
Accelerating Static Taint Analysis
with CUDA Toolkit

Project Report

Jonas Svenningsen, Nicklas Hugöy, Thorulf Neustrup

Aalborg University

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Accelerating Static Taint Analysis with
CUDA Toolkit

Theme:
Distributed Systems

Project Period:
Spring Semester 2022

Project Group:
cs-22-ds-10-02

Participant(s):
Jonas Askløf Svenningsen
Nicklas Emil Hjortshøj Hugöy
Thorulf Neustrup

Supervisor(s):
René R. Hansen
Danny B. Poulsen
Anton Christensen

Copies: 1

Page Numbers: 80

Date of Completion:
June 17, 2022

Abstract:

This paper continues the work of
a previous paper [16] in off-loading
static taint analysis to a GPU. As the
previous attempt lacked performance
gains from a matrix-based algorithm,
a new attempt makes use of CUDA,
a GPU toolkit by Nvidia. To bet-
ter utilize the computational pover of
GPUs, the CFG is designed in such
a way that all the different types of
CFG nodes are represented with the
same type of node. Two CUDA imple-
mentations were made, bit-cuda and
cuda work-list. The CPU counterpart
was optimized to increase the fair-
ness of comparing performance be-
tween CPU and the two GPU im-
plementations The performed bench-
marks shows that the CPU outper-
forms the GPU on smaller programs
up until 700.000 CFG nodes where the
GPU starts to perform slightly better
than the CPU.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

3

Summary

Static program analysis is built into most modern day compilers. Some analyses
are used to perform program transformations in order to optimize the programs
during compilation, while other types of analysis looks at potential errors and
security issues within the program. The analysis which is used in this paper is
static taint analysis. This analysis is performed on a small programming language
SC which was developed in the previous work of off-loading static taint analysis to
the GPU. The previous work attempted to transform the taint analysis problem into
matrices and use the GPU to perform matrix operations in order to reach a least
fix-point. However, the matrix approach performed many times slower than the
CPU baseline which leads to this paper attempting a more direct way in controlling
the GPU with use of CUDA, a GPU toolkit by Nvidia.

The language SC were extended to increase the complexity of programs able to
be written. In order to transfer the CFG nodes to the GPU another way of storing
the data was needed since the initial CFG creation was done with individual nodes
being heap allocated. This was changed such that it is stored contiguously in
heap memory and is then simple to copy to the GPU device memory. Since the
GPU operates differently compared to CPU, the CFG was modified to remove all
polymorphic data to better take advantage of the GPU’s Single Instruction Multiple
Threads(SIMT) execution model.

Two different approaches were implemented on the GPU, bit-cuda and cuda
work-list. The bit-cuda implementation assigns one CFG node per thread which
makes it possible to propagate taint for all CFG nodes simultaneously. This method
however have many threads not performing any actions as not all CFG nodes
have taint to propagate for each iteration, therefore cuda work-list analysis was
implemented as well. This approach makes use of a work-list which have threads
operating on data in a single index of the work-list. This limits the number of
threads used for the analysis to the size of the work-list. However, the work-
list data structure were challenging to implement as it is accessed by multiple
threads at once. These threads would all try and add new nodes to the work-list
resulting in race conditions. Since many threads tries to add elements, a queue
structure would be difficult to use. Therefore, adding elements to the work-list
was implemented using CUDA’s atomic operations. Before benchmarking and
comparing performance of CPU and GPU, it is necessary to optimize the CPU
algorithm to make the comparison more fair. This optimization revamped the
entire CFG used on the CPU. With the new optimized CPU algorithm, benchmarks
were performance on different programs which attempts to be best case and worst
case programs to analyse for the GPU. The CPU generally outperforms the GPU
on smaller programs but when the size of the program increases the GPU starts to
outperform CPU when reaching 700.000 CFG nodes.

4

These results significantly improved the results from the previous work on a
factor of a thousand. The improvement was not enough to beat the CPU baseline
consistently, the GPU is only faster on some large programs. Despite this the GPU
implementations is still proposed to be useful if applied in a smart manner. As
the GPU could run parallel with CPU gaining a higher computational throughput
than either could alone. Potentially solving different steps of compilation at the
same time.

Contents

1 Introduction 7

2 Preliminary 9
2.1 Previous Work . 9

2.1.1 Improvements for the Analysis 10
2.1.2 Programming language: SC . 12
2.1.3 Extension of SC . 13

2.2 Lattices . 16
2.3 Control Flow Graph . 18

2.3.1 CFG Construction . 18
2.4 CUDA . 19

2.4.1 CUDA Memory Management 20
2.5 Related Work . 22
2.6 Research Direction . 23

3 Design 25
3.1 Abstract semantics reduction . 25
3.2 CUDA Analysis Design . 27
3.3 CUDA work-list . 28
3.4 CUDA generalisation . 30

3.4.1 Design goals . 30
3.4.2 Multi-colored taint . 32

4 Optimizations 35
4.1 CUDA overhead . 35
4.2 Associative Containers . 37
4.3 Parser Optimization . 38
4.4 Splitting Data From Node Struct . 39

5 Implementation 41
5.1 Overview . 41
5.2 CFG Nodes . 42

5

6 Contents

5.2.1 Function inline . 47
5.3 Bit-Cuda Implementation . 47
5.4 CUDA Work-list Algorithm . 49

5.4.1 Join Function . 53
5.4.2 Transfer Function . 55

6 Evaluation 57
6.1 Benchmarks . 57
6.2 Validating Analysis Results . 60
6.3 CFG successor limitation . 61
6.4 Space usage . 61

6.4.1 Stress Test . 62

7 Discussion 63
7.1 CPU implementation as comparison baseline 63
7.2 GPU Start-up . 64
7.3 Generalisation . 64
7.4 Semantic differences in implementation and Design 65
7.5 Minimizing bit-cuda synchronization on the CPU 65

8 Conclusion 67

A SC Semantics 71

B Code Samples 75

Chapter 1

Introduction

Static program analysis is present in most compilers, and can be the first step
in optimization or bug prevention. This helps improve code quality significantly,
by detecting both small code errors and maintain code properties such as secu-
rity or performance. As systems grow, reasoning about these properties becomes
impractical, making static program analysis an important tool. But with larger
systems analysis becomes more time consuming and could become prohibitively
slow. Therefore, steps must be taken to take better take advantage of the compu-
tational power available. The CPU is usually fully occupied during compilation as
compilers takes advantage of parallel computing. But the GPU a massively paral-
lel processing unit sits idle despite boasting higher computational throughput than
the CPU.

This paper follows up on an attempt to take advantage of the GPU by running
a taint analysis using matrix multiplication. The matrix reduction attempt failed to
make good utilization of GPU resources, so instead this paper looks at other ways
to create algorithms for GPUs. The most general approach, the CUDA toolkit is
used to design and implement taint analysis algorithms for the GPU.

However, it is required to have some prior knowledge of the previous work
attempting matrix multiplication as parts of the work from that paper is reused in
this paper. Therefore a preliminary section is provided to supply the knowledge
of the previous paper and the reused aspects of it.

7

Chapter 2

Preliminary

In this chapter, the preliminary work and concepts will be introduced. First, the
previous work that this report builds on will be introduced. Followed by an in-
troduction of the basics of CUDA, a GPU-toolkit by Nvidia. Then some related
works will be researched. Finally optimization approaches are considered for the
previous work to evaluate potential for further work.

2.1 Previous Work

This paper continues the work started in "GPU-accelerated Taint Analysis"[16]. The
previous work attempted to perform taint analysis on GPU with use of GPU matrix
libraries cuBLAS [11] and cuBool [7]. Following the successes of similar works also
using matrix approaches like EigenCFA [14]. The approach was to reduce the
analysis into a matrix multiplication problem and use the GPU to quickly perform
matrix operations. In order to compare the performance of the taint analysis on
the GPU, a worklist-based CPU analysis were implemented.

The library cuBLAS was used to create the initial GPU implementation. CuBLAS
is a dense basic linear algebra Subroutine library. The library provides helper func-
tions to manage data allocations and transferring between CPU and GPU. This
implementation shows that translating taint analysis into a matrix multiplication
problem is possible but the performance of this method was slower in comparison
to the CPU counterpart. This approach operates on dense matrices but the data in
the matrices were sparse. This results in many wasted computations when comput-
ing the fix-point. Therefore another implementation was created which operates
on sparse matrices instead.

For this approach cuBool was used. CuBool is different as it works on sparse
boolean matrices instead of dense floating point matrices which cuBLAS operates
on. However it was discovered that cuBool did not fully support the features
necessary for performing the needed matrix operation and was therefore required

9

10 Chapter 2. Preliminary

to create a workaround. This additional overhead caused the analysis using cuBool
to be significantly slower than the cuBLAS approach. It was not definitive that a
sparse matrix approach is implausible due to the overhead. But the work still
concluded that transforming taint analysis into a matrix multiplication problem is
an infeasible approach for static analysis on GPU.

2.1.1 Improvements for the Analysis

Additional improvements for the different analysis were made to ensure that the
process of using matrices were insufficient. Through these improvements a general
optimization of generalizing variable names were made. The process of this will
be covered here. Lastly the CPU analysis also received improvements making
it significantly faster in comparison to the performance of the algorithm of the
previous work. This improvement caused there to be an even larger performance
gap between the initial GPU analysis implementation and the CPU, showing that
another approach is needed in order to receive a speed up in performance with the
use of GPU.

Optimizing CuBLAS Solution

Additional work is put into optimizing the CuBLAS implementation from previous
work[16]. Some of the most prevalent optimizations that were considered are.

• Batch scheduling The current implementation requires many relatively small
matrix calculations, for each iteration of the algorithm. Each of these calcula-
tions have some scheduling overhead as the host has to schedule the task on
the device for each necessary calculation. CUDA and in extension CuBLAS
comes with tools to batch schedule these calculations that guarantee parallel
execution.

• Contiguous memory transfers By allocating all the matrices in a contiguous
memory region. The data transfer from host to device can be done with a
single call. Which reduces the transfer overhead to a minimum.

• Using page-locked memory The type of memory the data is copied from
matters. CUDA requires the data to be located in page-locked memory al-
location. Page-locked memory is pinned to main memory and can not be
paged-out which regular paged memory can. If the data is located in a nor-
mal allocation, transfer has additional overhead.

Each of these potential optimizations were tested individually and compared
to a control implementation without optimizations. These implementations have
multiple measure points to give a better overview of specific speedups and slow-
downs of an implementation. These tests were made with five sample runs for

2.1. Previous Work 11

each implementation to even out fluctuations. However none of these optimiza-
tions resulted in a noticeable speed up.

• Batch scheduling was seemingly a good approach as it could improve the
main bottleneck of the algorithm, which is the least fixed point algorithm.
But this optimization did not improve the runtime. This can happen for two
reasons, either the cuBLAS library already provides parallel execution, or
each matrix operation can utilize the majority of GPU resources alone.

• Contiguous memory transfers failed to provide a speed up, despite improv-
ing copying times significantly, as additional overhead were cropped up.
More importantly it negatively affected the matrix operations, making them
significantly slower. Both of these issues might be solvable.

• Using page-locked memory due to longer allocation times, the time to al-
locate memory on the host memory slowed down the process significantly.
Additional attempts to combine this optimizations with Contiguous mem-
ory transfers solved that problem but seemingly negatively affected matrix
math operations. Making the overall results slower.

Despite these results more options for optimizations exist. Currently dupli-
cate transfer function matrices are copied to the GPU. Duplicate matrices could be
shared as they are immutable. As briefly mentioned, the matrix math is the pri-
mary slowdown on the system. This happens because the dense matrix algorithm
keeps updating each node every iteration even if it has reached its local least fixed
point. So work should be put into making changes to the least fixed point algo-
rithm, that reduce redundant work. A change could be a work-list type solution,
that is already well known to work on CPUs.

Variable reduction

The CuBLAS implementation works on state matrices that scale up depending on
program size and number of variables. This means that both dimensions grow
depending on the size of the program, as the number of variables is usually tied to
the size of the program. Storing the variables this way creates ever larger matrices
that take up more and more time to calculate during the least fixed point algorithm.
So by reducing the matrix size, the overall algorithm could get a speed up as it
directly reduces the required GPU resources per matrix operation.

Two approaches to reducing matrix sizes is considered, first cutting down on
program size by minimizing CFG, the other approach reduces the number of vari-
ables variable reduction. Minimizing CFG is done by changing the CFG in a way
such that it still represents the same behaviour. The simplest solution here is to
remove the most common node type which is a no-op (no-operation) node. These

12 Chapter 2. Preliminary

nodes will be named propagation nodes, they do not alter program state and can
be removed without altering behaviour as long as the control flow is maintained.
Removing propagation nodes reduces both state matrices and the successor ma-
trix. The second approach is variable reduction which aims to lower the number
of variables. This can be done by taking advantage of the nature of variable scopes
in C-like languages. If there are two unique variables in two different scopes then
these two variables could be reduced into a single variable as the variables cannot
interact. A reduction that only looks at function scopes would reduce the number
of variables significantly.

When performing these optimizations it is worth to consider how they impact
the CPU implementation. The minimizing CFG is not just an optimization for
GPU implementations, but would also make CPU implementations faster. So this
optimization should also be implemented for the CPU algorithm out of fairness.

Additionally considerations are taken whether these optimizations would make
sense in the grand scheme of a full C language. Minizing CFG would likely work
just fine, as it simply removes no-op nodes. However, variable reduction would
become significantly more problematic due to C’s pointers. A similar optimization
that reduces variables would probably be possible, however the current approach
is incompatible due to side effects in functions.

Optimizing CPU analysis

The previous work had a work-list CPU taint analysis algorithm which the GPU
implementations is compared against. This CPU implementation is problematic in
use for comparisons, as it is slow which artificially makes the GPU implementa-
tions look better. The old implementation runs 21.000 nodes in 6.25 seconds [16].
Compared to the optimized implementation which does the same in 3 milliseconds
as seen in figure 6.1.

To reach the optimized CPU implementation, that is compared with in later
sections, a few major optimizations were made. The main issue in the old imple-
mentation was the use of sets of strings to keep track of tainted variable names in
the abstract program state. This would incur expensive string comparisons during
look ups and union operations. This was resolved by replacing the sets with bit-
vectors. To avoid string operations during analysis variables would be reduced into
indexes that are used to index into these bit-vectors. This is done in the variable
reduction step see section 5.2.

