
Summary
In this project we design and implement a microservice-based architecture for building temporal
question answering systems on knowledge graph embedding models. We use a microservice-
based architecture, as it provides us with the inherent scalability that comes with microservices,
where load-balancing, combined with pod-management, means that a developer will not have to
spend a lot of effort to upscale a system to encompass more simultaneous users. Furthermore, this
type of architecture also means that our system is highly modular, as individual components can
be extended, switched, added and removed, without changing other components.

The architecture consists of the following modules: User Interface, Natural Language, En-
semble and Temporal Knowledge Graph Embedding. The User Interface module, provides users
with an interface into the system, through command line interface or a graphical user interface.
The Natural Language module converts question of a natural language form, into queries that can
be solved using link prediction on temporal knowledge graph embeddings. The Ensemble module
combines results from several temporal knowledge graph embeddings into one. The Temporal
Knowledge Graph Embedding module, computes link prediction on incoming queries.

We implement the communication between the components of the architecture, using remote
procedure call, a type of inter-process communication that allows code of one program to call code
in another program, as it if were part of it’s own code. Specifically, we use the RPC framework
called gRPC, which allows API definition, to be written in a separate language called Protocol
Buffer. This means that developers can write API definitions in a language agnostic manner, and
use this definition to generate server and client code, for a wide variety of programming languages.

We also present a variation of ensemble learning, and explore how it can be used with tem-
poral knowledge graph embeddings, to improve results of question answering over knowledge
graphs. We show how the ensemble learning method known as Bayesian model averaging,
when applied to question answering on knowledge graphs, using link prediction, provides better
results, than what the knowledge graph embedding models can provide individually. We show
this by performing an experimental study, where we test the impact of using both weighted and
unweighted Bayesian model averaging on question answering. The experimental setting for this
study, is constructed in the framework that we present earlier in the project.

We also present using bootstrap aggregating, an ensemble learning technique where multi-
ple models trained on a subset of the original dataset are combined. Initial testing suggests that a
large number of bootstrap models are required for this to work, and we therefore do not pursue
this any further.

Finally, we present a discussion of the results of our experimental study, as well as present
opportunities for future work, followed by the conclusion that ensemble learning can be easily
applied to existing temporal knowledge graph embedding modules, to provide better results than
the models individually.
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Abstract
Question answering over knowledge graphs (QA-
KGs) is a vital topic within information retrieval.
Questions with temporal intent are a special case
of questions for question answering (QA) systems
that has not received a large amount of attention in
research. In this paper we propose using temporal
knowledge graph embeddings (TKGEs) for tempo-
ral QA. We propose MATQA, a microservice-based
architecture for building temporal QA systems on
knowledge graph embeddings (KGEs). Further-
more, we present a variation of ensemble learning,
Bayesian model averaging (BMA), where results
of several link prediction tasks on separate differ-
ent pre-trained TKGE models are combined and
re-ranked, before being chosen as the final results.
Our experiments on two datasets, ICEWS14 and
ICEWS05-15, performed using this variation of en-
semble, which we build using the microservice-
based architecture, show that it provides better re-
sults, than using these TKGE models individually.

1 Introduction
Knowledge graphs (KGs), such as Wikidata [Leblay and
Chekol, 2018], Freebase [Google, 2018], DBpedia [Lehmann
et al., 2014], and YAGO [Suchanek et al., 2007], increases
in size and popularity, KGs are attracting the attention of re-
searchers and practitioners. With larger and more detailed
KGs, QA using KGs for applications such as virtual home
assistants, chat-bots, and recommender systems show sig-
nificant performance gain. While QA on KGs is a major
area of research [Mohammed et al., 2018; Petrochuk and
Zettlemoyer, 2018; Huang et al., 2019; Lukovnikov et al.,
2019], little attention is given to QA on temporal KG. Tem-
poral questions can involve both implicit and explicit no-
tions of temporality, such as asking about a specific year,
e.g. “Who won the Oscar for best supporting actor in 2019”
(explicit) or asking about something that happened at the
same time as something else, such as “Who was pope dur-
ing the fifth crusade?” (implicit). Answers to these ques-
tions can also in some cases be answered with a timestamp,
such as asking when something happened, or time can be
used merely as a constraint for finding the answer to the

