCMB: https://github.com/leotimus/DMB/tree/dcmb

• DSMB: https://github.com/leotimus/DMB/tree/dsmb

• DVMB: https://github.com/leotimus/DMB/tree/dvmb

List of Acronyms

AAU Aalborg Universitet

AMBER Assessment of Metagenome BinnERs

ANN Artificial Neural Network

BP base pairs

CAE Convolutional Autoencoder

CAMI Critical Assessment of Metagenome Interpretation CAMI

CNN Convolutional Neural Network

DBSCAN Density-based spatial clustering of applications with noise

DCEC Deep Convolutional Embedded Clustering

DCMB Deep Convolutional Metagenomic Binner

DEPICT Deep Embedded Regularized Clustering

DKL Kullback-Leibler divergence

DNA deoxyribonucleic acid

DSMB Deep Stacked Metagenomic Binner

DVMB Deep Variational Metagenomic Binnner

IMSAT Information Maximizing Self-Augmented Training

JULE Joint Unsupervised Learning

LPA label propagation algorithm

ORF open reading frame

ReLU Rectified Linear Unit

106

A.7. Implementation Source 107

RIM Regularized Information Maximization

RNN Recurrent Neural Network

SAT Self-Augmented Training

t-SNE t-distributed stochastic neighbor embedding

VAE Variational Autoencoder

Bibliography

[1] Rosa Lundbye Allesøe Jakob Nybo Nissen Joachim Johansen and others.
“Improved metagenome binning and assembly using deep variational au-
toencoders”. In: Nature (2021). doi: 10.1038/s41587-020-00777-4. url:
https://www.nature.com/articles/s41587-020-00777-4.

[2] Dongwan D. Kang et al. “MetaBAT 2: an adaptive binning algorithm for
robust and efficient genome reconstruction from metagenome assemblies”.
In: (2019). doi: https://doi.org/10.7717/peerj.7359.

[3] Ziye Wang et al. “SolidBin: improving metagenome binning with semi-
supervised normalized cut”. In: Bioinformatics 35.21 (Apr. 2019), pp. 4229–
4238. issn: 1367-4803. doi: 10.1093/bioinformatics/btz253. eprint: https:
/ / academic . oup . com / bioinformatics / article - pdf / 35 / 21 / 4229 /
30330800/btz253.pdf. url: https://doi.org/10.1093/bioinformatics/
btz253.

[4] CAMI. 1st CAMI Challenge Dataset 1 CAMIlow. https://data.cami-challenge.
org/participate. (Visited on 12/05/2021).

[5] Laura W Dijkhuizen. Metagenomicspractical. https://github.com/lauralwd/
metagenomicspractical.

[6] Bojian Yin et al. “An Image Representation Based Convolutional Network
for DNA Classification”. In: The International Conference on Learning Repre-
sentations (ICLR). 2018.

[7] Henk Bolhuis et al. Laura W. Dijkhuizen Paul Brouwer. “Is there foul play
in the leaf pocket? The metagenome of floating fern Azolla reveals endo-
phytes that do not fix N2 but may denitrify”. In: The New Phytologist 1 (2018),
pp. 453–466. doi: 10.1111/nph.14843.

[8] Kripa Adhikari, Sudip Bhandari, and Subash Acharya. “Reviews In Food
And Agriculture (RFNA) AN OVERVIEW OF AZOLLA IN RICE PRO-
DUCTION: A REVIEW”. In: Reviews in Food and Agriculture 2 (Jan. 2021).
doi: 10.26480/rfna.01.2021.04.08.

108

https://doi.org/10.1038/s41587-020-00777-4
https://www.nature.com/articles/s41587-020-00777-4
https://doi.org/https://doi.org/10.7717/peerj.7359
https://doi.org/10.1093/bioinformatics/btz253
https://academic.oup.com/bioinformatics/article-pdf/35/21/4229/30330800/btz253.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/21/4229/30330800/btz253.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/21/4229/30330800/btz253.pdf
https://doi.org/10.1093/bioinformatics/btz253
https://doi.org/10.1093/bioinformatics/btz253
https://data.cami-challenge.org/participate
https://data.cami-challenge.org/participate
https://github.com/lauralwd/metagenomicspractical
https://github.com/lauralwd/metagenomicspractical
https://doi.org/10.1111/nph.14843
https://doi.org/10.26480/rfna.01.2021.04.08

Bibliography 109

[9] National Human Genome Research Institute. Double Helix. https://www.
genome.gov/genetics-glossary/Double-Helix. (Visited on 04/08/2022).

[10] Cade Metz. 2016: The Year That Deep Learning Took Over the Internet. https:
//www.wired.com/2016/12/2016-year-deep-learning-took-internet/.
(Visited on 04/09/2022).

[11] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation. 2016. doi: 10.48550/ARXIV.
1609.08144. url: https://arxiv.org/abs/1609.08144.

[12] Chung-Cheng Chiu et al. “State-of-the-art Speech Recognition With Sequence-
to-Sequence Models”. In: 2018. url: https://arxiv.org/pdf/1712.01769.
pdf.

[13] El Allali A. Al-Ajlan A. “CNN-MGP: Convolutional Neural Networks for
Metagenomics Gene Prediction”. In: Interdisciplinary Sciences, Computational
Life Sciences 11 (2018), pp. 628–635. doi: 10.1007/s12539-018-0313-4.

