Summary

Motor movement is a fundamental part of every person’s life. We use our arms and hands
more or less constantly, without even being aware of it for most of the time. But aging
and various sicknesses and illnesses can impair these functions. There can still be hope of
recovery sometimes, depending on the tardiness of the impairment. One way of rehabilitation,
for someone who lost grip strength or control in their fingers, could imply using an external
device that would aid with the grip. But such a device would require to know when to activate
itself and offer the additional mechanical grip strength in order to grasp an object, and that
is where this research plans to aid, on a software level.

Our brains, with their billions of neurons, and trillions of synapses, are constantly sending
signals to our bodies to tell them to perform certain actions and activate certain things and
processes. When we are grabbing something of the table for example, that action of grabbing
something has its own signal, signal commonly named as a movement related cortical potential,
or MRCP.

This article will explore if it is possible to conduct transfer learning using MRCPs from one
main subject to another secondary one. The motivation is that detecting MRCP currently
requires a classifier to be created for each subject, individually. However, this process is
time consuming, and can only be done in a lab with proper equipment, since labeled data
is needed for training, and that requires even more dedicated equipment as opposed to just
simply recording the brainwave signals. We will explore the possibilities of implementing a
GAN network to construct a new classifier for new subjects.

We started by conducting experiments on three healthy male subjects. We chose one person
as the main subject, and this subject was used to train our network. Our primary focus was to
gather as much data as possible for this subject to ensure the best possible training conditions.
The experiment consisted of reaching for an object with their primary arm, and we called this
a movement. 30 movements were done in a row, then the subject had a small break. The
subject would repeat this loop until we had 150 movements. The subjects were equipped with
an EEG helmet to record their brain’s activity and electromyography (EMG) electrodes to
record muscle activity in the arm.

After the experiments, the EMG data was filtered using a high-pass filter with an 80Hz
cutoff. Then we used an algorithm to find each signal’s peaks. The EEG data was filtered
using a 2nd degree Butterworth band-pass filter with a cutoff of 0.05Hz to 5Hz since, in this
spectrum, MRCP is most likely to be found. The EEG then had to be transformed into a
workable dataset for our classification method. The peaks of EMG were used to find the onset
of movement in the EEG, but since MRCP can occur before the movement, we had to adjust
the peak by locating the minima of the EMG signal closest to the peak. Then we took the
interval 1s before and after this adjusted point and labeled it active. Furthermore, we took
the interval from 4s to 2s before the adjusted point and labeled it rest.

Our first experiment consisted of creating a classifier, than both, could classify MRCP
signals, but also could be trained. We need this train-ability in order to create a GAN network
later on. We choose a TCN-Encoder with a dense classifier as our classification method for
MRCP. The results of MRCP detection on the 5 data sets concluded with an average accuracy
of 0.77, and 3 data sets reaching 0.86 accuracy with the lowest score at 0.61. We then did
a baseline before doing transfer learning, by taking the TCN model for the main subject as
using it on all the other data sets. Looking at the results we scored lower than individual
TCN as expected with the average accuracy reaching 0.63, and the lowest score achieved was
0.51. Even the datasets being part of the main subject had lower scores, and the deviation was
even bigger for secondary ones. We created a GAN network for the two secondary subjects,
to test if we could achieve higher accuracy. Both subjects scored a higher accuracy after the
GAN training, with an overall increase of 0.07 accuracy compared to the baseline. It should
still be noted that training the TCN with individual data did reach higher a accuracy. In
conclusion, we showed that a setup could be made that successfully enables transfer-learning
with MRCP for hand movement. We did see a higher accuracy after GAN training compared
to the baseline, but still lower than standalone training. We believe this trade off is worth
assuming, since it would allow a larger group of people to use the system, as time would be
saved by no longer requiring labeling.
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Abstract

Classifying movement related cortical potentials (MRCP)
from hand related movements is a trivial task if sufficient
labeled data is present, but it becomes less trivial when
no labeled data is available. In this paper we present
an approach of transfer learning, which optimizes an en-
coder that creates inputs for a classifier. The optimization
is done with the aid of a generative adversarial network
(GAN), and the result is an improvement in the perfor-
mance of unlabeled data classification for MRCPs.