2.1.2 Programming language: SC

A new language was developed for the taint analysis to be performed on. This
language was designed to be simple to implement but be broad enough to make
the taint analysis non-trivial. The majority of SC was developed in the previous

2.1. Previous Work 13

work, with the intention of copying the C syntax [16]. SC is a simple imperative
programming language containing constructs such as functions, variables, assign-
ments and while loops. The language only has integer variables and by extension
only supports arithmetic expressions. Functions in the SC have no side effects, uses
pass-by-value and does not support recursion. Since taint originates from external
inputs to the program, a special symbol is used to indicate a taint source in SC
programs. The grammar for SC can be seen on figure 2.1 and the semantics can be
seen in appendix A.

2.1.3 Extension of SC

The language SC was developed and used as the language for the taint analysis
of the previous work[16]. The language constructs of SC have been extended to
include statically sized arrays. Arrays were added to increase the complexity of
programs which can be written in SC. The extension of SC’s grammar is high-
lighted in figure 2.1, this extension handles initialization of arrays and assigning
values to an array index.

⟨prog⟩ ::= ⟨funcDef ⟩+

⟨funcDef ⟩ ::= int ID (⟨param⟩?) { ⟨stmt⟩+ }

⟨stmt⟩ ::= ID = ⟨expr⟩;
| while (⟨expr⟩) { ⟨stmt⟩+ }
| if (⟨expr⟩) { ⟨stmt⟩+ } else { ⟨stmt⟩+ }
| return ⟨expr⟩ ;
| int[Integer] ID = {⟨args⟩};
| ID[⟨expr⟩] = ⟨expr⟩;

⟨param⟩ ::= int ID
| ⟨param⟩, ⟨param⟩

⟨args⟩ ::= ⟨expr⟩, ⟨args⟩
| ⟨expr⟩

⟨expr⟩ ::= (⟨expr⟩)
| ⟨expr⟩ ⟨op⟩ ⟨expr⟩
| ID (⟨args⟩?)
| Integer

⟨op⟩ ::= + | - | / | *

Figure 2.1: Grammar of SC[16] with array-extension highlighted with blue text

14 Chapter 2. Preliminary

To convey how the arrays are handled in SC, an extension of the SC semantics
is presented. First off, another environment is required in order to store variable
names of arrays, along with a mapping of indexes to values. This environment
envA will be included in the other constructs of SC. The complete semantics of
SC can be seen in appendix A where the extension to the original semantics are
highlighted.

The first rule arrayInit handles the array initialisation. Here an array is con-
structed with a variable name, a size, and a number of array elements as expres-
sions. First, each expression e1, ..., en is evaluated to an integer values v1, ..., vn.
Then the array environment is updated with the array variable name a and the
mapping is assigned with the values. An integer from zero to the number of val-
ues n are each mapped to one of the evaluated expressions, in the same order as
they are defined. It is required that the number of expressions n is equal to the
array size Z(l).

The arrayAssign rule handles the assignment of an array element to a new
value. First, the array index expression e1 is evaluated to the integer i and the
expression e2 to be assigned is evaluated to the integer v. It is required that i is
a valid index in the array and should be a value between zero and the size in
the array environment for a. Finally, the array environment is updated for array
variable a where the value for the mapping for index i is changed to v.

The final rule arrayExpr handles when an array is used in an expression. The
index expression e is evaluated to the integer i. The array variable name is used to
access the array environment with the values of the array vals and the size of the
array n. Again, it is a requirement that the index i is between zero and the array
size n. Finally the expression return the value contained in the vals map for the
value i.

envA ∈ EnvA = Vars ⇀ N × (Z ⇀ Z)

(arrayInit)

envP, envA, envV ⊢ e1 →e v1
....

envP, envA, envV ⊢ en →e vn

envP, envV ⊢ ⟨int a[l] = {e1, ..., en}, envA⟩ →s

⟨envA[a 7→ (n, [0 7→ v1, ..., n − 1 7→ vn])], envV ,⊥⟩

where Z(l) = n

(arrayAssign)

envP, envA, envV ⊢ e1 →e i
envP, envA, envV ⊢ e2 →e v

envP, envV ⊢ ⟨a[e1] = e2, envA⟩ →s

⟨envA[a 7→ (n, vals[i 7→ v])], envV ,⊥⟩

where
envA(a) = (n, vals)

0 ≤ i < n

2.1. Previous Work 15

(arrayExpr)
envP, envA, envV ⊢ e →e i

envP, envA, envV ⊢ a[e] →e vals(i)
where

envA(a) = (n, vals)
0 ≤ i < n

Abstract semantics

To create an analysis that will eventually terminate, the concrete semantics have
to be abstracted in a monotonic fashion. To do this the abstract program state is
modelled using a lattice. For this taint analysis the abstract state should keep track
of whether each variable is tainted or not. For each variable v ∈ Vars a lattice with
a ⊥ and ⊤ element is created, the ⊥ element means the variable is not tainted and
⊤ means it is tainted. this is combined into a State lattice.

Ltaint = ({⊥,⊤},⊑taint)

⊑taint = {(⊥,⊤), (⊤,⊤), (⊥,⊥)}
State = Vars −→ Ltaint

To learn the most as possible from the analysis a State will be stored for each
node in the CFG, that way taint information can be extracted from any part of
the program. Given a CFG (N, R, syn) the full abstract program state is defined
as PState = N −→ State. With this a shorthand to get a node’s state is denoted
n ∈ N JnK and is equivalent to PState(n). With this the abstract semantics are
defined as a function t ∈ (N × PState) −→ PState that takes in a CFG node and
the node’s current state returning a modified state. The t takes in a node and
depending on the syntax of said node it differs on the semantics. All the rules are
made to only change the State that corresponds to the current node. With this it is
easier to disconnect each of the rules, and check whether they are monotonic and
in turn if t is monotonic. However, despite not changing other node’s state they do
read their predecessors state using the Join ∈ N −→ State function that gets the
least upper bounded state of all predecessors for a given node.

Join(v) =
⊔

w∈pred(v)[[w]]

With this each rule of t can be defined, they all follow the same form first is the
syntax that the rule can match. Then followed by the expression of a given rule
that calculates the new state of the given node called v ∈ N. Many of these rules
depend on an eval function that is explained at the end but intuition is that it
evaluates whether an expression is tainted or not. The rules of t are as follows:

x = e : [[v]] = in[x 7→ eval(in, e)]
where in = Join(v)

return e : [[v]] =⊥ [τ−return 7→ eval(Join(v), e)]

16 Chapter 2. Preliminary

x = τ−return : [[v]] = [[v′]][x 7→ [[w]](τ−return)] where

v′, w ∈ pred(v)

syn(v′) = f (e1, ...en)

syn(w) = Exit

Entry : [[v]] = ⊥[p1 7→ eval([[v′]], e1)...pn 7→ eval([[v′]], en)]

where

v′ ∈ pred(v), w ∈ succ(v)

syn(v′) = f (e1, ..., en)

syn(w) = int f (p1, ...pn)

int x[n] = {e1, ..., en}: [[v]] = in[x 7→ ⊔n
i=1 eval(in, ei)]

where in = Join(v)

x[ei] = e : [[v]] = in[x 7→ in(x) ⊔ eval(in, e)]
where in = Join(v)

Some of the available syntax options in the CFG are not covered by these rules,
that is by design. As any rule that was not covered above are considered to be
no-op nodes. The semantics for these nodes are to just to continue propagation.

JvK = Join(v)

The eval function takes in an abstract state and an expression. Depending what
type of expression we have different outcomes. Here we handle the cases: binary
operations, x ∈ Vars, τ as the taint constant and l ∈ Literal.

eval : (State, Expr) −→ Ltaint

eval(σ, e1
⊕

e2) = eval(σ, e1) ⊔ eval(σ, e2)

eval(σ, x) = σ(x)
eval(σ, τ) = ⊤
eval(σ, l) = ⊥

2.2 Lattices

Because programming languages have constructs that make can make a program
run forever. An important property of static program analysis is that it should
terminate eventually such that even if the analysis takes a long time it must stop
eventually. This is useful because it lets us learn about programs that will not
necessarily terminate in a static environment.

2.2. Lattices 17

The intuition behind proving that an analysis eventually terminates is that the
abstract program state must be partially ordered, the ordering must have a finite
height and the algorithm needs to be monotonic. That way each iteration of the
algorithm either moves up the ordering of states or terminates. This makes a max
bound for run time as the algorithm will eventually run out of states. With this
idea we can prove the algorithm will eventually terminate, this algorithm will be
called a least fixed point algorithm.

To properly describe the partially ordered state space lattices are be used. A
lattice L is a tuple L = (A,⊑) where A is a set of elements in the lattice e.g. the state
space, and a set of binary relations ⊑∈ P(A × A). As a shorthand to describe one
of these relations we write x, y ∈ A, x ⊑ y which means (x, y) ∈⊑. The shorthand
also applies over an element x ∈ A and a set A′ ⊆ A such that x ⊑ A′ denotes
∀y ∈ A′ : x ⊑ y. The binary relation should uphold these properties:

• Reflexivity
∀x ∈ A : x ⊑ x

• Transitivity
∀x, y, z ∈ A : x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z

• Anti symmetry
∀x, y ∈ A : x ⊑ y ∧ y ⊑ x =⇒ x = y

When working with lattices the least upper bound operator ⊔ is used to find the
lowest ordered element that is also ordered higher than both operands. x, y, z ∈ A
a least upper bound operation has the following properties x⊔ y = z =⇒ {x, y} ⊆
z. This operator is generalised to as a summation

⊔
A′ on A′ ⊆ A which returns

element z ∈ A such that
⊔

A′ =⇒ A′ ⊑ z. The least upper bound is introduced
because it offers a monotonic way to combine lattices, which is used to define the
monotonic function in the abstract semantics.

Any lattice from this point forward is a complete lattice unless otherwise stated.
A complete lattice is a lattice with a finite height and any subset must have some
least upper bound A′ ⊆ A =⇒ ∃z ∈ A : A′ ⊑ z. To ensure this holds all future
lattices have two special elements ⊤,⊥ ∈ A these are respectively the greatest and
lowest ordered elements in the lattice L, that is A ⊑ ⊤ and ⊥ ⊑ A always holds.
As the intuition eluded to the height of a lattice is important. The height of a lattice
is the longest chain C ⊆⊑ that contains both the greatest and lowest elements ⊤
and ⊥. The height is considered finite if this chain is not infinitely long that is
|C| ̸= ∞.

18 Chapter 2. Preliminary

2.3 Control Flow Graph

A Control flow graph (CFG) is a directed graph which contains nodes and edges.
Each node describes a part of a program and edges describes the control flow
throughout a program. More formally a CFG is a tuple with a set of nodes N,
a binary relation of directed edges R ⊆ {(u, v) | u, v ∈ N} and a syntax func-
tion syn for a final tuple (N, R, syn). The addition of a syntax functions comes
from [16]. An edge between two nodes u, v ∈ N is represented with (u, v) ∈ R
saying v is the successor to u. For use in later sections two functions are defined
pred(v) = {u | (u, v) ∈ R} to get predecessors of v and succ(u) = {v | (u, v) ∈ R}
to get successors of u. The syntax function is used to get the syntax from some
node such that syn ∈ (N −→ S) where S is the set of possible statements. These
statements are defined in the grammar of SC more specifically the ⟨stmt⟩ rule to-
gether with three special node types used to denote the entry, exit and function
definition S = ⟨stmt⟩ ∪ ⟨ f uncDe f ⟩ ∪ {”Entry”, ”Exit”}. There exist exceptions to
that rule: while, if and function definition, the grammars for these three constructs
recursively contain ⟨stmt⟩ rules themselves. These inner statements are ignored in
the resulting syntax and are instead converted to new nodes to represent the body
of a if or while statement.

2.3.1 CFG Construction

The CFG is the result of parsing and for most cases one node is created for each
⟨stmt⟩. However, there is an edge case as seen in figure 2.2. When a function
call statement fc ∈ N is reached the called function is inlined by copying the
function body’s CFG. The inlined function is surrounded by an Entry and Exit node
respectively named fentry, fexit ∈ N. The entry node is always guaranteed to have
exactly one predecessor pred(fentry) = { fc} and exactly one successor succ(fentry) =

{ fde f } and pred(fde f) = { fentry}, the node fde f will always be the function definition
node such that syn(fde f) ∈ ⟨ f uncDe f ⟩. The successor predecessor structure of the
Entry node fentry is important for the abstract semantics.

The call site also has a special construction to handle returning values properly.
After function inlining is done another node is added fr ∈ N which is the return
assignment node. It assigns the returned value from the function to some variable.
These nodes also have a specific structure regarding to their edges. The call node
has the successors succ(fc) = { fr, fentry}, the control flows splits here to propagate
the program state from fc to fr. The return assignment node must have the follow-
ing predecessors pred(fr) = { fc, fexit}. It has the Exit node as a predecessor so it
has access to the returned value.

2.4. CUDA 19

fc

fentry fde f . . . fexit

fr

Figure 2.2: CFG example of a function call where dashed nodes are nodes created by special rules
instead being of from some source code

2.4 CUDA

The CUDA-toolkit is used to write GPU programs which are to be executed on
Nvidia GPUs. CUDA allows use of high-level languages to be used for developing
GPU programs known as kernels [12]. A kernel is transferred from host to device
where it is executed. A host is the CPU that establishes a connection with the GPU
and allocates the resources needed for the kernel to be executed. The device is the
GPU, it executes the kernel that have been transferred and informs the host once
the kernel terminates. Transferring data to and from the device is handled by the
host. The kernel is a highly parallel process, we reason about its concurrency and
threads using different layers which can be seen on figure 2.3.

The threads executing in a kernel are structured in a grid of thread blocks.
This grid can have up to three dimensions, the dimensions of the grid is a soft-
ware abstraction over a one-dimensional array. Each thread block holds the same
amount of allocated threads defined for when the kernel is launched. When a
block is scheduled for execution, its threads are grouped into warps of 32 threads.
Scheduling of these warps are done with use of streaming multiprocessors(SM). A
single SM can schedule multiple warps and the warps can be from different thread
blocks. These SMs are part of the Nvidia GPU architecture and is not controlled by
the programmer. Threads within the same warp are executed in a lock-step fash-
ion. This execution is called Single Instruction Multiple Threads(SIMT). Meaning
that for each thread in the same warp, the same instruction is executed in parallel.
The downside with this execution method is that if some threads in a warp are
to branch their execution path from the rest of the threads, it will make threads
inactive which are to execute different instructions. This means that branching
limits the parallel execution of warps until threads can reconverge. This is only a
downside for individual warps since execution of warps are independent of each
other.

To fully utilize the parallel performance of GPUs it necessary to reduce the
amount of inactive threads, which can occurs from divergence, threads exiting
early and unused threads in warps. Since warps are always a size of 32 threads,
it would mean that if the number of threads, in a thread block, is not a multiple

20 Chapter 2. Preliminary

of 32, the remaining threads assigned in a warp would be inactive. The way a
thread block is grouped into warps is always the same. Assigning threads to a
warp is done by having threads of incremental thread ids added to the warps until
32 threads have been added. This makes it possible to design code around these
warps even though it is not possible to alter warps using CUDA.