[14] Antonino Fiannaca et al. “Deep learning models for bacteria taxonomic clas-
sification of metagenomic data”. In: BMC Bioinformatics 19.7 (2018), p. 198.
issn: 1471-2105. doi: 10.1186/s12859-018-2182-6. url: https://doi.org/
10.1186/s12859-018-2182-6.

[15] Filip Wolf, Trong Dai Ha, and Jan Niklas Fichte. Metagenomic Binning Based
on Deep Learning. 2021.

[16] Loris Nanni, Stefano Ghidoni, and Sheryl Brahnam. “Handcrafted vs. non-
handcrafted features for computer vision classification”. In: Pattern Recog-
nition 71 (2017), pp. 158–172. issn: 0031-3203. doi: https://doi.org/10.
1016/j.patcog.2017.05.025. url: https://www.sciencedirect.com/
science/article/pii/S0031320317302224.

[17] Andre Lamurias et al. “Metagenomic binning with assembly graph embed-
dings”. In: bioRxiv (2022). doi: 10.1101/2022.02.25.481923. eprint: https:
//www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923.
full.pdf. url: https://www.biorxiv.org/content/early/2022/02/27/
2022.02.25.481923.

[18] Tapinos A. Robertson Kouchaki S. “D.L. A signal processing method for
alignment-free metagenomic binning: multi-resolution genomic binary pat-
terns”. In: Scientific Reports 9 (2019). doi: 10.1038/s41598-018-38197-9.

[19] In: ().

[20] Yi Yue et al. “Evaluating metagenomics tools for genome binning with
real metagenomic datasets and CAMI datasets”. In: BMC Bioinformatics 21.1
(2020), p. 334. issn: 1471-2105. doi: 10.1186/s12859-020-03667-3. url:
https://doi.org/10.1186/s12859-020-03667-3.

https://www.genome.gov/genetics-glossary/Double-Helix
https://www.genome.gov/genetics-glossary/Double-Helix
https://www.wired.com/2016/12/2016-year-deep-learning-took-internet/
https://www.wired.com/2016/12/2016-year-deep-learning-took-internet/
https://doi.org/10.48550/ARXIV.1609.08144
https://doi.org/10.48550/ARXIV.1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/pdf/1712.01769.pdf
https://arxiv.org/pdf/1712.01769.pdf
https://doi.org/10.1007/s12539-018-0313-4
https://doi.org/10.1186/s12859-018-2182-6
https://doi.org/10.1186/s12859-018-2182-6
https://doi.org/10.1186/s12859-018-2182-6
https://doi.org/https://doi.org/10.1016/j.patcog.2017.05.025
https://doi.org/https://doi.org/10.1016/j.patcog.2017.05.025
https://www.sciencedirect.com/science/article/pii/S0031320317302224
https://www.sciencedirect.com/science/article/pii/S0031320317302224
https://doi.org/10.1101/2022.02.25.481923
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923.full.pdf
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923.full.pdf
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923.full.pdf
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923
https://doi.org/10.1038/s41598-018-38197-9
https://doi.org/10.1186/s12859-020-03667-3
https://doi.org/10.1186/s12859-020-03667-3

110 Bibliography

[21] DeepAI. Hidden Representation. 2019. url: https://deepai.org/machine-
learning-glossary-and-terms/hidden-representation.

[22] Rakesh Chada. Understanding Neural Networks by Embedding Hidden Repre-
sentations. 2018. url: https://medium.com/@rakesh.chada/understanding-
neural-networks-by-embedding-hidden-representations-f256842ebf3a.

[23] Kamran Ghasedi Dizaji, Amirhossein Herandi, and Heng Huang. “Deep
Clustering via Joint Convolutional Autoencoder Embedding and Relative
Entropy Minimization”. In: CoRR abs/1704.06327 (2017). arXiv: 1704.06327.
url: http://arxiv.org/abs/1704.06327.

[24] National Human Genome Research Institute. DNA. https://www.genome.
gov/genetics-glossary/Deoxyribonucleic-Acid. (Visited on 10/07/2021).

[25] Nature. DNAreplication. https://www.nature.com/scitable/topicpage/
cells-can-replicate-their-dna-precisely-6524830/. (Visited on 10/07/2021).

[26] National Human Genome Research Institute. chromosome. https://www.
genome.gov/about- genomics/fact- sheets/Chromosomes- Fact- Sheet.
(Visited on 10/07/2021).

[27] Nature. genome. https://www.nature.com/scitable/definition/genome-
43/. (Visited on 10/07/2021).

[28] National Research Council (US) Committee on Metagenomics: Challenges
and Functional Applications. The New Science of Metagenomics: Revealing the
Secrets of Our Microbial Planet. https : / / pubmed . ncbi . nlm . nih . gov /
21678629/. The National Academies Press, 2007.

[29] National Human Genome Research Institute. Genetic Marker. https://www.
genome.gov/genetics-glossary/Genetic-Marker. (Visited on 06/02/2022).

[30] Zhen Li et al. “Single-Copy Genes as Molecular Markers for Phylogenomic
Studies in Seed Plants”. In: Genome Biol Evol. 9.5 (2017), pp. 1130–1147. doi:
https://doi.org/10.1093/gbe/evx070.

[31] National Human Genome Research Institute. DNA Sequencing. https://
www.genome.gov/genetics-glossary/DNA-Sequencing. (Visited on 09/30/2021).