question, such as asking who was president in a specific
year. Complex temporal questions can even contain sub-
questions, where answers to these sub-questions can be trans-
lated into the temporal constraint for the overall question.
An example of this is “Where did Obama’s children study
when he became president?” where the sub-question “When
did Obama become president?” can be solved, and the re-
sult of this can be used as temporal constraint for the ques-
tion “Where did Obama’s children study in 2009?”. Fur-
thermore, most research into QA-KG [Unger et al., 2012;
Jia et al., 2018] utilize the KG itself as a form of database,
translating natural language questions into a query language
of some form (usually SPARQL), and then queries the KG
for a result. Little research [Huang et al., 2019; Jia et al.,
2021] has been made into using KGE for QA-systems. Using
KGE models allows the system to answer questions under an
open world assumption, as link prediction is able to synthe-
size facts that do not already exist in the KG, whereas using
something like SPARQL limits the system to a strict closed
world assumption.

In this paper, we present two contributions to the task of
QA over temporal knowledge graphs (TKGs):

• MATQA: A microservice-based architecture/framework
for building QA-KG systems in an extensible, modular,
and scalable manner.

• An ensemble method for combining the results of link
prediction tasks on multiple TKGEs, where the combi-
nation of results yield better results than using any of the
TKGE models individually.

In Section 2 we present background and notation neces-
sary for the understanding of the rest of this paper. Section
3 contains work related to our work. In Section 4 we present
the architecture of MATQA, and in Section 5 we explain how
ensemble learning can be used to achieve better results that
individual models. Finally, in Section 6, we conduct an ex-
perimental study on the usage of ensemble learning for QA-
KG, where the experimental setting is built using MATQA,
and we end with a discussion of results in Section 7 and a
conclusion to our work in Section 8.

2 Background and Notation
In this section, we define the most important concepts for de-
scribing our system, MATQA.



Knowledge Graph A knowledge graph is a directed graph
with labeled vertices and edges. The vertices in a KG rep-
resent entities and edges represent relations between the en-
tities. The entities and relations form entity-relation-entity
triples called facts. Examples of KGs include Wikidata
[Leblay and Chekol, 2018], Freebase [Google, 2018], DB-
pedia [Lehmann et al., 2014], YAGO [Suchanek et al., 2007],
and ICEWS [Boschee et al., 2015].

Fact A fact is an entity-relation-entity triple, also written
as (h, r, t), where h is the head entity, r is the relation, and
t is the tail entity. An example of a fact is (Barack Obama,
isPresidentOf, USA).

Temporal Knowledge Graph A temporal knowledge
graph is an extension of a KG, where instead of using regular
triple facts, it uses temporal facts that form entity-relation-
entity-time quadruples. The time can be represented as either
an interval [Leblay and Chekol, 2018] or a discrete timestamp
[Boschee et al., 2015]. If the TKG uses intervals, there can
either be one temporal fact where the time is represented as
an interval, or there can be two temporal facts where one has
the start time and the other has the end time. For TKGs that
use discrete timestamps only one temporal fact is necessary.
KGs without temporal information, will henceforth, in this
paper, be referred to as static KGs.

Temporal Fact A temporal fact is a fact, that has been ex-
tended to include time and is written as (h, r, t, τ), where τ
is the time. If the TKG represents time as an interval, time
τ can either be represented as an interval in one fact (i.e.
(Barack Obama, presidentOf, USA, 2009-2017)) or as two
temporal facts, where one of the temporal facts represent start
time and the other represent end time (i.e. (Barack Obama,
becomePresidentOf, USA, 2009) and (Barack Obama, end-
PresidentOf, USA, 2017)). If the TKG represents time as a
discrete timestamp, the fact is representing an event or the
beginning of an event (i.e. the previously used fact is repre-
sented as (Barack Obama, presidentOf, USA, 2009)).