Kernel Thread Block(0,0)

Grid

Thread Block(1,0)

Warp

Warp

Thread Block Warp

Figure 2.3: Structure of a GPU kernel

2.4.1 CUDA Memory Management

The most common performance bottleneck in CUDA-based applications is mem-
ory bandwidth [15]. Compared to the amount of instructions a GPU can execute
per second, the memory bandwidth is very limited. Comparing the newest high-
end consumer-grade CPU and GPU, which at the time of writing is the Intel Core
i9-9900K and the NVIDIA RTX 3090 TI. The CPU is capable of about 922 GFLOPS
(giga floating point operations per second) at base frequency and 1.28 TFLOPS at
max turbo frequency [6, 17]. The maximum memory bandwidth of the CPU is 41.6
GB/s. In comparison the GPU is capable of a peak TFLOPS of 35.6 and a maxi-
mum memory bandwidth of 672 GB/s [13]. The ratio between memory bandwidth
and operations per second is more than double on the GPU compared to the CPU.
Here the bottleneck is the memory in case that more than one of the operations
tries to access data which are not located in the cache. So making efficient use of
the correct memory types and caching in CUDA is important.

Device memory is the main memory in the GPU device and is the staging
area for all the data that gets copied from the CPU. As seen in figure 2.4, device
memory is logically divided into several types of memory. These types of memory
include local, global, constant and texture memory. Local memory resides in the
global memory but is local because it is private to each thread. Local memory used
when there is a register spill and the data spills to device memory. Global memory
can be seen as the main part of device memory, this is the memory where data
is copied from the host. Constant memory and texture memory are both global
caches in the device memory. Constant memory is optimized for repeated access
to the same values whereas the texture memory is optimized for spatial locality.

Concurrent accesses from a warp can be optimized as a single coalesced mem-
ory access if the memory is sequentially read, also known as coalesced memory

2.4. CUDA 21

access. This can reduce the amount of time needed to access the global memory
because because caching can be used and it is possible to retrieve 32 values, one
for each thread in a warp, in a single read.

Next up the memory hierarchy is shared memory. Shared memory is shared
between threads in the same block, and is not accessible for threads in other blocks.
Shared memory has lower latency and higher bandwidth than global memory. It
can be advantageous to keep data that is reused many times, in the shared memory.

To increase the bandwidth of shared memory, it is divided into equally sized
memory chunks called banks[5]. As an example the Volta architecture has the
shared memory of each thread block split into 32 banks, where each bank is 4
bytes wide. This allows simultaneous access to memory for all threads that ac-
cesses different banks. A bank conflict a is where threads in the same block access
memory in the same bank. When a bank conflict occurs, the access of the involved
threads will be serialized. A way to minimize this is by padding the data so the
threads will access different banks.

Compared to CPUs, GPUs have significantly more registers with up to 64,000
registers pr SM [12, Appendix K.1]. This makes context switching faster, as multi-
ple contexts are stored within the registers so the core does not have to save or load
any data to context switch. Local variables defined in the kernel will be stored in
the registers. Each individual SM have a L1 cache, that caches data when accessing
local and global memory[12]. The SMs of a device shares a constant cache along
with a L2 cache. The constant cache stores data when accessing constant memory
space. The L2 cache is used to cache accesses to local and global memory. If it is
discovered during the compilation that there is not enough registers then the data
will get pushed to the L2 cache or even the global memory.

Copying data between CPU and GPU can have a huge impact on the execution
time of CUDA kernels [4]. Two primary issues when copying data is the amount
of individual transfers for the kernel and how the data is stored on host. A way
to reduce data copying is to group data and perform a single contiguous copy,
reducing the total execution time of the kernel. The other issue is how the data
is stored in memory on the host. The CUDA driver will not directly operate on
page-able memory so additional overhead occurs in order for CUDA to perform
a transfer for data in page-able memory[4]. CUDA performs a copy of the data
into pinned memory and afterwards transfers the data to the GPU. This overhead
reduces the speed of which data is transferred from CPU to GPU. In order to avoid
this, the host have to allocate the data directly as pinned memory.

22 Chapter 2. Preliminary

device
memory

Global memory

Constant memory

Texture memory

local
memory

local
memory

local
memory

local
memory

Block(0,0)

thread(0,0)
. . .

thread(n,m)

Block(1,0)

thread(0,0)
. . .

thread(n,m)

SMshared memory

registers registers

shared memory

registers registers

Figure 2.4: Memory access of threads

2.5 Related Work

It have been attempted to create a dynamic data race detection tool GUARD(GPU
Accelerated Data Race Detector) which makes use of on-chip GPU[8]. It utilizes
the GPU cores to process memory traces of CPU programs to locate data races.
These memory traces are created from the CPU program which is being executed
in parallel with GUARD. GUARD makes use of a Happened-Before algorithm to
find data races in the memory traces. They show that there is 1.8% performance
overhead and produce results with 18.8% false positive rate.

Another use of the GPU to accelerate analysis is an inclusion-based Points-to
Analysis [9]. This paper shows that it is possible to implement irregular algorithms
on GPU. They implement Andersen-style inclusion-based points-to analysis and
receive a speedup in performance of 7 times compared to the CPU sequential im-
plementation. They inform that porting CPU algorithms to GPU results in poor
performance and it is therefore require to heavily modify the algorithm before it
is possible to utilize the computation power of the GPU. They inform that this
process requires a larger time investment to implement the algorithm, however the
final code of the algorithm requires fewer lines compared to the CPU.

An attempt to off-load graph algorithms have been done with use of CUDA[3].
They create implementations in CUDA for three different algorithms and compare
their performance with the CPU counterpart. These comparisons show a signifi-

2.6. Research Direction 23

cant improvement in performance, however this improvement is lost if the graph
being worked on have low edge to node ratio. These low degree graphs makes
the GPU algorithms slower then the CPU as the linearity of the graph makes the
parallel execution of the GPU ineffective. They show that it is possible to have
GPU operate on graph data, which proves that operating on a CFG would also be
feasible.

These work shows that attempts to utilize GPUs to accelerate already known
CPU algorithm have been made and shows it is feasible to do. A major issue with
different CPU algorithms is that they can become slow with large amounts of data
to operate on. To the best of our knowledge no other works attempt to parallelize
a taint analysis on a GPU using the CUDA toolkit.

2.6 Research Direction

After the additional optimizations that was made to CUBLAS did not show promis-
ing results compared to the CPU analysis, another approach is needed to be able
to move the static program analysis to the GPU. Dropping the additional CUBLAS
library and creating the analysis directly with CUDA could give more performance
and control.

Chapter 3

Design

The previous taint analysis work on SC showed that using matrices and the CUDA
library CuBLAS was not ideal for a GPU approach for static taint analysis. There-
fore, a more direct approach can be taken by programming CUDA kernels which
performs the analysis on the GPU. Two algorithms are designed the bit-cuda and
cuda work-list, the design of these algorithms will also be described in this chapter.

3.1 Abstract semantics reduction

During parsing and CFG creation a naive approach is to take advantage of poly-
morphism as every statement has different data and semantics tied to them. As
example the assignment ”x = e” has a variable and an expression compared to
a function call ”x = f (e1, ..., en)” which also has a function identifier and more
expressions. Polymorphic CFG nodes solve this issue but this leads to branch-
ing code either through virtual functions or if statements. Which is problematic
when writing CUDA kernels as it causes warps to diverge, reducing computa-
tional throughput.

To avoid this issue a non-polymorphic solution that can model the abstract
semantics defined in section 2.1.3 is needed. The previous work already achieved
something similar by reducing the abstract semantics into matrix multiplication
problem. So there is a precedent that it is possible. A new reduction that changes
it into a non-polymorphic bit-vector problem is proposed.

First the observation is made that every rule of the abstract semantics joins on
the predecessor data and uses it on some level. Therefore the first step for any
node v in the reduction is performing a join. The join operation is divergence-safe
to use because the predecessor data is present on every CFG node.

in = Join(v)

From here most of the rules contain two patterns. The first rules evaluate some

25

26 Chapter 3. Design

expression and assign the result to a variable. This rule models the data flow from
an expression to variable, for example in an assignment. The second rule places
some restrictions on what data can be propagated. This is used to model constructs
such as return, where there should be a restriction on what can propagate back to
the call-site.

To model these propagation restrictions each node is given a join mask such
that a node v has a join mask Jv ⊆ Vars that contains what variables cannot be
propagated. The j(v) function returns the joined state of the predecessors of v but
where all the variables contained in the join mask Jv is reset.

j(v) = in[x 7→ ⊥ | x ∈ Jv]

To evaluate expressions and assign them to some variable, transfers are introduced.
A transfer is a tuple of some variable that will be assigned to and a set of variables
which used in an expression (Vars,P(Vars ∪ τ)). So for the example of an assign-
ment ”x = y + τ” is modelled with the transfer (x, {y, τ}). This tuple models the
following semantic ⊥[x 7→ eval(in, E)]. This new eval is equivalent to the ones
used in the abstract semantics. It takes in a set of variables and the taint constant
that is present in an expression and calculates whether the expression is tainted:

eval(σ, E) =

{
⊤ i f τ ∈ E⊔

v∈E σ(v) else

Because some node types has more than just one expression, a node is allowed to
have 0 or more transfers and the set of transfers for some node v is defined as:
Tv ⊆ (Vars,P(Vars ∪ τ)). Then the transfers can be expressed as.

t(v) =
⊔

(x,E)∈Tv

⊥[x 7→ eval(in, E)]

Combining these three steps into a final systematised semantic. For some node v
with known join mask Jv and transfers Tv the full equation is.

[[v]] = j(v) ⊔ t(v)

JvK = in[x 7→ ⊥ | x ∈ Jv] ⊔
⊔

(x,E)∈Tv

⊥[x 7→ eval(in, E)]

where in = Join(v)

This equation can be used to prove the applicability of this reduction to some
abstract semantics. If a join mask set Jv and transfer set Tv can be found for every
node the reduction can model a given analysis. When these sets are found the

3.2. CUDA Analysis Design 27

equation can likely be rewritten to the original form. An example of this is done
with the assignment on the normal form ”x = e”. Because the value x gets overrid-
den it must not be propagated, so the join mask is Jv = {x}. Because an assignment
only has one expression, there is only one transfer. This transfer is Tv = {(x, E)}
where E is the set of variables and taint constant used in the expression e. The
conversion is ignored for brevity. Giving us the abstract semantics, which can be
simplified into the same rule that is in the abstract semantics in section 2.1.3

x = e : [[v]] = in[x 7→ ⊥] ⊔⊥[x 7→ eval(in, E)]
where in = Join(v)

⇓
x = e : [[v]] = in[x 7→ eval(in, E)]

where in = Join(v)

3.2 CUDA Analysis Design

By writing kernels directly, the programmer has direct control of what data in-
dividual threads accesses and what instruction they execute. These aspects were
handled by CuBLAS in the previous approach. The approach would attempt to
assign one GPU thread to each CFG node in the program, compared to the matrix
implementation which used many threads per node.

This approach uses bit-vectors, a data structure that uses each bit in some mem-
ory region to store boolean values. For this purpose, each variable was assigned
an index to a bit and if the bit at that index is one then the corresponding variable
is tainted. The necessary information about each node including the bit-vector is
copied onto the global memory on the GPU. Then each iteration of this solution
would start by reading and joining each predecessor’s bit-vectors, as shown in the
pseudo code in listing 3.1. A join-mask and transfer rules are used to describe the
abstract semantics of the analysis. The join mask describes what bits are joined,
and the transfer rules are used to describe data-flow from expression into a vari-
able. By the end of the iteration the new bit-vector for each thread is stored on the
global memory. Before starting the new iteration, a synchronization takes place
to ensure all threads have finished writing to the global memory and check if the
algorithm is done.

Using this approach, the algorithm uses as many threads as there are nodes.
But since the number of possible threads are limited there will be program sizes
where there are more nodes than threads. When this happens, CUDA will context-
switch between the threads, which still works as the algorithm synchronizes on the
CPU after having run all the nodes. The problem when there are more nodes than
threads is that the parallelism of the GPU is no longer fully utilized. Because some

28 Chapter 3. Design

1 function main():
2 while has_changed:
3 has_changed = false
4 analysis(nodes)
5
6 gpu_function analysis(nodes):
7 node_index = threadIdx.x + blockDim.x * blockIdx.x
8 node = nodes[node_index]
9

10 last_bitvector = node.bitvector
11 joined_bitvector = join(node , node.predecessors)
12 node.bitvector |= joined_data & node.join_mask
13
14 transfer_function(node , joined_bitvector)
15
16 if last_bitvector != current_bitvector:
17 has_changed = true;

Listing 3.1: Pseudo code describing the design of the analysis using CUDA.

nodes have already reached their local least fixed point, and GPU resources are
wasted on those nodes. This could be improved if the algorithm only ran on the
necessary nodes, since not all nodes will have any new information from joining. It
could therefore be relevant to create and compare to a GPU algorithm that utilizes
this.

3.3 CUDA work-list

Before developing a new Cuda implementation, different elaborations of the first
implementation were considered. Each of these improvements at their core attempt
to allow programs of any size to be analyzed, which was a clear disadvantage to
the last implementation.

Early on the concept of a worklist-based algorithm stood out. It promises
to reduce redundant work and provide an intuitive solution to scheduling large
programs over a limited number of threads. However, this comes at the cost of
synchronization, the parallel algorithm would require a central work-list data-
structure that is read and written to by potentially thousands of threads. This
creates a risk for a bottleneck, but with the correct implementation this might be
outweighed by the performance benefits of a work-list algorithm.

The different approaches can be categorized into two distinct approaches, group-
ing and non-grouping based algorithms. Grouping based approaches starts by
grouping CFG nodes into groups that are sized so they can be executed by a single

3.3. CUDA work-list 29

GPU thread block with one thread per CFG node. Making the smallest schedul-
ing unit a group of CFG nodes. Whereas a non-grouping approach will schedule
individual nodes on the work-list.