[32] Miten Jain et al. “The Oxford Nanopore MinION: delivery of nanopore se-
quencing to the genomics community”. In: Genome Biology 17.1 (2016). doi:
https://doi.org/10.1186/s13059-016-1103-0.

[33] Gunavaran Brihadiswaran. Bioinformatics 1: K-mer Counting. https://medium.
com/swlh/bioinformatics-1-k-mer-counting-8c1283a07e29, urldate =
2021-12-28. 2020.

https://deepai.org/machine-learning-glossary-and-terms/hidden-representation
https://deepai.org/machine-learning-glossary-and-terms/hidden-representation
https://medium.com/@rakesh.chada/understanding-neural-networks-by-embedding-hidden-representations-f256842ebf3a
https://medium.com/@rakesh.chada/understanding-neural-networks-by-embedding-hidden-representations-f256842ebf3a
https://arxiv.org/abs/1704.06327
http://arxiv.org/abs/1704.06327
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.nature.com/scitable/topicpage/cells-can-replicate-their-dna-precisely-6524830/
https://www.nature.com/scitable/topicpage/cells-can-replicate-their-dna-precisely-6524830/
https://www.genome.gov/about-genomics/fact-sheets/Chromosomes-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/Chromosomes-Fact-Sheet
https://www.nature.com/scitable/definition/genome-43/
https://www.nature.com/scitable/definition/genome-43/
https://pubmed.ncbi.nlm.nih.gov/21678629/
https://pubmed.ncbi.nlm.nih.gov/21678629/
https://www.genome.gov/genetics-glossary/Genetic-Marker
https://www.genome.gov/genetics-glossary/Genetic-Marker
https://doi.org/https://doi.org/10.1093/gbe/evx070
https://www.genome.gov/genetics-glossary/DNA-Sequencing
https://www.genome.gov/genetics-glossary/DNA-Sequencing
https://doi.org/https://doi.org/10.1186/s13059-016-1103-0
https://medium.com/swlh/bioinformatics-1-k-mer-counting-8c1283a07e29
https://medium.com/swlh/bioinformatics-1-k-mer-counting-8c1283a07e29

Bibliography 111

[34] Mehdi Kchou, Jean-François Gibrat, and Mourad Elloumi. “Generations of
Sequencing Technologies: From First to Next Generation”. In: Biology and
Medicine 09 (2017), pp. 1–8. doi: https://doi.org/10.4172/0974-8369.
1000395.

[35] Yun Heo. “Improving quality of high-throughput sequencing reads”. PhD
thesis. University of Illinois, 2015.

[36] Jeff Illumina. Read length recommendations. https://www.illumina.com/
science/technology/next-generation-sequencing/plan-experiments/
read-length.html.

[37] Nanoporetech. MinION. https://nanoporetech.com/products/minion.
(Visited on 10/02/2021).

[38] David R. Greig et al. “Comparison of single-nucleotide variants identified
by Illumina and Oxford Nanopore technologies in the context of a potential
outbreak of Shiga toxin–producing Escherichia coli”. In: Giga Science 8.8
(2019), pp. 1–12. doi: http://dx.doi.org/10.1093/gigascience/giz104.

[39] Jason M. Neal-McKinney et al. “Comparison of MiSeq, MinION, and hy-
brid genome sequencing for analysis of Campylobacter jejuni”. In: Scientific
Reports 11.1 (2021), pp. 2045–2322. doi: https://doi.org/10.1038/s41598-
021-84956-6.

[40] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. 2013. arXiv: 1303.3997 [q-bio.GN].

[41] Heng Li. “Minimap2: pairwise alignment for nucleotide sequences”. In:
Bioinformatics 34.18 (May 2018), pp. 3094–3100. issn: 1367-4803. doi: 10.
1093/bioinformatics/bty191. eprint: https://academic.oup.com/bioinformatics/
article-pdf/34/18/3094/25731859/bty191.pdf. url: https://doi.org/
10.1093/bioinformatics/bty191.

[42] Christophe Oguey, Nicolas Foloppe, and Brigitte Hartmann. “Understand-
ing the Sequence-Dependence of DNA Groove Dimensions: Implications
for DNA Interactions”. In: PloS one 5 (Dec. 2010), e15931. doi: 10.1371/
journal.pone.0015931.

[43] Rosa Lundbye Allesøe Jakob Nybo Nissen Joachim Johansen and others.
“Supplementary information: Improved metagenome binning and assem-
bly using deep variational autoencoders”. In: Nature (2021). doi: 10.1038/
s41587-020-00777-4. url: https://static-content.springer.com/esm/
art\%3A10.1038\%2Fs41587-020-00777-4/MediaObjects/41587_2020_
777_MOESM1_ESM.pdf.