Temporal Question A temporal question is a question,
where either time is part of the question or the answer to the
question is the time. An example of where time is part of the
question is “Who became president of the USA in 2009?”,
and an example of where time is the answer is “When did
Barack Obama become president of the USA?”.

Answer An answer to a temporal question is an entity, re-
lation, or time depending on the question. This answer is
the result of using a TKGE model with the known informa-
tion from the temporal question. Examples of answers are
(Barack Obama) for the question “Who became president of
the USA in 2009?” and 2009 for the question “When did
Barack Obama become president of the USA?”.

Open and Closed World Assumptions Under the closed
world assumption, knowledge not present in the KG is as-
sumed to be false. Under open world assumption, knowl-
edge not present in the KG can still be true, even though it is
missing. Most KG operate under the closed world assump-
tion, although KGE models can also often be used to predict
knowledge not present in the KG through link prediction.

Link prediction The task of predicting if a fact in a KG
is true using known entities and relations, whether or not the
fact is in the KG. Link prediction is the most common task
for KGE, and relates strongly to QA, as link prediction can
be used to determine the likelihood of a fact being true, even
if it is not known to be. Thus, if a question is asked, where
the answer is not directly known, link prediction can be used
to generate likely responses.

3 Related Work
Temporal Knowledge Graph Embeddings Knowledge
Graph Embeddings have a long research history [Nickel et al.,
2011; Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015;
Yang et al., 2015; Trouillon et al., 2016; Sun et al., 2019] and
more recently, research has begun on integrating temporal
dimensions into these, mainly as variations of non-temporal
KGE models [Jiang et al., 2016; Garcı́a-Durán et al., 2018;
Dasgupta et al., 2018; Goel et al., 2020; Jain et al., 2020;
Lacroix et al., 2020; Sadeghian et al., 2021]. In this paper,
only TKGs are relevant. The focus of this paper is not to cre-
ate a TKGE model, we explore existing state-of-the-art mod-
els. As a previous study shows [Otte and Vestermark, 2022],
ChronoR [Sadeghian et al., 2021] provides state-of-the-art re-
sults for link prediction tasks, which will be our main task
on TKGs. ChronoR is inspired by rotational KGE methods,
such as RotatE [Sun et al., 2019], and uses the linear trans-
formations of rotation and scaling, parameterized by time and
relation, to get the embedding of a tail entity from a head en-
tity. Unfortunately, as shown in [Otte and Vestermark, 2022],
ChronoR does not provide freely available source code. The
Diachronic Entity Embedding models [Goel et al., 2020], and
TimePlex [Jain et al., 2020] do however provide available
source code for us to use. The Diachronic Enitity Embedding
models, titled DE-SimplE, DE-DistMult and DE-TransE, are
all variations of non-temporal, or static, KGE models, that all
embed time with entities, inspired by diachronic word em-
beddings. TimePlex [Jain et al., 2020] is based on ComplEx
[Trouillon et al., 2016], and similarly, embeds entities, rela-
tions, and time as vectors in complex space.

Question Answering on Static Knowledge Graphs One
of the most frequently researched use-cases of KGs are QA
systems [Mohammed et al., 2018; Petrochuk and Zettle-
moyer, 2018; Huang et al., 2019; Lukovnikov et al., 2019].
QA on static KG usually do not use KGEs, however meth-
ods like KGEQA [Huang et al., 2019] uses the embeddings
of a KG from TransE or TransR. KGEQA uses recurrent neu-
ral networks, specifically a bi-LSTM, to find the embeddings
of an entity and relation. The entity and relation is then
used in a link prediction task to find the answer to the ques-
tion. Other methods that also use recurrent neural networks
are UPSQA [Petrochuk and Zettlemoyer, 2018] and BuboQA
[Mohammed et al., 2018]. UPSQA finds the top-k entities
in the question using a bi-LSTM and then finds the relation
using another bi-LSTM, given the question and a candidate
entity. BuboQA also does entity detection using a bi-LSTM,
and then uses fuzzy matching to determine the entity in the
KG. The relation is then found using a bi-GRU over all the
relations that are used with the found entity. Some methods,



like BERTQA [Lukovnikov et al., 2019], use BERT models.
The BERT models are used to detect entities and classify rela-
tions. Entities in the KG are then linked using fuzzy matching
and candidate facts are formed by combining each relation
found with the entity that has the highest probability.