For both approaches the specifics of the work-list data structure is important to
minimize time spent scheduling new work. The naive solution would experience
incredible slowdowns if the entire data structure had to be locked with every write.
Therefore, changes were made to the work-list data structure for both approaches.
The benefit of the grouping approach is that there are fewer threads that have
to synchronize around the same resource. This could make a naive stack-based
work-list algorithm possible. But it would still require locking the stack upon
popping and pushing work. Another option is to add a boolean for each group that
marks each group for whether it needs to be worked on. The only race condition
for this solution is when two thread blocks want to take the group off the work-
list at the same time. As multiple threads can mark a block, at the same time,
without any possible race conditions. The non-grouping splits the entire work
into work columns, each can contain as many items as the GPU can handle each
iteration. We divide the work-list into a number of these work columns, such
that each iteration of the algorithm a new work column is handled and new work
discovered fills up the next work column. A work column is just an array of
nodes that should be handled. Because we handle the entire work column at a
time we have no need for contiguous node elements. This allows us to divide
the lock on the work column into smaller locks, such that a thread only locks a
single element in a work column at a time. The thread will pick an index in the
work column in a pseudo random fashion by using a hashing function. This was
done because the items must be placed on the work columns in a timely manner.
Because this is a distributed algorithm multiple threads can add items at the same
time, which results in slowdowns in naive methods like adding front to back due to
synchronizations. Therefore, a hashing algorithm is used in an attempt to lower the
time spent synchronizing. Collisions in the work column could be handled either
by finding a new index or delaying the work to the next work column. This random
placement means work columns will not be filled completely leaving some threads
without work, but it saves a lot of time on waiting for locks instead. A major
downside to this approach is that it requires the entire work column to be finished
before it can move onto the next work column which might cause slowdowns, as
a lot of threads can end up waiting on a single thread finishing its work. The two
approaches were tested and the results showed that using multiple work columns
upon collision were faster than attempting to completely fill each work column.

The pseudo code for adding entries to the work-list is shown in listing 3.2. The
function iterates through a node’s successors and adds them to the work-list. First
the hash for the successor is calculated and then a while loop is used to change the
work column until an empty position is found. Finally the successor is added to

30 Chapter 3. Design

1 function add_successors_to_worklist(node , worklist ,
column_index , worklists_pending):

2 foreach successor in node.successors:
3 work_column = worklist[column_index]
4 new_worklists = 1
5 hash = hash(successor) % worklist_size
6 while work_column[hash] != -1:
7 if work_column[hash] == successor:
8 break
9

10 work_column = worklist[column_index +
new_worklists]

11 new_worklists ++
12
13 work_column[hash] = successor
14 worklists_pending = max(worklists_pending ,

new_worklists)

Listing 3.2: Pseudo code describing adding a node’s successors to the work-list

the available position.
The actual analysis function, shown in listing 3.3 is similar to the previous in

listing 3.1. The difference is that now all the nodes are arranged in work columns
of a work-list. Instead of having a bool stating whether there is still work to be
done, a counter is used instead. The counter states how many work columns still
contain nodes to be analyzed.

3.4 CUDA generalisation

To extend the solution and make it more widely applicable, the Cuda algorithm
will be generalized to allow similar analyses to run with the same approach. The
generalization will be designed with the abstract semantics of a multi colored taint
analysis in mind see section 3.4.2. Which help guide what aspects of the analysis
should be generalised.

3.4.1 Design goals

The generalisation is going to be based on the cuda worklist algorithm, so an initial
goal with the generalisation is to hide any worklist related details. As the worklist
algorithm works unrelated to the specifics of the analyses that will be run using
the generalisation.

Looking at the differences between single-colored taint and multi-colored taint

3.4. CUDA generalisation 31

1 function main():
2 while worklists_pending > 0
3 worklists_pending --
4 analysis(worklist , column_index , worklists_pending)
5 column_index = (column_index +1) \% column_count
6
7 gpu_function analysis(worklist , column_index ,

worklists_pending):
8 node_index = threadIdx.x + blockDim.x * blockIdx.x
9 node = worklist[column_index][node_index]

10
11 last_bitvector = node.bitvector
12 joined_bitvector = join(node , node.predecessors)
13 node.bitvector |= joined_data & node.join_mask
14
15 transfer_function(node , joined_bitvector)
16
17 if last_bitvector != current_bitvector:
18 add_sucessors_to_worklist(node , worklist ,

column_index , worklists_pending)

Listing 3.3: Pseudo code describing the design of the work-list analysis using CUDA.

semantics. The state lattice stands out as the most important thing to modify in
the semantics. The semantics rarely has to be modified due to the reliance on the
least upper bound operator. So in theory with an interchangeable state lattice and
least upper bound operator would suffice to create a useful generalization. But the
reliance on a least upper bound operator proves problematic in practice as the least
upper bound operation may be a slow for some data structures.

Instead of defining a least upper bound operation, the generalisation should
require definitions of a separate join and transfer functions. This way each function
can take advantage of potential optimizations available for a given state lattice.

If the state of a CFG node has changed, a signal has to be sent to the work-list
indicating that the successors should be scheduled on the work-list. This is the
only work-list detail that can not be completely hidden from the generalisation.

Because the starting point was a taint analysis, the base abstract semantic is de-
signed to model data flow analysis and over approximate its results. Additionally,
support for handling multiple functions is already built into the semantics making
the generalisation useful for interprocedural analyses. The final result should be
a generalisation that can help implement forward and backwards flowing, over-
approximated and interprocedural static program analyses for SC. The generali-
sation is built on top of a bit-vector analysis and thus naturally the generalisation
favors bit-vector implementations.

32 Chapter 3. Design

3.4.2 Multi-colored taint

Because the previous semantics were generalized using the least upper bound op-
erator, defining a similar data-flow analysis is simple. By changing the abstract
program state lattice and updating the eval function appropriately. Given a set T
of all taint sources in a input program, the Ltaint lattice can be modified to keep
track of which taint sources have tainted a given variable.
Lm−taint = (P(T),⊑)

⊑= {(x, y) | x, y ∈ P(T) ∧ x ⊆ y}
This defines the multi taint lattice, to ensure completeness, ⊥ and ⊤ are iden-
tified and the height of the lattice is |T|, and T is guaranteed to be finite in a
finite input program. The ∅ ∈ P(T) is the ⊥ element in this lattice and it holds
that ∀T′ ∈ P : ∅ ⊆ T′. Similarly T ∈ P(T) is the ⊤ element as it holds that
∀T′ ∈ P(T) : T′ ⊆ T. Using this new state lattice the node state can be defined
as State = Vars → Lm−taint. Then the eval function is modified for the taint source
case.
eval(σ, τ) = {τ} where τ ∈ T Having defined the differences between a multi-
colored and single-colored taint analysis. These changes can now be expressed
using the generalization.

Implementation

Using the generalisation described, implementing a new analysis is made very
simple. Previous parsing and CFG transformations can be reused. The primary
change in the new analysis is the state lattice changes. Which is changed from
keeping track of what variables are tainted to what variables are tainted by each
taint source. This change is implemented by dynamically sizing up the bit-vector
by the amount of taint sources in the program.

Changing the underlying data structure, requires new join and transfer func-
tions. These functions are effectively the same except they do the same behaviour
for each taint source. If even one bit changes in the state lattice during the join and
transfer functions the signal is sent to the work-list to schedule successor nodes to
the work-list.

These are the only two changes needed to get the analysis running on the GPU.
Additional code is required to use the results from the analysis but this will be
considered auxillary code and not a part of the analysis code.

To implement the multi-colored taint analysis an analyze method is created
that controls how the specific analysis is performed. This method can be seen in
listing 3.4. The analyze method iterates through each taint source and for each it
performs join and transfer on the nodes. A new join function is defined and is used
to handle the new node structure with taint sources but the transfer method used
in the other analyses is reused. In this analysis another data structure is used for

3.4. CUDA generalisation 33

1 __device__ bool analyze(Node& current_node , NodeContainer&
nodes , Transfer* transfers){

2 bool add_successors = false;
3 for(int source = 0; source < source_count; ++ source){
4 BitVector joined_data =

multi_cuda_join(current_node.predecessor_index ,
nodes , source);

5
6 BitVector last = current_node.data[source];
7 BitVector current = last;
8
9 joined_data.bitfield |= current.bitfield;

10
11 if(joined_data.bitfield == 0)
12 continue;
13
14 transfer_function(current_node.first_transfer_index ,

transfers , joined_data , current);
15
16 current.bitfield |= joined_data.bitfield &

current_node.join_mask.bitfield;
17 if(last.bitfield != current.bitfield){
18 current_node.data[source] = current;
19 add_successors = true;
20 }
21 }
22 return add_successors;
23 }

Listing 3.4: Analyze method responsible for performing the multi-colored taint analysis

the nodes, this data structure is identical to the previously used node data structure
except that instead of having a single bit-vector as its data, it has an flexible array
member of bit-vectors. This way it can store the bit-vector for each taint source in
the set T.

With the semantics of the analysis defined in an Analyzer class the final con-
figuration can be setup before the analysis is run. Both setup and execution can be
seen in listing 3.5. The analyzer is instantiated here to allow meta data and addi-
tional parameters to be passed along to the GPU, in this case the source count is
saved. As mentioned previously the size of abstract state type’s size is determined
at run time which complicates the process of uploading the data to the GPU. To
solve this issue NodeUploader was used, it is a class that describes how the gen-
eralization should upload the data and its meta data to the GPU. In this case a
SizedArray is used which is a array can store items with size determined at run

34 Chapter 3. Design

1 void multi_cuda :: execute_analysis(DynamicArray <Node >& nodes ,
std::vector <Transfer >& transfers , const std::set <int >&
taint_sources , int source_count){

2 multi:: Analyzer analyzer(source_count);
3
4 worklist :: NodeUploader <SizedArray <Node >> uploader;
5 uploader.container.item_size = nodes.get_item_size ();
6 uploader.dev_nodes = (void **)&uploader.container.items;
7
8 worklist :: execute_some_analysis(analyzer , nodes , uploader ,

&transfers [0], transfers.size(), taint_sources);
9 }

Listing 3.5: Code example of how multi-colored taint analysis is configured and run

time. The NodeUploader is configured to push the data and size each item in data.
Finally the generalization is called with the Analyzer class instance and the Node-
Uploader, additional parameters that remain unchanged are also passed along like
an array of transfer objects and the set of taint sources.

Chapter 4

Optimizations

To compare the GPU implementations to the CPU implementation benchmarks are
necessary. The first benchmark is performed on a program that has a lot of taint
sources and as such should be better fit for the GPU implementations. The code
can be seen in appendix B.1. This code example was analysed on the CPU, bit-
cuda and bit-cuda worklist implementations. The code has been scaled from 27 to
270,000 nodes to see how it scales on the different implementations. Each test run
was performed 10 times and the mean time was used to get a stable measurement
as the times can vary. Parsing is not measured in the benchmarks since this is the
same for all implementations.

Looking at this benchmark results in figure 4.1, it is clear that the GPU imple-
mentations perform worse than the CPU implementation. To determine where the
time is used additional timings are measured on the bit-cuda worklist implemen-
tation to see the distribution of the time spent in the different components of the
analysis. The result of the timings can be seen in figure 4.2. From this test it shows
that only 3% of the time is spent on the actual analysis algorithm. The majority of
the time is spent on creating the CFG nodes and transforming those nodes with
information necessary for the GPU analysis. Specifically this time is used to create
the bit-vector field, create transfer functions and set up the successors and prede-
cessors. Both the creation of the CFG nodes and the variable reduction happens for
both the GPU and CPU analysis. Based on this it shows that there is a potential for
the GPU analysis to be useful if the overhead connected with the transformation
can be reduced.

4.1 CUDA overhead

The benchmarks from both the Bit-cuda and cuda work-list algorithms, resulted
in unusual runtimes. The resulting times were incredibly long and as such the
natural step was to adjust different parameters. But changing these parameters

35

36 Chapter 4. Optimizations

0.3

3

30

300

27 270 2,700 27,000 270,000

Ti
m

e
[m

s]

Number of CFG nodes

Multiple function calls

CPU Bit-cuda Bit-cuda (worklist)

Figure 4.1: Benchmark result from analysing code from appendix B.1 with a scaling number of
function calls

145.61 ms; 32%

52.60 ms; 11%

233.08 ms; 51%

12.39 ms; 3%
16.29 ms; 3%

Creating CFG nodes

Variable reduction

GPU structure transformation

Data allocation and copying

Least fixed point algorithm

Figure 4.2: Run-time distribution of bit-cuda worklist on code from appendix B.1 with 10.000 func-
tion calls

4.2. Associative Containers 37

only improved the algorithms an insignificant amount.
From there the work-list algorithm was profiled and the runtime of each call in

the algorithm was measured. From this profiling an interesting result was discov-
ered. The first CUDA call had an disproportionate runtime compared to similar
calls later in the algorithm. It turned out that the first call to the graphics card in-
duces a large overhead of around 0.1 seconds. Which in the small to medium sized
programs, that are being tested on, takes up the vast majority of the runtime. This
time comes from the creation of the CUDA context [12, Ch. 3.2.1]. This overhead
will not be measured in benchmarks or comparisons between the implementations
but the effects of the overhead on the analysis is discussed in section 7.2.

4.2 Associative Containers

To reduce the overhead of the GPU implementations, the run-time distribution as
seen in figure 4.2 was used to prioritize what to optimize. To properly optimize the
CPU bound overhead, a profiling tool called gprof was used to find the bottleneck.
Initial results showed that up to 40% of the time was spent doing look-ups in
associative containers, that is containers containing key value pairs.

These associative containers were generally used to add information to some
object. An example would be variable reduction, which uses an associative con-
tainer to assign indexes to variables. This was a pattern in many places of the
program, associative containers used to decorate objects with additional informa-
tion that was learnt throughout the program.

However with this pattern, look up times are too expensive. The default asso-
ciative container uses a sorted binary tree to store its elements and thus incurring a
logarithmic look up time [1]. This look-up is further slowed down by the fact that
strings were used as keys, causing O(log2(N)) string comparisons for each look
up.

The first attempt to improve the performance of the slow look-ups, was done
by changing the underlying data structure from a sorted binary tree to a hash map,
which has a constant look up time [2]. However this did not give the performance
improvements needed.

The current approach to improve performance is to get rid of the pattern of
using associative containers to decorate existing objects with extra information.
Instead adding more data fields to the CFG node data structures and populating
the fields as we learn the information, this drastically reduces the amount of look
ups needed.

After reducing the use of associative containers the run time is better in terms
of the GPU structure transformation. The new run time distribution can be seen
on figure 4.3. This optimization resulted in a speedup of about 128ms which is an
improvement of 27.7% measured at 10,000 function calls or 240,000 CFG nodes.

38 Chapter 4. Optimizations

158.20 ms; 48%

85.88 ms; 26%

61.64 ms; 18%

11.07 ms; 3%
15.46 ms; 5%

Creating CFG nodes

Variable reduction

GPU structure transformation

Data allocation and copying

Least fixed point algorithm

Figure 4.3: Run-time distribution of bit-cuda worklist on code from appendix B.1 with 10.000 func-
tion calls after reducing the use of associative containers.