[44] Shanrong Zhao, Zhan Ye, and Robert Stanton. “Misuse of RPKM or TPM
normalization when comparing across samples and sequencing protocols”.
In: RNA 26 (Apr. 2020), rna.074922.120. doi: 10.1261/rna.074922.120.

https://doi.org/https://doi.org/10.4172/0974-8369.1000395
https://doi.org/https://doi.org/10.4172/0974-8369.1000395
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/read-length.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/read-length.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/read-length.html
https://nanoporetech.com/products/minion
https://doi.org/http://dx.doi.org/10.1093/gigascience/giz104
https://doi.org/https://doi.org/10.1038/s41598-021-84956-6
https://doi.org/https://doi.org/10.1038/s41598-021-84956-6
https://arxiv.org/abs/1303.3997
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/bty191.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/bty191.pdf
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1371/journal.pone.0015931
https://doi.org/10.1371/journal.pone.0015931
https://doi.org/10.1038/s41587-020-00777-4
https://doi.org/10.1038/s41587-020-00777-4
https://static-content.springer.com/esm/art\%3A10.1038\%2Fs41587-020-00777-4/MediaObjects/41587_2020_777_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art\%3A10.1038\%2Fs41587-020-00777-4/MediaObjects/41587_2020_777_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art\%3A10.1038\%2Fs41587-020-00777-4/MediaObjects/41587_2020_777_MOESM1_ESM.pdf
https://doi.org/10.1261/rna.074922.120

112 Bibliography

[45] Tom Taulli. Artificial Intelligence Basics. https://pubmed.ncbi.nlm.nih.
gov/21678629/. Apress Berkeley, CA. doi: 10.1007/978-1-4842-5028-0.

[46] Wissal Farsal, Samir Anter, and Mohammed Ramdani. “Deep Learning: An
Overview”. In: Proceedings of the 12th International Conference on Intelligent
Systems: Theories and Applications. SITA’18. Rabat, Morocco: Association for
Computing Machinery, 2018. isbn: 9781450364621. doi: 10.1145/3289402.
3289538. url: https://doi-org.zorac.aub.aau.dk/10.1145/3289402.
3289538.

[47] Ameet Joshi. “Machine Learning and Artificial Intelligence”. In: (Jan. 2020).
doi: 10.1007/978-3-030-26622-6.

[48] Martin Thoma. File:Perceptron-unit.svg. https://commons.wikimedia.org/
wiki/File:Perceptron-unit.svg. (Visited on 03/20/2022).

[49] Riccardo Di Sipio. A Quick Guide to Cross-Entropy Loss Function. https://
towardsdatascience . com / a - quick - guide - to - cross - entropy - loss -
function-8f3410ec6ab1. (Visited on 06/16/2022).

[50] Jason Brownlee. Softmax Activation Function with Python. 2020. url: https:
//machinelearningmastery.com/softmax-activation-function-with-
python/.

[51] Harry McGrath et al. “Future of Artificial Intelligence in Anesthetics and
Pain Management”. In: Journal of Biosciences and Medicines 07 (Jan. 2019),
pp. 111–118. doi: 10.4236/jbm.2019.711010.

[52] Kiprono Elijah Koech. Cross-Entropy Loss Function. 2021. url: https : / /
towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e#:
~:text=Cross\%2Dentropy\%20loss\%20is\%20used.

[53] Bhadvika Kanani. Cosine Similarity - Text Similarity Metric. 2019. url: https:
//studymachinelearning.com/cosine- similarity- text- similarity-
metric/#:~:text=Cosine\%20similarity\%20is\%20one\%20of.

[54] Y. V. R. Nagapawan, Kolla Bhanu Prakash, and G. R. Kanagachidambare-
san. “Convolutional Neural Network”. In: Programming with TensorFlow: So-
lution for Edge Computing Applications. Ed. by Kolla Bhanu Prakash and G.
R. Kanagachidambaresan. Cham: Springer International Publishing, 2021,
pp. 45–51. isbn: 978-3-030-57077-4. doi: 10.1007/978-3-030-57077-4_6.
url: https://doi.org/10.1007/978-3-030-57077-4_6.

[55] Cornell University. CS1114 Section 6: Convolution. https://www.cs.cornell.
edu/courses/cs1114/2013sp/sections/S06_convolution.pdf. (Visited on
05/25/2022).

[56] Vedant Kumar. Convolutional Neural Networks. https://towardsdatascience.
com/convolutional-neural-networks-f62dd896a856. (Visited on 03/30/2022).

https://pubmed.ncbi.nlm.nih.gov/21678629/
https://pubmed.ncbi.nlm.nih.gov/21678629/
https://doi.org/10.1007/978-1-4842-5028-0
https://doi.org/10.1145/3289402.3289538
https://doi.org/10.1145/3289402.3289538
https://doi-org.zorac.aub.aau.dk/10.1145/3289402.3289538
https://doi-org.zorac.aub.aau.dk/10.1145/3289402.3289538
https://doi.org/10.1007/978-3-030-26622-6
https://commons.wikimedia.org/wiki/File:Perceptron-unit.svg
https://commons.wikimedia.org/wiki/File:Perceptron-unit.svg
https://towardsdatascience.com/a-quick-guide-to-cross-entropy-loss-function-8f3410ec6ab1
https://towardsdatascience.com/a-quick-guide-to-cross-entropy-loss-function-8f3410ec6ab1
https://towardsdatascience.com/a-quick-guide-to-cross-entropy-loss-function-8f3410ec6ab1
https://machinelearningmastery.com/softmax-activation-function-with-python/
https://machinelearningmastery.com/softmax-activation-function-with-python/
https://machinelearningmastery.com/softmax-activation-function-with-python/
https://doi.org/10.4236/jbm.2019.711010
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e#:~:text=Cross\%2Dentropy\%20loss\%20is\%20used
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e#:~:text=Cross\%2Dentropy\%20loss\%20is\%20used
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e#:~:text=Cross\%2Dentropy\%20loss\%20is\%20used
https://studymachinelearning.com/cosine-similarity-text-similarity-metric/#:~:text=Cosine\%20similarity\%20is\%20one\%20of
https://studymachinelearning.com/cosine-similarity-text-similarity-metric/#:~:text=Cosine\%20similarity\%20is\%20one\%20of
https://studymachinelearning.com/cosine-similarity-text-similarity-metric/#:~:text=Cosine\%20similarity\%20is\%20one\%20of
https://doi.org/10.1007/978-3-030-57077-4_6
https://doi.org/10.1007/978-3-030-57077-4_6
https://www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf
https://www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf
https://towardsdatascience.com/convolutional-neural-networks-f62dd896a856
https://towardsdatascience.com/convolutional-neural-networks-f62dd896a856

