
RUST’S BORROW

SYSTEM IN STATIC

ANALYSIS
Exploring Usages and Benefits of Rust’s

Borrow System Through Static Taint
Analysis

Felix Cho Petersen
Mathias Knøsgaard Kristensen

Simon Vinberg Andersen

June 16, 2022

Rust’s Borrow System in
Static Analysis
Exploring Usages and Benefits of
Rust’s Borrow System Through
Static Taint Analysis

Group Name:

CS-22-DS-10-06

Supervisor:

Danny Bøgsted Poulsen
René Rydhof Hansen

Group Members:

Felix Cho Petersen
Mathias Knøsgaard Kristensen
Simon Vinberg Andersen

Project Page Count:

60

Total Page Count:

75

This report explores potential benefits that Rust’s
borrowing system might confer to static analyses.
Furthermore, this report showcases some of these
benefits via application in a static taint analysis.
We did this by first establishing an overview of the
borrowing system, the stages of the Rust compiler,
and exploring the novel non-lexical lifetimes con-
cept which is the current basis for the borrowing
system.
We then established a definition for what ’borrow-
ing’ means in a Rust context, and what precisely this
entails. Next, we defined predicates in natural lan-
guage, to limit the broader borrowing definition pre-
sented before. After this, a syntax and instrumented
semantics for Rust’s MIR compilation layer is pre-
sented. This is followed by definitions for some of
the predicates, written in more precise boolean alge-
bra.
A static taint analysis is presented to ascertain
whether the instrumentation and boolean algebra
holds. Furthermore, we presented the basis for an
analysis based in non-lexical lifetimes. The analysis
is never implemented, but we present the theoretical
basis for possibly reducing the state space needed to
search through for a given program.
The report concludes with an evaluation of the the-
ory presented. We conclude that analyses may ben-
efit from the borrowing system, by leveraging it to
possibly reduce the total amount of program that re-
quires analysis. However, nothing conclusive can be
drawn from the results due to the lack of proper im-
plementation. We deem the project a partial success,
both deserving of and requiring additional work.

The contents of this report are publicly available, but publication (with bibliography) has to be in agreement

with the authors.

I

Preface

This report is written by the university group ’CS-22-DS-10-06’ during the Spring
semester of 2022 at Aalborg University. This project is a master’s thesis in the field of
distributed software which explores the potential benefits that Rust’s borrowing system
provides for static analysis.

We would like to give special thanks to Emil Njor and Hilmar Gústaffson for their mini-
seminar on their work ”Static Analysis in Rust”[1], which was used in our master’s
thesis, in addition to being available for questioning during the creation of this project.

The intellectual property rights to all original material brought forth in this report be-
longs to the authors.

Aalborg University, June 16, 2022.

Felix Cho Petersen
fcpe17@student.aau.dk

Mathias Knøsgaard Kristensen
matkri15@student.aau.dk

Simon Vinberg Andersen
svan17@student.aau.dk

II

Contents

1 Introduction 1

2 Rust Overview 4

2.1 The Rust Borrow System . 4

2.1.1 Ownership . 4

2.2 Rust Compiler . 6

2.2.1 High-level Intermediate Representation 6

2.2.2 Mid-level Intermediate Representation 7

2.3 Non-Lexical Lifetimes . 9

3 Static Analysis 12

3.1 Soundness . 12

3.2 Program Approximation . 13

3.3 Partially-Ordered Sets and Lattices 14

3.4 Data-Flow Analysis . 15

3.4.1 Taint Analysis . 15

3.4.2 Fix-Point Algorithms . 16

3.5 Interprocedural Analysis . 18

3.6 Context Sensitivity . 19

III

3.6.1 Call String Analysis . 19

3.6.2 Functional Approach . 20

4 Related Work 22

5 MIR Semantics 23

5.1 Borrow Checking Predicates . 23

5.2 MIR Syntax . 26

5.3 Predicates as Boolean Formulas . 28

5.4 MIR semantics . 29

5.5 Instrumented Semantics . 35

6 Taint Analysis 37

6.1 Static Taint Analysis . 37

6.1.1 Justification for Strong Updates 41

6.1.2 Comparison of Static Taint Analysis and Instrumented Semantics 43

7 Reachability Analysis 47

7.1 Reachability Analysis . 47

7.2 Theory for Reachability Analysis . 52

8 Discussion 55

8.1 Semantics . 55

8.2 Increasing Static Taint Analysis Accuracy 56

8.3 Alternative Reachability Algorithm 57

9 Conclusion 58

9.1 Future Works . 59

IV

9.1.1 Accessing rustc Crates . 59

9.1.2 Further Use of Instrumentation 59

9.1.3 Implementation of Reachability Analysis 60

9.1.4 Expanding Semantics . 60

9.1.5 Creating Semantic Type System for MIR 60

9.1.6 Define Semantic Rules for Borrowing 60

Appendix A Rust Error Codes 63

Appendix B Predicate Examples 66

Appendix C Gústafsson and Njor Semantics 72

C.1 MIR Syntax . 72

C.2 MIR semantics . 74

V

Chapter 1

Introduction

As technology advances, the complexity of software required to run the technology
rises. This leads to a higher potential for errors, which in turn increases developer
workload as fixes become necessary.

Common Weakness Enumeration (CWE) is a community-driven information aggrega-
tion list maintained by Mitre corporation, which gathers information about common
software weaknesses [2]. The CWE defines a weakness as ”flaws, faults, bugs, or
other errors in software or hardware implementation, code, design, or architecture that
if left unaddressed could result in systems, networks, or hardware being vulnerable to
attack.”[3]

Since 2019, CWE has released a top 25 list of weaknesses, ranking them based on
both their prevalence and severity [4, 5, 6]. The weaknesses are given a score meant
to reflect the relationship between these attributes, such that a very common and very
severe weakness will receive a high score. A severe weakness that is very rare, or a
very common weakness that has little impact, will gather a lower score [7].

1

Rank ID Name Score
1 CWE-787 Out-of-bounds Write 65.93
2 CWE-79 Improper Neutralization of Input During Web Page

Generation (’Cross-site Scripting’)
46.84

3 CWE-125 Out-of-bounds Read 24.9
4 CWE-20 Improper Input Validation 20.47
5 CWE-78 Improper Neutralization of Special Elements used in

an OS Command (’OS Command Injection’)
19.55

6 CWE-89 Improper Neutralization of Special Elements used in
an SQL Command (’SQL Injection’)

19.54

7 CWE-416 Use After Free 16.83
8 CWE-22 Improper Limitation of a Pathname to a Restricted

Directory (’Path Traversal’)
14.69

9 CWE-352 Cross-Site Request Forgery (CSRF) 14.46
10 CWE-434 Unrestricted Upload of File with Dangerous Type 8.45

Table 1.1: CWE top 25 list for 2021, truncated to top 10 entries [6]

Table 1.1 show the top 10 entries for the 2021 CWE top 25 list. Of note is the fact
that 3 of the entries are memory related (rank 1, 3, and 7), and 6 are directly related
to user input (rank 2, 4, 5, 6, 8, and 10). We limit the scope of the problem domain
to the problems depicted in the aforementioned CWE list. Based on this list, we argue
that providing better tools to mitigate memory-related and input-related errors could
prove beneficial for mitigating many of the prevalent problems modern programmers
are faced with.

We intend to conduct a study on the Rust programming language. The reasoning for
picking Rust is twofold: First, by basing our solution in Rust, we automatically solve
some of the memory-related issues presented in the CWE via Rust’s unique ownership
system, which we will explain in more detail at a later point. Second, we postulate that
the borrowing system in Rust can help making some types of static program analysis
more accurate. In theory, the Rust borrowing system should allow us to make certain
assumptions when creating analyses. We postulate that we can circumvent aliasing,
making it easier to analyse elements that access the heap.

We intend to employ a type of static analysis to verify whether any benefits gained
from the borrowing system holds. One approach that we deem beneficial for verifying
these theories would be via taint analysis, which aids in tracking and sanitising user
input. Furthermore, we hypothesise that it should be possible to improve upon the taint
analysis by marking taint sources in Rusts mid-level intermediate representation layer
(MIR) control flow graph (CFG) as irrelevant in a manner akin to program slicing. As
such, we intend to explore the following problem:

How does a static taint analysis benefit from the unique borrowing system employed by
Rust?

2

To answer this we intend to:

• Formalise a definition of what ’borrowing’ is, and what it allows.

• Create a set of predicates that define how the type system is allowed to use the
’borrowing’ concept.

• Formalise semantic rules for the Rust’s MIR layer.

• Define a formal set of instrumentation for the semantics.

• Create a taint analysis which employs the instrumentation to ascertain whether
the borrowing system improves accuracy in analyses.

3

Chapter 2

Rust Overview

To formalise semantic rules, predicates, and instrumentation over Rust, it is necessary
to understand how Rust is structured and what its novel features are.

Furthermore, Rust does not provide a formal definition of what ’borrowing’ is, and
instead only alludes to what it is via use-case examples in their documentation. As
such, it is imperative that we also define what we mean by borrowing, covering what it
is, and how it functions in Rust.

2.1 The Rust Borrow System

One of the defining aspects of the Rust programming language is its ownership-based
memory-management system. This ownership system allow Rust to automatically han-
dle memory-management on behalf of users without the need to implement advanced
garbage collection as seen in higher level programming languages like Java or C#.

2.1.1 Ownership

To our knowledge, Rust provides no formal definition of ownership, but instead pro-
vides an explanation of how the system works, what is allowed, and what is not allowed
[8]. We will attempt to give a more concise definition, that is still broad enough to cover
all cases. On an intuitive level the Rust ownership system binds a value in memory to
a single variable. Borrowing in Rust can be done in two ways - mutably or immutably.

A mutable borrow gives ownership of a value to a variable that is not the original holder.
Ownership confers read and write privileges to the owner. In the case of mutable

4

borrows it also gives exclusivity from all other borrows, such that a value can only be
borrowed mutably by a single variable at a time.

1 // foo is assigned to vector containing the elements 1, 2, and 3

2 // Note that foo is stated to be ’mut’, meaning it is mutable

3 let mut foo = vec![1,2,3];

4

5 // bar made to be a mutable reference of foo

6 let bar = &mut foo;

7 bar[0] = 5;

8

9 // This will now print ’5’

10 println!("foo[0] is: {}", foo[0])

Listing 2.1: An example of a mutable reference in use.

Listing 2.1 shows an example of a mutable reference. Line 3 declares a mutable vari-
able foo which holds a vector with the elements 1, 2, and 3. Ownership and read/write
privileges, are passed by reference to a new variable bar on line 6. Lastly we reas-
sign the first element of the vector so that it holds 5 instead of 1, and then finally we
print the first element of the original variable foo showing us that changes to bar were
conferred to foo as intended.

Alternatively, an immutable borrow suspends write privileges from the original owner
while the borrow is in effect. Immutable borrows also do not take ownership from
the original owner, instead only sharing read privileges of the value in question. This
allows us to create any number of immutable references at the same time.

1 // foo is assigned to vector containing the elements 1, 2, and 3

2 let foo = vec![1,2,3];

3

4 // bar made to be a reference of foo

5 let bar = &foo;

6 let foobar = &foo;

7

8 // Through the reference bar, we can print the elements of foo, and

9 // foobar as if they have ownership.

10 println!("foo[0] is: {}", foo[0]);

11 println!("foobar[2] is: {}", foobar[2]);

Listing 2.2: An example of an immutable reference in use.

Listing 2.2 is an example of an immutable reference. This example resembles the one
in Listing 2.1 with the only difference being that foo is declared as immutable, and
subsequently borrowed by bar and foobar as such, this also shows that it only passes
reading privileges. However if a change would be made to either of the borrowed
variables, would result in the compiler throwing an error if bar attempts to mutate
foo.

5

2.2 Rust Compiler

The Rust compiler is structured into several intermediate representation (IR) layers
which help the compiler process and convert Rust source code into LLVM. Each layer
of the Rust compiler contributes to the compilation process, by being the stages for
type-checking, parsing and borrow checking [9].

Figure 2.1: Illustration of the Rust Compiler Structure [9].

Figure 2.1 shows the structure of the Rust compiler, and what each layer adds to the
compilation process.

All stages of the Rust compiler will be explained to some degree, but work conducted
in this report relates almost exclusively to MIR. As such, MIR will receive a more
in-depth explanation than the other stages of the compilation process.

2.2.1 High-level Intermediate Representation

The primary purpose of the high-level intermediate representation (HIR) layer is to type
check the source Rust code. This type checked code is outputted as a data-structure
called a ”crate”, which contains maps and identifiers to organise and access the con-
tents. Furthermore, HIR also removes some of the syntactical sugar by simplifying
expression forms, like for loop statements being changed into the more generic loop
statements.

HIR acts as the compiler-friendly version of the AST and is one of two layers in the

6

compilation process responsible for converting Rust source code into LLVM machine
code.

2.2.2 Mid-level Intermediate Representation

MIR is the layer that serves as a bridge between the HIR and LLVM layers. MIR was
introduced in Rust 1.11 as an improvement to the compilation process, as the transfor-
mation of HIR to LLVM IR was deemed too comprehensive for a single compilation
step[9]. As such, some of the work that needed to be done on the HIR output was placed
into a completely separate compiler step, MIR, to break this previously comprehensive
step into smaller bites in the compiler. By making this separation it is also possible
to perform additional optimisations on the code, by further desugaring the HIR output
into simpler primitives.

Some of the main benefits from adding MIR is, according to the Rust development
team, that it will improve compilation time, improve type-checking, and help reduce
redundancy [9].

MIR is constructed by converting syntactical constructs in HIR into a collection of
simpler, and more explicit, constructs with equivalent behaviour. These constructs are
created from Basic Blocks, which are based on the smaller MIR syntax. Each Basic
Block contains a series of statements and a single terminator. The terminator in each
Basic Block ensures that the these blocks run sequentially, by pointing to the next Basic
Block which must be executed. An example of this structure can be seen in Figure 2.2.

7

Basic block 2

Statement 1

Statement n

Terminator

Basic block 1

Statement 1

Statement n

Terminator Basic block 3

Statement 1

Statement n

Terminator

Figure 2.2: Example of the Basic Block Structure.

After converting the HIR output into Basic Block structures, MIR then uses them to
construct a CFG which is used by subsequent IR level. This reduction of Rust syn-
tax, results in the remaining code becoming more explicit, which is desirable for the
conversion to LLVM [9].

As such, these Basic Blocks serve as the main data structures to perform data-flow
analysis on, as the CFG provides the possible execution paths for the program, while
retaining the information of the borrows. This additional information is crucial for the
borrow checker to work as it is used to calculate non-lexical lifetimes, which are used
to denote lifetimes for references and variables. These non-lexical lifetimes will be
explained further in Section 2.3.

Borrow Checker

A unique feature of Rust is the borrow checker, which is done during the MIR compi-
lation stage. The borrow checker ensures that each of the borrows in the program are
valid. Borrow checking is split into two phases, namely a stage which splits the process
into computing borrows, and one for reporting illegal borrows.

Phase one consists of identifying borrows which is done by looking at the in-scope
borrows, at each point of the CFG using a fixed-point algorithm. These borrows are
represented as a tuple (′a,LType,LValue), where ′a is the lifetime of the borrow, LType

8

is the borrow type, which can be shared, mutable or unique, and LValue is the lvalue
that is borrowed. Each assignment’s right-hand side, found in MIR, is used to create a
borrow tuple, which is given an unique index. Then, for any statement at a Point P in
the CFG, a transfer function can be defined to tell us which borrows it brings in or out
of the scope. According to Rust RFC 2094, such a transfer function is defined as the
following [10]:

• Any borrow whose region does not include P is killed.