The overall idea revolves around training a temporal
convolutional network (TCN) with a large amount of data
from the main subject. Our TCN is made up of a TCN
encoder and a classifier, therefore the TCN encoder will
also be trained according to the main subject. Afterwards,
we can interface the trained encoder with the GAN, which
allows us to train another encoder, for a secondary subject.
This secondary encoder allows us to perform classification
of MRCPs from the secondary subject, without requiring
to label the data.

We trained five TCNs with five different data sets, which
yielded an average accuracy of 0.77 with an average loss
of 0.46. To test the transfer learning capabilities, we set
up a baseline test. This test consisted of using our main
subjects’ data as the training for a TCN, then using the
rest of the data to test on the TCN. The baseline had an
average accuracy of 0.54 with a loss of 1.08. Lastly, we
tested a GAN network for training the TCNs, with the
same data as the baseline. This experiment gave a higher
accuracy than the baseline with 0.62 and decreased the
loss significantly to 0.64.

1. Introduction

Death caused by stroke is ranked the second in the world of
death causes. Strokes are still an increasing problem since
factors like obesity, stress, and overall health is causing
patients to receive strokes. Some side effects of surviving
a stroke are loss of muscle movement, chronic pain, and
memory loss. It is estimated that 50% of survivors become
chronically disabled. This leads to a higher impact on
the world’s medicine sector and lowers the life quality of
surviving stroke patients [I]. Some side effects can be
treated and potentially cured, whereas other effects are
currently untreatable.

Brain-Computer Interface (BCI) is the field of study in
creating systems using the brain as input and controlling
applications. The methods for recording brain activity
are invasive methods and non-invasive methods. We will
be using non-invasive methods for recording brain activ-
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ity. The non-invasive method we will be using is Elec-
troencephalography (EEG) because of its easy setup pro-
cess and portability. Most BCI is commonly split into
many paths: medical, entertainment systems, and mar-
keting. The focus of the article will be on the medi-
cal field in BCI. Medical BCI branches into many prob-
lems such as classifying cognitive disorders, a better un-
derstanding of the ADHD spectrum, preserving cognitive
performance, and recovery of motor functions [2]. This
journal suggests that BCI could help solve the elder bur-
den by reducing cognitive aging and offer better rehabil-
itation. This article will be a continuation of [3] and,
therefore, will focus on the classification of motor func-
tions. In [3] they used three classification methods, Ad-
aBoost, Support vector machine (SVM), and K-Nearest
Neighbors (KNN), to classify movement potential. They
found that using metrics such as slope coefficient and av-
erage voltage could yield an average 80% accuracy across
five patients. Furthermore, they also tested a naive ”on-
line” method with their best-performing subject. This
test achieved 70% accuracy. We will be taking the find-
ings from [3] and we will be testing how transfer learn-
ing will perform. Research on motor function recovery
has primarily been focused on lab setups, meaning no
widespread commercial applications. One of the signifi-
cant problems that BCI faces is developing classification
algorithms that will work without large training trail se-
tups. For a new user to be integrated into this system
would require building an individual classifier with data
from training sessions. In [4] they proposed a novel frame-
work called Adversarial Discriminative-Temporal Convo-
lutional Networks (AD-TCN) that can train classifiers for
new users without having labeled data, meaning no con-
trolled experiments for the user. They trained the model
with the DREAMER dataset that contains EEG data and
emotions as labels. In this article, we will further research
the transfer learning AD-TCN, but with our dataset con-
taining EEG data for motor functions.

2. Methods

This section outlines details about the process, such as
test subjects, experiment was setup, and overall experi-
ment flow. In order to facilitate the understanding of the
process, details of the connection between brain and mus-
cle will be described as well. Since this project is a con-
tinuation of [3], a lot of the processes remained the same,
the differences being in the amount of data that was being
gathered for the analysis.



2.1. A general overview on the process

In order to perform a classification on a subject, we are ex-
tracting 2 different sets of data from each subject. Firstly
we place an EEG helmet on the scalp of the subject, this
helmet is responsible for capturing the current created by
the neurons in the brain [5], this allowed us to track the
brains activity as we perform experiments. The EEG hel-
met we will be using is classified as a lab unit, this means
that the recording frequency will be higher than commer-
cial portable EEG helmets. Furthermore will we be ap-
plying conductive gel on each electrode to reduce noise in
the signal. Secondly will we attach three EMG electrodes
on the subjects primary arm, this arm will be used in the
experiments.