Bibliography 113

[57] Yugesh Verma. https://analyticsindiamag.com/guide-to-different-padding-methods-
for-cnn-models/. https://www.geeksforgeeks.org/cnn-introduction-to-
pooling-layer/. (Visited on 04/03/2022).

[58] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[59] Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders”. In: CoRR
abs/2003.05991 (2020). arXiv: 2003.05991. url: https://arxiv.org/abs/
2003.05991.

[60] Hosameldin Ahmed, M. Wong, and Asoke Nandi. “Intelligent condition
monitoring method for bearing faults from highly compressed measure-
ments using sparse over-complete features”. In: Mechanical Systems and Sig-
nal Processing 99 (Jan. 2018), pp. 459–477. doi: 10.1016/j.ymssp.2017.06.
027.

[61] Ons Aouedi, Kandaraj Piamrat, and Dhruvjyoti Bagadthey. “A Semi-supervised
Stacked Autoencoder Approach for Network Traffic Classification”. In: 2020
IEEE 28th International Conference on Network Protocols (ICNP). 2020, pp. 1–6.
doi: 10.1109/ICNP49622.2020.9259390.

[62] Dr. PKS Prakash and Achyutuni Sri Krishna Rao. R Deep Learning Cookbook R
Deep Learning Cookbook. https://subscription.packtpub.com/book/big_
data_and_business_intelligence/9781787121089/4/ch04lvl1sec51/
setting-up-stacked-autoencoders. (Visited on 07/06/2022).

[63] Roger. Variational Autoencoder(VAE). https://medium.com/geekculture/
variational-autoencoder-vae-9b8ce5475f68. Accessed: 2021–04-28. 2021.

[64] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”.
In: CoRR abs/1312.6114 (2014).

[65] Inductiveload. A selection of Normal Distribution Probability Density Func-
tions (PDFs). Both the mean, µ, and variance, σ2, are varied. The key is given
on the graph. https : / / commons . wikimedia . org / wiki / File : Normal _
Distribution_PDF.svg. (Visited on 10/08/2021).

[66] Ray Xiao. The (Local) Reparameterization Trick. https://www.cs.toronto.
edu/~duvenaud/courses/csc2541/slides/structured-encoders-decoders.
pdf. Accessed: 2021–10-08. 2016.

[67] Xifeng Guo et al. “Deep Clustering with Convolutional Autoencoders”. In:
Oct. 2017, pp. 373–382. isbn: 978-3-319-70095-3. doi: 10.1007/978-3-319-
70096-0_39.

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://doi.org/10.1016/j.ymssp.2017.06.027
https://doi.org/10.1016/j.ymssp.2017.06.027
https://doi.org/10.1109/ICNP49622.2020.9259390
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781787121089/4/ch04lvl1sec51/setting-up-stacked-autoencoders
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781787121089/4/ch04lvl1sec51/setting-up-stacked-autoencoders
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781787121089/4/ch04lvl1sec51/setting-up-stacked-autoencoders
https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68
https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68
https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg
https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg
https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/structured-encoders-decoders.pdf
https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/structured-encoders-decoders.pdf
https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/structured-encoders-decoders.pdf
https://doi.org/10.1007/978-3-319-70096-0_39
https://doi.org/10.1007/978-3-319-70096-0_39

114 Bibliography

[68] Qien Yu, Muthu Subash Kavitha, and Takio Kurita. “Detection of One Di-
mensional Anomalies Using a Vector-Based Convolutional Autoencoder”.
In: Feb. 2020, pp. 516–529. isbn: 978-3-030-41298-2. doi: 10.1007/978-3-
030-41299-9_40.

[69] Marco Maggipinto et al. “A Convolutional Autoencoder Approach for Fea-
ture Extraction in Virtual Metrology”. In: Procedia Manufacturing 17 (2018).
28th International Conference on Flexible Automation and Intelligent Man-
ufacturing (FAIM2018), June 11-14, 2018, Columbus, OH, USAGlobal Inte-
gration of Intelligent Manufacturing and Smart Industry for Good of Hu-
manity, pp. 126–133. issn: 2351-9789. doi: https://doi.org/10.1016/j.
promfg.2018.10.023. url: https://www.sciencedirect.com/science/
article/pii/S2351978918311399.

[70] Arwa Alturki, Ouiem Bchir, and Mohamed Maher Ben Ismail. “Joint Deep
Clustering: Classification and Review”. In: International Journal of Advanced
Computer Science and Applications 12 (Jan. 2021). doi: 10.14569/IJACSA.
2021.0121096.

[71] Gopi Nutakki et al. “An Introduction to Deep Clustering”. In: Jan. 2019,
pp. 73–89. isbn: 978-3-319-97863-5. doi: 10.1007/978-3-319-97864-2_4.

