
Summary

The modern world is relying increasingly on software solution for not only simple problems such as
smart-housing, but also critical systems such as healthcare and banking. Thus it is extremely important
that no critical bugs or unexpected behaviour, can be found in these critical systems. Therefore testing
applications for functionality, and correct behaviour is a prominent part of a developers job when creat-
ing new applications, and recently an alternative testing method has gained traction, fuzzing. Fuzzing
is different from traditional testing methods due to the mindset, instead of searching through the ap-
plication, and making sure of correct behaviour and functionality, we search for bugs and unexpected
behaviour. In the correct context, fuzzing is extremely effective tool, as an example Google has been able
to uncovered more than 25,000 defects in their products and more than 22,000 problems in open-source
applications[15], and B. Miller shows that utilising the same fuzzing tools, as was first introduced in
the 1980’s, today is still just as effective on command-line tools in popular unix-based distribution only,
where B. Miller found that the failure-rate was still significant with 12% on Linux, 16% on MacOS and
19% on FreeBSD[40].

Recent years the concept of IoT has increased in popularity. Systems of small devices are used to
monitor and control smart-home systems as well as industry. Google introduced the Thread protocol
in 2017 [2] to bridge this gap between smart-home networks and industry, by utilising already known
protocols such as IEEE 802.15.4, 6LoWPAN, and making it all addressable via IPv6 addresses [47]. For
Thread, just like all other IoT protocols, an important aspect of the protocol is security, resulting in the
need for a fuzzer that can fuzztest a Thread implementation, and hold it up against the specification.

In this report we present a behavioural-analysing mutation-based blackbox fuzzer for the networking
protocol Thread, Thread-Fuzz. Thread-Fuzz is the proof of concept of a new generation of fuzzers that
search for unexpected behaviours other than just crashes and memory corruption, namee behavioural
fuzzers. Thread-Fuzz introduce the idea by implementing a state machine, which checks if the server
state of the target satisfy the specification, if not it gets logged with an indication level matching that
of a crash. Thread-Fuzz utilises the mutator of a fork of the well established tool AFL, namely AFL-
Net, contrary to AFL, AFLNet focuses on network protocols. In order to understand the idea behind
Thread-Fuzz we introduce the protocol stack of Thread and a more detailed description of MLE, which
is the novel part of Thread. We also introduce the terms black-, grey- and whitebox fuzzers as well as
mutation and generation based fuzzers, in order to better place Thread-Fuzz.

As we discovered, AFLNet required that applications was instrumented in order to to utilise the
state-aware fuzzing built into AFLNet, and due to the fact that we were unable to compile OpenThread
with the custom GCC compiler that AFLNet provides, we were unable to run AFLNet with its full set
of functionalities. Instead we introduced our own more intelligent StateMachine within a router between
AFLNet and OpenThread called the Monitor-component, the Monitor-component has a build in parser
for Threads messaging protocol MLE, and a build in StateMachine with knowledge about the sequence
of messages that is correct according to the Thread specification. With this extension of AFLNet, we
were able to find a buffer overflow vulnerability in OpenThread. Discovering this buffer overflow has
the potential to be a significant error, even if it is not possible to exploit this bug for code execution,
it could still be utilised for making entire Thread networks go down without much effort. In addition,
Thread-Fuzz was put through a series of tests, to assess how well it would discover introduced bugs in
Thread, and it was able to find six out of 10 of the introduced errors.

Lastly, we conclude that in spite of it being rough around the edges, and needing significant work
to be able to compete with other protocol fuzzers, the concept of behavioural fuzzing is novel, and we
demonstrate with Thread-Fuzz a proof-of-concept that not only is it feasible, but it also assisted us in
discovering the buffer overflow error.´



Thread-Fuzz: Mutation-based Behavioural Blackbox Fuzzing of

Thread

Lars Bo P. Frydenskov Asger G. Weirsøe

Cassiopeia, Department of Computer Science, Aalborg University, Denmark

{lfryde17, aweirs15}@student.aau.dk

Abstract The modern world is increasingly reliant on software for not only everyday use
cases but also critical systems such as healthcare and banking, and for these systems is it
extremely important there are not any bugs or unexpected behaviours present. A method to
avoid this is testing, up until now testing has mostly been unittesting, QA-testing and slow
release strategies, but recently an alternative method for testing has gained more popularity,
fuzzing. Fuzzing is different from traditional testing methods in regards to the mindset,
instead of testing for correct behaviour and functionality, the focus is on trying to find bugs
and unexpected behaviour. In the right cases can fuzzing be extremely effective Google has,
as an example, uncovered more than 25,000 defects in their products and more than 22,000
problems in open-source projects[15] and B. Miller utilised fuzzing against command line tools
in popular distributions in 2020 where failure rates of 12% on Linux, 16% on MacOS and
19% on FreeBSD was found[40]. In this report we present a mutation-based blackbox fuzzer
for the networking protocol Thread, Thread-Fuzz. Thread-Fuzz is the proof of concept of a
new generation of fuzzers that search for unexpected behaviours other than just crashes and
memory corruption, behavioural fuzzers. Thread-Fuzz introduce the idea by implementing a
state machine, which checks if the server state of a target satisfy the specification. Thread-
Fuzz is tested against OpenThread, the open source implementation of Thread. During our
testing a buffer overflow is found which potentially can lead to unauthenticated remote code
execution. Thread-Fuzz is also tested against ten introduced bugs in OpenThread where it
found six of them. We conclude that Thread-Fuzz is unpolished but functional.

Contents

0 Introduction 4

1 Thread 5
1.1 Goals of thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Thread Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Forwarding Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Full Thread Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Minimum Thread Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Thread Leader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Border Router Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Protocol Stack of Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 IPv6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.4 UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thread Network Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Mesh Link Establishment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



1.6 Attaching-to-Parent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.1 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Parent Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.3 Parent Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.4 Child ID Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.5 Child ID Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 The Thread Implementation: OpenThread . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Fuzzing 16
2.1 Fuzzing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Blackbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Whitebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Greybox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Mutation and Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.5 AFLNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Implementation 22
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The Monitor-component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 StateMachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Changes To AFLNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 CCookie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Changes To OpenThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Direct connection to OT through UDP . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Print to file when sending message . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Command line dataset and automatic instantiation . . . . . . . . . . . . . . . . . . 29

4 Evaluation 29
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 C - For Crash Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 T - For Unexpected Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 C0 - Base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Rest of the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Discussion 36
5.1 Categorisation of Thread-Fuzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Usability of AFLNet and The Promises of Fuzzing . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Thread-Fuzz in Hindsight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Related Work 38

7 Conclusion 39

8 Future Work 39

A Thread MLE TLVs 42

B Description of Variables Used in the Thread Network Data sets 43
B.1 Valid Prefix Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.2 External Router Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.3 6LoWPAN Context ID Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.4 Server Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2



C Code changes in OpenThread 44
C.1 Direct connection to OpenThread with UDP . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.2 Instantiation of a Thread node without CLI-interactions . . . . . . . . . . . . . . . . . . . 46
C.3 Write to file when sending UDP message . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
C.4 Remove decryption from HandleUDPReceive . . . . . . . . . . . . . . . . . . . . . . . . . 48

D An image of the testing setup 49

References 50

Acronyms 52

Glossary 54

3



0 Introduction

Today the world is heavily influenced by automatic systems and computers, and critical systems such as
healthcare and banking are relaying on these systems. It is therefore immensely important that these
systems behave correctly, and in order to ensure features and correct behaviour testing have been big
part of developing new software. While the traditional method of testing, such as user test, system test
and unit testing is widely used, it is clearly not effective enough, since each year, even each month we see
examples of faulty or insecure behaviour in software, which malicious agents utilise for gaining scrutiny
over systems. Recently it was a sudo exploit (CVE-2021-3156) [16] that made headlines, where a simple
off by one error results in a heap-based buffer overflow, which can be used by to get the highest privileged
access. Another example is the Heartbleed bug [17] found in the SSL implementation OpenSSL, where
the a client implicitly trust a request for a user-defined size of a buffer, and thus a malicious user were
able to dump the working memory and therefor read sensitive data. A method that can assist in finding
these small but critical bugs is fuzzing
. The idea of fuzzing was first officially exercised in 1988 by B. Miller [37], but have in the last few years
risen in popularity. The primary difference compared to other test methods are the approach. Where
traditional testing is about testing features and correct behaviour, fuzzing is the opposite. Fuzzing is
the search for unexpected behaviour, memory corruption and crashes. Recently it has evolved into three
branches, they are are named after how they approach the target application, blackbox, greybox and
whitebox fuzzing. The first branch is blackbox fuzzing, which is the same kind of fuzz method that B.
Miller did in 1988, simply by generating random inputs to a target application and then observing the
output in the search of crashes or unexpected behaviour. While this is a rather naive way of testing, it
can be sufficient in the search for crashes, in fact did B. Miller et al. find in 2020 failure rates of 12% on
Linux, 16% on MacOS and 19% on FreeBSD of 75t̃ested applications on each platform. Furthermore due
to its nature, blackbox fuzzig is widely adopted in the cyber security community, as a automated tool to
find obvious attack vectors in applications, as tools such as Burp Suite[10], SQLMap[53] and WFuzz[57]
is used in red teaming and penetration testing. Greybox and whitebox fuzzing are closer related, since
they both implement knowledge about the implementation in order to do more effective and efficient
fuzzing, instead of treating the application naively as in blackbox fuzzing.

Greybox fuzzing is a smarter fuzzing method, by utilising instrumentation on the targeted applica-
tion, the fuzzer is able to keep track of branches within the application, that has been explored. This
though, requires direct access to the source-code, as it needs to be compiled in a way, where the fuzzer
knows which state the application is in, in any given point of time. Greybox fuzzing requires more of a
setup, than blackbox fuzzing, but can none the less be an effective tool in finding bugs, in fact Google
uncovered more than 25,000 defects in their products and more than 22,000 problems in open-source
projects [15]. The greybox fuzzing methodology is heavily influenced by the tool American Fuzzing
Lop (AFL) [3] which was release in 2013. The success of AFL relies in usability, which allows user to
relatively quick run a fuzz test against any C or C++-based implementation with little knowledge about
the target, but access to the source code. AFL provides a custom GCC and G++ compiler, which is
used to compile the target application and injecting instrumentation after compilation. The instrument-
ation takes the form by placing logging statements in each block, it is able to differentiate execution
paths for each input, and rank inputs in order to mutate inputs-of-interest to cover a bigger part of the
code. AFL is no longer maintained but author is refers to the community maintained project American
Fuzzing Lop++ (AFL++)[55, 19]. Although AFL has reached its end-of-life regarding development it
is still considered the ”state of the art” greybox fuzzer and is still used as the base for or compared up
against in new fuzzers, some examples of different branches of AFL is; American Fuzzing Lop Net (AFL-
Net) [49], with a focus on fuzzing network protocols. Win AFL [24], with a focus on fuzzing windows
binaries. AFLGo [7], with a focus on fuzzing applications written in the GoLang language. LibAFL [1],
is a library that provides mutators from AFL and other fuzzers. New forks of AFL is still being cre-
ated with the most recent is SnapFuzz[5], which was presented this year and is a network protocol fuzzer.

The last fuzzing approach is whitebox fuzzing, which utilises the symbolic execution and constraint
solving. While symbolic execution is not a new method, in fact it was presented around 1976 in [33] by
James C. King, it is major part of whitebox fuzzing. Many whitebox fuzzers present symbolic executa-

4



tion, some examples of this is; SAGE [23], BuzzFuzz [21], Driller [54] and [22]. The idea behind whitebox
fuzzing is to analyse the whole source code of the target application by the use of symbolic execution,
and then create a path condition for each path and then by constraint solving finding which inputs leads
to what execution paths. While this makes the fuzzing more precise, it is of the cost of time analysing
the source code, this is mainly due to the problem of path explosion [34] and the satisfiability modulo
theories problem [6].

All three fuzzing approaches are still influenced by the approach of finding crashes, memory corruption
or related bugs. A natural step of fuzzing is to look upon other kind of behaviours, such as; does the
implementation satisfy the specification. The area of verifying the correctness of applications is a popular
field within computer science. An acknowledged methodology is model checking [13], which is the method
of constructing a model of a system and then checking if the properties of certain queries hold for the
model. One can imagine a fuzzing tool which sends generated inputs to an target application, then
monitoring the states of the target and checking whether the states achieved satisfies the specified
queries.

As mentioned as automatic systems increase in popularity, so does the field of Internet of Things
(IoT). A recent IoT protocol release by Google Inc’s Nest Labs back in July 2014 is Thread [51]. Given
that it was developed by one of the major tech firms, is IPv6 based, and has been used in the Google
Nest Wifi router devices from 2019, the Thread protocol may become the new de facto standard of IoT
protocols. [47]. Though as the protocol is young, there are as of now only two implementations that we
know of, the closed-sourced Thread implementation developed internally by ThreadGroup, which also
authors the specification, and the open-source implementation OpenThread.

This leads to the contribution of of report, the mutation-based behavioural blackbox fuzzer for
Thread, Thread-Fuzz. Thread-Fuzz is tested against the open source implementation of Thread, Open-
Thread (OT) and was able to find introduced bugs aswell as one non-introduced potential bug.

Paper outline We will start by presenting Thread and highlight key features of Thread in Section 1.
Then in Section 2 a more detailed introduction to fuzzing, where the different approaches and methods of
fuzzing are presented and the tool AFLNet. In Section 3, we present the tool Thread-Fuzz, the workings
of the tool, some of the challenges met and design decisions. Then in Section 4 are we testing Thread-
Fuzz, we describe the testsetup on different tests, as well as the results of these tests. In Section 5 we
will discuss the design of Thread-Fuzz fuzz and also the general fuzzing approach with a critical look.
Lastly in Section 6 are related work presented, in Section 7 we present the conclusion of this report and
in Section 8 is the future work discussed.

1 Thread

Thread is an IoT protocol backed by Google, which utilises well-known protocols, such as Internet
Protocol, Version 6 (IPv6), User Datagram Protocol (UDP) and many more. In combination with
the development of new methods and protocols, Thread is able to maintain connectivity, security, and
availability throughout a Thread network. Thread is designed with compatibility, security, low power
consumption, scalability, with future technology in mind and as it is based on the IPv6 protocol it enables
Thread devices to interact with other IPv6 networks. [2, 45] In this section we will walk through some
of the major parts that Thread provides, such as the roles, the protocol stack and MLE. We will also
give an example for attaching-to-parent, and lastly we will talk about the open source implementation
of Thread, called OT. Much of this section is based on the unpublished article “Towards Modelling and
Verification of the Thread Protocol” by C. S. Andersen et al. [4]

1.1 Goals of thread

To assist in the understanding of the design choices made with the Thread specification, in this section
we are going to cover Thread’s goals. The primary purpose of the Thread protocol is to standardise how
smart devices are integrated into intelligent households and industrial environments, where networks can
seamlessly adopt new devices, handle device failures, and manage traffic securely.

5



The main goals of Thread are listed below [45] [2, p. 1-3]:

1. Simplicity; Threads should be simple to configure, install, and maintain.

2. Reliability; A Thread network must operate without a single point of failure, continuously provi-
sion new devices, troubleshoot the network, and consolidate partitions.

3. Efficiency; A Thread network must be efficient, both in networks with few and many nodes.

4. Security; A Thread network must perform operations securely within the network, allowing nodes
in the network have a secure communication, and without the risk of malicious devices to join the
network.

5. Scalability; Thread should be able to scale up to hundreds of nodes, without suffering from
performance issues.

Although the goals are broad and difficult to measure, they are covered in part by the protocols that
make up Thread, which are already well known and widely adopted. We will briefly cover some of
the most relevant functions, roles or general information in the coming sections, where a more detailed
description and clarification of these topics can be found in the unpublished article “Towards Modelling
and Verification of the Thread Protocol” by C. S. Andersen et al. [4]

1.2 Thread Roles

Thread introduces different roles to accomplish its goals, which include eliminating single points of failure
and reducing the power consumption of battery-powered devices, as stated in Section 1.1. Thread Routers
are comprised of three major groupings; Border, Leader, and Router Eligible End Devices (REEDs), as
opposed to more common host devices; End Devices (EDs), which may be more connected in the case
of Full End Devices (FEDs) and less linked in the case of Sleepy End Devices (SEDs).

Every Thread Network supports a maximum of one Leader, 32 Routers, and 511 EDs per Router, for
a total of 16351 devices per network. If the number of Routers falls below 16, a REED will be promoted
if possible.

In this section, we describe the various device types and roles in Thread and highlight the primary
function of each role. Each role is listed in Table 1b with associations to its legend in later figures and
device type; Full Thread Device (FTD) and Minimal Thread Device (MTD).

1.2.1 Forwarding Roles

Nodes in a Thread Network are defined by two forwarding roles: Routers and EDs. When new devices
desire to join a Thread Network, routers forward packets and provide commissioning services. An ED
transmits packets to a single Router and can disable its transceiver to conserve energy. Figure 1a depicts
EDs as blue circles and their corresponding perimeters, and Routers as pentagons. As it can be seen,
Routers and EDs have Parent-Child relationships, and an ED can only have one Router.