The EEG data from the subject will be the base of our
analysis, since this data reflect the brains activity doing
trails. The EMG data will be used mainly to help label the
EEG data. Our experimental setup records both EEG and
EMG at the same time. If the muscle sends a higher volt-
age at one point in time, it only means that the muscle was
activated and used or contracted harder in that instance,
generating more volts, whereas when we get output from
the EEG, those are more abstract and do not specifically
have from start a direct correlation to what they might in-
dicate. Therefore, to facilitate our training, we are using
the EMG as timestamps, in order to know which portions
of the EEG to slice and analyze afterwards[3].

2.2. Subjects

As per previous procedures presented in [3], the experi-
ments were conducted on 3 healthy subjects, all male and
right handed with the ages between 23 and 27 . Per-
mission was given from each one of them and in order
to create a proper environment where an adversarial dis-
criminative network would have higher success chances,
one subject was considered the main subject, having more
data collected, in order to base the network on him. The
main subject had 3 sessions of recording, in contrast to
the other 2 subjects who only had 1 session. Since the
end goal is to be able to train and classify EEG from ”sec-
ondary” subjects with respect to the already trained main
subject, without the use of EMG for the secondary ones,
it would only make sense to have a stronger foundation
or a properly trained first subject that by having multiple
lab sessions used for training, would be able to accommo-
date to multiple variations or patterns that the secondary
subjects may have.

2.3. Experiment setup

Subjects will all use a gtec cap, which as previous men-
tioned will be fitted with 11 electrodes and a ground clip.
All of electrodes is connected to a g.gammabox which
provides power and a driver for system. Then from the
g.gammabox the signal goes intro an analog to digital am-
plifier which provides our digital interface for reading the
signals. We will be running this system at 1200Hz. The
brain produces an pattern called Movement Related Cor-
tical Potential (MRCP), this signal only occur when the
movement is voluntary, meaning the signal do not occur
if the movement is a reaction. The MRCP begins about
400ms before the movement via a negative slop and be-
gins to rise again after the movement[6]. This is signal

that we intend to classify doing our experiments. The
part of the brain responsible for producing MRCP can be
found in the motor cortex. Our strategy for capturing the
MRCP will be to place electrodes along the primary mo-
tor cortex, since this part is responsible for sending the
neurological signal to the rest of the body [7]. We placed
9 electrodes running along the primary motor cortex at
T7,C5,C3,C1,Cz,C2,C4,C6,T8 as shown in figure [1] Fur-
thermore 2 electrodes are placed at the frontal lobes, Fpl
and Fp2. Note that Cz is used for reference, where the rest
will transmit data, giving us 10 data channels for MRCP.
A subject with all equipment can be seen in appendix [A]

Figure 1. Placement of the 11 electrodes

Since we want to label the EEG for training, we can
easily do that by following the logic mentioned earlier.
Both, brainwaves(EEG) and muscle activity(EMG), are
recorded at the same time. Therefor we can use the data
collected from the EMG to help label the EEG, by cre-
ating reference points when the EMG signal peaks. The
EEG data comes from the helmet and for the EMG, we
use 3 electrodes on the subject’s arm, as seen in figure
Electrode one is places on the carpal wrist bone, then
second is placed on muscle going from the elbow to the
hand. Lastly the third electrode is placed on olecranon
bone. These three electrodes provides us with the EEG
signal.
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Figure 2. Positioning of the EMG electrodes on a arm

2.4. Experiment preparation

Before the experiment can begin, we showcase the move-
ment so that the subject can perform this movement cor-
rectly. Then we fit the three electrodes for the EMG and
the helmet for EEG. In order to prime the digital converter
and amplifier, we have it running for a short period be-
fore actually recording and saving data. This helps settle
the frequencies and somewhat normalize the data, since
there is quite a lot of noise as soon as you turn on these
devices. Afterwards, the participant then uses the muscle
that we attached the EMG electrodes to confirm reading
are correct, and then the participant is asked to perform a
movement, so that we can check the EEG data is working.
We are doing one last visual inspection over all brain chan-
nels, and if everything looks to be right, the experiment

begins [3].