4.3 Parser Optimization

From the run time distribution in figure 4.3, the three largest tasks are: create
CFG nodes, variable reduction and GPU structure transformation. These tasks are
run sequentially before the analysis is performed, causing significant overhead.
These three tasks collectively take up 92% of the run time of a GPU analysis on a
large sample program. The CPU overhead wastes time and resources and thus an
attempt to optimize the overhead was made.

This optimization comes in three pieces, a change to the data structure, doing
tasks concurrently and improving function in-lining. Before the optimization, an
intermediate CFG data structure was used, this data structure was removed such
that the tasks instead are performed directly on the GPU data structure. This had
two benefits, it removed the need for the GPU structure transformation task. But
it also got rid of the cache unfriendly nature of the intermediate data structure.
Because the intermediate nodes were stored in a non-contiguous way on the heap
using smart pointers, cache misses were much more likely. Instead with the new
data structure it is stored contiguously, improving data locality significantly. An-
other optimization was to stop doing the tasks sequentially but instead do them
concurrently, handling the Variable Reduction as each node is created. This further
reduced the potential for cache misses during the Variable Reduction task as the
target node is already in the cache. The final improvement was to the Creating

4.4. Splitting Data From Node Struct 39

CFG nodes specifically function in-lining, which used to be a slow process as a
tree like structure of heap allocated objects had to traversed and copied for each
function call. Instead, the data was structured in a way to allow the copying to
be done with a memcpy operation instead. A direct memory copy is much faster
than copying separated data hidden behind layers of indirection. After the copy is
done the copied nodes are iterated through and an offset is applied to successor
and predecessor indexes. To ensure they match their new node indexes.

These optimizations completely replaces all CPU overhead in a GPU analysis
which made up a total of 92% of the run time. With these optimizations the runtime
of the analysis is reduced by 91%, when analyzing the program in appendix B with
10,000 function calls.

4.4 Splitting Data From Node Struct

Looking again at the time spent in the different analysis components, a large
amount of time is spent on copying the analysis results back to the CPU. When
running on the benchmark program with 240,000 CFG nodes, this time was 2.1
milliseconds. The data that is being copied here is the node struct that contains
the predecessor, successor, transfer and state. But only the state data will have
changed during the analysis. To reduce this time, the state data is separated from
the rest of the node data. This optimization resulted in a small improvement of 1.8
milliseconds of the analysis. The component-wise comparison of this can be seen
in figure 4.4.

40 Chapter 4. Optimizations

2.88 ms
2.54 ms

0.26 ms

0.27 ms

0.74 ms

2.07 ms
1.60 ms

2.10 ms

0.32 ms

0.00 ms

1.00 ms

2.00 ms

3.00 ms

4.00 ms

5.00 ms

6.00 ms

7.00 ms

8.00 ms

Data in node-struct Data separate from node-struct

Allocate/copy nodes Allocate/copy transfers Allocate/copy data Least fixed point Copy results to host

Figure 4.4: Component-wise comparison of bit-cuda implementation with and without separation of
data. To simplify comparison, parsing is not included

Chapter 5

Implementation

This chapter will cover implementation details about how the CFG is constructed
and the data structures for nodes and transfers which are used to perform the taint
analysis. Implementation of the two different taint analysis algorithms, bit-cuda
and cuda work-list, will also be covered.

5.1 Overview

When a SC program is analyzed, a series of transformations is applied to the source
program before the least fixed point algorithm can be executed. The flow of per-
forming an analysis can be seen on figure 5.1. When analyzing a SC program, it is
necessary to transform the program into a CFG. The taint analysis is interprocedu-
ral, and this is done by duplicating the function nodes to each call site, effectively
inlining every function call. Further implementation details of this can be found in
the previous work[16].

During construction of CFG nodes, variable reduction is performed. This re-
duces the memory footprint of the analysis by taking advantage of the local vari-
able scopes of functions. The reduction encodes variable ids into bit-vector indexes
that stores the taint status of all variables at the node. The advantage with local
variable scopes is that indexes of the bit-vector can be reuse for every function.

The transfer functions are created and referenced from the CFG node that is
being constructed. A transfer function encodes how each CFG node affects the
abstract program state.

While CFG nodes are created, taint sources are located in the source program.
The id for nodes which contains a taint source is added to a vector which is used
to provide the starting nodes of the analysis. This is done as an optimization
primarily meant for the GPU implementation, as the GPU implementation can
handle propagation from every taint source in parallel. This does however also
provide a time save for the CPU counterpart as finding taint sources during the

41

42 Chapter 5. Implementation

Function Inliner

Variable Reduction

CFG creation

Node Creations

Transfer Creations

parser AnalyzerSC

Parse
Tree

Nodes

Transfers

Sources

Results

Figure 5.1: Program flow to perform taint analysis

analysis is not performed.
Once the source program have been converted into a CFG it can then be given

to the analysis algorithm to propagate taints in the program. There is a slight
deviation between a single taint and multi-colored taint analysis in how the taint
information is stored. For the single taint analysis, only a single bit-vector de-
scribing taint values for variables is used, while in multi-colored taint there is a
bit-vector for each taint source in the program.

For analysing the program, a work-list approach have been used for CPU and
GPU since it is a common way to handle fix-point algorithms. Another analysis ap-
proach have been implemented on GPU which is thread-based, where each thread
evaluates a single CFG node. When the least fix-point algorithm finishes, the result
of the analysis is obtained and can be extracted from the CFG.

5.2 CFG Nodes

The SC language has a lot of different constructs that have different semantics,
which naturally leads to branching execution in the CUDA kernel. This is an
issue since GPU programs achieve better throughput if a warp of threads executes
non-branching code. In order to reduce branching, a transformation is used to
generalize nodes into a single type of data. An example of this generalization of
CFG nodes can be seen in listing 5.1. This node struct is used to store CFG node
information and is used for computing taint analysis on the GPU and CPU.

5.2. CFG Nodes 43

1 struct Node{
2 int first_transfer_index = -1;
3 int predecessor_index [5] = {-1,-1,-1,-1,-1};
4 int successor_index [5] = {-1,-1,-1,-1,-1};
5 BitVector join_mask = INT64_MAX;
6 };

Listing 5.1: CFG node data structure used for single taint analysis

To access the correct nodes when performing the joins, a predecessor_index ar-
ray is used, similarly a successor_index array is used to reference the correct nodes
which should be added to the work-list during the analysis. The first_transfer_index
is used to access the transfer information of the statement at the CFG node. Trans-
fer information is the information on how data flows from one variable to another
in a CFG node, e.g. an assignment node has information flowing from the right
hand side expression into the left hand side variable. This transfer information is
stored in transfer objects, each transfer can store one flow from an expression into
some variable. These transfers contains the index in the bit-vector of the variable
which is assigned to in the CFG node. The transfers also contains a bit-vector de-
scribing which variables are present in the expression. In the case of a function call
with multiple parameters, a single transfer struct cannot bind all the parameters.
In this case transfers are linked together to perform multiple data flows in one
node, this is done by making transfers have an index to the next transfer for the
given CFG node. Since data in a variable is overridden when performing transfers
for assignments and initializations, a join_mask is used to describe which variables
should propagate from previous CFG nodes. However this does not affect the re-
sult of the evaluation of the expression as they are evaluated on the joined data
of the predecessors. This means that if the assigned variable is also used in the
expression, evaluation will be performed on the previous state of that variable.

For storing taint state of each CFG node, a separate vector of bit-vectors is used.
These bit-vectors shares the same index as the CFG node which state the bit-vector
is representing. Having the data as a separate data structure makes it faster to
extract the final analysis results from the GPU.

These CFG nodes are created from the parse tree created by Antlr, a visitor
pattern is used to access the nodes in the parse tree and create the corresponding
CFG node for it. This process involve multiple modifications in order to correctly
encode the program flow and mapping variables into bit-vectors. To perform vari-
able reduction, the method get_var_index is used every time a variable name occurs
in the program. The method can be seen in listing 5.2. This method returns the
id for the bit in the bit-vector that represents the given variable. It makes use of
a map var_to_index which stores the already seen variables in the given function

44 Chapter 5. Implementation

scope.

1 int get_var_index(std:: string name){
2 auto it = var_to_index.find(name);
3 if (it == var_to_index.end()) {
4 var_to_index.emplace(std::move(name), next_var_index);
5 return next_var_index ++;
6 }
7 else {
8 return it->second;
9 }

10 }

Listing 5.2: Variable reduction during creation of CFG nodes

To create the transfer functions used in the analysis, expressions needs to be
encoded into bit-vectors which informs which variables are present in the expres-
sion and allowing its data to flow into the variable on the left-hand side of the
statement. Converting expressions is handled in the visitor shown in listing 5.3.
It starts out creating the default bit-vector where no variables are present and as
variables are discovered this bit-vector has the corresponding bit flipped to tell that
the variable is present in the expression. If more than one expression is present,
these following expressions are handled recursively, and the results are combined
with a bitwise or operation.

5.2. CFG Nodes 45

1 virtual antlrcpp ::Any
visitExpression(scParser :: ExpressionContext *ctx) override

2 {
3 BitVector expression (0);
4 if (ctx ->ID() != nullptr){
5 expression.set_bit(get_var_index(ctx ->ID()->getText ()));
6 }else if(ctx ->expression () != nullptr) {
7 antlrcpp ::Any result = ctx ->expression ()->accept(this);
8 expression = result.as <BitVector >();
9 }

10
11 if (ctx ->expressionM () != nullptr &&

ctx ->expressionM ()->expression () != nullptr){
12
13 antlrcpp ::Any result =

ctx ->expressionM ()->accept(this);
14 expression |= result.as <BitVector >();
15 }
16
17 return expression;
18 }

Listing 5.3: Implementation for handling expressions in SC

An example of a CFG node creation can be seen in listing 5.4. First off, the ex-
pression of the assignment statement is visited which creates the bit-vector describ-
ing which data influence the left-hand side variable. Next is the CFG node created
with use of add_node which code can be seen in listing 5.5. With the node created,
it is necessary to alter the join mask such that the variable itself will override pre-
vious data stored in the variable. This is done by flipping the bit representing the
variable in the join_mask of the CFG node. Lastly the transfer for the CFG node
is created. This transfer contains the id of the CFG node, the variable which data
from the expression is transferred to and the bit-vector of the expression itself.

46 Chapter 5. Implementation

1 virtual antlrcpp ::Any
visitStatementassign(scParser :: StatementassignContext *ctx)
override

2 {
3 antlrcpp ::Any result =

ctx ->expression ().back()->accept(this);
4 BitVector rhs_expression = result.as<BitVector >();
5
6 Node& assignment = add_node ();
7 int var_index = get_var_index(ctx ->ID()->getText ());
8 assignment.join_mask ^= 1 << var_index;
9 add_transfer(assignment , var_index , rhs_expression);

10 next_layer ();
11
12 return nullptr;
13 }

Listing 5.4: Contruction of a assignment statement CFG node

When adding new nodes to the CFG it is necessary to connect it to its predeces-
sors. These predecessor ids are stored in the vector last and next_last. When a node
is added to the CFG, that node is inserted into next_last such that it can be added
as the predecessor of the following node that will be added. During the process
of adding the predecessors, these predecessors will also add the new node to their
successors. In the listing 5.4 the method next_layer is called. This method is used
to tell that the current level of the CFG is finished being constructed and will move
all the current node ids of next_last into last. This method also sets succ_pred_index
to 0 since the next layer does not have any successor nodes yet.

5.3. Bit-Cuda Implementation 47

1 Node& add_node (){
2 int index = nodes ->size();
3 Node& node = nodes ->emplace_back_resizable ();
4
5 for(int pred_index = 0; pred_index < last.size();

++ pred_index){
6 node.predecessor_index[pred_index] = last[pred_index];
7 get_nodes ()[last[pred_index]]
8 .successor_index[succ_pred_index] = index;
9 }

10 ++ succ_pred_index;
11
12 next_last.push_back(nodes ->size() - 1);
13
14 return node;
15 }

Listing 5.5: Implementation for adding new CFG nodes to the CFG.

5.2.1 Function inline

Functions are created as separate CFG sub-graphs which are stored in a separate
data structure for inlining functions on call site. This process creates entry and exit
CFG nodes and insert the functions body in between these two nodes. Implemen-
tation for inlining function can be seen in listing 5.6. Inlining function is done by
iterating through the function and recreating each CFG node in the function and
applying an offset to all the ids stored in the predecessor and successor indexes.
To preserve scoping of functions, the entry and return CFG nodes have their join
mask modified to not allow variables to propagate through them.

5.3 Bit-Cuda Implementation

The code that launches the bit-cuda kernel is shown in listing 5.7. This code is run
after all the data has been allocated and copied to the GPU. Here a boolean value
has_changed is used to remember if any changes happened to the nodes during
the iteration. If that is the case, then another iteration will be executed until a
fixed-point is achieved.

The GPU kernel code for the bit-cuda implementation is shown in listing 5.8.
First, the id of the current thread is calculated and is used to get that thread’s node
and bit-vector. Since each thread is assigned a node. Then for each node, a join
(section 5.4.1) is performed with the node’s predecessors and the transfer function
(section 5.4.2) is applied on the node’s data. Finally, the old bit-vector is compared

48 Chapter 5. Implementation

1 Node& clone_function(const Function <Node >& function){
2 int offset = nodes ->size();
3 nodes ->reserve(function.nodes.size());
4 for(int i = 0; i < function.nodes.size(); ++i){
5 const Node& node = function.nodes[i];
6 Node& new_node = nodes ->emplace_back_resizable(node);
7 for(int i = 0; i < 5; ++i){
8 if(new_node.successor_index[i] == -1)
9 break;

10 new_node.successor_index[i] += offset;
11 }
12
13 for(int i = 0; i < 5; ++i){
14 if(new_node.predecessor_index[i] == -1)
15 break;
16 new_node.predecessor_index[i] += offset;
17 }
18 }
19 for (int source : function.sources) {
20 taint_sources ->push_back(source + offset);
21 }
22 return (*nodes)[offset];
23 }

Listing 5.6: Implementation for function inlining

5.4. CUDA Work-list Algorithm 49

1 bool has_changed = true;
2 while(has_changed){
3 has_changed = false;
4 cuda_copy_to_device(dev_has_changed , &has_changed ,

sizeof(bool));
5
6 // Launch a kernel on the GPU with one thread for each

element.
7 analyze <<<block_count , threadsPerBlock >>>(dev_nodes ,

dev_data , dev_transfers , dev_has_changed , nodes.size());
8
9 // cudaDeviceSynchronize waits for the kernel to finish ,

and returns
10 // any errors encountered during the launch.
11 cudaStatus = cudaDeviceSynchronize ();
12
13 cuda_copy_to_host ((void*)&has_changed , dev_has_changed ,

sizeof(bool));
14 }

Listing 5.7: CPU Code for launching kernel for bit-cuda. For better readability the error checking
and handling after launching the kernel

to the new. If there has been a change then the has_changed boolean is set to true,
so the host knows that another iteration is needed. To avoid race conditions, the
boolean is reset to false by host such that the kernel only ever set it to true. This
way, the boolean either remains false or, one or more threads sets it to true.