Question Answering on Temporal Knowledge Graphs
QA on temporal KG is a very recent topic of research, with
systems such as TEQUILA [Jia et al., 2018] and EXAQT [Jia
et al., 2021].

TEQUILA is an enabler method for temporal QA, which
can run on top of any static QA-KG system. It detects if a
question has temporal intent, and then decomposes this ques-
tion into a non-temporal sub-question, which can then be an-
swered by the underlying QA-KG system, and a temporal
constraint. The temporal constraint can then be solved using
constraint reasoning on temporal intervals. Thus, TEQUILA
uses TKGs for QA, but not TKGE models, as our contribution
does.

EXAQT answers complex temporal questions with multi-
ple entities, relations and associated temporal conditions us-
ing TKG. It does this in two steps. Firstly, question-relevant
compact sub-graphs are computed within the KG and are en-
hanced with temporal facts using Group Steiner Trees and
BERT models. Secondly, relational graph convolutional net-
works are created from the output of the first step, and these
are enhanced with time-aware entity embeddings and atten-
tion of temporal relations. As such, EXAQT could be consid-
ered to use a form of TKGEs for the second step, although it
does not use pre-existing state-of-the-art embedding models
as our contribution does, but rather creates its own.

4 MATQA
We propose a microservice-based architecture for TKG based
QA. A microservice-based architecture allows for a high de-
gree of modularity between components, as they will be
loosely coupled and communicate with APIs. Furthermore,
microservices bring an inherent level of scalability. The ar-
chitecture is based on a number of microservice modules with
individual responsibilities. These are: the User Client/User
Interface Module, the Natural Language Module, the TKGE
Module/Modules, and optionally, the Ensemble Module. A
model of this architecture is shown in Figure 1, where 1a
shows a model without the Ensemble Module, and 1b, with
the module. Each of these modules communicate with each
other through outward facing APIs, which allows modules to
be easily added, changed, or replaced based on the users spe-
cific task. In Section 4.5, we explain how we implement this
API. We will now go through each of the modules and explain
their purpose, API, and our current implementation.

4.1 User Client/User Interface
The purpose of this module is to allow a user to interface with
the system in a user friendly manner. The module itself does
not have an API, but it calls the API of the Natural Language
Module. Our current implementation consists of a very sim-
ple command line interface, which allows a natural language
question as a parameter. Other parameters for such an inter-
face include number of answers to show, as QA based on KGs

are often not perfect, and as such, it may be relevant to show
multiple possible answers, as well as whether or not to show
a confidence score for each possible answer. It would also
be possible to implement a more sophisticated user interface,
such as a web UI, or even skip using this module entirely,
and use the Natural Language Module’s API to allow other
programs to interface with this system.

4.2 Natural Language Module

The Natural Language Module is responsible for translating
natural language questions into TKG link prediction queries,
such that these can be answered/solved by the underlying
TKG. These queries consist of a TKG fact, where one of
the members (head, relation, tail, or time) is missing, e.g.
(h, r, ?, τ ). After the query has been answered, the Natural
Language Module then converts the answer-fact into a Natu-
ral Language response, which will be returned to the caller.
Thus, the API of the module requires only a single string pa-
rameter (the natural language question), and returns a single
string (the natural language response). Our implementation
of this module does not include any actual natural language
processing, instead it converts questions of a specific form
(that we have generated, and thus can guarantee the form of),
into queries, based on very simple logic. The questions are of
the form “Who did head relation on time?”, and “Who rela-
tion tail on time?”, which has been generated from the rele-
vant TKG dataset. We leave it as future work to implement a
Natural Language Module that utilizes more advanced forms
of natural language processing.