2.5. Experiment procedure

In order to complete the experiment, a subject has to per-
form 5 batches of 30 movements in succession. After being
seated down, the motion consists of energetically grabbing
a bottle with their primary hand, squeezing it hard in mid
air, followed by placing it back on the table and return-
ing the arm to the starting position. In an ideal training
scenario, there would be around 6 seconds between each
movement, time split between focusing before performing
the movement and also relaxing after a previous one. The
procedure of the movement is split into 5 phases and can
be seen in figure [3] Most notably of these phases is the
rest period, this phase ensures the subject can be focuses
on only moving the arm. The rest period should normally
only last around three seconds, but if the subject can take
longer if they need to move body parts not related to the
experiment. Without this rest phase the subject could eg.
move their foot during the contraction phase which would
have a big negative impact on the MRCP signal, since
these MRCPs would overlap.
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Figure 3. Overview over the experiment procedure
with 30 movements and each movement consists of 5
phases

This repetitive task of grabbing a bottle, while easy to
perform, can become a tedious task as the experiment goes
on. Therefore, in order to stimulate and keep the subject
up to date with how the recording goes, the observer or the
person in charge of the recording will update the subject
with the number of movements he did every 5 movements
(e.g. ”You have now done 5 repetitions”, 7157, ” And those
were the last 5”). The time between 2 batches of move-
ments can be as long as the subject feels like they need in
order to feel ready to start again.

The reason we chose 5 batches over any other number is
that while a higher number of batches would give us more
data, that would be mentally exhausting for the subject,
which aside from fatigue, could decrease the quality of the
data. Had we chosen a lower number like 2 or 3, while that
could probably increase the quality by a small margin, it
would greatly limit the amount of data we have, especially
since due to hygienic reasons, after a recording session is
done, the EEG helmet has to be washed, which renders it
useless for at least a day, or until it properly dries out.

3. Analysis

In the following section will we describe how we manip-
ulate the data in order to filter it. Furthermore, will we
introduce our labeling strategy for producing training and
test data. We will give details of what models we will
use for classification and transfer learning. Lastly will we
discuss which evaluation metrics we deem useful in our
experiments.

3.1. Data overview

As per table [T} one dataset contains 16 channels out of
which we use 11. The reason for being 16 is that the
amplifier have 16 channels. Channel 1-10 contains the
EEG signal from the brain, and channel 13 and 14 are
EMG data. Channel 13 and 14 are polar opposite, therefor
will we only continue with one of the channels. Channel
10 used primarily used for detecting blinking, therefor will
this channel be excluded.



Channel(s) | Content

number /-

name

1 to 9, | EEG brain waves, used further for analysis.

T7,C5,C3,

C1,C4,C6,

T8, Fp2,

Fpl

10, C2 Special EEG channel which detects eye lid
movements, used only visually to assure
recording device works.

13 and 14 | EMG data from the forearm.

11, 12, 15, | Leftover data used for ground

16

Table 1. Channels overview from a dataset.

3.2. Cleaning and labeling of EEG data

Before we can use the EEG data as input for classification,
we need to both clean it of noise, as well as label it. In
this section we will describe how we cleaned both EEG and
EMG using different methods, and how we used EMG as
a labeling strategy. For both signals, will we be removing
the first 2s of each trial, since the recording device needs
some time to calibrate and settle down in order to avoid
artifacts on the first movement.

Cleaning the EMG

After recording the EMG, we are left with a noisy signal.
As seen in figure [ it is clear that the peaks of the EMG
can be detected with either an algorithm or the naked
eye, but this approach is not every effective on raw, un-
filtered data, since the average fluctuations of a wave are
not spread on multiple orders of magnitude, which could
cause issues due to the noise on the outbursts that were
bellow the average, and their peaks might be confused
with neighbouring noise.

Raw EMG data
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Figure 4. Raw EMG after data collection

In [8] they primarily saw the noise came from the 50hz
power line. For removal of this noise, we will use a High-
pass filter, which, in essence, removes all frequencies under
a certain threshold. The threshold we choose was 80hz,
and in figure [5| can we observe how the High-pass filter
removed the issue with the noise and made the peaks more
easily detectable.

Filtered EMG with 80hz Highpass
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Figure 5. Filtered EMG after using 80Hz highpass
filter

Cleaning the EEG

According to [9], the spectrum for MRCP can be found
between 0.05Hz to 5Hz in the EEG signal. To separate
this range from the signal, will we be using a butterworth
band-pass filter. The reasoning is that a low-pass filter
is not sufficient, as we want need to remove as much as
we can from the noise generated by the equipment. A
comparison of the signals can be seen in appendix[B] After
the signal has been cleaned, it is ready to be labeled.