5.4 CUDA Work-list Algorithm

To utilize the most threads on the GPU, the work-columns should be filled as much
as possible. This can however be a costly process since multiple threads attempt to
insert into the work-list at the same time. This can lead to multiple failed attempts
for inserting a node, leading to a lot of processing time before the next iteration.
Therefore the focus was on having faster insertions which leads to less filled work-
lists in between iterations. The size of the work-column is equal to the amount of
threads which is assigned to the kernel that executes the algorithm. The thread
id is then used to index the work-list to find the node which the thread should
process. Since the work-list is a fixed size and a node can have multiple successors
it is necessary to introduce multiple work-lists which the work for the next iteration
is inserted into. When a work-list index is finished processing, the index is set to
a default value which indicates that there is no work for the index. By resetting
each index to the default value, it is possible to reuse previous iteration work-lists

50 Chapter 5. Implementation

1 __global__ void analyze(Node nodes[], BitVector data[],
Transfer transfers [], bool* has_changed , int node_count) {

2 int thread_id = threadIdx.x + blockDim.x * blockIdx.x;
3
4 if(thread_id < node_count){
5 Node& current_node = nodes[thread_id];
6
7 BitVector current = data[thread_id];
8 BitVector last = data[thread_id];
9

10 BitVector joined_data =
join(current_node.predecessor_index , nodes , data);

11 current.bitfield |= joined_data.bitfield &
current_node.join_mask.bitfield;

12
13 transfer_function(current_node.first_transfer_index ,

transfers , joined_data , current);
14
15 if(last.bitfield != current.bitfield){
16 data[thread_id] = current;
17 *has_changed = true;
18 }
19 }
20 }

Listing 5.8: Bit-cuda Kernel code

5.4. CUDA Work-list Algorithm 51

1 while(worklists_pending > 0){
2 --worklists_pending;
3 cuda_copy_to_device(dev_worklists_pending ,

&worklists_pending , sizeof(int));
4
5 analyze <<<block_count , threadsPerBlock >>>(analyzer ,

dev_nodes , dev_data ,
(int(*)[THREAD_COUNT]) dev_worklists , work_column_count ,
dev_transfers , node_count , dev_worklists_pending ,
current_worklist);

6
7 cuda_copy_to_host ((void*)&worklists_pending ,

dev_worklists_pending , sizeof(int));
8 current_worklist = (current_worklist +1) %

work_column_count;
9 }

Listing 5.9: CPU Code for launching kernel with the correct worklist. Execution stops when no
worklist are left to be processed

to store new nodes to process.
Before entering the least fix-point loop shown in listing 5.9, some preparation

work is required. This entails initializing the work-list with the taint sources of
the program that is analysed and allocated GPU memory for the workload of the
analysis. Once initialization and allocation is complete, data is then transferred to
the GPU from CPU memory. The majority of the data is kept on GPU in between
each iteration since the CPU part of the algorithm only requires knowledge of how
much work is left. This is done by a shared variable worklists_pending which is a
counter for how many work-lists contains nodes to compute, which also means
how many iterations are left. This counter is updated while the GPU is computing
an iteration. The kernel itself requires multiple parameters when launched. Note
that the prefix "dev_" is short for device and indicate that the variables are pointers
to GPU global memory. The data of these are shared for all the threads in the
kernel.

• analyzer: Is a class which contains the logic from the abstract semantics, the
analysis takes advantage of template instantiation to change implementation
depending on which analysis is being executed.

• dev_nodes: A pointer to CFG nodes stored on the GPU. Each node contains
arrays for predecessor and successor indexes. A index into transfers which
expresses the data flow of the CFG node. The join mask which is used to
perform joins from predecessor nodes.

52 Chapter 5. Implementation

• dev_data: A pointer to the data which stores taint information for CFG
nodes. Indexes of the node corresponds to the same index in this data ar-
ray.

• dev_worklists: A pointer to the work-lists used throughout the analysis for
scheduling new nodes to compute.

• work_column_count: Is a integer value for the amount of work-lists that
have been allocated. This is to ensure that indexing into work-lists are kept in
bounds and also used wrap around the work-lists as the analysis progresses.

• dev_transfers: A pointer to transfers. A transfer describes how data flows for
a given CFG node. Each transfer contains a integer value for a bit vector index
that describes the variable that data flows into. To describe the data the flows
into the variable a bit vector is used. This bit vector indicate which variables
are present in the expression. Lastly is a index to the next transfer which is
relevant to the CFG node, this is to describe multiple variable assignments.
This covers the specific data flow for each variable in a function call.

• node_count: Is a integer value similar to work_column_count which is used
to ensure that indexing into nodes is done within bounds.

• dev_worklists_pending: Is a integer value describing how many work-lists
in dev_worklists contains nodes to compute.

• current_worklist: Is the index for the work-list which is being computed at
the given iteration.

Implementation of the GPU kernel can be seen in listing 5.10. In CUDA work
is usually assigned to threads according to their thread id which is a number cal-
culated at the start of a kernel. This thread id is stored into node_index and used to
locate the data which the thread should use in the current iteration. Each thread is
assigned to a single index in the current work-list of the iteration. However not all
indexes of the work-list contains an id for a node meaning that those threads are
inactive for the current iteration. The node id is used to index into nodes to find
the correct CFG node and provide it to the analyzer which does the taint propa-
gation for that node. Once taint has been propagated, the node id is then cleared
from the work-list and the result from the propagation is used to check if the node
successors should be inserted into the next work-list.

Inserting of new node ids into the work-list is done by add_successors_to_worklist
which code can be seen in listing 5.11. Each node contains an array of successor
node ids, this array is used to insert the correct ids for the next work-list. Since
there are multiple threads executing this add successors code, there is potential

5.4. CUDA Work-list Algorithm 53

1 int node_index = threadIdx.x + blockDim.x * blockIdx.x;
2 int* work_column = work_columns[current_work_column];
3
4 if(node_index < THREAD_COUNT && work_column[node_index] != -1){
5 NodeType& current_node = nodes[work_column[node_index]];
6 bool add_successors = analyzer.analyze(current_node , data ,

work_column[node_index], nodes , transfers);
7
8 work_column[node_index] = -1;
9

10 if(add_successors){
11 int next_work_column = (current_work_column +1) %

work_column_count;
12 add_successors_to_worklist(

current_node.successor_index , work_columns ,
work_column_count , next_work_column ,
worklists_pending);

13 }
14 }

Listing 5.10: Implementation for GPU worklist kernel

for race conditions on shared data. In this part of the code there are two vari-
ables stored in global memory which are accessible for all the thread in the ker-
nel. This being the work-list data structure work_columns and worklists_pending.
To avoid the risk of data races, atomic operations are used when writing to these
variables. For inserting new node ids into the work-list, atomicCAS is used. This
replaces the value in the work-list with the node id if there is not a node id al-
ready on that location. It may occur that indexes of the work-list already stores
another node id, additional attempts to insert using incremented indexes until
COLLISIONS_BEFORE_SWITCH is reached. This will reset the collision count and
attempt to insert into the next work-list followed by the one which were failed
to insert into. The amount of additional work-list required to store the successor
nodes is stored in the global variable worklists_pending which is used to inform the
amount of work-lists that contains node ids. The least fix-point algorithm termi-
nates once this variable reaches zero.

5.4.1 Join Function

The join function is responsible for for retrieving the combined state of the current
node’s predecessors. This information will later be used to update the current
node’s state with information about what variables have been tainted in one or
more of its predecessors. The GPU join function is shown in listing 5.12. The

54 Chapter 5. Implementation

1 int current_work_column;
2 for(int i = 0; i < 5; i++){
3 int amount_of_new_worklists = 1;
4 current_work_column = initial_work_column;
5 int succ_index = successors[i];
6 if (succ_index == -1)
7 return;
8 unsigned long hash = succ_index *120811;
9 int collision_count = 0;

10 int* work_column = work_columns[current_work_column];
11
12 while(atomicCAS (& work_column[hash % THREAD_COUNT], -1,

succ_index) != -1){
13 if(work_column[hash % THREAD_COUNT] == succ_index){
14 break;
15 }
16
17 if(++ collision_count >= COLLISIONS_BEFORE_SWITCH){
18 current_work_column = (current_work_column + 1) %

work_column_count;
19 work_column = work_columns[current_work_column];
20 amount_of_new_worklists ++;
21 collision_count = 0;
22 }else{
23 hash ++;
24 }
25 }
26
27 atomicMax(worklists_pending , amount_of_new_worklists);
28 }

Listing 5.11: Implementation for adding successor nodes to worklists on GPU

5.4. CUDA Work-list Algorithm 55

1 template <typename NodeType >
2 __device__ BitVector join(int predecessors [], NodeType

nodes[], BitVector data []) {
3 BitVector joined_data;
4 joined_data.bitfield = 1;
5
6 int pred_index = 0;
7 while (pred_index < 5 && predecessors[pred_index] !=

-1){
8 joined_data.bitfield |=

data[predecessors[pred_index]]. bitfield;
9 ++ pred_index;

10 }
11 return joined_data;
12 }

Listing 5.12: GPU join function

join function will iterate through all the node’s predecessors and do a bitwise or
operation on the current node’s and the predecessor’s state. The resulting joined
data is then returned and used to update the node’s state, after applying a join
mask. The join mask will prevent some tainted values from the predecessors from
being tainted in the node’s state. It is used to prevent the variable being assigned
to, from being tainted from its predecessors or to reset the state after returning
from a function.

5.4.2 Transfer Function

The transfer function is responsible for updating a node’s state based on its ab-
stract semantics. Such as an assignment where taint flows from the expression
to the assigned variable. The GPU transfer function is shown in listing 5.13.
A while loop iterates through all the node’s transfer functions. Each iteration
checks if any variables in the right-hand side of the assignment or initialization
are tainted. This check is performed using a bitwise and operation between the
node’s joined data and the transfer function rhs bit-vector field. If any of the
rhs variables are tainted then the variable corresponding to the transfer function’s
var_index, will be tainted in the node’s state. Finally the transfer function’s field
next_transfer_index is used to find the next transfer function and is used in the
next iteration.

56 Chapter 5. Implementation

1 template <typename BitVectorType >
2 __device__ void transfer_function(int first_transfer_index ,

Transfer transfers [], BitVectorType& joined_data ,
BitVectorType& current){

3 Transfer* transfer;
4 int transfer_index = first_transfer_index;
5
6 while(transfer_index != -1){
7 transfer = &transfers[transfer_index];
8 if((joined_data.bitfield & transfer ->rhs.bitfield) !=

0){
9 current.bitfield |= (1 << transfer ->var_index);

10 }
11 transfer_index = transfer ->next_transfer_index;
12 }
13 }

Listing 5.13: GPU transfer function

Chapter 6

Evaluation

This chapter will evaluate on the benchmarks performed on the final version of
the taint analysis implemented on CPU and GPU. Since the results of the analysis
is an important aspect for knowing that the implementation is correct, a method
for validating the results have been used throughout development of the GPU
algorithms. This method of validation results will be evaluated on as well. Since
CFG nodes have limits to their number of successors and predecessors, it limits the
programs which can be modelled with these CFG nodes. Therefore it is needed
to evaluate how much of an impact this limitation have. Evaluation will also be
done on data structures used for the analysis to provide a estimate of how large
programs would be able to be analysed with use of the GPU algorithms.

6.1 Benchmarks

To evaluate the analysis implementations, they are run on a few different programs.
The first program to benchmark is a program that is designed to work well on a
parallel analysis (appendix B.1). The program is beneficial to analyze in a parallel
manner, since it has many taint sources. Analyzing it in parallel allows all the taint
sources to propagate in parallel as well. This means the GPU will be utilized better
since there will be more work for the GPU and less idle threads. This program is
run multiple times on different variation with an increasing amount of CFG nodes.
The results from running this analysis is shown in figure 6.1. The results shows
that after 96,000 CFG nodes, the bit-cuda implementation is faster than the CPU
implementation. The bit-cuda implementation is about 24% faster than the CPU
implementation at analysing programs with 960,000 to 2,400,000 CFG nodes.

The second benchmark performed is a worst-case scenario for a parallel anal-
ysis. Here the program analyzed only has a single taint source that is passed
through the entire program with an increasing amount of function calls that the
taint propagates through. This program is not optimal for parallel analysis since

57

58 Chapter 6. Evaluation

0.3

3

30

300

27 270 2,700 27,000 270,000 2,700,000

Ti
m

e
[m

s]

Number of CFG nodes

Multiple function calls

CPU Bit-cuda Bit-cuda (worklist)

Figure 6.1: Benchmark results from analysing code from appendix B.1 with an increasing number of
function calls.

the majority of the threads will be idle as only one taint source is being propa-
gated every iteration. This means that it is not possible to properly utilize the
GPU’s parallel lock-step mechanism, since only a few threads will have work to
do each iteration. The program is provided in appendix B.2 and the running time
results of this analysis is shown in figure 6.2. In these results it is clear that the
GPU implementations perform significantly worse than the CPU implementation
when analysing this program.

Finally, a benchmark was performed on three different sample programs. The
results can be seen in figure 6.3. All the sample programs are small programs with
the largest having 452 CFG nodes. The results show that the CPU implementation
is faster on all samples. At its best there is a 139% difference between the CPU and
cuda work-list analysis.

Since there is major overhead in performing analysis on GPU it becomes dif-
ficult to tell how well the actual least fix point algorithm on GPU performs. Per-
forming benchmarks only on the least fix point algorithm captures the difference
in performance between GPU and CPU which can be seen in figure 6.4. It shows
that bit-cuda’s least fix point algorithm performs significantly better compared to
cuda work-list and the CPU work-list algorithms on larger programs.

Based on these benchmarks, the results indicate that a GPU analysis imple-
mentation can be a viable option for a static program analysis in certain use-cases
and program sizes. A static program analysis using a GPU can perform signifi-
cantly worse than its CPU counterpart in certain situations and even in typical use
case it is not matching the CPU implementation’s performance. But the results
shows that there are some specialized situations where a GPU implemented static
program analysis can outperform a traditional CPU implementation.