• If it is a borrow statement, the corresponding borrow is created.

• If this is an assignment lv = ⟨rvalue⟩, then any borrow for some path P of which
lv is a prefix is killed.

Phase two consists of reporting the illegal borrows identified during phase one. Each
statement is classified as one of two types of actions when traversing the CFG, namely
accessing an lvalue or dropping an lvalue. Furthermore, when accessing an lvalue,
Rust makes an additional distinctions which are measured on two different axes - shal-
low/deep and read/write [10].

• Shallow means that the immediate field which reaches the lvalue is accessed, but
pointers and references are not dereferenced.

• Deep means that all data that is reachable through an lvalue might be invalidated
or accessed using this action.

• Read means that the data is not modifiable and actions may only read the data.

• Write means that the data is modifiable and actions can make changes to the
data.

The borrow checker iterates through each statement in the CFG to verify whether the
action is valid, according to a set of rules that can be found in the NLL RFC [10].

The dropping of an lvalue is treated as a deep write, meaning the same as a move

operation. However, there are still details missing on precisely how this works, due to
much of this still being in active development [10].

2.3 Non-Lexical Lifetimes

An interesting component of the Rust borrow system is its use of non-lexical lifetimes
for verifying borrow validity. However, before going into what non-lexical lifetimes
are, it is important that the reader first understands what lexical scopes are.

9

Lexical scopes, also referred to as static scoping, is a scoping ruleset that describes how
to resolve name aliasing in variables that are not in the same scope. Lexical scoping
allows name aliasing between scope levels, while also allowing variables from parent
scope(s) to be accessed by child scopes. An example of this can be seen in Listing 2.3.

1 fn main() {

2 // Create variables

3 let x = 10;

4 let y = 3;

5 {

6 // This also creates a variable, but only for this scope

7 let x = 5;

8 println!("{}", x); // Prints 5

9 // Grab the y from parent scope

10 println!("{}", y); // Prints 3

11 }

12 // Print x from current scope

13 println!("{}", x); // Prints 10

14 }

Listing 2.3: A brief example of static scopes in Rust.

In Listing 2.3 the innermost print statement found on line 9 prints the value associated
with the y variable. This would be the value that is assigned on line 4 in the outer scope,
resulting in the program printing the value 3. In contrast, the second print statement
found on line 13 would print the value of x declared on line 3. Intuitively one might
assume that it would print the x declared on line 7, as it is the most recent declaration.
However, due to the fact that the lifetime of the second assignment of x only persists
until we exit the scope on line 11, we instead print the initial declaration from line 3.

Contrary to lexical scopes which derive meaning directly from the program code, non-
lexical lifetimes instead derive meaning from a CFG. Specifically, non-lexical lifetimes
in Rust are derived from the MIR used internally by the compiler, and in turn specify
the lifetimes based on execution paths [10].

1 fn process_or_default () {

2 let mut map = ...;

3 let key = ...;

4 match map.get_mut (&key) { // -------------+ map lexical

5 Some(value) => process(value), // | lifetime

6 None => { // |

7 map.insert(key , V:: default ()); // |

8 // ^~~~~~ STATIC ERROR. // |

9 } // |

10 } // <------------------------------------+

11 }

Listing 2.4: Snippet of Rust Code that produces error with static scoping but not with
NLL. Taken from Rust’s NLL RFC [10].

Listing 2.4 shows a code snippet written in Rust. The code attempts to find a value
within a map using a unique key. If it finds a value associated with the key, it processes

10

that value. If no value is found it instead inserts the key into the map with a default
value. It is worth noting, that this code snippet would produce an error if one were
to employ static scoping. This is due to a borrow conflict of map on lines 4 and 7.
When we borrow map through get mut() on line 4 it is used by the match statement
in its entirety, and as such extends the borrow until the end of the scope, despite not
necessarily being used after line 4. This becomes a problem if the None branch tries
to borrow the key on line 6, as map would already be borrowed mutably. If we instead
employ non-lexical scopes, the compiler would realize that the None branch does not
need to uphold the mutable borrow, and could therefore drop it to allow a new borrow.
This is because NLLs try to minimise the set of places in a program wherein a borrow
should be considered ’in use’, such that more programs are accepted as correct.

To ensure that the borrows in the NLL are correct, an analysis is performed to determine
if all borrows are correct. The NLL analysis uses 3 concepts - liveness, subtyping and
reborrow constraints - to build the full set of borrowing constraints for the lifetimes in
a program. These lifetime constraints are initially created independently, and are then
gathered into a final set through a fixed-point iteration.[10]

In relation to non-lexical lifetimes, liveness refers to whether the lifetime of a variable
is alive. A lifetime will be considered ’live’ at a point if, for some Point in the program,
that value will be used in the future. Alternatively, if the value has no uses it will instead
be considered dead until a new value is assigned. Once the liveness analysis is done,
we can derive a set of liveness constraints from the generated lifetimes.

Subtyping is a type of constraint which ensures that the original variable will outlive
other variables that reference it. In MIR, this is extended to be location-aware, meaning
that the Point where the copy happens is considered as well.

Reborrow constraints relate to when values are borrowed more than once, such as a
value being borrowed and the resulting reference then subsequently being (re-)borrowed.
In essence, reborrow constraints ensure that the lifetimes of the original values outlive
any borrow or sequence of reborrows. These constraints are often complex, and so
the Rust compiler employs ’supporting prefixes’ to define said constraints. Supporting
prefixes of a value are found by stripping away fields and dereferences, until a point is
reached where there is nothing left to strip, or a shared reference is found.

Immutable reborrows may be ignored when no longer relevant, as they cannot be fur-
ther used to modify the referred value. Mutable borrows, however, create nested life-
time constraints where intermediate borrows cannot be ignored due to them potentially
being used to reassign values at a later point.

11

Chapter 3

Static Analysis

As this body of work focuses on ascertaining any potential benefits that borrow check-
ing in Rust might lend to static analyses, we must first gain an understanding of what a
static analysis is.

A static analysis is a type of automated analysis, wherein one reasons about a program
without actually executing it. Static analysis is done for many reasons, with examples
being for the purposes of optimisation by compilers, verifying correctness via exami-
nation of properties, or identifying vulnerabilities in the source code.

Static analysis is an analysis approach that has been widely used for many applications
and fields, and as such there are many different ways to approach static analysis.

3.1 Soundness

It is important that we establish a way to reason about the quality of analyses before
delving further into static analyses. One way to do this is to measure the ’soundness’
of the analysis.

For an analyser to be sound, all reported errors from the analyser must be either true
positives, or unknown. Unknown in this context means that the reported error could be
a true or false positive. To achieve this, it is common for analyses to over-approximate
the program behaviour, to make sure that every case is covered. A trivial analyser that
is sound, would be an analyser that reports true for all possible cases, though this is
obviously not very useful.

Soundness, in relation to static analysis, will be defined as such:

12

Definition 3.1.1. A static analyser is sound if the analysis only returns yes or
maybe, where all of the program’s behaviour is captured.

3.2 Program Approximation

It is not possible to create an analysis that is able to precisely model all program be-
haviour, as proven by Rice’s theorem which states the following:

Definition 3.2.1. Any non-trivial property about a language, which is recognised
by a Turing machine is undecidable.

As such, it is necessary to make use of approximations of the program behaviour,
either via an over- or under-approximation. These two approximation approaches help
to identify possible program executions, and serve as a way to either remove false
negatives or false positives, depending on the approach.

Figure 3.1: Illustation of Approximations

Seen in Figure 3.1, is an illustration how both over- and under-approximations aim
to cover program behavior. An over-approximation aims to encompass more than the
actual program behaviour, while an under-approximations aims to narrow in and thus
potentially only covers a fraction of the actual program behaviour.

As the name implies, an approximation is essentially an estimate, meaning that it can
always be improved upon. To date there is no approximation techniques which can be
deemed universally applicable, as both have pros and cons depending on the use-case.

13

While these approximations might not accurately model the right behavior, they still
provide some guarantee for the given properties being analysed.

3.3 Partially-Ordered Sets and Lattices

Lattice theory is a subcategory of order theory, which uses partially-ordered sets such
that each pair in the set has an upper and lower bound.

One approach to static analysis is via use of these lattices as a way to create an abstract
representation of the information being searched for. A simple lattice Taint for taint
analysis could use 2 elements for ’tainted’ and ’untainted’, such that ’untainted’ ⊑
’tainted’.

tainted

untainted

Figure 3.2: An example of a two state lattice.

Figure 3.2 shows one such lattice, only containing two states, ”tainted” and ”un-
tainted”. While this could also be structured as a binary relationship represented by
a binary value in some way, using a lattice ensures that we can expand it in the future
should the analysis ever need it.

We will be using the definitions of partial orders and partially-ordered sets, as seen in
”Static Program Analysis” by Anders Møller and Micheal I. Schwartzbach [11].

Definition 3.3.1. A partial order is a set S equipped with a binary relation ⊑ where
the following properties are satisfied:
Reflectivity: ∀x ∈ S : x⊑ x
Transitivity: ∀x,y,z ∈ S : x⊑ y∧ y⊑ z =⇒ x⊑ z
Anti-Symmetry: ∀x,y ∈ S : x⊑ y∧ y⊑ x =⇒ x = y

Definition 3.3.2. y ∈ S is an upper bound to X, written X ⊑ y, if ∀x ∈ X : x⊑ y
y ∈ S is a lower bound to X, written y⊑ X , if ∀x ∈ X : y⊑ x

A least upper bound is written
⊔

X , and a greatest lower bound is written
d

X .

14

Definition 3.3.3. Least upper bound: X ⊑
⊔

X ∧∀y ∈ S : X ⊑ y =⇒
⊔

X ⊑ y
Greatest lower bound:

d
X ⊑ X ∧∀y ∈ S : y⊑ X =⇒ y⊑

d
X

Lattices can be used as an algebraic structure for partially ordered sets, which consist
of a set S and two binary operations ”Join” and ”Meet”. These are denoted as ∨ for
join which is the least upper bound for a pair of elements x and y, and the notation for
meet ∧ denotes the greatest lower bound for elements x and y.

A lattice where both the top (greatest) element and the bottom (least) element is unique,
is called a bounded lattice. However, it is important to note that not every partially
ordered set contains a least upper bound or greatest lower bound.

Definition 3.3.4. A bounded lattice is a lattice where the unique greatest element is
denoted ⊤ (top), and the unique smallest element is denoted ⊥ (bottom)

A lattice where all subsets have a join and meet is called a complete lattice. This also
means that all non-empty lattices of finite sizes are complete lattices.

Definition 3.3.5. A complete lattice is a partial order (S,⊑) where
d

X and
⊔

X
exist for all X ⊆ S

3.4 Data-Flow Analysis

Data-flow analysis is a lattice-based technique meant for gathering information about a
set of values. Traditionally, data-flow analysis revolves around a CFG and a complete
lattice with finite height. The lattice is used to describe abstract information which is
inferred for the different CFG nodes. Each node is then assigned a data-flow constraint
which relates the value of a variable in the node to those of other nodes. Finally, using
a fixed-point algorithm these nodes can then be used to compute the analysis results,
as a unique least solution if all constraints for a given program happen to be equations
or inequations with monotone right-hand sides [11].

3.4.1 Taint Analysis

Taint analysis is a type of data-flow analysis which aims to detect vulnerabilities in
the source code. This could, for example, be via SQL injection attacks that attempt to
exploit user input fields [12]. Another example could be usage of a bad random number

15

generator in use with generating cryptographically secure keys, as the entropy would
be much lower, potentially making the keys easier to crack.

Taint analysis examines where tainted values propagate to, and whether it is possible
to use them before they are sanitised. Formally, a value must fulfill two conditions to
be considered tainted: the value must fall outside of the expected domain of something
that uses the value, and the value must be derived from external input to the program.
If these are fulfilled, the value is tainted, and its origin is a tainted source [13]. As an
example, a text input could easily be a taint source, as a value outside of the expected
domain could be submitted. A choice between enumerated options cannot be a taint
source, as all potential input would be within a set of expected values. Values that are
tainted are not necessarily known to be outside of the expected domain. It is merely
not known with any certainty whether they are in the expected domain.

1 let mut line = String::new();

2 let user_in = std::io::stdin().read_line(&mut line).unwrap();

3 let sql = format!("SELECT * FROM Users WHERE username = ’{}’", user_in);

4 ...

Listing 3.1: A faulty Rust program vulnerable to SQL injection attacks.

Listing 3.1 shows the basic idea of a program that is vulnerable to an SQL injection
attack. In this snippet, an attacker could give the string ”username’; DROP TABLE

Users --” as input, which, if sql is not changed, could result in the Users table being
dropped, and any following instructions being commented out. Sanitation of the input
may search specifically for SQL injection attacks, and instead of the full input truncate
it to just ”username”, or instead terminate the thread.

3.4.2 Fix-Point Algorithms

Fix-point algorithms and monotone functions are a way to perform data-flow analysis,
which aims to preserve the order of the flow and guarantee termination. To ensure that
the analysis will terminate, all functions in the analysis must be monotone [11].

Definition 3.4.1. A function is monotone, if the order between inputs is preserved,
where the inputs belong to some lattice L. This can be written as: ∀x,y ∈ L : x ⊑
y =⇒ f (x)⊑ f (y)

To begin analysing a program, an equation system is constructed for it. This equation
system denotes a constraint variable, for each variable in the program [11].

16

Definition 3.4.2. In a complete lattice L, an equation over L is of the form

x1 = f1(x1,x2, ...,xn)
x2 = f2(x1,x2, ...,xn)

...
xn = fn(x1,x2, ...,xn)

where x1, ...,xn are variables, and f1, ..., fn : Ln→ L are functions, which are called
constraint functions. A solution to an equation system provides a value from L for
each value, such that all equations are satisfied.

This equation system the n functions can then be further reduced into a single state-
ment: f (x1,x2, ...,xn) = (f1(x1,x2, ...xn), ..., f2(x1,x2, ...,xn))

This can then be further reduced to x = f (x), which is the same as a fixed point for a
function.

Definition 3.4.3. A fixed point for a function f is an input x where x = f (x)

To get the most precise result, the analysis should select the least fixed point.

Definition 3.4.4. A least fixed point x for a function f , is a fixed point where x⊑ y
for every fixed point y for function f

To find the least fixed point in a singular control-flow structure is trivial, but an in-
creasingly complex control-flow with branching and iterative loops will make it more
difficult to find. However, Kleen’s theorem tells us that in a complete lattice with a
finite height, monotone function will always have an unique least fixed point denoted
l f p(f) written as:

Definition 3.4.5. Per Kleen’s theorem, a lattice of finite heigh with a monotone
function will have a least fixed point, denoted lfp. The formula for this is as follows:

l f p(f) =
⊔
i≥0

f i(⊥)

17

3.5 Interprocedural Analysis

Interprocedural analysis is a technique that examines the interactions between proce-
dures. This is in contrast to intraprocedural analysis which is a technique for examining
a single procedure in a vacuum [11].

a1

a2

a3

b1

b2

b3

a1

a2.2

a3

b1

b2

b3

Intraprocedural Analysis Interprocedural Analysis

a2.1

Figure 3.3: Example of intraprocedural and interprocedural analyses.