Labeling EEG

Our labeling strategy will be be using the filtered EMG to
find the movement, and then adjust to the negative peak
of the EEG. Our approach to finding the peak of the EMG
signal was to set a threshold, and if the signal amplitude
broke this threshold, then that spot is considered to be a
peak. Since noise would often hit this threshold, we set
in a rule of how many points in a row should break the
threshold for it to be a peak. As we knew that in each
temporal sequence of EMG there should be 30 peaks, we
would then adjust the threshold until we found 30 peaks.
A figure of this can be found in appendix [C] After finding
the peaks we could then match these timestamps to the
EEG data. Because the onset of MRCP happens before
the EMG peak, we would then have to adjust the times-
tamps. This is done by locating the minima of the MRCP
signal before the peak. We choose to use 1s before and af-
ter the minima of the MRCP, and we labeled this data as
active. Since we knew that before the active period there
was a rest phase, we labeled the 2-4s before the minima
as rest.

3.3. Selection of Models

In order to perform benchmarks, we created temporal con-
volutional network (TCN) model, which is a specialized
version of a convolutional neural network (CNN). Another
model created was a more complex model for a GAN net-
work. Both of these models make use of a TCN-encoder.

TCN-encoder, CNN and TCN

In most of the use cases, convolutional neural networks
are aimed at tasks mainly involving features present in



the 2-dimensional or 3-dimensional space, where the re-
lationships between individual data points matters collec-
tively. A very common domain where this approach fits
well is visual imagery, specifically anything related to im-
age recognition[10].

If we take a brainwave, in comparison to an image, a
brainwave has only 1 dimensional dependency for its data
points, as opposed to an image which has 2. The brain-
wave is a 1 dimensional space of voltages, each at a differ-
ent point in time. A single data point from a brainwave
is not as expressive on its own, as compared to having the
whole brainwave or a segment of it, while also taking into
account the temporal relationships between points.

An image, on the other hand, has 2 dimensional spaces
since the pixels making the image up are placed in a 2
dimensional grid, which has both a width and a height.
In a similar manner to the brainwave’s datapoint, an indi-
vidual pixel is much less expressive on its own, compared
to the whole image or even just a group of neighbouring
pixels which make up a small section of the image.

If we have a situation where the temporal relationships
between features matter, and we would like to use a CNN,
but the features do not fit in a 2 dimensional space, we
can instead use a special version of the CNN, known as a
TCN, or temporal convolutional network, network which
performs convolutions in a 1 dimensional space, and it was
first proposed by Bai et all[11].

The way in which a TCN works is by applying filters
based of a kernel size and a dilation factor, which encodes
the input before it is being classified.

Overall, for a classification task, our TCN takes an input
of the shape [movements, 2400, 9], where movements
are the amount of movements we want to classify and the
latter 2 numbers represent the fact that we are feeding 9
EEG channels, each containing 2400 different data points.
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Figure 6. TCN structure overview. Input is passed
through 3 residual blocks and a global average
pooling, which is considered the encoder, before it is
being passed to the classifier.

Classifier

The layer structure of our TCN can be seen in figure
[l The network takes sequences of brainwave segments as

inputs, passes them through 3 convolutional or residual
blocks, afterwards it passes it through a fully connected
global average pooling layer, and finally classifies the out-
put with the help of dense layer having the softmax ac-
tivation function. A residual block is responsible for a 1
dimensional convolution, and it is made up of 4 different
layers, a temporal convolutional layer as an input, followed
by a batch normalization, a ReLu, and finally a dropout
layer in order to prevent overfitting and the posibility of
the ”dying ReLu” phenomena occuring, where due to the
behaviour of ReLu, some neurons in the network might
”die”, and they end up outputting the same result, no
matter the input.

The encoding part of the TCN is finalized when we
get the output from the global average pooling layer. At
that point, an EEG signal that started with a shape of
[1, 2400, 9] has now been reshaped and reduced down
to a much smaller array containing just [32] elements,
which can be considered a downscale with a factor of 675
from the original footprint.