1.2.2 Full Thread Device

A FTDs transceiver is constantly turned on and it subscribes to the all-router multicast addresses, where
all link setup and advertisement messages are sent, as detailed in Section 1.5, and it maintains mappings
between Thread RLOCs and IPv6 addresses, as detailed in Section 1.3.3. Possible FTDs functions
include Router, REED, and FED. The distinction between a REED and a FED is that a REED can, if
necessary, be promoted to Router. Though, this does not apply to a FED. [2, 45]

In the following instances, upgrading and downgrading of devices and Routers is possible:

• When a device wants to join the network but there are no routers within range, a REED requests
that the Leader promote itself to a Router.

• A REED is upgraded when the minimum number of Routers in the network is not satisfied.

• A REED is degraded when the maximum number of routers in the network is reached.

6



(a) A Thread Network showing every type of
device [46]. Legend described in table 1b. Figure
from [45].

Role Device
Thread Leader (Black pentagon) FTD
Border Router (Dark blue square) FTD
REED (Dark blue circle) FTD
FED (Dark blue perimeter) FTD
MED (Light blue circle) MTD
SED (Light blue perimeter) MTD

(b) Roles Thread devices can have in a Thread Net-
work. Rows indicates roles and columns device types.

Figure 1: An example of a Thread Network with its associated device types.

• A Router is demoted to a REED if it has no children and the minimum number of Routers has
been reached.

This demonstrates Thread’s ability to dynamically balance the number of Routers within a Thread
Network.

1.2.3 Minimum Thread Device

A MTD does not subscribe to the multicast address for all routers and instead sends all packets to its
parent. A MTD has two possible roles: SED and Minimal End Device (MED). MED and SED are
EDs and cannot become Routers. A MED’s receiver and transceiver are always active so that it may
connect with its parent Router. In order to preserve power, a SED’s receiver and transceiver are typically
disabled. It regularly awakens to poll its parent Router for messages, which necessitates a synchronisation
step to create this form of communication.

1.2.4 Thread Leader

The Thread Leader is a Router that handles the configuration state of the Thread Network. The Thread
Leader is dynamically self-selected for fault tolerance and continuously distributes configuration inform-
ation to all other network devices, including active Border Routers, valid prefixes, and commissioning
information. A Leader also appoints active Commissioners who are in charge of joining devices.

1.2.5 Border Router Device

A Border Router’s function is to provide an interface between a Thread Network and a non-Thread
Network. Any FTD can operate as a Border Router in the network. A Border Router performs standard
IP packet routing between the IEEE 802.15.4 link-layer interface and typically either Wi-Fi or Ethernet
IP link-layer interface, as depicted in Figure 1, where the Border Router, denoted by the square, interfaces
with the Thread Network and a non-Thread Network, denoted by the cloud. This route is transparent
for IP communication end-to-end. Although a Border Router does not handle commissioning, it does
provide a Commissioning Protocol Border Agent, which simplifies the connection of new devices to the
Thread Network. This Thread role is comparable to the Gateway device type in other Internet of Things
protocols.

A border router must offer the following capabilities:

• IP communication in both directions between the Thread and Wi-Fi/Ethernet networks

• Service discovery using bidirectional mDNS and SRP

7



• Thread-over-infrastructure that combines IP-based Links with Thread partition

• External Thread Commissioning to authenticate Thread devices and allow them to join Thread
Networks

1.3 The Protocol Stack of Thread

The Thread Protocol is based on already publicly available protocols, these protocols are the basis for
Thread, and it is thus referred to as the Protocol Stack of Thread. Figure 2 shows the protocol stack of
Thread, where IEEE 802.15.4 provides the base for the Thread protocol [9, 25], and is also responsible
for the Physical- and MAC layer of the protocol stack. Thread then expands on the IEEE 802.15.4
standard, with IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) and IPv6 for the
network layer, and UDP for the transport layer. In the Figure 2 the sections with blue background are
the part of the protocol stack, that Thread provides and can be referred to as the Thread protocol.

Thread - Protocol stack

UDP

Transport layer

IPv6

6LoWPAN

Network layer

IEEE 802.15.4

PHY layer

IEEE 802.15.4

MAC layer

Applications

Application layer

Applications

Se
cu

rit
y 

/ C
om

m
is

si
on

in
g

Figure 2: The Thread Protocol Stack, which Stack is composed of the following: For the physical- and
MAC Layer; IEEE 802.15.4. For the Network Layer; 6LoWPAN and IPv6. For the Transport Layer;
UDP, and we have the application layer. Everything that is marked with a blue background is the
Thread Layers.

As our focus of this article is to methodise fuzzing of application layer of OT, most of the protocols
are surpassed, thus we will only describe the different protocols briefly in this section, a more detailed
description is available in the unpublished article “Towards Modelling and Verification of the Thread
Protocol” by C. S. Andersen et al. [4]

1.3.1 IEEE 802.15.4

IEEE 802.15.4 is a wireless-network standard, and is also known as the mesh-standard as it provides the
basis for a mesh networks lower layers in the OSI reference model. [9] The main requirement for IEEE

8



802.15.4 is that it should provide these layers for a low cost, low power, and low speed Wireless Personal
Area Network (WPAN), meaning that it is designed for battery-powered communication devices. The
physical layer of the IEEE 802.15.4 provides a link to the physical medium, such as the radio etc.
The MAC layer of IEEE 802.15.4 provides the basic functionality of the MAC layer, such as frame
transmission, frame reception, and frame filtering. [9] The Thread specification relies on IEEE 802.15.4
to provide reliable end-to-end communication. [25] In addition to Thread, IEEE 802.15.4 lays the ground
for other wireless communication protocols such as ZigBee, 6LoWPAN and wirelessHART, which are all
an extended IEEE 802.15.4 by definition of higher network layers. [27, 4]

1.3.1.1 Device Types

IEEE 802.15.4 defines two groups of devices, Full Functioning Device (FFD) and Reduced Function
Device (RFD). A FFD is a fully functional node, which means that an FFD node can send, receive, and
forward data. Furthermore, a FFD node is also capable of acting as a coordinator, which is a special
node in WPAN responsible for network configuration and online network management. [9]

RFD is a node with reduced function level. RFD is a kind of simple device with low power con-
sumption and limited resources, usually they act as a end-device or leaf-node of the topology. Since
RFDs are simple device types, they can only communicate with FFD types of devices. Furthermore,
they are incapable of relaying messages or acting as dispatchers. [9] Note how these device types closely
correspond to Thread device types, as described in Section 1.2; FFD is similar to FTD, RFD is similar
to MED/SED. [9, 2]

1.3.1.2 Network Topologies

IEEE 802.15.4 defines two types of network topologies, star network and peer-to-peer network. A peer-
to-peer network is a network topology where nodes are connected to each other in a mesh network, while
a star network is a network topology where nodes are connected to each other in a star network with the
Coordinator in the middle. [9]

Coordinator

FFD

FFDFFD

RFD RFD

RFD

(a) IEEE 802.15.4 star topology with a central coordin-
ator, which all notes communicate with/through.

Coordinator

RFD

RFDRFD

FFDFFD

FFD

(b) IEEE 802.15.4 peer-to-peer topology where nodes
communicate directly or through the coordinator

Figure 3: IEEE 802.15.4 topology where grey nodes are of type FFD, blue nodes of type RFD and the
coordinator is black. Thread utilises the peer-to-peer network topology provided by IEEE 802.15.4.

9



1.3.2 6LoWPAN

As per Section 1.1, the Thread group picked IPv6 for scalability, interoperability, and connection. As
IEEE 802.15.4 defines a maximum packet size of 127 bytes, IPv6 is not directly compatible with IEEE
802.15.4, thus Thread overcomes this mismatch using 6LoWPAN. [26]

6LoWPAN is a protocol specification for low-powered wireless communication like IoT devices. [42]
6LoWPAN was meant to deliver IP packets over an abstract network, but it defines how to send them
through IEEE 802.15.4 lines. [42, 26] Furthermore, 6LoWPAN handles this by fragmenting IPv6 pack-
ets, which are reassembled by the recipient. [26] 6LoWPAN compresses IPv6’s 40-byte headers to save
transmission overhead and energy [26, 42]. Header compression allows sending the smallest IPv6 packet
in 4 bytes [42].

1.3.3 IPv6

IPv6 is the top layer of Thread’s network layer in the protocol stack. IPv6 is a sophisticated networking
protocol that adds capabilities to Thread such as end-to-end routing compatibility, internet-wide ad-
dressability, and a 128-bit address space. In this part, we examine how Thread utilises IPv6 addressing
and IPv6 scopes, as well as a brief overview of the important capabilities IPv6 provides in comparison
to its predecessor IPv4.

1.3.4 UDP

UDP is the making out the Transport layer of Thread’s protocol stack, it is used as an abstraction
between the network layer and the application layer. UDP is a protocol that provides a simple, reliable,
and efficient way to transfer data between applications. [14]

1.4 Thread Network Data

In a Thread Network Partition (TNP), data is stored and distributed throughout the network; this is
essential for the Thread Network to operate correctly and uniformly. This data comprises information
regarding how devices communicate within and outside the TNP, as well as the status of commissioning
between the Commissioner and a Joiner, as specified in the unpublished article [4]. The Thread Network
Data encapsulates the network setup and the network’s current active status. The Thread Network
Data is transmitted throughout the network using a Trickle-like method, whereby all Routers broadcast
periodic Mesh Link Establishment (MLE) Advertisements with their highest known Thread Network
Data Version number. Whenever a Router receives an MLE Advertisement from a neighbour whose
Thread Network Data Version number is greater than its own, it will request a copy of that neighbour’s
dataset. By employing a Trickle-like strategy, Thread can finally guarantee consensus in a solid and
scalable manner. [36][2, p. 127, 344].
All the different datasets can be seen in Appendix B, and a more detailed explanation of these can be
found in the unpublished article [4].

1.5 Mesh Link Establishment

The Thread specification presents the MLE1 protocol. MLE messages are used for establishing and
configuring secure radio connections, detecting neighbouring devices, and maintaining routing costs
between devices. In addition, MLE messages are used to transfer network settings across devices and to
prioritise resources based on the identification of trustworthy links. [25]

MLE messages are also used to identify link quality between neighbours, as this quality might be
asymmetrical, in order to minimise wasted effort in the construction of bad links. In reality, devices
utilise MLE to transmit link-local multicasts including quality assessments of their local connection. In
other words, a device sends MLE messages to all reachable devices in a single radio broadcast. [2, p.
59] Additionally, MLE messages are utilised by devices without network configuration values to request
required network configuration values. This is accomplished by the device sending a unicast request to a
neighbour with the desired values. In exchange, the neighbour transmits the requested values. [2, p. 59]

1MLE was initially introduced by R.K. Kelsey in the draft available in [32]; the Thread specification enhances this
protocol.

10



For Media Access Control (MAC) layer setup (layer 2), MLE messages are transmitted through UDP,
which was chosen to facilitate interoperability with existing systems.

1.5.1 Message Format

As previously stated, MLE communications have a broad variety of applications; thus, the message
structure must enable several alternatives. Figure 4a is a schematic representation of the message format.
As seen, the first byte of communications shows the security suite employed by the message. If the initial
byte of a message contains the value 0, the message is encrypted. This is illustrated in Figure 4b, which
depicts the inclusion of an auxiliary security header and a message integrity code in addition to a
command — the command format is detailed in further detail below. Figure 4c depicts a message in
which the first byte contains the value 255. This implies that no security is utilised, and the message
contains no security data as a result. [2, p. 59]

Both of these messages contains additionally some value in a Type-Length-Value (TLV) format, which
is detailed below.

Security Indicator Command
Format

(a) The general MLE message format. A MLE message begins with a byte that
specifies the message’s security. The second section is the command type.

0
Auxiliary 
Security
Header 

Command
Format

Message
Integrity Code

(b) A MLE message that begin with a zero-valued byte. This indicates that
the communication is secure; thus, an auxiliary security header and a Message
Integrity Code (MIC) is supplied.

255 Command
Format

(c) A MLE message that begin with a 255-valued byte. This indicates that
no security is used for the message, and thus no additional security header
is provided, the Thread Specification only allows a MLE message to have a
security indicator of 255 when its either sending a discovery request or discovery
response.

Figure 4: The General structure of a MLE message is indicated in Figure 4a, and a secured and an
unsecured are shown in Figure 4b and Figure 4c respectively.

11



Value Command Type Definition
0 Link Request A request to establish a link to a neighbour
1 Link Accept Accept a requested link

2 Link Accept and Request
Accept a requested link and request a link with the sender
of the original request

3 Link Reject Reject a link request

4 Advertisement
Inform neighbours of network information and a
device’s link state

7 Data Request
A request, typically containing a TLV Request TLV that
indicates which TLVs are being requested

8 Data Response
A response to a request, containing whatever TLVs were
requested

9 Parent Request
A multicast request used to find neighbouring devices
that can act as a Parent

10 Parent Response
Response to a Parent Request, identifying a potential
Parent

11 Child ID Request
Request for a Child ID sent by a device to a Router or
REED.

12 Child ID Response
Response from a Router to a device assigning it a 16-bit
network ID

13 Child Update Request
Response from Parent on Child request to update
parameters

14 Child Update Response
Response from Parent on Child Request to update
parameters

15 Announce
A multicast message used to notify neighbouring devices of
the Thread Network’s current Channel, PAN ID, and
Active Timestamp

16 Discovery Request A multicast message used to discover networks

17 Discovery Response
Response from a device on the Thread Network to a
discovery request

Table 1: MLE message command types with definitions [2, p. 60-61]

In a MLE message, independent of whether it is secure or not, the command format contains a set
amount of bytes. The first byte of the command format contains the command type. The command
types can be seen in Table 1, and the definitions of each command type can be found in the Thread
Specification [2, p. 60-61]. The command type defines also which TLVs are included in the message, an
illustration of how the command with the TLVs can be seen in Figure 5.

Command
Type TLV 1 TLV x

Figure 5: This block is the illustration of a Command Format from Figure 4a. The first byte specifies
the command type, and it is drectly followed by a list of TLVs. [2]

Figure 6: The structure of a TLV. This example is 32 bits long, but the length of an TLV can be at max
32 bytes long, and at minimum 3 bytes. The first byte is the TLV type, the second byte is the length
of the TLV, and it determines how much data is to be read from the values part of the TLV before the
next start, or the message has ended. [2]

12



Child Parent

Parent Request

Parent Response

Child ID Request

Child ID Response

Discovery Request

Discovery Response

Figure 7: The sequence diagram illustrating the MLE messages send between an attaching child and a
parent. The red messages are representing the discovery sequence, and the blue messages the attaching-
to-parent sequence.

1.6 Attaching-to-Parent

In this section we will describe the attaching-to-parent sequence and discovery. Both attaching-to-parent
and discovery happens using MLE and uses the TLV format. We will refrain from describing the bit
format of each TLV, if it is of interest we refer to the specification [2] or the unpublished article [4]. The
attaching-to-parent sequence is how new devices join a Thread Network. In order to imitate attaching-
to-parent, the new device needs to now the credentials of the Thread Network, as well as the PAN ID.
The protocol itself is a four-message exchange, between the attaching device and the parent. Before the
attaching-to-parent sequence can begin, does the attaching device need to be aware of the parent, which
is done by sending a Discovery Request on Link-local multicast address. Since the discovery sequence is
a natural part of the attaching-to-parent sequence, we have chosen to include it in this section as well.
The process from discovery to attached to a parent is illustrated on Figure 7.

1.6.1 Discovery

Discovery is a two message exchange between a sender and a receiver. The messages sent is the Discovery
Request from the sender and Discovery Response as the response. Both messages includes the Thread
Discovery TLV, which can contain different subtlvs. The Discovery Response only contain the subtlv
Discovery Request TLV is of length 32 bit. For the Thread 1.1.1 Specification [2], is all the bits constant,
except the joiner flag, which describe the senders intention of doing commissioning. Commissioning is the
process authenticating new devices, which is out of scope in this report, but explained in the unpublished
article by C. S. Andersen et al. [4]. The Thread Discovery TLV in the Discovery Response, contains
multiple subtlvs. These contain the extended PAN ID, the network name and if the joiner flag is set,
then also the information about how to do proper commissioning.

We have chosen to include Discovery in the scope, since it is the only MLE messages, which is
allowed without encryption. While there is no secrets in the messages itself, it can be performed by

13



unauthenticated entities.

1.6.2 Parent Request

The Parent Request is sent by the attaching device, and in order to prove it is authenticated, the message
itself is encrypted with the networks MLE key. The PAN ID gained from Discovery is used to locate the
address needed to do the Parent Request, which is the link-local all-routers multicast address. Messages
send to the link-local all routers multicast address is received by all routers within one hop. The Parent
Request must then contain the following TLVs:

• Mode TLV

• Challenge TLV

• Scan Mask TLV

• Version TLV

The Mode TLV contain information of how the attaching device, wants to be treated. This include
indication of the role of the attaching device such as MTD or SED, and if it is router eligible. The
Challenge TLV is used as replay protection, and is simply a random bitstring, which is sent back in the
response in the Response TLV. The Scan Mast TLV contain the information about what devices should
respond to the Parent Request. The distinguishing is of routers and REEDs. Lastly is the Version TLV,
which contains the version number of the implemented Thread protocol, and is used to check if the
attaching device is compatible with the version used by the parent.