Figure 3.3 shows a simple example of how both intraprocedural and interprocedural
analysis works. The thick dotted lines denote the scope of what is being analysed. In
the intraprocedural analysis column we see two procedures a and b that are analysed on
their own only accounting for whatever is found in the function body itself. The dotted
arrows from a2 to b1 and from b3 to a2 denote a call in the source program, from
function a to b which returns something. However, for the purposes of intraprocedural
analysis, this is ignored as we look at the individual functions in a vacuum.

The ”Static Program Analysis” book simplifies interprocedural analysis to always hav-
ing the same form for every function call [11]. We extend this for showcasing purposes,
resulting in the assumption that all function calls will be in a uniform format. This func-
tion call is then further split into a unique entry node and exit node. These can all be
seen below:

function call: x = f (...)
entry node: □= f (...)

exit node: x =□

Now, looking at the interprocedural analysis column in Figure 3.3 again, we instead

18

see everything being analysed as one cohesive unit. This takes into account a call made
in the a2 node which jumps to the b function - a call which was originally ignored
by the intraprocedural analysis. In the example, we split a2 into two smaller nodes to
simulate unique entry and exit nodes from the ”Static Program Analysis” book.

3.6 Context Sensitivity

A consideration to make when performing interprocedural analysis is whether to have
context sensitivity. Context sensitivity is the ability for an analysis to distinguish be-
tween call sources to a function, instead of the analysis marking a function once. As
an example, context sensitivity and insensitivity could be expressed via the following
program:

1 fn sink(input: String) {

2 println!("{}", input); // Taint sink

3 }

4

5 fn main() {

6 let taint = String::from("Tainted"); // Tainted variable

7 let safe = String::from("Safe"); // Safe variable

8 sink(taint);

9 sink(safe);

10 }

Listing 3.2: A brief example of context sensitivity.

Listing 3.2 shows a function sink which takes a string and prints it, acting as an ex-
ample taint sink. Using the lattice in Figure 3.2 for the analysis, a context insensitive
analysis, the sink function would be marked as Tainted as this would be the least up-
per bound, between the call with the tainted and safe parameter. This will propagate
back to both callers, and in turn mark both of them as tainted. However, with a context
sensitive analysis, each caller would be analysed individually. The naive method to
do this would be function cloning, where each call to a function would create a new
unique and functionally equivalent function, but with the specific parameters given for
the call. This, however, quickly increases the program size and could result in infinitely
big program sizes if there are infinite mutually recursive functions in the program [11].
There are two main approaches which attempt to circumvent this: call string analysis
and the functional approach.

3.6.1 Call String Analysis

The idea of call string analysis is to gain a similar effect to function cloning, but without
performing any changes to the CFG.

In a call string analysis, the call nodes in the CFG will be structured into a set. It can

19

be viewed as the following: Contexts =Calls≤k, where Calls are the set of call nodes
and k is a positive integer. The notation of A≤k means the set of tuples of k or fewer
elements from the set A, or more formally:

A≤k =
⋃

i=0,...,k

Ai

Contexts will then contain of all the tuples consisting of calls on the call stack. The
length of these tuples have to be bound to make sure that Contexts is finite. Contexts
set also contains the empty call stack denoted by ε as an addition to the program calls.

An example, lets look at Listing 3.2 again, but while employing call sign analysis this
time. For this example, let the two function calls to sink be denoted as c1 and c2,
and the value of k = 1. The Contexts will then contain the two function calls, and
the initialising call ε . We can then find the abstract value of sink by looking at the
function entry at the two calls.

[ε 7→ unreachable,
c1 7→ [taint 7→ tainted, input 7→ tainted],
c2 7→ [sa f e 7→ untainted, input 7→ untainted]]

Here, unreachable is an extra element on the lattice, such that the lattice would be
unreachable ⊑ S ⊑ T . The intuition for the element is simply that some states cannot
be reached through normal program execution. For example, the initial call to main

may have no information of any sort, and as such is unreachable.

By changing the value of k in Calls≤k, bigger and bigger call stacks can be accommo-
dated in the analysis. Intuitively, a tuple (c1, ...,cm) ∈Calls≤k will identify exactly m
calls on the callstack. If m< k, the tuple identifies a callstack up to height m, whereas if
m = k, the tuple identifies a callstack of at least height m, as further calls are truncated
[11].

3.6.2 Functional Approach

The functional approach is a type of analysis which tries to identify calls from the data
derived from abstract states instead of looking at the control-flow from the call stack.

First, a lattice is constructed from the CFG, such that a node v is a map m : States→
li f t(States), where States is a lattice wherein each is a map that describes the program
state for some given point, and the li f t function adds a new unique bottom element to
the given lattice. Now we can express m(s), where s is a state, as an approximation
of the possible states of v, if v was entered from a state that matches s. Consequently,
if there is no execution path for such a state, m(s) = unreachable. If the node v is a
function exit node, the map m becomes a ’summary’ of the function [11].

20

For the example in Listing 3.2, still using the lattice from Figure 3.2, we would get the
following lattice element at the exit node of sink:

[S[input 7→ tainted] 7→ S[input 7→ tainted,result 7→ tainted],
S[input 7→ untainted] 7→ S[input 7→ untainted,result 7→ untainted],
all other contexts 7→ unreachable]

21

Chapter 4

Related Work

Analysis of Rust code is a subject which has been explored much in recent years.
Larger bodies of work include the MIRI[14] and MIRAI[15] which revolve around
analysing the MIR level of the Rust compiler. In particular, we have taken an in-
terest in the ”Static Analysis in Rust” report created by Hilmar Gústafsson and Emil
Jørgensen Njor [1]. This project explores static analysis done on the MIR level via
implementation of a taint analysis.

In the project, Gústafsson and Njor first define and formalise syntax and semantics for
a smaller part of MIR. In particular this covers the most basic assignments, calls, and
switches. They utilise this set of semantics as the basis for an implementation of a
static analysis tool which runs in Rust. Their implementation is built upon a simplified
version of the MIRI interpreter project, which utilises a subset of the functionality that
it provides, and as such follows the same project structure.

As mentioned, the focal point of their work is to create a taint analysis. Rather than
creating a standalone tool to be used beside a compilation toolchain, they instead hook
into the compiler allowing the analysis to run during normal compilation.

We intend to use their work as an inspirational basis for an analysis we create, which
will be used to find taint paths for programs in Rust, in addition to serving as the basis
for studying any benefits of Rusts borrow system on these types of analyses.

22

Chapter 5

MIR Semantics

In an effort to investigate whether the borrowing system of Rust lends anything to
static analysis, we aim to create a taint analysis, as it is a simple type of static analysis.
Gústafsson and Njor employ a similar analysis in ”Static Analysis in Rust”[1], which
we draw inspiration from. However, we aim to create a more precise analysis that
makes a more precise over-approximation.

To do that, we must first specify what borrowing allows and how we can utilise it. The
borrowing definition described in Section 2.1.1 is too broad to be of use, and so we
create a more precise clarification. This is done via a set of predicates that describe
what the borrowing system is not allowed to do. This is done in natural language, and
is based on the original definition from Section 2.1.1 along with relevant error codes
pertaining to borrows and closures found in Rust. Furthermore, while functionally
sound as a whole, the semantics employed by Gústafsson and Njor is formulated in
a very unintuitive fashion. As such, we make an effort to rewrite their semantics via
extensive renaming. In addition, we create an instrumentation for our semantics, which
we use to create a set of boolean algebra formulas for some of the predicates, to more
precisely describe and formalise the predicates and their exact function.

5.1 Borrow Checking Predicates

To properly utilise and analyse the borrow checking system, we must first define what
it is, and what it is not allowed to do. Borrow checking in Rust is handled exclusively
by the type system, however we deem it out of scope for this project to describe this
system via structural operational semantics. Instead, we choose to establish a set of
predicates, described in natural language, which limit the broader definition given in
Section 2.1.1. For a program to be valid, it must adhere to all of the predicates in the

23

set.

These predicates are based on a subset of Rust compiler errors relating to the borrow
checker and liveness properties. The full set of rules are taken from the ’Rust Compiler
Error Index’[16], and can be viewed in Appendix A.

Most of these error codes are not used directly, but have been merged into a smaller
and more concise list of predicates. This is in part due to many of the rules dealing
with similar subjects. However, it is also due to errors that arise from faulty usage of
the type-system, which falls outside the scope of what is being done in this body of
work. The list of predicates and and associated errors which inspired them can be seen
below in Table 5.1.

Error code(s) Predicates
1 E0381 A variable must be initialised before use.
2 E0384 A value can only be mutated if it is marked with mut.
3 E0503 A value can only be mutated by the current owner of the

value.
4 E0499 A value can only be owned by exactly one variable at a time.
5 E0597

E0716
A value must be live for at least as long as it is borrowed.

6 E0596 A variable can only be borrowed mutably if it is mut
7 E0503 A value cannot be accessed while it is mutably borrowed,

except through the mut reference.
8 E0502 A value cannot be mutated while it is immutably borrowed.
9 E0502 A reference of type mut/imut cannot be created if a refer-

ence of the variable of the other type exists.
10 E0505 A value cannot be moved while it is borrowed.
11 E0382 A value cannot be moved from the same variable twice.
12 E0507 A static variable cannot be moved.
13 E0508 Individual elements of an non-Copy collection cannot be

moved.
14 E0500

E0501
A closure must have unique access to variables it uses, until
the closure goes out of scope.

15 E0521 A closure acts like a lifetime declaration. As such, borrowed
values inside a closure cannot be used outside the closure.

Table 5.1: Table of predicates written in natural language, along with the corresponding
Rust error codes that inspired them. Describes what is not allowed when borrowing.

The astute reader will notice that a large portion of errors have been omitted, when
cross-referencing the list of predicates in this section with the error list found in [16].
This is due to the fact that many errors, while tangentially related to borrow checking,
or being handled by the type system, are deemed outside the scope of this project. They
are included in Appendix A to show that we are aware of their existence, but have been

24

excluded as we choose not to handle them.

To show why the aforementioned predicates are important, and to illustrate what can
happen if they are not upheld, we include some counter-examples. For illustration
purposes we have included examples that break predicates 2, 4 and 6 respectively. A
full list showing examples which break each predicate can be found in Appendix B at
the reader’s discretion.

Example 1
1 fn main(){

2 let mut x = 1;

3 let y = &mut x;

4 x += 1;

5 println!("{}", y);

6 println!("{}", x);

7 }

This example tries to mutate a variable x while it is not the current owner. On line 3 we
temporarily transfer ownership from x to the variable y instead. This results in errors
when we then try to mutate x on line 4, as the ownership at that point does not belong
to x.

Example 2
1 fn main(){

2 let x = 1;

3 x += 1;

4 println!("{}", x);

5 }

This snippet will emit an error for line 3, as the line is attempting to mutate the im-
mutable x variable. This snippet can be fixed by either changing line 3 to let x = x

+ 1; or by declaring x with let mut. The former would fully re-declare x, while the
latter would allow x to be mutated.

Example 3
1 fn main(){

2 let a = 0;

3 let mut x = &mut a;

4 println!("{}", x);

5 }

This code snippet shows an attempt to mutably borrow an immutable variable. As a
mutable borrow would imply that the variable being referred to is also mutable, this is
impossible.

25

5.2 MIR Syntax

Seen in this section is our syntax over MIR, as well as functions we will use for the
semantics, which is a modified and expanded version of the syntax proposed in ”Static
Taint Analysis in Rust”[1]. The syntax presented is functionally equivalent, but most
identifiers have changed to increase readability. Furthermore, there have been addi-
tions, like the instrumentation tuple, which will be explained later in this section.

z ∈ Z
i ∈ Ident

Where z is a literal integer value, and i is any string that matches the regular expression
[a-zA-Z]+.

bop ∈ BinOps = {Add,Sub,Mul,Div,Rem,BitXor,BitAnd,BitOr,Shl,Shr,Eq,Lt,Le,Ne,Ge,Gt}
uop ∈ UnOps = {Not,Neg}

Place ∈ Places ::= { n | n ∈ N0}
Opr ∈ Operands ::= move Place | copy Place | const z
Rval ∈ Rvalues ::= Opr

| bop(Opr1, Opr2)

| uop(Opr)
| &[mut] Place

Bid ∈ BlockID ::= {bbn | n ∈ N0}

In the original semantics Places are denoted with P, Operands with O, Rvalues with R,
and BlockID’s with Bid. We found this notation to be confusing in some cases, so we
have decided to increase the verbosity by simply using the natural Place, Opr, Rval
and Bid for the respective singular selections in the sets. The sets Rval and Bid in the
original syntax have also been expanded to more verbose names in ours.

Stmt ∈ Statement ::= Place = Rval;
Target ∈ Targets ::= z: Bid

T mnt ∈ Terminators ::= goto -> Bid;
| switchInt(Opr) -> [[Target,]∗ otherwise: Bid];
| assert(Opr, z) -> Bid;
| Place = i(Opr0, ...,Oprn) -> Bid;
| i(Opr0, ...,Oprn);

| return;

26

For statements, targets, and terminators, we have replaced S, X and T with Stmt,

Target and Tmnt. We have also changed the set identifiers for statements and ter-
minators to the full-length version of the words they were previously shorter versions
of.

{Stmt∗T mnt} ∈ Body ::= Statement∗×Terminators
B ∈ Block ::= Bid: {Stmt∗T mnt}

F ∈ Fn ::= fn i(Opr∗) {B+}

M ∈Mir ::= F+

Loc ∈ Locations
Env ∈ Environment : Places→ Locations

Sto ∈ Store : Locations→ (Z⊤⊥+Locations)
prg ∈ Program : Ident→ Function
f un ∈ Function : BlockID→ Body
cs ∈ CallStack ::= (BlockID×Places×Environment×Function)∗

Taint : Loc→{untainted, tainted}
BorrowedBy : Loc→{Place∗}
BorrowType : Place→{not, imut,mut}

LocationType : Loc→{imut,mut}
Operation : Loc→{read,write,move}

Instrumentation ::= (Taint × BorrowedBy × BorrowType × LocationType × Operation)
ConfigS ::= Statement × Store
ConfigB ::= Body × CallStack × Store × Instrumentation
→S ⊆ ConfigS×Store
→B ⊆ ConfigB×ConfigB

Finally, locations, environments, and store have gotten the new identifiers Loc, Env,
Sto rather than ξ , e and ζ in the original semantics.

Additionally, we need the functions Taint, BorrowedBy, BorrowType, LocationType,
and Operation, which we use to create instrumentation for the semantics. These func-
tions will allow us to log information about the program as the semantics are applied,
as well as allowing us to create boolean formulas for some of the predicates in Sec-
tion 5.1. Two of these functions, LocationType and BorrowType, already existed in a
similar form in the semantic rules presented by Gústafsson and Njor, and as such, we
remove, rewrite, and repurpose them. LocationType keeps track of the mutability of a
given location, while BorrowType keeps track of whether a Place is currently borrow-
ing, and whether the borrow is mutable or immutable. However, these only enable a

27

few boolean formulas, which lead us to create, BorrowedBy and Operation, to allow
us to formalise more predicates. BorrowedBy keeps track of the set of Places that are
currently borrowing a location, while Operation keeps track of the operation that is
being done to a location. Finally, we create the Taint function which will be used to
monitor and log data about taint propagation. It is worth noting that the Taint function
evaluates to lattice elements, such that untainted ⊑ tainted, which is the same lattice
as described in Section 3.3.

To gather the functions, we create the Instrumentation tuple which is comprised of the
five aforementioned functions. This tuple serves as a program state log, which is used
to examine how MIR behaves during execution.