[72] Dibya Ghosh. KL Divergence for Machine Learning. 2018. url: https : / /
dibyaghosh.com/blog/probability/kldivergence.html.

[73] Jianwei Yang, Devi Parikh, and Dhruv Batra. “Joint Unsupervised Learning
of Deep Representations and Image Clusters”. In: June 2016, pp. 5147–5156.
doi: 10.1109/CVPR.2016.556.

[74] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. “Unsupervised Deep Em-
bedding for Clustering Analysis”. In: CoRR abs/1511.06335 (2015). arXiv:
1511.06335. url: http://arxiv.org/abs/1511.06335.

[75] Md Karim et al. “Convolutional Embedded Networks for Population Scale
Clustering and Bio-Ancestry Inferencing”. In: IEEE/ACM Transactions on
Computational Biology and Bioinformatics PP (May 2020), pp. 1–1. doi: 10.
1109/TCBB.2020.2994649.

[76] Apache. Apache/Spark: Apache Spark - a unified analytics engine for large-scale
data processing. url: https://github.com/apache/spark.

[77] Yanick Lukic et al. “Speaker identification and clustering using convolu-
tional neural networks”. In: 2016 IEEE 26th International Workshop on Ma-
chine Learning for Signal Processing (MLSP). 2016, pp. 1–6. doi: 10.1109/
MLSP.2016.7738816.

[78] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-
SNE”. In: Journal of Machine Learning Research 9 (2008), pp. 2579–2605. url:
http://www.jmlr.org/papers/v9/vandermaaten08a.html.

https://doi.org/10.1007/978-3-030-41299-9_40
https://doi.org/10.1007/978-3-030-41299-9_40
https://doi.org/https://doi.org/10.1016/j.promfg.2018.10.023
https://doi.org/https://doi.org/10.1016/j.promfg.2018.10.023
https://www.sciencedirect.com/science/article/pii/S2351978918311399
https://www.sciencedirect.com/science/article/pii/S2351978918311399
https://doi.org/10.14569/IJACSA.2021.0121096
https://doi.org/10.14569/IJACSA.2021.0121096
https://doi.org/10.1007/978-3-319-97864-2_4
https://dibyaghosh.com/blog/probability/kldivergence.html
https://dibyaghosh.com/blog/probability/kldivergence.html
https://doi.org/10.1109/CVPR.2016.556
https://arxiv.org/abs/1511.06335
http://arxiv.org/abs/1511.06335
https://doi.org/10.1109/TCBB.2020.2994649
https://doi.org/10.1109/TCBB.2020.2994649
https://github.com/apache/spark
https://doi.org/10.1109/MLSP.2016.7738816
https://doi.org/10.1109/MLSP.2016.7738816
http://www.jmlr.org/papers/v9/vandermaaten08a.html

Bibliography 115

[79] IBM Cloud Education. What are Recurrent Neural Networks? 2020. url: https:
//www.ibm.com/cloud/learn/recurrent-neural-networks.

[80] Mohammad Arifur Rahman and Huzefa Rangwala. “IDMIL: an alignment-
free Interpretable Deep Multiple Instance Learning (MIL) for predicting
disease from whole-metagenomic data”. eng. In: Bioinformatics (Oxford, Eng-
land) 36.Suppl_1 (2020). 32657370[pmid], pp. i39–i47. issn: 1367-4811. doi:
10.1093/bioinformatics/btaa477. url: https://pubmed.ncbi.nlm.nih.
gov/32657370.

[81] Divyanshu Mishra. Transposed Convolution Demystified. 2021. url: https://
towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba.

[82] Shiva Verma. Understanding 1D and 3D Convolution Neural Network | Keras.
2019. url: https://towardsdatascience.com/understanding-1d-and-3d-
convolution-neural-network-keras-9d8f76e29610.

[83] Shruti Jadon. “A survey of loss functions for semantic segmentation”. In:
2020 IEEE Conference on Computational Intelligence in Bioinformatics and Com-
putational Biology (CIBCB). 2020, pp. 1–7. doi: 10.1109/CIBCB48159.2020.
9277638.

[84] Xuhuyang Guo. “Clustering of NASDAQ Stocks Based on Elbow Method
and K-Means”. In: Proceedings of the 4th International Conference on Economic
Management and Green Development. Ed. by Chunhui Yuan, Xiaolong Li, and
John Kent. Singapore: Springer Singapore, 2021, pp. 80–87. isbn: 978-981-
16-5359-9.

[85] Yang Young Lu et al. “COCACOLA: binning metagenomic contigs using
sequence COmposition, read CoverAge, CO-alignment and paired-end read
LinkAge”. In: Bioinformatics 33.6 (June 2016), pp. 791–798. issn: 1367-4803.
doi: 10.1093/bioinformatics/btw290. eprint: https://academic.oup.
com/bioinformatics/article-pdf/33/6/791/25147902/btw290.pdf. url:
https://doi.org/10.1093/bioinformatics/btw290.

[86] Mina Rho, Haixu Tang, and Yuzhen Ye. “FragGeneScan: predicting genes
in short and error-prone reads”. In: Nucleic Acids Research 38.20 (Aug. 2010),
e191–e191. issn: 0305-1048. doi: 10.1093/nar/gkq747. eprint: https://
academic.oup.com/nar/article-pdf/38/20/e191/16772703/gkq747.pdf.
url: https://doi.org/10.1093/nar/gkq747.