4.3 TKGE Server

The TKGE Server Module is the module responsible for solv-
ing link prediction queries provided by the Natural Language
Module. This can theoretically be accomplished in any man-
ner, although the purpose of the framework is to allow for
different TKGE models to solve these queries. The API ex-
poses a single endpoint, which as input parameter takes a link
prediction query and then responds with the corresponding
temporal fact. The simplicity of the API allows for develop-
ers to implement any TKGE model they want. We include an
implementation, which covers 3 similar TKGE models from
[Goel et al., 2020]. These are DE-SimplE, DE-DistMult, and
DE-TransE, all of which are variations of static KGE mod-
els, where Diachronic Entity Embeddings has been added,
allowing for the time aspect to be modeled. We choose the
models as [Otte and Vestermark, 2022] finds that these mod-
els provide freely available source code (along with TimePlex
[Jain et al., 2020]), and provide state-of-the-art results. Fur-
thermore, we were able to implement the TKGE server for
these models without substantial changes to the source code,
which in the case of TimePlex [Jain et al., 2020], we were
not able to. We were unable to make TimePlex work as a
pre-trained model for our architecture, as it had a different
method for achieving scores of facts, that would not allow
us to use it, without substantial changes to it’s source code.
Thus, we choose not to further explore using TimePlex as a
TKGE model, in this paper.
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(a) Module configuration with a single TKGE server and no ensemble
module.
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(b) Module configuration with ensemble module wrapping multiple
TKGE server modules.

Figure 1: System architecture, showing the modules of the system, in the two different possible configuration.

4.4 Ensemble Module
The Ensemble Module is an optional addition that can be
placed between the Natural Language Module and the TKGE
server module(s). This module allows the system to encom-
pass more than one TKGE server, combining the results from
each of these, into a single response. The Ensemble Module
uses the exact same API as the underlying TKGE server(s),
which means that it can be placed between the Natural Lan-
guage Module and the TKGE server(s) without any change
to these. The Ensemble Module will be further explained in
Section 5.

4.5 REST vs RPC
When implementing the APIs of the individual modules, we
had to make a decision about how these APIs should be im-
plemented. The decision was between the two most common
methods: REST and RPC, where REST is the most common
of these. Remote Procedure Call (RPC) is a inter-process
communication method that allows a program to call a proce-
dure of another program, as if it were part of it’s own code.
This allows for programmers to easily integrate the use of
these procedures into their own code without thinking about
how the communication between these works. gRPC1 is a
modern, open source and efficient RPC framework. It uses a
service definition language called Protocol Buffer, which al-
lows developers to define services, endpoints, and messages
in a language agnostic manner. Automatic tools are then pro-
vided, which allows for generation of language specific code,

1https://grpc.io/

that implements the client and server part of services defined
in the Protocol Buffer definition in a large amount of different
programming languages, such as Go, C++, Java and Python.
This allows developers a large degree of freedom for choosing
which language they wish to develop both client and server-
side systems in, while still behaving as if all the code exists
in the same code base. Since we do not need the low-level
access provided by REST APIs, and because our APIs do not
need to be public facing, and do not need to be easy for third
party applications to use, we choose to use RPC, and specifi-
cally gRPC, for our APIs.

5 Ensemble
We propose a method for increasing the accuracy of temporal
link prediction using TKGE models, by utilizing a variation
of ensemble learning. Ensemble learning are techniques used
to give better predictive performance where multiple models
are used together [Opitz and Maclin, 1999]. We propose us-
ing BMA [Hoeting et al., 1999] to obtain a better result than
the individual models. BMA uses the models individually and
combines the scores each model predicted. BMA can be used
both as an unweighted and weighted ensemble. This method
uses pre-trained models, which means that many different
models that capture different features can be used to improve
weaknesses. We propose using BMA as both an unweighted
and a weighted ensemble. For both methods the top-n scor-
ing results from a temporal link prediction query is combined
and re-ranked based on the combined score. The unweighted
method takes the top-N results from each of the models, and

https://grpc.io/


gives them a score equal to their ranking within the top-N ,
for that model. The score s is defined as s = N − r, where
N is the number of returned results and r is the rank. For
example, if a model has given a result the rank of 0 (the
model predicts this result is the most likely), between 10 re-
sults (N = 10, r = 0, s = 10 − 0 = 10), then the score of
that result will be 10. Then if another model, gives it a rank of
1, then the combined score for this result, based on these two
models, will be 19. Figure 2 shows the process of combining
results from multiple TKGE servers, using this unweighted
method.