1.6.3 Parent Response

The Parent Response is the answer to the attaching device after the Parent Request, which is send as a
unicast message. The Parent Response is only sent if the to be parent does not meet any the following
criteria:

• It has no child capacity

• It is disconnected to its partition

• It has infinite routing cost to the Thread Leader

The Parent Response it used by the attaching device to find the best parent to connect to. The Parent
Response contains nine TLVs:

• Source Address TLV

• Leader Data TLV

• Link-layer Frame Counter TLV

• Response TLV

• Challenge TLV

• Link Margin TLV

• Connectivity TLV

• Version TLV

The Source Address TLV contains the address of the sender. The Leader Data TLV contains the Leader
Data which is information about the Partition ID, Partition weight, and which data set version is
currently active. Link-layer Frame Counter TLV is a 32 bit value representing the current frame counter.
The Response TLV and Challenge TLV are as earlier explained used as replay protection. The Link
Margin TLV is the link margin between the sender and receiver, and is connected to how well the two
devices can communicate without noise. The Connectivity TLV contains information of the link quality
to the receiver, the cost to the leader from the sender, the Parent Priority, which is used to choose the
best parent and if the receiver is a SED device, how bit the senders SED buffer is.

14



1.6.4 Child ID Request

The Child ID Request is unicasted to the chosen parent, the parent chosen is based on the link quality
as well as the parent priority. The Child ID Request is the request of getting a child ID and a part of
the parents router table. The Child ID Request contains nine TLVs:

• Response TLV

• Link-layer Frame Counter TLV

• Mode TLV

• Timeout TLV

• Version TLV

• Address Registration TLV

• TLV Request TLV

• Address16 TLV

• Active Timestamp TLV

The Response TLV is as earlier described as well as Mode, Link-layer Frame Counter and Version TLV.
The Timeout TLV is a 32 bit integer value, which represent the maximum number of seconds from the
sender before it expects a timeout. The Address Registration TLV contains none to multiple addresses
which are used by the sender. When the Address Registration TLV is read by the receiver it adds the
addresses to the router table. The TLV Request TLV is a sequence of TLV id, which is needed by the
sender in order to finish the attaching-to-parent. The address16 TLV contains the sender current MAC
address. The Active Timestamp TLV is a timestamp using the unix time.

1.6.5 Child ID Response

The Child ID Response is the last message in the attaching-to-parent sequence, and contains up to eight
TLVs, which is needed by the attaching device in order to function as a ordinary Thread device.

• Source Address TLV

• Leader Data TLV

• Address16 TLV

• Network Data TLV

• Route64 TLV

• Address Registration TLV

• Active Operational Dataset TLV

• Pending Operational Dataset TLV

Most of the TLVs are already discussed. The Network Data and Operational Dataset is contained in the
given TLVs, and is important part of how the Thread network share and save information about current
state of the network.

15



1.7 The Thread Implementation: OpenThread

OpenThread (OT) is the open source implementation of the Thread specification, it is published by
the google under the BSD 3-Clause License2 in 20173 shortly after the first specification of the Thread
specification also was released. [2, 45]

OT provides a library to be used in source-codes for the actual devices. Some examples for different
chip-sets are also provided, making it almost a plug and play solution for devices using those. In addition
to this, a simulation component is also provided, which compiles to an executable that can simulate a
Thread Node, with a console that accepts commands to test everything from discovery and attaching-
to-parent to commissioning and partitioning. The OpenThread organization also provides a network
simulator4, the network simulator is a playground for OT allowing users to observe visually as a web-
application, how the Thread Network behaves in a network, attaching a detaching depending on whether
the Nodes moves closer or further apart. [45, 2]

One command-line parameter is required for the execution of the Simulation of OT node. The id

parameter, this parameter is used for OT to find which UDP port it should subscribe to, and figure out
if a message is directed at it in the link-local multi-cast address.
In order to fuzz-test OT, some modifications was made to it such that we could abstract all of the lower
layers away, these modifications is explained later in the Section 3.4.

2 Fuzzing

In the previous section we gave an overview of Thread, with focus on MLE and the attaching-to-parent
sequence where new devices joins a Thread network. In this section, we will elaborate on the concept of
fuzzing, by presenting the different categories of fuzzing, how it is different to fuzz a network protocol
implementation and, lastly, AFLNet, an extension of AFL specialised in network protocols.

2.1 Fuzzing methods

The concept of fuzzing as a technique was first introduced by B. Miller in 1988[37], where it was used to
validate the robustness of UNIX terminal applications by randomly inserting inputs and checking if they
crashed. B. Miller et al. found that up to 33%[39] of all tested applications had crashing problems on
certain inputs, showing that fuzzing can indeed be a useful tool for finding critical bugs. Though fuzzing
did not get much traction, until many years later. In the years after his initial find, B. Miller conducted
similar tests on UNIX systems and found that the fuzz testing methods, applied back in 1988, were still
applicable even now, 30+ years after [38]. The field of fuzzing has grown after B. Miller first showed
that fuzzing is a useful tool for automatic testing of implementations of applications. It is now used not
only as a testing tool but also as a security assessment tool.

It is common terminology when describing fuzzing tools to use the term black-, grey-, and white box
fuzzers. The three colours describe how the target is perceived by the fuzzer and how much knowledge
the fuzzer has about the implementation. In the following three sections, we will present the different
methods, as well as the difference between mutation and generation-based fuzzers.

2.1.1 Blackbox

Blackbox fuzzing is when the fuzzing target is perceived as a black box, just like B. Miller et al. it is
usually used for as a method of just giving random inputs to the target in the search for crashes or other
unexpected behaviours. This method is effective when finding obvious mistakes such as buffer overflows
or lacking sanity checks and is easy to implement. [8] While the simplicity in blackbox fuzzing makes it
attractive, it often fails at being precise. An example can be viewed just below:

Example 2.1. Consider this small example in the language C, of the function target() which takes a
single input of type int.

2Very permissive license allowing for distribution and modification, both in commercial- and private use
3Provided through the repository; https://github.com/openthread/openthread
4Provided in the repository; https://github.com/openthread/ot-ns

16

https://github.com/openthread/openthread
https://github.com/openthread/ot-ns


1 int target(int x){ // x is the input

2 int y = x + 10;

3 if(y == 19) abort(); // Error

4 return 0;

5 }

In this case, there is a 1 to 232 chance of satisfying the conditional state and thereby provoking an
error. This is for a single statement and it should be obvious that as the complexity and size of the
target rises, so does the chance to find such errors. △

That said, blackbox fuzzing is still widely used, especially in web security assessments. In this case,
the fuzzing inputs are rarely fully random, but instead already known lists of malicious inputs. While
one can argue it is less fuzzing and closer to unit testing, it is still very effective in finding incorrect
user-input sanitation bugs. Examples of blackbox fuzzing tools are Gobuster [44], Wfuzz [57], which are
used to fuzz HTTP requests, and the more commercialised Burp Suite [10].

2.1.2 Whitebox

In contrast to the blackbox fuzzing method, the whitebox fuzzing method was presented and has gained
increasing popularity. The whitebox fuzzer is defined by how it perceives its target. The whitebox fuzzer
is able to know the inner workings of the targets, which means it is knowledgeable of the source code of
the target. This allows the fuzzer to instrument the target’s source-code and, thereby, perform dynamic
analysis as well as static analysis. With this more complicated tool for fuzz testing, the scope is also
expanded to include bugs that do not cause a crash, like buffer overflow and memory corruption. [19] The
most widely used approach to whitebox fuzzing is symbolic execution in combination with constraint
solving. An example of such is SAGE [23] and the model-based whitebox fuzzing approach [56]. To get
a better understanding of how whitebox fuzzing works, we will give a short introduction to symbolic
execution and constraint solving. Lastly in this section, we will present some of the challenges whitebox
fuzzers face when the targets code base grows.

2.1.2.1 Symbolic Execution

In this section, we present the main idea behind symbolic execution and the theory presented here is
based on [33]. Symbolic execution is a method to test and analyse programs. It is used to find what
inputs lead to different paths in code execution, representing all discovered cases as an execution tree.
The method is the use of symbols as input to a program, instead of concrete values. The program
can then be executed as normally but with symbolic formulas instead. This is particularly interesting
when having conditional branch types of statements, since with the use of symbols we can discover all
branches that are reachable. Programming languages have an execution semantics which describes the
data objects, how they are manipulated, interpreted and how control flows through the statements of
such a program. Through defining a symbolic execution semantics, we also define the execution of a
symbolic program. This includes extending operators to accept symbolic inputs and produce symbolic
outputs. Normally, when executing a program, the state of the program is preserved in the variables and
the statement counter, which denotes the statement currently being executed. As earlier mentioned, the
conditional statements are of interest in symbolic execution, and for an if -statement the notion of path
condition is added to the state. The path condition is a boolean expression over the symbolic inputs.
This means that no program variables are included in the path condition. The path condition consists
of a series of expressions of the form Rleq0, neg(Rleq0), R = R, or Rnot = R, where R is a polynomial
over the symbolic inputs. The initial value of the path condition is always true. A symbolic run of an
if-statement is in a similar fashion to a normal program execution, where the condition is evaluated by
replacing the variables with its values. A simple evaluation of a run can be viewed in Example ??

Example 2.2. Consider the small program we presented at Example 2.1 in this case we can replace x

with the symbolic input λ, then replace y with λ + 10 when evaluating the conditional statement: y ==

19. It will lead two paths, where as λ+ 10 = 19 is the path condition for the then path. Since the then

17



path leads to an abort(), the rest of the program will not be executed, but symbolically both paths can
be run independently. The other path, return-path, we have the path condition: λ+ 10 ̸= 19. △

The result of a symbolic execution is the execution tree, which illustrates all the paths followed.
A node in the tree is associated with each statement, and the forking happens for every conditional
statement, whereas the if-statement forks in two directions, one for true and false.

2.1.2.2 Constraint Solving

In this section we introduce the main idea behind constraint solving, and we do so based on [20]. The
problem of solving constraints is used together with symbolic execution since solving a path condition and
solving constraints are the same problem. Constraints are relations that must be satisfied. The method
of constraint solving consists of finding the variables that satisfy a set of constraints. The definition of
a constraint system is as follows:

Definition 2.1. A constraint system is the 2-tuple, (C, V ) consisting of constraints, C, and a set of
variables, V . A constraint, C, is an n-ary relation between subsets of V , v1 × v2 × · · · × vn where
v1, v2, . . . , vn ∈ V . Each constraint contains a set of methods, where any of those can be executed to
satisfy the constraint. A method, M : v −→ v′ where v, v′ ∈ V and v ∩ v′ = ∅, uses some of the variables
of the constraint and the remainder as output. A method may can only be executed if all of its inputs
and none of the outputs have been determined by other constraints. △

Constraints can be contradictory, and therefore sometimes it can be desirable to relax the constraints
or prioritise some constraints over others. This can be expressed by labelling each constraint with a
strength. While the strengths can be varying, it must hold for a constraint system, the strongest label
only labels one constraint. This is due to the case of two contradictory constraints sharing the strongest
label, in which it is not able to make a logic decision.

Definition 2.2. Consider the constraint system (C, V ). Then we define the constraint hierarchy to such
that strongest constraint to be C0 ∈ C and then C1 ∈ C to be second strongest constraint, which goes
on until Cn ∈ C which is the weakest constraint. △

Constraints can be contradictory, and therefore sometimes it can be desired to relax the constraints
or prioritise a constraint over others. This can be expressed by labelling each constraint with a strength.
While the strengths can be varying it holds that for all constrains that are labelled with the strongest
strength, called required, must be satisfied. We write C0 ∈ C for the set of required strengths for the
constraint system (C, V ), C1 ∈ C for the set of strongest preferred constraints and C2 ∈ C is the set of
second strongest preferred constraints, until Cn ∈ C for the set of weakest preferred constraints.

With the notion of the constraint system and constraint hierarchy, we are now able to solve such
a system. A solution to a constraint system is a mapping from variables to values, and we say, when
all the required constraints are satisfied, that the solution is admissible. It is possible that there exist
multiple admissible solutions for a hierarchy, but we also want to consider preferred constraints as well,
with respect to the strength hierarchy. It can be formulated such that the best solution exists when
all the required constraints are satisfied and the preferred constraints are satisfied such that no better
solution exists. We will start by defining the set of admissible solutions:

Definition 2.3. Consider the constraint system (C, V ), then we define the set of admissible solution,
S0 to be:

S0 = {x | ∀c ∈ C0 where x satisfies c}

△

With the definition of admissible solution we are now able to express the set of best solutions.

Definition 2.4. Consider the constraint system (C, V ), then we define the set of best solutions, S to
be:

S = {x | x ∈ S0 and ∀y ∈ S0 where ¬better(y, x, C)}

where the function better returns True if the first argument is better than the second according to the
hierarchy given as third argument, otherwise False. △

18



The comparison used by better, can vary if the measure is using error metrics or simply boolean
predicates. The comparator used can also differ from constraint-by-constraint to aggregate measures.

In order to set constraint solving in context, we are now able to find the solution to the constraints,
presented in the conditional statements for calling the abort()-function in Example 2.2. The solution
is presented in Example 2.3

Example 2.3. Recall Example 2.2, in order to call the abort()-function, y have to satisfy the condition
y == 19. But as we showed by substituting, we got the constraint:

λ+ 10 == 19

We can define this to be our required constraint and, hereby, the solution is s:

s(λ) = 9

It is clear that there only exists one solution to the given constraint. △

2.1.2.3 The Path Explosion Problem and SMT

Whitebox fuzzing face two major scalability problems, which are inherited from symbolic execution and
constraint solving, the path explosion problem and the satisfiability modulo theories. The path explosion
problem is met in symbolic execution, when exploring nested calls, loops and conditions. The number
of paths are growing exponential to the number of such structures. [34] It is not unrealistic to imagine
hundreds of nested calls, loops or conditions, which result in enormous execution trees. Exploring all
paths can be time consuming. A solution to this is directing the fuzzer only exploring interesting paths.
Constraint solving have the same problem as presented by the satisfiability modulo theories, which is
the problem of determining whether a mathematical formula is satisfiable. It is often compared to the
simpler problem of boolean satisfiablility, SAT, which is NP-complete, but since it is harder it is typically
NP-hard or undecidable, depending on the theory. [6] Both problem have been tackled, but still proves
the biggest challenges of whitebox fuzzing.

2.1.3 Greybox

Greybox fuzzer is the term used for fuzzers, which uses more than just the output as feedback or meas-
urement. The method was, as earlier illustrated, presented due to the unreliable blackbox fuzzing, and is
lighter than whitebox fuzzing. Greybox fuzzers utilise the lighter instrumentation, compared to the com-
putational heavy symbolic execution and constraint solving, and/or more complex mutation techniques
than blackbox fuzzing in order to provoke unexpected behaviour. The efficiency of symbolic-execution
whitebox fuzzers versus the greybox fuzzing method have been discussed, since it is showed that most
vulnerabilities is found using lightweight fuzzers, that uses little to no analysis. [11]

When discussing greybox fuzzers, it is often split into two categories, directed and coverage-based.
The main difference is simply that the directed fuzzers tries to reach a specific program branch or state,
and the coverage-based tries to cover as much of the branches as possible. Both utilise instrumentation
as their main tool to navigate the code. In the following two sections we want to give a brief introduction
to both methods.

2.1.3.1 Coverage-based Greybox Fuzzing

AFL [3] is one of the most well-known and branched coverage-based greybox fuzzers. Due to the pop-
ularity of AFL, it made the baseline for coverage-based greybox fuzzing, which is the reason for adopting
the method used in AFL, in order to explain coverage-based greybox fuzzing. AFL uses instrumentation
to identify each basic block and while running the hit count on each block. AFL uses this information
to decide what generated input is used to mutate further on and what the next block is. The creator of
AFL argues that by using hit count buckets, it is able to tackle the path explosion problem. The instru-
mentation is done by compiling the source-code with the custom compiler provided by AFL. The custom
compiler inserts instrumentation into the compiled code, by intercepting the assembler and changing it
to log the basic blocks. The logging is done by inserting functions in the assembly, which is executed on
run-time. [19]

19



2.1.3.2 Directed Greybox Fuzzing

Directed greybox fuzzers is much like the coverage-based using instrumentation to navigate, as earlier
mentioned. Instead of aiming to reach most possible code, it aims to execute a sole block. Just as
coverage-based it is possible to use the instrumentation feedback to choose which output leads to what
block. The distance between the reached block and the target one is evaluated to select if the input
brings the fuzzer closer to exploring the target block or further. [7]

2.1.4 Mutation and Generation

As previously established, fuzzing is just giving data as input to a target in order to find unexpected
behaviours such as crashes. An important aspect of the fuzzing process is the inputs, and we distinguish
between two methods for creating these inputs, mutation and generation based. The mutation based
method is when there have been a collection of correct data, which is then modified during fuzzing. This
can both be at random, such as flipping random bytes, but also with some kind of heuristic approach,
as rearranging strings or replacing short strings with longer strings and so forth. The other method is
called generation based, which is when the input is generated. The generator is built around the relevant
specification and is then able to generate testcases as inputs. To make efficient fuzzing, the generator
have to make testcases, which is predominantly malformed in order to provoke crashes. [41]

Mutation based fuzzing is easier to implement since, a fuzzer using the mutation based method, just
needs correct examples in order to start fuzzing. This is, of course, the opposite for generation based
fuzzing, as the implementation of the generator have to be rather specific to each case. That said, the
inputs generated from the generation based method can be more directed against inputs, which in turn
could promote finding an input that can provoke crashes or any unexpected behaviour faster, where as
the mutation based method is more näıve. This is also expressed in their aliases where generation based
fuzzers are called intelligent and mutation based, dumb.