TCN-encoder and GAN

A generative adversarial network or a GAN is a class of
machine learning techniques which run similar to a zero-
sum game. It usually has 2 main components, a discrim-
inator and a generator. The discriminator receives as in-
puts a real sample from the data set labeled as real, and
a fake one generated from the generator, which is labeled
as fake. The purpose of this zero-sum game is to train the
generator to create fakes to such a fine degree that the
discriminator is no longer able to tell them apart from the
real inputs of the data set. Since the discriminator and
the generator are in a continuous contest of improvement,
the concept is oftenly reffered to as a zero-sum game, and
one of the earliest remarks about this was in [I2]. A visual
representation of this concept can be seen in figure [7]
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Figure 7. GAN overview. A discriminator tells apart
an actual encoding made through the main subject,
from an encoding made from a secondary subject.

While the data used during the training of a GAN is
labeled, it is not considered labelled because the label is
not given on a feature level, to separate the inputs based
on their different features, but it is used instead to label



the domain of the input, in order for the discriminator
to be able to verify through training whether the guess it
made on the input’s origin, being from either source or
generator, was correct.

For our case, the discriminator is going to discern
whether an input it received was from a source subject’s
signal or a target subject’s one. At this point we can
extract the TCN-encoder from our already trained TCN,
and duplicate it into 2 copies, one for a source encoder,
and one for a target encoder. Both of these encoders will
receive an EEG signal and both of them will output its
encoding. The source encoder is going to have its weights
frozen, as we are only interested in training the target en-
coder to generate encodings of a more similar nature to
the source. The training process afterwards consists of
alternating training rounds for the discriminator, where
it has to try to tell apart whether an encoding is from
the source or the target. The key training segment hap-
pens afterwards, when we subsequently train the target
encoder, and its weights get changed in order to generate
an encoding that resembles more to the encodings from
the source.

After a GAN training is complete, we can disregard
the discriminator, extract the target encoder, and extend
it with the pre-trained classifier from the TCN, process
which should yield us a new classifier which did not require
feature labels from the target for training. An overview of
this process can be found in figure
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Figure 8. Overview on the process of creating a
classifier from the newly trained encoder of a GAN
and the pretrained classifier of the TCN.

3.4. Implementation details
All the data cleaning and all the models were created us-
ing python. The deep learning libraries tensorflow and
keras were used to create, train and validate models, and
scikitlearn was used to facilitate splitting the data be-
tween train and test. In order to boost the execution time,
the cuDDN library from Nvidia was used as well.

The hyperparameters used were obtained through a pro-
cess of trial and error, and our final selection for them,
including the training part is as it follows:

TCN training, validating and hyperparameters

In order to train the main TCN, and concomitantly the
TCN-encoder, our model has a filter size of 32, kernel size
of 4, momentum of 0.65, and a batch consists of 32 ran-
domly distributed samples. All the samples came from the
main subject, on whom we performed data acquisition in
3 different sessions. A session contained 5 trials, each of
them being made of 30 rest states and 30 active states,
bringing the total to 900 samples. 2 thirds or 600 samples
chosen at random were used to train, with a further vali-
dation split of 0.2. Finally, the last 300 samples were used
purely for validation.

The model used the Adam optimizer, the loss was the
main metric, and 2 callbacks from keras were used to pre-
vent over training. The learning rate was 0.001 from start,
but in case the loss reached a plateau for 20 consecutive
iterations, the learning rate was reduced by a factor of 0.5,
down to a minimum of 0.0001. The other callback used
was early stopping, where if the loss did not improve after
50 iterations, the training would stop after that epoch.

In regards to validation on the other data sets except
the main one, both of the other 2 subjects had 1 record-
ing session consisting of 5 trials and a total of 300 labeled
samples. The model containing the pretrained TCN was
loaded, containing all the hyperparameters and weights
computed for the main data set, and all 300 labeled sam-
ples from both subjects were fed in as testing samples for
the network.

GAN training, validating and hyperparameters
The GAN had very similar setup of parameters compared
to the TCN. The batch size was reduced to 10, the epoch
count was set to 50, saving a model after each epoch, and
the number of steps in an epoch was also reduced to 20.
Traditionally, the output from a generator would be a
random noise that gradually becomes less random over
time, but since our generator is actually the target en-
coder, our "random noise” is the encoding created by it-
self when a sample from a secondary data set is fed into
it. This encoding already receives a head start by being
pretrained on the main subject. The secondary data sets
contain 300 samples and the discriminator ends up being
trained 2,000 times with 10 batches randomly picked from
the samples. Half of those times it is trained with the
"real” encodings from the source encoder, and the other
half it is trained with the ”fakes” that the target encoder is
trying to produce. The target encoder gets trained 1,000
times, also with 10 batches.