The weighted method works similarly to the unweighted,
but multiplies weights to the scores given before combina-
tion, such that different models may have a larger impact on
the final score. This allows a developer greater freedom over
which models are used as TKGE servers, as models that tend
to under perform, compared to others, can be given a lower
weight, and thus the results can still be used, as opposed to
ignoring these models completely. This essentially allows us
to use under performing models, to improve the accuracy of
state-of-the-art models, by combining them, and giving the
under performing model a lower weight. This method is
shown in Figure 3.

We also propose using bootstrap aggregating to improve
the accuracy. Bootstrap aggregating is a method of generat-
ing new datasets, by taking subsets of the original dataset, and
then training multiple models with these subsets, and combin-
ing them using ensemble learning [Opitz and Maclin, 1999].
We create three bootstrap datasets, all the same size of the
original dataset. As the bootstrap datasets are sampled with
replacement, approximately 63% of the bootstrap dataset are
unique samples, while the rest are duplicates [Aslam et al.,
2007]. However, only creating three bootstrap datasets does
present some possible issues. As only approximately 63% of
the original dataset is in each bootstrap dataset there is the
possibility that some of the facts are not present in any of the
bootstrap datasets. Initial testing with bootstrap aggregating
models yield subpar results, shown in Appendix A, and as
such, we will not explore this method further.

6 Experimental Study
6.1 Dataset
The most used datasets for state-of-the-art TKGE mod-
els are Integrated Crisis Early Warning System (ICEWS),
namely the two subsets ICEWS14 and ICEWS05-15 [Otte
and Vestermark, 2022; Boschee et al., 2015], which fea-
ture facts from the ICEWS dataset from the year 2014 and
the years 2005-2015, respectively. These datasets are event-
based meaning every fact has a discrete timestamp. Since the
datasets have a timestamp for every fact, these datasets have
proven very good for TKGEs models. For the natural lan-
guage processing (NLP) module, natural language questions
are necessary. We generate simple questions from the ICEWS
datasets by making a question with one part of the fact miss-
ing (i.e. the fact (South Korea, Criticize, North Korea, 2014-
05-13) with the tail missing becomes “Who did South Korea
criticize on 13 May, 2014?”). For each fact in the datasets
four questions are generated; two with an entity missing, one

with the relation missing, and one with the time missing. Ta-
ble 1 shows a summary of the datasets. Even though, we gen-
erate questions with missing relation and time, all of the used
TKGE models, do not support link prediction for missing re-
lation and time, and as such, these questions are not used in
the experiments. Only the questions that correspond to link
prediction queries with missing head or tail are used.

6.2 Baselines
As a benchmark to test how good the TKGE server is, we test
the Diachronic Entity Embedding models using the original
source code as a baseline, and create an evaluation script that
simulates the Natural Language module by sending TKGE
queries to the TKGE server. When running these experi-
ments, only the facts in the test set are loaded. This means the
results are unfiltered and therefore appear worse. The evalu-
ation part of the Diachronic Entity Embedding source code
includes both filtered and unfiltered metrics, and we, there-
fore, compare our own results to the unfiltered results from
the Diachronic Entity Embedding source code.

6.3 Metrics
All systems return a ranked list of the answers from link pre-
diction. The answers consists of the facts and a score for each
fact. With the list of answers we calculate the following met-
rics:

• MRR: The mean of the reciprocal of the rank of the cor-
rect answer.

• Hits@1: The percentage of facts, where the answer with
the highest score is the correct answer.

• Hits@10: The percentage of facts, where the correct an-
swer is within the 10 highest scored answers.

For each of the three metrics a higher score is better.