Oeval(Opr,Sto,Env) =

z, if Opr = const z
Sto(Env(Place)), if Opr = move Place
Sto(Env(Place)), if Opr = copy Place

Reval(Rval,Sto,Env) =

Oeval(Opr,Sto,Env), if Rval = Opr
bop(Opr1,Opr2), if Rval = bop(Opr1,Opr2)

uop(Opr), if Rval = uop(Opr)
Sto(Env(Place)), if Rval = &[mut] Place

EvalOTaint(Opr,Taint) =

untainted, if Opr = const z
Taint(Place), if Opr = move Place
Taint(Place), if Opr = copy Place

EvalRTaint(Rval,Taint) =

EvalOTaint(Opr,Taint), if Rval = Opr∨uop(Opr)
EvalOTaint(Opr1,Taint)⊔
EvalOTaint(Opr2,Taint), if Rval = bop(Opr1,Opr2)

Taint(Place), if Rval = &[mut]Place

Finally, the EvalOTaint and EvalRTaint are also additions to the semantics from the
Gústafsson and Njor semantics, which serves as the main way to evaluate the taint
propagation in the instrumented semantics. As such they serve as the instrumented
versions of the original Oeval and Reval.

5.3 Predicates as Boolean Formulas

With the description of predicates, and the information gathering from the instrumen-
tation, we can now create boolean formulas for some of the predicates. The amount
of predicates we can create formulas for is reliant on the information gathered in the

28

instrumentation. This information is limited to what we deem most important with re-
spects to the problem domain. As an example, we do not register information about
statics, nor do we have a rule for creating MIR statics, and so we cannot create a
boolean formula for predicate 12. This does not, however, mean that no formula for
this predicate can exist, only that we choose not to describe one.

The predicates we create formulas for are predicates 2, 6 and 8 to 10. These can be
seen below:

Predicate # Boolean formula
2 ∀Loc ∈ Sto : (Operation(Loc) = write ∨ Operation(Loc) =

move)⇒ LocationType(Loc) = mut
6 ∀Place ∈ Env,∀Loc ∈ Sto : (BorrowedBy(Loc) = Place ∧

BorrowType(Place) = mut)⇒ LocationType(Loc) = mut
8 ∀Place ∈ Env,∀Loc ∈ Sto : (Operation(Loc) = write ∨

Operation(Loc) = move) ⇒ ¬(BorrowedBy(Loc) = Place ∧
BorrowType(Place) = imut)

9 ∀Place,Place′ ∈ Env,∀Loc ∈ Sto : BorrowedBy(Loc) =
{Place,Place′} ⇒ ¬(BorrowType(Place) = imut ∧
BorrowType(Place′) = mut)

10 ∀Loc ∈ Sto : Operation(Loc) = move⇒ BorrowedBy(Loc) = none

5.4 MIR semantics

This section goes through our semantic rules over MIR semantics which are inspired by
the semantics presented in ”Static Taint Analysis in Rust”[1]. The semantic rules de-
scribed in this section, while functionally identical to the work presented by Gústafsson
and Njor, have undergone major changes in how they are written. These rules have
undergone major naming changes to improve readability, and said changes will be ex-
plained as they are introduced. Many of the premises for each rule have been changed
or outright removed due to our instrumentation now handling these instead. Finally,
these semantics have been annotated to reflect the predicates presented in Section 5.1.

We want to make a point of noting that all rules should comply with all predicates, and
that on a base level, all predicates are of equal import. However, not all predicates are
strictly relevant for all rules. As an example, the [Ass] rule must adhere to predicate 9
which says that a value cannot be moved while it is borrowed. However, it is impossible
for [Ass] to break this predicate due to it not having any Move premises. As such, we
will annotate each rule in a vacuum, only highlighting the rules that are strictly relevant
to the individual semantic rule.

Predicate 1 has been excluded from mention in the annotated semantics as it is uni-
versally applicable to all rules except [Goto]. As such, it should be assumed that it is
present for every rule presented in the following section.

29

The semantic rules have been shaded, lowering visibility for parts that have no direct
relevance for predicates, except for the added instrumentation. Furthermore, the re-
maining parts have received text highlighting borrowing predicates for the correspond-
ing semantic premises. Finally, premises that include LocationType and BorrowType
have been moved to instead be included in a set of instrumentation which, as part of
the the full set of semantic rules which can be viewed in Appendix C.

[Ass]

Predicates 2 to 4: ⟨Place = Rval,Sto⟩ →S Sto[Env(Place) 7→ Reval(Rval)]
Sto(Env(Place)) ̸=⊤

Predicates 5 and 6:
(Rval = (Opr∨uop(Opr))∧Opr ̸= move Place)∨ (Rval = bop(Opr1,Opr2)

∧Opr1 ̸= move Place′∧Opr2 ̸= move Place′′)

prg ⊢ ⟨{Place = Rval; Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨{Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto[Env(Place) 7→ Reval(Rval)],
(Taint[Env(Place)→ EvalRTaint(Rval,Taint)],BorrowedBy,
BorrowType,LocationType,Operation[Env(Place)→ write])⟩

The [Ass] rule assigns a value to a place, where the value is a constant, or the result of
a unary or binary operation, and where operands use no move operations.

This rule must uphold predicates 2 to 6 to function as intended. It needs to uphold
predicate 2 to ensure that the location we are assigning to is mutable. Furthermore,
it needs predicates 3 and 4, as the value in Sto(Env(Place)) is being changed. This
means that Place has to be the unique owner during assignment. Lastly, [Ass] must
uphold predicates 5 and 6 as we assign an Rval which comes from an Reval. This
Reval might include a reference or a mutable borrow, and as such we must ensure that
the value is live in case of a borrow, in addition to ascertaining whether the variable is
declared mutable in case of a mutable borrow.

[AssMove1]

Predicates 2 to 4: ⟨Place = Rval,Sto⟩ →S Sto[Env(Place) 7→ Reval(Rval)]
Sto(Env(Place)) ̸=⊤

Predicates 5 and 6: Rval = (Opr∨uop(Opr))
Predicates 10 to 13: Opr = move Place′

prg ⊢ ⟨{Place = Rval; Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨{Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto[Env(Place) 7→ Reval(Rval),
Env(Place′) 7→ ⊤],

(Taint[Env(Place)→ EvalRTaint(Rval,Taint)],BorrowedBy,BorrowType,
LocationType,Operation[Env(Place)→ write,Env(Place′)→ move])⟩

30

[AssMove2]

Predicates 2 to 4: ⟨Place = Rval,Sto⟩ →S Sto[Env(Place) 7→ Reval(Rval)]
Sto(Env(P)) ̸=⊤

Predicates 5 and 6: Rval = (bop(Opr1,Opr2))
Predicates 10 to 13: Opr1 = move Place′

Opr2 ̸= move Place′′

prg ⊢ ⟨{Place = Rval; Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨{Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto[Env(Place) 7→ Reval(Rval),
Env(Place′) 7→ ⊤],

(Taint[Env(Place)→ EvalRTaint(Rval,Taint)],BorrowedBy,BorrowType,
LocationType,Operation[Env(Place)→ write,Env(Place′)→ move])⟩

[AssMove3]

Predicates 2 to 4: ⟨Place = Rval,Sto⟩ →S Sto[Env(Place) 7→ Reval(Rval)]
Sto(Env(P)) ̸=⊤

Predicates 5 and 6: Rval = (bop(Opr1,Opr2))
Opr1 ̸= move Place′

Predicates 10 to 13: Opr2 = move Place′′

prg ⊢ ⟨{Place = Rval; Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨{Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto[Env(Place) 7→ Reval(Rval),
Env(Place′′) 7→ ⊤],

(Taint[Env(Place)→ EvalRTaint(Rval,Taint)],BorrowedBy,BorrowType,
LocationType,Operation[Env(Place)→ write,Env(Place′)→ move])⟩

[AssMove4]

Predicates 2 to 4: ⟨Place = Rval,Sto⟩ →S Sto[Env(Place) 7→ Reval(Rval)]
Sto(Env(Place)) ̸=⊤

Predicates 5 and 6: Rval = (bop(Opr1,Opr2))
Predicates 10 to 13: Opr1 = move Place′

Opr2 = move Place′′

prg ⊢ ⟨{Place = Rval; Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨{Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto[Env(Place) 7→ Reval(Rval),
Env(Place′) 7→ ⊤,Env(Place′′) 7→ ⊤],

(Taint[Env(Place)→ EvalRTaint(Rval,Taint)],
BorrowedBy,BorrowType,LocationType,

Operation[Env(Place)→ write,Env(Place′)→ move,Env(Place′′)→ move])⟩

The [AssMove] rules all make an assignment of a value to a place where an operand
makes use of a move operation. The reason for having four rules is to specify all
possible combinations of move and non-move operands. [AssMove1] is for cases where
there is only one operand alone or via a unary operation, and that operand uses a move

31

operation. [AssMove2] is for a binary operation where two operands are present and the
first operand uses a move. [AssMove3] is the same scenario as [AssMove2] but instead
of the first operand, it is the second operand that uses a move operation. The final
[AssMove4] is where the both operands uses a move.

The inherent similarity in all [AssMove] rules, mean that they all must uphold the same
predicates and so will be explained simultaneously. As such, all [AssMove] rules must
account for predicates 2 to 6 and 10 to 13. Predicates 2 to 6 are included for the reasons
as in the [Assign] rule. All [AssMove] rules relate to using move operations, and as such
it is especially important that we take extra care to comply with predicates 10 to 13
which pertain to move operations. In particular, we must ensure that a value cannot be
moved while borrowed, that the value cannot be moved from the same variable twice,
or that moves are not made from inside a reference. Furthermore, we must also ensure
that we are not moving static variables or elements from non-Copy collections.

[AssRe f :mut]

Predicates 2 to 4: ⟨Place = Rval,Sto⟩ →S Sto[Env(Place) 7→ Env(Place′)]
Sto(Env(Place)) ̸=⊤

Predicates 5, 6 and 9: Rval = &mut Place′

prg ⊢ ⟨{Place = Rval; Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨{Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto[Env(Place) 7→ Env(Place′)],
(Taint[Env(Place)→ EvalRTaint(Rval,Taint)],

BorrowedBy[Env(Place′)→ Place],BorrowType[Place→ mut],
LocationType,Operation[Env(Place)→ write,Env(Place′)→ move])⟩

The [AssRef:mut] rule assigns a mutable reference to a place. Predicates 2, 4 to 7 and 9
must hold for this rule to work. Predicate 2 must hold as the place we are assigning to
must be mutable. Predicate 4 must hold as we must not be allowed to create a mutable
reference, if the place we are referencing is already mutably borrowed by something
else. Predicate 5 must hold because we are creating a borrow, and as such we must
ensure that the value we borrow persists until we are done with it. Predicate 6 must hold
as we cannot mutably reference a value if the value is not declared mutable. Finally,
predicates 7 and 9 must hold to ensure that we only assign the value in the reference via
the reference, while also ensuring that there are no other references before or during
use of the reference we are using.

32

[AssRe f :imut]

Predicates 2 to 4: ⟨Place = Rval,Sto⟩ →S Sto[Env(Place) 7→ Env(Place′)]
Sto(Env(Place)) ̸=⊤

Predicates 5, 6 and 9: Rval = &Place′

prg ⊢ ⟨{Place = Rval; Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨{Stmt∗Tmnt},(Bid,Place,Env, f un) :: cs,Sto[Env(Place) 7→ Env(Place′)],
(Taint[Env(Place)→ EvalRTaint(Rval,Taint)],

BorrowedBy[Env(Place′)→ Place],BorrowType[Place→ imut],
LocationType,Operation[Env(Place)→ write,Env(Place′)→ read])⟩

The [AssRef:imut] rule assigns an immutable reference to a place. This rule relies on
predicates 2 to 5, 8 and 9. Predicate 2 must hold to ensure that we are allowed to assign
the immutable reference, and predicates 3 and 4 must be upheld to ensure that the value
is mutable and being modified by the current owner exclusively. Like with [AssRef:mut],
predicate 5 must hold as we need to ensure that whatever value we are reading from
survives until our borrow is finished. Predicate 8 must hold to ensure that the contents
of the immutable reference are not mutated while we use it. Finally, predicate 9 must
hold to ensure that there are no mutable references being created, before or during use
of the reference we are using.

[Goto]
prg ⊢ ⟨{goto -> Bid;},(Bid′,Place′,env′, f un′) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨ f un′(Bid),(Bid′,Place′,Env′, f un′) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

The [Goto] rule simply sets the next basic block to be executed. As such there are no
relevant predicates to apply here, nor any changes in the instrumentation.

[SwitchInt1]

Predicates 7 and 10 to 13: zi = Oeval(Opr,Sto,Env′′)
i ∈ {1, ...,n}

prg ⊢ ⟨{SwitchInt(Opr) -> [z1 : Bid1, ...,zn : Bidn, otherwise: Bid′];},
(Bid′′,Place′′,Env′′, f un′′) :: cs,Sto,

(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩
→B ⟨ f un′′(Bidi),(Bid′′,Place′′,Env′′, f un′′) :: cs,Sto,

(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

33

[SwitchInt2]
Predicates 7 and 10 to 13: ∀z ∈ {z1, ...,zn} : z ̸= Oeval(Opr,Sto,Env′′)

prg ⊢ ⟨{SwitchInt(Opr) -> [z1 : Bid1, ...,zn : Bidn, otherwise: Bid′];},
(Bid′′,Place′′,Env′′, f un′′) :: cs,Sto,

(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩
→B ⟨ f un′′(Bid′),(Bid′′,Place′′,Env′′, f un′′) :: cs,Sto,

(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

[Assert]
Predicates 7 and 10 to 13: z = Oeval(Opr,Sto,Env′)

prg ⊢ ⟨{Assert(Opr, z) -> Bid;},(Bid′,Place′,Env′, f un′) :: cs,Sto
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨ f un′(Bid),(Bid′,Place′,env′, f un′) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

The [SwitchInt1] and [SwitchInt2] rules pertain to Switch cases wherein we iterate
through a set of cases in an attempt to find a match. The [SwitchInt1] rule chooses
an execution path between n choices, if one of the n expressions are equal to a given
constant. [SwitchInt2] on the other hand chooses an execution path if none of n expres-
sions are equal to a given constant - also known as the ’default’ case in programming
languages such as C, C++, or Java.

Furthermore, the [Assert] rule - which is a rule that asserts that some variable is equal
to some constant value - requires the same predicates as the [SwitchInt] rules, these
being predicates 7 and 10 to 13.

Predicate 7 must hold because the operand Opr we are using can be a possibly mutable
reference. This is also the reason why predicates 10 to 13 must hold, as the operand
can be a move operation.

[CallNormal]

Loci fresh

Sto(Env(Place)) ̸=⊤
Env′ = [j 7→ Loc j, ...]