[87] Jaina Mistry et al. “Challenges in homology search: HMMER3 and conver-
gent evolution of coiled-coil regions”. In: Nucleic Acids Research 41.12 (Apr.
2013), e121–e121. issn: 0305-1048. doi: 10.1093/nar/gkt263. eprint: https:
//academic.oup.com/nar/article-pdf/41/12/e121/25338495/gkt263.
pdf. url: https://doi.org/10.1093/nar/gkt263.

https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://doi.org/10.1093/bioinformatics/btaa477
https://pubmed.ncbi.nlm.nih.gov/32657370
https://pubmed.ncbi.nlm.nih.gov/32657370
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610
https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610
https://doi.org/10.1109/CIBCB48159.2020.9277638
https://doi.org/10.1109/CIBCB48159.2020.9277638
https://doi.org/10.1093/bioinformatics/btw290
https://academic.oup.com/bioinformatics/article-pdf/33/6/791/25147902/btw290.pdf
https://academic.oup.com/bioinformatics/article-pdf/33/6/791/25147902/btw290.pdf
https://doi.org/10.1093/bioinformatics/btw290
https://doi.org/10.1093/nar/gkq747
https://academic.oup.com/nar/article-pdf/38/20/e191/16772703/gkq747.pdf
https://academic.oup.com/nar/article-pdf/38/20/e191/16772703/gkq747.pdf
https://doi.org/10.1093/nar/gkq747
https://doi.org/10.1093/nar/gkt263
https://academic.oup.com/nar/article-pdf/41/12/e121/25338495/gkt263.pdf
https://academic.oup.com/nar/article-pdf/41/12/e121/25338495/gkt263.pdf
https://academic.oup.com/nar/article-pdf/41/12/e121/25338495/gkt263.pdf
https://doi.org/10.1093/nar/gkt263

116 Bibliography

[88] Bojian Yin et al. “An image representation based convolutional network for
DNA classification”. In: arXiv preprint arXiv:1806.04931 (2018).

[89] Pablo Millán Arias et al. “DeLUCS: Deep learning for unsupervised clus-
tering of DNA sequences”. In: Plos one 17.1 (2022), e0261531.

[90] Allen Chieng Hoon Choong and Nung Kion Lee. “Evaluation of convolu-
tionary neural networks modeling of DNA sequences using ordinal versus
one-hot encoding method”. In: 2017 International Conference on Computer and
Drone Applications (IConDA). IEEE. 2017, pp. 60–65.

[91] National Human Genome Research Institute. Open Reading Frame. https:
//www.genome.gov/genetics-glossary/Open-Reading-Frame. (Visited on
05/21/2022).

[92] Scilico. IUPAC Codes. 2022. url: https://www.bioinformatics.org/sms/
iupac.html.

[93] Don Cowan. Masking. 2020. url: https://www.ml-science.com/masking.

[94] MICROBIOME Community of Special Interest. Welcome to the MICROBIOME
Community of Special Interest. https://www.microbiome-cosi.org/. (Visited
on 05/21/2022).

[95] Alexander Sczyrba et al. “Critical Assessment of Metagenome Interpretation—
a benchmark of metagenomics software”. In: Nature Methods 14.11 (2017),
pp. 1063–1071. issn: 1548-7105. doi: 10.1038/nmeth.4458. url: https:
//doi.org/10.1038/nmeth.4458.

[96] Fernando Meyer et al. “AMBER: Assessment of Metagenome BinnERs”. In:
GigaScience 7 (June 2018). doi: 10.1093/gigascience/giy069.

[97] Lawrence Hubert and Phipps Arabie. “Comparing partitions”. In: Journal of
classification 2.1 (1985), pp. 193–218.

[98] Scikit Learn. sklearn.metrics.adjustedrandscore. 2022. url: https://scikit-
learn . org / stable / modules / generated / sklearn . metrics . adjusted _
rand_score.html#:~:text=Rand\%20index\%20adjusted\%20for\%20chance.

[99] Donovan H Parks et al. “CheckM: assessing the quality of microbial genomes
recovered from isolates, single cells, and metagenomes”. en. In: Genome Res.
25.7 (July 2015), pp. 1043–1055.

[100] Zhongwu Xie, Weipeng Cao, and Zhong Ming. “A further study on biolog-
ically inspired feature enhancement in zero-shot learning”. In: International
Journal of Machine Learning and Cybernetics 12 (Jan. 2021). doi: 10.1007/
s13042-020-01170-y.

https://www.genome.gov/genetics-glossary/Open-Reading-Frame
https://www.genome.gov/genetics-glossary/Open-Reading-Frame
https://www.bioinformatics.org/sms/iupac.html
https://www.bioinformatics.org/sms/iupac.html
https://www.ml-science.com/masking
https://www.microbiome-cosi.org/
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1093/gigascience/giy069
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html#:~:text=Rand\%20index\%20adjusted\%20for\%20chance
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html#:~:text=Rand\%20index\%20adjusted\%20for\%20chance
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html#:~:text=Rand\%20index\%20adjusted\%20for\%20chance
https://doi.org/10.1007/s13042-020-01170-y
https://doi.org/10.1007/s13042-020-01170-y

Bibliography 117

[101] Andre Lamurias et al. “Metagenomic binning with assembly graph embed-
dings”. In: bioRxiv (2022). doi: 10.1101/2022.02.25.481923. eprint: https:
//www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923.
full.pdf. url: https://www.biorxiv.org/content/early/2022/02/27/
2022.02.25.481923.