2.1.5 AFLNet

In this section we want to give an overview of how AFLNet works. AFLNet[49] is a stateful greybox
network protocol fuzzing tool, which is build upon the well known greybox fuzzer AFL. AFLNet extends
AFL with a more effective method for fuzzing, in the context of network protocols, by implementing the
notion of a stateful and message driven server. Network protocols often implement a server and a client
where the server is message driven obtaining certain states as a result of certain message sequences. By
replaying such message sequences, it is possible to direct the fuzzer to a specific server state before fuzz-
ing. AFLNet implements these message sequences by parsing .pcap files, while using those as templates
for fuzzing. Furthermore, the AFLNet adds the infrastructure needed in order to fuzz network protocols
by directing the generated inputs to sockets.

AFLNet uses a mutation based fuzzing approach, where messages are mutated in order to generate
new message sequences. This have multiple advantages compared to the generation based approach. The
obvious advantage is that little to no code is needed in order to fuzz the target, and by mutating on valid
traces of traffic when generating a new message sequences, then the new sequences is more likely to be
valid too. Compared to the generation based approach where the a detailed specification of the protocol
and message templates are needed, in order to do same kind of directed fuzzing. Another advantage
of the mutation based approach, is that interesting messages can be favoured, when generating new
messages, in order to discover new states, transitions, or program branches.

In order to do a coverage based search, AFLNet makes use of a custom compiler, which is needed
to compile any binary that is fuzzed by AFLNet. The custom compiler inserts a logging function in
each basic block, which then is used by AFLNet to identify blocks executed when fuzzed. AFLNet offers
custom compilers for the known compilers gcc, g++ and clang. It also offers a LLVM mode, which
increases performance significantly by assigning ids to each block at run time inline, as well as writing
to shared memory inline.

20



2.1.5.1 The Components of AFLNet

The architecture of AFLNet is consisting of five main components:

• Request Sequence Parser

• State Machine Learner

• Target State Selector

• Sequence Selector

• Sequence Mutator

The Request Sequence Parser parses the .pcap files according to the specific protocol, in order to
extract individual messages in the correct sequences. The State Machine Learner read the server
responses from the server under test and determines when new states are achieve, based on the status
codes in the responses. The Target State Selector chooses which state that AFLNet focuses on next,
based on the data from the state machine learner. These states are rated and chosen based on how well
the previous states had contributed to increased code coverage and state coverage. At the start of the
run, the states are randomly selected, since there are no knowledge about the states at that point. The
Sequence Selector selects a message sequence that can reach the target state when the target state
is selected. The possible message sequences are contained in the seed corpus, which contains message
sequences as queue entries, which also contains relevant data about the entry. The seed corpus also
contains a hashmap, that maps a state identifier to queue entries. The Sequence Mutator provide
the fuzzing operation used to do the protocol aware mutation. The architecture of AFLNet and the
interaction between components is illustrated on Figure 8.

Figure 8: The architecture of the Stateful Greybox Fuzzing into AFLNet. [3]

2.1.5.2 Fuzzing operations and mutation

As previously described, AFLNet uses a mutation based approach in order to generate new messages.
The definition of a mutated message sequences in AFLNet is as follows:

Definition 2.5. Given a target state s and a message sequence M , which can be split in thee parts:

1. The prefix M1 is required to reach s;

2. the candidate subsequence M2, which contains all message that can be send after M1, while still
being in the state s; and

3. the suffix M3 which is the left-over such that ⟨M1,M2,M3⟩ = M .

AFLNet generated a new message sequence M ′ by mutation such that M ′ = ⟨M1,mutate(M2),M3⟩. △

This way, it is ensured that the generated message sequence always reach the targeted state. In
order to modify the candidate subsequence, AFLNet offers protocol-aware mutation operators. From
the seed corpus, a message pool is generated, which is a collection of the real traces and messages and
the generated, that can be substituted or added in the valid message sequences. AFLNet supports
the protocol aware mutation operations replacement, insertion, duplication and deletion of messages

21



when mutating candidate subsequences. Furthermore, AFLNet also supports the more common fuzzing
operators such as bit flipping and substitution as well as insertion and deletion of bytes. The byte-
level mutation and protocol aware mutation are both applied when generating the mutated candidate
subsequence.

3 Implementation

In this section we want give a detailed description of Thread-Fuzz. We will refrain from describe the
whole code base, and only present code if it is essential for Thread-Fuzz. A big part of the particular
design used in Thread-Fuzz is due to some of the challenges met, when implementing a complicated
protocol, as Thread, in AFLNet. These challenges will be presented in the following sections as well as
the solutions or workarounds. First we present an overview of the architecture, where we introduce each
component as well as their main purpose. Then we describe each component, more in depth, and this
includes the changes made in OT and the added support for OT in AFLNet5.

3.1 Architecture

We want to build an fuzzing tool for MLE which is the new protocol used with Thread, more specifically,
the attaching-to-parent sequence. The attaching-to-parent is an important message sequence between a
joining device and the Thread network, as the nature of Thread is based on trust once in the network. If
a malicious device gets attached it is easy to disrupt the network, and thus it is not interesting to search
for faults when the device is already in the network.

The architecture of Thread-Fuzz is consisting of two components, which in turn contains in total five
components; The Monitor-component, that contains the StateMachine and and the fuzzing target, in
our case an OT server. The second component is AFLNet, that is used solely for its mutator algorithm,
AFLNet, uses a dummy binary, CCookie which can be controlled to let AFLNet known when to send
messages. An illustration of the architecture can be viewed at Figure 9. The Monitor-component is
written in Python, this goes for the StateMachine as well. Both OT and AFLNet is written i C or/and
C++.

5All of the code explained about in this section can be found in their respective repositories on https://github.com/

Speciale-Projekt/

22

https://github.com/Speciale-Projekt/
https://github.com/Speciale-Projekt/


MUTATOR Testcase

SM

Testcase

OT
Response

Response
CC

return 0

AFLNet

Monitor

Figure 9: The overall architecture used to fuzz OT. The left is the fuzzer which have an instance of OT
running inside of it as well as the StateMachine. To the right is AFLNet, which is sending the mutated
testcases through UDP to Monitor, which is then send to the OT-instance in Monitor.

The initial idea behind Thread-Fuzz is to extend AFLNet with support for Thread, and then add
the statemachine as either a part of AFLNet or as an proxy in the between OT and AFLNet. Both is
feasible solutions, but we observe a strange behaviour when compiling the OT source with the custom
compiler of AFLNet. When the custom-AFLNet compiler, which is described in the Section 2.1.5 and
Section 2.1.3.1, is used for compiling OT it prevents Nodes from communicating, and thus unable to
do the processes’ discovery and attaching-to-parent described Section 1.6. When using this very crude
method for instrumenting, as AFLNet uses, a lot of cleanup has to be done to preserve the original
control-flow [50], and thus it is not surprising that some errors occur during the instrumentation. Alas,
the fact that AFL (which uses the same compiler as AFLNet) is considered the state-of-the-art fuzzing
tool, an in-depth exploration as to the difference of the resulting binary from using standard gcc and
afl-gcc would be interesting project and is further discussed in the future works Section 8.

As we could observe a significant difference during the run-time of the instrumented and un-instrumented
version of OT, it has resulted in the exclusion of instrumentation during our compilation of OT. Leading
to the our current state where AFLNet is only utilised for its mutator algorithm.

The communication between AFLNet and Monitor-component is UDP through sockets, which also
hold for the communication between Monitor-component and CCookie. The communication between OT
is done from the statemachine to the OT instance as UDP and from OT to the statemachine through a
file.

3.2 The Monitor-component

The main function of the Monitor-component6 is to Monitor-component the state of the OT-instance.
The Monitor-component maintains three threads, one for monitoring and running the OT-instance, one
to handle messages from OT, and lastly one to handle messages from AFLNet. The communication from
OT to the Monitor-component is done through file read and writes. This is not the preferred solution,
but since OT states in their style guide [48] ”The use of the C++ Standard Library shall be avoided.”, it
is challenging to make a simple UDP-connection. The implementation of a file write is relatively simple,
and does not need any dependencies except standard library of C. Testcases are generated by AFLNet
and received by the Monitor, which works as a proxy, sending them to the OT-instance. The Monitor-
component parses the testcase before sending it to the OT-instance and the responses outputted from

6The monitor-component can be found in https://github.com/Speciale-Projekt/Monitor-component

23

https://github.com/Speciale-Projekt/Monitor-component


OT. The parsed messages are given to the statemachine which then makes assumption about the states
of the OT-instance. The overview of the Monitor-component is viewed on Figure 10.

OT

SM

Parser

Testcase

Response
Parsed

message

File

UDP connection

Figure 10: The Monitor-component consist of two subcomponents, the parser and the statemachine, as
well as the running the OT-instance.

Another important responsibility of the Monitor-component is that of monitoring the OT-instance.
Every crash is logged to a local file, with the given message that resulted in the crash and the return
code of the OT-instance. When the OT-instance crashes, it simply creates a new instance with the same
dataset. Due to the interaction with AFLNet, no testcases are dropped, since the CCookie is waiting,
until a response is received. This is further discussed in Section 3.3.1. The case of an crash in OT is
illustrated on Figure 11

MUTATOR Testcase

SM

Testcase

OT

CC

AFLNet

Monitor

crash

log.txt

Testcase;
Timestamp; 
Returncode;

Figure 11: When the currently running OT-instance crashes, then the Monitor-component will log the
relevant information, and restart the instance. AFLNet will simply wait for the OT-instance to run since
the CCookie does not get any messages.

24



3.2.1 Parser

The Parser is a small module used by the Monitor-component in order to convert the bit-strings sent by
AFLNet (testcases), and responses from OT to human readable strings. This have two purposes, where
the obvious one is to make it possible to make a meaningful log entry, whenever we detect a crash or
unexpected behaviour. The second purpose is of the statemachine which in order to make assumption
about the server state must know which command type a MLE message if any and what TLVs is included.
The parsing follows how the specification [2] describe it and is described in Section 1.5.

FF 10 1A 04 80 02 30 00

No
security

Command Type:
Discovery
Request

TLV Type:  
Discovery

TLV

Length: 4

Value: Sub-TLV -
Discovery Request TLV

Figure 12: An hexadecimal representation of the Discovery Request. It holds for the Discovery Request
that is not encrypted hereby the security byte is FF. The Command Type is of Discovery Request and
contains only one TLV. The Discovery TLV with a length of four bytes.

An representation of an not encrypted message is illustrated on Figure 12. As we can see, is the first
byte always the security byte, which tells us if the message is encrypted or not. Then followed by the
Command Type if the message is not encrypted, and then the TLV format. We know when each TLV
start, since all the TLVs are sequential and the length is defined in every TLV.

00 .. 09 01 01 .. 03 08

 Secured

Aux Header of
length: 10 bytes

Command
Type: Parent

Request

Type:
Mode TLV

Length:
1

1 byte

..

Type:
Challange

TLV

Length:
8

8 bytes

..

Figure 13: An decrypted hexadecimal representation of a Parent Request. As Parent Request messages
must be encrypted, which is also represented by the first byte which are 00. The difference from a
not encrypted messages is the Auxiliary Security Header which contain information of the encryption
used. The Auxiliary Security Header is 10 bytes long. Then it follow the TLV format as described in
Section 1.5.

Encrypted MLE messages follows same format, but instead of the 2nd byte being the Command
Type it is the 11th byte. This is due the Auxiliary Security Header, which carry information of how
to decrypt the message, but since we omit encryption in OT we are not interested in this particular

25



information. Then the MLE messages follows the same structure, and we can simply go through all
TLVs until reaching the end.

3.2.2 StateMachine

The StateMachine is the part of the Monitor, which keeps track of the OT server states. Since we do not
have any other feedback than the response from the OT-instance, we make assumption sole on those as
well as testcases. The principle behind the StateMachine is exploring the states and transitions of OT
server and check if the state of the OT server does something unexpected. The simple flow of a testcase,
which provoke unexpected behaviour found by the StateMachine is illustrated at Figure 14.

MUTATOR Testcase

SM

Testcase

OT
Response

CC

AFLNet

Monitor

Unexpected
Behaviour

Testcase; 
Timestamp; 
Response; 

Cause;

SM.log.txt

Figure 14: The flow of a testcase, which provoke unexpected behaviour at the target. In the case of
unexpired behaviour found by the StateMachine, the testcase is logged in is own log file, different from
crashes.

As earlier mentioned the scope of this report is just the subset of Thread Discovery and attaching-
to-parent of the MLE protocol. Because we know the messages sent between the attaching device and
the parent is ordered and must contain the TLVs dictated by the Thread specification [2], we are able
to design the StateMachine such that every correct message to the OT-instance change the state. When
a response is received from OT we can assume the instance was in a given state based on the response.
Say the fuzzer send a correct Discovery Request, we can assume that the instance is processing the
request until we get a Discovery Response and then we know for sure, that the Discovery Request was
processed. Furthermore, we are able to look on the TLVs in the response and check whether they match
with the specification or not. The StateMachine checks for this as well, we know exactly each TLV and
the sequence of messages as described in Section 1.6, and the check can be done rather trivially. Three
examples of how the StateMachine handles testcases and responses are shown on Figure 15.

26



Discovery
Request

OTStateMachine

Idle DiscReq
Processing

Disc

OTStateMachine

Idle DiscReq
Processing

Disc

Discovery
Response

DiscResp

Expecting:
DiscResp

Discovery
Request

OTStateMachine

Idle DiscReq
Processing

Disc

OTStateMachine

Idle DiscReq
Processing

Disc

Child ID
Response

Expecting:
DiscResp

ChildIdResp

Invalid
Structure

OTStateMachine

Idle
Processing

X

OTStateMachine

Idle
ParentResp

Parent
Response

Expecting:
XReq

Figure 15: Three cases of the StateMachine, the first case (upper left corner) is a correct execution of
OT with a well formed testcase. The second case (upper right corner) is incorrect run, where a well
formed testcase is sent and received by OT but respond with a unexpected message. Last case (bottom)
is the case of a invalid structure of a testcase and then OT respond with a well formed message. The
two last cases is unexpected behaviour and is logged by the StateMachine.

A well formed or correct message is checked by the StateMachine by parsing each message using the
Parser, and then depending of the Command Type of the message the corresponding TLVs are checked
as well. Due to this simple check we found an interesting case in the implementation of OT, which is
further described in Section 4.

3.3 Changes To AFLNet

In order to make AFLNet recognise and mutate messages correctly, we need to implement two new
functions7. The two functions added is the extract requests OT and extract responses OT which are
used to parse the input from .pcap files, and the output sent from Thread to AFLNet in order to do
stateaware fuzzing. Since response and request follows the same format, MLE, is it relatively trivial to
implement. Furthermore, does the implementation of extract requests OT and extract responses OT

follows same format as the parser made in the Monitor-component, which is described in Section 3.2.1.

While the changes with AFLNet was trivial, we were unable to utilise all of AFLNet’s features, and
thus had to create our own components in order to fuzz OT. This lead to the solution of instead using

7The changes to AFLnet and the implementation of OT packages, can be found in https://github.com/

Speciale-Projekt/aflnet/tree/testing/ot

27

https://github.com/Speciale-Projekt/aflnet/tree/testing/ot
https://github.com/Speciale-Projekt/aflnet/tree/testing/ot


a small binary as the handle to AFLNet, CCookie.

3.3.1 CCookie

The CCookie8 is a small binary, with the sole purpose to interact with AFLNet. The CCookie is written
in C and is compiled with the custom compiler of AFLNet. The CCookie is listening on an UDP socket
and receiving messages from the Monitor-component, in order to signal AFLNet to send a new input.
The CCookie is an important part in controlling the flow of inputs, since AFLNet is efficient in generating
testcases, in fact is AFLNet able to, if not for the CCookie able to send hundreds of request per second.
We experienced that a single OT instance is not able to handle the tidalwave of messages in correct
sequence, and therefore we introduced the logic to time gate AFLNet. Since AFLNet is build upon AFL
we are able to signal a correct run by stopping the CCookie with a return code of 0. First when this is
registered by AFLNet it is allowed to send a new input. The other case, when OT does not respond, we
have sat a static timeout by using a input parameter of AFLNet, which is a millisecond. This result in
worstcase runtime per testcase is one millisecond. This is not achieved in the testsetup, probably due to
physical constraints, which is explained in Section 4.2.

3.4 Changes To OpenThread

As the primary goal of Thread-Fuzz, is to fuzz the novel of the Thread protocol, MLE, and not the
already known protocols in the Thread protocol stack, as IPv6 or IEEE 802.15.4, thus instead of making
the Monitor-component able to communicate with 6LoWPAN, we modified the OT codebase, to allow
direct UDP messages via UDP socket, and directly into the MLE message handling, and had OT write
its responses to a file in addition to sending the message via 6LoWPAN, see Figure 10. In addition to this
we also removed the encryption and decryption operation in OT, without changing how OT perceives a
message to be encrypted, and thus we can still send messages in the encrypted format, where OT still
acts as though the message is encrypted, up until the decryption point which is skipped, and OT can
handle the message as if it was decrypted.