Sto′ = Sto[Loc j 7→ Oeval(Opr j,Sto,Env′),

Env′(Place j) 7→

{
⊤, Predicates 10 to 13: if Opr j = move Place j

Sto(Env′(Place j)), otherwise
, ...],

j ∈ {0, ...,n}
prg ⊢ ⟨{Place = i(Opr0, ...,Oprn) -> Bid;},(Bid′,Place′,Env′, f un′) :: cs,Sto,

(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩
→B ⟨prg(i)(bb0),(Bid,Place,Env, prg(i)) :: (Bid′,Place′,Env′, f un′) :: cs,Sto′,

(Taint[Env′(Place j)→ Taint(Env(Place j))],BorrowedBy,BorrowType,LocationType,
Operation[Env′(Place j)→ write,Env(Place j)→ move if Opr j = move Place j])⟩

34

[CallPanic]

Loci fresh

Env′ = [j 7→ Loc j, ...]
Sto′ = Sto[Loc j 7→ Oeval(Opr j,Sto,Env′),

Env′(Place j) 7→

{
⊤, Predicates 10 to 13: if Opr j = move Place j

Sto(Env′(Place j)), otherwise
, ...],

j ∈ {0, ...,n}
prg ⊢ ⟨{i(Opro, ...,On);},(Bid′,Place′,Env′, f un′) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨prg(i)(bb0),(, ,Env, prg(i)) :: (Bid′,Place′,Env′, f un′) :: cs,Sto′,
(Taint[Env′(Place j)→ Taint(Place j)],BorrowedBy,BorrowType,LocationType,

Operation[Env′(Place j)→ write,Env(Place j)→ move if Opr j = move Place j])⟩

The [CallNormal] rule calls a normal function, and assigns the functions return value to
a place. The [CallPanic] rule is functionally similar, but instead calls a function when
the program fails, ensuring that the program shuts down gracefully. As such, it is
imperative that predicates 10 to 13 must hold for them to function.

Predicates 10 to 13 relate to the storage update line ⊤, if Opr j = move Place j, and
must hold to ensure that the move operation is done correctly.

[Return]
Predicates 2 to 4: Sto′ = Sto[Env′(Place) 7→ Env(0)]

prg ⊢ ⟨{Return;},(Bid,Place,Env, f un) :: (Bid′,Place′,Env′, f un′) :: cs,Sto,
(Taint,BorrowedBy,BorrowType,LocationType,Operation)⟩

→B ⟨ f un′(Bid),(Bid′,Place′,Env′, f un′) :: cs,Sto′,
(Taint[Place→ Taint(0)],BorrowedBy,BorrowType,

LocationType,Operation[Env(0)→ write,Env′(Place)→ move])⟩

The [Return] rule returns a value from a given basic block. Predicates 2 to 4 must hold
for this rule to function. This is because of the fact that while [Call] rules technically
contain assignments, they only declare that an assignment should happen, whereas the
actual assignment happens via the [Return] rule. This means that the place we are
returning to must be mutable, and that we must hold ownership of the value we assign
to.

5.5 Instrumented Semantics

To show how the instrumentation can be used to verify whether the boolean forms of
the predicates hold, we construct a small example program. We knowingly create a
program with an error, and then apply our semantics to it.

1 fn main() {

2 let mut test = 8;

35

3 let mut_borrow = &mut tst;

4 let imut_borrow = &tst;

5 }

Listing 5.1: Instrumented Semantics example 1

Listing 5.1 shows the faulty program. We create a value, and then try to borrow it
with conflicting borrow types, which causes an error at compile time, as the conflicting
borrows break predicate 9. However to further show this, we reduce Listing 5.1 to
MIR and apply the instrumented semantic rules to show a more detailed overview of
the program state during execution. This can be seen in Listing 5.2 below.

1 bb0: {

2 _1 = const 8_i32;

3 _2 = &mut _1;

4 _3 = &_1;

5 return;

6 }

Listing 5.2: MIR output of Listing 5.1

Following the semantic rules, the instrumentation tuple will contain the program state
information during execution. The changes in this information can be seen in the table
below:

Line Instrumentation Rule PS
Start {} OK

2
{Taint: Env(1)→ {untainted},
Operation: Env(1)→ {write}} Ass OK

3

{Taint: Env(1)→ {untainted}, Env(2)→ {untainted},
BorrowedBy: Env(1)→ 2,
BorrowType: 2→ {mut},
Operation: Env(1)→ {read}, Env(2)→ {write}}

AssRefMut OK

3

{Taint: Env(1)→ {untainted}, Env(2)→ {untainted}, Env(3)→ {untainted},
BorrowedBy: Env(1)→ 2, Env(1)→ 3,
BorrowType: 2→ {mut}, 3→ {imut},
Operation: Env(1)→ {read}, Env(2)→ {move}, Env(3)→ {write}}

AssRefImut Error

Table 5.2: A program state for the code shown in Listing 5.2.

In Table 5.2 we can follow the execution of the MIR code shown in Listing 5.2, and see
the application of the instrumented assignment rules. Line refers to the original line
of code in Listing 5.2, Instrumentation shows the instrumentation being applied, Rule
denotes which rule is being applied, and PS refers to the current program state. During
the execution on line 3 of the program, it can be seen that both 2 and 3 borrows the
same place 1 but with conflicting types, which breaks predicate 9.

This instrumentation will be used to create a more logical formulation of the predicates,
as well as to identify whether the analysis made by Gústafsson and Njor is correct.

36

Chapter 6

Taint Analysis

This chapter describes how we create a simple taint analysis, to show how the instru-
mentation and predicates depicted in Chapter 5 can be used to create more precise
approximations. Furthermore, this chapter also goes through how the predicates and
instrumentation could help make our implementation of the taint analysis more precise
than existing ones, like what is depicted in Gústafsson and Njor work.

6.1 Static Taint Analysis

We establish a taint analysis, which will largely be based on the instrumented seman-
tics presented in Chapter 5. Additionally, the analysis itself draws inspiration from the
monotone framework created by Gústafsson and Njor in ”Static Analysis in Rust”[1].
We use the same lattice as the Taint element in the instrumentation, as seen Section 5.5.
This is done partly to prepare for potential expansion, like what was described in Sec-
tion 3.3, but also to make direct comparisons to the instrumentation easier.

Finally, we want to make a note of saying that this analysis assumes that Rust’s borrow
checker has already been run on the program being analysed.

37

tainted

untainted
Figure 6.1: The taint lattice used for the static taint analysis

Figure 6.1 shows the lattice Taint, which we will use as the target for mapping Places
to. Like Gústafsson and Njor, we will prepend function names to Places, to differen-
tiate between Places with the same name. For example, the function foo will return
whatever is in Place 0 to the caller at the end of the function. This Place would thus
be renamed foo: 0. These Places are gathered in the set PlacesAnalysis. We create the
lattice State to map PlacesAnalysis to Taint.

State = PlacesAnalysis→ Taint

This lattice records the state of a single CFG node from MIR. We create a further
mapping from CFG labels, in the set Labels, to each State.

States = Labels→ State

Finally, we extend the States to use the functional approach for context sensitivity.

States = Labels→ State⊥→ State⊥

In this, The Labels can be thought of as function calls, with the first State⊥ being
the state of the inputs and the second being the state of the output after the function
has completed. These lattices simply have a unique bottom element appended, but are
otherwise identical to the State lattice. Thus, the same state of inputs to a function will
give the same state of outputs.

To evaluate the taint of a value, we use the same functions EvalOTaint and EvalRTaint
as in the semantics, but use States instead of Taint as the parameter. The functions are
thus as follows:

38

EvalOTaint(Opr,States) =

untainted, if Opr = const z
States(Place), if Opr = move Place
States(Place), if Opr = copy Place

EvalRTaint(Rval,States) =

EvalOTaint(Opr,States), if Rval = Opr∨uop(Opr)
EvalOTaint(Opr1,States)⊔
EvalOTaint(Opr2,States), if Rval = bop(Opr1,Opr2)

States(Place), if Rval = &[mut]Place

With the States lattice and our evaluation functions, we are now equipped to make the
transfer functions for the taint analysis.

We begin by making transfer functions for the assignment rules. All assignments are
of the form Place = Rval. For these, we create the function trans f erassignment .

trans f erAssignment(State) = State[Place 7→ EvalRTaint(Rval,State)]

Because of predicates 3 and 4, we can perform a strong update on State. A strong
update in static analysis, is an update where an abstract value completely overwrites an
existing one [11, p. 130]. Because aliasing is disallowed, all assignments to a Place
can only be made from a single source at a time, and we can thus always be sure that
an assignment will cause a Place to be either tainted or untainted, and can update the
value accordingly.

As Gústafsson and Njor remarks, conditionals could be considered taint sinks, but they
consider it out of scope to model this. We will however include this in our analysis,
as we believe that using tainted values in control-flow decisions should be considered
erroneous behavior. As, [SwitchInt1] and [SwitchInt2] will not make any changes in the
state, the transfer function can simply be the identity function for both constructs.

trans f erSwitchInt(State) = State

However, if a tainted value is used in the Opr of the condition, regardless of whether
the given case holds or not, the analysis should report this as a flaw.

[Goto] and [Assert] do not make any changes in the state either. These will both use the
identity transformation.

39

trans f erGoto(State) = State
trans f erAssert(State) = State

This leaves only the [CallNormal], [CallPanic], and [Return] rules. We identify the
input, sanitise, and output functions as special, as these will introduce taint to the
system, remove taint from the system, and output something from the system respec-
tively.

We assume the input and sanitise functions only take a single Place as parameter
at a time, such that multiple inputs or sanitations result from multiple function calls.
The input function will take an input and assign it to the Place given. The sanitise
function will take the given Place and sanitise it in some way, to make it untainted. As
such, the transfer functions are quite simple.

trans f erCall:input(State) = State[Place 7→ tainted]
trans f erCall:sanitise(State) = State[Place 7→ untainted]

The output function does not change anything in the program, and thus will also use
the identity function. However, if this function is given a tainted Place as a parameter,
the analysis should report an error.

trans f erCall:out put(State) = State

Finally, the [Return] rule does an assignment from the callee’s Place 0, to the caller’s
provided Place, and thus simply transfers Place 0’s taintedness directly. For a given
caller function caller that calls a given function callee, we have the following transition
function:

trans f erCall:callee:return(State) = State[caller:Place 7→ callee: 0]

Another benefit of using Rust’s borrow system, is that there are no need to perform any
kind of alias analysis. As a value can only be owned by a single variable at a time,
there cannot exist two variables that can make changes to the same variable at the same
time.

40

6.1.1 Justification for Strong Updates

In languages where aliasing is allowed, it is possible for variables to be changed indi-
rectly. This makes it harder to approximate the behavior of the program, meaning that
an analysis must grow in complexity if aliasing should be accounted for. For Rust we
can instead always perform strong updates on the abstract value of a variable for any
given state. This is due to the illegality of aliasing in Rust.

1 #include <stdio.h>

2 int input();

3 void change_from_other_thread(int* var);

4

5 int main() {

6 int x = input ();

7 int* y = &x;

8 change_from_other_thread (&x);

9 printf("%d", *y);

10 return 0;

11 }

12

13 int input() {

14 return 3;

15 }

16

17 void change_from_other_thread(int* var) {

18 if (*var == 0) {

19 *var += 5;

20 }

21 }

Listing 6.1: Snippet of C code with a pretend-thread that would change a variable.

As an example, Listing 6.1 shows a code snippet which would compile in C. The value
of x could be changed from a different thread in a multi-threaded environment, which
would be valid, as aliasing is allowed. Most importantly, in more complicated pro-
grams, this could happen in much more indirect ways, and at varying times, depending
on the specific timings of thread executions. This would make an error due to aliasing
much harder to track.

41

1 fn main() {

2 let mut x = input();

3 let y = &mut x;

4 change_from_other_thread(&mut x);

5 println!("{}", y)

6 }

7

8 fn input() -> i32 {

9 3

10 }

11

12 fn change_from_other_thread(var_in: &mut i32) {

13 if *var_in == 0 {

14 *var_in += 5;

15 }

16 }

Listing 6.2: Snippet of Rust code with a pretend-thread that would change a variable.
This snippet will not compile.

Listing 6.2 shows an equivalent code snippet in Rust. This snippet is functionally the
same as the one shown in Listing 6.1, with the only difference being that it will not
compile in Rust. This is because of the fact that aliasing is disallowed, meaning we
cannot create a new reference on line 4, as x is already being borrowed mutably by y.

Were we to create a comprehensive analysis for C, we would have to account for alias-
ing in assignments. This would increase the complexity of the analysis, if we wish to
keep the same accuracy. In Rust, on the other hand, we could rely on the type sys-
tem to find these aliasing situations, and having them reported as errors. We believe
that, more often than not, any analysis that analyses pointers and/or heap memory may
benefit from the borrowing system, as is the case with, for example, points-to analysis,
escape analysis, and shape analysis.

This means that, for our analysis, we can discern possible execution paths wherein
a value that is marked as tainted is used in a sink. The intuition behind this, is that
whenever two edges in the program CFG go to the same node, we perform a least
upper bound operation on the state from each incoming node. As such, given the taint
lattice seen in Figure 3.2, there are only two possibilities of the outcome: A value is
tainted, or a value is untainted. This can be thought of as a logical AND operation,
where untainted would be equivalent to logical true.

With this in mind, we can generally be sure that any program that does not loop in-
finitely will have the most accurate taint information retained until the program’s exit
points. For any given exit point of the program, there will be either 0 or any number
of branches and merges in the CFG. Branches have no immediate impact on informa-
tion accuracy, while merges only have the limited effect discussed before. Because of
this, we can be sure that any use of taint in a sink will at the very least have a possible
execution path where the given value is tainted.

42

6.1.2 Comparison of Static Taint Analysis and Instrumented Se-
mantics

To test the theoretical basis of our analysis, we aim to verify whether the predictions
pertaining to taint in the static analysis are accurate to the actual reports of the instru-
mented semantics. We will compare the results of the static taint analysis we have
designed, with the results of using the instrumented semantics on the possible execu-
tion paths of a program.

To begin, we will use the code example established by Gústafsson and Njor in their
body of work as a baseline for comparison.

1 fn main() {

2 bb1{

3 _1 = input() -> bb2; //l1

4 }

5 bb2{

6 _2 = Sub(copy _1, const 3); //l2

7 _3 = Gt(const 0, copy _2); //l3

8 switchInt(copy _3) -> [0: bb3, otherwise: bb4]; //l4

9 }

10 bb3{

11 _4 = const 2; //l5

12 goto -> bb5; //l6

13 }

14 bb4{

15 _4 = input() -> bb5; //l7

16 }

17 bb5{

18 _5 = output(_4) -> bb6; //l8

19 }

20 bb6{

21 return; //l9

22 }

23 }

Listing 6.3: An example of MIR code, with comments at the end of lines acting as
labels. Taken from ”Static Analysis in Rust”[1].

Listing 6.3 shows a simple code snippet written in MIR syntax. The example shows
that we accept some input, as seen in bb1 on line 3. This input is then used in bb2 in a
SwitchInt statement on line 7. Depending on the conditional behavior, we assign 4

to either an input or a constant value. A CFG of the program can be see in Figure 6.2
below.

L1 L2 L3 L4

L5 L6

L7

L8 L9

Figure 6.2: CFG representation of the program in Listing 6.3

43

If we apply our static taint analysis to the example, we create the steps shown in Ta-
ble 6.1 below.

Label Transfer function Input Output
l1 trans f erCall:input ∀Place ∈ Places : Place 7→ untainted States(l1)[1 7→ tainted]
l2 trans f erAssignment out put(l1) States(l2)[2 7→ tainted]
l3 trans f erAssignment out put(l2) States(l3)[3 7→ tainted]
l4 trans f erSwitchInt out put(l3) States(l4)
l5 trans f erAssignment out put(l4) States(l5)
l6 trans f erGoto out put(l5) States(l6)
l7 trans f erCall:input out put(l4) States(l7)[4 7→ tainted]
l8 trans f erCall:out put out put(l6)⊔out put(l7) States(l8)
l9 trans f erCall:main:return out put(l8) States(l9)

Table 6.1: The steps taken in the static taint analysis, as well as the inputs and outputs
for each given line.