[102] Fernando Meyer et al. “AMBER: Assessment of Metagenome BinnERs”.
In: GigaScience 7.6 (June 2018). giy069. issn: 2047-217X. doi: 10 . 1093 /
gigascience/giy069. eprint: https://academic.oup.com/gigascience/
article-pdf/7/6/giy069/25099086/giy069_supplemental_files.pdf.
url: https://doi.org/10.1093/gigascience/giy069.

[103] DH Parks et al. “CheckM: assessing the quality of microbial genomes re-
covered from isolates, single cells, and metagenomes”. In: Genome Research
25 (2015), 1043–1055. doi: 10.1101/gr.186072.114..

https://doi.org/10.1101/2022.02.25.481923
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923.full.pdf
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923.full.pdf
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923.full.pdf
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923
https://www.biorxiv.org/content/early/2022/02/27/2022.02.25.481923
https://doi.org/10.1093/gigascience/giy069
https://doi.org/10.1093/gigascience/giy069
https://academic.oup.com/gigascience/article-pdf/7/6/giy069/25099086/giy069_supplemental_files.pdf
https://academic.oup.com/gigascience/article-pdf/7/6/giy069/25099086/giy069_supplemental_files.pdf
https://doi.org/10.1093/gigascience/giy069
https://doi.org/10.1101/gr.186072.114.

	Front page
	English title page
	Table of Content
	1 Introduction
	1.1 Contribution
	1.2 Problem Statement

	2 Background
	2.1 Bioinformatics
	2.1.1 DNA
	2.1.2 Metagenomics
	2.1.3 Sequencing
	2.1.4 Abundance and Composition

	2.2 Deep Neural Networks
	2.2.1 Neural Networks
	2.2.2 Backpropagation

	2.3 CNN
	2.3.1 Convolution
	2.3.2 Pooling

	2.4 Autoencoder
	2.4.1 Stacked Autoencoder
	2.4.2 Variational Autoencoder
	2.4.3 Convolutional Autoencoder

	2.5 Clustering Techniques
	2.5.1 K-means Clustering
	2.5.2 KL Divergence Clustering

	2.6 Deep Clustering
	2.7 Joint Deep Clustering
	2.8 Joint Deep Clustering Methods
	2.8.1 Joint Unsupervised Learning
	2.8.2 Deep Embedded Regularized Clustering
	2.8.3 Deep Convolutional Embedded Clustering
	2.8.4 Deep Embedded Clustering
	2.8.5 Discussion: Method Selection
	2.8.6 DCEC Description

	3 Methods and Implementation
	3.1 Deep Convolutional Metagenomic Binner (DCMB)
	3.1.1 Why a Convolutional Model?
	3.1.2 DCMB Architecture
	3.1.3 Data Preprocessing

	3.2 Deep Stacked Metagenomic Binner (DSMB)
	3.2.1 DSMB Architecture

	4 Datasets and Assessment Tools
	4.1 Datasets
	4.1.1 CAMI Low Dataset
	4.1.2 Azolla Dataset

	4.2 Assessment Tools and their Measures
	4.2.1 AMBER Overview
	4.2.2 AMBER Evaluation Measures
	4.2.3 CheckM Overview
	4.2.4 CheckM Evaluation Measures

	5 Experiments and Evaluation
	5.1 Experimental Setup
	5.2 Deep Convolutional Metagenomic Binner (DCMB)
	5.2.1 Experimental Scenarios with CAMI Low Dataset
	5.2.2 Base Case
	5.2.3 Base Case and Its Benchmarks Against Existing Binners.
	5.2.4 Analysing the Impacts and Benefits of Joint Deep Clustering
	5.2.5 Impact of the Length of Sequences on Binning Results
	5.2.6 Impact of the Number of Clusters on Binning Results
	5.2.7 Discussion and Conclusion

	5.3 Deep Stacked Metagenomic Binner (DSMB)
	5.3.1 Comparison to State-Of-The-Art-Binners on the CAMI Low Dataset
	5.3.2 Impact of Joint Deep Clustering on the CAMI Low Dataset
	5.3.3 Impact of Iterations on the CAMI Low Dataset
	5.3.4 Impact of Joint Deep Clustering on the Azolla Dataset

	6 Discussion
	6.1 Discussion: Deep Convolutional Metagenomic Binner (DCMB)
	6.1.1 General Results and Observations
	6.1.2 Impacts of Joint Deep Clustering on DCMB

	6.2 Discussion: Deep Stacked Metagenomic Binner (DSMB)
	6.2.1 Impacts of Joint Deep Clustering on DSMB

	7 Conclusion
	A Apendix
	A.1 Previous Experiments
	A.2 Metagenomic Binner Benchmark
	A.2.1 Azolla Dataset
	A.2.2 Strong 100 Dataset
	A.2.3 CAMI Low Dataset

	A.3 DCMB additional Experiments
	A.3.1 Base Case Versus Result From Short Training.

	A.4 DCMB Structure
	A.5 DSMB Autoencoder Structure
	A.6 DVMB - Deep Variational Metagnomic Binner
	A.6.1 Idea
	A.6.2 Architecture
	A.6.3 Evaluation

	A.7 Implementation Source

	List of Acronyms
	Bibliography