In this section we will go more into detail as to what changes has been made, and why it will not
influence the quality of the results we present later on9.

3.4.1 Direct connection to OT through UDP

When the simulation of OT is started, it starts by monitoring the multicast address 224.0.0.116, the
simulation of OT is using this address for all communication between nodes. Next its going to start
a Command-Line interface (CLI) interface, where the user can start OT, with some Thread specific
commands. As what the Thread radio expects to receive on the interface 224.0.0.116 is packages
utilising the 6LoWPAN protocol, we chose to avoid communicating with OT through that interface,
since it will require to wrap all messages as 6LoWPAN. Instead, we have abstracted the lower layers of
the protocol stack away to only focus on the transport layer and the application layer.

The modification to OT looks substantial, though in essence it does not change much of the code
which is needed for the transport layer and application layer to work as what is expected, first of a new
thread is created when initialising OT, this Thread listens on the UDP port 5000+id of node the id of
the node is determined through the Command-line parameter talked about in Section 1.7, the job that
the new thread introduces can be viewed in fully in Appendix C.1.

Now we just need to punch a hole through from the simulation into the Mle::HandleUdpReceive,
we do this by introducing a function handleUDP in the API of OT, see code snippet below, which expose
the function Mle::HandleUdpReceive. After compilation, it is then possible for main.c to call the C++
code located in the API of OT.

8The CCookie can be found in https://github.com/Speciale-Projekt/CCookie
9The current state of the modified version of OT can be found in our Github repository https://github.com/

Speciale-Projekt/openthread/tree/testing/aflnet

28

https://github.com/Speciale-Projekt/CCookie
https://github.com/Speciale-Projekt/openthread/tree/testing/aflnet
https://github.com/Speciale-Projekt/openthread/tree/testing/aflnet


1 void handleUDP(otInstance *aInstance, otMessage * aMessage, const otMessageInfo *aMessageInfo ){

2 AsCoreType(aInstance).Get<Mle::Mle>().HandleUdpReceive(AsCoreType(aMessage),

AsCoreType(aMessageInfo));↪→

3 }

3.4.2 Print to file when sending message

To utilise a state-machine to verify the correct sequence of messages, the response package must also be
received from the OT instance. OT is set up to send packages using the 6LoWPAN, and thus instead
we changed OT to also write the same message to a file, that the Thread-Fuzz can read. The changes
can be summarised to removing encryption, and in addition to sending the usual way via the simulated
radio, it also writes to a file. The entire change in this regard can be found in the Appendix C.3.

3.4.3 Command line dataset and automatic instantiation

As we cannot interact with the interactive CLI-environment with AFLNet we need to instantiate the
OT instance on startup. Usually this requires manual intervention from a user of the CLI-environment,
and does not allow for automatic start of the OT instance. Thus, a more substantive change to the OT-
simulation implementation, was the need to modify command-line parameters. We added a parameter
to specify the dataset with --dataset {"Network Key": "cf70867da8d41fbdb614aa9677addf9e",

"PAN ID": "0x7063"}, in addition we introduced a command --master, as two simulated OT instance
cannot communicate if both of them has used the command dataset init new. The change to the code
for adding this automated instantiation of the simulated OT instance, can be found in the Appendix B,
where after initialising the OT instance, we call a series of commands based on the command parameter.
Now the command to execute the simulated OT instance is; ./ot-cli-ftd 1 --master --dataset

"{\"Network Key\": \"cf70867da8d41fbdb614aa9677addf9e\", \"PAN ID\": \"0x7063\"}", where
the components of this command is; red: the program, brown: the id of the instance, violet: indicating
that a new dataset should be created when the node is initialising, blue: the network key and pan id
used with the simulated OT instance.

4 Evaluation

We ran in total 10 test with Thread-Fuzz, one is the base case where we have not introduced any errors,
and then nine with introduced errors. Thread-Fuzz is able to detect five of which is to emulate a developer
error resulting in a crash, demonstrating the fuzzing aspect of Thread-Fuzz, and five of which is errors
in the sequence of message sending, demonstrating the statemachine aspect of Thread-Fuzz.

In this section we present the setup for running our test, and evaluate on the results obtained from
these tests. We will also discuss how the tests represents actual errors that developers could have
introduced in a real life program, and why these are good examples of failures, Thread-Fuzz can find in
a Thread implementation such as OT.

4.1 Setup

The longer you are able to run a fuzz-test, the more combinations of different bytes we can test, and thus
we can either find more flaws or be more certain that no errors exists. We ran all of our tests on four
machines, all of which running some version of GNU/Linux OS, each of these split up into one laptop
running Ubuntu with a 2 cored (4 threads) i7-5500U CPU 2.40GHz, and 8 gigabyte ram, and the rest
being 3 desktops running Arch with a 4 cored (4 threads) i5-3470 CPU 3.20GHz, and 8 gigabyte ram.
All computers were set up with a swap partition which was relevant for some tests, these swap partitions
were all set up to be the same size as the ram.

Some of the tests only took a few hours before finding the expected bug, and we could then start the
next test and therefore we could run several tests on the same machine in relatively quick concession, but
others took much longer or did not find any errors, and thus ran for a longer time period. What tests
ran on which machine can be seen in the Table 2. An image of the setup can be seen in the Appendix D

29



Table 2: Testcases ran on the computer setup

Comp 1 Comp 2 Comp 3 Laptop
T0 T1 Base (C0) Base (C0)
T3 C1 C2
T4 C3
C4

The Base Case test, where no errors was introduced ran continuously for more than 600 hours on
the labtop, before the introduction of the StateMachine, and once the StateMachine was introduced, we
moved the base case test on to Comp 3, and the base case test was run for the remainder of the test
period to avoid much downtime in our fuzz-testing.

The process of developing tests was we created a branch in our fork of OT, with the name of each
test and commit it the relevant bug for the test. Then on the machine where the test was supposed to
run, we cloned the testing repository complete-scripts10, that contains git-submodules pointing to the
master/main branch of our fork of OT, AFLNet and our components CCookie, Monitor-component and
in addition some scripts that was relevant for running the tests, such as a build.sh script that makes
sure that all components are build in the correct order, and a run.sh script that runs the applications.
Then to run a specific test, we had to go into the git-submodule for OT and change branch to the relevant
tests.

4.2 Experiments

In this section we describe each of the 10 tests as well as what we expect too see and if we have introduced
a error, why we have chosen to introduce it. We have categorised the 10 tests after which behaviour we
expect to see. The main purpose of each test is to test if Thread-Fuzz works as intended. It is a C test if
we expect to see a crash, and a T test if we expect the StateMachine to capture unexpected behaviour.
While the tests are categorised, we have to make it clear that the tests are categorised after what we
expect, and due to the connection between unexpected behaviour and memory corruption, it is highly
possible that some test results in both being logged in the StateMachine logs as well as the crash log.

4.2.1 C - For Crash Test

The following paragraphs present each of the test, which we expect to result in a crash or memory
corruption.

C0 - The Base Case The C0 test is running our setup with a fresh compiled OT-instance, and no
errors has been deliberately introduced the only changes to the source code is introduced in Section 3.4.
This is the most exciting test, since we can not say for sure if Thread-Fuzz will find any unexpected
behaviour. If we see a mistake it is probably a simple developer mistake, and that is why we categorised
this test to be a C test.

C1 - Off by One We have chosen to introduce a off by one mistake. This is meant to represent
a common simple developer mistake. The mistake relies in the function HandleUdpRecieve, which is
called whenever a MLE message is received. Whenever a MLE message is received by an OT-instance it
checks whether if the message is encrypted or not, if it is encrypted it must be decrypted before checking
the contents. Even though we removed the de-/encrypting function it still loops through the message
as if the de-/encryption operation was applied. Since it is only the content of the MLE message that is
encrypted, the decryption function is not applied to the header. We have inserted the off by one when
the offset is moved to after the header, before doing the loop where the decryption should have happened.
The small change:

10https://github.com/Speciale-Projekt/complete-script

30

https://github.com/Speciale-Projekt/complete-script


1 aMessage.MoveOffset(header.GetLength() - 1); // before

2 aMessage.MoveOffset(header.GetLength()); // after

C2 - Remove Assertion in WriteBytes As a result of running C0 did we become aware of a assertion
statement which is called whenever bytes are written to a MLE message. This is mainly called when OT
build a message for sending. The removed line is:

1 OT_ASSERT(aOffset + aLength <= GetLength());

It is a simple sanity check, where it is checked that the offset added with the length of the buffer is not
longer than the message it self. Removing this line makes it possible to write out of the message objects
bounds. Due to the discovery of the assert being called in specific cases, explained in Section 4.3, we can
expect it OT to write somewhere unexpected provoking a crash or some kind of memory corruption.

C3 - Removed Valid Header Check Another sanity check is removed in this test, we have chosen
to remove the check for valid headers in HandleUdpReceive. Whenever a MLE message is received the
validity of the header is checked, and if it is not a valid MLE header the message is dropped. This check
is trivial but important. The removed line is:

1 VerifyOrExit(header.IsValid() && header.GetLength() <= length, error = kErrorParse);

We can not say for sure what it results in, but after this check, it is assumed that the header is valid
and checks on security/no-security or Command Type is done on the header.

C4 - Removed Valid Discovery Request Check This test is similar to C3, but instead of removing
the check of the header, we removed the check for valid Discovery Request in handleDiscoveryRequest.
As earlier described in Section 1.6, the Discovery Request is the only MLE message which is not encrypted
and can be sent by unauthenticated devices. Which makes them of interest as being the only way to
interact with an OT-instance without knowing the MLE key. The removed check is the deletion of the
conditional statement:

1 if (discoveryRequest.IsValid())

2 {

3 ...

4 }

The deletion of the statement is resulting in any message with the Command Type of 16, which is
the Discovery Request, is treated like a Discovery Request. This mean even if the packet is malformed
it will be treated as a Discovery Request if first byte is 0xFF for no security and second byte is 0X10 for
integer value 16.

4.2.2 T - For Unexpected Behaviour

The T-tests are tests targeting the behaviour and states of the OT-instance.

T0 - No Version TLV The Version TLV is used in the attaching-to-parent sequence to check of the
two devices run a compatible Thread version. We have removed the check for the Version TLV in OT
when handling Parent Requests, which results in Parent Requests without the Version TLV is accepted
as if they had it. The removed lines are:

31



1 SuccessOrExit(error = Tlv::Find<VersionTlv>(aMessage, version));

2 VerifyOrExit(version >= OT_THREAD_VERSION_1_1, error = kErrorParse);

The Thread specification dictate that there must be a Version TLV in a Parent Request, and if that is
not the case the MLE message should be dropped. But in the modified OT it treat is like a valid Parent
Request and respond with a Parent Response. This is unexpected behaviour and should be logged by
the StateMachine.

T1 - No check for Discovery TLV In this test we removed the check for Discovery TLV which is the
only TLV included in the Discovery Request and Discovery Response. This mean that the OT-instance
will send a Discovery Response to any Discovery Request, even if it does not include the Discovery
TLV. This should be caught by the StateMachine, since it is unexpected behaviour of a correct Thread
implementation. The removed line is:

1 VerifyOrExit(Tlv::FindTlvOffset(aMessage, Tlv::kDiscovery, offset) == kErrorNone, error = kErrorParse);

T2 - Handle all messages as Parent Request In this test we modified OT to handle all MLE
messages as Parent Requests. It should be obvious that this should course problems. The StateMachine
should log when a valid test is send that either no response or a Parent Response is sent back. The
moved line in OT is:

1 Get<MleRouter>().HandleParentRequest(aMessage, aMessageInfo);

From the code sample it is not clear what is changed, but the HandleParentRequest call seen above
is moved out before the check on Command Type.

T3 - Handle all messages as Child ID Responses This is test is of same nature as T2. We have
modified OT such that every MLE messages is handled as a Child ID Response. This is incorrect in
multiple ways and obvious is of course that messages which are not Child ID Responses are still handled
as one. The other incorrect assumptions here is the server should never handle a Child Response since
it is only send by a attaching node. We expect to see nothing in this test, since the OT instance should
not answer any message of this response. The modified code is:

1 HandleChildIdResponse(aMessage, aMessageInfo, neighbor);

Which simply is moved out of the check on Command Type in HandleUdpReceive.

T4 - Missing Connectivity TLV In this test we removed the Connectivity TLV in OT when the
Parent Response is build and send. This means that the OT-instance is sending a invalid Parent Response
every time it gets a valid Parent Request, this is of course incorrect behaviour since the Connectivity
TLV is an important part when the attaching device is choosing a parent. This should be logged by the
StateMachine. The removed line is:

1 SuccessOrExit(error = AppendConnectivity(*message));

32



4.3 Results

This section will cover the results of the tests, all of the results can be found in our github repository
https://github.com/Speciale-Projekt/results.

4.3.1 C0 - Base case

Although this is not an unmodified OT-instance, as we did do the necessary modification discussed in
Section 3.4, no error were deliberately introduced for this test, and thus it is essentially just the Thread-
Fuzz fuzzer fuzzing the application layer of the Thread implementation OT. As seen in Table 2 this
test ran twice, first on the Laptop and last on Comp 3. During the initial run of this test we found
that during the right condition and messages the OT application would hard crash with a return code
of 13411, this is a SIGABRT and means that at some point in the code there is an assertion that is not
satisfied, and this problem is not handled in the source code of OT, and as such crashing application.

When OT crashes it gives a line and file of where the crash occurred, and hereby are we able to find
the exact location of the assertion. Namely in the function WriteBytes, the assertion is a sanity check
for whether the length of the message, actually is the size that is indicated by the header of the message,
the assertion is highlighted in Figure 16. We found that WriteBytes is called indirectly through our
modification of OT, through the call to otMessageWrite see Appendix C.1. Therefore without looking
further into the problem, we interpreted this as an error introduced by our code changes and not an
error introduced by OT, so we disregarded it. After having the Base Case test run on the Laptop for
approximately 3 weeks without the StateMachine, it accumulated this error in total 22 times, but no
other faults was detected. We killed the process on the Laptop in favour of running the same test on
Comp 3, but this time with a functioning StateMachine, and not long after the first instance of a crash
with the same error code occurred, yet this time we had a functioning StateMachine. While looking at
the log files produced by running the tests we found some examples of what we considered malformed
Discover Requests that resulted in a Discovery Response from OT. We investigated this further, and
found that it is possible to send a Discover Request with an arbitrary amount of TLVs, and the TLVs
did not have to follow the Thread specification. In the Thread specification it is defined that a Thread

Discovery TLV must be as shown in Figure 12 [2, p. 290], but we can send Discovery Requests with
TLVs length of value longer and shorter than what we indicated in the second byte (length), and OT
would respond with a valid Discover Response. This resulted in us doing manual testing of the OT
application, with different set of messages, and even lead us back to our original find during the initial
run of this test, we tried to throw messages that resembled the messages in the log, modifying it a bit,
and sending it again.

This led to our discovery of a stack overflow error of OT on the unsecured MLE message, Discovery
Request.

The stack overflow error that we found was based on that we can write more into the buffer than
the size allocated to it, if we look at the code for allocating a received message see Figure 17.

11In python this is return code -6, and as we developed the StateMachine, the way we wrote the return codes into the
logs changed to use the Python format rather than the C format. But we will keep referring to return codes as those of a
C application to avoid confusion.

33

https://github.com/Speciale-Projekt/results


614 void Message::WriteBytes(uint16_t aOffset, const void *aBuf, uint16_t aLength)

615 {

616 const uint8_t *bufPtr = reinterpret_cast<const uint8_t *>(aBuf);

617 MutableChunk chunk;

618

619 OT_ASSERT(aOffset + aLength <= GetLength());

620

621 GetFirstChunk(aOffset, aLength, chunk);

622

623 while (chunk.GetLength() > 0)

624 {

625 memmove(chunk.GetBytes(), bufPtr, chunk.GetLength());

626 bufPtr += chunk.GetLength();

627 GetNextChunk(aLength, chunk);

628 }

629 }

Figure 16: The assert that was not satisfied

It can be seen on line 2771, that only 64 bytes are allocated the buffer, and when a MLE message
that is larger than these 64 bytes is send, then it will overwrite other objects on the stack with the rest
of the message, such as length and command, if long enough the return pointer.

By sending the message:

"FF 10 1a ff 00 00 00 00" + "00" * 500

we even got an SEGFAULT exception from OT, meaning that we was indeed beginning to overwrite stuff
in the stack that we should not be allowed to do, probably the return pointer.

Currently our assumptions leads us to believe that we write into the next declared variable length,
which is later used in the assertion displayed in Figure 16 and thus the assertion is not satisfied. But
further research is required to know this for certain. The implications of having a stack overflow is a very
real possibility of arbitrary code execution, and as we can trigger this from outside a network, possibly
affecting many devices at the same time, this could lead to a very severe security issue. Imagine being
able to utilise some of already available reverse shell binaries from [52] to have a single message that we
could broadcast in the middle of Thread network, and suddenly gain access to all devices within radio
distance.

How to further research this vulnerability is discussed in the Future Works Section 8.