Seen in Table 6.1, we have a log consisting of snapshots of the input and output of each
line in Listing 6.3. Of note, are the labels l1, l2, and l3 which results in 1, 2, and 3

being tainted. We can see in l7 that the SwitchInt results in 4 becoming tainted as
well.

Furthermore, we would report an error on account of l4 and l8. This is due to the fact
that we consider it unintended behavior for taint to have an influence on control flow,
and that the use of a possibly tainted value in the output function should give an error.

Seen in Table 6.2 and Table 6.3 are logs of which rules are applied for the two pos-
sible execution paths for the program. Table 6.2 show the execution path wherein
the SwitchInt is evaluated to the 0 case. Table 6.3 shows the opposite, being the
otherwise case of the SwitchInt.

The headers for these particular tables are self-explanatory with the exception of the
’Taint’ column. Taint refers to the Taint function of the instrumentation tuple. The
contents show what values the input evaluates to for each rule applied.

44

Label Rule applied Taint
l1 [Callnormal] {Env(1)→ tainted}
l2 [Ass] {Env(1)→ tainted,Env(2)→ tainted}
l3 [Ass] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted}
l4 [SwitchInt1] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted}
l5 [Ass] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted,Env(4)→ untainted}
l6 [Goto] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted,Env(4)→ untainted}
l8 [Callnormal] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted,Env(4)→ untainted}
l9 [Return] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted,Env(4)→ untainted}

Table 6.2: The status of the Taint element of the instrumentation, with the SwitchInt
taking the path through the 0 case.

Label Rule applied Taint
l1 [Callnormal] {Env(1)→ tainted}
l2 [Ass] {Env(1)→ tainted,Env(2)→ tainted}
l3 [Ass] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted}
l4 [SwitchInt2] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted}
l7 [Callnormal] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted,Env(4)→ tainted}
l8 [Callnormal] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted,Env(4)→ tainted}
l9 [Return] {Env(1) → tainted,Env(2) → tainted,Env(3) →

tainted,Env(4)→ tainted}

Table 6.3: The status of the Taint element of the instrumentation, with the SwitchInt
taking the path through the otherwise case.

Both execution paths are identical from l1 to l3, but then diverge at label l4 with one
case applying the SwitchInt1 rule, and the other applying SwitchInt2, corresponding to
either the 0 or otherwise cases. From there, Table 6.2 goes through labels l5, l6, l8 and
l9 wherein no tainted input is used. Table 6.3 on the other hand, goes through labels
l7, l8 and l9 which utilises tainted input.

From this information, we deem it accurate for the taint analysis to report possible
errors on l4 and l8. The conditional on l4 will always use a tainted value, as the taint

45

propagates from 1 through 2 to 3. The output function in l8 can use either a tainted
or untainted 4, meaning that this too, should report a possible error.

46

Chapter 7

Reachability Analysis

Another promising prospect we found was based in the potential benefits of Rusts non-
lexical lifetime concept and how it could potentially be used to keep track of program
states.

This chapter goes into depth about this idea by describing a potential reachability anal-
ysis which functions much like program slicing. Additionally, this chapter describes
in-depth how the borrow-checking system could potentially reduce the state space via
use of the lifetimes it employs.

7.1 Reachability Analysis

An idea of how to use Rust’s memory management system to a greater extent is to use
the lifetime constraints to analyse taint propagation. It should be possible to track the
propagation of a tainted variable through the program and see if it possible for a source
to reach a sink. This is done by looking at the constraints the borrow checker creates for
lifetimes, and over-approximating all constraints to be related to assignments. Then, if
both the sources and sinks are specified in the program, it should be possible check if
a source is able to reach a sink by searching for a path leading from the source to the
sink through overlapping points in the lifetime constraint sets.

To show how this works, we construct a simple program in Rust.
1 fn main() {

2 let a = input(4); // Taint source

3 let c = &a + 3;

4 output(c); // Taint sink

5 }

Listing 7.1: Rust snippet where a taint source will reach a taint sink.

47

In Listing 7.1, a variable is assigned through the source input which then further in
the program reaches the sink output. The purpose of this is to see if it is possible to
use the lifetime constraints to identify whether the source reaches the sink.

To calculate the lifetime constraints for our sample program, we must first reduce it into
MIR code. This allows us to more easily calculate the lifetime constraints manually,
due to MIR being the CFG representation of a Rust program.

1 bb0: {

2 _1 = input () -> bb1; // scope 0 | A/0

3 }

4 bb1: {

5 _2 = &_1; // scope 1 | B/0

6 _4 = _2; // scope 2 | B/1

7 _3 = <&i32 as Add <i32 >>::add(move _4 ,

8 const 3_i32) -> bb2; // scope 2 | B/2

9 }

10 bb2: {

11 _6 = _3; // scope 3 | C/0

12 _5 = output(move _6) -> bb3; // scope 3 | C/1

13 }

14 bb3: {

15 return; // scope 0 | D/0

16 }

Listing 7.2: The MIR representation of Listing 7.1.

Listing 7.2 show the MIR representation of our original sample program. Of note is the
fact that each basic block is categorised into regions based on its location in the CFG.
Here, each basic block gets assigned a letter as an identifier, and a number serving as
an index for Points in the basic block. These indexes serve as the main way to keep
track of liveness for lifetimes , and as such are also the main way of notating them.

Looking at the variable a on line 2 in Listing 7.1, we can track its lifetime ’a based
on where it is declared and when it is no longer in scope. In Listing 7.2 it is declared
on line 2 as 1 = input() and is therefore live from the next Point in the CFG, Point
B/0. From here on, it is possible to further extend ’a, by identifying where in the
program it is necessary for a to be live, these being Points B/0, B/1, B/2, C/0 and
C/1. Following these principles, the next step is to calculate the lifetime constraints for
each of the lifetimes in the program. In this case ’a will cover the entire program until,
and including, the output call in BB2. Continuing with c, it is live at Point C/0 and dies
at the same Point as a. The lifetime constraints for ’a and ’c can then be written as
(Lifetime: Point) @ Point, meaning we would end with the following lifetime
constraints:

(’ a : B / 0) @ B/ 0
(’ a : B / 1) @ B/ 1
(’ a : B / 2) @ B/ 2
(’ a : C / 0) @ C/ 0
(’ a : C / 1) @ C/ 1
(’ c : C / 0) @ C/ 0

48

(’ c : C / 1) @ C/ 1

The next step is to make sure that the lifetime of a source, outlives the lifetime of
references that borrows it. In Listing 7.1 this means that the lifetime of ’a, has to
outlive the lifetime ’c. To make sure of this, the Rust compiler uses its subtyping rules
to identify the places which contains a borrow expression, and produce a subtyping
constraint from the Point where the borrow is valid. In the case of our running example
it would be at Point C/0, as c is not valid at Point B/2 due to it being the Point it is
assigned and therefore not yet alive. As such the following subtyping constraint, would
be added to our existing lifetime constraints:

(’ c : ’ a) @ C/ 0

This should be read as ’c being a subtype of ’a, which is valid from Point C/0, mean-
ing that lifetime ’a should outlive lifetime ’c.

Once all the constraints have been identified, the Rust compiler then solves them to
make sure that all lifetimes are valid [10]. This means identifying all subtype con-
straints in the constraint set, and using an inference algorithm to iterate through the
set. Using a fixed-point iteration, an empty set is created for each lifetime variable.
The lifetime constraints are used as the set is iterated over, to grow the set until all
constraints are satisfied. This is done by looking for subtyping type constraints in the
form of (’a:’b) @ Point P, and making sure that all Points in the lifetime ’a that
can be reached from the Point P, are contained in the lifetime ’b. This algorithm uses
a depth-first search algorithm which adds each Point found to the constraint set of ’a,
which stops when we reach the end of lifetime ’b. However, in the running example,
both of the constraints end up with no real changes as ’c is fully contained in ’a. As
such, the solved lifetime constraints will look as follows:

’ a = {B/ 0 , B / 1 , B / 2 , C / 0 , C/ 1}
’ c = {C/ 0 , C/ 1}

We theorise that it is possible to create an algorithm that uses these constraints to anal-
yse whether there is a path from a source to a sink. One possibility would be a type of
fixed-point algorithm that would grow a candidate set, based on overlap in constraint
sets. We base this on the knowledge that there exists a fixed-point for such an algorithm
for all programs, as all programs are of finite size. As such, there must also exist a finite
amount of lifetimes with finite places they must be alive for. This means that we should
be able to start at a sink Point and go through our set of lifetimes to ascertain whether
there is any path through the lifetime constraints, that lead from a sink to a source.

To support this idea, let us create another example wherein the source does not reach
the sink. If our theory holds, we should be able to see this when looking at the lifetime
constraints of the program.

1 fn main() {

2 let a = input (4); //Taint source

49

3 let b = &a;

4 let c = 5 + 3;

5 output(c); // Taint sink

6 }

Listing 7.3: Rust snippet where a taint source can never reach a taint sink.

In Listing 7.3 there is no way for the tainted source a to reach the sink output on line
5. As such, it should also be possible to see this reflected in the lifetime constraints.

Following the same steps as in Listing 7.1, we start by reducing the Rust source code
to MIR code.

1 bb0: {

2 _1 = input () -> bb1; // scope 0 | A/0

3 }

4 bb1: {

5 _2 = &_1; // scope 1 | B/0

6 _3 = const 8_i32; // scope 2 | B/1

7 _5 = const 8_i32; // scope 3 | B/2

8 _4 = output(move _5) -> bb2; // scope 3 | B/3

9 bb2: {

10 return; // scope 0 | C/0

11 }

Listing 7.4: The MIR representation of Listing 7.3.

From the MIR code shown in Listing 7.4, we can identify which Points each lifetime
is valid at. It is worth noting that there will be no valid lifetime for b, as its assignment
becomes irrelevant immediately after assignment. This automatically divests it and
frees the memory it points to. In the example there are no subtypings either, meaning
the solved constraint set will not contain any changes when compared to the initial
lifetime constraints. The solved constraints are therefore as follows:

’ a = {B/ 0 , B/ 1}
’ c = {B/ 2 , B / 3 , C/ 0}

In this solved constraint set, we can see that the lifetimes of ’a and ’c do not overlap.
It is therefore safe to assume that any taint sources that are valid during ’a’s lifetime
cannot reach the taint sink in ’c’s lifetime. Therefore, we would be able to remove
those sources from consideration.

However only considering whether a source reaches a sink, should not make a mean-
ingful reduction of the state space. An error in logic, like the one shown in Listing 7.3,
should only be a result of bad coding practises, hopefully resulting in it being a rare
occurrence.

It might be possible for us to remove certain lifetimes from the collection of lifetimes,
if we could annotate a lifetime as a sanitiser in the same way we annotate it as a source.
Doing this should hopefully leave us with no overlapping lifetimes around the sink.

50

1 fn main() {

2 let a = input (4); //Taint source

3 let b = &a;

4 let c = sani(b); // Sanitiser

5 let d = c + 3;

6 output(d); // Taint sink

7 }

Listing 7.5: Rust snippet where a taint source is sanitised before reaching a sink.

In Listing 7.5 there is a sanitiser function sani, which takes a tainted value and returns
a untainted value. As such, when considering overlaps in the constraint sets, c’s set
could be ignored.

1 bb0: {

2 _1 = input () -> bb1; // scope 0 | A/0

3 }

4 bb1: {

5 _2 = &_1; // scope 1 | B/0

6 _4 = _2; // scope 2 | B/1

7 _3 = sani(move _4) -> bb2; // scope 2 | B/2

8 }

9 bb2: {

10 _6 = _3; // scope 3 | C/0

11 _7 = CheckedAdd(_6 , const 3_i32); // scope 3 | C/1

12 assert (!move (_7.1: bool), "", move _6 , const 3_i32) -> bb3;

↪→ // scope 3 | C/2

13 }

14 bb3: {

15 _5 = move (_7.0: i32); // scope 3 | D/0

16 _9 = _5; // scope 4 | D/1

17 _8 = output(move _9) -> bb4; // scope 4 | D/2

18 }

19 bb4: {

20 return; // scope 0 | E/0

21 }

Listing 7.6: The MIR representation of Listing 7.5.

Listing 7.6 show the MIR representation of Listing 7.5 wherein we can follow the
lifetime of c which is denoted as 6 in MIR. As such solving the lifetime constraints
for this example, results in the following constraints:

’ a : {B/ 0 , B / 1 , B / 2 , C / 0 , D/ 0} / / T a i n t e d l i f e t i m e
’ b : {B/ 1 , B / 2 , C / 0 , D/ 0} / / T a i n t e d l i f e t i m e
’ c : {C/ 0 , C / 1 , D/ 0 , D/ 1 , D/ 2} / / S a n i t i s e d l i f e t i m e
’ d : {D/ 0 , D/ 1 , D/ 2} / / S a n i t i s e d l i f e t i m e

With ’a as a tainted lifetime, we have a subtyping constraint for Listing 7.6 ’b: ’a

@ B/1. As such, we can be sure that ’b is also a tainted lifetime. Likewise, we know
that ’c is a sanitised lifetime, and we have a subtyping constraint ’d: ’c @ D/0,
meaning we can know that ’d is also a sanitised lifetime.

51

As sanitised lifetimes are safe for use, we can now remove the lifetimes that are affected
by the sanitiser. The remaining lifetime constraints, being ’a and ’b can then be used
to identify remaining paths from source to sink, of which there are none.

7.2 Theory for Reachability Analysis

As mentioned in Section 7.1, we know that all Rust programs must be of some finite
size, meaning that there is a finite number of lifetimes covering a finite set of Points
in the CFG of the program. Furthermore, we can also trivially increase the granularity
of the CFG from basic block level to Point level. This is possible because all basic
blocks have a single Point that is the entry, and a single Point that is the terminator for
the block. Each block is simply a single line of nodes, with each node representing a
discrete Point in the program.

For any given program, we should be able to ascertain which lifetimes originate from
taint sources, and which Points in the program are sinks. With that we should be able
to grow a taint propagation set of Points, based on the lifetimes in the program.

To illustrate this idea, we have included a naive fix-point pseudo-algorithm. This algo-
rithm runs source to sink, and find the potential Points where the lifetime propagation
sets for sources can overlap with the sink Points. The idea is to begin with the set of
constraints for the sources, and expand this with the constraint sets of lifetimes, which
have at least one Point in common and is not a sanitiser or sanitised lifetime. This
continues until a fix-point is reached. This algorithm can be seen below in Algorithm 1

52

Algorithm 1 Constraint-set fix-point-based reachability
function CONSTRAINTREACH(SourceLifetime, SinkPoint, SanitisedLifetimes, Al-
lLifetimes)

let ConSet←ConstraintsO f (SourceLi f etime)
let NonSanitisers← AllLi f etimes\SanitisedLi f etimes
repeat

let PrevConSet←ConSet
for each Var ∈ NonSanitisers do

if ∃Point ∈ConstraintsO f (Var) : Point ∈ConSet then
let ConSet←ConSet ∪ConstraintsO f (Var)

end if
end for

until PrevConSet =ConSet
if SinkPoint ∈ConSet then

return T RUE
else

return FALSE
end if

end function

This specific specification of the algorithm would have to be performed on a per-source
basis, but could be expanded to consider all sources at once.

For iteration P0, we would start with just the constraint set of the source lifetime. Itera-
tively, we add all the Points from other lifetimes that have at least 1 Point in P0 already,
unless the lifetime originates from a sanitiser, and thus makes P1. We can continue
this until we reach a fix-point where Pn is the same as Pn−1. Finally, we simply check
whether the sink Point is contained in Pn, and thus answer whether a given taint source
can possibly reach the sink.