6.4 Testing Baselines and Ensemble
After running the tests on both the original source code and
the TKGE server, we conclude we get the same unfiltered re-
sults. To test the ensemble, we use the three Diachronic En-
tity Embedding models, DE-SimplE, DE-DistMult, and DE-
TransE, and run the evaluation in a configuration similar to
the architecture shown in Figure 1b. The ensemble uses an
unweighted scorer, that scores as mentioned in Section 5. Re-
sults of the models individually and the ensemble can be seen
in Table 2. The results show that having all the models to-
gether perform better than the best individual model on the
ICEWS14 dataset, even though DE-DistMult and DE-TransE
are under performing compared to DE-SimplE. The results
are slightly worse on the ICEWS05-15 dataset, when using
ensemble, compared to the best individual model. It should
also be mentioned that all the Diachronic Entity Embed-
ding models perform better on the ICEWS14 dataset in both
Hits@1 and MRR, compared to the ICEWS05-15 dataset.

6.5 Weighted Ensemble
As the DE-TransE model is significantly worse at Hits@1
and MRR compared to DE-SimplE and DE-DistMult, we hy-
pothesize that DE-TransE introduces some noise to the en-
semble. To test this hypothesis, we do weighted results to
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Figure 2: Process of combining results from TKGE servers, using the unweighted ensemble method. Scores given to the rankings, both
before and after combination, are shown in bold.
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Figure 3: Weighted method of combining ranked results from TKGE servers. Results are multiplied by the weight given to the server, before
they are added and rearranged.

Dataset #Ent. #Rel. #Time Train Valid Test Total Questions

ICEWS14 7,128 230 365 72.8k 8.9k 8.9k 90.7k 362.9k
ICEWS05-15 10,488 251 4,017 368.9k 46.3k 46.1k 479.3k 1.9M

Table 1: The number of entities, relations, distinct timestamps as well as the number of facts for ICEWS14 and ICEWS05-15.



Model ICEWS14 ICEWS05-15
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

DE-SimplE 0.505 38.2 73.2 0.496 36.7 74.4
DE-DistMult 0.484 36.8 70.7 0.471 34.8 71.4
DE-TransE 0.312 10.1 68.8 0.304 9.5 68.3

Ensemble 0.515 39.3 74.5 0.493 36.6 73.8
Ensemble (tuned) 0.518 39.6 74.7 0.497 36.9 74.2

Table 2: Results of Diachronic Embedding models and ensemble on a link prediction task using the TKGE server

see if eliminating some potential noise yields better results.
To perform weighted ensemble, we first need to find opti-
mal weights for each of the used models. To approximate the
optimal weights we use Bayesian optimization using Gaus-
sian Process [Mockus, 1989], instead of doing an exhaus-
tive grid search, as approximation is likely good enough to
prove that ensemble can perform better than the best individ-
ual model. To get a better approximation, we first run some
evaluations, where one of the weights is changed at a time
to see what impact the individual models have. This allows
for narrower bounds during the Bayesian optimization and
should yield a better result. The Bayesian optimization ran
25 iterations on the ICEWS14 dataset, and the approximated
optimal weights found was; 0.48 for DE-SimplE, 0.4 for DE-
DistMult, and 0.12 for DE-TransE. The found weights are
then used for the ICEWS05-15 dataset as well. Results for
the weighted ensemble is shown as Ensemble (tuned) in Ta-
ble 2. The results show that on the ICEWS14 dataset, using
a weighted ensemble further improves the accuracy and has
a significant improvement over DE-SimplE, and has a slight
improvement on the ICEWS05-15 dataset comepared to DE-
SimplE. The results also show that even though DE-TransE
mostly introduces some noise to the ensemble, using it with
a lower weight is still better than not using the model. We
theorize that this is because the models are able to capture
different aspects of the KG, so even if DE-TransE performs
bad on it’s own, it might be able to capture aspects that the
other models do not, and thus a combination of them, pro-
vides even better results.

7 Discussion
We will now discuss the results of the experimental study,
both from an architectural viewpoint and an experimental
one, as well as provide opportunities for future work.

Framework We chose to implement MAQA using a
microservice-based architecture, as we wanted to have a very
loosely coupled and modular framework, where components
can easily be substituted for other similar components. This
architecture allowed us to easily extend the system to use an
ensemble module, encompassing multiple TKGE modules,
placing this between the natural language module, and the ex-
isting TKGE module. Furthermore, microservices are inher-
ently scalable when data is independent, as is the case with
the individual questions, which will be passed through our
system. This means that a load balancer can be placed be-
tween the caller and the called module, which can then send

individual question answering requests, to the microservice
with the least load.