To fix this issue is simple enough. All that is required for OT is to insert a check validating the
length of the received MLE message to not exceed the allocated size of the buffer. In regards to the fact
that we can send non-Thread specification-compliant Discovery Requests and received a Discovery

Response is just as easy. Thread requires a certain Thread Discovery TLV, and OT needs to check if
the TLV is compliant with the specification.

34



2759 void Mle::HandleUdpReceive(Message &aMessage, const Ip6::MessageInfo &aMessageInfo)

2760 {

2761 Error error = kErrorNone;

2762 Header header;

2763 uint32_t keySequence;

2764 const KeyMaterial *mleKey;

2765 uint32_t frameCounter;

2766 uint8_t messageTag[kMleSecurityTagSize];

2767 uint8_t nonce[Crypto::AesCcm::kNonceSize];

2768 Mac::ExtAddress extAddr;

2769 Crypto::AesCcm aesCcm;

2770 uint16_t mleOffset;

2771 uint8_t buf[64];

2772 uint16_t length;

2773 uint8_t tag[kMleSecurityTagSize];

2774 uint8_t command;

2775 Neighbor *neighbor;

2776 bool skipLoggingError = false;

Figure 17: Allocations of variables used within the function HandleUdpReceive

4.3.2 Rest of the tests

During our verification process of the error messages from Thread-Fuzz, we found an issue in the logging
of the Monitor-component, due to the fact that we still utilise AFLNet for its mutation algorithm, the
Monitor-component experiences some concurrency problems in regards to logging the messages that
caused the problem. As whenever the CCookie receives a message it returns out, and AFLNet sends a
new message to the Monitor-component, would happen at the same time as when OT would respond
to the previous message, and thus when whenever a problem occurred, the Monitor-component would
sometimes get a new message before logging, and write that message down instead. Resulting in that
often the messaged logged, is the message after the problem occurred, and not the message that actually
was at fault.

Thus a lot of investigation was required to determine which of messages was the cause of the problems
introduced with the test. In the Table 3, the rows marked with a (?) we can see that we found the
exception through the logs, but we are uncertain what message actually caused this problem. How to
fix this issue, is discussed in the Future Works Section 8.

In addition to this, we found that errors accumulated over sequential runs, most likely due to the
problem described in Section 4.3.1, and as thus our logging tool would report this error even on valid
packages. A possible solution to this issue is also discussed in the Future Works Section 8, but it is in
turn easy to disregard these messages as a valid message is trivial to distinguish from a invalid one.

4.3.2.1 The cases we did not find an error in

Out of the ten cases we ran, only four resulted in us not finding an error, or only finding the same
error as described in the Base Case. We will go through the reason for us not finding these error in this
subsection.

C1 - Off by One This test was created with the mindset of inconsiderate developer were to forget
the difference between index and size of a list. Removing the −1 from a lookup in the code base would
under normal circumstances result in unexpected behaviour as its addressing something outside of the
allocated size of the array. But as we designed this test with an unmodified OT instance in mind, we
did not account for the fact that we removed decryption of the message, which is where this error would
have been thrown. Thus, in our modified version of OT no exception is raised, and Thread-Fuzz did
therefor not find any error, besides the one described in the Base Case.

35



Table 3: Results from running our tests

Test name
Did the fuzzer find
an error (Yes/No)

SM / Crash / Both

C0 - The Base Case Yes Both
C1 - Off by One No
C2 - Remove Assertion
in WriteBytes

Yes(?) Crash

C3 - Valid Header Check No
C4 - Valid Discovery
Request

No

T0 - No version TLV Yes(?) SM
T1 - No check for
Discovery TLV

Yes SM

T2 - Handle all
messages as
ChildIDResponses

No

T3 - Handle all
messages as
ParrentRequest

Yes SM

T4 -Missing
Connectivity TlV

Yes SM

C3 - Valid Header Check For this case we removed a check for whether the header of the message
was correct, as per the Thread Specification. The assumption being that it would propagate to a larger
error when Thread-Fuzz got to fuzz on the messages and in turn corrupt the header of the message. But
alas OT had a more robust set-up in regards to the header than they do in almost all other aspects of
the MLE message, and thus no additional errors was found for this test.

C4 - Valid Discovery Request We did not find any error through the Thread-Fuzz, although the
following message would result in a StateMachine error;

"FF 10 1a"

This is because discoveryRequest.IsValid() essentially checks whether the Thread Discover TLV is
valid, and the only thing that OT checks on in regards to this is whether that the TLV is at least 2 bytes
long (Type and Length).

An error in the Monitor-component results in that it is unable to handle a TLV of only one byte,
and is not sent to OT, and for this reason (and quite possibly because AFLNet favours appending bytes
rather than sending small packages) this exception is never caught.

T3 - Handle all messages as ChildIDResponses As expected OT did not respond to this response.
Future implementation of a more in-depth StateMachine might use this test to walk through the entire
process of becoming a Node within the OT network.

5 Discussion

In this section we want to take a step back, and take a look upon the method used when developing
Thread-Fuzz and discuss the promises of fuzzing compared to our experience. First we want to discuss
the categorisation of Thread-Fuzz and why it is hard to compare the idea presented with other fuzzing
approaches. Then we will discuss the limitation of AFLNet and the compatibility between AFLNet and
real implementations of networks protocols, with the context of OT. Lastly we will discuss our approach
to building Thread-Fuzz and what changes to our approach in hindsight.

36



5.1 Categorisation of Thread-Fuzz

We can easily categorise Thread-Fuzz to be a mutation-based blackbox fuzzer, due to the mutation
algorithm used via AFLNet and due to the only feedback from the target is the output. That said
Thread-Fuzz introduce a unique perspective on fuzzing, by assuming states of the application and hereby
check for unexpected behaviour which is not crashes or memory corruption. Thread-Fuzz is basically
searching for a input to Thread implementation which leads to behaviours which is not described in
the Thread specification. Due to not being able to classify and categorise Thread-Fuzz in the known
terms, are we suggesting a new term, which is behavioural fuzzing. Behavioural fuzzers is the set of all
fuzzers which search for unexpected behaviour, this mean that the traditional fuzzers are included in
behavioural fuzzers as well. With the new term of behavioural fuzzing, we can categorise Thread-Fuzz
to be a mutation-based behavioural blackbox fuzzer.

5.2 Usability of AFLNet and The Promises of Fuzzing

While AFL is widely used and popular, its functionality is still limited to a small subset of possible fuzz
targets. However it is modular of design and hereby easy extendable. This is one of the major points of
using the successor AFLNet. AFLNet implements the notion of states and message sequences, in order
to get a better coverage. While it is relatively easy to implement the support for Thread in AFLNet,
we met major issues with the instrumentation and the amount of dummy code, code needed in order
to do fuzzing. We experienced that the semantics of OT changed when compiling the source code with
custom compiler of AFL. As an attempt to solve this problem, we directed the custom compiler, but
due to the size of OT code base, it was not trivial. Linking the custom compiled code with the rest was
cumbersome, since OT uses autogenerated makefiles and we had to solve the linking by hand. This did
not solve the problems with the custom compiler, which led us to the current solution of not using in-
strumentation of OT at all, but instead using a dummy program, CCookie, to control the flow of AFLNet.

In order to do efficient fuzzing it is possible to change the source code of the target. We choose to re-
move encryption operation and expose the function that handles MLE messages, while we had experience
with Thread, we have limited experience with the code base of OT. This led to a throughout investigation
of the relatively large codebase of OT. While the examples of AFLNet was on small protocols, it have
become clear that it is not suited for real implementations of network protocols such as OT. To back
the statement up is the successor of AFLNet Snapfuzz[5], which was presented in the same time period
as the report was written. All in all the most appealing features of greybox fuzzing is the limited code
analysis and the off-to-go solution presented by AFLNet, but in our experience the usability of AFLNet
is not there quite yet.

5.3 Thread-Fuzz in Hindsight

While Thread-Fuzz proved to working, somehow, as intended it is still unpolished. We saw in Section 3
that Thread-Fuzz was able to find unexpected behaviour, and even one suspected flaw in the current
implementation of OT. We believe alot of the complexity of making the tool was getting AFLNet to work
properly, and in hindsight, we believe that Thread-Fuzz would be more mature if it had is own mutation
algorithm and did not depend on AFLNet. Furthermore, are the key-features of AFLNet not used by
Thread-Fuzz and therefore it is hard to argue that we keep the connection to AFLNet. An alternative
to use AFLNet as mutatator would be writing a Thread specialised mutator, which iw aware of the TLV
structure by using fuzzing libraries such as LibAFL[1].

Another change which we believe, in hindsight, could have improved Thread-Fuzz immensely is the
use of an integrated tool using the theory of model checking, such as UPPAAL TRON[35]. Instead of
defining simple static checks such as the chronological order of messages as in the StateMachine currently,
we might be able utilise UPPAAL TRON to make and check more complicated queries without too much
effort.

37



6 Related Work

Although fuzzers has been around since B. Miller’s first introduction to the topic in the 1980’s, recently
the topic has gained a lot of traction, and a lot of new and exiting fuzzing tools has been developed just
within the last few years. Not to forget that many new conferences focused exclusively on this subject,
some not much more than one year old [31, 29, 30, 28].

AFL++ is the successor to the greybox fuzzer AFL, expanding on the ground that AFL already
layed out, it incorporate even more mutators, and better support for compilers such as LLVM. AFL++
promises to close the gap between industrial and research, by building on top of AFL and still provide
an easy-to-use experience for the user. [18] As the successor to the no longer maintained AFL [58], one
could speculate that in terms of non-protocol fuzzers, AFL++ is going to win even more ground, until
a better fuzzer comes a long.

SnapFuzz is just like Thread-Fuzz build on top of AFLNet utilising the mutation-algorithm for fuzz-
ing network protocols, by creating a fork-server that can take the output of AFLNet and awaiting when
the target is ready to receive a new package. Doing it this way they overcome the delays that is caused
by using user specified delays in AFLNet, and thus is able to archive a much higher throughput of the
fuzzer. One of the major issues of running a fuzzer with a network protocol as a target, is to make sure
that each iteration of the fuzzing happens on a “clean slate”, such that a faulty state from a previous run,
does not interfere with the next run. SnapFuzz overcomes this obstacle by using a temporary file-system
(tmpfs), and thus the clean-up phase between runs is trivialised. [5]

Though contrary to Thread-Fuzz, SnapFuzz ’s primary focus in on increasing the throughput of AFL-
Net, and reducing the fuzzing harness (the code that the user needs to write before being able to fuzz
a network protocol). During the implementation of Thread-Fuzz we had many struggles with this fuzz-
ing harness and as a result, we introduce the notion of moving away from AFLNet in our discussion.
Though SnapFuzz overcomes this obstacle by removing the need for manually introduce timed delays
and removing the need for creating a clean-up script for in between runs. [5]

For OT we did not have to introduce neither a hard-coded timed delay, nor a clean-up script, and
therefor SnapFuzz ’s changes would thus not leverage much of the obstacles that we experienced during
our development with AFLNet on OT, besides this, even if we did gain something by introducing these
functionalities of SnapFuzz, they have unfortunately decided to keep their source-code closed-sourced.
Though in regards to increasing the throughput of AFLNet, the removal of having to create manually
timed delays and instead introduce a forkserver that would inform AFLNet when the target was ready
to receive a new package, they successfully increased the speed at which they were able to find the same
errors without their implementation. The speed-up ranged from 8.6 times for the protocol Dcmqrscp to
62.8 times for the protocol LightFTP. [5]

Driller is a whitebox fuzzer, utilising concolic execution (also known as dynamic symbolic execution)
to step through difficult conditions that are almost impossible to fuzz the result of. Contrary to Thread-
Fuzz, Driller requires a direct access to the source code of the application that it is fuzzing so that it can
calculate the required parameters for difficult conditions. Besides that Driller is not build for network
protocols, and thus leverages AFL for the mutational algorithm, instead of AFLNet. [54]

Muzz is a greybox fuzzer, with a increased focus on concurrency problems, which AFL and its deriv-
ations has problems with [43]. By creating a thread-aware feed-back for Muzz they are able to adapt
their mutation algorithm to promote seeds that explore multiple branches of the multi-threaded applica-
tion, while demoting seeds that only explores the same branches in what they describe as the “Matthew
Effect” [12] (the better the seeds the more they will be used for generation, vice versa with bad seeds).
They conclude that Muzz is significantly better at finding concurrency issues than AFL. [12]

38



7 Conclusion

We gave a overview of the Thread protocol, with focus on MLE, the novel part of Thread. We then
presented the different fuzzing approaches in order to establish terminology for Thread-Fuzz. We presen-
ted architecture, design choices of Thread-Fuzz as well as how the different components interact each
other in order to fuzz OT. We tested the implementation of Thread-Fuzz by running ten test where of
Thread-Fuzz found five of the introduces bugs and one in the current implementation of OT. The impact
of the found bug needs more research and we can only speculate, but it could worst case lead to unau-
thenticated remote code execution. Lastly we discussed the suggestion of the term behavioural fuzzers,
which contain a bigger set than the traditional fuzzers, that only searched for crashes and memory
corruption, as well as the flaws of AFLNet and the developing of Thread-Fuzz in hindsight.

We can conclude that it is possible to incorporate the assumption of states in a blackbox fuzzer,
and use these assumption of states to search for wrong handling of inputs. The proof-of-concept imple-
mentation of a mutation-based behavioural blackbox fuzzer for the network protocol Thread is working
and able to discover incorrect behaviour in the implementation compared to the specification. While
Thread-Fuzz is unpolished it still proves, the idea of finding other incorrect behaviours than crashes and
memory corruption, can be done with fuzzing. We can conclude that Thread-Fuzz could benefit of some
major changes, such as implementing its own mutator and using third party tools such as UPPAAL
TRON to handle the logic of states.

8 Future Work

It is clear that idea of checking behaviour based on target program states is possible, and can be expanded.
Thread-Fuzz only covers a small subset of the Thread protocol and it can easily be imagined that the
idea can be expanded to the rest of Thread as well as other protocols. In this section we want to present
the immediate next step for Thread-Fuzz and the future work for some of the open ended question, that
results of this report.

Repair Logging in Thread-Fuzz The most obvious features which must be fixed before considering
Thread-Fuzz as functional fuzzing tool is the logging function. Without correct logging the message that
causes unexpected behaviour, it is hard to prove that a given behaviour exists and furthermore it is near
impossible to research and find a possible fix. This is a critical feature and due to the triviality of the
problem in Thread-Fuzz it is hard to argument, that this is not the immediate next step for Thread-Fuzz.
As we earlier discussed does the current problem rely in a concurrency problem, and we have discussed
two possible solutions to the problem. The first solution is to decouple from AFLNet and then keeping
testcases in memory, while it is obvious how this solves the problem, it will makes us able to control
the flow of data much more accurate. Hereby making the concurrency problem obsolete, by simply not
sending any messages before we get a response or after a specified timeout. The second solution is to
save all messages in the Monitor, hereby able to see the full history of messages and responses up until
the crash. This feature is also a great tool investigate crashes provoked by an accumulation of messages.
Otherwise it would also make sense to have an option where the OT instance is reset between every
message sequence in order to have a clean run every time.

Removing dependencies to AFLNet As earlier described, are we of that belief that Thread-Fuzz
can benefit of cutting it ties to AFLNet. This will result in Thread-Fuzz need another mutator, which
can be implemented using LibAFL, the fuzzing library based on AFL. Furthermore is it of interest make
the mutator aware of the TLV structure. This can be in form of mutation operations such as adding
and removing TLVs. Removing the coupling to AFLNet and making the mutator a part of the Monitor-
component would also result in a more efficient run. Due to the communication between AFLNet and
the Monitor-component is done via sockets, it is possible to increase the time per execution, by instead
using shared memory. Furthermore is trivial to fix the logging problem mentioned earlier.

Adding Support for More MLE Thread-Fuzz cover a small subset of MLE and it can easily be
extended to support for other important parts, such as Commissioning, Network Data sharing between

39



nodes or Partitioning.

Integration of UPPAAL TRON In Section 5 did we mention the use of an third party tool to track
changes of the target, and check if it satisfy the Thread specification, Uppaal TRON.Uppaal TRON[35]
is a blackbox conformance testing tool, which utilise the Uppaal model checker engine in order to get
efficient model exploration. Interaction with Uppaal TRON is much like the currently StateMachine
just input and output channels. It is of big interest to implement Uppaal TRON as replacement of the
StateMachine.

Further Investigation of The Bug in OT As explained did we observe a potential stack overflow in
OT, and as is are we not able to determine whether of this is a real problem, minor or not existing. We
believe it is real due to its nature, the bug it self allows to make writes to the stack of any length. This
can potentially be exploited to get remote code execution, but we can not say for sure without further
investigation. Best case, does there exist a check on the length on a lower level in the protocol stack,
and hereby does are MLE messages that are longer than specified in dropped.

Further Investigation of The Instrumentation Technique Presented by AFL The instru-
mentation technique used by AFLNet is inherited by the predecessor AFL, and is used in the many
inheritances of AFL. As earlier discussed, did we experience a change in the semantics of the program
after we compiled the source code of OT with the custom compiler. There might be an unexpected side
effect of inserting logging functions in the assembly, but we are not able to tell for sure without deeper
research of the instrumentation. We already know that the custom compiler used to compile OT is the
least recommended one, but due to OT is written in C99 and C11 code, we are not able to use the
afl-clang-fast which is the LLVM solution and recommended.