If we consider the CFG, sources, sinks, and sanitisers, we can generalise to 3 cases:

• The CFG is in a single line with a source node, then a sanitiser node, and finally
sink node.

• The Source and sanitiser nodes are separate, but both lead to the sink node.

• The Source node leads to both the sanitiser and sink nodes, which are separate.

These cases can be seen depicted in Figure 7.1 below in that order. It is worth noting
that all cases could be seen as a sub-graph in a larger CFG. Furthermore, we also note
that it is only possible to remove the source from consideration in the first case. This is
due to the second and third cases having a path from source to sink that goes around a
sanitiser, thus not enabling us to ensure that the taint has been sanitised.

53

Source

Sanitiser

Sink

Source Sanitiser

Sink

Source

Sanitiser Sink

Line Union Branch

Figure 7.1: 3 generalised node constructions.

If we instead look at the last non-trivial step before the simplifications shown in Fig-
ure 7.1 we would, for each of the general cases, get a diamond-shaped CFG. These can
be seen below in Figure 7.2

Source

Sanitiser Sanitiser

Sink

Source

Sanitiser

Sink

Source

Sanitiser Sink

Figure 7.2: Examples depicting the last non-trivial step before simplification for the
Line, Union, and Branch cases.

The leftmost graph in Figure 7.2 can remove either sanitiser to arrive at the line general
case. The middle can remove the blank node (and edge between sanitiser and sink) to
arrive at the union case. Finally, the rightmost can remove the blank node to arrive at
the branch case. These simplification operations should be trivial to perform, as well
as general enough to abstract to larger CFGs.

54

Chapter 8

Discussion

This chapter reflects on the choices made during development, and contains considera-
tions and arguments relating to the semantics, instrumentation, and analyses described
throughout this body of work.

8.1 Semantics

One of the primary goals of this report, defined in Chapter 1 was to create a taint anal-
ysis. While we spend time throughout the report describing various static analyses, we
ultimately ended up deciding against an actual implementation. This was due to vari-
ous limitations imposed by both Rust but also the potential costs of creating an analysis
that would be functionally identical to existing ones like the one made by Gústafsson
and Njor. We instead chose to focus on a theoretical approach, wherein we describe
all the novel features that we have worked with, which we then supplemented by test-
ing the parts of our analysis that were functionally identical to the analysis created by
Gústafsson and Njor.

To reiterate, our semantics are heavily inspired by the semantics presented in ”Static
Analysis in Rust” by Gústafsson and Njor [1]. We make many substantial changes, but
argue that none impact the actual base functionality of the semantics. This allowed us to
utilise the taint analysis they created, which we forked from their repository. This was
necessary as their analysis no longer works. This was primarily due to the functionality
previously found in the rustc being split into multiple other crates. We fixed these
errors in our fork, and restored the functionality of the taint analysis. The updated code
can be found in our repository at https://gitlab.com/Rawrior/P9-code under
the folder Taint-Analysis. The code should appear in a functioning state, and can
be run at the readers leisure.

55

As none of our changes to the semantics have any impact on the fundamental func-
tionality of the rules as they are used in their work, we argue that it is possible for us
to use their analysis implementation as proof that our work functions. Given the fact
that all of the tests for the implementation pass, combined with covering a satisfactory
variety of situations, we deem them to be enough to help prove the correctness of the
semantics.

8.2 Increasing Static Taint Analysis Accuracy

While we deem the static taint analysis described in Chapter 6 adequate, we argue
that it could be made more accurate. With the current taint lattice, we can only report
’untainted’ or ’tainted’. As such, any reports of taint include all reports that are either
possible or definite, with no way to differentiate the two. If we were to use a different
lattice, we believe it would be possible to differentiate the scenarios. This new lattice
would have 3 layers: A bottom element ⊥, a middle layer with elements tainted and
untainted, and a top element maybe. This can be seen in Figure 8.1, below.

maybe

untainted tainted

Figure 8.1: An alternative lattice

If a value was tainted in one execution path, but untainted in another, the least upper
bound between them would be the maybe element. With this, it should be possible to
differentiate between errors and warnings, and possibly even deny compilation if an
error is present.

We can generally be sure that any program that does not loop infinitely will have the
most accurate taint information retained until the program’s exit points. For any given
program exit point, there will be either 0 or any number of branches and merges in the
CFG. Branches have no immediate impact on information accuracy, while merges only
have the limited effect discussed before. Because of this, we can be sure that any use
of taint in a sink will at the very least have a possible execution path where the given
value is tainted.

56

8.3 Alternative Reachability Algorithm

As an alternative to the fixed-point algorithm described in Section 7.2, we argue that it
should be possible to create a graph-based algorithm instead. We construct the graph
with each lifetime represented by a node in the graph, excluding those lifetimes which
originate from sanitisers. For all pairs of lifetimes (nodes), if there are any Points in
common between their constraint sets, we create an edge between the nodes. With this,
we can see which lifetimes overlap with each other, and can do a number of operations
on the graph. As examples, we could calculate whether the graph is connected, such
that from any node, we can reach any other node, or we could use a breadth-first search
and check if the sink can be reached from the source.

Crucially, we would choose an operation that would tell us whether a source can reach
any sink in the graph. If there is, it would tell us that there may be an execution path
where tainted output could be used. If there isn’t, it is possible that we can ignore the
source for the purpose of taint analysis.

57

Chapter 9

Conclusion

The goal of this project was to verify whether the borrowing system employed by Rust
could provide any benefits to static analysis. Our solution to this consists of a set of
formalised semantic rules and associated instrumentation, a definition of what borrow-
ing is, a set of predicates which define exceptions to the definition, and a theoretical
basis as to how to employ these semantics on an analysis.

As examples, we chose two analyses wherein we saw potential for improvement via
utilisation of borrowing. One approach was static taint analysis, wherein we applied
our instrumentation to an analysis created by Gústafsson and Njor, as a test-case to test
whether our instrumentation was sound when applied to an actual implementation. The
other approach is purely theoretical, and relates to something akin to data-slicing. We
formulated a hypothesis, which revolves around Rusts non-lexical lifetime to possibly
reduce the state space of a taint analysis.

We argue that our presented theory is sound, and back this up via the presented intuitive,
generalised arguments detailed in Chapter 8. While these are not formal mathematical
proofs, we argue that these arguments should be enough to convince the reader, that
the theory we have presented is correct. In the case of the data-slicing via lifetimes, we
were unable to implement it fully in code, due to us not being able to get the necessary
access in the rustc crate. The majority of content in those crates was marked private,
and thus would have to be used within the crate itself. We would have had to change
the source code of the compiler itself to leverage these features, which we concluded
that we did not have the expertise, nor the resources, to do. We tried to reach out to the
Rust community at large through both the online messaging board Reddit, in addition
to the Rust community chat on the Matrix platform. However, both of these yielded no
results, as we received no answers to any of our questions

This, of course, does not mean that it is impossible, only that it is outside of our current
capabilities. A more refined version of the data-slicing we have created may be able to

58

leverage the accessible features, or use some other way to create the desired graph.

Though we were not able to, we are mostly confident that our presented theory should
be able to be implemented fully, either as designed, or with minor modifications. We
are also confident that the theory described in this report would provide a benefit in
security for a given user-interfacing program. As there would be taint analysis in place
at compile time, warnings and errors could be given earlier, making it easier for devel-
opers to create more secure applications, if they employed this feature.

9.1 Future Works

There are unexplored ideas, or aspects of explored ideas, that were either not directly
considered for implementation or cut from development due to resource restraints, but
whose addition could nonetheless prove beneficial. This section presents these features,
and discusses some advantages they could give.

9.1.1 Accessing rustc Crates

One of the major obstacles during the course of this body of work was the fact that we
only had limited access to the features of certain rustc crates. Specifically, we never
managed to find a feasible way to access the private features pertaining to lifetime
constraints. That is to say, we argue that it should be possible to change or replicate the
source code of the compiler itself to leverage these feature, but that this was outside the
scope of this project.

If given more time, it would be interesting to delve into whether it could be possible
to access these functions - either via changing the source code, replicating the source
code, or some other approach.

9.1.2 Further Use of Instrumentation

An added benefit of our instrumentation is the fact that it should be possible to use it as
the basis for a dynamic taint analysis. As taint is tracked throughout the rules, it should
be possible to define when we would consider something a taint sink, and report it when
the execution causes a tainted value to be used therein. As well, the boolean formulas
for the borrow checking are based on the instrumentation. Should more information be
added to the instrumentation, we would be able to formalise more formulas.

59

9.1.3 Implementation of Reachability Analysis

While we believe that the theory behind the reachability analysis is solid, we argue that
a practical implementation of the theory would aid in either confirming of denying our
hypothesis.

While this problem would have to also overcome the problems presented in Section 9.1.1,
it could potentially serve as a powerful data-slicing tool, were we to successfully ac-
complish this feat.

9.1.4 Expanding Semantics

Our semantics cover only a subset of syntax constructions in MIR, though these are
sufficient for our current taint analysis. Expanding the semantics to cover all of the
missing constructions could lead to more general use for the formalisation.

Some of the missing syntax constructions include, but are not limited to, variable dec-
larations via let statements, type annotations, structs, and indexing in collection vari-
ables such as arrays or tuples.

9.1.5 Creating Semantic Type System for MIR

A large part of this body of work has been to formalise part of the inner workings of
Rust with the MIR layer of the Rust compiler. As such, it might prove beneficial to
extend the formalisation of Rust to also include the type system for MIR.

By formalising the type system in semantics, we could ease the burden of using Rust,
by allowing readers to gain an intrinsic understanding of the capabilities of the types
available in Rust.

9.1.6 Define Semantic Rules for Borrowing

Semantic rules for borrowing were never formalised in this body of work, despite the
primary focus being ascertaining potential benefits of the borrowing system in Rust.
The reason for this is based in the fact that such an attempt would quickly become
complex, and require competences that fall outside of the skill-set we have.

Regardless, we do deem it beneficial to extend the semantics by fully formalising the
rules for borrowing, as this could lead to formal proofs about the safety of borrowing,
or potential flaws therein.

60

Bibliography

[1] Emil Jørgensen Njor and Hilmar Gústafsson.
“Static Taint Analysis in Rust”.
MA thesis. Department of Computer Science, Aalborg University, 2021.
51 pp.
URL: https : / / projekter . aau . dk / projekter / files / 421583418 /
Static_Taint_Analysis_in_Rust.pdf.

[2] Mitre Corporation.
CWE - Common Weakness Enumeration.
URL: https://cwe.mitre.org/index.html (visited on 02/22/2022).

[3] Mitre Corporation.
CWE - Common Weakness Enumeration.
URL: https://cwe.mitre.org/about/index.html (visited on 02/22/2022).

[4] CWE Top 25 Team.
CWE - 2019 CWE Top 25 Most Dangerous Software Errors.
URL: https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.
html (visited on 10/26/2021).

[5] CWE Top 25 Team.
CWE - 2020 CWE Top 25 Most Dangerous Software Weaknesses.
URL: https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.
html (visited on 10/26/2021).

[6] CWE Top 25 Team.
CWE - 2021 CWE Top 25 Most Dangerous Software Weaknesses.
URL: https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.
html (visited on 10/26/2021).

[7] CWE Top 25 Team.
CWE - 2021 CWE Top 25 Most Dangerous Software Weaknesses - Methodology.
URL: https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.
html#methodology (visited on 02/23/2022).

[8] Rust Development Team.
What Is Ownership?
URL: https://doc.rust-lang.org/book/ch04-01-what-is-ownership.
html (visited on 06/16/2022).

61

[9] Rust Development Team.
Introducing MIR.
URL: https://blog.rust-lang.org/2016/04/19/MIR.html (visited on
02/18/2022).

[10] Rust Language Foundation.
2094-nll - The Rust RFC Book.
URL: https://rust-lang.github.io/rfcs/2094-nll.html (visited on
03/01/2022).

[11] Anders Møller and Michael I. Schwartzbach.
Static Program Analysis.
Department of Computer Science, Aarhus University, 2021.
176 pp.

[12] Microsoft.
SQL Injection - SQL Server.
URL: https://docs.microsoft.com/en-us/sql/relational-databases/
security/sql-injection (visited on 02/28/2022).

[13] Confluence.
Taint Analysis - SEI CERT C Coding Standard.
URL: https://wiki.sei.cmu.edu/confluence/display/c/Taint+
Analysis (visited on 11/03/2021).

[14] MIRI.
URL: https://github.com/rust-lang/miri (visited on 03/22/2022).

[15] MIRAI.
URL: https://github.com/facebookexperimental/MIRAI (visited on
03/22/2022).

[16] Rust Compiler Error Index.
URL: https://doc.rust-lang.org/stable/error-index.html (visited
on 04/06/2022).

62

63

Appendix A

Rust Error Codes

Error Code Description
E0312 Reference’s lifetime of borrowed content does not match the ex-

pected lifetime.
E0381 It is not allowed to use or capture uninitialized variables.
E0382 A variable was used after its contents have been moved elsewhere.
E0384 An immutable variable was reassigned.
E0492 A borrow of a constant containing interior mutability was attempted.
E0499 A variable was borrowed as mutable more than once.
E0500 A borrowed variable was used by a closure.
E0501 A mutable variable is used but it is already captured by a closure.
E0502 Borrowed data escapes outside of closure.
E0503 A value was used after it was mutably borrowed.
E0505 A value was moved out while it was borrowed.
E0506 An attempt was made to assign to a borrowed value.
E0507 A borrowed value was moved out.
E0508 A value was moved out of a non-copy fixed-size array.
E0521 Borrowed data escapes outside of closure.
E0596 Tried to mutably borrow a non-mutable variable.
E0597 A value was dropped while it was still borrowed.
E0621 A mismatch between the lifetimes appearing in the function signa-

ture and the data-flow found in the function body.
E0626 A borrow in a generator persists across a yield point.
E0712 A borrow of a thread-local variable was made inside a function

which outlived the lifetime of the function.
E0713 An attempt is made to borrow states past the end of the lifetime of a

type that implements the Drop trait.
E0716 A temporary value is being dropped while a borrow is still in active

use.
E0764 A mutable reference was used in a constant.

64

These are the Rust error codes that are used as a basis to formulate the predicates used
to explore the capabilities of the borrow checker. These error codes have been pulled
directly from the ’Rust Compiler Error Index’[16].

We have elected to exclude errors E0312, E0492, E0621, E0626, E0712, E0713, and
E0764 as we deem them based more in typing errors, or misuse of types or keywords.

65

Appendix B

Predicate Examples

These are small Rust snippets to be used as examples to show the results of errors, when
subjected to the borrow checker. Each example is created to show one predicate not
being upheld, with the example indexes corresponding to the predicates in Section 5.1,
i.e. example 1 in this appendix breaking predicate 1 and so on. All of the examples
shown below have been formatted so that readers can compile them directly using the
Rust compiler or an online compilation tool, such as the Rust Playground (https:
//play.rust-lang.org/) and view the corresponding error messages.

Example 4
1 fn main(){

2 let x: i32;

3 println!("{}", x);

4 }

This example shows a straight-forward code snippet wherein a printing statement found
on line 3 tries to print x, which has not been initialised with a value. The specific error
reports x as a ”possibly-uninitialised variable”.

Example 5
1 fn main(){

2 let mut x = 1;

3 let y = &mut x;

4 x += 1;

5 println!("{}", y);

6 println!("{}", x);

7 }

This example tries to mutate a variable x while it is not the current owner. On line 3 we
temporarily transfer ownership from x to the variable y instead. This results in errors

66

when we then try to mutate x on line 4, as the ownership at that point does not belong
to x.