6.1. Benchmarks 59

0.3

3

30

300

3000

30000

51 510 5,100 51,000

Ti
m

e
[m

s]

Number of CFG nodes

CPU Bit-cuda Bit-cuda (worklist)

Figure 6.2: Benchmark results from analysing code from appendix B.2 with an increasing number of
function calls.

0 ms

1 ms

2 ms

3 ms

4 ms

5 ms

6 ms

Medium size Array sample Taint into parameter

CPU bit-cuda Cuda worklist

Figure 6.3: Benchmark results from analysing three different sample programs. The sample pro-
grams can be seen in B.3, B.4 and B.5 respectively

60 Chapter 6. Evaluation

100

1000

10000

100000

1000000

27 270 2700 27000 270000 2700000

CPU Bit-cuda Bit-cuda (worklist)

Figure 6.4: Benchmark of the least fix point algorithms. Performed on the sample program seen in
appendix B.1

6.2 Validating Analysis Results

During the development of the different analysis implementations, it was necessary
to attempt to ensure correctness of the analysis results, as the implementations
were changed and optimized. To do this, all the analysis results from the different
implementations were compared to each other. The check was performed simply
by iterating through all the bit-vectors from each implementation and checking
if they are identical. In case some of the bit-vectors differed from each other it
was clear that some part of the analysis was giving the wrong results. This check
was performed only on sample programs included in the benchmarks, so there
is no guarantee that the implementations were checked with all constructs and
their combinations. To complement this semi-automatic testing, it was necessary
to manually verify at least one of the analysis implementations. This was done
on smaller sample programs as larger programs would be infeasible to manually
verify. If one of the analysis implementations gives the correct result, the semi-
automatic verification can then be used to verify that the same results hold for the
other implementations.

Using this type of verification, it could have been possible to keep a continuous
chain of correct analysis results to check against with each change in any of the
analysis implementations. But to be able to do this it would have been necessary
to systematically test the analysis against a fixed set of sample programs each time
a change was introduced to the implementations. This method of verification was
only discussed at the very end of the development process and was thus not used.
If the development is continued on the analysis implementations, this verification
method would provide extra safety to confirm that the analysis results are correct.

6.3. CFG successor limitation 61

6.3 CFG successor limitation

In the current implementation a simplification was used to minimize the amount
of data structures that had to be maintained. This simplification works on the
assumption that CFG nodes in the analysis will not have more than five successors.
Due to this simplification some programs can not be represented by the CFG data
structure specifically when a program results in at least one node with more than
five successors. This only happens in the case of nested if statements or while
loops. The simplification was used because C++ only allows one unbounded array
to be in a struct. Thus the current implementation required some limitation to
get the current node structure as seen in listing 5.1. If not for this limitation the
successor and predecessor data has to be extracted into their own data structures
similarly to the transfer data.

As mentioned earlier the assumption that five successors is enough is a faulty
assumption in general use cases. However, for a controlled testing environment
like the custom written sample programs used in this work, the assumption can
hold, as they can be designed to avoid having a lot of nested statements. This
simplification probably did alter results slightly as handling the more successors
would likely add a slight overhead to the existing algorithms. But this simplifica-
tion was deemed acceptable because it affects both the CPU and the GPU imple-
mentations as both would be affected by the added complexity of scaling successor
counts. Interestingly there is a potential for such a change actually performing
about the same or even better as overall memory usage and thus copying overhead
can potentially be reduced, because most nodes only have one successor. However,
the outcome of such a change cannot be shown without proper testing.

Because the performance changes if any from the simplification affects both
implementations and this work focuses on the performance not correctness it is
evaluated that the simplification does not negatively affect the findings of this
work.

6.4 Space usage

As the input program grows in size so does the space requirements of the analysis.
If the space requirements the exceed the local available memory on the GPU it
has to page memory onto the host’s main memory, which would cause too many
slowdowns in a time critical operation. Therefore there is an effective memory
limit on the analysis tool. The GPU used throughout this work is limited to 8GB
of memory.

The algorithm makes use of three data structures, an array of nodes, an array
of transfer objects and an array of bit-vectors. The node data structure (see listing
5.1) takes up 52 bytes of memory, and the transfer data structure takes up 16 bytes

62 Chapter 6. Evaluation

of memory. The amount of nodes is directly dependent on the size of the input
program denoted N. Making the space usage of the nodes array N ∗ 52 bytes. The
transfer data structure is a bit more complicated, as the size of the array depends
on the code. A lot of nodes are considered no-op nodes which do not have an
associated transfer struct. But some nodes like function calls can have multiple
transfer structs. To get around this, the node to transfers ratio T is calculated,
but T is different for each sample program. With all the sample programs the
range 4%-63% was calculated. There is some bias in this data as these sample
programs were first and foremost written to test the algorithms for correctness. As
an example the 63% sample program specifically tests function calls with many
transfer objects making it unnaturally high. Therefore a generalization is made
and the calculations will be made in ranges from best to worst case such that
T ∈ [4%; 63%].

This concludes in a formula 52 × N + 16 × N × T to calculate the space usage.
Solving this for N against the memory capacity of a GPU results in how big a input
program can be on that GPU. For the 8GB GPU used in this work input programs
can have 1.6 × 108 to 1.3 × 108 nodes depending on T.

6.4.1 Stress Test

A stress test was performed to check if it is possible to reach the previously dis-
cussed memory limit. This test also helps to check if the GPU implementations will
break or give wrong results when given very large programs. Stress testing the bit-
cuda analysis on the program in appendix B.1 shows that the maximum number
of nodes that the analyzer can handle is around 4.6 × 107. Which is an order of
magnitude lower than the expected. Indicating that the GPU memory is not the
max node count bottleneck. But this restriction comes from the CFG creation when
allocating space for the CFG nodes, which means that the same limitation also ap-
plies to the CPU analysis implementation. Before reaching this limit the bit-cuda
analysis worked as expected and gave the same results as the CPU analysis.

Chapter 7

Discussion

This chapter serves as a discussion on whether things were done fairly and cor-
rectly, and what is needed to improve them. First, the fairness of using the CPU
implementation as a comparison is discussed. Then the GPU start-time, discovered
during the design of the bit-cuda implementation is discussed and analyzed. Fi-
nally, there is a discussion on the generalisation of the analysis about what benefits
it provides and why it was not utilized.

7.1 CPU implementation as comparison baseline

To evaluate the performance of the GPU implementations a baseline was needed.
The quality of this evaluation is dependent on the baseline. A good baseline imple-
mentation should have comparable performance to readily available alternatives.
Because a custom language is being used, there exists no alternatives. Even com-
paring to analyses targeting other languages can be problematic as the language
constructs could affect the analysis. Some features which exist in C, which SC is
based on, like pointers could affect performance significantly depending on how
the pointers are modelled. This makes a direct comparison difficult if not impos-
sible. The baseline is implemented according to a work-list approach in [10]. But
none of the mentioned optimizations were applied such as taking advantage of
CFG node clustering or using a priority queue with SC’s constructions to reduce
work. The only optimization applied to the work-list was setting the initial work to
be the set of nodes that contain taint sources, reducing the amount of unnecessary
work. But not implementing these does not imply an unfair baseline implementa-
tion as these optimizations may also be applicable to a GPU work-list algorithm.

The CPU baseline is likely not performant enough to compete with industry
standard taint analyzers. However, it shares a lot with the GPU implementations.
They use the same data structures and in the case of the GPU work-list even the
same algorithmic structure. This makes it easier to compare the CPU against GPU

63

64 Chapter 7. Discussion

implementations as any optimization made to one usually has optimized the other.
Because these implementations are so similar a significant performance deviation
from the baseline would likely indicate that the difference is from using the GPU
over CPU.

7.2 GPU Start-up

The first call to the Cuda library will trigger the creation of the Cuda context, this
operation takes about 100ms [12, Ch. 3.2.1]. This overhead is constant and as
such does not scale up with program size. Which means the overhead will have
a limited effect on large programs. However it certainly limits the usage of Cuda
algorithms on small to medium programs where the overhead is many times larger
than a similar CPU algorithm’s runtime.

The overhead is absent in direct comparisons during benchmarks. This is done
to put more focus on the performance of the algorithms. Especially when com-
paring scalability of the algorithms, the overhead would overshadow the runtime
changes as the program scales up. This overhead can in many real world applica-
tions be hidden, as the overhead can handled in parallel with other CPU tasks. For
static program code analysis an obvious direction is to handle the Cuda startup
during earlier parts of the compilation process like parsing. For the parsing time
to match the time of the startup, the program should contain at least 720,000 CFG
nodes. This means that the benchmark times are not accurate when the size of the
programs is less than the 720,000 CFG nodes, since additional overhead could be
present from the CUDA start-up time.

7.3 Generalisation

In section 3.4, an approach to generalise the analysis was introduced. This gener-
alisation provides the ability to easily implement other over-approximated, inter-
procedural data flow analyzers. The only other analyzer that was designed and
implemented was a multi-colored taint analysis. But during optimizations to the
CPU and bit-cuda taint analysis, the structure of the implementations changed and
due to time restrictions the multi-colored taint analysis was never re-implemented
in the restructured project. Given more time, different analyzers could have been
tested, some of which might have been better suited for massive parallelization
and thus provided the GPU implementation with an advantage over the CPU im-
plementation.

7.4. Semantic differences in implementation and Design 65

7.4 Semantic differences in implementation and Design

After formalising the implementation strategy in section 3.1 a problem became
apparent. The abstract semantics in section 2.1.3 are not the same that are im-
plemented. This can be proved by contradiction with the help of the formalised
reduction.

Lets assume the abstract semantics of the implementation and design are the
same. Given some assign return node v with syn(v) = ”x = τ−return”. The
reduction says there are two sets the join mask and transfer sets. For assign return
these are defined as Jv = {x, τ−return} and Tv = {(x, {τ−return})} resulting in
the full and simplified semantic rule:

[[v]] = in[x 7→ in(τ−return), τ−return 7→ ⊥]

where in = Join(v)

For comparison the same rule from the abstract semantics defined in section
2.1.3.

x = τ−return : [[v]] = [[v′]][x 7→ [[w]](τ−return)] where

v′, w ∈ pred(v)

syn(v′) = f (e1, ...en)

syn(w) = Exit

Here some differences are immediately spotted. Primarily the abstract semantics
takes data directly from each predecessor where relevant and the reduction takes
data from both predecessors both times. This change in behaviour constitutes a
contradiction. Thus the reduction fails to implement the abstract semantics com-
pletely. This issue was undiscovered until the reduction was formalised. However
it is worth pointing out that the implementation actually simulates the same be-
haviour as the abstract semantics by maintaining some invariants. These ensure
that [[v′]] and [[w]] contain data in such a way that it does not matter if they are
joined before each usage.

Thus the reduction fails to express the same abstract semantics but manage to
take advantage of some invariants of the abstract semantics to simulate the exact
same behaviour.

7.5 Minimizing bit-cuda synchronization on the CPU

Both GPU algorithms require a synchronization on the host to terminate the anal-
yses. This synchronization will in some cases cause a lot of overhead. The syn-
chronization for the bit-cuda analysis, can be seen in listing 5.7. Here, the kernel is

66 Chapter 7. Discussion

launched in a while loop. After each iteration there is a check to see if any changes
to the state occurred. This synchronization is necessary to detect if a least fixed
point has been reached and then to be able to stop the algorithm.

An optimization that was tested was doing multiple iterations between each
synchronization. The intuition is that if an analysis requires thousands of iterations
to complete and the expensive part is checking for a least fix point then reducing
checks could save some time. This optimization is at the simplest implemented on
the bit-cuda so testing has been done with that implementation. The optimization
was tested with the best and worst case sample programs, to see its effects on each
one. On smaller programs and specifically the worst case sample program saw a
large improvement in performance by a factor of ten. But the best case saw next
to no improvement in the small cases, but as the programs scaled up both imple-
mentations started seeing performance drawbacks. It turned out the additional
iterations increased the amount of redundant calculations significantly. Overall
this optimizations can only be worth it in small programs where the amount of
nodes is too small to reach full utilization of the GPU. So there is a potential for
a dynamic optimizations that can be applied at run-time when a small program is
inputted. Which could combat some of the algorithms worse use cases. But this
optimizations will not be implemented as finding the right activation’s parameters
would be time consuming for a relatively small improvement.

Chapter 8

Conclusion

A new approach for reducing the abstract semantics of a static taint analysis was
proposed. Similarly to the previous work this reduction contains GPU optimiza-
tions like removing divergence but unlike the previous work it uses bit-vectors
instead of matrices. This reduction was put in use over two GPU implementations
and also used to optimize the CPU baseline implementation. Both the bit-cuda
and cuda work-list algorithms were implemented using the CUDA toolkit, and
can be run on any NVIDIA graphics card. These algorithms only differ in how
they delegate work, the bit-cuda algorithm assigns one thread for each CFG node
every iteration ignoring redundant work. Where as the cuda work-list only does
the required work but at the cost of maintaining a work-list. These two implemen-
tations were benchmarked against the CPU baseline implementation. The results
show that the GPU analysis calculates the least fixed point algorithm significantly
faster. However, an overhead occurs on the GPU analysis indirectly as the CUDA
toolkit initialises. The initialization time proved to be a challenge as it took a con-
stant time on the analysis which made it even more difficult for smaller analyses to
compete with the run-time of the CPU analysis. Although attempts where made
to hide the start-up time by running it in parallel with the parsing, it requires
large programs to reach this goal. Another common source of overhead is allo-
cating memory and copying data to and from the GPU. Despite all the overhead
the bit-cuda algorithm manages to beat the CPU baseline on large non-worst case
programs. The cuda work-list algorithm failed to outperform the overhead from
the work-list with the current configuration. The speed up granted from using the
bit-cuda algorithm alone is not worth applying GPU-acceleration to taint analysis
for. However, because the GPU can run parallel to the CPU potential exists for
parts of the compiler to be run on the GPU in parallel with the CPU. Additionally
a generalization approach and implementation was proposed that allows a new
analysis to be implemented with minimal effort and change. The generalization
successfully hides the complicated CUDA constructs from the programmer.

67

68 Chapter 8. Conclusion

To the best of our knowledge the taint analysis is implemented correctly. But
the development lacked a proper thorough validation process. The only validation
checked that the implementations give the same results but do not check these
results for correctness.

Bibliography

[1] cppreference. std::map - cppreference.com. https://en.cppreference.com/w/
cpp/container/map.

[2] cppreference. std::unordered_map - cppreference.com. https://en.cppreference.
com/w/cpp/container/unordered_map.

[3] Pawan Harish and P. J. Narayanan. “Accelerating Large Graph Algorithms
on the GPU Using CUDA”. In: High Performance Computing – HiPC 2007. Ed.
by Srinivas Aluru et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 197–208. isbn: 978-3-540-77220-0.