40



Acknowledgements

We would like to thank our supervisors René Rydhof Hansen and Danny Bøgsted Poulsen for their
guidance and feedback.

41



A Thread MLE TLVs

Name Type
Length
in bit

Type Description Note

Source Address 0 16 A senders’ 16-bit MAC address

Must be included
whenever the sender
has a valid 16-bit
MAC address

Mode 1 8
A byte string representing the link mode
used by the source of a message

Format defined
in Section ??

Timeout 2 32
A 32-but unsigned integer, which is used as
the expected maximum interval between
transmissions in seconds

explained in more
detail in Section ??

Challenge 3 max 64
A randomly-chosen byte string, used to
determine the freshness of replies to a
message

Must be at least 4 bytes
a new value must be
choosenfor each
Challenge

Response 4 8 A byte string copied from a Challenge TLV
Link-layer
Frame Counter

5 32
The senders’ current outgoing link-layer
Frame Counter

Encoded as an 32-bit
unsigned integer

MLE Frame
Counter

8 32
The senders’ current outoing
MLE Frame Counter

Encoded as a 32-bit
unsigned integer

Route64 9 32
Used for distribution of of active Router IDs
and routing information

See chapter 5 in [2]
for more details

Address16 10 16

A 16-bit MAC address sent by a Parent
to a new Child, for the
Child to be assigned this
address

Also used to reconfirm
a Router neighbor’s
16-bit MAC address

Leader Data 11 32 The Network Leader Data
Format defined
in Section ??
and Figure 4-6 in [2]

Network Data 12 32 The sender’s current Network Data
TLV encoding is
described in [2]
section 5.18

TLV Request 13 8
A list of TLV codes that indicates
requested TLVs by the sender

Format defined in [2]
Figure 4-7

Table 4: TLVs types with descriptions and references to format definitions when necessary. The table is
continued in Table 5

42



Scan Mask 14 8
Flags that indicates which devices types
that should responds to a multicast
request

Format defined in
Section ??

Connectivity 15 32
Shows how connected the sender is
to other devices

Format defined in [2]
Figure 4-9

Link Margin 16 8
Sender’s calculated link margin in dB
for the destintation

Format defined
in Section ??

Status 17 8 Status response to a request
Format defined in [2]
Figure 4-11

Version 18 16
Version number of the Thread Protocol
implemented by the sender

Format defined in [2]
Figure 4-12

Address Registration 19 32
Zero or more addresses that have been
configure by the source of the message

Format defined
in Section ??

Channel 20 24
The channel page and channel of adjacent
Network partitions operation on a different
Active Operational Dataset

Format defined in [2]
Figure 4-14

PAN ID 21 16
PAN ID of an adjacent Network Parition
operation on a different Active Operational
Dataset

Format defined in [2]
Figure 4-15

Active Timestamp 22 32 An Active Timestamp
Format defined in [2]
Figure 4-16

Pending Timestamp 23 32 A Pending Timestamp
Format identical
to TLV type 22

Active Operational
Dataset

24 32
Sender’s Active Operational Dataset encoded
as a series of Network Management TLVs

For more details
see Chapter 8 in [2]

Pending Operational
Dataset

25 32
Senders’ Pending Operational Dataset encoded
as a series of Network Management TLVs

For more details
see Chapter 8 in [2]

Thread Discovery 26 Any
A series of Mesh Commissioning Protocol
TLVs used for network discovery on
IEEE 802.15.4 interfaces

For more details
see section 8.4.4.1.1
in [2]

Table 5: Continuation of table 4. TLVs with type description and references to format definitions when
necessary

B Description of Variables Used in the Thread Network Data
sets

The following appendix is an taken word by word from the unpublished article [4].

B.1 Valid Prefix Set

• P prefix which is the IPv6 prefix for the Thread Network. The prefix and what it is used for is
explained in 1.3.3.

• P domain id which identifies the Provisioning Domain.

• P border router 16 which is the Routing Locator (RLOC) for the Border Router providing this
prefix.

• P stable determines if this prefix is considered stable.

• P on mesh will show whether the P prefix is On-mesh.

• P preferred identifies whether the address which has been auto-configured using the P prefix is
preferred.

43



• P slaac determines whether the nodes in the network is allowed to create an auto-configured
address based on the P prefix.

• P dhcp determines whether the address located in P border router 16 is a DHCPv6 Agent, that
manages the address configuration for the P prefix.

• P configure determines whether the address located in P border router 16 is a DHCPv6 Agent,
that supplies configuration data.

• P default determines if P border router 16 offers a default route, for messages that uses the
P prefix.

• P preference will show the preference of the route offered in P border router 16 if it offers a
default route, determined by P default.

• P nd dns describes whether the Border Router located at P border router 16 is able to supply
DNS information.

B.2 External Router Set

• R domain id identifies the Provisioning Domain, that this data set is associated with.

• R border router 16 is the RLOC of the Border Router.

• R prefix is the IPv6 prefix for the route.

• R stable determines if this data set is considered stable.

• R preference is the preference of the external router this data set is associated with.

B.3 6LoWPAN Context ID Set

• CID id is the Context ID for the 6LoWPAN

• CID prefix is the IPv6 prefix in which the 6LoWPAN encodes.

• CID stable determines if this context id is considered stable.

B.4 Server Set

• S enterprise number is the number assigned to the device by the Internet Assigned Numbers
Authority, to the vendor that designed the server in question. If no such assignments has been
made the default value in thread is 44970.

• S service date is any information relevant to servicing of the server, currently this is unspecified
exactly how to use it in the Thread Specification.

• S server 16 describes the RLOC of the server.

• S server data is the data containing server-specific information. This has not been clearly defined
as to how Thread Servers should behave yet.

• S stable determines if this Server data set is considered stable.

• S id is the ID of the server assigned by the Leader of the TNP. This value is between 1 and 15.
If two servers share the same S enterprise number and the same S service data then they also
share the same S id.

C Code changes in OpenThread

This appendix contains the code changes that was made to OT, such that a more streamlined Fuzz
testing of the application layer could be done.

44



C.1 Direct connection to OpenThread with UDP

1 void *udpSocketListener(void *instance) {

2 struct sockaddr_in serverAddr, clientAddr;

3 int listenAddr = 5000 + id;

4 char *listenDomain = "127.0.0.1";

5 int sockfd = socket(AF_INET, SOCK_DGRAM, 0);

6 if (sockfd < 0) {

7 exit(1);

8 }

9 bzero(&serverAddr, sizeof(serverAddr));

10 serverAddr.sin_family = AF_INET;

11 serverAddr.sin_port = htons(listenAddr);

12 serverAddr.sin_addr.s_addr = inet_addr(listenDomain);

13 // Bind socket

14 if (bind(sockfd, (struct sockaddr *)&serverAddr, sizeof(serverAddr)) < 0) {

15 exit(1);

16 }

17 otMessageSettings *settings = malloc(sizeof(otMessageSettings));

18 settings->mLinkSecurityEnabled = 0;

19 settings->mPriority = 1;

20 otMessage *aMessage;

21

22 otMessageInfo *b = malloc(sizeof(otMessageInfo));

23 b->mLinkInfo = malloc(2);

24 b->mHopLimit = 255;

25

26 while (1) {

27 // Get message

28 char buffer[1024];

29 socklen_t clilen = sizeof(clientAddr);

30 ssize_t n = recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr *) &clientAddr, &clilen);

31 aMessage = otUdpNewMessage(instance, settings);

32 if (n > 0) {

33 if (otMessageSetLength(aMessage, sizeof(buffer)) != OT_ERROR_NONE) {

34 perror("message write");

35 };

36 if (0 > otMessageWrite(aMessage, 0, buffer, sizeof(buffer))) {

37 perror("message write");

38 };

39 handleUDP(instance, aMessage, b);

40 }

41 otMessageFree(aMessage);

42 }

43 }

45



C.2 Instantiation of a Thread node without CLI-interactions

4907 //[...]

4908 if (networkKey != NULL && panId != NULL)

4909 {

4910 if (useAsMaster) {

4911

4912 sprintf(command, "dataset init new");

4913 Interpreter::sInterpreter->ProcessLine(command);

4914 }

4915 sprintf(command, "dataset networkkey %s", networkKey);

4916 Interpreter::sInterpreter->ProcessLine(command);

4917 sprintf(command, "dataset panid %s", panId);

4918 Interpreter::sInterpreter->ProcessLine(command);

4919 sprintf(command, "dataset commit active");

4920 Interpreter::sInterpreter->ProcessLine(command);

4921 sprintf(command, "ifconfig up");

4922 Interpreter::sInterpreter->ProcessLine(command);

4923 sprintf(command, "thread start");

4924 Interpreter::sInterpreter->ProcessLine(command);

4925 free(command);

4926 }

4927 //[...]

46



C.3 Write to file when sending UDP message

1 Error Mle::SendMessage(Message &aMessage, const Ip6::Address &aDestination)

2 {

3 //[...] The declaration of code

4 FILE *fp = fopen("child.bin", "w+"); // New

5

6 IgnoreError(aMessage.Read(0, header));

7 uint16_t offset = aMessage.GetOffset();

8

9 if (header.GetSecuritySuite() == Header::k154Security)

10 {

11 // [...] Reads from header, used in encryption

12 while (aMessage.GetOffset() < aMessage.GetLength()) //New

13 {

14 length = aMessage.ReadBytes(aMessage.GetOffset(), buf, sizeof(buf));

15 fwrite(buf, 1, length, fp);

16 aMessage.MoveOffset(length);

17 }

18

19 aMessage.SetOffset(header.GetLength() - 1);

20

21 // Usual send message, encryption is removed

22 while (aMessage.GetOffset() < aMessage.GetLength())

23 {

24 length = aMessage.ReadBytes(aMessage.GetOffset(), buf, sizeof(buf));

25 // aesCcm.Payload(buf, buf, length, Crypto::AesCcm::kEncrypt);

26 aMessage.WriteBytes(aMessage.GetOffset(), buf, length);

27 aMessage.MoveOffset(length);

28 }

29

30 // aesCcm.Finalize(tag);

31 SuccessOrExit(error = aMessage.AppendBytes(tag, sizeof(tag)));

32

33 Get<KeyManager>().IncrementMleFrameCounter();

34 } else { // New

35 aMessage.SetOffset(offset);

36

37 while (aMessage.GetOffset() < aMessage.GetLength())

38 {

39 length = aMessage.ReadBytes(aMessage.GetOffset(), buf, sizeof(buf));

40 fwrite(buf, 1, length, fp);

41 aMessage.MoveOffset(length);

42 }

43 }

44 fflush(fp); // New

45 fclose(fp); // New

46 // [...] sets message info based on destination

47 SuccessOrExit(error = mSocket.SendTo(aMessage, messageInfo));

48

49 exit:

50 return error;

51 }

47



C.4 Remove decryption from HandleUDPReceive

2855 //[...]

2856 aMessage.MoveOffset(length);

2857 }

2858

2859 // aesCcm.Finalize(tag);

2860 /*#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION

2861 if (memcmp(messageTag, tag, sizeof(tag)) != 0)

2862 {

2863 // We skip logging security check failures for broadcast MLE

2864 // messages since it can be common to receive such messages

2865 // from adjacent Thread networks.

2866 skipLoggingError =

2867 (aMessageInfo.GetSockAddr().IsMulticast() &&

aMessageInfo.GetThreadLinkInfo()->IsDstPanIdBroadcast());↪→

2868 ExitNow(error = kErrorSecurity);

2869 }

2870 #endif*/

2871

2872 if (keySequence > Get<KeyManager>().GetCurrentKeySequence())

2873 //[...]

48



D An image of the testing setup

Figure 18: Laptop on top of Comp 1 through Comp 3. The Computer in the background is not used
due to a hardware error.

49



References

[1] AFLplusplus/LibAFL: Advanced Fuzzing Library - Slot your Fuzzer together in Rust! Scales across
cores and machines. For Windows, Android, MacOS, Linux, no std, ... https://github.com/
AFLplusplus/LibAFL. (Accessed on 06/13/2022).

[2] Robert Alexander et al. Thread Specification. ThreadGroup, 2017.

[3] american fuzzy lop. https://lcamtuf.coredump.cx/afl/. (Accessed on 05/30/2022).

[4] Christoffer Sand Andersen et al. “Towards Modelling and Verification of the Thread Protocol”. In:
(2022). url: https://projekter.aau.dk/projekter/da/studentthesis/towards-modelling-
and-verification-of-the-thread-protocol(70b7397d-1e31-4dc6-9f66-72bb80b9bb63)

.html.

[5] Anastasios Andronidis and Cristian Cadar. “SnapFuzz: An Efficient Fuzzing Framework for Net-
work Applications”. In: (Jan. 2022).

[6] Clark Barrett et al. “Satisfiability modulo theories”. eng. In: Frontiers in Artificial Intelligence and
Applications. Vol. 185. 1. 2009, pp. 825–885. isbn: 1586039296.

[7] Marcel Böhme et al. “Directed greybox fuzzing”. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. 2017, pp. 2329–2344.

[8] Ella Bounimova, Patrice Godefroid and David Molnar. “Billions and billions of constraints: White-
box fuzz testing in production”. In: 2013 35th International Conference on Software Engineering
(ICSE). 2013, pp. 122–131. doi: 10.1109/ICSE.2013.6606558.

[9] Chiara Buratti, Roberto Verdone, Gianluigi Ferrari et al. Sensor networks with IEEE 802.15. 4
systems: distributed processing, MAC, and connectivity. Springer Science & Business Media, 2011.

[10] Burp Suite - Application Security Testing Software - PortSwigger. https://portswigger.net/
burp. (Accessed on 06/02/2022).

[11] Marcel Böhme, Van-Thuan Pham and Abhik Roychoudhury. “Coverage-Based Greybox Fuzzing
as Markov Chain”. In: IEEE Transactions on Software Engineering 45.5 (2019), pp. 489–506. doi:
10.1109/TSE.2017.2785841.

[12] Hongxu Chen et al. “{MUZZ}: Thread-aware grey-box fuzzing for effective bug hunting in multith-
readed programs”. In: 29th USENIX Security Symposium (USENIX Security 20). 2020, pp. 2325–
2342.

[13] Edmund M Clarke. “Model checking”. In: International Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer. 1997, pp. 54–56.

[14] Cloudflair. What is User Datagram Protocol (UDP/IP). url: \url{https://www.cloudflare.
com/learning/ddos/glossary/user-datagram-protocol-udp/}.

[15] ClusterFuzz - ClusterFuzz. (Accessed on 06/14/2022).

[16] CVE - CVE-2021-3156. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156.
(Accessed on 06/13/2022).

[17] Zakir Durumeric et al. “The Matter of Heartbleed”. In: Proceedings of the 2014 Conference on
Internet Measurement Conference. IMC ’14. Vancouver, BC, Canada: Association for Computing
Machinery, 2014, 475–488. isbn: 9781450332132. doi: 10.1145/2663716.2663755. url: https:
//doi.org/10.1145/2663716.2663755.

[18] Andrea Fioraldi et al. “{AFL++}: Combining Incremental Steps of Fuzzing Research”. In: 14th
USENIX Workshop on Offensive Technologies (WOOT 20). 2020.

[19] Andrea Fioralldi et al. “Registered report: Dissecting american fuzzy lop - A fuzzbench evaluation”.
In: FUZZING 2022, 1st International Fuzzing Workshop, 24 April 2022, San Diego, CA, USA /
Co-located with NDSS 2022. San Diego, 2022.

[20] Bjorn N Freeman-Benson, John Maloney and Alan Borning. “An incremental constraint solver”.
In: Communications of the ACM 33.1 (1990), pp. 54–63.

50

https://github.com/AFLplusplus/LibAFL
https://github.com/AFLplusplus/LibAFL
https://lcamtuf.coredump.cx/afl/
https://projekter.aau.dk/projekter/da/studentthesis/towards-modelling-and-verification-of-the-thread-protocol(70b7397d-1e31-4dc6-9f66-72bb80b9bb63).html
https://projekter.aau.dk/projekter/da/studentthesis/towards-modelling-and-verification-of-the-thread-protocol(70b7397d-1e31-4dc6-9f66-72bb80b9bb63).html
https://projekter.aau.dk/projekter/da/studentthesis/towards-modelling-and-verification-of-the-thread-protocol(70b7397d-1e31-4dc6-9f66-72bb80b9bb63).html
https://doi.org/10.1109/ICSE.2013.6606558
https://portswigger.net/burp
https://portswigger.net/burp
https://doi.org/10.1109/TSE.2017.2785841
\url{https://www.cloudflare.com/learning/ddos/glossary/user-datagram-protocol-udp/}
\url{https://www.cloudflare.com/learning/ddos/glossary/user-datagram-protocol-udp/}
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755


[21] Vijay Ganesh, Tim Leek and Martin Rinard. “Taint-based directed whitebox fuzzing”. In: 2009
IEEE 31st International Conference on Software Engineering. 2009, pp. 474–484. doi: 10.1109/
ICSE.2009.5070546.