Example 6
1 fn main(){

2 let mut x = 5;

3 let y = &mut x;

4 let z = &mut x;

5 println!("{}", y);

6 println!("{}", z);

7 }

This example would result in an error due to mutable borrows found on lines 4 and 5.
While these lines of code trigger no errors on their own, an error will occur as soon as
both of them are used simultaneously, as is done via the printing statements on lines 6
and 7.

Example 7
1 fn main(){

2 let x = 1;

3 x += 1;

4 println!("{}", x);

5 }

This snippet will emit an error for line 3, as the line is attempting to mutate the im-
mutable x variable. This snippet can be fixed by either changing line 3 to let x = x

+ 1; or by declaring x with let mut. The former would fully re-declare x, while the
latter would allow x to be mutated.

Example 8
1 fn main(){

2 let x: &i32;

3 {

4 let y: i32 = 2;

5 x = &y;

6 }

7 println!("{}", *x)

8 }

This code snippet shows an example of a borrow not living long enough. As y only
exists on the scope it is declared in, the assignment to x is erroneous, as x attempts to
use the value later.

Example 9
1 fn main(){

2 let a = 0;

3 let mut x = &mut a;

4 println!("{}", x);

5 }

67

This code snippet shows an attempt to mutably borrow an immutable variable. As a
mutable borrow would imply that the variable being referred to is also mutable, this is
impossible.

Example 10
1 fn main(){

2 let mut x = 1;

3 let y = &mut x;

4 let z = x + 1;

5 println!("{}", y);

6 println!("{}", z);

7 }

This example shows a code snippet where we attempt to use x in the assignment to z

on line 4, while it is mutably borrowed by y. This is disallowed, as y is the current
owner of the value behind x, and the assignment would thus have to go through y to be
valid.

Example 11
1 fn main(){

2 let mut x = 1;

3 let y = &x;

4 x += 1;

5 println!("{}", y);

6 println!("{}", x);

7 }

In this example we attempt to mutate a variable while it is immutably borrowed. We
initialise the mutable variable x on line two. We then immutably borrow the contents
of x to the variable y on line 3. This results in an error when we try to mutate x on line
4, as the borrow is still in effect until after line 5.

Example 12
1 fn main(){

2 let mut x = 1;

3 let y = &mut x;

4 let z = &x;

5 *y += 1;

6 println!("{}", z);

7 }

This example shows a code snippet wherein we attempt to create an immutable borrow
of a value that is already mutably borrowed. On line 3 we mutably borrow the variable
x, and then subsequently make an immutable borrow on line 4. This causes an error
as Rust does not support creating immutable references to a value while that value is
mutably borrowed by another variable.

Example 13

68

1 fn main(){

2 let x = vec![1,2,3];

3 let y = &x;

4 let z = x;

5 println!("{}", y[0]);

6 println!("{}", z[0]);

7 }

This example shows a code snippet wherein we attempt to move the contents of a
variable x to another variable z on line 4 after already borrowing x to the variable y on
line 3. This results in an error as you cannot change ownership while the variable is
being borrowed.

Example 14
1 fn main(){

2 let x = vec![1,2,3];

3 let y = x;

4 let z = x;

5 println!("{}, {}", y[0], z[0]);

6 }

This example shows that values cannot be moved from the same variable twice. All of
Rust’s primitive types (with the exception of str) implement the Copy trait, meaning
assignments create a copy of the value. However, some types, like vectors, do not
inherit this trait, and instead have to employ Move operations instead. In the example
above, we initialise a variable x which is assigned a vector on line 2. This vector is
then assigned to the variables y and z on lines 3 and 4. This is not allowed, as we move
the vector from x twice in a row resulting in an error.

Example 15
1 use lazy_static::lazy_static;

2 lazy_static!{static ref X: Vec<i32> = vec![1,2,3];}

3

4 fn main(){

5 let y = X;

6 println!("{}", y[0]);

7 }

In this example we try to move a static variable in the form of the vector X into another
variable y. Of note, is the import of the lazy static macro from the crate of the
same name. We include this macro, as you currently (for Rust stable 1.59.0) cannot
use functions in static declarations if said functions are not constant. This includes
the vec! macro, but this can be bypassed via the lazy static macro seen on line
3. Once we try to move this static reference X on line 5 we get an error, as we cannot
move a static variable.

Example 16
1 fn main(){

69

2 let x: [String; 2] = [String::from("Hello"), String::from("world!")];

3 let y = x[0];

4 println!("{}", y);

5 }

In this example, we create an array containing the String type. String does not
implement the Copy trait, making this array a non-Copy collection. In general, we say
that any collection containing a uniform type, where the type does not implement the
Copy trait, is a non-Copy collection. As the elements in a non-Copy collection do not
copy on assignment, the assignment on line 3 would try to move the value out of the
vector, which is not allowed.

Example 17
1 fn main(){

2 let x = vec![1,2,3];

3 let y = &x;

4 let z = *y;

5 println!("{}", z[0]);

6 }

This code snippet shows an example wherein we attempt to move the value housed in a
variable x. We create the immutable reference y line 3, then attempt to move the vector
to the variable z on line 4. This results in an error, as Rust does not support moves
made from inside a reference.

Example 18
1 fn main(){

2 let mut x = 5;

3 let y = &mut x;

4 add_10_to_ref(y);

5 }

6

7 fn add_10_to_ref(num_in: &mut i32) {

8 let x = &num_in;

9 || { *num_in += 10; };

10 println!("{}", x);

11 }

This code snippet shows an example where the principle of unique access in closures
is violated. Closures, or anonymous/lambda functions in Rust, require unique access
to all variables that are used in them, for the entirety of the lifetime of the closure.

Example 19
1 fn main(){

2 let a = 0;

3 let mut x: &i32 = &a;

4

5 let mut convoluted_assign = |n: &i32|{ x = n; };

6 convoluted_assign(&123);

7 }

70

This code snippet shows how a borrow would escape from a closure. The closure takes
a reference as argument and assigns it to x from the surrounding scope. However, as
the closure borrows the reference, the reference is only valid within the closure, and as
such cannot exist outside of the closure.

71

Appendix C

Gústafsson and Njor Semantics

C.1 MIR Syntax

z ∈ Z
i ∈ Ident

Where z is a literal integer value, and i is any string that matches the regular expression
[a-zA-Z]+.

bop ∈ BinOps = {Add,Sub,Mul,Div,Rem,BitXor,BitAnd,BitOr,Shl,Shr,Eq,Lt,Le,Ne,Ge,Gt}
uop ∈ UnOps = {Not,Neg}

P ∈ Places ::= { n | n ∈ N0}
O ∈ Operands ::= move P | copy P | const z

R ∈ Rvals ::= O
| bop(O1, O2)

| uop(O)

| &[mut]P
β ∈ Bid ::= {bbn | n ∈ N0}

72

S ∈ Stmt ::= P = R;
X ∈ Targets ::= z: β

T ∈ Tmnt ::= goto -> β;

| switchInt(O) -> [[X ,]∗ otherwise: β];

| assert(O, z) -> β;

| P = i(O0, ...,On) -> β;

| i(O0, ...,On);

| return;

{S∗T} ∈ Body ::= Stmt∗×Tmnt
B ∈ Block ::= β: {S∗T}

F ∈ Fn ::= fn i(O∗) {B+}

M ∈Mir = F+

ξ ∈ Locations
e ∈ Environment = Places→ Locations

ζ ∈ Store = Locations→ (Z⊤⊥+Locations)
LocationType = Locations→{mut, imut}

prg ∈ Program = Ident→ Function
f un ∈ Function = Bid→ Body
cs ∈ CallStack = (Bid×Places×Environment×Function)∗

ConfS = Stmt × Store
ConfB = Body × CallStack × Store
→S ⊆ ConfS×Store
→B ⊆ ConfB×ConfB

Oeval(O,ζ ,e) =

z, if O = constz
ζ ◦ e(P), if O = moveP
ζ ◦ e(P), if O = copyP

Reval(R,ζ ,e) =

Oeval(O,ζ ,e), if R = O
bop(O1,O2), if R = bop(O1,O2)

uop(O), if R = uop(O)

ζ ◦ e(P), if R = &[mut]P
BorrowType = P→{borrowednot ,borrowedimut ,borrowedmut}

73

C.2 MIR semantics

[Ass]

⟨P = R,ζ ⟩ →S ζ [e(P) 7→ Reval(R)]
(BindingType(e(P)) = mut ∨ζ ◦ e(P) =⊥) ζ ◦ e(P) ̸=⊤

(R = (O∨uop(O))∧O ̸= moveP)∨ (R = bop(O1,O2)∧O1 ̸= moveP′∧O2 ̸= moveP′′

prg ⊢ ⟨{P = R; S∗T},(β ,P,e, f un) :: cs,ζ ⟩
→B ⟨{S∗T},(β ,P,e, f un) :: cs,ζ [e(P) 7→ Reval(R)]⟩

[AssMove1]

⟨P = R,ζ ⟩ →S ζ [e(P) 7→ Reval(R)] (BindingType(e(P)) = mut ∨ζ ◦ e(P) =⊥)
ζ ◦ e(P) ̸=⊤ O = moveP′ R = (O∨uop(O))

prg ⊢ ⟨{P = R; S∗T},(β ,P,e, f un) :: cs,ζ ⟩
→B ⟨{S∗T},(β ,P,e, f un) :: cs,ζ [e(P) 7→ Reval(R),e(P′) 7→ ⊤]⟩

[AssMove2]

⟨P = R,ζ ⟩ →S ζ [e(P) 7→ Reval(R)] (BindingType(e(P)) = mut ∨ζ ◦ e(P) =⊥)
ζ ◦ e(P) ̸=⊤ O1 = moveP′ O2 ̸= moveP′′ R = (bop(O1,O2))

prg ⊢ ⟨{P = R; S∗T},(β ,P,e, f un) :: cs,ζ ⟩
→B ⟨{S∗T},(β ,P,e, f un) :: cs,ζ [e(P) 7→ Reval(R),e(P′) 7→ ⊤]⟩

[AssMove3]

⟨P = R,ζ ⟩ →S ζ [e(P) 7→ Reval(R)] (BindingType(e(P)) = mut ∨ζ ◦ e(P) =⊥)
ζ ◦ e(P) ̸=⊤ O1 ̸= moveP′ O2 = moveP′′ R = (bop(O1,O2))

prg ⊢ ⟨{P = R; S∗T},(β ,P,e, f un) :: cs,ζ ⟩
→B ⟨{S∗T},(β ,P,e, f un) :: cs,ζ [e(P) 7→ Reval(R),e(P′′) 7→ ⊤]⟩

[AssMove4]

⟨P = R,ζ ⟩ →S ζ [e(P) 7→ Reval(R)] (BindingType(e(P)) = mut ∨ζ ◦ e(P) =⊥)
ζ ◦ e(P) ̸=⊤ O1 = moveP′ O2 = moveP′′ R = (bop(O1,O2))

prg ⊢ ⟨{P = R; S∗T},(β ,P,e, f un) :: cs,ζ ⟩
→B ⟨{S∗T},(β ,P,e, f un) :: cs,ζ [e(P) 7→ Reval(R),e(P′) 7→ ⊤,e(P′′) 7→ ⊤]⟩

[AssRe f :mut]

⟨P = R,ζ ⟩ →S ζ [e(P) 7→ e(P′)] (BindingType(e(P)) = mut ∨ζ ◦ e(P) =⊥)
ζ ◦ e(P) ̸=⊤ R = &mutP′ BorrowType(P′) = borrowednot

prg ⊢ ⟨{P = R; S∗T},(β ,P,e, f un) :: cs,ζ ⟩
→B ⟨{S∗T},(β ,P,e, f un) :: cs,ζ [e(P) 7→ e(P′)]⟩

[AssRe f :imut]

⟨P = R,ζ ⟩ →S ζ [e(P) 7→ e(P′)] (BindingType(e(P)) = mut ∨ζ ◦ e(P) =⊥)
ζ ◦ e(P) ̸=⊤ R = &P′ BorrowType(P′) ̸= borrowedmut

prg ⊢ ⟨{P = R; S∗T},(β ,P,e, f un) :: cs,ζ ⟩
→B ⟨{S∗T},(β ,P,e, f un) :: cs,ζ [e(P) 7→ e(P′)]⟩

[Goto]
prg ⊢ ⟨{goto -> β;},(β ′,P′,e′, f un′) :: cs,ζ ⟩ →B ⟨ f un′(β),(β ′,P′,e′, f un′) :: cs,ζ ⟩

74

[SwitchInt1]
zi = Oeval(O,ζ ,e′′) i ∈ {i, ...,n}

prg ⊢ ⟨{SwitchInt(O) -> [z1 : β1, ...,zn : βn, otherwise: β
′];},

(bbn′′,P′′,e′′, f un′′) :: cs,ζ ⟩ →B ⟨ f un′′(βi),(β
′′,P′′,e′′, f un′′) :: cs,ζ ⟩

[SwitchInt2]
∀z|z ∈ {z1, ...,zn} : z ̸= Oeval(O,ζ ,e′′)

prg ⊢ ⟨{SwitchInt(O) -> [z1 : β1, ...,zn : βn, otherwise: β
′];},

(bbn′′,P′′,e′′, f un′′) :: cs,ζ ⟩ →B ⟨ f un′′(β ′),(β ′′,P′′,e′′, f un′′) :: cs,ζ ⟩

[Assert]
z = Oeval(O,ζ ,e′)

prg ⊢ ⟨{Assert(O, z) -> β;},
(β ′,P′,e′, f un′) :: cs,ζ ⟩ →B ⟨ f un′(β),(β ′,P′,e′, f un′) :: cs,ζ ⟩

[CallNormal]

ξifresh e′ = [j 7→ ξ j, ...]

ζ ′ = ζ [ξ j 7→ Oeval(O j,ζ ,e′),e′(Pj) 7→

{
⊤, if O j = movePj

ζ ◦ e′(Pj), otherwise
, ...]

j ∈ {0, ...,n} (LocationType(e(P)) = mut ∨ζ ◦ e(P) =⊥
prg ⊢ ⟨{P = i(O0, ...,On) -> β;},(β ′,P′,e′, f un′) :: cs,ζ ⟩ →B

⟨prg(i)(bb0),(β ,P,e, prg(i)) :: (β ′,P′,e′, f un′) :: cs,ζ ′⟩

[CallPanic]

ξifresh e′ = [j 7→ ξ j, ...]

ζ ′ = ζ [ξ j 7→ Oeval(O j,ζ ,e′),e′(Pj) 7→

{
⊤, if O j = movePj

ζ ◦ e′(Pj), otherwise
, ...]

j ∈ {0, ...,n} (LocationType(e(P)) = mut ∨ζ ◦ e(P) =⊥ ζ ◦ e(P) ̸=⊤
prg ⊢ ⟨{i(Oo, ...,On);},(β ′,P′,e′, f un′) :: cs,ζ ⟩

→B ⟨prg(i)(bb0),(, ,e, prg(i)) :: (β ′,P′,e′, f un′) :: cs,ζ ′⟩

[Return]
ζ ′ = ζ [e′(P) 7→ e(0)]

prg ⊢ ⟨{Return;},(β ,P,e, f un) :: (β ′,P′,e′, f un′) :: cs,ζ ⟩
→B ⟨ f un′(β),(β ′,P′,e′, f un′) :: cs,ζ ′⟩

75