[4] Mark Harris. How to Optimize Data Transfers in CUDA C/C++. https : / /
developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/.

[5] Mark Harris. Using Shared Memory in CUDA C/C++. https://developer.
nvidia.com/blog/using-shared-memory-cuda-cc/.

[6] Intel. Intel Core i9-9900K. https://ark.intel.com/content/www/us/en/ark/
products/186605/intel-core-i99900k-processor-16m-cache-up-to-5-
00-ghz.html.

[7] JetBrains. cuBool. https://github.com/JetBrains-Research/cuBool.

[8] Vineeth Mekkat, Anup Holey, and Antonia Zhai. “Accelerating Data Race
Detection Utilizing On-Chip Data-Parallel Cores”. In: Runtime Verification.
Ed. by Axel Legay and Saddek Bensalem. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 201–218. isbn: 978-3-642-40787-1.

[9] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. “A GPU Imple-
mentation of Inclusion-Based Points-to Analysis”. In: Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
PPoPP ’12. New Orleans, Louisiana, USA: Association for Computing Ma-
chinery, 2012, 107–116. isbn: 9781450311601. doi: 10.1145/2145816.2145831.
url: https://doi.org/10.1145/2145816.2145831.

[10] Anders Møller and Michael I. Schwartzbach. Static Program Analysis. 2021.
url: https://cs.au.dk/~amoeller/spa/.

[11] NVidia. CuBLAS. https://docs.nvidia.com/cuda/cublas/index.html.

69

https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/unordered_map
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://ark.intel.com/content/www/us/en/ark/products/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz.html
https://github.com/JetBrains-Research/cuBool
https://doi.org/10.1145/2145816.2145831
https://doi.org/10.1145/2145816.2145831
https://cs.au.dk/~amoeller/spa/
https://docs.nvidia.com/cuda/cublas/index.html

70 Bibliography

[12] Nvidia. CUDA Toolkit documentation. https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html.

[13] NVidia. NVIDIA AMPERE GA102 GPU ARCHITECTURE. Tech. rep., pp. 44–
45. url: https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/
ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.
pdf.

[14] Tarun Prabhu et al. “EigenCFA: Accelerating Flow Analysis with GPUs”. In:
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. POPL ’11. Austin, Texas, USA: Association for
Computing Machinery, 2011, 511–522. isbn: 9781450304900. doi: 10.1145/
1926385.1926445. url: https://doi.org/10.1145/1926385.1926445.

[15] Jaegeun Han & Bharatkumar Sharma. Learn CUDA Programming. Packt, 2019.
isbn: 78-1-78899-624-2.

[16] Jonas Svenningsen, Nicklas Hugöy, and Thorulf Neustrup. GPU-accelerated
Taint Analysis. 2021.

[17] Wikichip. Floating-Point Operations Per Second (FLOPS). https://en.wikichip.
org/wiki/flops.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://doi.org/10.1145/1926385.1926445
https://doi.org/10.1145/1926385.1926445
https://doi.org/10.1145/1926385.1926445
https://en.wikichip.org/wiki/flops
https://en.wikichip.org/wiki/flops

Appendix A

SC Semantics

envV ∈ EnvV = Vars ⇀ Z

envP ∈ EnvP = f unctionName ⇀ (⟨stmt⟩ × (N ⇀ Vars)× envP)

envA ∈ EnvA = Vars ⇀ N × (Z ⇀ Z)

Z ∈ Literal → Z

→p⊆ ⟨prog⟩ × EnvP × Z⊥

→ f⊆ ⟨ f uncDe f ⟩ × EnvP × EnvP

→s⊆ ⟨stmt⟩ × EnvP × EnvV × EnvA × EnvV × EnvA × Z⊥

→e⊆ ⟨expr⟩ × EnvP × EnvV × EnvA × Z

(program)

⟨F1, envP⟩ → f env1
P

...
⟨Fn, envn−1

P ⟩ → f envn
P

envn
P ⊢ ⟨S, []⟩ →s ⟨envV , ret⟩

⟨F1 ... Fn S, envP⟩ →p ret

(f unction de f)
envP[f unc 7→ (S, [1 7→ p1...n 7→ pn], envP)] = env′P

⟨int f unc(p1...pn){S}, envP⟩ → f env′P

(statementsret)

envP ⊢ ⟨S1, envA, envV⟩ →s ⟨env′′A, env′′V , ret⟩
envP ⊢ ⟨S2, env′′A, env′′V⟩ →s ⟨env′A, env′V , ret′⟩

envP ⊢ ⟨S1; S2, envA, envV⟩ →s ⟨env′A, env′V , ret′⟩
i f ret = ⊥

71

72 Appendix A. SC Semantics

(statementsearlyRet)
envP ⊢ ⟨S1, envA, envV⟩ →s ⟨env′A, env′V , ret⟩

envP ⊢ ⟨S1; S2, envA, envV⟩ →s ⟨env′A, env′V , ret⟩
i f ret ̸= ⊥

(return)
envP, envA, envV ⊢ e →e ret

envP ⊢ ⟨return e, envA, envV⟩ →s ⟨envV , ret⟩

(while true)

envP, envA, envV ⊢ e →e v
envP ⊢ ⟨S, envA, envV⟩ →s ⟨env′′A, env′′V , ret⟩

envP ⊢ ⟨while(e){S}, env′′A, env′′V⟩ →s ⟨env′A, env′V , ret′⟩
envP ⊢ ⟨while(e){S}, envA, envV⟩ →s ⟨env′A, env′V , ret′⟩

i f v ̸= 0 ∧ ret = ⊥

(while ret)

envP, envA, envV ⊢ e →e v
envP ⊢ ⟨S, envA, envV⟩ →s ⟨env′A, env′V , ret⟩

envP ⊢ ⟨while(e){S}, envA, envV⟩ →s ⟨env′A, env′V , ret⟩
i f v ̸= 0 ∧ ret ̸= ⊥

(while f alse)
envP, envA, envV ⊢ e →e v

envP ⊢ ⟨while(e){S}, envA, envV⟩ →s ⟨envA, envV ,⊥⟩
i f v = 0

(arrayInit)

envP, envA, envV ⊢ e1 →e v1
....

envP, envA, envV ⊢ en →e vn

envP, envV ⊢ ⟨int a[l] = {e1, ..., en}, envA⟩ →s

⟨envA[a 7→ (n, [0 7→ v1, ..., i − 1 7→ vn])], envV ,⊥⟩

where Z(l) = n

(arrayAssign)

envP, envA, envV ⊢ e1 →e i
envP, envA, envV ⊢ e2 →e v

envP, envV ⊢ ⟨a[e1] = e2, envA⟩ →s

⟨envA[a 7→ (n, vals[i 7→ v])], envV ,⊥⟩

where
envA(a) = (n, vals)

0 ≤ i < n

(arrayExpr)
envP, envA, envV ⊢ e →e i

envP, envA, envV ⊢ a[e] →e vals(i)
where

envA(a) = (n, vals)
0 ≤ i < n

(i f true)

envP, envA, envV ⊢ e →e v
envP ⊢ ⟨S1, envA, envV⟩ →s ⟨env′A, env′V , ret⟩

envP ⊢ ⟨i f (e){S1}else{S2}, envA, envV⟩ →s ⟨env′A, env′V , ret⟩
i f v ̸= 0

(i f f alse)

envP, envAenvV ⊢ e →e v
envP ⊢ ⟨S2, envA, envV⟩ →s ⟨env′A, env′V , ret⟩

envP ⊢ ⟨i f (e){S1}else{S2}, envA, envV⟩ →s ⟨env′A, env′V , ret⟩
i f v = 0

(assign)
envP, envA, envV ⊢ e →e v

envP ⊢ ⟨a = e, envA, envV⟩ →s ⟨envA, envV [a 7→ v],⊥⟩

73

(f uncCall)

envP, envA, envV ⊢ e1 →e v1
...

envP, envA, envV ⊢ en →e vn
env′P ⊢ ⟨S, env′A[], env′V [p(1) 7→ v1

...
p(n) 7→ vn]⟩ →s ⟨envA, env′′V , ret⟩

envP, envA, envV ⊢ ⟨ f unc(e1...en)⟩ →e ret
envP(f unc) = (S, p, env′P)

(exp)
envP, envA, envV ⊢ exp1 →e v1 envP, envA, envV ⊢ exp2 →e v2

envP, envA, envV ⊢ ⟨exp1 ⊕ exp2⟩ →e v
where v1 ⊕ v2 = v

(expliteral) envP, envA, envV ⊢ l →e v i f Z(l) = v

(expvar) envP, envA, envV ⊢ var →e v i f envV(var) = v

Appendix B

Code Samples

1 int g(n){
2 out = 0;
3 if(n){
4 out = τ;
5 }else{
6 out = n;
7 }
8 return n;
9 }

10
11 int f(){
12 n = τ;
13 j = g(n);
14 x = g(j);
15 return n+j+x;
16 }
17
18 void main(j){
19 a = f();
20

...
21 a = f();
22 }

Listing B.1: SC program containing many taint sources which propagates a short duration

X times

75

76 Appendix B. Code Samples

1 int g(int n){
2 int out = 0;
3 if(n){
4 out = 5;
5 }else{
6 out = n;
7 }
8 return n;
9 }

10
11 int f(int a){
12 int n = a;
13 int j = g(n);
14 int x = g(j);
15
16 return x;
17 }
18
19 void main(int j){
20 int a = f($);
21 int a = f(a);
22

...
23 int a = f(a);
24 }

Listing B.2: SC program with a single taint source the is passed through function calls. This sample is
designed to perform bad when parallelized.

X times

77

1 int read(){
2 return $;
3 }
4
5 int detour(int baba){
6 int is = read();
7 int you = 0;
8
9 if(baba + is + you){

10 baba = 5;
11 }else{
12 you = baba + is;
13 }
14
15 while(baba){
16 baba = baba + baba;
17 }
18 return baba;
19 }
20
21 int takingmanyparams(int a, int b, int c, int d, int e){
22 int value = 0;
23 if(a){
24 if(b){
25 if(c){
26 if(d){
27 value = 4+d;
28 }else{
29 value = 3+c;
30 }
31 }else{
32 value = 2+b;
33 }
34 }else{
35 value = 1+a;
36 }
37 }else{
38 value = 0;
39 }
40 int value = detour(a+b+c);
41 int value1 = detour(d+e);
42 int something = 0;
43 int comb = 0;
44 if(value){
45 something = something + value;
46 something = e;
47 something = d;
48 something = c;
49 something = b;
50 something = a;
51 }else{

78 Appendix B. Code Samples

52 comb = a+b;
53 comb = b+c;
54 comb = c+d;
55 comb = d+e;
56 }
57 int iffer = 0;
58
59 if(a+b+c+d+e){
60 if(c+d){
61 iffer = c+d;
62 }else{
63 iffer = a+b+e;
64 }
65 }else{
66 if(b+e){
67 iffer = b+e;
68 }else{
69 iffer = a+c+d;
70 }
71 }
72 int er = a+b+c+d+e;
73 return er;
74 }
75
76 int paramtester (){
77 int t = read();
78 int value1 = takingmanyparams(t, 2, 3, 4, 5);
79 int value2 = takingmanyparams (1, t, 3, 4, 5);
80 int value3 = takingmanyparams (1, 2, t, 4, 5);
81 int value4 = takingmanyparams (1, 2, 3, t, 5);
82 int value5 = takingmanyparams (1, 2, 3, 4, t);
83 int value0 = takingmanyparams (1, 2, 3, 4, 5);
84 return value0;
85 }
86
87 int main(){
88 int value = paramtester ();
89 while(value){
90 value = value -1;
91 }
92 if(value){
93 int wat = read();
94 }else{
95 int wat = value;
96 }
97
98 int rut = detour(wat);
99 return wat;

100 }

Listing B.3: A larger SC sample program

79

1 int read(){
2 return $;
3 }
4
5 int comp(int i){
6 int returnvalue = 0;
7 if (i){
8 returnvalue = 1;
9 }else{

10 returnvalue = i * (i-1);
11 }
12 return returnvalue;
13 }
14
15 int accumelate(int j, int in){
16 int returnvalue = 1;
17 if(in){
18 int value = read();
19 }else{
20 int value = 1;
21 }
22 while(j){
23 int callretvalue = comp(value);
24 int callindexretvalue = comp(j);
25 int combined = callretvalue + callretvalue;
26 returnvalue = returnvalue * callretvalue;
27 j = j - 2;
28 }
29 return returnvalue;
30 }
31
32 int main(){
33 int index = 4;
34 int data [5] = {3,5,7,9,11};
35 int output [5] = {0,0,0,0,0};
36 while (index){
37 int callretvalue = accumelate(data[index], 0);
38 output[index] = callretvalue;
39 index = index - 1;
40 }
41 return output;
42 }

Listing B.4: Sample SC program with arrays

80 Appendix B. Code Samples

1 int broke(int d){
2 int b = d;
3 return b;
4 }
5
6 int main(){
7 int a = 0;
8 int c = $ + a;
9 int ret = broke(c);

10 return ret;
11 }

Listing B.5: Small SC sample program with where a function parameter is tainted

	Front page
	English title page
	1 Introduction
	2 Preliminary
	2.1 Previous Work
	2.1.1 Improvements for the Analysis
	2.1.2 Programming language: SC
	2.1.3 Extension of SC

	2.2 Lattices
	2.3 Control Flow Graph
	2.3.1 CFG Construction

	2.4 CUDA
	2.4.1 CUDA Memory Management

	2.5 Related Work
	2.6 Research Direction

	3 Design
	3.1 Abstract semantics reduction
	3.2 CUDA Analysis Design
	3.3 CUDA work-list
	3.4 CUDA generalisation
	3.4.1 Design goals
	3.4.2 Multi-colored taint

	4 Optimizations
	4.1 CUDA overhead
	4.2 Associative Containers
	4.3 Parser Optimization
	4.4 Splitting Data From Node Struct

	5 Implementation
	5.1 Overview
	5.2 CFG Nodes
	5.2.1 Function inline

	5.3 Bit-Cuda Implementation
	5.4 CUDA Work-list Algorithm
	5.4.1 Join Function
	5.4.2 Transfer Function

	6 Evaluation
	6.1 Benchmarks
	6.2 Validating Analysis Results
	6.3 CFG successor limitation
	6.4 Space usage
	6.4.1 Stress Test

	7 Discussion
	7.1 CPU implementation as comparison baseline
	7.2 GPU Start-up
	7.3 Generalisation
	7.4 Semantic differences in implementation and Design
	7.5 Minimizing bit-cuda synchronization on the CPU

	8 Conclusion
	A SC Semantics
	B Code Samples