3.5. Benchmarks
This section will describe the benchmarking approaches
we used to test our system. All the benchmarks ran on a



machine with an RTX2060, in order to make use of CUDA
and tensor cores for faster tensor based mathematical com-
putations. All the benchmarks were run 10 times and an
average was made, but thanks to the vast amount of train-
ing data, the differences between the highest and the low-
est values in a batch of 10 benchmarks were on average
around the 3% mark.

Evaluation metrics

To evaluate our classification of MRCP during the offline
experiments we are using accuracy. It provides us with
a simple and reliable metric. Furthermore by using the
accuracy as metric, it will allow us to compare our results
to ], as they used it for their experiments. In our ex-
periments we will also use the confusion matrix to further
evaluate our models and gain additional insights. The rea-
soning for this is that we strive to minimize false positives,
since it will trigger an external device unnecessarily.

Individual classification of MRCP

The first benchmark that we conduct is classification of the
MRCP signal. We will be using the aforementioned TCN
model , made of the TCN-encoder and the Dense classi-
fier. For each of the 5 subjects, we will train and validate
the network w.r.t. the hyperparameters mentioned. An
overview for the classification can be observed in Figure

i)

Encoded

MRCP signal signal Prediction

TCN-
—_—>

Encoder Classification

Figure 9. Overview of our classification method

Transfer learning via TCN
It is known that each individual has different unique pat-
terns in their brainwaves, which makes it a challenge to
have one pretrained model universally viable for use on
multiple subjects without supervised training beforehand.
But since all the inputs get normalized and even before
normalization the data does not seem to be very far from a
normal distribution, we also test validating the secondary
subjects on the trained TCN, where the encoder and clas-
sifier were trained on the 15 trials from the main subject.
Aside from the distribution and normalization, we also
assume beforehand that even if we use data from another
subject on the pretrained TCN, since both subjects did the
same types of movement, the TCN might have captured
some specific patterns for that action that are present in
the brainwaves, but we are not aware of at a first sight.
Aside from that, they will also serve as a good baseline to
evaluate the GAN model.

These results will be compared both with the standalone
single subject testing and classification, and also with the
transfer learning results from GAN benchmarks.

Transfer learning via GAN

In this part we want to see if the GAN helps us create a
new classifier for a "new” subject, based on the data from
the main subject. By using the discriminator, the TCN-
encoder will be refined, and after the training is done,
the encoder will be extended with the pretrained classifier
from the TCN trained on the main subject, thus creating
a new classifier that did not need features-labeled data
for training. In this case we are mainly interested to find
out whether or not refining the TCN-encoder improves the
classification.

4. Results and Discussion

In this section will we present the results from the bench-
marks detailed in the previous section.

Individual classification of MRCP

Table [2] shows the standalone performance of our TCN,
made from the TCN-encoder and the dense classifier.
Datasets 1, 2 and 3 come from the main subject and
datasets 4 and 5 from the secondary ones, but in this case
it is irrelevant, as the TCN was initialized from scratch,
fit with training data, and validated with test data. This
process was repeated 10 times for each data set and an
average was made.

Dataset Accuracy Loss
Dataset 1  0.61 0.67
Dataset 2 0.86 0.41
Dataset 3 0.86 0.36
Dataset 4 0.68 0.54
Dataset 5 0.86 0.35
Average 0.77 0.46

Table 2. Results from training and validating a new
TCN with labeled data

Transfer learning

Table [3] shows the difference between the metrics of a
model that was trained and validated with its own dataset,
compared to only validating the dataset using a pretrained
TCN from the main subject. The main subject consists of
datasets 1, 2 and 3, and the first line in the table shows
its standalone performance. Despite those 3 datasets were
the training data for the model used, the results show how
the system performs worse if it was not specifically trained
for that dataset. This goes even further when we look at
datasets 4 and 5 from the secondary subjects, where both
accuracy and loss take an even bigger hit.

Despite that, these results serve as a good baseline for
evaluating the performance of the GAN.



Dataset Acc.  Acc. Loss Loss
Ind. on TCN Ind. on TCN

Main subject 0.74 - 0.58 -

Dataset 1 0.61 0.51 0.61 0.81
Dataset 2 0.86 0.73 0.41 049
Dataset 3 0.86 0.84 0.36 0.38
Dataset 4 0.68 0.58 0.54 1.04
Dataset 5 0.86 0.51 0.35 1.13
Average 0.77 0.63 0.46 0.77

Table 3. Results from validating data sets on TCN
without individual training (TCN) compared to
individual training (Ind.)