[22] Patrice Godefroid, Adam Kiezun and Michael Y. Levin. “Grammar-Based Whitebox Fuzzing”. In:
New York, NY, USA: Association for Computing Machinery, 2008, 206–215. isbn: 9781595938602.
doi: 10.1145/1375581.1375607. url: https://doi.org/10.1145/1375581.1375607.

[23] Patrice Godefroid, Michael Y Levin and David Molnar. “SAGE: whitebox fuzzing for security
testing”. In: Communications of the ACM 55.3 (2012), pp. 40–44.

[24] googleprojectzero/winafl: A fork of AFL for fuzzing Windows binaries. https://github.com/
googleprojectzero/winafl. (Accessed on 06/13/2022).

[25] Thread Group. Thread Network Fundamentals. English. 2020. url: https://www.threadgroup.
org/Portals/0/documents/support/ThreadNetworkFundamentals_v3.pdf.

[26] Thread Group. Thread Usage of 6LoWPAN. English. 2015. url: https://www.threadgroup.org/
Portals/0/documents/support/6LoWPANUsage_632_2.pdf.

[27] David Hanes et al. IoT fundamentals: Networking technologies, protocols, and use cases for the
internet of things. Cisco Press, 2017.

[28] IEEE International Conference on Fuzzy Systems. 2021. url: https : / / attend . ieee . org /

fuzzieee-2021/ (visited on 14/06/2022).

[29] International Conference on Applications of Neural Networks and Fuzzy Logic in Electrical Engin-
eering ICANNFLEE in June 2023 in Barcelona. url: https://waset.org/applications-of-
neural-networks-and-fuzzy-logic-in-electrical-engineering-conference-in-june-

2023-in-barcelona (visited on 14/06/2022).

[30] International Conference on Fuzzy Logic Applications in Electrical Engineering ICFLAEE in June
2023 in Barcelona. url: https://waset.org/fuzzy-logic-applications-in-electrical-
engineering-conference-in-june-2023-in-barcelona (visited on 14/06/2022).

[31] International Conference on Fuzzy Logic Systems ICFLS in February 2023 in Barcelona. url:
https://waset.org/fuzzy-logic-systems-conference-in-february-2023-in-barcelona

(visited on 14/06/2022).

[32] Richard Kelsey.Mesh Link Establishment. Internet-Draft draft-kelsey-intarea-mesh-link-establishment-
06. Work in Progress. Internet Engineering Task Force, May 2014. 19 pp. url: https://datatracker.
ietf.org/doc/html/draft-kelsey-intarea-mesh-link-establishment-06.

[33] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7 (1976),
385–394. issn: 0001-0782. doi: 10.1145/360248.360252. url: https://doi.org/10.1145/
360248.360252.

[34] Saparya Krishnamoorthy, Michael S Hsiao and Loganathan Lingappan. “Tackling the path ex-
plosion problem in symbolic execution-driven test generation for programs”. In: 2010 19th IEEE
Asian Test Symposium. IEEE. 2010, pp. 59–64.

[35] Kim G. Larsen, Marius Mikucionis and Brian Nielsen. UPPAAL TRON User Manual. 2007.

[36] Phil Lewis et al. “RFC6206: The Trickle Algorithm”. In: Internet Engineering Task Force (Mar.
2011). issn: 2070-1721.

[37] Bart Miller. “COMPUTER SCIENCES DEPARTMENT UNIVERSITY OFWISCONSIN-MADISON”.
In: 736.CS (1988), 1–3. url: https://pages.cs.wisc.edu/~bart/fuzz/CS736- Projects-
f1988.pdf.

[38] Barton Miller, Mengxiao Zhang and Elisa Heymann. “The relevance of classic Fuzz Testing: Have
we solved this one?” In: IEEE Transactions on Software Engineering (2020), 1–1. doi: 10.1109/
tse.2020.3047766.

[39] Barton P. Miller, Louis Fredriksen and Bryan So. “An empirical study of the reliability of Unix
Utilities”. In: Communications of the ACM 33.12 (1990), 32–44. doi: 10.1145/96267.96279. url:
https://dl.acm.org/doi/pdf/10.1145/96267.96279.

51

https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl
https://www.threadgroup.org/Portals/0/documents/support/Thread Network Fundamentals_v3.pdf
https://www.threadgroup.org/Portals/0/documents/support/Thread Network Fundamentals_v3.pdf
https://www.threadgroup.org/Portals/0/documents/support/6LoWPANUsage_632_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/6LoWPANUsage_632_2.pdf
https://attend.ieee.org/fuzzieee-2021/
https://attend.ieee.org/fuzzieee-2021/
https://waset.org/applications-of-neural-networks-and-fuzzy-logic-in-electrical-engineering-conference-in-june-2023-in-barcelona
https://waset.org/applications-of-neural-networks-and-fuzzy-logic-in-electrical-engineering-conference-in-june-2023-in-barcelona
https://waset.org/applications-of-neural-networks-and-fuzzy-logic-in-electrical-engineering-conference-in-june-2023-in-barcelona
https://waset.org/fuzzy-logic-applications-in-electrical-engineering-conference-in-june-2023-in-barcelona
https://waset.org/fuzzy-logic-applications-in-electrical-engineering-conference-in-june-2023-in-barcelona
https://waset.org/fuzzy-logic-systems-conference-in-february-2023-in-barcelona
https://datatracker.ietf.org/doc/html/draft-kelsey-intarea-mesh-link-establishment-06
https://datatracker.ietf.org/doc/html/draft-kelsey-intarea-mesh-link-establishment-06
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
https://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
https://doi.org/10.1109/tse.2020.3047766
https://doi.org/10.1109/tse.2020.3047766
https://doi.org/10.1145/96267.96279
https://dl.acm.org/doi/pdf/10.1145/96267.96279


[40] Barton P. Miller, Mengxiao Zhang and Elisa Heymann. “The Relevance of Classic Fuzz Testing:
Have We Solved This One?” In: ArXiv abs/2008.06537 (2020).

[41] Charlie Miller, Zachary NJ Peterson et al. “Analysis of mutation and generation-based fuzzing”.
In: Independent Security Evaluators, Tech. Rep 4 (2007).

[42] Geoff Mulligan. “The 6LoWPAN Architecture”. In: Proceedings of the 4th Workshop on Embedded
Networked Sensors. EmNets ’07. New York, NY, USA: Association for Computing Machinery, 2007,
78–82. isbn: 9781595936943. doi: 10.1145/1278972.1278992. url: https://doi-org.zorac.
aub.aau.dk/10.1145/1278972.1278992.

[43] Multithreaded applications · Issue #2 · AFLplusplus/AFL-Snapshot-LKM · GitHub. https://
github.com/AFLplusplus/AFL-Snapshot-LKM/issues/2. (Accessed on 06/15/2022).

[44] OJ/gobuster: Directory/File, DNS and VHost busting tool written in Go. https://github.com/
OJ/gobuster. (Accessed on 05/30/2022).

[45] OpenThread Dokumentation. https://openthread.io/guides. Accessed: 2022-05-27.

[46] OpenThread: Node Roles and Types. https://openthread.io/guides/thread-primer/node-
roles-and-types. Accessed: 2022-05-21.

[47] OpenThread: Thread Benefits. https://www.threadgroup.org/What- is- Thread/Thread-
Benefits. Accessed: 2022-05-16.

[48] openthread/STYLE GUIDE.md at main · openthread/openthread. https://github.com/openthread/
openthread/blob/main/STYLE_GUIDE.md. (Accessed on 06/16/2022).

[49] Van-Thuan Pham, Marcel Böhme and Abhik Roychoudhury. “AFLNet: A Greybox Fuzzer for Net-
work Protocols”. In: Proceedings of the 13rd IEEE International Conference on Software Testing,
Verification and Validation : Testing Tools Track. 2020.

[50] S. Priyadarshan. “A study of Binary Instrumentation techniques”. In: 2019.

[51] Noel Randewich. Reuters: Google’s Nest launches network technology for connected home. https:
//www.reuters.com/article/us-google-nest-idUSKBN0FK0JX20140715. Accessed: 2022-05-16.

[52] Jonathan Salwan. shell-storm — Shellcodes Database. 2008. url: https://shell-storm.org/
shellcode/ (visited on 14/06/2022).

[53] sqlmapproject/sqlmap: Automatic SQL injection and database takeover tool. https://github.com/
sqlmapproject/sqlmap. (Accessed on 05/30/2022).

[54] Nick Stephens et al. “Driller: Augmenting fuzzing through selective symbolic execution.” In: NDSS.
Vol. 16. 2016. 2016, pp. 1–16.

[55] The AFL++ fuzzing framework — AFLplusplus. https://aflplus.plus/. (Accessed on 05/30/2022).

[56] Petar Tsankov, Mohammad Torabi Dashti and David Basin. “SECFUZZ: Fuzz-testing security
protocols”. In: 2012 7th International Workshop on Automation of Software Test (AST). 2012,
pp. 1–7. doi: 10.1109/IWAST.2012.6228985.

[57] Wfuzz: The Web fuzzer — Wfuzz 2.1.4 documentation. https://wfuzz.readthedocs.io/en/
latest/. (Accessed on 05/30/2022).

[58] Michal Zalewski. american fuzzy lop. https : / / lcamtuf . coredump . cx / afl/. (Accessed on
06/15/2022).

Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks.

AFL American Fuzzing Lop.

AFL++ American Fuzzing Lop++.

AFLNet American Fuzzing Lop Net.

52

https://doi.org/10.1145/1278972.1278992
https://doi-org.zorac.aub.aau.dk/10.1145/1278972.1278992
https://doi-org.zorac.aub.aau.dk/10.1145/1278972.1278992
https://github.com/AFLplusplus/AFL-Snapshot-LKM/issues/2
https://github.com/AFLplusplus/AFL-Snapshot-LKM/issues/2
https://github.com/OJ/gobuster
https://github.com/OJ/gobuster
https://openthread.io/guides
https://openthread.io/guides/thread-primer/node-roles-and-types
https://openthread.io/guides/thread-primer/node-roles-and-types
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://github.com/openthread/openthread/blob/main/STYLE_GUIDE.md
https://github.com/openthread/openthread/blob/main/STYLE_GUIDE.md
https://www.reuters.com/article/us-google-nest-idUSKBN0FK0JX20140715
https://www.reuters.com/article/us-google-nest-idUSKBN0FK0JX20140715
https://shell-storm.org/shellcode/
https://shell-storm.org/shellcode/
https://github.com/sqlmapproject/sqlmap
https://github.com/sqlmapproject/sqlmap
https://aflplus.plus/
https://doi.org/10.1109/IWAST.2012.6228985
https://wfuzz.readthedocs.io/en/latest/
https://wfuzz.readthedocs.io/en/latest/
https://lcamtuf.coredump.cx/afl/


ALOC Anycast Locator.

CLI Command-Line interface.

DNS Domain Name Service.

ED End Device.

EID Endpoint Identifier.

FED Full End Device.

FFD Full Functioning Device.

FTD Full Thread Device.

GDB GNU Debugger.

IID Interface Identifier.

IoT Internet of Things.

IPv6 Internet Protocol, Version 6.

LLA Link-Local Address.

MAC Media Access Control.

MED Minimal End Device.

MeshCoP Mesh Commissioning Protocol.

MIB Management Information Base.

MIC Message Integrity Code.

MLE Mesh Link Establishment.

MTD Minimal Thread Device.

OT OpenThread.

PAN ID Personal Area Network ID.

REED Router Eligible End Device.

RFD Reduced Function Device.

RLOC Routing Locator.

ROLC Routing Location.

SED Sleepy End Device.

SLAAC Stateless Address Autoconfiguration.

TLV Type-Length-Value.

TNP Thread Network Partition.

53



UDP User Datagram Protocol.

URL Uniform Resource Locator.

WPAN Wireless Personal Area Network.

XPAN ID Extended Personal Area Network ID.

Glossary

American Fuzzing Lop American Fuzzing Lop, is a free opensource fuzzer that using its generic al-
gorithm has assisted in detecting significant security issues in major free software projects, such as
x.Org server, Firefox, PHP OpenSSL and many more..

American Fuzzing Lop Net A branch of AFL which focus on network protocols, by implementing
the notion of a server and supports fuzzing over sockets..

American Fuzzing Lop++ The community driven successor of AFL, which is refereed by the author
of AFL.

Anycast Locator The Anycast Location is an IPv6 address that specifies the location of one or several
Thread nodes in a Thread Network, as it can be assigned to several interfaces. The ALOC is used
when the RLOC is unknown at the time of sending.

Domain Name Service A service to look up addresses in a domain name register.

End Device A device in a Thread Network, that usually only talks with a single router. Can turn off
its transiver to save power.

Endpoint Identifier A catagory of IPv6 unicast identifiers. Is distinct from RLOC.

Extended Personal Area Network ID 8-byte Extended Personal Area Network ID.

Full End Device A device in a Thread Network not eligible for a promotion to a router.

Full Functioning Device An IEEE 802.15.4 node type with full functionality in a WPAN.

Full Thread Device A device in a Thread Network, can either be a Router, REEDs or FEDs.

GNU Debugger A tool for Debugging C, C++ and other compiled languages..

Interface Identifier Is the last 64 bits of the IPv6.

Link-Local Address An EID that identifies a Thread interface reachable by a single radio transmission.

Management Information Base A database used for managing nodes within a network..

Media Access Control A transfer policy that determines how data should be transmitted between
two devices.

Mesh Commissioning Protocol Is the protocol Thread uses for securely authenticating, commission-
ing, and joining new untrusted nodes to a Thread Network.

Minimal End Device A MED does not subscribe to the all-routers multi-cast events. Forwards all
packages to its Parent.

Minimal Thread Device An Thread Device that can turn off its radio to save power. It cannot
become a REED.

54



On-mesh This describes whether the whole path from sender to receiver is within the Thread Network.
All packets that are not ”on-mesh” are forwarded to the Border Router.

OpenThread The open source implementation of Thread.

Personal Area Network ID 2-byte Personal Area Network ID.

Reduced Function Device An IEEE 802.15.4 node type with reduced functionality in a WPAN.

Router Eligible End Device A device in a Thread Network eligible for promotion to a router.

Routing Location Is a category of IPv6 unicast identifiers. In the Interface Identifiers (IIDs), it is the
last part. Is always calculated by appending the Router ID and the Child ID.

Routing Locator The Routing Location is an IPv6 address that specifies a location of a given Thread
node within a Thread Network.

Sleepy End Device A device in a Thread Network, which is in a sleep state, that is occasionally polling
messages from its parent.

Stateless Address Autoconfiguration Is also called IPv6 Stateless DHCP, it is used for auto config-
uration of IPv6 interfaces or hosts..

Thread Network Partition The Thread Network consists of one or more Partitions. Each Partition
can act as its own Thread Network, with its own Commissioner, Leader, Thread Servers and border
routers. A Thread Network aims to only have one Thread Network Partition, but certain situations
gives way for even up to a large number of Partitions to be within the same Thread Network.

Uniform Resource Locator A common way of reference web-pages.

55


	0 Introduction
	1 Thread
	1.1 Goals of thread
	1.2 Thread Roles
	1.2.1 Forwarding Roles
	1.2.2 Full Thread Device
	1.2.3 Minimum Thread Device
	1.2.4 Thread Leader
	1.2.5 Border Router Device

	1.3 The Protocol Stack of Thread
	1.3.1 IEEE 802.15.4
	1.3.2 6LoWPAN
	1.3.3 IPv6
	1.3.4 UDP

	1.4 Thread Network Data
	1.5 Mesh Link Establishment
	1.5.1 Message Format

	1.6 Attaching-to-Parent
	1.6.1 Discovery
	1.6.2 Parent Request
	1.6.3 Parent Response
	1.6.4 Child ID Request
	1.6.5 Child ID Response

	1.7 The Thread Implementation: OpenThread

	2 Fuzzing
	2.1 Fuzzing methods
	2.1.1 Blackbox
	2.1.2 Whitebox
	2.1.3 Greybox
	2.1.4 Mutation and Generation
	2.1.5 AFLNet


	3 Implementation
	3.1 Architecture
	3.2 The Monitor-component
	3.2.1 Parser
	3.2.2 StateMachine

	3.3 Changes To AFLNet
	3.3.1 CCookie

	3.4 Changes To OpenThread
	3.4.1 Direct connection to OT through UDP
	3.4.2 Print to file when sending message
	3.4.3 Command line dataset and automatic instantiation


	4 Evaluation
	4.1 Setup
	4.2 Experiments
	4.2.1 C - For Crash Test
	4.2.2 T - For Unexpected Behaviour

	4.3 Results
	4.3.1 C0 - Base case
	4.3.2 Rest of the tests


	5 Discussion
	5.1 Categorisation of 
	5.2 Usability of AFLNet and The Promises of Fuzzing
	5.3 Thread-Fuzz in Hindsight

	6 Related Work
	7 Conclusion
	8 Future Work
	A Thread MLE TLVs
	B Description of Variables Used in the Thread Network Data sets
	B.1 Valid Prefix Set
	B.2 External Router Set
	B.3 6LoWPAN Context ID Set
	B.4 Server Set

	C Code changes in OpenThread
	C.1 Direct connection to OpenThread with UDP
	C.2 Instantiation of a Thread node without CLI-interactions
	C.3 Write to file when sending UDP message
	C.4 Remove decryption from HandleUDPReceive

	D An image of the testing setup
	References
	Acronyms
	Glossary