BMA As the results show, different models using BMA
gives better results individual models used in the ensemble.
This was shown with the Diachronic Entity Embedding mod-
els DE-SimplE, DE-DistMult, and DE-TransE on the ICEWS
subsets ICEWS14 and ICEWS05-15. On ICEWS14 even
using an unweighted ensemble proved to produce better re-
sults than DE-SimplE, which has the best accuracy of the
three models. The weights found using Bayesian optimiza-
tion further increased accuracy of the ensemble. As the
weights were approximated using Bayesian optimization, the
weights are most likely not the optimal weights. Running
an extensive grid search would most likely give better re-
sults, as it was enough to approximate the weights to get
better results than the individual models. The weights used
for on the ICEWS05-15 dataset also were not approximated
for that dataset, but were instead approximated on ICEWS14.
This was done because of the large size of the ICEWS05-
15 dataset, which would have meant a large time invest-
ment would have to be spent, doing this approximation. As
such, there are likely better possible weights for that dataset.
Furthermore, it is also very likely, that using several differ-
ent TKGE models, such as TimePlex and ChronoR, together
with the Diachronic Entity Embedding models, would pro-
vide even better results than only using the Diachronic mod-
els, as they would likely capture different aspects of the tem-
poral dimension.

Bootstrap aggregating As we only created three bootstrap
datasets, the size of the out-of-bag dataset, the set of facts not
used to train any of the models, is still relatively large. This
can potentially decrease accuracy drastically, as there possi-
bly are a large number of entities and relations, that neither
of the models have used for training other than negative sam-
pling. As with the ensemble of DE-SimplE, DE-DistMult,
and DE-TransE, using the three bootstrap models in an en-
semble did improve performance, but aggregating still had
very poor accuracy compared to the non-bootstrap models.
Further exploring of the impact of bootstrap aggregating on
KGEs, will be left for future work.

Open World Assumption As previously explained, when
using a KGE model for a QA-system, it is possible to answer
questions under a open world assumption, by performing link
prediction on known entities and relations, but in unknown
fact configurations. One could imagine a QA-KG system,
where standard querying of the KG, using a query language



such as SPARQL, could be combined with a similar link pre-
diction task, to achieve better results. The system could query
the KG and if an answer is available, simply use that, but
if not, it could convert the query into a link prediction task,
and supply it to the KGE model, which could then provide a
better-than-none result. We leave the building of such a sys-
tem for future work.

8 Conclusion
We proposed MAQA, a microservice-based framework for
QA-KG. This framework has shown to be modular, as we
were able to use it with many different TKGE models, exten-
sible, as we were able to substitute the TKGE server module
for an ensemble module, and scalable, since the data between
different microservices are independent, and this means that
the microservices will inherently be scalable. We also pro-
posed to use an ensemble method for combining multiple
TKGE models to provide better results. We chose to use
BMA, as it uses pre-trained models and allowed us to use
different Diachronic Entity Embedding models, DE-SimplE,
DE-DistMult, and DE-TransE. Using BMA was shown to
provide better results on the ICEWS datasets, than using the
models individually, which indicates that different models
might capture different aspects of the KG, which when com-
bined provide superior results. This particular theory, was en-
hanced by the fact that a far inferior model, DE-TransE, was
still able to provide better results, in tandem with the other
superior models, than when it was completely absent.
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A Bootstrap aggregating

Model MRR Hits@1 Hits@10

DE-SimplE bootstrap 1 0.443 33.1 65.3
DE-SimplE bootstrap 2 0.440 32.8 65.0
DE-SimplE bootstrap 3 0.443 33.3 65.1

Bootstrap aggregating ensemble 0.450 33.6 66.6

Table 3: Results of DE-SimplE bootstrap aggregating models individually and ensemble on a link prediction task using the TKGE server on
ICEWS14.
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