Table 4] shows the performance of the refined TCN en-
coder from a GAN interfaced with the pretrained classifier,
compared to just using the pretrained classifier on a new
data set. We can see the loss was almost halved, and the
accuracy was also improved by 5% for dataset 4 and 11%
for dataset 5 respectively.

Dataset Acc. Acc. Loss Loss
TCN GAN TCN GAN
Dataset 4 0.58 0.63 1.04 0.65
Dataset 5 0.51  0.62 1.13  0.63
Average 0.54 062 1.08 0.64

Table 4. Results from validating data sets through
GAN-trained encoder compared to TCN without
individual training

Finally, table [5| compares the earlier results from train-
ing and validating a TCN for one specific subject, as op-
posed to doing the same process using the GAN, without
requiring labeled data. While the accuracy dropped with
an average of 0.15 and the loss grew by 0.18, it is to be
kept in mind that this latter process does not require la-
beling the data, and depending on the use case, there can
be situations when the tradeoff is worth for all intents and
purposes, as it is possible that some future data set will
lack the EMG data, making labeling next to impossible.

Dataset Acc. Acc. Loss Loss
Ind. GAN Ind. GAN
Dataset 4 0.68 0.63 0.54 0.65
Dataset 5 0.86 0.62 0.35 0.63
Average 0.77 0.62 046 0.64

Table 5. Comparison between GAN and TCN
standalone individual training (Ind.)

Confusion matrices
When we are training a new TCN with its own labeled
dataset, our testing showed that the distribution of false
negatives and false positives is similar in most of the
benchmarking runs. If its a model where the accuracy is
lower, it can happen in some cases that the system learned
to classify and tell appart better only 1 of the 2 movement
types with a false positive/false negative or vice-versa ra-
tio of up to 1 to 8.

An interesting trend occurs when we run a secondary
dataset on the pretrained classifier. There seems to be a

tendency to maximize the number of false positive, up to
a 11 to 1 ration when compared with the false negatives.

5. Further Discussion

We can see from the results that our accuracy increases
and the loss decrease when we create a classifier inferred
from GAN, but as expected, its performance is still lower
compared to having a standalone classifier trained for a
specific subject, which goes to show once again just how
different and unique our brains are. Despite that, we still
believe the decrease in performance is a worth tradeoff,
especially when considering how tedious labelling can be-
come, or in some cases, depending on the recording setup,
even impossible.

Regarding the tendency of maximizing the number of
false positives in the case of validating a secondary dataset
on the pretrained TCN, we believe it does make sense and
we could even say it was partially expected. From our vi-
sual observations, if you take all the positives or the active
movement phases from a dataset, they have a tendency to
follow a pattern in their shape, collectively as a group,
more often than their negative or rest phases. The active
phases have a valley around their signal’s minima point,
meanwhile the rest phases have more of a stochastic data
points distribution, and they differ one from the other to a
higher degree than the active phases do. Because of this,
there is a higher chance for a rest phase to be wrongfully
classified as an active phase, increasing the false positives
count, rather than the opposite happening, where an ac-
tive phase would be classified as rest.

6. Future Work

While our results showed a good and consistent improve-
ment when using the TCN encoder in combination with
the GAN, there are still things that could be done to im-
prove this cross-domain, transfer learning classifier cre-
ation even more. Since our individual training and valida-
tion of a TCN shows consistent differences of up to 25%
between just 5 different datasets, a good first step would
be to survey multiple individuals and perform recording
sessions, in order to find someone with a great performance
in a single training and validation using just the TCN.
After such a person is found, multiple recording sessions
may be made, and regarding the transfer learning part,
the number of epochs and steps should be increased, and
the learning rate decreased.
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Appendix
A. Figure of subject

Figure 10. One of the subjects during a trial



B. Comparison of raw and filtered EEG
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Figure 11. Snippet of nine channels filtered EEG with band-pass filter using 0.05hz and 5hz
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Figure 12. Snippet of nine channels raw EEG
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C. Filtered EMG signal with detected peaks
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Figure 13. Filtered EMG on a subject with their peaks marked by our algorithm
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